Advanced search
2 files | 555.54 KB Add to list

Improving language modeling using densely connected recurrent neural networks

(2017) p.186-190
Author
Organization

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 480.83 KB
  • DS75 i.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 74.71 KB

Citation

Please use this url to cite or link to this publication:

MLA
Godin, Fréderic, et al. Improving Language Modeling Using Densely Connected Recurrent Neural Networks. 2017, pp. 186–90.
APA
Godin, F., Dambre, J., & De Neve, W. (2017). Improving language modeling using densely connected recurrent neural networks. 186–190.
Chicago author-date
Godin, Fréderic, Joni Dambre, and Wesley De Neve. 2017. “Improving Language Modeling Using Densely Connected Recurrent Neural Networks.” In , 186–90.
Chicago author-date (all authors)
Godin, Fréderic, Joni Dambre, and Wesley De Neve. 2017. “Improving Language Modeling Using Densely Connected Recurrent Neural Networks.” In , 186–190.
Vancouver
1.
Godin F, Dambre J, De Neve W. Improving language modeling using densely connected recurrent neural networks. In 2017. p. 186–90.
IEEE
[1]
F. Godin, J. Dambre, and W. De Neve, “Improving language modeling using densely connected recurrent neural networks,” presented at the 2nd Workshop on Representation Learning for NLP, Vancouver, Canada, 2017, pp. 186–190.
@inproceedings{8540844,
  author       = {{Godin, Fréderic and Dambre, Joni and De Neve, Wesley}},
  isbn         = {{978-1-945626-62-3}},
  language     = {{eng}},
  location     = {{Vancouver, Canada}},
  pages        = {{186--190}},
  title        = {{Improving language modeling using densely connected recurrent neural networks}},
  year         = {{2017}},
}