- Author
- Fréderic Godin, Joni Dambre (UGent) and Wesley De Neve (UGent)
- Organization
Downloads
-
(...).pdf
- full text
- |
- UGent only
- |
- |
- 480.83 KB
-
DS75 i.pdf
- full text
- |
- open access
- |
- |
- 74.71 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8540844
- MLA
- Godin, Fréderic, et al. Improving Language Modeling Using Densely Connected Recurrent Neural Networks. 2017, pp. 186–90.
- APA
- Godin, F., Dambre, J., & De Neve, W. (2017). Improving language modeling using densely connected recurrent neural networks. 186–190.
- Chicago author-date
- Godin, Fréderic, Joni Dambre, and Wesley De Neve. 2017. “Improving Language Modeling Using Densely Connected Recurrent Neural Networks.” In , 186–90.
- Chicago author-date (all authors)
- Godin, Fréderic, Joni Dambre, and Wesley De Neve. 2017. “Improving Language Modeling Using Densely Connected Recurrent Neural Networks.” In , 186–190.
- Vancouver
- 1.Godin F, Dambre J, De Neve W. Improving language modeling using densely connected recurrent neural networks. In 2017. p. 186–90.
- IEEE
- [1]F. Godin, J. Dambre, and W. De Neve, “Improving language modeling using densely connected recurrent neural networks,” presented at the 2nd Workshop on Representation Learning for NLP, Vancouver, Canada, 2017, pp. 186–190.
@inproceedings{8540844, author = {{Godin, Fréderic and Dambre, Joni and De Neve, Wesley}}, isbn = {{978-1-945626-62-3}}, language = {{eng}}, location = {{Vancouver, Canada}}, pages = {{186--190}}, title = {{Improving language modeling using densely connected recurrent neural networks}}, year = {{2017}}, }