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Preface

With evermore strict demands on the performance of electric machines, the
importance of optimizations during early design stages is growing. Typically,
such optimizations have a vast initial design space. In order to limit the associated
computational burden, fast machine models are required.
One class of electric machines that has gained special attention lately, is the class
of high-speed machines. The main reason for this popularity is that such machines
allow to power high-speed applications, e.g. distributed power generation or gas
compression, in a direct-drive configuration. As this implies omitting the gear
box, it increases the system’s efficiency while decreasing its size and maintenance
cost. However, operating electric machines at high speeds introduces problems
that are not present in traditional machines. To understand these problems, a good
insight in the physics of high-speed electric machines is paramount.
In light of the above-described needs for fast and accurate modeling tools on the
one hand and a better understanding of high-speed electric machines on the other,
prof. dr. ir. Peter Sergeant and prof. dr. ir. Luc Dupré requested, and received, a
PhD position at Ghent University in 2012. This work presents the results of the
research that has been performed in the scope of that PhD.

During my time as a PhD student at Ghent University, I received help from
a lot of people. In the first place from my promotors, prof. dr. ir. Peter Sergeant
and prof. dr. ir. Luc Dupŕe, whom I would like to thank for giving me the
opportunity to start a PhD and for providing me with all the support I asked
for. I would also like to thank my fellow PhD students, especially dr. ing. Bart
Scheerlinck, dr. eng. Ahmed Hemeida, eng. Mohamed Nabil and ing. Jan De
Bisschop, from whom I received a lot of interesting feedback. Another group of
people I would like to thank are my colleagues from Campus Schoonmeersen,
they made working at Ghent University a real pleasure.
Finally, I would also like to thank my parents and my entire family, whose
unconditional support means a lot to me. In particular Iphigeneia, to whom I
would like to dedicate this work. Your love was, and continues to be, my largest
motivation.

Bert Hannon, August 2017
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Summary

Two trends dominate the design of modern electric machines; a commitment to
higher energy-efficiencies on the one hand and a tendency towards more dedicated
drives on the other. As a result, the importance of rigorous optimizations during
the design process of electric machines is at an all-time high. This, in turn, has
sparked the interest for modeling tools that combine accuracy and a low compu-
tational time. The latter is especially important during the earliest phases of the
machine’s design, when the design space is still very large.
Another result of the above-described trends is the emerging of new electric ma-
chine types. Especially high-speed electric machines have gained a lot of attention
over the past decade. Indeed, the dedicated design of such machines enables a
direct-drive configuration of high-speed systems. This doesn’t only allow to omit
the gearbox, resulting in a higher efficiency and reliability, it also reducesthe sys-
tem’s weight and size. In addition to the importance of optimization procedures,
the need to gain more insight in emerging machine types is another incentive to
develop comprehensible models for these machines.
The aforementioned needs for fast and accurate modeling tools and a better insight
in emerging machine types form the motivation for this work. Because of their
relative importance in the segment of high-speed machine, the focus is on surface-
mounted permanent-magnet synchronous machines with a shielding cylinder.In
the first place, the aim of this work is to study and improve the existing modeling
techniques for high-speed synchronous machines with permanent magnets. Sec-
ondly, this work wants to provide the foundation for a better understandingof these
machines. Especially regarding the physical processes through which the shielding
cylinder affects the machine’s performance.

The first part of this work discusses the modeling of permanent-magnet
synchronous machines, with a focus on machines that operate at high speeds.
That discussion starts with an evaluation of the existing modeling techniques.
Based on that evaluation, it was chosen to concentrate on the so-called Fourier-
based modeling technique. This type of models combines the subdomain
technique, i.e. dividing the studied machine topology in a number of subdomains,
with the separation of variables technique to calculate the machine’s magnetic
field.
Next, the physical background and implementation of Fourier-based modelsis
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described.
The term Fourier-based modeling actually covers a wide range of different tech-
niques. There are, for example, different possibilities to account for slotting and
even the initial physical formulation of the problem can be based on two different
magnetic potentials. Therefore, the next step is to use the previous discussion
on Fourier-based modeling as a basis to evaluate the different techniqueswithin
Fourier-based modeling. By coupling that evaluation to an overview of the existing
literature, this work presents a comprehensible selection guide that can be used by
anyone who wants to build a Fourier-based model.

The second part of this work concentrates on how the existing Fourier-based
models can be improved.
The first improvement has been to further reduce the computational times of
Fourier-based models, even though they are already inherently low. It was found
that this can be done by simplifying the studied geometry and by performing a
preliminary analysis of the machine’s harmonic content. Especially the latter
results in spectacular computational-time reductions up to 99% without affecting
the model’s accuracy.
Another contribution of this work to the Fourier-based modeling technique has
been to account for voltage sources, as opposed to the current-density sources that
are traditionally used. Although this does add to the model’s complexity, it may
greatly improve its value, especially when the modeled machine is to be powered
with a voltage source.

Whereas the first two parts of this work focus on the calculation of the ma-
chine’s magnetic field, the third part focuses on the electromagnetic quantitiesthat
can be obtained from that magnetic field.
Firstly the postprocessing itself, i.e. the actual calculation of the electromagnetic
quantities is discussed. Four quantities in particular are considered; the magnetic
flux density, the back electromotive force, the torque and the eddy-current losses.
This work contributed to the existing literature by introducing a division of the
torque in two components, one that is related to the shielding cylinder and one that
is related to the magnets.
Secondly, the test setup that has been built in the scope of this PhD is introduced
and used to validate the calculation of the back electromotive force and the currents
that are obtained when imposing a voltage. Note that all other calculations have
been validated with a finite-element model.
Finally, a number of parameter studies are performed to investigate the shielding
cylinder’s effect on the torque and the eddy-current losses. By evaluating the effect
of the shielding cylinder’s conductivity and its thickness while applying various
current and voltage sources, a number of interesting observations have been made.
It was for example noted that the torque related to the shielding cylinder behaves
similarly to the torque that is produced in an induction machine. Another obser-
vation is that, unlike expected, the synchronous harmonic content of the machine
is affected by the shielding cylinder’s conductivity. Although it is difficult toex-
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trapolate the results to other machine topologies, the observations from thesepa-
rameter studies clearly add to the understanding of high-speed permanent-magnet
synchronous machines.

Combined, the three individual parts of this work meet the initial goals of this
PhD. The first part provides an elaborate study of the existing Fourier-based mod-
eling techniques. The second part makes these models even more attractivefor
research and optimization purposes by reducing the computational time and ac-
counting for voltage sources. The last part applies Fourier-based modeling to gain
a better understanding of high-speed permanent-magnet synchronousmachines.
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Samenvatting

Een streven naar betere efficiënties enerzijds en een tendens naar meer gespe-
cialiseerde elektrische aandrijvingen anderzijds, domineren momenteel de evolutie
van elektrische machines. Het gevolg daarvan is dat het belang van doorgedreven
optimalisaties tijdens het ontwerp van elektrische machines sterk stijgt, wat op zijn
beurt weer zorgt voor een toegenomen interesse in wiskundige modellen die zowel
nauwkeurig als snel zijn. Dat laatste is bijzonder belangrijk tijdens de eerstefases
van het ontwerpproces, als de ontwerpruimte nog zeer groot is.
Een ander gevolg van het streven naar efficiëntere en meer gespecialiseerde ma-
chines is dat er nieuwe types elektrische machines ontworpen worden. Inhet licht
daarvan zijn hogesnelheidsmachines erg populair geworden tijdens de afgelopen
tien jaar. Inderdaad, indien dergelijke machines specifiek ontworpen worden voor
één bepaalde hogesnelheidstoepassing, is het mogelijk die toepassing aan tedrijven
zonder tussenkomst van een tandwielkast. Dit zorgt er niet enkel voordat de ef-
ficiëntie en duurzaamheid verbeteren, het resulteert ook in een lichter en compacter
systeem. Om een nieuwe machine te ontwerpen is er echter een goed inzicht indie
machine nodig. In dit doctoraat bijvoorbeeld, ligt de focus op hogesnelheidsma-
chines met permanente magneten. Dergelijke machines worden vaak uitgerust met
een beschermende cilinder rond de magneten. Het doel van die cilinder is de mag-
neten op hun plaats te houden en/of de rotorverliezen te verminderen. Eengoed
inzicht in de fysische processen die zo’n beschermende cilinder teweegbrengt is
belangrijk. Als aanvulling op het belang van optimalisatie procedures, is de be-
hoefte naar meer inzicht in nieuwe types machines een extra reden om wiskundige
modellen voor dergelijke machines te ontwerpen.
De behoefte naar zowel snelle en nauwkeurige wiskundige modellenén een beter
inzicht in nieuwe types elektrische machines vormen de motivatie voor dit docto-
raat. In de eerste plaats is het doel de bestaande wiskundige modellen voor perma-
nentmagneetbekrachtigde synchrone machines te bestuderen en te verbeteren. Ten
tweede wilt dit werk de basis leggen voor een beter inzicht in dergelijke machines.

In het eerste deel van dit werk wordt de wiskundige modellering van perma-
nentmagneetbekrachtigde synchrone machines besproken, met een focus op ma-
chines die ontworpen zijn voor grote omwentelingssnelheden.
In een eerste stap worden de bestaande modelingstechnieken vergeleken. Op basis
van die vergelijking werd er gekozen voor de Fourier-gebaseerde modellerings-
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techniek. Deze techniek combineert de zogenaamde deelgebiedenmethode, die het
bestudeerde probleem in kleinere delen opdeelt, met scheiding der veranderlijken
om het magnetisch veld in de machine te berekenen.
In een tweede stap wordt de fysische achtergrond en de implementatie van Fourier-
gebaseerde modellen besproken.
De term Fourier-gebaseerd modelleren dekt eigenlijk een brede waaier aan ver-
schillende technieken. Er zijn bijvoorbeeld meerdere methodes om het gleufef-
fect in rekening te brengen. Zelfs de fysische formulering van het probleem kan
gebaseerd zijn op verschillende magnetisch potentialen. Daarom is de volgende
stap om, op basis van de voorgaande discussie, de verschillende technieken bin-
nen Fourier-gebaseerd modelleren te evalueren. Door die evaluatie te koppelen aan
een overzicht van de bestaande literatuur, slaagt dit werk erin een keuzehulp aan te
bieden voor toekomstige onderzoekers die een dergelijk model willen maken.

Het tweede deel van dit werk tracht de bestaande Fourier-gebaseerde modellen
te verbeteren.
Een eerste verbetering werd gerealiseerd door de rekentijd van Fourier-gebaseerde
modellen te verlagen. Dit werd enerzijds gedaan door de bestudeerde geometrie
te vereenvoudigen en anderzijds door een kwalitatieve studie van de harmonsiche
inhoud van het magnetisch veld in de machine te gebruiken. Vooral die laat-
ste methode levert een spectaculaire rekentijdreductie tot wel 99% op, zonder de
nauwkeurigheid van het model te verminderen.
Een tweede bijdrage van dit werk is het in rekening brengen van spanningsbron-
nen, dit in tegenstelling tot het opdringen van stroomdichtheden. Ondankshet feit
dat dit de complexiteit van het model vergroot, kan het een grote meerwaarde zijn.
Zeker indien de te modelleren machine aangedreven wordt met een spanningsbron.

Waar de eerste twee delen van dit werk focussen op de berekening vanhet mag-
netisch veld, ligt de focus van het derde deel op de elektromagnetische grootheden.
In een eerste stap word de berekening van vier elektromagnetische grootheden be-
sproken; de magnetische flux dichtheid, de tegen elektromotorische kracht, het
koppel en de wervelstroomverliezen. Dit doctoraat draagt bij aan de bestaande
literatuur door de opdeling van het koppel in twee componenten te introduceren;
een component gerelateerd aan de beschermende cilinder en een component gere-
lateerd aan de magneten.
In een tweede stap wordt de testopstelling, die gebouwd werd in het kadervan dit
doctoraat, kort voorgesteld. Vervolgens wordt ze gebruikt om de berekening van de
tegen elektromotorische kracht en de stromen in de machine te onderzoeken. Merk
op dat alle andere berekeningen eerder al gevalideerd werden met een eindige-
elementen model.
Ten slotte werden er verschillende parameterstudies uitgevoerd om het effect van
de beschermende cilinder op het koppel en de wervelstroomverliezen te valideren.
Door het effect van de geleidbaarheid en de dikte van de cilinder te bestuderen
bij verschillende stroom- en spanningsbronnen, kunnen een aantal interessante ob-
servaties gedaan worden. Zo werd er bijvoorbeeld vastgesteld dat de koppelcom-
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ponent die gerelateerd is aan de beschermende cilinder dezelfde eigenschappen
vertoond als het koppel in een inductiemachine. Verder werd er ook vastgesteld
dat, tegen de verwachtingen in, de synchrone harmonische inhoud van de machine
bëınvloed wordt door de geleidbaarheid van de beschermende cilinder. Ondanks
het feit dat het moeilijk is de resultaten te extrapoleren naar andere machines, dra-
gen de inzichten die voortkomen uit deze parameter studies zeker bij aan een beter
begrip van permanentmagneetbekrachtigde hogesnelheidsmachines.

Samen komen bovenstaande delen van het werk tegemoet aan de initiële doel-
stellingen van dit doctoraat. Het eerste deel bevat een uitgebreide studievan de
technieken binnen Fourier-gebaseerd modelleren. In het tweede deelworden twee
verbeteringen van de bestaande techniek voorgesteld die Fourier-gebaseerd mod-
eleren nog aantrekkelijker maakt voor onderzoeks- en optimalisatiedoeleinden.
Het laatste deel van dit werk gebruikt Fourier-gebaseerd modeleren om een beter
inzicht te krijgen in permanentmagneetbekrachtigde hogesnelheidsmachines.
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Chapter 1

Introduction

In this first section, the work performed in the scope of this PhD is introduced.
The context that motivates the interest of the work is sketched in Section 1.1 and a
motivation of the adopted approach is formulated in Sections 1.2 and 1.3. Section
1.4 summarizes the scientific goals of this work. Section 1.5 gives an outline of
this thesis. Finally, Section 1.6 lists the scientific publications that were made in
the scope of this PhD.



2 Introduction

1.1 High-speed electric machines

Three tendencies in both society and industry have sparked the interest for high-
speed electric drives; a commitment to more cost- and energy-efficient solutions, a
desire to reduce the volume of a wide range of applications and, finally, a demand
to increase the reliability on a system-level.
Indeed, high-speed electric machines allow for a direct-drive configuration of ap-
plications that operate at high speeds, such as turbo compressors, milling tools,
medical equipment, combined heath and power (CHP) units, etc. As a direct-drive
configuration implies omitting the gear box, it also implies higher efficiency, lower
volume and a higher reliability. Moreover, increasing the speed of an electric ma-
chine results in a higher power density. This doesn’t only further reduce the vol-
ume, it also reduce the required amount of material. This is especially interesting
for machine topologies that require expensive materials, such as rare-earth mag-
nets.
However, designing high-speed electric machines is significantly more compli-
cated than designing traditional machines. Indeed, machines operating at high
speed require a rigorous mechanical, thermal and electromagnetic design.More-
over, not only the machine design is a complicated task, designing the inverterand
implementing a high-speed control algorithm is a challenge as well.
Before continuing this discussion, a definition of the term high-speed machine is
required. Such a definition cannot solely be expressed in terms of the machine’s
rotational speed; the challenges of operating a 10 kW machine at 100.000 rpm are
much larger than the challenges of operating a 50 W machine at that same speed.
Literature presents different definitions of high-speed machines, but mostly the one
introduced by Binderet al. in [1] is used. According to this definition, only ma-
chines with rotational speeds that exceed the threshold speed, as defined in (1.1),
are high-speed machines.

log nr = 4.27− 0.275 log(Pm) (1.1)

wherenr is the machine’s speed in revolutions per second andPm is its mechanical
power in Watt.
Binder’s criterion is illustrated in Figure 1.1 together with a number of both
industrial and academic high-speed applications [2–26].
The applications presented in Figure 1.1 illustrate the validity of Binder’s criterion.
As already mentioned, the development of high-speed electric drives is a signif-
icant challenge. It is therefore no wonder that a lot of research on high-speed
electric machines has been, and continues to be, performed. Designing high-speed
machines is a multi-physical challenge: not only electromagnetic aspects, such as
eddy-current and iron losses, [14,15,19,27–30] are important, themechanical de-
sign of the rotor [4,8,12,18–20,27,29–32] and a thermal study [18,19,21,27,32,33]
are critical as well. Apart from designing the machine, control architectures for
high-speed drives have been developed as well [7,16,19,23–25,29,34–37].
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Figure 1.1: Binder’s criterion for high-speed machines and real-life appli-
cations

One important question is which machine topology is best suited for high-speed
drives. Figure 1.1 already indicated that two machine types, i.e. induction
machines and permanent-magnet synchronous machines (PMSMs), are predomi-
nantly represented in the field of high-speed machines. For machines with a very
high power, i.e. more than 500 kW, there is a tendency to use induction machines.
The reason is that in these applications, induction machines are often superior
from an economical point-of-view. When decreasing the power and increasing
the rotational speed, the poor electromagnetic performance of induction motors
favors PMSMs. Especially because at very high rotational speeds, therotor’s
surface speed is too high for classical squirel cage induction machines [38].
This means that solid rotor induction machines have to be used, which further
reduces the electromagnetic performance. Therefore, nowadays the focus is on
PMSMs [4,39]. More specifically, radial-flux surface-mounted (SM) PMSMs with
a retaining sleeve are commonly used [20, 40]. The reason to prefer SM PMSMs
is that rotor structures with interior magnets cannot withstand very high rotational
speeds.
Note that various authors have proposed using a shielding cylinder (SC)[41–43].
This conductive cylinder is placed around the magnets. Its goal is to reduce the
overall rotor losses, thereby limiting the risk of overheating the magnets. Indeed,
asynchronous harmonics in the field will induce eddy-currents in the SC. These
eddy currents counteract their origin, thereby shielding the magnets. By shifting
the eddy-currents from the poorly conductive magnets to the highly conductive
SC, the rotor’s eddy-current losses can be reduced. Note, however, that the SC has
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to be carefully designed to avoid it from increasing the eddy-current losses instead
of decreasing them.
One aspect that recurs in the vast majority of the above-mentioned research
is the need for adequate electromagnetic modeling tools. Such models should
be able to accurately account for phenomena that are important in high-speed
machines, like the slotting effect and the eddy-current reaction field. Thelatter is
especially important for high-speed SM PMSMs, where the effect of eddy currents
in the retaining sleeve and/or the SC is non-negligible. Apart from accurate, the
modeling tools also have to be fast and flexible and have to give the user an insight
in the physics of the studied machine. Despite the enormous amount of research
on high-speed machines, there is still a lot of progress to be made in the field of
models that match the above description. Therefore, this work aims at studying
and developing electromagnetic modeling tools for high-speed machines. More
specifically, the focus is on models that satisfy the following needs:

• capable of accounting for phenomena that relate to high-speed operation

• fast and flexible enough to be used for optimization purposes

• provide insight in the physics of the machine

1.2 Modeling techniques

Literature describes a large variety of electromagnetic models for electric ma-
chines, ranging from very simple 1D models to highly sophisticated models that
account for complex physical phenomena in three dimensions. The goal of this sec-
tion is to review some of the most widely used modeling techniques and to select
the one that is best suited for our needs.

1.2.1 Finite-element models

Finite-element (FE) modeling is probably one of the most generic modeling tech-
niques. FE models are capable of accurately accounting for complex geometries,
non-linear materials and virtually every physical phenomenon. Moreover, elec-
tromagnetic FE models can easily be coupled with electric circuits and models of
other physical domains, such as thermal or mechanical studies.
The underlying idea of FE modeling is to first mesh the studied geometry, i.e.
divide it in a large, but finite, number of elements. These elements have to be suf-
ficiently small to allow assuming that the magnetic field in each of them can be
described with a polynomial. The coefficients of these polynomials are then ob-
tained by minimizing the total (co-)energy of the problem while also accounting
for boundary conditions at the boundaries between neighboring elements.
The implementation of a FE model is quite complex. However, there is a large
number of FE software packages available that provide easy-to-use user interfaces.
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For that reason, and because of the previously mentioned advantages,FE models
are the most commonly used models, especially in industry.
The major downfall of FE models is their need to mesh the geometry. First of
all, efficient meshing requires a preliminary knowledge of the problem’s magnetic
field, this reduces the flexibility of the technique with respect to parameter varia-
tions. Moreover, some effects, such as the eddy-current reaction field, may require
mesh sizes that are very small when compared to the total size of the problem.
This increases the computational time and may even result in numerical problems.
Moreover, FE models give only very little insight in the machine’s physics.
As a conclusion, it can be stated that FE models are capable of accounting for phe-
nomena that relate to high-speed operation, but are not fast, nor flexibleenough
and do not provide the desired insight in the machine’s physics. For thesereasons,
FE modeling will only be used as a validation tool in this PhD.

1.2.2 Magnetic equivalent circuits

Much like FE models divide the geometry in a number of mesh elements, the tech-
nique of magnetic equivalent circuits (MEC) divides the geometry in flux tubes.
The magnetic flux is assumed to have a spatially constant value and direction in
each of these tubes. The field is then calculated by accounting for magnetomo-
tive force (MMF) sources and the permeances of the flux tubes in an equivalent
circuit [44,45]. The technique is very effective at accounting for slotting and satu-
ration of soft-magnetic materials. As shown by Hemeidaet al. [46], MEC models
can account for eddy-current reaction field by introducing inductances in addition
to the resistive permeances. MEC modeling further owes its popularity to a low
computational time and a relatively simple implementation. It may therefore pro-
vide a faster, yet simplified, alternative for FE modeling.
On the downside, like FE models, MEC models require a form of meshing. As
mentioned, this is a drawback in the light of parameter studies. Due to the impor-
tance of leakage fluxes, the meshing is especially problematic in machines with a
large air gap, like SM PMSMs. Moreover, although [46] illustrated the possibility,
MEC models are not very efficient at accounting for eddy-current reaction field.
This is mainly because it is not evident to predict the eddy-current path. For these
reasons, MEC is not the best-suited modeling technique for this PhD.

1.2.3 Charge and current modeling

Using Green’s functions, charge and current models provide direct solutions for
the magnetic potential formulation of Maxwell’s equations. The latter will be dis-
cussed in more detail in Chapter 2. For charge models, which use the magnetic
scalar potential(ϕ) and account for permanent magnet sources through equivalent
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magnetic volume(ρm) and surface(σm) charges, this solution is [47]:

ϕ(x) =
1

4π

ˆ

V

ρm(x′)
|x − x′| dv′ +

1

4π

ˆ

S

σm(x′)
|x − x′| ds′ (1.2)

wherex is the position vector andx′ is the observation point.
For current models, which use the magnetic vector potential(A) and account for
source terms through equivalent volume(Jm) and surface(jm) current densities,
the solution for Maxwell’s equations is [48]:

A(x) =
µ0

4π

ˆ

V

Jm(x′)
|x − x′| dv′ +

µ0

4π

ˆ

S

jm(x′)
|x − x′| ds′ (1.3)

whereµ0 is the magnetic permeability of vacuum.
Charge and current modeling are very effective techniques to calculatethe mag-
netic field in three dimensional problems with a uniform magnetic permeabil-
ity [47, 48]. Their very straightforward approach also implies that they provide
a good insight in the machine’s physics. However, charge nor currentmodels are
very efficient at accounting for problems with multiple materials. They then require
more complex techniques [49]. This makes them less suited for this PhD, where
material-dependent effects, such as the slotting effect and eddy-current reaction
field, have to be accounted for.

1.2.4 Fourier-based models

Similar to charge and current models, Fourier-based (FB) models use a magnetic
potential formulation of Maxwell’s equations. However, instead of Green’s func-
tions, separation of variables is used to solve Maxwell’s equations. This allows
to divide the problem in a number of regions, called subdomains. As a result,
Maxwell’s equations do not have to be solved in the entire problem domain, in-
stead every subdomain is considered separately. In a second step, the solutions of
all these subdomains are coupled by imposing boundary conditions. This approach
isn’t only very fast, it also allows to account for both the slotting effect and the
eddy-current reaction field [50, 51]. Moreover, although FB models are often not
as straightforward as charge or current models, they do provide a very good insight
in the machine’s physics.
Note that the division of the problem in subdomains is fundamentally different
from the meshing technique that is used in FE and MEC modeling. Indeed, in
contrast to the approximated solutions in the FE model’s elements or the MEC
model’s flux tubes, the solution in each subdomain is calculated exactly. More-
over, the number of subdomains in a FB model is much smaller than the amount
of elements or flux tubes that is required in FE or MEC models. As a result, FB
models are more suited for parameter studies than FE and MEC models.
Evidently, FB models have disadvantages as well. Although they are inherently
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fast, their computational time rises when the amount of subdomains and/or the
required accuracy is increased. However, as will be discussed in Chapter 5, the im-
pact of that problem can be reduced. Another drawback of FB models isthat they
sometimes have to assume infinite permeability of soft magnetic materials. This
is, however, not a big issue for high-speed SM PMSMs. Due to their high-speed
operation and large effective air gap, these machines are typically operated in the
linear region of their magnetic materials.
FB models thus combine low computational times, high flexibility, good insight
and a capability of accounting for phenomena that are important for high-speed
operation. This makes them the ideal tool for this PhD.

1.2.5 Conclusion

In the above, four of the most commonly used modeling techniques have been
evaluated for use in the scope of this PhD. As was discussed in Section 1.1,the
criteria to which they were evaluated are: capability of accounting for phenomena
that relate to high-speed operation, flexibility, computational time and the level to
which they provide insight in the studied machines. The technique of Fourier-based
modeling was selected as best-suited for the needs of this PhD. It will be discussed
extensively in Chapters 2 and 3.

1.3 Aspects of Fourier-Based modeling

There are quite some options when implementing a Fourier-based model, e.g. the
magnetic potential that is used or the way in which slotting is accounted for. There-
fore, the goal of this section is to justify the choices that were made when imple-
menting the FB model of this PhD.
In the following, five aspects in particular are considered: the choosing of a mag-
netic potential, the spatial coordinate system and the way in which time depen-
dency, source terms and slotting are accounted for.

1.3.1 Magnetic potential

It was already mentioned that a magnetic potential formulation is used to construct
a Fourier-based model. Just like with charge and current models, either the mag-
netic scalar potential (MSP) or the magnetic vector potential (MVP) can be used.
The MSP is often used because of its simplicity [52–60], but it cannot account for
current densities. The latter is especially troublesome if, like in this work, eddy-
current reaction field has to be accounted for. Moreover, nowadaysthe majority
of FB models uses the magnetic vector potential [43, 61–69], especially in two-
dimensional models, where the MVP reduces to a scalar. It is therefore obvious to
use the magnetic vector potential in this work.
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1.3.2 Spatial coordinate system

In the following, it will be assumed that the magnetic field is two-dimensional.
This assumption greatly reduces the model’s complexity and, more importantly, its
computational time. It does of course introduce an error, e.g. due to the neglecting
of the end windings. However, it was earlier shown that, even for machines with a
relatively short axial length, this error is small [70].
Literature describes two-dimensional models in Cartesian [71–73], po-
lar [43, 51, 53–56, 60, 63, 65, 68, 74–76] and cylindrical [77–80]coordinates.
Evidently, the best-suited coordinate system depends on the studied machine’s
geometry. As the two-dimensional approximation of the magnetic fields under
consideration is circular, the polar coordinate system is the logical choice here.
This is illustrated in Figure 1.2, wherer is the radial coordinate andφ is the
angular coordinate.

r
φ

Figure 1.2: Illustration of the polar coordinate system

1.3.3 Time dependency

In Fourier-based models, time dependency can be accounted for in two ways; di-
rectly [43, 68, 81, 82] or through multiple static calculations [79, 83–86]. When
using multiple static calculations, the time is discretized and the magnetic field is
recalculated for every instance of time. This technique has the advantage of sim-
plicity and a very low computational time for every individual static calculation.
However, it cannot fully account for the eddy-current reaction field. Moreover, as
the field has to be recalculated for every instance of time, the advantage of alow
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computational time may be nullified if a lot of time instances have to be consid-
ered. These disadvantages can be overcome by directly accounting forthe time
dependency, i.e. the magnetic potential is not only a function of space, butof time
as well. It is therefore clear that time-dependency will be directly accounted for in
this work.

1.3.4 Source terms

Traditionally, Fourier-based models can account for two types of source terms;
permanent-magnetic materials and externally-imposed current densities. Bothcan
either be imposed directly through the equations for the magnetic potential [43,
64,68,87] or using equivalent current sheets [54,62,76,88–90]. The advantage of
current sheets is that they are often easier to implement in three-dimensionalprob-
lems. Moreover, using current sheets is also the most common workaroundfor the
MSP’s disability to account for current densities. On the other hand, using current
sheets implies a loss of accuracy [75] and is less straightforward than directly im-
posing the source terms. Therefore, this work will directly account for the source
terms.
It should be noted that the vast majority of modern electric machines is powered
using a voltage source, especially in high-speed machines. As the existing litera-
ture can only cope with the currents resulting from these voltage sources,one of
the goals of this PhD is to improve the existing FB model by providing a way to
directly account for voltage sources.

1.3.5 Slotting

Accounting for slotting effects is one of the largest challenges within FB modeling.
Literature describes three major techniques to model slotted structures.
A first possibility is to use conformal mapping techniques to simplify the machine’s
geometry to its slotless equivalent [55, 91–95]. After having solved the magnetic
field of the slotless machine, the result is mapped back to the original geometry.Al-
though conformal mapping may result in some of the simplest and computationally
most efficient models [55], the accuracy of these models is not very high [73, 96].
Increasing the accuracy implies increasing the complexity of the mapping func-
tions [92,93].
Therefore, nowadays an alternative technique, called the exact subdomain tech-
nique is mainly used [50, 64, 67, 86, 97, 98]. This technique considers each slot
separately. Although this approach results in larger computational times, it is very
accurate and gives a good insight in the effect of the slots. The major downfall is
that an infinite permeability of the slots has to be assumed. To overcome that issue,
Dubaset al. have recently proposed an extension of the exact subdomain technique
using superposition [69].
A third technique to account for slotted structures has recently be described by
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Sprangerset al. in [99]. In this technique, the spatial dependence of the per-
meability is directly accounted for. Despite the technique’s very straightforward
approach, it is relatively complex and suffers from inaccuracies due tothe Gibb’s
phenomenon [96].
Because of its accuracy and the large insight it gives, the exact subdomain tech-
nique was adopted in this work. Although Dubas’ superposition technique and
Sprangers’ technique with spatially-dependent permeabilities would be an inter-
esting addition, high-speed PMSM typically operate at low induction levels. The
limitation of infinite permeabilities is therefore not crucial.

1.3.6 Conclusion

In the above, five aspects of FB models were discussed. Based on that discussion, it
was decided that the model in this PhD will be based on a magnetic vector potential
formulation of the problem. The model will be formulated in a 2D polar coordinate
system and its time dependency will be accounted for directly. The source terms
will be implemented directly as well and slotting will be accounted for with the
exact subdomain technique.
Note that this section has been limited to a brief discussion of the most important
aspects within Fourier-based modeling. Relying on the mathematics presented in
Chapters 2 and 3, a more extensive discussion on the different techniques within FB
modeling is presented in Chapter 4. By combining that discussion to an overview
of the literature, Chapter 4 provides an interesting guide for anyone who wants to
build a FB model.

1.4 Scientific goals

It was already mentioned that the goal of this PhD is to study and develop elec-
tromagnetic modeling tools for high-speed machines. In the following, that goal
is divided in two parts and described in more detail. But first of all, it should be
noted that the aim of this thesis is to provide modeling tools for a very broad range
of high-speed PMSMs, rather than studying one particular case. Moreover, a lot of
the presented results are applicable for permanent-magnet synchronous machines
that are operated at normal, or low, speeds as well.

• The first goal of this work is to contribute to a faster, more flexible and more
accurate calculation of the magnetic field. This goal is achieved by providing
an in-depth study of the physical and mathematical background of Fourier-
based modeling. In addition, a study on how to reduce the computational
time of FB models to an absolute minimum is performed and the implemen-
tation of voltage sources is discussed.
With respect to the calculation of the magnetic field, the main contributions
of this work are: a very general approach that accounts for both slotting and
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eddy-current reaction field, an extensive discussion on reducing thecompu-
tational time of FB models, a direct coupling with the machine’s electrical
equations in order to account for voltage sources and an overview of the FB
model’s possibilities and most important literature.

• Secondly, this PhD aims at providing more insight in surface-mounted
PMSMs with a shielding cylinder by studying their electromagnetic output
quantities, based on the FB model. This goal is achieved by improving the
post-processing of FB models and by performing parameter studies of the
output quantities.
Concerning the study of physical output quantities, this PhD has contributed
to the existing literature by introducing the concept of torque components
and by studying the effect of the SC’s design on the performance of
high-speed PMSMs.

Note that, in addition to the main goals as described above, a test setup for high-
speed PMSMs was developed at Ghent University. The goal of that setup was to
provide the research group a practical expertise in high-speed applications. As this
setup isn’t really in the scope of this work’s main goals, it will only be discussed
briefly.

1.5 Outline

In accordance with the PhD’s goals, this work is structured in three parts.
The first part, which covers Chapters 2-4, provides an extensive discussion on
Fourier-based modeling. Chapter 2 focuses on the physical background of Fourier-
based modeling, it discusses the magneto-quasi static (MQS) approximation of
Maxwell’s equations and introduces the magnetic vector potential. Chapter 3
applies the results from Chapter 2 to model PMSMs in general and high-speed
PMSMs in particular. This includes sketching the model’s context, introducing
the subdomain technique and validating the obtained results. In Chapter 4, the
knowledge obtained from Chapters 2 and 3 is applied to present an overview of the
different possibilities within Fourier-based modeling. By coupling that overview
to the existing literature, it may be used as a guideline for anyone who is interested
in working with Fourier-based models.
In the second part, i.e. in Chapters 5-8, two improvements of the existing
Fourier-based modeling technique are presented. Chapter 5 introducestechniques
to reduce the computational time of Fourier-based modeling and briefly discusses
some computational issues related to Fourier-based modeling. Chapter 6 presents
a technique to account for voltage sources, as opposed to the traditionalcurrent-
density sources in Fourier-based modeling.
The third part of the PhD focuses on the machine’s electromagnetic quantitiesand
obtaining more insight in the high-speed operation of PMSMs. This is done in
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Chapters 7-9. In Chapter 7, the calculation of the machine’s magnetic flux density,
back electromotive force, torque and eddy-current losses is discussed. The chapter
also introduces a division of the torque in two components. In Chapter 8, the
experimental setup that has been developed in the scope of this PhD is briefly
introduced and used to validate some of the previously made calculations. Chapter
9 presents a number of parameter studies that provide some interesting insights in
high-speed PMSMs in general and their shielding cylinder in particular.
Finally, Chapter 10 concludes this work.
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national Conference on Electrical Machines (ICEM), 2016, pp. 592-598,
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Chapter 2

Problem formulation

One of the main goals of this work is predicting the magnetic field in high-speed,
permanent-magnet synchronous machines, thereby enabling the calculation of var-
ious machine properties, such as torque production, losses, etc. As electromagnetic
phenomena are governed by Maxwell’s equations and the electromagnetic consti-
tutive relations, the study of electromagnetic problems relies on a mathematical
formulation of these physical laws. This chapter aims at providing such a formula-
tion for high-speed machines. The discussion is presented as generally as possible,
so that the results are applicable for a wide range of electric actuators.
In the first two sections of this chapter, a very general discussion on electromag-
netic problems in stationary and moving materials is presented. In Section 2.3, the
magneto quasi-static (MQS) approximation is introduced. Section 2.4 introduces
the use of the magnetic vector potential, which results in the final mathematical
formulation of the studied problem. The chapter is concluded in Section 2.5.
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2.1 Stationary problems

Consider the situation illustrated in Figure 2.1; an electromagnetic problem in an
arbitrary domainD is studied using reference system(x1, x2, x3). The problem is
stationary, which implies thatD does not move with regard to(x1, x2, x3).

D

x1

x2

x3

Figure 2.1: A stationary problem;D does not move with respect to
(x1, x2, x3)

In the following, a mathematical formulation for the generalized electromagnetic
problem of Figure 2.1 is derived. This is done by evaluating Maxwell’s equations,
the boundary conditions and the constitutive relations.

Maxwell’s equations

Maxwell’s equations are the starting point for this discussion. In their differential
form, these cornerstones of electromagnetism are written as:

Faraday’s law ∇× E = −∂B
∂t

(2.1a)

Ampère’s law ∇× H = J +
∂D
∂t

(2.1b)

Gauss’ law for electric fields ∇ · D = ρe (2.1c)

Gauss’ law for magnetism ∇ · B = 0 (2.1d)

Where the vectorsE, H, D, B andJ refer to the electric field strength, the magnetic
field strength, the electric flux density, the magnetic flux density and the current
density respectively. The electric charge density is referred to byρe and the time
by t. All of the electromagnetic quantities are spatially referred to the(x1, x2, x3)
system.
Note that the combination of Ampère’s and Gauss’ law implies conservation of the
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electric charge:

∇ · J +
∂ρe

∂t
= 0 (2.2)

Boundary conditions

In order to ensure physically correct behavior on the boundaries of the studied
problem, a set of boundary conditions forB, D, H andE has to be imposed. As
shown in the following, these conditions are directly derived from Maxwell’s equa-
tions.
Consider an infinitesimal small pillboxP at the boundary between domainsν and
ν + 1, as illustrated in Figure 2.2.

domainν

domainν + 1

dh

n
P

Figure 2.2: A pillbox at the boundary between domainsν andν + 1

As B is a solenoidal vector field (2.1d), the integration of its divergence over the
volume of the pillbox is zero. Accounting for the divergence theorem, this can
mathematically be written as:

˚

P

∇ · B dV =

‹

∂P

B · n ds = 0 (2.3)

where∂P is the pillbox’ boundary. The surface integral can be split in a part
related to the top, a part related to the bottom and a part related to the side of the
pillbox. As B is finite, letting dh → 0 implies that the side does not contribute
to the integral, i.e. there is no magnetic flux through the side of the pillbox. The
above can then be rewritten as:

ˆ

top

B(ν) · n ds−
ˆ

bottom

B(ν+1) · n ds = 0 (2.4)

whereB(ν) is the magnetic flux density in domainν andB(ν+1) is the magnetic
flux density in domainν + 1.
As the pillbox is assumed infinitely small, (2.4) implies that in every point of the
boundary, the following condition forB has to be satisfied:

n ·
(

B(ν) − B(ν+1)
)

= 0 (2.5)
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The above is a condition forB at the boundary between domainsν andν + 1.
In a completely similar way the boundary condition forD can be found as:

n ·
(

D(ν) − D(ν+1)
)

= σe (2.6)

whereσe is the electric surface charge density on the considered boundary.
Next, consider an infinitesimal rectangleL at the boundary between domainsν and
ν + 1, as illustrated in Figure 2.3.

domainν

domainν + 1

dh

dl

n
t L

Figure 2.3: A rectangle at the boundary between domainsν andν + 1

Accounting for Amp̀ere’s law (2.1b), integration of the curl ofH over the surface
of L can be written as:

¨

L

∇× H · ds=
¨

L

(

J +
∂D
∂t

)

· ds (2.7)

This can be rewritten with the help of Stoke’s theorem. Moreover, it is again as-
sumed that dh → 0, implying that the vertical sides of the rectangle do not con-
tribute to the resulting line integral. This gives:

ˆ

top

H(ν) · t dl −
ˆ

bottom

H(ν+1) · t dl =
¨

L

(

J +
∂D
∂t

)

· ds (2.8)

whereH(ν) is the magnetic field strength in domainν andH(ν+1) is the magnetic
field strength in domainν + 1.
The rectangle is infinitesimally small andD is finite on the boundary. This implies
that the electric flux throughL reaches zero as the surface of the rectangle reaches
zero. In contrast to the electric flux, the current density can be infinite onthe
boundary. This may happen in the ideal case of infinite conductivity. Therefore,
the flux of the surface current density on the considered boundary does not have
to equal zero. The boundary condition for the magnetic field strength can then be
written as:

n ×
(

H(ν) − H(ν+1)
)

= Js (2.9)
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with Js the surface current density of the considered boundary.
Chapter 1 showed that, despite the fact that it implies a lower accuracy, someau-
thors do consider surface current densities in order to simplify their calculations.
Using the same technique as forH, the boundary condition for the electric field
strength can be found as:

n ×
(

E(ν) − E(ν+1)
)

= 0 (2.10)

The boundary conditions for static problems are thus listed as in (2.11).

n ·
(

B(ν) − B(ν+1)
)

= 0 (2.11a)

n ·
(

D(ν) − D(ν+1)
)

= σe (2.11b)

n ×
(

H(ν) − H(ν+1)
)

= Js (2.11c)

n ×
(

E(ν) − E(ν+1)
)

= 0 (2.11d)

Constitutive relations

Maxwell’s equations are supplemented with the constitutive relations, which link
the electric and magnetic field strengths to their respective flux densities. In an
absolute vacuum, these relations are written as:

D = ǫ0E (2.12a)

B = µ0H (2.12b)

whereǫ0 andµ0 are the electric permittivity and the magnetic permeability of vac-
uum. As (2.12) is only valid in an absolute vacuum, it is insufficient to model
electric machines, where matter is present.
When studying electromagnetic problems in matter, the material’s electric and
magnetic dipole moments have to be accounted for. These dipole moments have a
component that is permanent and a component that is induced by an external field.
Accounting for the dipole moments is done by introducing the polarization and the
magnetization vectors, i.e.P andM . The constitutive relations are then rewritten
as:

D = ǫ0E + P (2.13a)

= ǫ0E + PE + P0

B = µ0 (H + M) (2.13b)

= µ0 (H + MH + M0)
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wherePE is the component ofP that is induced by an external electric field andP0

is the permanent polarization of the material. Similarly,MH is the component of
M that is induced by an external magnetic field andM0 is the permanent magneti-
zation.
If the studied material is assumed linear and isotropic, which is a common assump-
tion in analytical models, the relations betweenPE andE and betweenMH andH
are determined by a constant electric and magnetic susceptibility, i.e.χe andχm.

PE = ǫ0χeE (2.14a)

MH = χmH (2.14b)

The constitutive relations of (2.13) can then be written in terms of the material’s
electric permittivity(ǫ) and its magnetic permeability(µ):

D = ǫ0 (1 + χe)E + P0 (2.15a)

= ǫ0ǫrE + P0

= ǫE + P0

B = µ0 (1 + χm)H + µ0M0 (2.15b)

= µ0µrH + µ0M0

= µH + µ0M0

whereǫr andµr are the material’s relative permittivity and relative permeability
respectively.
As opposed to vacuum, materials may conduct an electric current when exposed
to an electric field. This implies a third constitutive relation, that expresses the
relation between the electric field strength and the current density:

J = σE (2.16)

whereσ is the conductivity of the material.
Note that permanent magnetic materials are often characterized by their residual
magnetic flux density(B0 = µ0M0) instead of their residual magnetization vector.
The constitutive relations in static problems can thus be written as:

J = σE (2.17a)

D = ǫE + P0 (2.17b)

B = µH + B0 (2.17c)

Conclusion

The combination of Maxwell’s equations (2.1), the boundary conditions (2.11) and
the constitutive relations (2.17) now forms a complete mathematical formulation
for the problem of Figure 2.1.
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2.2 Problems with motion

Typically, authors of analytical models for electric actuators disregard movement.
However, considering movement is mandatory if, for example, eddy-currents have
to be taken into account. As the effect of eddy-currents may be significant in high-
speed actuators, the aim of this section is to provide a theoretical background that
allows accounting for moving materials.
Consider a domainD that is moving at a speedv with respect to the reference
frame(x1, x2, x3). To cope with such problems, a second reference frame, fixed to
the moving domain, is considered. This reference system, and all of the quantities
expressed within it, are indicated with primes.
The situation is illustrated in Figure 2.4.

D

x1

x2

x3

x′1

x′2

x′3

v

Figure 2.4: A moving problem;D moves with respect to(x1, x2, x3)

Lorentz’ transformations can now be used to translate quantities from the unprimed
reference system(x1, x2, x3) to the primed reference system(x′1, x

′
2, x

′
3) [100,
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101]:

E′ = γ

(

E − γ − 1

γ

v (v · E)
v2

+ v × B
)

(2.18a)

H′ = γ

(

H − γ − 1

γ

v (v · H)

v2
− v × D

)

(2.18b)

M ′ = γ

(

M − γ − 1

γ

v (v · M)

v2
+ v × P

)

(2.18c)

D′ = γ

(

D − γ − 1

γ

v (v · D)

v2
+

v × H
c2

)

(2.18d)

B′ = γ

(

B − γ − 1

γ

v (v · B)
v2

− v × E
c2

)

(2.18e)

P′ = γ

(

P− γ − 1

γ

v (v · P)
v2

− v × M
c2

)

(2.18f)

J′ = γ

(

J
γ
+
γ − 1

γ

v (v · J)
v2

− ρv
)

(2.18g)

ρ′e = γ

(

ρe −
J · v
c2

)

(2.18h)

wherec is the speed of light andγ is the Fitzgerald-Lorentz contraction factor:

γ =
1

√

1− |v|2
c2

(2.19)

Maxwell’s equations

Maxwell’s equations are Lorentz-invariant; they are not affected by Lorentz’ trans-
formations. This implies that, as expected, Maxwell’s equations (2.1) remain valid,
regardless which reference system is used.

Boundary conditions

Relative movement of the boundary does have an effect on the boundary condi-
tions. Evidently, if the electromagnetic quantities are expressed in the primed
system, the static boundary conditions (2.11) apply. Translating these boundary
conditions to the unprimed system is done using Lorentz’ transformations (2.18).
The calculus is quite extensive, but Costen [102] found that the resultingconditions
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are:

n ·
(

B(ν) − B(ν+1)
)

= 0 (2.20a)

n ·
(

D(ν) − D(ν+1)
)

= σe (2.20b)

n ×
(

H(ν) − H(ν+1)
)

+ (n · v)
(

D(ν) − D(ν+1)
)

= Js (2.20c)

n ×
(

E(ν) − E(ν+1)
)

− (n · v)
(

B(ν) − B(ν+1)
)

= 0 (2.20d)

Note that the boundary conditions are only affected by movement if the velocity
has a component that is normal to the boundary’s surface.

Constitutive relations

Starting from Minkowski’s crucial hypothesis that the constitutive relationsfor
stationary matter are valid in the primed system, i.e.J′ = σE′, D′ = ǫE′ and
B′ = µH′, the constitutive relations for moving matter can be found by consider-
ing the Lorentz transformations:

J
γ
+
γ − 1

γ

v (v · J)
v2

− ρv = σ

(

E − γ − 1

γ

v (v · E)
v2

+ v × B
)

(2.21a)

D − γ − 1

γ

v (v · D)

v2
+

v × H
c2

= ǫ

(

E − γ − 1

γ

v (v · E)
v2

+ v × B
)

(2.21b)

B − γ − 1

γ

v (v · B)
v2

− v × E
c2

= µ

(

H − γ − 1

γ

v (v · H)

v2
− v × D

)

(2.21c)

Conclusion

Similar as for stationary problems, moving problems are fully described by the
above Maxwell equations, boundary conditions and constitutive relations.

2.3 Magneto quasi-static problems

Maxwell’s equations, the boundary conditions and the constitutive relationsare
very generally formulated in the previous sections. However, in the scopeof elec-
tric actuators, the so-called magneto quasi-static (MQS) approximation, which
is also known as the magnetic limit of Galilean electromagnetism, can be used
[100, 101]. This approximation consists of two aspects. Thequasi-static aspect
relates to the propagation time of variations in the magnetic field. Themagneto in
magneto quasi-static implies that the magnetic field is dominant with respect to the
electric field.
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A problem can be considered quasi-static if time-dependent variations areinstantly
propagated throughout the entire geometry. Mathematically, this condition is writ-
ten as:

f ≪ c

2πlλ
(2.22)

wheref is the frequency of the time-dependent variations andlλ is the charac-
teristic dimension of the studied problem. In a rotating, radial-flux machine for
example,f is the frequency of the current andlλ is the machine’s diameter.
Evidently, (2.22) implies that the relative speed of the studied materials is much
smaller than the speed of light(‖v‖ ≪ c). This implies thatγ ≈ 1. In electric
actuators, the quasi-static condition is practically always valid.
If in quasi-static problems the energy of the magnetic field is much larger than the
energy of the electric field, the problem can further be simplified to a MQS prob-
lem. A commonly used intuitive method to determine whether the magnetic field
is dominant is to regard the time-invariant limit of the problem, i.e. the frequency
of all of the problem’s time-dependent variables is brought to zero. A problem
is considered MQS if there is no electric field in the time-invariant limit. This is
clearly the case in electric actuators where the source terms in the time-invariant
limit are DC current densities and permanent-magnetic materials.
It can easily be reasoned that, if the electric field disappears in the time-invariant
limit, the effect of electric charges is negligible. Indeed, the MQS approximation
implies neglecting the effect of electric charges.
As indicated by Zangwill [100] and Rousseaux [101], the Lorentz transformations
of electromagnetic quantities (2.18) are greatly reduced in MQS problems:

E′ = E + v × B (2.23a)

H′ = H (2.23b)

M ′ = M (2.23c)

D′ = D +
v × H
c2

(2.23d)

B′ = B (2.23e)

P′ = P− v × M
c2

(2.23f)

J′ = J (2.23g)

ρ′e = ρe −
J · v
c2

(2.23h)

In the following, Maxwell’s equations, the boundary conditions and the constitutive
relations in MQS problems are considered.
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Maxwell’s equations

The Maxwell equations that have to be solved in a MQS problem are written as:

Faraday’s law ∇× E = −∂B
∂t

(2.24a)

Ampère’s law ∇× H = J (2.24b)

Gauss’ law for magnetism ∇ · B = 0 (2.24c)

It can easily be seen that the influence of electric charges is disregarded. This
greatly simplifies the following calculus.

Boundary conditions

As the focus is on the magnetic field, it is sufficient to only regard the boundary
conditions forB andH. In a MQS problem, these conditions are written as:

n ·
(

B(ν) − B(ν+1)
)

= 0 (2.25a)

n ×
(

H(ν) − H(ν+1)
)

= Js (2.25b)

From (2.25), it can be seen that the MQS approximation disregards the effect of
movement on boundary conditions.

Constitutive relations

The constitutive relations to be accounted for in MQS problems are found bysub-
stituting (2.23) in (2.17):

J = σ (E + v × B) (2.26a)

B = µH + B0 (2.26b)

Conclusion

The mathematical formulation of MQS problems is fully described by (2.24)-
(2.26). It is clear that the MQS approximation suffices when the goal is to model
electric actuators. For that reason, in the rest of this work, only MQS problems are
considered. This implies that (2.24), (2.25) and (2.26) form the basis forthe model
that will be constructed in the following sections.
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2.4 Potential formulation

The above mathematical formulation of MQS problems consists of three differen-
tial equations (2.24), two boundary conditions (2.25) and two constitutive relations
(2.26). Mathematically, this problem is difficult to solve. Therefore, a potential
formulation is introduced to rewrite the problem.
The magnetic vector potentialA, which is a vector quantity, is defined through its
curl:

∇× A = B (2.27)

For a complete description of MQS problems, the MVP has to be combined with
the electric scalar potential (ESP) [51,103]. The ESP is indicated asV and defined
through its gradient:

∇V = −
(

E +
∂A
∂t

)

(2.28)

Governing equation

In the following, a differential equation for the MVP is derived based on Maxwell’s
equations (2.24) and the constitutive relations (2.26). This differential equation is
called the governing equation. The derivation of the governing equation for the
MVP requires some calculus. In a first step, the definition of the MVP (2.27)is
substituted in Faraday’s law:

∇× E = − ∂

∂t
∇× A (2.29)

Integration of the above gives:

E = −
(

∂A
∂t

+∇V
)

(2.30)

where the integration constant is the gradient of the electric scalar potential.In-
deed, (2.30) matches the definition ofV (2.28).
A second step in the derivation is choosing a gauge. This is important because the
above potential formulation is not uniquely defined. Indeed, iff is an arbitrary
scalar field, an alternative formulation can be defined as:







Aalt = A +∇f

Valt = V − ∂f

∂t

(2.31)

The lack of uniqueness can now be illustrated by considering the magnetic flux
density:

B = ∇× A

= ∇× (A +∇f)
= ∇× Aalt

(2.32)
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and the electric field strength:

E = −
(

∂

∂t
A +∇V

)

= −
(

∂

∂t
A +

∂∇f
∂t

+∇V −∇∂f

∂t

)

= −
(

∂

∂t
Aalt +∇Valt

)

(2.33)

This redundant degree of freedom is tackled by introducing a gauge. When using
the MQS approximation, the Coulomb gauge(∇·A = 0) is most commonly used.
Note that, in the MQS approximation, Coulomb’s gauge is Lorentz invariant.
For the third and final step of the derivation, Ampère’s law (2.24b) is combined
with the definition of the MVP (2.27), the constitutive relations (2.26) and the
equation for the electric field strength (2.30):

∇×∇× A = −µσ
(

∂A
∂t

+∇V − v × (∇× A)

)

+∇× B0 (2.34)

Using the identity for the curl of the curl and Coulomb’s gauge, the governing
equation for the MVP can finally be written as:

∇2A − µσ
∂A
∂t

+ µσ (v × (∇× A)) = µσ∇V −∇× B0 (2.35)

Equation (2.35) can be interpreted physically by making a distinction between
current densities due to eddy currents and current densities that are externally
imposed(Jext).
According to Faraday’s law, eddy currents are induced if a conductive material
experiences a varying magnetic field. From a given point of view, this can
either be because of a time-dependent magnetic field in a stationary material or
because of relative movement of the material with respect to a time-invariant
magnetic field. These phenomena are accounted for by the time-derivativeand the
speed-dependent term of (2.35) respectively.
Externally imposed current densities are accounted for by theµσ∇V term in
(2.35). WhereV is the ESP in the considered problem. In the stator windings of
an electrical machine for example,V is the terminal voltage. However, directly
accounting forV would imply that every conductor has to be modeled separately,
for thatJext is imposed directly. Assuming a generator reference, this is done by
substitutingJext for σ∇V in the governing equation for the MVP. The result is an
alternative governing equation:

∇2A − µσ
∂A
∂t

+ µσ (v × (∇× A)) = µJext −∇× B0 (2.36)
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Equation (2.36) can now be interpreted by regarding its individual terms. The first
term is the Laplacian of the MVP. This term is always present. As mentioned, the
time-derivative and the speed-dependent terms account for eddy-currents. They
will only be considered in problems where the effect of eddy-currents isnon-
negligible, i.e. in conductive materials. The source terms are located on the right-
hand side of (2.36), they respectively account for externally imposed current den-
sities and residual magnetic flux densities in the studied problem.
Note that most modern electric drives are powered with the help of a voltage-source
inverter. This fact advocates the use (2.35) as a governing equation. However, the
implementation ofV as a source term is complex. Therefore, in Chapter 3, (2.36)
will be used to calculate the magnetic field. In order to account for voltage sources,
a coupling between the field calculations and the equation for the terminal voltage
of an electric machine is proposed in Chapter 6.

Boundary conditions

The definition of the MVP (2.27) and the constitutive relation for the magnetic flux
density (2.26b) give the following equation for the magnetic field:

H =
∇× A − B0

µ
(2.37)

Accounting for the above, the boundary conditions (2.25) can be written interms
of the MVP as:

n ·
(

∇×
(

A(ν) − A(ν+1)
))

= 0 (2.38a)

n ×
(

∇×
(

A(ν)

µ(ν)
− A(ν+1)

µ(ν+1)

)

−
(

B(ν)
0

µ(ν)
− B(ν+1)

0

µ(ν+1)

))

= Js (2.38b)

Note that (2.38a) can be simplified by integrating. Condition (2.38a) then imposes
continuity ofA. This could indeed be expected, ifA would be discontinuous in a
given point, the magnetic flux density in that point would be infinite. This violates
Gauss’ law for magnetism (2.24c). The boundary conditions can now be written
as:

A(ν) − A(ν+1) = 0 (2.39a)

n ×
(

∇×
(

A(ν)

µ(ν)
− A(ν+1)

µ(ν+1)

)

−
(

B(ν)
0

µ(ν)
− B(ν+1)

0

µ(ν+1)

))

= Js (2.39b)

The magnetic field in an electric actuator can now be found by solving the govern-
ing equation (2.36) while accounting for the boundary conditions (2.39).
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2.5 Conclusion

In this chapter, the physical and mathematical basis for an analytical model of an
electric actuator was presented. Maxwell’s equations, the boundary conditions and
the constitutive relations were introduced, both for stationary and moving matter.
The magneto quasi-static approximation was introduced to simplify the calcula-
tion of magnetic fields in electric actuators. The resulting set of physical lawswas
translated in a mathematical problem formulation that consists of one partial dif-
ferential equation and two boundary conditions. This problem formulation can be
used as the starting point of an analytical model for virtually every electric actuator,
as shown in Chapter 3.
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Chapter 3

Fourier-based modeling

The previous chapter described a mathematical formulation of electromagnetic
problems. The goal of this chapter is to translate that formulation to a model
that predicts the magnetic field of electric machines. To do so, the Fourier-based
modeling technique, which essentially combines the subdomain method with the
technique of separation of variables, is used.
In the following, an extensive discussion on the various aspects of Fourier-based
modeling will be presented. The novelty of the discussion is that it provides a
widely applicable technique to account for eddy-currents in the machine, which
implies that time-dependency is considered. Although some authors have already
published time-dependent Fourier-based models, literature lacks a more general
approach of the subject. In this work, eddy-currents due to both time-variations
in the magnetic fields and movement are considered. Although the results of this
chapter are applicable to most radial-flux rotating machines operated in steady-
state, the focus is on SM PMSMs.
Section 3.1 introduces the example machine that will be used to clarify some of the
more abstract parts of this chapter. In Section 3.2, the model’s spatial reference,
its time-dependency and some general assumptions are discussed. Section3.3 de-
scribes the actual model. First, the subdomain technique is introduced. Then, a
general expression for the MVP and the source terms is derived. Next,the actual
solution of the MVP is discussed and finally the determination of the solution’s in-
tegration constants is discussed. The results, obtained in Section 3.3, are validated
in Section 3.4. Finally, Section 3.5 concludes this chapter.

The content of this chapter has been published in the following journal paper:

• B. Hannon, P. Sergeant and L. Dupré, “2-D Analytical Subdomain Model of
a Slotted PMSM With Shielding Cylinder”,Magnetics, IEEE Transactions
on, vol. 50, no. 7, 10 pages, 2014
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3.1 Example-machine

The discussion in this chapter is rather mathematical. For the sake of clarity, all
of the discussed aspects will be illustrated for the case of a high-speed permanent-
magnet synchronous machine with two pole pairs, i.e.p = 2. A cross-section of
this example-machine is shown in Figure 3.1.

phases
A
B
C

Figure 3.1: Cross-section of the example-machine

As mentioned in Chapter 1, the difference between the machine depicted in Figure
3.1 and a classical PMSM is that the high-speed PMSM is equipped with a con-
ductive sleeve around its magnets, indicated as a yellow ring in the figure. Such
a sleeve can be used to retain the magnets during high-speed operation. Itis then
referred to as a retaining sleeve. However, it can also be used to reduce the overall
rotor losses at high-speed operation. If this is the case, the sleeve is referred to as
a shielding cylinder. The eddy-currents that are induced in the SC counteract the
asynchronous components of the magnetic field, thereby shielding the magnets and
the rotor iron from these asynchronous components.

3.2 Model context

The goal of this section is to set the context in which the mathematical formulation
of Chapter 2 can be translated into a working model. To do so, a spatial reference
system has to be chosen. Moreover, as this work aims at directly accounting for
the time-dependency, that aspect has to be discussed as well. Finally, somegeneral
assumptions have to be made in order to reduce the calculus.



3.2 Model context 33

3.2.1 Spatial coordinate system

As discussed in Chapter 1, a cylindrical coordinate system with thez-axis along
the machine’s axis will be used in this work. Figure 3.2 shows that coordinate
system in the example-machine.

5

4

6

7

r
φ

z

Figure 3.2: Coordinate system in a radial-flux rotational machine

Two-dimensional approximation

Evidently, the geometry of electric machines is three-dimensional. However, often
the problem can be assumed invariant along one direction. In radial-flux rota-
tional machines, the problem is usually assumed invariant along thez-direction,
i.e. along the machine’s axis. This invariant direction is referred to as the longi-
tudinal direction. The invariance along thez-direction implies that, spatially, the
magnetic vector potential only depends onr andφ. As the field is assumed to
be two-dimensional and only depends on ther- andφ coordinates,B = ∇ × A
implies that the MVP has only one non-zero component; thez-component. This
means that:

A = A(r, φ)ez (3.1)

In the rest of this work, the 2D approximation is applied. As a result, 3D effects
such as end-effects will not be accounted for.

Periodicity

The Fourier-based modeling technique, which will later be used to calculate the
MVP, relies on periodicities in the magnetic field. Evidently, the magnetic field in
radial-flux rotational machines is periodic in theφ-direction with a periodicity of
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2π radians. The direction along which this spatial periodicity,Ts, exists is gener-
ally referred to as the periodic direction.
The remaining direction, which is ther-direction in the cylindrical coordinate sys-
tem, is called the normal direction.

Multiple reference systems

Fourier-based models often use multiple spatial reference systems in orderto ac-
count for movement and/or to reduce the calculus. In this work, movement is
directly accounted for, but the model’s complexity is minimized by considering
multiple reference systems with a circumferential shift. The relation between two
systems, e.g.(r, φ, z) and(r′, φ′, z′), is then given as:

r = r′ (3.2a)

φ = φ′ − φ0 (3.2b)

z = z′ (3.2c)

whereφ0 is the circumferential shift between both systems.

3.2.2 Time-dependency

As mentioned in Chapter 1, some authors does not directly account for the field’s
time-dependency. Instead they use multiple static calculations to mimic the effect
of time-varying aspects such as movement and sources. This technique implies
that, for every instance of time, the time-independent problem is recalculatedwith
updated values for the time-dependent variables. It has the advantage of simplicity
and a very low computational burden for every single time step. However, the
resulting magnetostatic models can not accurately account for the eddy-current
reaction field. Moreover, as the problem has to be recalculated for every instance
of time, the advantage of a lower computational burden vanishes if the desired
time step is small.
In this work, the more general approach of directly accounting for the time-
dependency of the magnetic field is adopted. It was already mentioned that the
Fourier-based method relies on periodicities in the magnetic field. This is not
only true for the the spatial aspect, it is also true for the time-dependency. The
time-period that is used in this work is the mechanical periodTt. In a classical
rotational machine that is operating in steady-state for example,Tt equals the
time required for the rotor to perform one revolution. However, it is possible that
within the machine multiple time-periodicities exist. This is for example the case
in machines with multiple rotors that rotate at different speeds.Tt is then the least
common multiple of the machine’s different periodicities.
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3.2.3 Assumptions

In order to enable an analytical solution of the problem with a limited mathematical
complexity, a number of assumptions have to be made. Some of these assumptions
were already mentioned in the previous sections. This section briefly discusses all
the assumptions that are used to construct the model in this chapter.
The first and most fundamental approximation in this work is the assumption that
the situation is magneto quasi-static. The consequences and validity of this as-
sumption have been discussed in Section 2.3.
Secondly, the problem is regarded in two dimensions. This means that the problem
is assumed invariant in one direction. This approximation implies that 3D effects
such as skewing and end effects can not be regarded. This assumptionis not strictly
necessary to allow for an analytical solution of the problem, but it greatly reduces
the required calculus.
The third assumption is that the boundaries of the studied geomtery are either ra-
dial, i.e. φ is constant, or circumferential, i.e.r is constant. In contrast to the
previous assumption, this assumption is required to analytically solve the problem.
Boundaries that aren’t radial or circumferential have to be simplified.
Fourthly, the machine is assumed to operate in steady-state. This assumption is re-
quired because the Fourier-based modeling technique that will be used to solve the
problem in Section 3.3 is based on periodicities in the magnetic field. Steady-state
operation implies a time-periodicity.
The fifth assumption is that all movement in the studied problem is along the tan-
gential direction, i.e.v = veφ. Physically, this assumption implies that there is
only rotational movement in the machine and that all the moving parts are rotating
around the same axis. This axis has to coincide with the longitudinal direction.
Finally, all of the materials in the machine are assumed linear and isotropic. More-
over, all soft-magnetic materials are assumed to have an infinite magnetic perme-
ability.
The above assumptions are listed as:

• Magneto quasi-static situation

• Two-dimensional problem

• All boundaries are either radial or circumferential

• Steady-state operation

• All movement is along the tangential direction

• All materials are linear and isotropic

• Soft-magnetic materials have infinite permeability
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3.3 Fourier-based modeling

With the problem fully formulated and the context sketched, a mathematical de-
scription of the machine’s magnetic field can be obtained. To do so, the differential
equation for the magnetic vector potential (2.36) has to be solved while accounting
for the boundary conditions (2.39). There are several ways to find a solution for
the governing equation. Mostly however, either Green’s functions or theFourier-
Based (FB) modeling technique is used. As indicated in Chapter 1, the latter, which
essentially combines the subdomain technique and the technique of separationof
variables, is used in this work.
The following section aims at describing FB modeling. More specifically, the use
of subdomains, separation of variables, the actual solution and the implementation
of the boundary conditions are discussed.

3.3.1 Subdomain technique

The governing equation is too complex to be solved analytically in the entire prob-
lem domain. To overcome that issue, the studied geometry is divided in a number
regions, called subdomains. In each of these subdomains, the problem is greatly
simplified and can be solved. The obtained solutions are then linked by imposing
the boundary conditions that were introduced in Section 2.4. As a result, thesubdo-
main technique allows to use relatively simple techniques to study complex prob-
lems. The technique’s major drawback is that every subdomain introduces aset
of integration constants. Often these constants have to be calculated numerically,
which implies that introducing extra subdomains results in a larger computational
time.
In order to obtain an as simple as possible problem, it is important to correctly
choose the subdomains. First of all, the governing equation has to be simplified as
much as possible. Secondly, it should be relatively easy to impose the boundary
conditions.

Governing equation

Section 2.4 introduced the following governing equation:

∇2A − µσ
∂A
∂t

+ µσ (v × (∇× A)) = µJext −∇× B0 (3.3)

This equation is greatly simplified ifµ andσ are constants. Therefore, a first point
of attention is to make sure that the subdomains are chosen so that the magnetic
permeability and the electrical conductivity are constant in each subdomain.
As discussed earlier, there are three kinds of terms in (3.3). Firstly, the Laplacian
term is a general term that is present in every subdomain. Secondly, the time-
derivative and speed-dependent terms account for eddy-currents. They are only
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present in electrically conductive subdomains, where the effect of eddy-current is
non-negligible. Thirdly, the terms on the right-hand side of (3.3) are source terms.
Jext accounts for externally imposed current densities andB0 accounts for perma-
nent magnets. For the sake of simplicity, this work does not consider subdomains
with multiple source terms or subdomains where both a source term and eddy-
currents are present. This implies that only the following governing equations are
to be considered:

∇2A = 0 (3.4a)

∇2A = µJext (3.4b)

∇2A = −∇× B0 (3.4c)

∇2A = µσ
∂A
∂t

− µσ (v × (∇× A)) (3.4d)

The simplest governing equation (3.4a) applies in subdomains with no sourceterms
and no eddy-currents. Equations (3.4b) and (3.4c) apply in subdomainswith a
source term, i.e. an externally imposed current density or residual magneticflux
density. Finally, (3.4d) applies in subdomains where the effect of eddy currents is
non-negligible.

Boundary conditions

Boundary conditions are imposed to ensure physically correct behaviorof the MVP
on the boundary between two subdomains, i.e. to link the solutions of neighboring
subdomains. In order to easily impose the boundary conditions, it is assumedthat
each subdomain has four boundaries, two of which are constant in ther-direction
and two of which are constant in theφ-direction. Boundaries with a constantr
are called circumferential boundaries. Boundaries that have a constant φ are called
radial boundaries. Only considering circumferential and radial boundaries usually
implies that the studied geometry has to be simplified. In the example-machine,
this means that the sides of the slots are assumed radial, the rounding of the edges
is neglected. This is illustrated in Figure 3.3.
As discussed in the following, the circumferential boundary conditions will de-
termine the integration constants that are introduced when solving the governing
equations. The radial boundary conditions will determine the eigenvalues of the
solutions.
First, circumferential boundaries are regarded. In a two-dimensional approxima-
tion, imposing continuity of the MVP at the circumferential boundary between
subdomainsν andν + 1, wherer = rν , implies (2.39a):

A(ν)(rν , φ, t)−A(ν+1)(rν , φ, t) = 0 (3.5)

The behavior of the tangential component of the magnetic field strength (2.39b)
has to be imposed as well. In the two-dimensional approximation, (2.39b) can be



38 Fourier-based modeling

(a) Realsitic (b) Simplified

Figure 3.3: Simplification of the example-machine’s geometry

rewritten as:

∂A(ν)(r, φ, t)

µ(ν)∂r

∣

∣

∣

∣

∣

r=rν

− ∂A(ν+1)(r, φ, t)

µ(ν+1)∂r

∣

∣

∣

∣

∣

r=rν

=
B

(ν)
0,φ(rν , φ, t)

µ(ν)
−
B

(ν+1)
0,φ (rν , φ, t)

µ(ν+1)

(3.6)
The surface current density of the boundary(Js) is not considered in the above.
The reason is that this work directly considers the spatial distribution of externally
imposed current densities.Js will then always be zero.
Note that, at the boundary between a subdomain with finite permeability and a
region with soft-magnetic material idealized byµ = ∞, (3.6) can be imposed
without knowledge of the MVP in the soft-magnetic material. This implies that
the problem can be decoupled, i.e. the MVP does not have to be calculated inthe
soft-magnetic material. This, in turn, implies that continuity of the MVP (3.5) does
not have to be imposed at these boundaries.
The boundary conditions of all the circumferential boundaries form a set of equa-
tions that determines the integration constants. These constants are introduced
when solving the governing equations.
Secondly, radial boundaries are considered. In the context of suchboundaries, two
types of subdomains are distinguished; subdomains that circumferentially span2π
radians and subdomains that span a smaller range ofβν radians. Both types of
subdomains are shown in Figure 3.4.
If a subdomain spans2π radians, its radial boundaries coincide. Moreover, they
can be located at any angular position. This implies that the boundary conditions
are automatically fulfilled if a spatial periodicity of2π radians is imposed. The
subdomain is therefore called a periodic subdomain. Its spatial periodicity(T

(ν)
s )

will be used in Section 3.3.2 to determine the eigenvalues of the obtained solution.
If, however, the subdomain spansβν radians, withβν < 2π, there is no obvious
periodicity. The subdomain is then referred to as a non-periodic subdomain. If
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(b) Non-periodic subdomain with soft-
magnetic boundaries

Figure 3.4: Types of subdomains

such a subdomain is flanked by idealized soft-magnetic material(µ = ∞) and has
no permanent magnetization in ther-direction, continuity of the magnetic field’s
tangential component gives (2.39b):

∂A(ν)(r, φ, t)

∂φ

∣

∣

∣

∣

∣

φ=αν

=
∂A(ν)(r, φ, t)

∂φ

∣

∣

∣

∣

∣

φ=αν+βν

= 0 (3.7)

whereαν is the angular position of the considered subdomain, as illustrated in Fig-
ure 3.4.
Equation (3.7) shows that it suffices to impose that the angular derivativeof the
MVP is zero at the radial boundaries of the considered subdomain to imposecon-
tinuity of the magnetic field strength’s tangential component. It will be shown in
Section 3.3.2 that this can be accomplished by imposing a periodicity of twice the
subdomain’s angular span, i.e.T (ν)

s = 2βν radians. Similar as for periodic sub-
domains, this periodicity will be used to determine the eigenvalues of the solution.
Due to a lack of periodicity, the MVP in the stator teeth cannot be calculated us-
ing the classical exact subdomain technique. Therefore, imposing continuity of the
MVP at the radial boundary of a non-periodic subdomain is not possible.However,
as imposing (3.7) doesn’t require knowledge of the MVP in the soft-magneticma-
terial, the problem can be decoupled. Note that this implies that it is not possible
to calculate the MVP in the stator iron of the example-machine.
It was shown in the above that imposing the circumferential boundary conditions
results in a set of equations. In the following section, this set of equations will
be used to determine the integration constants of the solution for the governing
equation. Similar, the spatial periodicities, found by imposing the radial boundary
conditions, will determine the eigenvalues of the solution.
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Subdomains in the example-machine

The simplified geometry of the example-machine can now be divided in subdo-
mains, as shown in Figure 3.5. The problem is decoupled at the rotor and stator
iron. This means that the first subdomain(ν = 1) is the region that contains the
magnets. The permeability of the magnets and that of the space between two mag-
nets is assumed equal. The shielding cylinder(ν = 2) and the air gap(ν = 3) are
the second and third subdomains respectively. Finally, each slot-openingand each
slot is a separate subdomain. The slot-openings and their correspondingslots are
given an indexi. Therefore the corresponding subdomain numbers are4i and5i
respectively.

1 2 3

4i

5i

Figure 3.5: Subdomains in the example-machine

3.3.2 Form of the solution

The solutions for the above governing equations will be obtained using the tech-
nique of separation of variables. The technique as such is not discussed as it is
available in numerous mathematical textbooks, e.g. Kryszig’s book on advanced
engineering mathematics [104]. Instead, the form of the solution will be presented.
This will allow to rewrite the governing equations (3.4) as a set of well-knownpar-
tial differential equations.
First a basic form of the solution is presented. In a second step, that solution is
adapted to account for different reference systems. Finally, a general form of the
solution is presented and the concept of harmonic combinations is introduced.
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Form of the solution

Using separation of variables implies that the solution will be written in the form
of a series. Moreover, as already mentioned in the above, the problem has a peri-
odicity in both space and time. The solution in subdomainν can thus be written in
the form of a Fourier series over space and time:

A(ν)(r, φ, t) =
∑

λ
(ν)
n

∑

λ
(ν)
k

A
(ν)

λ
(ν)
n ,λ

(ν)
k

(r)e
j
(

λ
(ν)
k

φ−λ
(ν)
n t

)

(3.8)

whereA(ν)

λ
(ν)
n ,λ

(ν)
k

(r) is the,r-dependent, Fourier coefficient of the series. This co-

efficient contains the integration constants.λ(ν)n is the eigenvalue related to the
time-aspect of the solution andλ(ν)k is the eigenvalue related to the space-aspect
of the solution. As already mentioned, the eigenvalues are determined by the sub-
domain’s periodicity. The time-periodicity is equal for every subdomain; it is the
time the rotor needs to perform one revolution(Tt). The spatial periodicity of a

subdomain isT (ν)
s mechanical radians. As discussed in the above,T

(ν)
s is either2π,

for periodic subdomains, or2βν , for non-periodic subdomains with soft-magnetic
boundaries. The eigenvalues are thus:

λ(ν)n =
2nπ

Tt
= nω (3.9a)

λ
(ν)
k =

2kπ

T
(ν)
s

(3.9b)

whereω is the mechanical speed of the machine, i.e.ω = 2π
Tt

. n andk are integers,
referred to as the time- and spatial-harmonic order respectively.
The solution is now rewritten as:

A(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(r)e

j(kφ−nωt) (3.10)

in periodic subdomains and as:

A(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(r)e

j
(

kπ
βν

φ−nωt
)

(3.11)

in non-periodic subdomains with soft-magnetic boundaries.

Multiple reference systems

As mentioned in Section 3.2.1, considering multiple reference systems can result
in a simplified calculus.
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Periodic subdomains all have the same spatial system, it is chosen as indicatedin
Figure 3.2. In constrast, each non-periodic subdomain with soft-magnetic bound-
aries is assigned its own spatial reference system. The circumferential shift of that
system is chosen so that the angular position of the subdomain(αν) corresponds to

an angular coordinate equaling zero, i.e.φ
(ν)
0 = αν . The equation for the magnetic

vector potential in non-periodic subdomains with soft-magnetic boundaries isnow
rewritten as:

A(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(r)e

j
(

kπ
βν

(φ−αν)−nωt
)

(3.12)

From (3.12), it can now easily be seen that (3.7) is satisfied by imposing:

A
(ν)
n,k(r) = A

(ν)
n,−k(r) (3.13)

This in turn shows that the chosen periodicity of2βν radians, combined with im-
posing (3.13) suffices to ensure a correct behavior of the MVP at the soft-magnetic
boundaries of a non-periodic subdomain. Moreover, choosing the reference system
so that the angular coordinate is zero at one of the soft-magnetic boundaries indeed
simplifies the calculus.
Note that imposing a spatial periodicity ofβν radians might seem a valid option as
well. However, this imposes that the MVP is equal at both radial boundaries. This
is of course not necessarily true.

General form of the solution

The above shows that the most general form of the solution, valid for bothperiodic
and non-periodic subdomains, is:

A(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(r)e

j

(

2kπ

T
(ν)
s

(

φ−φ
(ν)
0

)

−nωt

)

(3.14)

The fact that the final solution is written in the form of a double Fourier series
implies that the time- and spatial-harmonic orders can not be regarded separately.
Instead harmonic combinations(n, k) are considered. It’s interesting to note that
the rotational speed of a harmonic combination can easily be calculated by assum-
ing 2kπ

T
(ν)
s

φ− nωt constant. The rotational speed of(n, k) is then found as:

ωn,k =
dφ
dt

=
n

k
ω (3.15)

in periodic subdomains and

ωn,k =
dφ
dt

=
n

k

βν

2π
ω (3.16)

in non-periodic subdomains with soft-magnetic boundaries.
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3.3.3 Source term representation

Electric machines have two major source terms; currents and permanent-magnetic
materials. It is of paramount importance to correctly express the time- and spatial
dependency of these source terms when modeling electric machines. It wasshown
earlier that the equation for the MVP takes the form of a double Fourier series. The
source terms will be represented in the same form.
There are of course an infinite number of possible source terms. The example-
machine is a permanent-magnet synchronous machine. Therefore, the considered
source terms are an array of permanent magnets that rotates synchronously and a
number of slots that conduct one or more currents.

Permanent magnets

Consider an array of2p permanent magnets with an angular range of2π mechani-
cal radians, as the one of the example-machine. The remanent magnetic fluxden-
sity (B0) of such an array has ar- and aφ-component, both of which depend onr
andφ.
In this section, it is assumed that the magnets are radially magnetized. This implies:

B0 = B0,rer (3.17)

Spatially, the magnets’ remanent flux density only depends onφ, as illustrated in
Figure 3.6 for an array of four magnets with an opening angle of0.8π

2 radians.
The magnets rotate synchronously, i.e. with an angular speed ofω radians per
second. From (3.15), it can be seen that this means that the only non-zero harmonic
combinations are the ones with equal time- and spatial-harmonic orders.B0,r is
then mathematically described as:

B0,r(φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
B0,r,n,ke

j(kφ−nωt) (3.18)

with

B0,r,n,k =











p

π

1− (−1)
k
p

k
Bm sin

(

kφm

2

)

if k = n = cp

0 else

(3.19)

with Bm the peak value of the magnets’ remanent magnetic flux density andc an
integer.
Other magnetization patterns are discussed in [105].
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Figure 3.6: Remanent magnetic flux density of an array of four magnets
with an opening angle of4π10 radians when the gap between two
magnets is aligned withφ = 0

Current densities

The second important source that has to be accounted for is the externallyimposed
current density in the machine (3.4b). From the 2D-approximation, the current
density can only have az-component:

J(ν)ext = J (ν)ez (3.20)

When the machine is powered with am-phase electrical system, currents will flow
in its slots. The currents as such only have a time-dependency, the Fourierrepre-
sentation of the current related to thejth phase of the electrical system is:

i(j)(t) =
∞
∑

n=−∞
I(j)n e−jnωt (3.21)

Note that the current’s angular speed isn’t necessarily equal to the machine’s angu-
lar speed(ω). Nevertheless, the machine’s periodicity is used so that the represen-
tation of i(j)(t) corresponds to that of the MVP. This is justifiable as the current’s
pulsation will always be a multiple ofω.
It is assumed that the current density is spatially constant in every slot. Thismeans
that the current density in a slot is calculated as:

J (ν)(t) =
m
∑

j=1

N (ν,j)i(j)(t)

S(ν)
(3.22)
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whereS(ν) is the surface of slotν andN (ν,j) is the number of conductors related
to phasej in slotν.
To correspond with the representation of the magnetic vector potential, the current
density in slotν is written as:

J (ν)(t) =
∞
∑

n=−∞

∞
∑

k=−∞
Jn,ke

j

(

2kπ

T
(ν)
s

(φ−φ0(ν))−nωt

)

(3.23)

with

Jn,k =















m
∑

j=1

N (ν,j)I
(j)
n

S(ν)
if k = 0

0 else

(3.24)

Note that in some models the spatial dependency of the current density within a
subdomain is accounted for. This is especially important for slotless machines.
Holm’s PhD [70] gives a clear description of how the Fourier coefficientsof the
current density can then be determined.

3.3.4 Solution

In the above, the form of the solution for the MVP has been derived. As the equa-
tion is a summation over every harmonic combination, the governing equation can
be considered for every time- and spatial-harmonic combination separately.This
is a great advantage because it implies that the restriction to either consider eddy-
currents or one source term in every subdomain only affects the individual har-
monic combinations. Moreover, as shown in the following, considering the gov-
erning equation separately for every harmonic order allows to simplify the time-
derivative and speed-dependent terms of the governing equation.
From the final form of the solution (3.14), it can be seen that the MVP’s time-
derivative can very easily be calculated for every time- and spatial-harmonic com-
bination:

∂A(ν)
n,k

∂t
= −jnωA(ν)

n,k (3.25)

The time-derivative ofA(ν)
n,k can thus be written as the product of a constant and

A(ν)
n,k itself.

Another important term is the speed-dependent term of the governing equations. It
was assumed in Section 3.2.3 that the speed of subdomainν only has aφ-dependent
term, i.e.v(ν) = rω(ν)eφ. Considering that the rotor of the MVP is calculated as:

∇× A(ν)
n,k =

1

r

∂A(ν)
n,k

∂φ
−
∂A(ν)

n,k

∂r
(3.26)



46 Fourier-based modeling

, the speed-dependent term can then be calculated for every harmonic combination
as:

v(ν) ×
(

∇× A(ν)
n,k

)

= −j 2kπ
T
(ν)
s

ω(ν)A(ν)
n,k (3.27)

whereω(ν) is the mechanical rotational speed of subdomainν.
Implying that, similar to the time-derivative term, the speed-dependent term canbe
rewritten as the product of a constant andA(ν)

n,k itself.
For an arbitrary harmonic combination,(n, k), the governing equations (3.4) of
subdomainν can now be written in their scalar form (3.1), as:

∂2A
(ν)
n,k

∂r2
+

1

r

∂A
(ν)
n,k

∂r
+

1

r2

∂2A
(ν)
n,k

∂φ2
= 0 (3.28a)

∂2A
(ν)
n,k

∂r2
+

1

r

∂A
(ν)
n,k

∂r
+

1

r2

∂2A
(ν)
n,k

∂φ2
= µ(ν)J

(ν)
n,k (3.28b)

∂2A
(ν)
n,k

∂r2
+

1

r

∂A
(ν)
n,k

∂r
+

1

r2

∂2A
(ν)
n,k

∂φ2
= −

B
(ν)
0,φ,n,k

r
−
∂B

(ν)
0,φ,n,k

∂r
+

1

r

∂B
(ν)
0,r,n,k

∂φ
(3.28c)

∂2A
(ν)
n,k

∂r2
+

1

r

∂A
(ν)
n,k

∂r
+

1

r2

∂2A
(ν)
n,k

∂φ2
= jµ(ν)σ(ν)

(

2π

T
(ν)
s

kω(ν) − nω

)

A
(ν)
n,k

(3.28d)

Note that (3.28) again underlines the need to represent the source terms as Fourier
series.
The governing equations in (3.28) can now be solved with the separation ofvari-
ables technique, the resulting solutions are discussed in the following.

Laplace

The first of the above equations is the well-known Laplace equation. It governs
the magnetic field in source-free subdomains where the effect of eddy-currents is
negligible or non-existent, e.g. the air gap. The solution of (3.28a) is written as:

A(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(r)e

j

(

2kπ

T
(ν)
s

(

φ−φ
(ν)
0

)

−nωt

)

(3.29)

with

A
(ν)
n,k(r) =











C
(ν)
n,k +D

(ν)
n,k ln r if k = 0

C
(ν)
n,kr

∣

∣

∣

∣

2kπ

T
(ν)
s

∣

∣

∣

∣

+D
(ν)
n,kr

−
∣

∣

∣

∣

2kπ

T
(ν)
s

∣

∣

∣

∣

else

(3.30)

whereC(ν)
n,k andD(ν)

n,k are the integration constants.
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Poisson

In subdomains that contain source terms, (3.28b) or (3.28c) applies. These equa-
tions are the non-homogenous variant of (3.28a), also known as the Poisson equa-
tion. Their solution is written as:

A(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(r)e

j

(

2kπ

T
(ν)
s

(

φ−φ
(ν)
0

)

−nωt

)

(3.31)

with

A
(ν)
n,k(r) =











C
(ν)
n,k +D

(ν)
n,k ln r + P

(ν)
n,k (r) if k = 0

C
(ν)
n,kr

∣

∣

∣

∣

2kπ

T
(ν)
s

∣

∣

∣

∣

+D
(ν)
n,kr

−
∣

∣

∣

∣

2kπ

T
(ν)
s

∣

∣

∣

∣

+ P
(ν)
n,k (r) else

(3.32)

P
(ν)
n,k (r) is the particular solution of the Poisson equation:

P
(ν)
n,k (r) =



















jkB
(ν)
0,r,n,k −B

(ν)
0,φ,n,k

2
r ln r if |k| = 1

jkB
(ν)
0,r,n,k −B

(ν)
0,φ,n,k

1− k2
r else

(3.33)

for subdomains with permanent magnets and

P
(ν)
n,k (r) =











1

4
µ(ν)Jn,k ln(r)r

2 if |k| = 2

1

4− k2
µ(ν)Jn,kr

2 else
(3.34)

for subdomains with external current densities.
In a periodic subdomain that containsp radially magnetized magnet pairs with a
span ofφm radians and a remanent magnetic flux density ofBm T, the above is
rewritten as:

P
(ν)
n,k (r) =































−j p
π

1− (−1)
k
p

2
Bm sin

(

kφm

2

)

r ln r if k = n = cp = ±1

−j p
π

1− (−1)
k
p

1− k2
Bm sin

(

kφm

2

)

r if k = n = cp 6= ±1

0 else
(3.35)
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wherec is an integer.
In a non-periodic subdomain with soft-magnetic boundaries that conducts aspa-
tially constant current in thez-direction, the particular solution is written as:

P
(ν)
n,k (r) =







1

4
µ(ν)Jn,k if k = 0

0 else
(3.36)

Helmholtz

The fourth governing equation (3.28d) can take two forms. Ifnω = 2π

T
(ν)
s

kω(ν), the

equation reduces to the Laplace equation. If, however,nω 6= 2π

T
(ν)
s

kω(ν), the gov-

erning equation is a Helmholtz equation. The physical meaning of these two forms
is that ifnω = 2π

T
(ν)
s

kω(ν), the effect of time-variations in the magnetic field is nul-

lified by the effect of the subdomain’s velocity. Harmonic combinations that satisfy
this condition will not induce any eddy-current, which mathematically translatesto
a Laplace equation instead of a Helmholtz equation.
Consider, for example, the shielding cylinder in the example-machine. This con-
ductive sleeve is a periodic subdomain(T (ν)

s = 2π) that rotates synchronously
(ω(ν) = ω). This implies that harmonic combinations withn = k do not introduce
eddy-current in the shielding cylinder. Indeed, from (3.15), it can beseen that such
combinations rotate synchronously with the shielding cylinder, i.e. they are invari-
ant from the shielding cylinder’s point of view.
The solution of (3.28d) can now be written as:

A(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(r)e

j

(

2kπ

T
(ν)
s

(

φ−φ
(ν)
0

)

−nωt

)

(3.37)

with

A
(ν)
n,k(r) =



























C
(ν)
n,k +D

(ν)
n,k ln r if k = n = 0

C
(ν)
n,kr

∣

∣

∣

∣

2kπ

T
(ν)
s

∣
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∣

∣

+D
(ν)
n,kr

−
∣

∣

∣

∣

2kπ

T
(ν)
s

∣

∣

∣

∣

if k = n 6= 0

C
(ν)
n,k I 2kπ

T
(ν)
s

(τn,kr) +D
(ν)
n,k K 2kπ

T
(ν)
s

(τn,kr) else

(3.38)

whereIx andKx are modified Bessel functions of the first and second kind and the
xth order,τn,k is defined through its square:

τ2n,k = jµ(ν)σ(ν)

(

2π

T
(ν)
s

kω(ν) − nω

)

(3.39)
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3.3.5 Integration constants

In the above, equations for the MVP in all of the considered subdomains where
obtained; (3.29), (3.31) and (3.37). However, these solutions are notuniquely

defined as long as their integration constants
(

C
(ν)
n,k andD(ν)

n,k

)

haven’t been deter-

mined. As discussed earlier, the final step in building a Fourier-based model is to
determine the integration constants by imposing the circumferential boundary con-
ditions (2.39). In [50], five types of circumferential boundaries were considered.
Three of these boundary types are important in this work, i.e. boundarieswith a
Neumann condition, boundaries with continuous conditions and boundarieswith
both Neumann and continuous conditions.

Neumann boundaries

At the boundary between subdomainν and a region with soft-magnetic material
(µ = ∞), the problem can be decoupled. This implies that the MVP is not cal-
culated in the soft-magnetic material. Such a boundary is illustrated in Figure 3.7.
As the MVP in the soft-magnetic material isn’t computed, only continuity of the
magnetic field’s tangential component (3.6) is imposed. This condition reduces to
a Neumann condition as the permeability of the soft-magnetic material is assumed
infinite:

∂A(ν)(r, φ, t)

∂r

∣

∣

∣

∣

∣

r=rν

= B
(ν)
0,φ(rν , φ, t) (3.40)

Evidently,A(ν)(r, φ, t) andB(ν)
0,φ(r, φ, t) have the same time and spatial periodic-

ities. This implies that the above condition can be rewritten for every harmonic
combination separately:

dA(ν)
n,k(r)

dr

∣

∣

∣

∣

∣

∣

r=rν

= B
(ν)
0,φ,n,k(rν) (3.41)

Note that ifB(ν)
0,φ(rν , φ, t) = 0, ther-derivative ofA(ν) equals zero atr = rν . This

implies that the flux lines are perpendicular to the boundary.

Continuous boundaries

At the boundary between two subdomains that have equal spatial periodicities,
both the MVP (3.5) and the tangential component of the magnetic field (3.6) have
to be continuous. An illustration of such a boundary is given in Figure 3.8. As
the subdomains have equal time and spatial periodicities, the boundary conditions
have to be valid for every harmonic combination separately. Equations (3.5)and
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(3.6) are then rewritten as:

A
(ν)
n,k(rν) = A

(ν+1)
n,k (rν) (3.42a)

dA(ν)
n,k(r)

dr

∣

∣

∣

∣

∣

∣

r=rν

=
dA(ν+1)

n,k (r)

dr

∣

∣

∣

∣

∣

∣

r=rν

(3.42b)

Mixed boundaries

Consider the boundaries of Figure 3.9. One side of the boundary consists of sub-
domainν. This subdomain can either be a periodic subdomain (Figure 3.9(a))
or a non-periodic subdomain with soft-magnetic boundaries (Figure 3.9(b)). The
other side of the boundary consists of soft-magnetic material and one or more non-
periodic subdomains(ξi). Clearly, the spatial periodicities of the different subdo-
mains are not equal.
Continuity of the MVP between subdomainsν andξi is imposed as:

∞
∑

n=−∞

∞
∑

k=−∞
A

(ξi)
n,k (rν)e

j

(

2kπ

T
(ξi)
s

(

φ−φ
(ξi)
0

)

−nωt

)

= A(ξi)(rν , φ, t)

= A(ν)(rν , φ, t)

(3.43)

Naturally, the above is only valid on the boundary between subdomainsν andξi.
Using the definition of a Fourier coefficient, the above condition can be rewritten
as:

A
(ξi)
n,k (rν) =

ω

2π

2

T
(ξi)
s

2π
ω
ˆ

0

φ
(ξi)
0 +

T
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2

ˆ
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(ξi)
0

A(ν)(rν , φ, t)e
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(

2kπ

T
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(

φ−φ
(ξi)
0

)

−nωt

)

dφdt

=
∞
∑
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A(ν)

n,q(rν)Γq,k(ξi, ν)

(3.44)
where
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else

(3.45)
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Continuity of the magnetic field’s tangential component is imposed in a similar
way:

∞
∑

n=−∞

∞
∑

k=−∞

1

µ(ν)





dA(ν)
n,k

dr

∣

∣

∣

∣

∣
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r=rν
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(ν)
0,φ,n,k(rν)



 e
j

(

2kπ
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0
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−nωt
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= f(φ, t)

(3.46)
with

f(φ, t) =
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
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0 , φ
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T
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s

2
]

0 else
(3.47)

Using the definition of a Fourier coefficient in the same way as for continuity of
the MVP, the boundary condition can be rewritten as:

1
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whereΥq,k(ξi, ν) is defined as:
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(3.49)
with ς = 1 if ν is a periodic subdomain andς = 2 if ν is a non-periodic subdomain
with soft-magnetic boundaries.

Special boundaries

There are two types of special boundaries in which the above is not valid.A first
special boundary is the center-point of the machine(r = 0). In this point, it has
to be imposed that the MVP is finite. Secondly, the outer boundary of the studied



52 Fourier-based modeling

problem has to be considered. This boundary can either be situated at infinity or at
a constant radius, e.g. the outer radius of the machine. It is then assumed that the
MVP is constant at that boundary, i.e. there is no magnetic flux passing through
the outer boundary. As the MVP is only defined except for a constant, theconstant
value for the MVP at the outer boundary is free to choose. Usually it is chosen to
be zero.
The special boundaries do not always occur. If the problem is decoupled at a soft-
magnetic boundary, the MVP doesn’t have to be calculated at the inner and/or outer
boundary. Note that if the outer boundary isn’t considered, the MVP willstill only
be defined except for a constant. This constant is again free to choose.

System of boundary conditions

When applied to a specific problem, the above boundary conditions form a system

of equations for the unknown integration constants
(

C
(ν)
n,k andD(ν)

n,k

)

. For every

time-harmonic ordern, this system can be written in its matrix form as:

[C1
n] · [Xn] = −[C2

n] · [Jn] + [C3
n] · [Bn] (3.50)

where[Xn] contains all of the integration constants linked ton, i.e. the integration
constants of each subdomain and each spatial harmonic order. This implies that if
Nbc is the amount of boundary conditions,[Xn] has a size ofNbc×1. Analogously,
[Bn] and [Jn] areNbc × 1 row vectors that contain all of the spatial harmonic
coefficients of the remanent magnetic induction and the current density in each of
the subdomains.[C1

n], [C
2
n] and[C3

n] areNbc ×Nbc coefficient matrices.
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(a) Periodic subdomain

rν

ν

(b) Non-periodic subdomain

Figure 3.7: Neumann boundaries atr = rν , gray area is soft-magnetic ma-
terial

rν

ν

ν + 1

(a) Periodic subdomain

rν

ν

ν + 1

(b) Non-periodic subdomain

Figure 3.8: Continuous boundaries atr = rν , gray area is soft-magnetic
material
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(a) Periodic subdomain
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ξ1

ξ2

(b) Non-periodic subdomain

Figure 3.9: Mixed boundaries atr = rν , gray area is soft-magnetic material
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3.4 Validation

In order to validate the above sketched framework, a FB model for radial-flux
PMSMs was constructed. The model was made very general in the sense that it
is fully parametrized and that it can account for machines with various topologies,
i.e. machines with an inner or an outer rotor, with or without a shielding cylinder
and with semi-closed, open or no stator slots. The model was also made so thatit
can account for any stator-winding topology that can be determined with thestar-
of-slots method (SoS).
First, the studied machine topologies will briefly be introduced. Next, for each of
these geometries the resulting magnetic field is visualized and the obtained flux
densities are compared to results from a FE model.

3.4.1 Studied topologies

Twelve different machine topologies have been studied, six of which havean inner
rotor and six of which have an outer rotor.
All of the inner rotor machines have the same geometrical parameters, the same
winding configuration and an equal amount of pole pairs. The only parameters that
vary are the presence of a shielding cylinder and the slot type, i.e. semi-closed,
open or no slots. Cross sections of the studied inner rotor machines are shown in
Figure 3.11.
Similar as for the inner-rotor machines, the only variable parameters of the six
outer-rotor machines are the slot type and whether or not there is a SC. Cross
sections of the outer-rotor machines are shown in Figure 3.18.
The actual parameters of the studied machines are listed in Table 3.1, where RY
indicates the rotor yoke, PM the permanent magnets, SC the shielding cylinder,
AG the air gap, SO the slot openings, SL the slots and SY the stator yoke. Note
that, depending on whether no-load or armature-reaction conditions are regarded,
Bm is 1.2 or 0 T andJ is 0 or 5 A

mm2 . The applied stator current is sinusoidal. In
machines without a SCr3 andσSC are neglected. Similarly, in slotless machines
and machines with open slots,r5 andδ are neglected.

3.4.2 Validation

The Fourier-based model, constructed with the framework presented in thischap-
ter, was used to calculate the MVP in all of the non-ferromagnetic parts of thema-
chine at both no-load and armature-reaction conditions. Next, the resultingMVP
was used to calculate the magnetic flux density in the center of the air gap using
the definition of the MVP (2.27):

B =
1

r

∂A

∂φ
er −

∂A

∂r
eφ (3.51)
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Table 3.1: Parameters of the validated machines

Parameter Symbol Inner rotor Outer rotor

Number of slots Ns 12 15
Number of pole pairs p 2 7
Number of phases m 3 5
Remanent flux density of a magnet Bm 1.2 or 0 T 1.2 or 0 T
Angular span of a magnet φm 72.00° 20.57°
Current density in the slots (RMS) J 0 or 5 A

mm2 0 or 5 A
mm2

Frequency of the applied current f 1000 Hz 1000 Hz
Radius of the RY - external boundaryr0 0.00 mm 79.20 mm
Radius of the RY - PM boundary r1 47.25 mm 72.20 mm
Radius of the PM - SC boundary r2 52.25 mm 67.70 mm
Radius of the SC - AG boundary r3 54.25 mm 66.70 mm
Radius of the AG - SO boundary r4 57.25 mm 63.70 mm
Radius of the SO - SL boundary r5 62.00 mm 60.70 mm
Radius of the SL - SY boundary r6 75.20 mm 44.20 mm
Radius of the SY external boundary r7 85.20 mm 0.00 mm
Opening angle of the slot openings δ 6.93° 5.54°
Opening angle of the slots ǫ 18.78° 15.02°
Conductivity of the SC σSC 5.96.107 S

m 5.96.107 S
m

In the theoretical discussion of Section 3.3, an infinite summation of the time- and
spatial-harmonic orders was used. Evidently, when implementing a FB model,
these infinite summations have to be truncated. In all of the following calculations,
the time-harmonic orders range between -130 and 130. In the periodic subdomains,
the same range was used for the spatial-harmonic orders, while in the non-periodic
subdomains the spatial-harmonic orders where chosen to range between -15 and
15. The iron parts of the machine were assumed infinitely permeable and all of
the other parts were assumed to have a permeability equal to that of an absolute
vacuum(µ0).
For each of the studied geometries, the field images at no-load and armature-
reaction, and the corresponding radial and tangential components of themagnetic
flux density in the center of the air gap(r = rac), are shown in Figures 3.12-3.17
and 3.19-3.24. Note that the field images and the magnetic flux densities are those
at t = 0, i.e. the magnet array is aligned with theφ = 0 axis and the current in
phase A is maximal.
To validate the results obtained from the FB model, the magnetic flux densities
are compared to results from a transient FE model. This FE model was made in a
commercial software package and its mesh and time-step were fixed to ensurean
accurate result.
The resulting comparison shows that the theoretical framework, sketchedin the



3.4 Validation 57

previous sections, is indeed capable of accurately predicting the magnetic field in
an electric machine. This is also confirmed by Table 3.2, which shows the per-
centage deviation between the analytically obtained magnetic flux density in the
center of the air gap and the results obtained from the FE model. This deviationis
calculated as:

d =

2π́

0

|BFEM (rac, φ, 0)−BANA(rac, φ, 0)|dφ

2π́

0

|BFEM (rac, φ, 0)|dφ
· 100% (3.52)

Table 3.2 also shows the computational times required to build and solve the system
of boundary conditions, i.e. the time required to compute the integration constants.
By way of comparison, the computational time of the FE models is shown as well.
It is clear that the FB model is much faster than the FE model.
Observing Table 3.2 and Figures 3.12-3.17 and 3.19-3.24, some interestingcon-
clusions can be drawn.
First of all, it is clear that the error onBφ is generally larger than the error onBr.
The reason is thatBφ tends to be more capricious thanBr, as shown in Figures
3.12-3.17 and 3.19-3.24. On the one hand, this implies a larger importance of high
harmonic content, which may imply errors in the analytically obtained results. On
the other hand, a more capricious course is also more difficult to be accurately pre-
dicted by the FE model.
A second point of interest is that the results for the slotless machines are more ac-
curate than those for the slotted machines. The mathematical reason for this is that
the infinite summations of the mixed boundary conditions (3.44 and 3.48), which
only occur in slotted machines, are truncated. This implies that the slotting effect
is not exactly accounted for, which evidently introduces an extra error.Note that
the effect of slotting on the deviation is larger forBφ than forBr. This was indeed
expected, as slotting has a larger effect onBφ.
Further to this, it can be noted that the error due to slotting is almost completely in-
troduced at the edge between the slots and the teeth, or at the edge betweenthe slot
openings and the tooth tips for machines with semi-closed slots. This is illustrated
in Figure 3.10. Note that the edges are located at the extrema of Figures 3.10(b)
and 3.10(c).
Figure 3.10 also illustrates why the percentage deviation ofBφ at no load is so
large in the inner-rotor machines with semi-closed slots. Indeed, the very large dif-
ference in periodicity between the air-gap subdomain and the slot openingsresults
in very abrupt changes of the azimuthal component of the flux density.
Thirdly, Table 3.2 shows a clear difference in computational time between the
topologies with a SC and those without. The reason for higher computational times
when a SC is present is that it introduces complex numbers in the system of bound-
ary conditions, as can be seen from (3.37).
Finally, the effect of the studied machine’s complexity on the computational time
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Figure 3.10:Bφ(rac, φ, 0) at no load in the inner rotor machines with a SC

can be considered. It was expected that the computational time would drastically
increase with the complexity of the studied machine. The reason is twofold.
First of all, there is a difference between problems where every subdomain has the
same spatial periodicity, i.e. the slotless machines, and problems with various spa-
tial periodicities, i.e. the slotted machines. The main reason is that, as opposed to
problems with various spatial periodicities, problems with only one spatial period-
icity allow to solve the system of boundary conditions separately for every spatial
harmonic order, see (3.41), (3.42), (3.44) and (3.48). This results in more, but
much smaller, systems. This in turn is expected to result in a significantly lower
computational time. As can be seen from Table 3.2, this expectation is not met.
The reason is that the model for slotless machines requires morefor loops. As the
model was implemented in Matlab, which doesn’t efficiently handlefor loops, the
effect of smaller systems is greatly nullified.
Secondly, the number of integration constants is directly related to the amount of
subdomains. By introducing slots or slot openings, the amount of integrationcon-
stants increases, which results in a drastic increase of the time required to solve
the system of boundary conditions. This can clearly be seen when observing the
difference in computational time between the machines with open slots and the
machines with semi-closed slots.
Note that, despite the fact that the presented computational times are considerably
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lower than those of the FE models, they are relatively high for analytical mod-
els. Moreover, they may be unacceptably high for optimization purposes. For that
reason, the next chapter will focus on how to reduce the computational time of
Fourier-based models.
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Table 3.2: Percentage root-mean-squared deviation and computational time of the obtained results. NL indicates the no-load
situation and AR indicates armature-reaction conditions.

Machine type Slot type SC Deviation (%) Computational time (s)
FB model FE model

NL AR NL AR NL AR
Br Bφ Br Bφ

Inner rotor slotless no 0.003 0.008 0.009 0.003 105.41 106.11 1629 1809
yes 0.028 0.025 0.069 0.014 333.71 332.95 1462 1600

open no 0.033 0.907 0.003 0.059 159.80 159.42 4408 4547
yes 0.124 0.736 0.235 1.024 297.24 297.37 3960 4210

semi-closed no 0.045 1.945 0.217 0.091 333.09 328.04 4260 4096
yes 0.042 2.749 0.035 0.565 515.71 517.31 4035 3651

Outer rotor slotless no 0.016 0.036 0.011 0.048 105.43 106.07 3148 2729
yes 0.047 0.042 0.031 0.103 333.09 332.84 2949 2577

open no 0.017 0.115 0.041 0.035 173.25 173.70 2452 2478
yes 0.050 0.082 0.048 0.046 318.84 318.00 3213 2870

semi-closed no 0.022 0.043 0.136 0.018 426.82 426.29 2472 2466
yes 0.025 0.086 0.111 0.039 635.59 636.02 2345 2743
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3.5 Conclusion

In the above sections, the physical basis of Chapter 2 was translated to a mathe-
matical framework for Fourier-based models. This resulted in a broadly applicable
set of equations for the MVP. As these equations contain unknown integration con-
stants, various boundary conditions were discussed as well. The obtained system
of unknowns, i.e. the integration constants, and equations, i.e. the boundary con-
ditions, gives a unique solution for the magnetic field of the studied problem.
Although the theoretical discussion, conducted in Section 3.3, applies to a very
broad range of electric actuators (induction machines, DC machines, etc.),the fo-
cus is on permanent-magnet synchronous machines. This is not different in the
rest of this work where, unless mentioned otherwise, only SM PMSMs will be
considered. A number of such machines was used to, successfully, validate the
mathematical framework in Section 3.4. The results of that validation led to some
interesting findings on the accuracy and computational time of Fourier-based mod-
els.
It was also noted in Section 3.4 that the FB model’s computational times may
be considered unacceptably high when a lot of machines have to be evaluated.
Therefore, the following chapter will focus on how the computational time canbe
reduced.
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(a) Slotless machine, no SC (b) Slotless machine with a SC

(c) Machine with open slots, no SC (d) Machine with open slots and a SC

(e) Machine with semi-closed slots, no
SC

(f) Machine with semi-closed slots and a
SC

phases A B C

Figure 3.11: Examples of the studied inner-rotor machine topologies
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Figure 3.12: Validation of the slotless inner-rotor machine with no SC
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Figure 3.13: Validation of the slotless inner-rotor machine with a SC
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Figure 3.14: Validation of the inner-rotor machine with open slots and no
SC
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Figure 3.15: Validation of the inner-rotor machine with open slots and a SC
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Figure 3.16: Validation of the inner-rotor machine with semi-closed slots
and no SC
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Figure 3.17: Validation of the inner-rotor machine with semi-closed slots
and a SC
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(a) Slotless machine, no SC (b) Slotless machine with a SC

(c) Machine with open slots, no SC (d) Machine with open slots and a SC

(e) Machine with semi-closed slots, no
SC

(f) Machine with semi-closed slots and a
SC

phases A B C D E

Figure 3.18: Examples of the studied outer-rotor machine topologies
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Figure 3.19: Validation of the slotless outer-rotor machine with no SC
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Figure 3.20: Validation of the slotless outer-rotor machine with a SC
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Figure 3.21: Validation of the outer-rotor machine with open slots and no
SC
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Figure 3.22: Validation of the outer-rotor machine with open slots and a SC
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Figure 3.23: Validation of the outer-rotor machine with semi-closed slots
and no SC
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Figure 3.24: Validation of the outer-rotor machine with semi-closed slots
and a SC
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Chapter 4

Aspects of FB modeling; an
overview

Section 1.3 presented a concise overview of the aspects within FB modeling that
are important in the scope of this work. However, literature presents a farbroader
range of FB modeling techniques, that may be interesting for other research top-
ics. Now that the physical and mathematical context of FB modeling has been
provided, a more extensive evaluation of the very broad range of techniques within
Fourier-based modeling can be performed. Evidently, the goal of such an evalua-
tion is not to select the best-suited techniques for this PhD, that was alreadydone
in Section 1.3. Instead, this chapter aims at providing an in-depth discussionon all
of the most important aspects of FB modeling. By coupling that discussion to the
existing literature, this chapter may serve as a starting point for anyone interested
in building a Fourier-based model.
Based on the available literature, a number of interesting aspects of FB modeling
were identified. Some of those were already briefly discussed in Chapter 1, but
will be considered more extensively here.
The first, and probably the most fundamental choice when constructing a FB model
is which magnetic potential will be used. It goes without saying that this choice
is one of the aspects that needs a more detailed discussion. A second interesting
aspect is the choice of a well-suited coordinate system. Thirdly, the way in which
the field’s time dependency is accounted for is very important as well. The fourth
aspect of interest relates to the representation and implementation of the source
terms. A fifth interesting aspect is how slotted structures are accounted for. Sixthly,
the way FB models can account for eccentricity of the rotor is an interesting aspect.
Finally, the obtained magnetic potential has to be translated to meaningful values
such as magnetic flux density, torque, losses,...
All of the above seven aspects will be discussed in Sections 4.1-4.7 of this chapter.
A conclusion is formulated in Section 4.8.
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4.1 Choosing a magnetic potential

Fourier-based models use a magnetic potential to rewrite the magneto-quasi-static
formulation of Maxwell’s equations in the form of a single partial differentialequa-
tion (PDE). The two most commonly used magnetic potentials are the magnetic
scalar potential and the magnetic vector potential. The goal of this section is to
discuss the advantages and disadvantages of both.

4.1.1 Magnetic scalar potential

The magnetic scalar potential, which is indicated asϕ, is a scalar quantity. It is
defined through its gradient:

−∇ϕ = H (4.1)

whereH is the magnetic field strength.
From this definition and Maxwell’s equations, which were discussed in Section
2.3, a differential equation for the MSP in the linear case can be derived:

∇2ϕ =
∇ · B0

µ
(4.2)

whereB0 is the residual magnetic flux density andµ is the magnetic permeability.
In a problem that is formulated using the MSP, the boundary conditions between
subdomainsν andν + 1, i.e. (2.25) are written as:

n ·
(

∇
(

µ(ν)ϕ(ν) − µ(ν+1)ϕ(ν+1)
)

+
(

B(ν)
0 − B(ν+1)

0

))

= 0 (4.3a)

n ×∇
(

ϕ(ν) − ϕ(ν+1)
)

= Js (4.3b)

wheren is the unit vector, normal to the boundary, andJs is the boundary’s current
density.
Due to its scalar nature, the MSP is very easy to use. That is the reason why
it has long been a commonly used magnetic potential in Fourier-based models.
Nowadays it is still often used in three-dimensional problems [57,106,107], where
use of the MVP requires extensive vector calculus. The MSP’s main drawback,
however, is that it can only be defined in current-free regions. This can easily be
seen from its governing equation (4.2), which lacks a current-density term. There
are two major workarounds to avoid the need for current-free regions.
The first, and most commonly used, workaround is to replace the current density in
the studied region with a current sheet on its boundary [54]. This current sheet is
then accounted for through the boundary conditions (4.3). However, using current
sheets may imply a loss of accuracy [75], especially in slotless machines.
The second workaround is to use a combination of the reduced magnetic scalar
potential and the electric vector potential. However, as the analytical derivation of
the electric vector potential is often devious, use of this workaround is very rare in
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FB models. Nevertheless, interested readers may find an extensive discussion on
the subject in the book of Kuczmann [103].

4.1.2 Magnetic vector potential

The MVP, which is a vector quantity, is defined through its curl:

∇× A = B (4.4)

It was shown in Section 2.4 that in the linear case, the MVP’s governing equation
can be written as:

∇2A − µσ
∂A
∂t

+ µσ (v × (∇× A)) = µJext −∇× B0 (4.5)

Its boundary conditions are:

A(ν) − A(ν+1) = 0 (4.6a)

n ×
(

∇×
(

A(ν)

µ(ν)
− A(ν+1)

µ(ν+1)

)

−
(

B(ν)
0

µ(ν)
− B(ν+1)

0

µ(ν+1)

))

= Js (4.6b)

It is evident that the MVP’s vectorial nature implies a more extensive calculus.
This complexity is the main reason not to use the MVP, especially in 3D models.
However, in 2D problems, where it reduces to a scalar, the MVP is by far the most
popular magnetic potential [43, 63, 108, 109]. The primary reason for that is the
MVP’s ability to account for subdomains with a current density. Note that some
authors do use the MVP to study three-dimensional problems. This can eitherbe
done directly [110] or by using the second-order MVP [111].

4.1.3 Conclusion

Due to its flexibility, the MVP is usually the best-suited magnetic potential to
study electric machines. However, in current-free problems or problems where
the MVP’s vector calculus is too complex, the MSP may be preferred. Note that
the current-sheet workaround cannot be used to account for eddy-current reaction
field. This implies that, if such a reaction field is non-negligible, the MVP should
be used.
The mathematical framework and implementation of a two-dimensional FB model
that uses the MVP, is discussed in Chapters 2 and 3. A clear discussion onthe
implementation of a 2D Fourier-based model using the MSP is provided in [53],
an equally interesting paper that focuses on the MVP is Gysen’s very generally for-
mulated work [109]. For three-dimensional models, Meessen [106], Gerling [110]
and Jumayev [111] present a comprehensive implementation of the MSP, theMVP
and the second-order MVP respectively.
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4.2 Coordinate systems

As already mentioned, this work focuses on models that apply a two-dimensional
approximation. This implies that the problem is assumed invariant along one di-
rection. That direction is referred to as the longitudinal(l) direction. The other
two directions are the periodic(ρ) direction, along which the problem is periodic,
and the normal(η) direction.
Note that, as the problem is invariant along the longitudinal direction, the MVP can
be considered to be a scalar:

A = Ael (4.7)

The (η, ρ, l) coordinate system is a generalized coordinate system. In order to
model an actual machine, a specific coordinate system has to be chosen. The
earliest publications on Fourier-based modeling tended to use a Cartesian coordi-
nate system. However, for most geometries, this implies simplifying the geometry
while only resulting in a slightly less complex model. Nowadays the choice is
mostly determined by the geometry of the studied problem. For example, when
the goal is to model a radial-flux rotational machine in two dimensions, a polar
coordinate system(r, φ, z) may be used [43,51,53–56,60,63,65,74–76,112]. Two
dimensional models of tubular linear machines use a cylindrical coordinate system
(r, φ, z) [77–80]. 2D approximations of axial-flux machines are usually modeled
in a Cartesian coordinate system(x, y, z) [71–73]. The use of different coordinate
systems for various problems is illustrated in Figure 4.1 for a problem in Cartesian
coordinates, e.g. Figure 4.1(a): an axial-flux DC brake, for a problemin polar co-
ordinates, e.g. Figure 4.1(b): a permanent-magnet synchronous machines and for
a problem in cylindrical coordinates, e.g. Figure 4.1(c): a tubular linear machine.

x

y

(a) Axial-flux DC brake

r
φ

(b) PMSM

r

z

(c) Tubular linear machine

Figure 4.1: Simplification of the example-machine’s geometry

In the following, the above coordinate systems are linked to the generalized coor-
dinate system and the homogeneous solutions of theirη-dependent parts are intro-
duced.
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4.2.1 Coordinate systems

Table 4.1 links the generalized coordinates to the Cartesian, polar and cylindrical
coordinate systems.

Table 4.1: Coordinate systems

Coordinate system η-direction ρ-direction l-direction

Cartesian x y z
Polar r φ z
Cylindrical r z φ

Note that the only difference between problems that apply a polar coordinate sys-
tem and problems that apply a cylindrical coordinate system is the direction along
which they are periodic and invariant.

4.2.2 Homogeneous solution of the PDE

As shown in [50, 113], the general form of the magnetic potentials’ solutions can
be written as:

ϕ(ν)(η, ρ, t) =

∞
∑

n=−∞

∞
∑

k=−∞
ϕ
(ν)
n,k(η)e

j
(

2kπ

T (ν)

(

ρ−ρ
(ν)
0

)

−nωt
)

(4.8)

for the MSP and

A(ν)(η, ρ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(η)e

j
(

2kπ

T (ν)

(

ρ−ρ
(ν)
0

)

−nωt
)

(4.9)

for the MVP.
In (4.8) and (4.9),n refers to the time-harmonic order,k refers to the spatial-
harmonic order,ν refers to a subdomain,T (ν) is the spatial periodicity of sub-
domainν, ω is the rotational speed of the studied device andρ

(ν)
0 is the lowerρ

boundary of subdomainν. All of these symbols and the derivation of the general
form were also discussed in Chapter 3.
The η-dependent part of (4.8) and (4.9) depends on the PDE’s simplification in
subdomainν. It can be proven that the differential equation for the MSP can either
be a Laplace or a Poisson equation [114, 115]. The differential equation for the
MVP, on the other hand, can either be a Laplace, a Poisson or a Helmholtz equa-
tion, as was discussed in Chapter 3. Knowing this, the homogeneous solutions of
(4.8) and (4.9) can be written in full for each of the coordinate systems.
In Cartesian coordinates, the solution for the MSP in subdomainν is written as:

ϕ(ν)(x, y, t) =
∞
∑

n=−∞

∞
∑

k=−∞
ϕ
(ν)
n,k(x)e

j
(

2kπ

T (ν)

(

y−y
(ν)
0

)

−nωt
)

(4.10)
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where

ϕ
(ν)
n,k(x) =







C
(ν)
n,ke

| 2kπ

T (ν)
|x
+D

(ν)
n,ke

−| 2kπ

T (ν)
|x

Laplace

C
(ν)
n,ke

| 2kπ

T (ν)
|x
+D

(ν)
n,ke

−| 2kπ

T (ν)
|x
+ P

(ν)
n,k (x) Poisson

(4.11)

whereC(ν)
n,k andD(ν)

n,k are integration constants andP (ν)
n,k (x) is the particular solu-

tion of the Poisson equation, the form of which depends on the subdomain’ssource
term.
Similarly, the solution for the MVP is written as:

A(ν)(x, y, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(x)e

j
(

2kπ

T (ν)

(

y−y
(ν)
0

)

−nωt
)

(4.12)

where

A
(ν)
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
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
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(4.13)

In polar coordinates, the solution for the MSP in subdomainν is written as:

ϕ(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
ϕ
(ν)
n,k(r)e

j
(

2kπ

T (ν)

(

φ−φ
(ν)
0

)

−nωt
)

(4.14)

where

ϕ
(ν)
n,k(r) =







C
(ν)
n,kr

| 2kπ

T (ν)
|
+D

(ν)
n,kr

−| 2kπ

T (ν)
|

Laplace

C
(ν)
n,kr

| 2kπ

T (ν)
|
+D

(ν)
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−| 2kπ

T (ν)
|
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(ν)
n,k (r) Poisson

(4.15)

For the MVP:

A(ν)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(ν)
n,k(r)e

j
(

2kπ

T (ν)

(

φ−φ
(ν)
0

)

−nωt
)

(4.16)

where
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C
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(ν)
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(4.17)
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whereI 2kπ

T (ν)
is the 2kπ

T (ν) -order modified Bessel function of the first kind and, simi-

larly, K 2kπ

T (ν)
is the 2kπ

T (ν) -order modified Bessel function of the second kind.

In cylindrical coordinates, at last, the solution for the MSP in subdomainν is writ-
ten as:

ϕ(ν)(r, z, t) =
∞
∑

n=−∞

∞
∑

k=−∞
ϕ
(ν)
n,k(r)e

j
(

2kπ

T (ν)

(
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(ν)
0

)

−nωt
)

(4.18)

where
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(4.19)
For the MVP:

A(ν)(r, z, t) =
∞
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(4.20)
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(4.21)
Note that, both in polar and cylindrical coordinates, solutions with ordinary in-
stead of modified Bessel functions are possible as well. However, modifiedBessel
functions are preferred because they are smoother than their ordinarycounterparts.

4.2.3 Conclusion

In the above, the three coordinate systems that are most commonly used in litera-
ture are introduced. Their coordinates are linked to those of the generalized coor-
dinate system. Moreover, the homogeneous parts of their solutions were discussed
as well.
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4.3 Time dependency

Evidently, the magnetic field is not only dependent on space, but on time as well.
In the above, the magneto-quasi-static approximation of Maxwell’s equationswas
used. However, a lot of authors further simplify the problem by using the magneto-
static approximation. This implies that they do not consider the physical effects of
time-dependency. This choice between the magneto-static and the magneto-quasi-
static approximation is a first aspect of time dependency that is discussed in this
section.
However, even if the physical effects of time-dependency are neglected, the actual
magnetic field is still time-dependent. If not accounted for directly, multiple static
calculations can be used to calculate the field at various time-instances. The choice
between multiple static calculations and direct time-dependency is the second as-
pect of time dependency that will be addressed in this section.

4.3.1 Static versus quasi-static problems

The physical consequence of assuming static conditions is that the eddy-current
reaction field is neglected. In the potential formulation, this means that the time-
derivative and speed-dependent terms of (4.5) are disregarded. Evidently, the
magneto-static approximation is simpler than the magneto-quasi static one, it may
therefore be preferred if the effect of eddy-currents is small.
Note that, as the MSP assumes current-free regions, it can not accountfor eddy-
current reaction field. Evidently, this means that using the MSP inherently implies
assuming magneto-static conditions.

4.3.2 Multiple static calculations versus direct time-dependency

Regardless of whether the magneto-static or the magneto-quasi-static approxima-
tion is used, the magnetic field in the studied problem will almost always vary
in time. This time-dependency can either be accounted for directly or through
multiple static calculations. Direct time-dependency implies that the equations for
the magnetic potential are written as a function of time. This approach was used
in Section 4.2. Another approach is to divide the problem’s period in a number
of time instances. The time-independent problem is then solved for each of these
instances of time, i.e. with updated values of the rotor position and currents.
Indirect time-dependency has two major advantages. Firstly, it is simpler than
directly accounting for the time-dependency. Indeed, neglecting the time-
dependency allows disregarding the time-harmonic orders. This, in turn, results in
a single Fourier series instead of the double Fourier series of (4.8) and (4.9). The
latter also explains the second major advantage of multiple static calculations; due
to the absence of time-harmonic orders, every single time step is calculated very
fast.
Directly accounting for the field’s time dependency, on the other hand, allows for
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a more accurate solution. Indeed, allowing for a time-dependent solution implies
that the MQS approximation can be used. Moreover, if the solution as such is
time-dependent, the problem does not have to be recalculated for every timestep.
This implies that, although FB models with an indirect time-dependency can very
quickly compute results for a single instance of time, the computational burden of
FB models with direct time-dependency isn’t necessarily larger when a complete
period has to be calculated.
Because of the above, most authors of magneto-static models use indirect time-
dependency, while authors of magneto-quasi static models tend to directly account
for the time dependency. However, if only the fundamental time-harmonic is
considered, eddy-current reaction field can be accounted for in models that use an
indirect time-dependency. This was, a.o. done by Boughrara et al [66] to model
induction machines.

4.3.3 Conclusion

Two aspects of time-dependency were discussed in the above.
First, it was noted that, depending on the importance of the eddy-current reac-
tion field, either the simpler magneto-static approximation or the more complete
magneto-quasi-static approximation can be used.
Next, models with multiple static calculations and models with a direct time-
dependency were compared. It was concluded that models with an indirect time-
dependency are simpler to implement and may be preferred in magneto-static mod-
els. Models with a direct time-dependency are to be preferred in magneto-quasi-
static models, especially if the effect of higher time-harmonic orders is relevant.
Interesting examples of magneto-static models that apply the technique of multiple
static calculations have been published in [50, 64, 92, 116]. Magneto-quasi static
models that directly account for time-dependency may be found in [51, 81,117]
and lastely, publications on quasi-static models with an indirect time-dependency
can be found in [66].
Because of the non-negligible effect of the eddy-current reaction field in high-speed
PMSMs, this work uses the MQS approximation. As a lot of time-dependent values
have to be studied and because of the fact that time-harmonic content is important,
time-dependency will directly be accounted for.

4.4 Source terms

Obviously, there can only be a magnetic field if the studied problem contains
source terms, i.e. materials with a residual magnetic flux density and/or exter-
nally imposed current densities. The latter can either be imposed directly or by
applying a voltage source. There are thus three types of sources that have to be
discussed; residual magnetic flux densities, external current sources and external
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voltage sources. In the following, the way in which each of these sourcesis ac-
counted for is discussed.

4.4.1 Residual magnetization

There are two ways in which materials with residual magnetic flux densities can be
implemented; directly or through equivalent currents. In both techniques,a Fourier
representation of the residual magnetization has to be available. In its most general
form, that representation is:

B(ν)
0 =

∞
∑

n=−∞

∞
∑

k=−∞

(

B
(ν)
0,η,n,k(η)eη +B
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0,ρ,n,k(η)eρ
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e
j
(

2kπ

T (ν)

(

ρ−ρ
(ν)
0

)

−nωt
)

(4.22)
whereB(ν)

0,η,n,k(η) andB(ν)
0,ρ,n,k(η) depend on the magnetization pattern.

The PDEs for both the MSP and the MVP can directly account for permanent
magnetic materials. To do that, a particular solution for the appropriate Poisson
equation has to be determined. Next, that solution has to be substituted in the ap-
propriate potential equation, as presented in Section 4.2. Directly accounting for
residual magnetic flux densities is definitely the most straightforward approach.
Moreover, mostly it isn’t more complex than using current sheets. Therefore,
nowadays the vast majority of authors directly accounts for permanent magnetic
materials [65,118–121].
As already mentioned, the alternative is to represent the permanent magnetsby
equivalent current densities. Two types of current densities have to be considered;
the equivalent volume current densities(Jm), which manifest in the entire magnet
volume, and the equivalent surface current densities(jm), which manifest on the
magnet’s boundaries. They are calculated as:

Jm = ∇× M0

jm = M0 × n
(4.23)

whereM0 = µ0B0 is the residual magnetization vector andn is the outward facing
unit vector, normal to the magnet’s boundary.
Evidently, in a 2D approximation, the volume current densities are reduced tosur-
face current densities. They are therefore implemented in the same way as the
externally imposed current densities. Similarly, the equivalent surface current den-
sities are reduced to current sheets. These are accounted for through the boundary
conditions: (4.3) or (4.6).
Whereas working with equivalent current densities used to be widespread in FB
modeling, nowadays it is only used in some specific cases. For example in three-
dimensional models, where analytical solutions of the Poisson equation may be
complicated [111] or in models that apply Schwarz-Christoffel transformations to
account for slotting [95,122].
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4.4.2 Externally imposed current densities

Similar to accounting for residual magnetization, accounting for externally im-
posed current densities can either be done directly or by considering a current sheet
instead. The externally imposed current density is therefore again expressed as a
Fourier series:
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∞
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el (4.24)

As the MSP assumes current-free regions, directly accounting for current densities
is only possible for problems that are formulated in the MVP. To do so, the particu-
lar solution of the Poisson equation is again substituted in the appropriate solution
for the MVP.
In slotted machines, the current density is then often assumed uniform in every
subdomain [50,65,75]. However, some authors do consider spatial dependency of
the current density within a single slot [64, 123]. Evidently, in slotless machines,
where the entire slotting region is a single subdomain, the spatial dependencyof
the current density is accounted for as well [43,87].
As an alternative to directly accounting for external current densities, asurface cur-
rent density(Js) can be imposed through the boundary conditions; (4.3) or (4.6).
Js then has to be calculated so that the totally imposed current is constant. In
two-dimensional problems this implies that its line integral has to equal the surface
integral of the original current density.
As shown by Atallahet al., using equivalent current sheets reduces the model’s
accuracy [75]. This is especially true in slotless machines, where the winding’s
thickness isn’t negligible with respect to the pole pitch. For that reason, equiva-
lent current sheets are usually avoided. In recent literature, the use of equivalent
current sheets is limited to models that use the MSP [61], 3D models [111] or
models in which slotting is accounted for through Schwarz-Christoffel transforma-
tion [59,121].

4.4.3 Voltage sources

Mostly, publications on Fourier-based models assume idealized current waveforms
in the machine’s coils. However, as the vast majority of modern machines is pow-
ered with a voltage source, this assumption might be a too rough approximation.It
is therefore often more interesting to apply a realistic voltage signal. However, as
discussed in Chapter 2, directly imposing voltage sources through the PDE istoo
complex. To avoid that complexity, the magnetic calculations can be coupled with
the classical equation for the terminal voltage in an electric machine.
Such a coupling was not available in literature at the start of this PhD. As pulse-
width modulation (PWM) effects, originating from a voltage source, may be of
great importance in high-speed machines, accounting for voltage sources adds to
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the accuracy of FB models. Therefore, the coupling of electric and magnetic cal-
culations will be discussed in the scope of this PhD. The result has been published
in [124] and will be discussed in details in Chapter 6. However, coupling theelec-
tric and magnetic calculation may add quite some complexity to the model.

4.4.4 Conclusion

In the above, three types of sources were considered; residual magnetization, ex-
ternally imposed current density and voltage sources. It was discussedthat both
residual magnetization and external current densities can either be imposed directly
through the PDE or, with the help of equivalent currents, through the boundary con-
ditions. As the direct technique is more straightforward and usually doesn’t add to
the complexity, it should be preferred. Accounting for sources throughthe bound-
ary conditions can be interesting in some specific cases. It was also discussed that,
although it increases the model’s complexity, accounting for voltage sources may
result in more realistic results.

4.5 Slotting

Accounting for slotted geometries is probably one of the most challenging aspects
of Fourier-based modeling. It is therefore not surprising that literaturedescribes
a large number of techniques to model slotting effects. These techniques can be
divided in three categories; techniques that use conformal mapping, techniques
that use exact subdomain modeling and techniques that allow for subdomainswith
a variable permeability. All of these techniques will be discussed in the following.

4.5.1 Conformal mapping

Models that apply conformal mapping do not directly calculate the field in a slotted
geometry. Instead, the solution for a slotless machine is calculated and the slotting
effect is accounted for a posteriori, by multiplication with a permeance function.
The determination of that permeance function is performed by consecutivecon-
formal transformations, which map the slotted geometry in its slotless equivalent.
One of these transformations is the Schwarz-Christoffel transformation.Therefore,
models that apply conformal mapping are often referred to as Schwarz-Christoffel
models. A detailed discussion on conformal transformations is beyond the scope
of this work, but papers that clearly describe the mapping process may befound
in [55,93,122,125].
The simplest permeance functions are one dimensional, i.e. they only vary in the
ρ-direction. This is of course a very coarse approximation; the effect ofslotting on
the magnetic field diminishes when moving away from the slots.
In [55], Zhu et al. proposed a two-dimensional relative permeance function. By
accounting for the permeance function’sη-dependency, a more accurate result was
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obtained. Because of their simplicity, two-dimensional relative permeance func-
tions have been widely used in the past. However, as was shown in [93], relative
permeance function can not accurately predict the tangential componentof the
magnetic field. The inaccuracy of the field’s tangential component may result in a
significant error in some post-processing calculations such as the torque[113].
To avoid errors in the field’s tangential component, Zarkoet al. proposed a more
complete solution of the conformal transformations by considering their complex
nature [93]. Although this technique is more complex, it results in a much more
accurate model.
All of the above techniques provide closed-form solutions for the magneticfield.
This makes those models very interesting in terms of computational time and ease
of use. However, the transformations introduce distortions of the geometry, es-
pecially the magnet edges and paths with a constantη are affected. The latter is
important because such paths are often used as integration paths, e.g. to compute
the torque. Moreover, the above permeance functions are determined assuming a
single slot. This implies that influence of neighboring slots is neglected. To avoid
errors due to deformation of the geometry and/or neglection of neighboringslots,
various authors have recently used numerical techniques to perform themapping
process [85, 122, 126]. An additional benefit of that technique is thatit allows for
more complex geometries.

4.5.2 Exact subdomain

Whereas models that apply conformal mapping account for slotting a posteriori,
exact subdomain models directly account for the slotting effect. This is achieved
by considering each slot as a non-periodic subdomain.
The advantage of that approach is that it is much more straightforward thanmodels
that are based on conformal mapping. Moreover, it was shown in [73, 96] that the
exact subdomain method is more accurate than the technique with complex perme-
ance functions.
The most important downfall of the exact subdomain method is that its computa-
tional time is rather high. The reason for that is twofold. Firstly, by introducing
every slot as a separate subdomain, the amount of subdomains rises significantly.
As this also implies more integration constants, the time required to solve the sys-
tem of boundary conditions increases. Secondly, whereas models with permeance
functions will only contain periodic subdomains, exact subdomain models have
both periodic and non-periodic subdomains, as discussed in Chapter 3. This im-
plies that boundary conditions have to be imposed between subdomains with dif-
ferent periodicities. This, in turn, implies that the boundary conditions can not be
imposed for every time- and spatial-harmonic combination separately. As a result,
the solution can not be written in closed-form and the size of the system that has to
be solved may become very large.
Despite these downfalls, the technique’s accuracy and its straightforward approach
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have made it the most widely used technique to account for slotting. To counter the
relatively high computational times, Ackermannet al. presented an approximation
that does allow for a closed-form solution [127]. In addition, one of the goals of
this work is to provide techniques to reduce the computational time of exact sub-
domain models. That discussion is presented in Chapter 5.
Until recently, non-periodic subdomains could only be considered if they are en-
closed by infinitely permeable material at their periodic boundaries. However,
in [69] Dubaset al. have presented a technique that does allow for regular non-
periodic boundaries. They do this by rewriting the MVP as the superpositionof a
part that is periodic in theρ-direction(A(νp)(η, ρ, t)) and a part that is periodic in
theη-direction(A(νη)(η, ρ, t)):

A(ν)(η, ρ, t) = A(νρ)(η, ρ, t) +A(νη)(η, ρ, t) (4.25)

where

A(νρ)(η, ρ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
A

(νρ)
n,k (η)e

j
(

2kπ

T (ν)
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(ν)
0

)

−nωt
)
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∞
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∞
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j
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(ν)
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)
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)

(4.26)

The periodic boundary conditions are then imposed onA(νη)(η, ρ, t) while at these
boundariesA(νρ)(η, ρ, t) is forced to be zero and similarly, the normal boundary
conditions are imposed onA(νρ)(η, ρ, t) whileA(νη)(η, ρ, t) is kept zero.
This superposition technique is a relatively simple way to account for any non-
periodic subdomain. Which doesn’t only imply that teeth with a finite permeability
can be accounted for, it also means that the magnetic field can be calculated in
the soft-magnetic parts of a slotted geometry. This was not possible with earlier
techniques. However, the amount of integration constants is again increased, which
will further increase the computational time.

4.5.3 Variable permeability

Recently, Sprangerset al. have proposed a technique that allows for subdomains
in which the permeability varies [99]. To achieve this, a Fourier series is used to
express the permeability’s variation along theρ-direction and the constitutive rela-
tion between the magnetic flux density and the magnetic field strength is written
using convolution matrices. The differential equation is then formulated in its ma-
trix form, so that it can be solved with a variable permeability.
Spranger’s approach is very interesting since, like Dubas’ superpositions tech-
nique, it enables calculation of the field in the soft magnetic parts of a slotted
structure. Moreover, it is not restricted to subdomains with a variable permeabil-
ity; the same principles can also be used to account for subdomains with a variable
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conductivity [82]. Apart from its complexity, the main downfall of this technique
is that it suffers from Gibb’s phenomenon, i.e. the Fourier series representing the
permeability does not converge at the boundary between a slot and a tooth. This
introduces inaccuracies in the computation of the field and results in higher com-
putational times.

4.5.4 Conclusion

In the above, three techniques to account for slotting were introduced; using a
permeance function that alters the magnetic field’s computation a posteriori [55,
93, 122, 125], considering each slot, and possibly each tooth, as a separate sub-
domain [50, 86, 105, 117] and allowing for subdomains with a variable permeabil-
ity [96, 99]. Only Dubas’ superposition technique and Spranger’s technique with
variable permeabilities are capable of accounting for soft-magnetic materials with
a finite permeability and computing the field in the soft-magnetic parts of a slotted
geometry.
The advantage of using permeance functions is that a relatively good accuracy can
be achieved with a closed-form solution, especially when using complex perme-
ance functions. However, as discussed in [128], using complex permeance func-
tions implies that the results can not be integrated analytically. This may be un-
wanted, for example, if the torque has to be studied.
Because of their straightforward approach and very high accuracy,exact subdo-
main models are nowadays the most widely used models that account for slotting.
Using the superposition technique adds another advantage to this type of models;
the possibility to compute the field in the soft-magnetic parts of a slotted structure.
Despite their complexity and problems with the Gibb’s phenomenon, models that
account for subdomains with a variable permeability are definitely an interesting
option to calculate the field in slotted structures.
Note that quite some comparative studies of different techniques to account for
slotting have been published in literature [73,96,129].

4.6 Eccentricity

Although not a lot of Fourier-based models account for eccentricity, it isworth
mentioning that there are two techniques capable of doing so. The first technique
uses perturbation functions, the second technique accounts for eccentricity via su-
perposition.

4.6.1 Perturbation functions

To account for eccentricity of the rotor, Kimet al. used two coordinate systems,
one in the center of the stator and the other in the center of the rotor [84,130]. The
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relation between both coordinate systems was expressed using a perturbation func-
tion. Although Kim obtained very good results, his technique is rather complex.

4.6.2 Superposition

In [131], Li et al. avoided the complexity of perturbation functions by using su-
perposition instead. Their approach is to divide the eccentric machine in a number
of sections. For each of these sections the equivalent air gap length is determined.
Next, a non-eccentric machine is studied for each of these air gap lengths.The
obtained results are then put together so that each section of the original eccentric
machine corresponds to the correct section of a non-eccentric machine.Clearly,
this technique is much simpler than Kim’s perturbation technique. However, it
will introduce errors, especially at the boundaries between sections. Moreover, as
different computations are required to study a single machine, a higher computa-
tional time may be expected. Nevertheless, Li presented very good resultsfor the
magnetic flux density and the back EMF.

4.6.3 Conclusion

This section discussed two techniques to study the effect of rotor eccentricity on
the machine’s magnetic field. The major advantage of Li’s superposition technique
is its simplicity. However it is expected to have a non-negligible error. Especially
if quantities that are sensitive to errors in the magnetic field, such as torque,have
to be studied. Despite the perturbation technique’s higher complexity, it is more
straightforward.

4.7 Physical output quantities

All of the above aspects are very specific to FB modeling, i.e. they apply to the
calculation of the MSP or the MVP. However, these potentials are only of interest
if they can be translated to the machine’s physical output quantities such as the
flux density, back EMF, torque and eddy currents. As the computation of these
quantities is not specific for FB models, they will only very briefly be discussed
here. A more detailed discussion on their calculation is provided in Chapter 7.

4.7.1 Magnetic flux density and magnetic field

The magnetic flux density and the magnetic field can readily be calculated from
the constitutive relation (2.26b) and the definition of the magnetic potentials, i.e.
(4.1) or (4.4). In most of the publications on FB modeling, results for the magnetic
flux density are used to validate the presented model [75,93,99].
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4.7.2 Back electromotive force

The back electromotive force (EMF) of a coil can be found from the integral form
of Faraday’s law, which can be written in terms of the coupled flux(ψ) as:

e(t) = −∂ψ(t)
∂t

(4.27)

The physical flux is found as the integration of the magnetic flux density overa
surface of the coil. Note that the exact position of each coil is usually not available.
Therefore, the boundaries of the integration surface are not exactly known. To cope
with that, most authors of slotless machines assume the conductors to be locatedin
the center of slots [105,132]. In machines with stator slots, the magnetic potential
is often averaged over the slot in order to calculate the flux [116,124,133].

4.7.3 Torque and forces

The most commonly used way to calculate forces is by integrating Maxwell’s stress
tensor over the surface of the volume on which the force acts:

F =

¨

S

Γds (4.28)

whereΓ is Maxwell’s stress tensor, which can be calculated as:

Γ = µ0(n · H)H − µ0

2
(H · H)n (4.29)

where, in turn,n is the unit vector, normal to the integration surface.
The torque is then calculated by multiplying with the radius. Note that, alterna-
tively, the torque could be calculated using Lorentz force or Poynting’s theorem. It
is beyond the scope of this work to elaborate on that, but more information canbe
found in [70].

4.7.4 Eddy currents and eddy-current losses

From Faraday’s law (2.24a) and the constitutive relations (2.26a), the current den-
sity in any subdomain can easily be written in terms of the magnetic potential. Note
that it is not necessary to have considered the eddy-current reactionfield to do an a
posteriori calculation of the eddy currents.
The eddy-current loss is calculated as the volume integral of the eddy current di-
vided by the electric conductivity [79,134,135]:

Pec =

˚

V

J · J
σ

dv (4.30)

Evidently, (4.30) reduces to the multiplication of the stack length and a surface
integral in two-dimensional models.



94 Aspects of FB modeling; an overview

The problem with (4.30) is that, in the polar and cylindrical coordinate system,
the equation forJ may include modified Bessel functions, as can be seen from
(4.16), (4.18) and (4.20). As the analytical integration of these functionsis not
possible, the Poynting theorem is often used to calculate the eddy-currentlosses
[68, 136, 137]. By integrating the Poynting vector(S) along a surface, the power
passing through that surface is calculated:

PS =

¨

S

S · ds

=

¨

S

E × H · ds
(4.31)

If the integration surface encloses the rotor, integration ofS gives the total power,
i.e. the sum of the mechanical power and the power losses, that goes fromthe stator
to the rotor. By subtracting the mechanical power, which can be calculated from
the torque, the eddy-current losses are isolated.
Note that there are other techniques to isolate the eddy-current losses from the me-
chanical power; in [137] Joule’s equation (4.30) is used and in [70] calculation of
PS in rotor coordinates is combined with an interpretation of the slip of individual
harmonic components of the magnetic field.
Note as well that two-dimensional models can not account for segmentation of con-
ductive subdomains in thel-direction. To overcome that issue, Nairet al. coupled
a classical 2D Fourier-based model with the current vector potential in [138].
As the Poynting theorem directly applies the solution of the magnetic field, it can
only account for eddy-current losses of subdomains in which the eddy-current re-
action field is considered.

4.7.5 Conclusion

The above is a very brief introduction on some of the most important quantities
that can be calculated from a Fourier-based model. The way in which the magnetic
flux density, the back EMF, the forces, the torque, the eddy currents and the eddy-
current losses are calculated was introduced. One important remark with respect to
Fourier-based modeling is that the classical way of calculating eddy-current losses,
i.e. using Joule’s equation, can not always be used. An alternative thatuses Poynt-
ing’s theorem was proposed.

4.8 Conclusion

In this section an overview of the most important aspects within FB modeling was
presented. The discussion is based on an identification of seven aspectsthat are
important in FB modeling.
Based on the presented results, choices were made about the implementation of
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the FB model in this PhD. It was decided that the magnetic vector potential will be
used to reformulate Maxwell’s equations in a cylindrical coordinate system. Like
the source terms, the time dependency will be accounted for directly. Slotting will
be considered using the exact subdomain technique. And finally, eccentricity will
be disregarded.
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Chapter 5

Computational considerations

The previous chapters described and validated a theoretical frameworkto simulate
electric machines. It was, however, also shown that the resulting model mayre-
quire an unacceptably long computational time. Therefore, this chapter focuses on
how to avoid excessive computational times and, more broadly, on how to avoid
computational problems in general. Three aspects will be discussed in the follow-
ing.
The first aspect relates to numerical problems that are introduced when solving
systems with both very large and very small numbers. This problem has beencon-
sidered by Gysenet al in [50] and [109] and will therefore only briefly be discussed
in this work, i.e. in Section 5.1. In Section 5.2, a second aspect will be discussed:
the effect of the studied machine’s topology on the computational time. This dis-
cussion was not yet conducted in literature. Thirdly, Section 5.3 discusses how
the computational time can be reduced with a preliminary study of the machine’s
harmonic content. Although the harmonic content of synchronous machinesis a
well-studied subject, the existing literature does not provide a complete overview
of the time- and spatial harmonic content of synchronous machines in general.
Therefore, Appendix B extensively discusses the harmonic content in synchronous
machines. The findings from that appendix are applied in Section 5.3 to reduce the
computational time of Fourier-based models. Finally, Section 5.4 summarizes this
chapter.

The content of this chapter has been published in the following journal papers:

• B. Hannon, P. Sergeant and L. Dupré, “Time- and Spatial-Harmonic Con-
tent in Synchronous Electrical Machines”,Magnetics, IEEE Transactions
on, vol. 53, no. 3, 11 pages, 2017

• B. Hannon, P. Sergeant and L. Dupré, “Computational-time reduction of
Fourier-Based Analytical Models”,Energy Conversion, IEEE Transactions
on, in press, 2017



98 Computational considerations

5.1 Rescaling

The implementation of a Fourier-based model usually requires to numerically solve
the system of boundary conditions. However, it can readily be seen from (3.29),
(3.31) and (3.37) that high harmonic orders may result in integration constants
with both very large and very small coefficients. This, in turn, may result in a
quasi-singular system, which introduces numerical errors in the system’s solution.
To avoid such errors, (3.29) and (3.31) can be rescaled so that the bases of the ex-
ponents are close to one. This can, for example, be done by dividingr by the mean
radius of the considered subdomain.
In contrast to the power functions of (3.29) and (3.31), rescaling the Bessel func-
tions of (3.37) isn’t possible. If, however, these functions introduce numerical
errors, it is possible to replace them by either (3.29) or the zero function.Which
of both alternatives is best-suited depends on the skin depth. If the thickness of the
material is smaller than the skin depth of the considered harmonic combination,
the eddy-currents may be neglected and (3.37) can be replaced by (3.29). If the
thickness of the material is larger than the skin depth of the considered harmonic
combination, the most reasonable approximation is to assume that the field, related
to the harmonic combination in question, is completely blocked. Equation (3.37)
is then replaced by the zero function.

5.2 Machine geometry

Table 3.2 and Figure 3.10 clearly indicated that, for a given set of cut-offharmonic
orders, both the FB model’s accuracy and its computational time strongly depend
on the machine’s geometry.
It was discussed in Section 3.4 that a lower number of subdomains results in a
lower computational time. This fact may be a reason to simplify the geometry of
machines with semi-closed slots to a similar geometry with open slots. As illus-
trated in Figure 5.1, this is done by setting the opening angle of the slots to that of
the original slot openings.
Evidently, this implies that the current density has to be recalculated to keep the
total current constant.
To illustrate the accuracy and the possible gain of the above technique, it was ap-
plied to one of the machines that were studied in Chapter 3, i.e. to the inner-rotor
machine with semi-closed slots and no shielding cylinder. As can be seen from
Table 5.1, the accuracy of the simplified model, with respect to the FE model, is
comparable to that of the original model. The presented deviations are thoseof
the magnetic flux density in the center of the air gap. Evidently, the model with
simplified slots will not be accurate in the slots.
Table 5.1 also shows that there is a significant difference in required computational
time between the original and the simplified model. More specifically, a reduction
of the computational time of more than 50% is achieved. The simplified model’s
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(a) Original slot (b) Simplified slot

Figure 5.1: Simplification of the machine with semi-closed slots

accuracy is quasi identical to that of the original model. Note that for machines
with a smaller air gap it is expected that the accuracy of the simplified model will
be slightly lower.

Table 5.1: Simplification of the slots in the inner-rotor machine with semi-
closed slots and no SC; accuracy and computational time. NL in-
dicates the no-load situation and AR indicates armature-reaction
conditions.

Model Deviation with respect to FE (%) Computational time (s)
NL AR NL AR

Br Bφ Br Bφ

original 0.045 1.945 0.217 0.091 333.09 328.04
simplified 0.046 1.939 0.213 0.097 160.00 159.35
FE 4260.00 4096.00

5.3 Harmonic content

In Chapter 3, every time- and spatial harmonic combination(n, k), with n andk
smaller than their respective cut-off harmonics, was considered. This resulted in
very high computational times. Indeed, the amount of harmonic combinations is
directly related to the amount of integration constants, which in turn determines
the size of the system that has to be solved. As the computational time is about
quadratic to the size of the system, decreasing the amount of harmonic combina-
tions may result in a drastic decrease of the computational time.
A discussion on which time and spatial harmonics are present in electric machines
was given in [139] and is repeated in Appendix B. The following briefly summa-
rizes the results of that discussion for no-load, armature-reaction and load condi-
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tions.

No load

As discussed in Appendix B, the magnetic field will be identical but spatially ro-
tated over2π

Ns
radians afterTt

Ns
seconds if the machine is operated at no-load. This

periodicity applies to the MVP of periodic subdomains, i.e.T
(ν)
s = 2π, for every

time- and spatial-harmonic combination(n, k) separately:

An,k(r)e
j(kφ−nωt) = An,k(r)e

j
(

k
(

φ+ 2π
Ns

)

−nω
(

t+
Tt
Ns

))

(5.1)

From (5.1), a relationship betweenn andk was obtained.

k − n = cNs (5.2)

wherec is an integer.
This means that, for no-load conditions, the time-harmonic orders are determined
by the harmonic spectrum of the magnets while the machine’s geometry, i.e. the
slots, determine the present spatial harmonic orders. The harmonic combinations
thus have to satisfy (5.3).

{

n ∈ hm

k − n = cNs

(5.3)

with hm the set of time-harmonic orders for which the residual magnetic flux den-
sity is nonzero.

Armature reaction

Appendix B shows that for the armature-reaction field, a similar approach can be
made. The time-harmonic orders in the magnetic field are now determined by the
harmonic spectrum of the applied current, i.e.n ∈ hc. The spatial-harmonic or-
ders are solely determined by the winding distribution; the effect of the geometry
is already incorporated in the winding distribution.
If m is the number of phases andτ is the machine’s period, i.e. the greatest com-
mon divisor of the number of pole pairs(p) and the number of slots(Ns), the time
periodicity of the armature-reaction field is mathematically expressed as:

An,k(r)e
j(kφ−nωt) = An,k(r)e

j
(

k(φ+ 2π
υmτ )−nω

(

t+
Tt

υmτ

))

(5.4)

with υ = 1 if Ns

τ
is odd andυ = 2 if Ns

τ
is even.

From (5.4) the following relation between the time- and spatial-harmonic ordersis
obtained:

k − n = cυmτ (5.5)
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This means that, under armature-reaction conditions, the harmonic combinations
in the magnetic field have to satisfy (5.6).

{

n ∈ hc

k − n = cυmτ
(5.6)

Load

Finally, since saturation is neglected, the load field is the superposition of the no-
load and armature-reaction fields. The time-harmonic orders are now introduced
by both the rotor magnets and the stator currents. This means that, under load
conditions, the harmonic combinations in the magnetic field have to satisfy (5.7).

{

n ∈ (hm ∪ hc)
k − n = cυmτ

(5.7)

As a conclusion it can be stated that the harmonic combinations, present in the
magnetic field of synchronous machines under load conditions, can be predicted
using (5.7). Furthermore, from the stator’s point of view, the magnetic fieldis
identical but rotated over2π

mτ
or π

mτ
mechanical radians afterTt

mτ
or Tt

2mτ
seconds.

Depending on whetherNs

τ
is odd or even.

By means of illustration, Figure 5.2 shows the difference between machines with
an odd and an even amount of slots per period. More information can be found in
Appendix B.

phases
A
B
C

2π
m

(a) Machine withNs

τ
odd

2π
2m

(b) Machine withNs

τ
even

Figure 5.2: Difference between machines withNs

τ
odd and even
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5.3.1 Harmonic combinations

When simulating a machine with the use of a Fourier-based model, the number
of considered time- and spatial-harmonic orders is always limited. The cut-off
harmonic orders, i.e. the highest time- and spatial-harmonics that are taken into
account, have to be carefully chosen. On the one hand, a sufficient amount of har-
monic orders is required to obtain accurate results. On the other hand, the amount
of considered harmonic orders should be as low as possible in order to avoid ex-
cessive computational times. However, by applying the above results, the amount
of harmonic combinations can be reduced without affecting the accuracy.Indeed,
the field components related to harmonic combinations that do not satisfy the re-
quirements imposed in (5.3), (5.6) or (5.7) will be zero. These combinations can
thus be disregarded.
Note that the imposed relations between the time and spatial harmonic combina-
tions were found assuming a basic spatial period of2π mechanical radians. They
are therefore only valid in periodic subdomains.

5.3.2 Interdependence of the slots

Although (5.3), (5.6) and (5.7) do not apply to the magnetic vector potential in
non-periodic subdomains, the time periodicities found in the above are still valid
for the machine’s total magnetic field.
Consider two subsequent, non-periodic subdomains;ξi andξi + 1. These subdo-
mains, which can either be slots or slot openings, have starting angles ofαi and
αi+1 radians and an opening angle ofβ radians. Equation (5.1) implies that, un-
der no-load conditions, the magnetic field in subdomainξi + 1 lags the magnetic
field in subdomainξi by Tt

Ns
seconds. A relation can then be found between the

magnetic vector potentials of both subdomains:

A
(ξi)
n,k (r)e

j
(

kπ
β
(φ−αi)−nωt

)

= A
(ξi+1)
n,k (r)e

j
(

kπ
β
(φ+ 2π

Ns
−αi+1)−nω

(

t+
Tt
Ns

))

(5.8)

and sinceαi+1 = αi +
2π
Ns

:

A
(ξi)
n,k (r) = A

(ξi+1)
n,k (r)e−jn 2π

Ns (5.9)

For the armature-reaction and load fields, a similar periodicity was found. Analo-
gously as in the above, the following relations can be found:

A
(ξi)
n,k (r) = A

(ξi+ Ns
υmτ

)

n,k (r)e−jn 2π
υmτ (5.10)

Equations (5.9)-(5.10) show a relation between the Fourier coefficients of different
slot openings and slots. This implies that fewer coefficients have to be calculated
using the boundary condition equations, which results in a lower computational
time. This lower computational time is again achieved without loss of accuracy.
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5.3.3 Real functions

Although the general expression for the magnetic vector potential (3.14) contains
complex components, the magnetic vector potential is a real function. This implies
that the Fourier coefficients linked to harmonic combinations(n, k) and(−n,−k)
have to be complex conjugate. Mathematically this implies:

A
(ν)
n,k(r) =

(

A
(ν)
−n,−k(r)

)∗
(5.11)

The above relation, which is valid for every subdomain, implies that only half of
the integration constants have to be calculated, which results in a large reduction
of the computational time.

5.3.4 Evaluation

To evaluate the effect of a preliminary study on the computational time, the above
was used to optimize the model of Chapter 3. Next, the calculations of Section 3.4
were repeated. The comparison between the original and the optimized modelis
summarized in Tables 5.2 and 5.3. It can clearly be seen that there’s an enormous
gain in computational efficiency while obtaining the same accuracy for the flux
density in the center of the air gap. Moreover, when comparing Tables 5.1,5.2 and
5.3, it can be seen that the computational time of the optimized FB model is now
significantly lower than that of the FE model.
Note that the no-load situation is indicated as NL, while the armature-reaction sit-
uation is indicated as AR.
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Table 5.2: Percentage root-mean-squared deviations and computational times of the inner-rotor machines. NL indicates the
no-load situation and AR indicates armature-reaction conditions.

Machine type Slot type SC Model Deviation (%) Computational time (s)
NL AR NL AR

Br Bφ Br Bφ

Inner rotor slotless no original 0.003 0.008 0.009 0.003 105.41 106.11
optimized 0.003 0.008 0.009 0.003 0.11 0.07
FE 1629.00 1809.00

yes original 0.028 0.025 0.069 0.014 333.71 332.95
optimized 0.028 0.025 0.069 0.014 0.30 0.21
FE 1462.00 1600.00

open no original 0.033 0.907 0.003 0.059 159.80 159.42
optimized 0.033 0.907 0.003 0.059 0.75 0.03
FE 4408.00 4547.00

yes original 0.124 0.736 0.235 1.024 297.24 297.37
optimized 0.124 0.736 0.235 1.024 1.57 0.06
FE 3960.00 4210.00

semi-closed no original 0.045 1.945 0.217 0.091 333.09 328.04
optimized 0.045 1.945 0.217 0.091 2.44 0.08
FE 4260.00 4096.00

yes original 0.042 2.749 0.035 0.565 515.71 517.31
optimized 0.042 2.749 0.035 0.565 3.27 0.11
FE 4035.00 3651.00
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Table 5.3: Percentage root-mean-squared deviations and computational times of the outer-rotor machines. NL indicates the
no-load situation and AR indicates armature-reaction conditions.

Machine type Slot type SC Model Deviation (%) Computational time (s)
NL AR NL AR

Br Bφ Br Bφ

Outer rotor slotless no original 0.016 0.036 0.011 0.048 105.43 106.07
optimized 0.016 0.036 0.011 0.048 0.05 0.16
FE 3148.00 2729.00

yes original 0.047 0.042 0.031 0.103 333.09 332.84
optimized 0.047 0.042 0.031 0.103 0.09 0.48
FE 2949.00 2577.00

open no original 0.017 0.115 0.041 0.035 173.25 173.70
optimized 0.017 0.115 0.041 0.035 0.26 0.07
FE 2452.00 2478.00

yes original 0.050 0.082 0.048 0.046 318.84 318.00
optimized 0.050 0.082 0.048 0.046 0.47 0.12
FE 3213.00 2870.00

semi-closed no original 0.022 0.043 0.136 0.018 426.82 426.29
optimized 0.022 0.043 0.136 0.018 1.12 0.20
FE 2472.00 2466.00

yes original 0.025 0.086 0.111 0.039 635.59 636.02
optimized 0.025 0.086 0.111 0.039 1.34 0.25
FE 2345.00 2743.00
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5.4 Conclusion

In this chapter, two issues of Fourier-based models were discussed; numerical er-
rors due to quasi-singular systems of boundary conditions and excessive computa-
tional times.
The first issue was tackled in Section 5.1 by rescaling the equations for the MVP.
The second issue was discussed in Sections 5.2 and 5.3. Sections 5.2 considered
the effect of the machine’s geometry on the computational time. It also proposed
a simplification of the slots to avoid an unnecessary high computational burden, a
reduction of more than 50% in computational time was achieved. In Section 5.3,
the focus was on how a preliminary knowledge of the studied machine’s harmonic
content can reduce the computational time. It was shown that the computational
time can be reduced by up to more than 100 times while maintaining the model’s
accuracy.
The problem of unacceptably high computational burden, encountered inthe pre-
vious chapter, was solved in this chapter. As explained in Chapter 1, the reduction
of the model’s computational time was one of the major goals of this thesis. Evi-
dently, in the following chapters, only the optimized model will be used.



Chapter 6

Voltage sources

The framework presented in Chapter 3 requires a current density as input. How-
ever, nowadays most electric drives are powered with the help of a voltage source.
To overcome that mismatch, this chapter extends the magnetic calculations of
Chapter 3 with the equation for the terminal voltage of an electric machine. This
technique has already proven its worth in finite-element models [140], but was not
yet translated to Fourier-based analytical models.
The discussion of this chapter consists of two major parts.
Firstly, a very general discussion on the technique of coupling magnetic calcula-
tions with the equation for the terminal voltage of electric machines is presented.
This discussion is spread over Sections 6.1-6.3. Section 6.1 reformulates the mag-
netic calculations of Chapter 3. In Section 6.2 the equation for the terminal voltage
is rewritten so that it can be used in FB models. These two aspects are combined
in Section 6.3, resulting in a model that directly accounts for the terminal voltage
of electric machines. In the second part of this chapter, the presented work is vali-
dated with the help of a finite-element model. This is done in Section 6.4. Section
6.5 concludes the work.

The content of this chapter has been published in the following journal paper:

• B. Hannon, P. Sergeant and L. Dupré, “Voltage Sources in 2D Fourier-Based
Analytical Models of Electric Machines”,Mathematical Problems in Engi-
neering, vol. 2015, Article ID 195410, 8 pages, 2015



108 Voltage sources

6.1 Magnetic equations

Chapter 3 resulted in a set of unknown integration constants, which have tobe
determined by the problem’s boundary conditions. As discussed in Section 3.3.5,
these boundary conditions can be imposed separately for every time harmonic order
(n). This implies that, for time-harmonic ordern, the resulting system is written
in its matrix form as:

[C1
n] · [Xn] = −[C2

n] · [Jn] + [C3
n] · [Bn] (6.1)

where[Xn] is a row vector that contains all of the integration constants linked ton,
i.e. the integration constants of each subdomain and each spatial harmonic order.
This implies that ifNbc is the amount of boundary conditions,[Xn] has a size of
Nbc× 1. Analogously,[Bn] and[Jn] areNbc× 1 row vectors that contain all of the
spatial harmonic coefficients of the remanent magnetic induction and the current
density in each of the subdomains.[C1

n], [C
2
n] and[C3

n] areNbc × Nbc coefficient
matrices.
As the goal is to imposeNc terminal voltages instead ofNν current densities, where
Nc is the amount of coils andNν is the amount of subdomains,[Jn] is rewritten in
function of the coils’ currents.
The (n, k)th harmonic combination of the current density in subdomainν can be
written as:

J
(ν)
n,k =

Nc
∑

c=1

W
(c,ν)
k I(c)n (6.2)

In (6.2) W (c,ν)
k is the kth spatial-harmonic order of coilc’s winding density in

subdomainν, i.e. W (c,ν)
k expresses the amount of conductors perm2. Note that

the winding density is positive where the coil’s reference current is alongthez-axis
and negative otherwise.
The above implies that if[W ] is theNc × Nbc matrix, so that each cell contains a

W
(c,ν)
k , (6.1) can be rewritten as:

[C1
n] · [Xn] = −[C2

n] · [W ]⊺ · [In] + [C3
n] · [Bn]

= −[C4
n] · [In] + [C3

n] · [Bn]
(6.3)

As both the coils’ currents and the field’s integration constants are unknown, the
system described by (6.3) is underdetermined and an extraNc equations are re-
quired. In the following section, these equations will be derived from the equation
for the terminal voltage of an electric machine.

6.2 Electric equations

The goal of this section is to provide equations for the current in each of the coils.
This is done in two steps. First the equations for the terminal voltage of the machine
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are presented. Next, the flux linkage of the machine’s coils is discussed in order to
rewrite these equations in function of the remanent magnetism([Bn]), the terminal
voltages([Vn]) and the magnetic field’s integration constants([Xn]).

6.2.1 Current in the coils

The following discussion starts from the classical equation for the terminal voltage
of an arbitrary coilc in an electric machine:

v(c)(t) = Ri(c)(t) +
dψ(c)

tot(t)

dt
(6.4)

The flux coupled with coilc
(

ψ
(c)
tot(t)

)

can now be divided in a component related

to the active part of the coil
(

ψ(c)(t)
)

and a component related to the end windings
(

ψ
(c)
ew(t)

)

. The above then results in:

v(c)(t) = Ri(c)(t) +
dψ(c)

ew(t)

dt
+

dψ(c)(t)

dt

= Ri(c)(t) + Lew
di(c)(t)

dt
+

dψ(c)(t)

dt

(6.5)

Note that, for simplicity reasons, it is assumed that every coil has the same ohmic
resistanceR and the same inductance of the end-windingsLew. These values can
be obtained with classical formulas, such as the ones found in [141].
The functions in (6.5) can be written in terms of their Fourier series:

∞
∑

n=−∞
V (c)
n e−jnωt =

∞
∑

n=−∞
RI(c)n e−jnωt+Lew

dI(c)n e−jnωt

dt
+

dΨ(c)
n e−jnωt

dt
(6.6)

The above can be rewritten for every time harmonic ordern separately:

V (c)
n = RI(c)n − jnωLewI

(c)
n − jnωΨ(c)

n (6.7)

Implying that the current’snth harmonic order can be calculated as:

I(c)n =
V

(c)
n + jnωΨ

(c)
n

R− jnωLew
(6.8)

It can easily be reasoned that substitution of (6.8) in the governing equation will
allow to account for the terminal voltage as a source. However,Ψ

(c)
n has to be

calculated from the magnetic field, i.e. from the solution of the governing equation.
This prevents a direct coupling between the calculation of the magnetic field and
the equation for the terminal voltage. To overcome that problem,Ψ

(c)
n is rewritten

in terms of the magnetic vector potential in the following section.
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6.2.2 Flux linkage

The goal of this section is to express the flux related to the active part of anarbitrary
coil c as a function of the magnetic vector potential. In a first step the flux coupled
with a single turn of the coil is derived, in a second step the flux coupled with the
entire coil is regarded.

Flux coupled with a single turn

The physical flux through a single turnκ of coil c is calculated by integrating the
flux density over a surface spanned by that turn:

ψ(κ)(t) =

¨

Sκ

B · da =

˛

Cκ

A · ds (6.9)

Where the definition of the MVP and Stokes’ theorem were used.Sκ is the surface
of the turn,Cκ is the boundary of that surface.
Since the magnetic vector potential is assumed to only have az-component, the in-
tegration ofA along the turn’s contour will only be non-zero along thez-direction.
Noting that the MVP is independent ofz, this implies that the integration along the
contour of the turn can be rewritten as:

ψ(κ)(t) = ls

(

A(i+
Ns

)(rκ+ , φκ+ , t)−A(i−
Ns

)(rκ− , φκ− , t)
)

(6.10)

wherels is the stack length of the studied machine.i+Ns
is the slot in which the

direction of the integration is along the positivez-axis; A and ds then have the
same direction and sense.i−Ns

represents the slot in which the coil returns, the
integration direction is opposed to thez-axis and thus toA.
Equation (6.10) can now be rewritten as:

ψ(κ)(t) =

Ns
∑

iNs=1

lsw
(c,iNs )
κ A(iNs )(r

(iNs )
κ , φ

(iNs )
κ , t) (6.11)

wherew(κ,iNs ) is 1 in the slot that contains the going conductor ofκ, −1 in the slot
that contains the returning conductor and0 in the other slots.

Usually, the exact position of the turn can not be determined, i.e.
(

r
(iNs )
κ , φ

(iNs )
κ

)

is unknown. For that reason, the average MVP in the considered slot is used. Doing
so results in one MVP value for every subdomain. This value will be referred to as
α(iNs )(t) in the following. The flux coupled with a single turnκ of coil c can then
be written as:

ψ(κ)(t) =

Ns
∑

iNs=1

lsw
(c,iNs )
κ α(iNs )(t) (6.12)
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Flux coupled with a coil

The flux coupled with coilc is calculated by summing the fluxes coupled with each
of its turns. From (6.12), it can be written that:

ψ(c)(t) =

Ns
∑

iNs=1

lsN
(c,iNs )α(iNs )(t) (6.13)

where
N (c,iNs ) =

∑

κ

w
(c,iNs )
κ (6.14)

which implies thatN (c,iNs ) equals the amount of conductors that coilc has in slot
iNs . If iNs contains going conductors ofc, N (c,iNs ) is positive. If not,N (c,iNs ) is
negative.
Thenth time-harmonic coefficient ofψ(t)(c) can now be written as:

Ψ(c)
n =

Ns
∑

iNs=1

lsN
(c,iNs )α

(iNs )
n (6.15)

whereα
(iNs )
n is thenth time-harmonic coefficient ofα(iNs )(t).

Sinceα(iNs )(t) is a direct function of the MVP in slotiNs , which in turn is deter-
mined by the integration constants and the source terms, (6.15) can be written in
its matrix form as:

Ψ(c)
n = ls[N

(c)] ·
(

[C5
n] · [Xn] + [C6

n] · [In] + [C7
n] · [Bn]

)

(6.16)

where[N (c)] is a 1 × Ns matrix describing the winding configuration of coilc,
i.e. [N (c)]1,iNs

= N (c,iNs ). [C5
n], [C

6
n] and[C7

n] are coefficient matrices. They are
determined by averaging the equations for the MVP.
It can easily be seen that the above effectively expresses the flux linkage of coilc in
terms of the machine’s geometry([C5

n] · · · [C7
n]), the integration constants([Xn])

and the classical source terms([In] and[Bn]).

6.3 A new system of equations

In (6.3) the system of a traditional Fourier-based analytical model was reformulated
in terms of the currents flowing through the coils of the machine. However, asthese
currents are unknown, that system was underdetermined. Therefore, in Section 6.2
an equation for the current density was proposed (6.8), combining this equation
with the equation for the flux coupled with a coil (6.16) gives:

I(c)n =
V

(c)
n + jnωls[N

(c)] ·
(

[C5
n] · [Xn] + [C6

n] · [In] + [C7
n] · [Bn]

)

R− jnωLew
(6.17)
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The above equation for the current is valid in each of theNc coils. A matrix
notation for the resulting set of equations can be found:

[In] =
[Vn] + jnωls[N ] ·

(

[C5
n] · [Xn] + [C6

n] · [In] + [C7
n] · [Bn]

)

R− jnωLew
(6.18)

where[Vn] is aNc× 1 matrix containing all of the coils’ terminal voltages and[N ]
is aNc ×Ns matrix whosecth row equals[N (c)]. Rearranging gives:

[C8
n] · [Xn] + [C9

n] · [In] = [C10
n ] · [Bn] + [C11

n ] · [Vn] (6.19)

where[C8
n], [C

9
n], [C

10
n ] and[C11

n ] are matrices with respective sizes ofNc ×Nbc,
Nc ×Nc,Nc ×Nbc andNc ×Nc. They are calculated as:

[C8
n] = −jnωls[N ] · [C5

n]

R− jnωLew
(6.20a)

[C9
n] = INc −

jnωls[N ] · [C6
n]

R− jnωLew
(6.20b)

[C10
n ] =

jnωls[N ] · [C7
n]

R− jnωLew
(6.20c)

[C11
n ] =

INc

R− jnωLew
(6.20d)

whereINc is the identity matrix of sizeNc.
The above implies that the combination of (6.3) and (6.19) is a system of equations
that uniquely defines both the integration constants in each of the subdomainsand
the currents in each of the coils. This system is written in matrix form as:

[

[C1
n] [C4

n]
[C8

n] [C9
n]

]

·
[

[Xn]
[In]

]

=

[

[C3
n] · [Bn]

[C10
n ] · [Bn] + [C11

n ] · [Vn]

]

(6.21)

Solving this system for every time harmonic order will uniquely define the MVP
and the currents. It can readily be seen that (6.21) enables to directly impose a
voltage signal to the coils instead of the classical approach of imposing a current
density to the subdomains.

6.4 Validation

The goal of this section is to validate the above theory. To do so, the inner-rotor
machine with open slots and a shielding cylinder, as introduced in Chapter 3, is
used. The machine is connected in a delta configuration and coils belonging to
the same phase are connected in series. In order to obtain an easily reproducible
validation, sinusoidal voltages with an amplitude of 255 volt and a phase shiftof
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Figure 6.1: Applied phase voltages

206.6°, i.e. uA(t) = −255 cos (pωt+ 0.4643), are applied to the phases. The
applied voltages are shown in Figure 6.1.
Evidently, the no-load field equals that of the validation in Chapter 3. The obtained
armature-reaction and load fields and the corresponding magnetic flux densities in
the center of the air gap are shown in Figure 6.2. The results were compared to
FEM calculations and a very good correspondence is noted. Respective errors of
0.025% and0.354% are obtained for the radial and tangential components of the
flux density under armature-reaction conditions. Under load conditions, errors of
0.032% and0.167% are obtained.
Apart from the magnetic field and its flux density, the current and the different
components of the phase voltages can also be calculated. For phase A, thecurrent,
calculated from the FB model, is compared to the current obtained from the FE
model in Figures 6.3. Figure 6.4 shows different components of the voltage; the
terminal voltage(V ), the resistive voltage drop(RI), the inductive voltage drop
(jXI) and the back EMF.
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Figure 6.2: Validation of the voltage-fed inner-rotor machine with open
slots and a SC
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6.5 Conclusion

In this section a coupling between the magnetic calculation of Chapter 3 and the
equation for the terminal voltage of an electric machine were combined. The re-
sult is a model that can directly account for voltage sources. The technique was
validated by comparison with a FE model. For the sake of an easily reproducible
validation, sinusoidal voltage were applied. More realistic PWM voltage can be
applied in exactly the same way. This will be done in the parameter studies of
Chapter 9.
Although the implementation of the above presented coupling might add to the
model’s complexity, it allows to easily account for realistic voltage sources instead
of idealized current sources. This improves the accuracy and usability of the FB
model. As mentioned in Chapter 1, that is one of the goals of this thesis.



Chapter 7

Calculation of electromagnetic
quantities

In the previous chapters, the focus was on the calculation of the magnetic field.
However, when designing an electric machine, the interest is in its electromagnetic
properties, rather than in its magnetic field. Therefore, this chapter focuses on
how results from the magnetic field calculation can be used to compute physical
quantities that are interesting from a design perspective. Apart from some general
machine parameters such as the flux density and the back EMF, two electromag-
netic properties are of special interest for high-speed PMSMs; the torque and the
eddy-current losses in the rotor.
In the scope of this PhD, the prototype of a high-speed generator for a combined
heat and power (CHP) unit was developed in collaboration with a Belgian SME.
In the first part of this chapter, i.e. in Section 7.1, that prototype machine is intro-
duced. The second part of this chapter, presented in Sections 7.2-7.5,discusses the
actual calculation of the machine’s electromagnetic properties. In that discussion,
the prototype design is used as a reference. Finally, Section 7.6 concludes this
chapter.

The content of this chapter has been published in the following journal paper:

• B. Hannon, P. Sergeant and L. Dupré, “Torque and torque components in
high-speed permanent-magnet synchronous machines with a shielding cylin-
der”, Mathematics and Computers in Simulation, vol. 130, pp. 70-80, 2016
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7.1 Prototype machine

As already mentioned, in the scope of this PhD, Ghent University partnered with
a Belgian company to design a high-speed SM PMSM for a micro CHP unit. This
collaboration has resulted in a test setup with two prototype machines that were
mounted back-to-back. The actual test setup will be discussed in Chapter8. How-
ever, as mentioned, the prototype designed for the micro CHP application will be
used as a reference in this chapter.
In the context of rising energy prices, decentralized power generationhas become
increasingly popular in recent years. One possibility is to combine the generation
of heat and electric power, thereby reducing overall energy losses.Such CHP units
can be implemented both on a very large, industrial scale or in smaller units. The
application in this case is a residential, low-power CHP unit that is powered bya
high-speed micro turbine. In order to minimize the system’s maintenance while
maximizing its efficiency, it was decided to implement a high-speed SM PMSM
generator in a direct-drive configuration. This generator was designed at Ghent
University under the supervision of prof. dr. ir. Sergeant. The machine’s topol-
ogy, as shown in Figure 7.1, is the same as that from the example machine usedin
Chapter 3. Its parameters are listed in Table 7.1.

phases
A
B
C

Figure 7.1: Cross-section of the prototype machine

One of the interesting features of the machine is the retaining sleeve, made from
AISI 303 stainless steel. The permanent magnets are N42SH-type NdFeB mag-
nets.
As explained in Chapter 3, the slots and the slot openings have to be simplified for
the FB model. This is done while keeping their surfaces constant, resulting in an
opening angle of3.46° for the slot openings(δ) and9.42° for the slots(ǫ).
Note that the retaining sleeve was not designed to function as a shielding cylinder.
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Table 7.1: Parameters of the validated machines

Parameter Symbol Value

Number of slots Ns 24
Number of pole pairs p 2
Number of phases m 3
Residual flux density of the magnetsBm 1.28 T
Angular span of a magnet φm 90.00°
Nominal line voltage Vnom 150 V
Nominal current Inom 6 A
Number of windings per slot N 10
Nominal frequency fnom 1000 Hz
Nominal speed nr,nom 30,000 rpm
Radius of the RY - PM boundary r1 17.50 mm
Radius of the PM - SC boundary r2 20.50 mm
Radius of the SC - AG boundary r3 21.00 mm
Radius of the AG - SO boundary r4 23.00 mm
Radius of the SO - SL boundary r5 23.80 mm
Radius of the SL - SY boundary r6 37.50 mm
Radius of the SY external boundaryr7 45.00 mm
Stack length ls 28.00 mm
Tooth width wt 3.00 mm
Tooth-tip width wτ 4.72 mm
Permeability of the magnets µPM 1.05µ0

H
m

Conductivity of the magnets σPM 6.94.105 S
m

Permeability of the sleeve µSC 1.008µ0
H
m

Conductivity of the sleeve σSC 1.38.106 S
m

It may therefore be expected that its presence will increase the rotor losses. More-
over, as its conductivity and permeability are rather low, the retaining sleevedoes
not shield the magnets. This can easily be validated by considering the penetration
depth of harmonic combination(n, k) in the sleeve. That penetration depth can, at
least for the fundamental time-harmonic order, be calculated as:

δn,k =

√

2

|n− k|ωσSCµSC
(7.1)

It will be shown in Section 7.2 that the dominant harmonic combinations of the
prototype are(2,−22) and(2, 26). Their penetration depth in the sleeve is about
19 mm. As the sleeve is only 0.5 mm, this implies that the magnets are virtually
unshielded. This could compromise the validity of the assumption that the eddy-
current reaction field of the magnets is negligible. However, the conductivity of the
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magnets is still only half that of the sleeve. Therefore, the assumption of negligible
eddy-current reaction field of the magnets is still justifiable.

7.2 Magnetic flux density

As already discussed in Section 3.4, the magnetic flux density can be obtained
directly from the definition of the magnetic vector potential (2.27). In a 2D cylin-
drical coordinate system, this implies:

B =
1

r

∂A

∂φ
er −

∂A

∂r
eφ (7.2)

The magnetic flux density was extensively discussed and validated in Section3.4.
This will not be repeated here. However, Section 3.4 visualized the magneticflux
density at a given instance of time, such a visualization does not provide a lot of
information. Therefore, in the following, two other visualizations of the magnetic
flux density will be introduced; the harmonic map and the total asynchronous
distortion.

7.2.1 Harmonic map

The harmonic map is a visualization of the flux density’s amplitude for every har-
monic combination. Figure 7.2 illustrates the concept for the radial and tangential
components of the prototype’s flux density in the center of the air gap at no-load
conditions. Evidently, a similar visualization could be made for the flux density’s
norm or even its phase angle, depending on the needs.
Note that the synchronous harmonic combinations are displayed on a greenback-
ground. The oversynchronous harmonic combinations, i.e. the combinations that
rotate faster than the rotor, are displayed on a yellow background. The background
of the undersynchronous harmonic combinations is left blank.
Figure 7.2 only shows the positive time-harmonic orders. This is because, as dis-
cussed in Chapter 5, there is a symmetry between harmonic combinations(n, k)
and(−n,−k). Note as well that Figure 7.2 is a good illustration of the discussion
on harmonic content in synchronous machines, see Chapter 5 and Appendix B.
The harmonic map may not be directly interesting when designing electric ma-
chines. But, it can be a very interesting tool to interpret results from othercalcula-
tions.

7.2.2 Total asynchronous distortion

Although the harmonic map is an interesting visualization tool, it is not very effec-
tive at quantifying the harmonic content. A commonly-used parameter that does
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represent the amount of non-fundamental harmonics is the total harmonic distor-
tion (THD). However, the THD is used for signals with either spatial- or time-
harmonic orders, e.g. to quantify the harmonic distortion of a voltage signal. In
this work, it is important to consider both time- and spatial-harmonic orders andto
differ between synchronous harmonic components, i.e. components withn = k,
and asynchronous harmonic components, i.e. components withn 6= k. To do so,
the total asynchronous distortion (TAD) is introduced as:

TAD =

√

√

√

√

√

√

∑

n 6=k

|Bn,k|2

∑

n=k

|Bn,k|2
(7.3)

Using the above, the TAD can be calculated for ther- andφ-components of the pro-
totype’s no-load flux density in the center of the air gap. TADr is found to be3.01%
and TADφ is 22.66%. This indeed matches Figure 7.2, which shows a relatively
larger presence of asynchronous harmonic combinations for theφ-component of
the flux density.

7.2.3 Conclusion

In the above, the flux density was discussed. AsB was already extensively val-
idated in previous chapters, the discussion in this section is limited to the intro-
duction of the harmonic map and the total asynchronous distortion. Both are not
directly applicable for the design of an electric machine, but will prove to be inter-
esting tools to interpret the results of the following sections.
As expected from a diametrically wound machine with multiple slots per pole and
per phase, the asynchronous content of the prototype machine is rathersmall. This
was clearly illustrated by the harmonic maps in Figure 7.2. Moreover, as the radial
component of the magnetic field is dominant and TADr is low the overall TAD will
be low as well.
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Figure 7.2: Harmonic maps of the no-load magnetic flux density in the cen-
ter of the prototype’s air gap
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7.3 Back EMF

Evidently, the back EMF is an important design parameter for electric machines.
Not only its peak value, which cannot exceed the limitations of the power electron-
ics, is important. Its harmonic content has to be considered as well. In this section,
the computation of the back EMF is briefly discussed.
The back EMF was actually already calculated in the previous chapter. Indeed, in
Section 6.2.2, the flux linked with each of the machine’s coils was calculated. Its
time-derivative was then used to compute the counter-electromotive force needed
in the equation for the terminal voltage (6.5). The obtained formula for the back
EMF in coil c is:

e(c)(t) =

Ns
∑

iNs=1

∞
∑

n=−∞
jnωlsN

(c,iNs )α
(iNs )
n e−jnωt (7.4)

whereN (c,iNs ) is the amount of conductors that coilc has in slotiNs . N
(c,iNs ) is

oriented. This means that it is positive ifiNs contains going conductors ofc and

negative ifc’s conductors are returning iniNs . As explained in Chapter 6,α
(iNs )
n

is the spatially averaged MVP in slotiNs . In this work, the averaging is performed
via integration:

α
(iNs )
n =

1

S(iNs )

¨

S

A(r, φ, t) ds (7.5)

Note that, whereas in Chapter 6 the entire counter-electromotive force wasused,
here the no-load voltage is studied, i.e. the flux in the coils is solely due to the
magnets.
The results from the prototype’s back EMF calculation are compared to results
from a FE model in Figure 7.3(a). It can be seen that the results are in very good
agreement. The RMS deviation is0.054%. The harmonic content of the back EMF
is shown in Figure 7.3(b).
As the back EMF has no spatial dependency, its THD can be calculated as:

THD =

√

√

√

√

√

√

√

∑

|n|6=p

|En|2

∑

|n|=p

|En|2
(7.6)

For the prototype machine, a value of19.64% is obtained. Note that the harmonic
distortion is mainly due to the third harmonic, as can be seen from Figure 7.3(b).
The effect of this harmonic will of course be nullified if the machine’s coils are
connected in a star configuration.
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Analytical model Finite-element model
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Figure 7.3: Back EMF of the prototype machine
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7.4 Torque

The machine’s torque is probably one of its most important electromagnetical pa-
rameters. This is especially true for high-speed applications, where the torque
ripple often has to be minimized. In this section, the calculation of the torque is
discussed and the concept of torque components is introduced. These torque com-
ponents are an especially interesting tool to study high-speed PMSMs.

7.4.1 Torque calculation

The torque acting on a certain volume can be computed by integrating the cross
product of the radius and Maxwell’s stress tensor(Γ) over the surface of that vol-
ume:

T =

˛

S

r × Γds (7.7)

where the stress tensor is defined as:

Γ = µ(n · H)H − µ

2
(H · H)n (7.8)

In the above,n is the outer unit vector, normal to the integration surfaceS.
The torque acting on the entire rotor(T ) can then be calculated by choosing the
integration surface as a cylinder with radiusr3 and an axis that is coaxial to the
machine’s axis, see Figure 7.4(a).

T (t) =
lsr

2
3

µ4

ˆ 2π

0
B(4)

r (r3, φ, t)B
(4)
φ (r3, φ, t) dφ

=
∞
∑

n=−∞

∞
∑

s=−∞
Tn,se

−j(n+s)ωt
(7.9)

where the superscript(4) refers to the air gap subdomain,n is the time-harmonic

order related toB(4)
r and s is the time-harmonic order related toB(4)

φ . Tn,s is
calculated as:

Tn,s = 2π
lsr

2
3

µ4

∞
∑

k=−∞
B

(4)
r,n,k(r3)B

(4)
φ,s,−k(r3) (7.10)

The radial and tangential components of the flux density are calculated from the
definition of the MVP.
After having obtained the torque, its net value(Tnet) can be calculated as the av-
erage torque over one period. The torque ripple can be calculated as well. In this
work, it will be expressed as a percentage of the net torque:

T∆% =
|max(T (t))− min(T (t))|

mean(T (t))
(7.11)
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Note that it can be seen from (7.9) and (7.10) that net torque is the resultof inter-
action between opposite harmonic combination, i.e.(n, k) and(−n,−k). Indeed,
those combinations have the same rotational speed. In general, torque canonly
be produced due to the interaction of harmonic combinations with opposite spatial
harmonic orders, i.e.k and−k.

7.4.2 Torque components

In a machine that is equipped with a shielding cylinder, the total torque is com-
posed of two torque-producing mechanisms.
A first component of the torque is due to the classical interaction between themag-
nets and the stator currents. It is referred to as the torque produced in the magnets
(T (2)), the superscript(2) referring to the PM subdomain. This component of the
torque is dominated by synchronous harmonic combinations.
A second component of the torque is the result of interaction between the mag-
netic field and the eddy-currents in the shielding cylinder. It is referred toas the
torque produced in the SC(T (3)), the superscript(3) referring to the subdomain
of the SC. This component of the torque is dominated by asynchronous harmonic
combinations. Indeed, synchronous combinations do not induce eddy-currents in
the SC. Note thatT (3) can intuitively be explained by considering the SC as the
squirrel cage of an induction machine. The slip with respect to the synchronous
combinations is then zero, therefore only asynchronous harmonic combinations
can produce torque.
T (2) andT (3) are fictitious torque components, they do not occur separately. Nev-
ertheless, considering these components can be very useful to get a better under-
standing of the machine’s physics.
The torque produced in the magnets can be calculated in a similar way as the total
torque. However, now a cylinder with radiusr2 is chosen as the integration surface.
This is illustrated in Figure 7.4(b).T (2) can then be calculated as:

T (2)(t) =
∞
∑

n=−∞

∞
∑

s=−∞
T (2)
n,se

−j(n+s)ωmt (7.12)

whereT (2)
n,s is calculated as:

T (2)
n,s = 2π

lsr
2
2

µPM

∞
∑

k=−∞
B

(2)
r,n,k(r2)B

(2)
φ,s,−k(r2) (7.13)

SinceT (2) andT (3) are the only torque components that make upT , the torque
produced in the shielding cylinder can be calculated as in (7.14).

T (3) = T − T (2) (7.14)
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Similar toT∆%, T (2)
∆% andT (3)

∆% are also calculated as percentages of the average
total torque(Tnet):

T
(2)
∆% =

|max(T (2)(t))− min(T (2)(t))|
mean(T (t))

(7.15a)

T
(3)
∆% =

|max(T (3)(t))− min(T (3)(t))|
mean(T (t))

(7.15b)

Figure 7.5(a) shows the torque and its components in the prototype machine for
a third of an electrical period. For the total torque, the RMS deviation between
the FB and the FE model is0.24%. Note that there is a small offset between the
FB and FE results forT (2) andT (3). The reason is that the FE model is not very
effective at calculating quantities on the boundaries between two materials, which
is required to calculateT (2).
The net torque is 0.4631 Nm,T (2)

net is 0.4632 Nm andT (3)
net is -0.0001 Nm. The total

torque ripple is12.20%, T (2)
∆% is 13.63% andT (3)

∆% is 1.17%. In Figure 7.5(b), the
harmonic content of the torque and its components is shown.
Note that, from Figure 7.2, it could have been expected thatT

(3)
net would be neg-

ative. Indeed, the undersynchronous harmonic combinations dominate theover-
synchronous ones. Like in an induction machine, those combinations produce a
braking force. In this situation,T (3) is almost negligible with respect toT (2).
However, its role may be much more important when the SC’s conductivity is in-
creased and/or the machine’s asynchronous content is higher.

r3

(a) Integration surface forT

r2

(b) Integration surface forT (2)

Figure 7.4: Integration surface for torque calculation
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7.4.3 Conclusion

In this section, the calculation of the torque using Maxwell’s stress tensor was dis-
cussed. Moreover, the torque was divided in a component related to the shielding
cylinder and a component related to the magnets. Although these components are
not physically divisible, their computation can provide a lot of insight in the ma-
chine’s operation.
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Analytical model Finite-element model
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Figure 7.5: Torque and torque components of the prototype machine
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7.5 Eddy currents and eddy-current losses

It was already pointed out earlier that eddy-currents and the losses they cause in the
rotor are of great importance in high-speed PMSMs. In this work, both theeddy-
currents in the shielding cylinder and the magnets are considered. Their calculation
will be discussed in the following.

7.5.1 Eddy current calculation

The calculation of the eddy currents in the SC is relatively straightforward.From
the constitutive relation for the current density (2.26a) and by assuming that there
is no externally imposed voltage in the SC, the following equation can be obtained:

J (3)(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞
jσ(3)(n− k)ωA

(3)
n,k(r)e

j(kφ−nωt) (7.16)

Figure 7.6(a) shows a contour plot of the resulting current density in the prototype
machine att = 0, i.e. the magnets are aligned with phaseA and the current through
that phase is at its maximum.
Although the conductivity of the permanent magnets(σPM ) was assumed0 dur-
ing the computation of the field, a similar approach can be used to calculate the
eddy-currents in the magnets. However, in a two-dimensional model, there isno
guarantee that the net current in each of the magnets is zero. This implies that
current may be flowing from one magnet to the other, which is of course not real-
istic. To cope with that problem, a spatially constant current density

(

Cim(t)
)

is
added [64,76,88,142]:

J (2,im)(r, φ, t) =
∞
∑

n=−∞

( ∞
∑

k=−∞
jσ(2)(n− k)ωA

(2)
n,k(r)e

j(kφ−nωt)

)

− C(im)
n (t)

(7.17)
whereim refers to the number of the considered magnet andCn(t) is calculated
as:

Cim
n (t) =

¨

S(im)

jσ(2)(n− k)ωA
(2)
n,k(r)e

j(kφ−nωt) ds

=

ˆ −φ
(im)
0 +φm+ωt

−φ
(im)
0 +ωt

ˆ r3

r2

jσ(2)(n− k)ωrA
(2)
n,k(r)e

j(kφ−nωt) dr dφ

(7.18)

whereφ(im)
0 is the initial position of magnetim.

Figure 7.6(b) shows a contour plot of the current density in the second magnet of
the prototype machine att = 0.
Figure 7.7 shows the temporal evolution of the current density in differentpoints of
the SC, i.e.(r3, 0), (

r2+r3
2 , 0) and(r2, 0) and the magnets, i.e.( r1+r2

2 , 0). Where
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theφ-axis is as in Figure 3.2. It can be seen that a good agreement with the FE
model is achieved.

7.5.2 Eddy-current loss calculation

Classically, the eddy-current losses are calculated from Joule’s formula:

Pec(t) =

˚

V

J · J
σ

dv (7.19)

This equation is used to calculate the eddy-current losses in the magnets. For a 2D
model, it can be rewritten as (7.20).

P (2)
ec (t) = ls

¨

S(im)

J (2)(r, φ, t)J (2)(r, φ, t)

σ(2)
ds (7.20)

Joule’s formula is, however, not effective at computing the losses in the shield-
ing cylinder. This is because ther-dependent part ofJ (3)(r, φ, t) contains Bessel
functions. These functions can not be integrated analytically. To cope withthis
problem, the Poynting vector(S) can be used [68,143,144]:

S= E × H (7.21)

The integration ofS over a closed surface determines the energy flowing through
that surface. This implies that the total power transmitted to the rotor can be calcu-
lated by integrating the Poynting vector over the surface of a cylinder that includes
the rotor, e.g. the cylinder shown in Figure 7.4(a). However, as discussed by
Markovic and Perriard in [137], it is possible to directly compute the power dissi-
pated in the SC. Essentially, their technique implies considering Poynting’s vector
in rotor coordinates, i.e. substitutingθ + ωt − θ0 for φ, with θ the rotor angular
coordinate andθ0 the initial position of the rotor.

P (3)
ec (t) =

r3ls

µ

ˆ 2π

0
E(4)

z ·B(4)
θ dθ

=
∞
∑

n=−∞

∞
∑

s=−∞
P (3)
n,se

−j(n+s)ωt
(7.22)

wheren is the time-harmonic order related toE(4)
z ands is the time-harmonic order

related toB(4)
θ . Pn,s is calculated as:

Pn,s = 2π
lsr3

µ

∞
∑

k=−∞
−j(n− k)ωA

(4)
n,k(r3)B

(4)
s,−k(r3) (7.23)
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Note that the eddy-current losses in the magnets are not included inP if the latter
is calculated from (7.22). The reason is that the Poynting vector is calculated di-
rectly from the magnetic and electric fields. As the eddy-currents in the magnets
are not directly included in the calculation of those fields, their losses can not be
accounted for by the integration ofS.
Finally, the interest is in the average value of the eddy-current losses, the instanta-
neous eddy-current losses are not considered here.
By means of validation, the eddy-current losses of the prototype were computed
and validated with the FE model. In the shielding cylinder, the eddy-current loss
was calculated as 0.269 W with the FB model and 0.270 W with the FE model.
In the permanent magnets the eddy-current losses were calculated as 0.091 W and
0.087 W respectively. These losses are very low because the asynchronous content
of the prototype is very low. Especially because at this point a sinusoidal current
is assumed. It will become clear from the following sections that the eddy-current
losses may become much larger when the machine’s magnetic field has a larger
asynchronous content, e.g. when more realistic current waveforms areimposed.

7.5.3 Conclusion

In this section the calculation and validation of both the eddy currents and their
losses was discussed. It should be noted that while the eddy-current losses in the
magnets were computed from Joule’s formula, this is not analytically possible for
the eddy-current losses in the SC. The latter are therefore computed using Poynt-
ing’s theorem. Good agreements with a time-stepped FE model were obtained for
all of the calculations.

7.6 Conclusion

In this chapter, the calculation of various electromagnetic properties of electric ma-
chines was discussed. Each of those calculations was successfully validated with
a finite element model. The machine, used for those validations, is the prototype
machine for a micro CHP unit, developed in collaboration with a Belgian company.
The harmonic content of the studied machine is very low. Although this doesn’t
compromise the validations of this chapter, it does result in a very low torque in
the SC and very low eddy-current losses. However, in machines with a higher
harmonic content, the effect of the SC is much more important.
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Chapter 8

Test setup

In addition to the theoretical work that has been presented in the previous chapters,
a test setup for PMSMs operating at high speeds was built in the scope of this PhD.
The primary goal of that setup was to complement the obtained theoretical knowl-
edge with some practical experience.
The main focus of the work at the test setup has been to build an in-house, fully
customizable drive for the SM PMSMs that were introduced in Chapter 7. Asthis
drive, which has been extensively covered in [145–149], is not really in the scope
of this dissertation, it will only briefly be discussed. Instead, the focus ofthis chap-
ter will be on a description of the setup and the measurements.
The following chapter starts with an introduction of the setup’s hardware and the
control strategies that were implemented. This is done in Section 8.1. In Sec-
tion 8.2, measurements of the no-load voltage and line currents are presented and
compared to results from the FB model. Section 8.3 concludes this chapter.



136 Test setup

8.1 Introduction

In this section, the test setup, which is shown in Figure 8.1, is discussed. Inaddi-
tion, a brief discussion on the implemented control strategies is provided as well.

Figure 8.1: Overview of the setup

The setup comprises two parts; the electric machines and the power electronics.
Both will be discussed in the following.

8.1.1 Electric machines

It was already mentioned that the electric machines that are used in this setup were
constructed in the scope of designing a generator for a micro CHP unit. There-
sulting machine has been discussed in Section 7.1. For the setup, two of thosema-
chines were mounted in a custom-designed back-to-back configuration, as shown
in Figure 8.2. The goal of that configuration is to use one machine as a motor
while the other operates as a generator. This allows to perform loss measurements
without having to measure the torque, which is particularly difficult at high speed.
Apart from the two electric machines, Figure 8.2 also shows an exterior shaft and
an additional rotor that is placed outside the housing. The goal of the shaft is to en-
able mounting an encoder. Both that encoder and the additional rotor are foreseen
to provide the necessary position feedback for the control. The encoder is used
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shaft

housing

additional rotor

prototype machines

Figure 8.2: Cross section of the machines

for field-oriented control (FOC) of the machine. The additional rotor is combined
with a set of Hall sensors to provide position feedback for a brushless DC (BLDC)
control.
Although both machines have an identical geometry, they have slightly different
winding schemes. One of both machines has a traditional winding; its coils are
connected in series and its phases are connected in a star configuration,as shown
in Figure 8.3(a). As the star point of this machine is internal, it is referred to as
the internal star-point machine. The winding scheme of the second machine is
analogous, but the ends of all coils are accessible. This winding scheme,shown in
Figure 8.3(b), allows for more flexibility. However, in the scope of this work, the
coils were always connected in series and the phases were connected ina star con-
figuration. The second machine is referred to as the external star-pointmachine.
Note that in Figure 8.3, the depicted connections are those of phase A and the Y in
Figure 8.3(a) refers to the internal star point of the machine.
While testing it was found that there has been an error during the production of the
external star-point machine. As will be discussed in Section 8.2, its back EMF was
found to be only half the expected value. This could be due to a problem with the
permanent magnets, but it is more likely that there is a problem with the windings
of the machine.

8.1.2 Power electronics

The machine operating as a motor can be controlled with two different sets of
power electronics; a commercial drive or the custom-made drive that was built
in-house.
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(b) External star-point machine

Figure 8.3: Winding schemes

Commercial drive

In a first stage, a VLT®AutomationDrive FC 300 from Danfoss was usedto control
the machine. This drive allows for a sensorless control or a FOC with position
feedback. Both of these controls have been implemented, but neither was stable at
speeds exceeding 22,000 rpm.

Custom drive

As the commercial drive doesn’t succeed at accelerating the setup to its nominal
speed of 30,000 rpm, and because the flexibility of a commercial drive is limited,
a custom-made drive was constructed to power the test setup.
The architecture of the drive comprises four parts; the control part, thetransforma-
tion part, the power stage and the measurement part.
The control part provides the user-interface, processes the control algorithm and
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Figure 8.4: Custom-made drive for the test setup

outputs the switching signal. It contains a PC for the user-interface and a compact
RIO module from National Instruments to implement the actual control algorithm.
Its output is a low voltage transistor-transistor logic (LVTTL) signal.
As the LVTTL signal cannot be applied directly to the IGBT drivers, it is rescaled
in the transformation part. The printed-circuit boards that have been used to do so
were designed at Ghent University.
The power stage of the driver contains a buck converter and a three-phase inverter.
By providing a separate buck converter, it is possible to control the voltage level
with both pulse-width modulation (PWM) and pulse-amplitude modulation (PAM).
The measurement part provides the control algorithm with the required informa-
tion about the motor’s operation. It contains three current measurements,i.e. two
line-currents and the current through the DC bus, and three voltage measurements,
i.e. one per phase.
Figure 8.5 shows an overview of the power electronics.
The custom drive was successfully used to implement two different BLDC con-
trols; one with position feedback and a sensorless one. More information about the
drive and the control algorithms can be found in [145–149].
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8.1.3 Control strategies

Four different control strategies have been implemented on the setup. Using the
commercial drive, two FOCs were used; one with position feedback and a sensor-
less one [149]. Both use PWM to control the amplitude of the voltage. Similarly,
the custom drive was used to implement a BLDC control with and without position
feedback [145, 147, 148]. Both of those controls use the drive’s buck convertor to
control the amplitude of the voltage, i.e. they apply PAM.

M

rectifier buck converter inverter

control

u∗
DC iDC uPWM

iA

iB

nr

Figure 8.5: Overview of the power electronics of the test setup

8.2 Measurements

In this section, measurements of the no-load voltage and the currents in the machine
will be compared to results that were obtained from the Fourier-based model.

8.2.1 No-load voltage

Figure 8.6 shows the no-load voltage at 20,000 rpm. It can readily be seenthat the
agreement between the FB model and the measurements is very good for the inte-
rior star-point machine. However, there is a large deviation with the measurement
from the exterior star-point machine. As already mentioned, this implies that there
must have been an error during the production of the machine. This can either be
a problem with the magnets or a problem with the winding configuration. As the
deviation is almost exactly a factor two, it is most likely that the exterior star-point
machine was not wound correctly.
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Note that the faulty machine compromises the possibility to determine the proto-
type’s efficiency using the back-to-back configuration. Indeed, as the machines
cannot be assumed identical, it cannot be assumed that they contribute equally to
the measured losses. Therefore, no efficiency measurements will be performed in
this work.
Another interesting observation is that the measured signal contains spikes. Those
spikes are due to electromagnetic coupling between the power signal and themea-
sured signal. Indeed, the frequency of the spikes matches the switching frequency
of the inverter.

8.2.2 Terminal voltage and current

Another validation that can be performed on the test setup is whether the current
predicted by the Fourier-based model with a voltage source matches the measured
current. However, as the internal star-point machine has to be used, thephase volt-
ages, which are the input of the FB model, cannot be measured directly. Therefore,
this validation is performed in four steps. These steps will be discussed in thefol-
lowing.
Evidently, the first step is to measure the current and line voltage. This is done
while operating the motor at 10,682 rpm, the generator is not loaded. Results from
that measurement are shown in Figure 8.7.
In the second step, the measured current is used as an input for the FB model with
a current source to calculate the phase voltages. The obtained voltage ofphase A
is shown in Figure 8.8. This voltage will be used as an input for the FB model with
a voltage source.
The third step is to compare the calculated and measured voltages. This is donein
Figure 8.9 for the voltage between phases A and B. It can be seen that theagree-
ment between the measured and the calculated voltage is very good. This implies
that the voltage calculated in the previous step can be used as an input for the FB
model.
Finally, the FB model with a voltage source can be used to compute the currentin
the machine. From Figure 8.10, it can be seen that there is, again, a good agree-
ment between the calculations and the measurements. This validates the current
calculations of the FB model.
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Figure 8.6: No-load voltages in the prototype machine at 20,000 rpm
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Figure 8.7: Current and line voltages in the internal star-point machine at
10,682 rpm



8.2 Measurements 143

P
ha

se
vo

lta
ge

(V
)

Time (ms)
0 0.5 1 1.5 2 2.5 3

−60

−40

−20

0

20

40

60

Figure 8.8: Calculated phase voltage of phase A
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8.3 Conclusion

In this chapter, the test setup that has been developed in the scope of this PhD was
briefly introduced. It was also used to validate some of the calculations that were
made earlier in this work; the calculation of the back EMF and the calculation of
the phase currents. Although it was found that one of the setup’s machines is faulty,
a good agreement between the measurements and the calculations was obtained for
the other machine. This indicates that the assumptions that were made in Section
3.2.3, e.g. neglecting saturation and end-effects, are valid.
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Chapter 9

Parameter studies

The primary goal of this chapter is to gain more insight in the effect of the shield-
ing cylinder on the torque and the eddy-current losses in high-speed PMSMs. To
achieve that goal, a number of parameter studies will be performed, all of which
focus on the two most important design variables of the SC; its thickness and its
conductivity. The question is how these parameters affect the net torque, the torque
ripple and the eddy-current losses. In order to gradually increase thediscussion’s
complexity, the parameter studies are performed for three different sources; first
a sinusoidal current source, then an idealized BLDC current and finally a BLDC
voltage source.
Note that the studies performed in this chapter are merely theoretical; the studied
machine is chosen to highlight the investigated phenomena, rather than to represent
a realistic design. Moreover, the parameter ranges may extend to unrealisticval-
ues. As the goal is to identify trends and gain more insight in high-speed PMSMs
in general, rather than to design an actual machine, that is not a problem.
In the first part of this chapter, i.e. in Section 9.1, the studied machine is intro-
duced. The second part of this chapter discusses the actual parameterstudies. This
is done in Sections 9.2-9.4. Finally, Section 9.5 concludes this chapter by listing
the most important observations that were made throughout the chapter.

The content of this chapter has been published in the following journal paper:

• B. Hannon, P. Sergeant and L. Dupré, “Study of the Effect of a Shielding
Cylinder on the Torque in a Permanent-Magnet Synchronous Machine Con-
sidering Two Torque-Producing Mechanisms”,Magnetics, IEEE Transac-
tions on, in press, 2017
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9.1 Studied machine

A cross section of the machine that will be used for the parameter studies is shown
in Figure 9.1. The machine was chosen to have open slots and a single slot per
pole and per phase. This will significantly increase the asynchronous harmonic
content with respect to the prototype of Chapters 7 and 8. Although this makes the
machine less realistic, it magnifies the physical phenomena that this chapter wants
to investigate.

phases
A
B
C

Figure 9.1: Cross-section of the studied machine

The parameters of the studied machine are listed in Table 9.1, where RY indicates
the rotor yoke, PM the permanent magnets, SC the shielding cylinder, AG the air
gap, SL the slots and SY the stator yoke.
Note that the subdomain numbering remains the same as in Figure 3.5. Quantities
that relate to a subdomain are therefore indicated with the superscript of that
subdomain. For example, the torque produced in the magnets is referred to asT (2).
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Table 9.1: Parameters of the studied machine

Parameter Symbol Value

Number of slots Ns 12
Number of pole pairs p 2
Number of phases m 3
Residual flux density of the magnetsBm 1.20 T
Angular span of a magnet φm 72.00°
Nominal current density (RMS) Jnom 5.106 A

m2

Number of windings per slot N 10
Nominal frequency fnom 1000 Hz
Nominal speed nr,nom 30,000 rpm
Radius of the RY - PM boundary r1 22.50 mm
Radius of the PM - SC boundary r2 25.00 mm
Radius of the SC - AG boundary r3 26.50 mm
Radius of the AG - SL boundary r4 28.50 mm
Radius of the SL - SY boundary r6 40.40 mm
Radius of the SY external boundaryr7 50.00 mm
Stack length ls 31.00 mm
Tooth opening angle ε 15°

Permeability of the magnets µPM µ0
H
m

Conductivity of the magnets σPM 6.94.105 S
m

Permeability of the sleeve µSC µ0
H
m

Conductivity of the sleeve σSC 4.83.107 S
m
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9.2 Sinusoidal current

In a first step, the machine is supplied with a three-phase sinusoidal current, im-
posed along the machine’s direct axis. The current in phase A, which has an am-
plitude of 76.27 A, is shown in Figure 9.2 during one mechanical period.
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Figure 9.2: Current in phase A

Figure 9.3 shows a harmonic map of the magnetic flux density in the center of
the air gap. It is important to note that the undersynchronous harmonic combina-
tions dominate the oversynchronous ones. It can also be seen that the dominant
asynchronous harmonic combinations are(2,−10) and(2, 14).
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Figure 9.3: Harmonic map of|B| in the center of the air gap when a sinu-
soidal current is applied
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9.2.1 Torque as a function of the SC’s conductivity

This first study considers the torque as a function of the SC’s conductivity. The
latter is varied between0 and108 S

m while maintaining the SC’s thickness at 1.5
mm. The resulting evolution of the net torque is shown in Figure 9.4.
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Figure 9.4: Net torque as a function of theσSC

Net torque in the magnets

At first sight, Figure 9.4 shows a constantT
(2)
net. As the synchronous harmonic com-

binations, which causeT (2)
net aren’t expected to depend onσSC , this seems logical.

However, when plottingT (2)
net separately, as done in Figure 9.5, it can be observed

thatT (2)
net does change. Indeed, initiallyT (2)

net shows a steep decrease. This decrease
reduces around the point were the conductivity of the shielding cylinder isso that
the penetration depth of the dominant asynchronous harmonic combinations,i.e.
(2,−10) and(2, 14), equals the thickness of the shielding cylinder. This point is
indicated asσδ.

By studying the harmonic combinations of the torque
(

T
(2)
n,s

)

and the flux density

at the outer radius of the magnets
(

B
(2)
r,n,k(r2) andB(2)

φ,n,k(r2)
)

, an explanation for

the evolution ofT (2)
net(σSC) can be found.

Firstly, it was noted that the evolution ofT (2)
net is completely dominated by the

changes inT (2)
2,−2. The second most important variations are observed inT

(2)
6,−6, but
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Figure 9.5: Net torque in the magnets as a function of theσSC , detail of
Figure 9.4

they barely have an effect. Note that, evidently, the same changes are observed in
the symmetric counterparts of the above-mentioned harmonic combinations, i.e. in
T
(2)
−2,2 andT (2)

−6,6. Moreover, as they are conjugates of the same complex Fourier se-
ries, those symmetric combinations ought to be considered together. Therefore, the
following notation will be used in the rest of this chapter:T

(2)
|2,−2| = T

(2)
2,−2+T

(2)
−2,2.

The evolution ofT (2)
|2,−2| andT (2)

|6,−6|, relative to the situation whereσSC = 0, is
shown in Figure 9.6(a).
Figure 9.6 clearly confirms that the variation ofT (2)

net is mainly caused by the evo-

lution ofT (2)
|2,−2|. After an initial decrease,T (2)

|6,−6| increases. However, this increase

does not counter the decrease ofT
(2)
|2,−2|.

Secondly, the changes in the harmonic content of the torque signal can beex-
plained by studying the evolution of the related magnetic flux density harmonics,

see (7.12). The synchronous harmonic combinations
(

B(2)
|2,−2| and B(2)

|6,−6|

)

deter-

mine the course ofT (2)
|2,−2| andT (2)

|6,−6| respectively. Their evolution is depicted in
Figures 9.6(b)-9.6(e). Note that it was not expected that these synchronous har-
monic combinations would be affected by the conductivity of the shielding cylin-
der. The reason that they are is that, due to the slotting effect, all spatial-harmonic
orders related to a single time-harmonic order are coupled, as was explained in
Section 3.3.5. This implies that the effectσSC has on the asynchronous harmonic
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combinations propagates to the synchronous combinations via the slotting effect.
As the torque harmonics are the result of multiplying ther- and theφ-components
of the magnetic flux density, their course is determined by the relative changeofBr

andBφ. Therefore, Figures 9.6(b)-9.6(e) do not only show the evolution ofBr and
Bφ, they also differ between the component of the flux density that changes slower
(dashed, grayed-out lined) and the component of the flux density that changes more
quickly (colored, full line).
For example, the initial increase ofB(2)

r,|2,−2| does not translate in an increasing

T
(2)
|2,−2| becauseB(2)

φ,|2,−2| decreases faster. At higherσSC , the change ofB(2)
r,|2,−2|

does dominate the change ofB(2)
φ,|2,−2|, but by thenB(2)

r,|2,−2| is already decreasing.

Note that, although that isn’t directly visible from Figure 9.6,T
(2)
|2,−2| is positive

while T (2)
|6,−6| is negative. Indeed, whereasB(2)

r,|2,−2| andB(2)
φ,|2,−2| have the same

sign,B(2)
r,|6,−6| andB(2)

φ,|6,−6| have opposite signs. This also explains why the evolu-

tion ofB(2)
φ,|6,−6| is inverse to that ofT (2)

|6,−6|.
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Net torque in the shielding cylinder

The evolution ofT (3)
net(σSC) is plotted in Figure 9.7. Initially, an almost linear

increase of its absolute value is noted. However, after reaching a maximum,
∣

∣

∣T
(3)
net

∣

∣

∣

becomes inversely proportional to
√
σSC . This evolution is very similar to the

speed-torque characteristic of an induction machine [150] and can, qualitatively,
be explained in a similar way. Indeed, as already mentioned, the shielding cylinder
may be regarded as the rotor of a solid-rotor induction machine. This means that,
for a given component of the magnetic field(n, k), the torque production in the
SC depends on the stator resistance(R), the resistance of the SC(RSC), the stator
leakage inductance(Lls), the rotor leakage inductance(Llr), the magnetization
inductance(Lm), the slip(sn,k) and the pulsation(ωn,k) [150]:

T
(3)
net,n,k ∼ RSC

(

R+
(

1 + Lls

Lm

)

RSC

sn,k

)2
+ ω2

n,k

(

Lls +
(

1 + Lls

Lm

)

Llr

)2 (9.1)

The resistance of the SC is determined by Pouillet’s law (9.2):

RSC ∼ ls

σSCtec
(9.2)

with ls the stack length andtec the radial thickness of the SC’s part in which the
eddy currents flow.
RSC is therefore inversely proportional toσSC if tec can be assumed constant.
However, the latter is only true for lowσSC . At high conductivities, the skin ef-
fect is no longer negligible,tec is then not constant, but inversely proportional to√
σSC . According to Pouillet’s law,RSC will then be inversely proportional to√
σSC . The threshold value, after whichRSC may no longer be assumed inversely

proportional toσSC , is the conductivity at which the penetration depth of the dom-
inant asynchronous combinations(tδ) equals the thickness of the SC.
At low conductivities of the shielding cylinder,RSC will thus be high and will
dominate the denominator of (9.1). Indeed:

RSC

1 + Lls

Lm

sn,k
≫ R (9.3a)

RSC

1 + Lls

Lm

sn,k
≫ ωn,k

(

Lls +

(

1 +
Lls

Lm

)

Llr

)

(9.3b)
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Equation (9.1) can then be approximated as:

T
(3)
net,n,k ∼ RSC

((

1 + Lls

Lm

)

RSC

sn,k

)2

∼ 1

RSC

∼
{

σSC if tδ > tSC√
σSC if tδ < tSC

(9.4)

Taking into account that, in this study, the point at whichtδ = tSC is situated after

the area in which
∣

∣

∣
T
(3)
net

∣

∣

∣
increases, the above confirms the linear behavior at low

σSC in Figure 9.7.
At high σSC ,RSC will be low and thus:

RSC

1 + Lls

Lm

sn,k
≪ R (9.5)

Which implies that (9.1) can be approximated as:

T
(3)
net,n,k ∼ RSC

R2 + ω2
n,k

(

Lls +
(

1 + Lls

Lm

)

Llr

)2

∼ RSC

∼















1

σSC
if tδ > tSC

1√
σSC

if tδ < tSC

(9.6)

This shows that, at highσSC , |T (3)
net| will decrease proportionally to1

σSC
until tδ =

tSC after which
∣

∣

∣T
(3)
net

∣

∣

∣ becomes proportional to 1√
σSC

. This is also confirmed by

Figure 9.7, where it should be noted that the conductivity for whichtδ = tSC is
located in the transition area between an increasing and a decreasingT

(3)
net. This

implies that, in this parameter study, only the decrease proportional to1√
σSC

is

visible. A final remark is that the maximum of
∣

∣

∣
T
(3)
net

∣

∣

∣
depends on the ratio between

the resistances and the inductances and thus on the entire machine geometry.
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Figure 9.7: Net torque in the SC as a function ofσSC , detail of Figure 9.4

Torque ripple

In Figure 9.8, the percentage torque ripple, as defined in (7.11) and (7.15b), is
shown as a function ofσSC .
It can be seen that there is a shift of the ripple fromT (2) to T (3) whenσSC is
increased. This is explained by a stronger shielding effect. Note that the small
increase at very lowσSC is due to a stronger decrease ofTnet than ofT (2)’s ripple.
The total torque ripple is almost constant. The small variation of∆T% is due to the
variation ofTnet(σSC). This is confirmed by Figure 9.9, which shows an evolution
that is inverse to the evolution ofTnet(σSC).

∆T
(2)
% (σSC) shows an evolution that is similar to the evolution ofT

(2)
net(σSC), but

its maximum is shifted towards a lower value ofσSC . The latter is due to the initial
increase ofTnet(σSC).

Overall, the evolution of∆T (3)
% (σSC) is as expected. The increase ofσSC implies

a better shielding effect which, in turn, translates in an increasing torque ripple.
The increase stagnates whentδ becomes smaller thantSC , because at that moment
the SC already blocks most of the asynchronous content.
Finally, it should be noted that the sum of∆T

(2)
% and∆T (3)

% does not equal∆T%.

This implies a time(∆t) shift betweenT (2) andT (3), as illustrated in Figure 9.10.
The reason for∆t is the different nature ofT (2) andT (3). T (2) will reach a max-
imum depending on the alignment of the magnets and the stator teeth, whileT (3)

reaches a maximum depending on the rate at which the magnetic field changes.
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Figure 9.8: Torque ripple and its components as a function ofσSC
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Conclusion

This first parameter study highlighted a number of interesting observations.Firstly,
studying the net torque as a function ofσSC showed that the torque in the SC in-
deed has the same characteristics as the torque in an induction machine. It was also
shown that, unlike expected,T (2) does exhibit a dependency ofσSC . Although this
dependency might be considered negligible, it did lead to another interestingob-
servation; via the slotting effect, the presence of a SC affects the magnetic field’s
synchronous components. In addition, study of the torque ripple learnedthat, al-
though there is a shift of torque ripple from the magnets to the SC, the total torque
ripple is almost constant. Moreover, Figure 9.10 showed that there is a time-shift
between the torque in the magnets and the torque in the shielding cylinder. Fi-
nally, all of the above shows that there is a clear benefit to divide the torque in its
components.

9.2.2 Torque as a function of the SC’s thickness

In this study, the effect of the shielding cylinder’s thickness(tSC = r3− r2) on the
torque is analyzed. This is done by varyingr3 while r2 is kept constant. To ensure
a comparison that is as fair as possible, all of the other distances are keptconstant.
This implies thatr1 is constant while the variation ofr4, r5 andr6 is equal to the
variation ofr2. None of the other parameters, listed in Table 9.1, are changed.
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Net torque

The expectation is that the net torque will decrease when the thickness of the shield-
ing cylinder is increased. Indeed, the net torque level is proportional tothe average
magnetic flux density, which, in turn, is inversely proportional to the thickness of
the effective air gap(tAG,eff ). Obviously,tAG,eff , which is determined by all the
non-magnetic material between the stator and rotor iron, is affected when changing
tSC . The above would imply that the evolution ofTnet as a function oftSC can be
predicted when the torque at a reference thickness is known:

Tnet(tSC) = Tnet(tSC,ref )
tAG,eff,ref (tSC,ref )

tAG,eff (tSC)
(9.7)

Note thattAG,eff is not simply proportional totSC . The slotting effect has to be
taken into account. This can be done using Carter’s factor(kc):

kc =
1

1− τc
Nsδ
2π

(9.8)

with:

τc =
2

π



arctan
ws

2tAG
− 2tAG

ws
ln

√

1 +

(

ws

2tAG

)2


 (9.9)

wheretAG is the combined thickness of the magnets, the SC and the air gap(tAG =
r4 − r1) andws is the width of the slots at the border with the air gap(ws = δr4).
The thickness of the effective air gap can now be calculated as:

tAG,eff = kctAG (9.10)

The expectation is thus that the evolution ofTnet(tSC) may be predicted using
(9.7), wheretAG,eff is calculated as in (9.10). In Figure 9.11 Carter’s torque pre-
diction, where the torque attSC = 0 was chosen as a reference, is depicted with a
black line. The analytically calculated torque is indicated with blue dots.
It can be seen that there is a large deviation between Carter’s torque prediction and
the actual torque. The reason is that the prediction is not taking into account the
torque production in the shielding cylinder. This can easily be validated by ana-
lyzing the torque components, as shown in Figure 9.12. An important observation
is that (9.7) is now successfully used to predictT

(2)
net while T (3)

net accounts for the

difference betweenTnet andT (2)
net.

Two effects determine the evolution ofT (3)
net(tSC). First, an increasingtSC results

in a decrease of the SC’s resistance, which in turn leads to higher eddy currents
and thus a larger importance ofT (3)

net. Evidently, this effect will stagnate when

tSC > δdom. On the other hand,T (3)
net also suffers from a larger effective air gap,

which implies a decreasing importance ofT
(3)
net when increasingtSC .
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Figure 9.11: Comparison of the actual torque and its prediction by Carter
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Figure 9.12: Evolution of torque and its components as a function oftSC
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Torque ripple

In Figure 9.13, the ratio of the torque ripple with respect toTnet is shown for the
overall torque and its components. Initially, there is a minor increase of∆T

(2)
% .

This is becauseTnet decreases faster thanT (2)’s ripple. After this small increase,
the effect of the SC is clearly illustrated; the amount of ripple inT (2) strongly
decreases because of a higher shielding effect and a larger effective air gap.
The evolution of∆T (3)

% (tSC) is similar to the evolution ofT (3)
net(tSC). However,

the thickness related to its maximum may be different, depending on the evolution
of Tnet(tSC).
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Figure 9.13: Evolution of the torque ripple as a function oftSC

Conclusion

Studying the torque at various thicknesses of the shielding cylinder has again illus-
trated that considering the torque components helps to get a better understanding
of the machine’s physics. For the net torque level for example, it was shown that
T (2) evolves in accordance with Carter’s factor, as expected from a classical syn-
chronous machine. This is not true forT (3), which explains why the evolution of
T does not meet the initial expectations.
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9.2.3 Eddy-current losses as a function of the SC’s conductivity

For this study, the conductivity of the shielding cylinder is again varied between 0
and108 S

m. However, instead of studying the torque, the eddy-current losses in the
machine are analyzed. The result is shown in Figure 9.14.
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Figure 9.14: Evolution of the eddy-current losses in function ofσSC

The eddy-current losses in the shielding cylinder, which are proportional to J2
SC

and inversely proportional toσSC , demonstrate a strong initial increase as the eddy
currents in the shielding cylinder increase. However, once the penetration depth of
the dominant asynchronous harmonics becomes smaller than the thickness ofthe
shielding cylinder, i.e.σSC > σδ, the increase of the eddy currents stagnates. The
continued increase ofσSC will then result in a decrease of the eddy-current losses.
As the conductivity of the shielding cylinder already exceedsσδ, that decrease is
inversely proportional to the square root ofσSC .
Figure 9.14 also illustrates that the shielding cylinder effectively shields the mag-
nets;P (2)

ec strongly decreases ifσSC is increased. However, this decrease is com-
pletely countered by a much stronger increase ofP

(3)
ec . This means that, at least

under sinusoidal stator currents, the losses in the magnets are so low that their
reduction doesn’t compensate for the additional losses in the shielding cylinder.

9.2.4 Eddy-current losses as a function of the SC’s thickness

The last parameter study with a sinusoidal current considers the eddy-current losses
as a functiontSC . The results are presented in Figure 9.15.
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Figure 9.15: Evolution of the eddy-current losses in function oftSC

Similar to varyingσSC , the losses in the shielding cylinder show an initial increase
due to higher eddy-currents. However, they start decreasing before the thickness of
the shielding cylinder equals the penetration depth of the dominant asynchronous
combinations, i.e.tSC = tδ. The reason is that, in addition to the reduced resis-
tance of the shielding cylinder, increasing the effective air gap reducesthe eddy-
current losses. Indeed, as the air gap grows, the effect of asynchronous harmonic
combinations that are related to the slotting effect decreases.

9.2.5 Conclusion

In this section, the torque and the eddy currents were evaluated while imposing
a sinusoidal current. This led to a number of interesting observations. First of
all, dividing the torque in its components has proven very useful to gain insight in
PMSMs with a SC. It has, for example, confirmed that the torque productionin the
SC is similar to that in an induction machine. It also enabled observing a relation
betweenσSC and the net torque in the magnets. This was unexpected, as it implies
that the synchronous harmonic combinations depend on the shielding cylinder’s
conductivity. Another interesting observation is that, when the importance ofhar-
monic combinations with a high time-harmonic order is small, adding a SC may
increase the machine’s eddy-current losses instead of decreasing them.
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9.3 Ideal BLDC current

In this section, the sinusoidal current is replaced by a trapezoidal current, i.e. the
idealized current of a brushless DC control. To reduce excessive voltage peaks,
slopes of10° electric are foreseen. In order to obtain the same RMS value as in
Section 9.2, the peak value of the applied current is set to 66.56 A. Figure 9.16
shows the current in phase A during one mechanical period.
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Figure 9.16: Current in phase A

Figure 9.17 shows a harmonic map of the magnetic flux density in the center of the
air gap. Just like for the sinusoidal current, the dominant asynchronous harmonic
combinations are(2,−10) and(2, 14). However, the harmonic content of higher
time-harmonic orders is considerably larger. Especially combinations(10,−2) and
(14, 2), which are indicated in red, are important.
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Figure 9.17: Harmonic map of|B| in the center of the air gap when an ide-
alized BLDC current is applied

9.3.1 Torque as a function of the SC’s conductivity

Except for the trapezoidal stator current, this parameter study is identicalto the one
in Section 9.2.1.

Net torque

The net torques, as plotted in Figure 9.18, show a very similar course as when
the machine is excited with a sinusoidal current. However, Figure 9.19 shows
T
(2)
net separately, demonstrating an initial increase before decreasing. The course

of T (2)
net can be explained in a similar way as when a sinusoidal current is applied.

However, nowT (2)
|2,−2| andT (2)

|14,−14| are the two most important torque harmonics.

Moreover, at very low conductivities(σSC < 6.105), the variation ofT (2)
|14,−14|

dominates that ofT (2)
|2,−2|. As T (2)

|14,−14| increases at these low conductivities, so

doesT (2)
net. This is illustrated in Figure 9.20.

Note that, as the current does not contain any6th harmonics,T (2)
|6,−6| remains

unchanged with respect to Section 9.2.
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Figure 9.19: Torque in the magnets as a function ofσSC , detail of Figure
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Figure 9.20: Harmonic study of the net torque in the magnets, the compo-
nent ofB that changes more quickly is highlighted
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Torque ripple

As can be seen in Figure 9.21, the evolution of the torque ripple does show sig-
nificant differences with that of the sinusoidal current in Figure 9.8. This is of
course due to a more important presence of asynchronous harmonic combinations
in the field. The evolution of∆T (2)

% , for example, shows an initial decrease until
σSC = 6.105 S

m. After this local minimum, the torque ripple briefly increases be-
fore it steadily decreases again. A detail of this behavior is shown in Figure 9.22.
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Figure 9.21: Torque ripple as a function ofσSC

The reason for∆T (2)
% ’s initial decrease is that some of the asynchronous combi-

nations with higher time-harmonic order, e.g.(10,−2) and (14, 2), are already
greatly shielded whenσSC = 6.105 S

m. This is earlier than expected; according to
(7.1), the conductivity at which the penetration depth of(10,−2) and(14, 2) equals
tSC is 1.88.107 S

m, as illustrated by theσSC = σδ line in Figure 9.22. However,
Figure 9.28 in Section 9.3.3 indeed confirms this much lower penetration depth.
Note that the quick shielding of combinations(10,−2) and(14, 2) also explains

the very steep initial increase of∆T (3)
% .

The brief increase that follows is mainly due to the evolution ofB|6,−6|. Although
this component of the flux density gets shielded more effectively at higherσSC ,
initially its decrease is entirely due to the decrease of its radial component. At
low σSC , its angular component increases. Moreover, proportionally, this increase
is larger than the decrease of the radial component. The result is an increasing
∆T

(2)
% .
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Once the SC’s conductivity exceeds the point at which the penetration depth of
(6,−6) equalstSC , the angular component starts decreasing as well. Note that, as
already mentioned, the behavior of this asynchronous combination propagates to
the synchronous combination with the same time-harmonic order, i.e.(6, 6). The
above described evolution can therefore, indirectly, be observed in Figure 9.6.
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Figure 9.22: Torque ripple in the magnets as a function ofσSC , detail of
Figure 9.21

Conclusion

First of all, the above parameter study proved that accounting for highertime-
harmonic orders is important. Although their effect on the net torque is limited,
the torque ripple is definitely affected. Another important note is that harmonic
combinations with a higher time-harmonic order have a much smaller penetration
depth than originally expected.

9.3.2 Torque as a function of the SC’s thickness

As in Section 9.2.2, in this study the conductivity is kept constant at4.83.107 S
m

while varyingtSC between 0 and 5 mm.



9.3 Ideal BLDC current 171

Net torque

As shown in Figure 9.23, the evolution of the net torque is entirely similar to that in
Section 9.2.2.T (2)

net is again accurately predicted using Carter’s factor, whileT
(3)
net

accounts for the deviation between Carter’s prediction andTnet.
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Figure 9.23: Torque as a function oftSC

Torque ripple

The torque ripples as a function oftSC are shown in Figure 9.24. These ripples are
subject to the same mechanisms as in the Section 9.3.1. The shielding of harmonic
combinations(10,−2) and(14, 2) at tSC = 0.01 mm explains the initial decrease

of ∆T (2)
% and the very steep increase of∆T

(3)
% . ∆T

(2)
% then increases again until

(6,−6) is effectively shielded.
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Figure 9.24: Torque ripple as a function oftSC
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9.3.3 Eddy-current losses as a function of the SC’s conductivity

The eddy-current losses are plotted as a function ofσSC in Figure 9.26. It
can readily be seen that the losses in the magnets are much larger than when a
sinusoidal current is applied, as in Figure 9.14. This indicates that the effect of
harmonic combinations with higher time-harmonic orders is large. However, those
losses quickly reduce if the conductivity of the SC is increased. Indeed,as already
discussed in Section 9.3.1, the penetration depth of those harmonic combinations
is very small.
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Figure 9.26: Eddy-current losses as a function ofσSC

Figure 9.27 shows a zoom ofP (3)
ec (σSC). One can see thatP (3)

ec (σSC) has a
much more capricious course than when a sinusoidal current is applied, reaching
two local maxima before finally decreasing steadily. To explain this behavior,
the harmonic content ofP (3)

ec has been evaluated. As shown in Figure 9.28(a),
it was found that the combined effect ofP (3)

|2,−2|, P
(3)
|10,−10|, P

(3)
|14,−14|, P

(3)
|22,−22|

andP (3)
|26,−26| determines the course ofP (3)

ec (σSC). As long asσSC < 5.105 S
m,

the increase ofP (3)
|2,−2|, P

(3)
|10,−10| andP (3)

|14,−14| dominates, even asP (3)
|22,−22| and

P
(3)
|26,−26| start descending. It is only afterP (3)

|10,−10| andP (3)
|14,−14| have reached a

maximum that the continued increase ofP
(3)
|2,−2| is, temporary, overruled. AsσSC

exceeds1.6.106 S
m, the increase ofP (3)

|2,−2| will again dominate the evolution of

P
(3)
ec . Resulting in an increase ofP (3)

ec . P (3)
ec only starts to decrease again after
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Figure 9.27: Eddy-current losses in the shielding cylinder as a functionof
σSC , detail of Figure 9.26

1.3.107 S
m, i.e. whenP (3)

|2,−2| decreases again.
An explanation for the evolution of the eddy-current harmonics is to be found
in the evolution of their corresponding electric field,E(r3), and angular flux
density,Bφ(r3), components, see (7.22). For each eddy-current loss harmonic,
the dominant harmonic combination ofE(r3) andBφ(r3) is sketched in Figures
9.28(b)-9.29(k). These figures also indicate which of both(E(r3) or Bφ(r3))
dominates the evolution of the corresponding torque harmonic.
Finally, Figures 9.28(b)-9.29(k) also show the conductivity at which the pen-
etration depth of the considered harmonic combination equals the thickness
of the shielding cylinder according to (7.1) and the conductivity at which the
corresponding power harmonic reaches its maximum. These conductivities are
indicated asσδ andσn respectively, wheren is the time-harmonic order of the
considered harmonic combination. The above illustrates what was found earlier
in Section 9.3.1; the penetration depth of asynchronous combinations with higher
time-harmonic orders cannot be predicted using (7.1).
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Figure 9.28: Harmonic study ofT (2)
net(σSC)
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Figure 9.28: Harmonic study ofT (2)
net(σSC)
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9.3.4 Eddy-current losses as a function of the SC’s thickness

The last parameter study with the idealized BLDC current analyzes the eddy-
current loss as a function oftSC . The results, shown in Figure 9.29, are similar
to the results from the previous section. The same harmonic combinations deter-
mine the evolution ofP (3)

ec , which is shown in more detail in Figure 9.30. However,
in addition to the shielding effect, now the variation of the effective air gap plays
an important role as well.
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Figure 9.29: Eddy-current losses as a function oftSC

9.3.5 Conclusion

As a conclusion of the parameter studies in which an idealized BLDC currentis
imposed, it can be stated that accounting for higher harmonics in the currents is
very important. Indeed, both the torque ripple and the eddy-current losses exhibit
significant differences with respect to the parameter studies of Section 9.2. In addi-
tion, it was found that the penetration depth of harmonic combinations with higher
time-harmonic orders cannot be predicted accurately using (7.1). This section also
presented an interesting discussion on the evolution of the eddy-currentlosses in
the SC as a function ofσSC . Especially Figure 9.28 provides a lot of insight in
howP (3)

ec evolves.
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Figure 9.30: Eddy-current losses in the shielding cylinder as a functionof
tSC , detail of Figure 9.29

9.4 BLDC voltage

In the final set of parameter studies, a pulse-amplitude modulated BLDC voltage,
i.e. voltage blocks of120° electrical, are imposed. The peak value (52.65 V) and
time shift of these blocks are chosen so that the resulting current density aligns with
the back EMF and has a RMS value of5.106 A

m2 when the machine’s parameters
are as in Figure 9.1 and Table 9.1. The phase voltage is shown in Figure 9.31(a). As
indicated, the first switch occurs at39.71°. The current, resulting from the imposed
voltage is shown in Figure 9.31(b). It can readily be seen that the harmoniccontent
of this current is much less dominant than that of the trapezoidal current inSection
9.3.
Figure 9.32 shows a harmonic map of the magnetic flux density in the center of the
air gap.
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Figure 9.31: Current and voltage of phase A
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voltage is applied
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9.4.1 Torque as a function of the SC’s conductivity

This parameter study is a repetition of the studies that were performed in Sections
9.2.1 and 9.3.1, but now the voltage of Figure 9.31(a) is imposed.

Net torque

One can see from 9.33 that the net torque in the magnets behaves differently than
in Sections 9.2.1 and 9.3.1. As shown in more detail in Figure 9.34,T

(2)
net now

changes more drastically and increases instead of decreasing.
The reason is that, in addition to the indirect effect of the SC on the synchronous
harmonic combinations, the SC’s conductivity also affects the current through the
windings. Indeed, it has an effect on the machine’s inductance. As the voltage
is now fixed, varyingσSC implies changing the current. Evidently, this affects
the torque in the magnets as well. The evolution of the RMS value of the current
density in phase A is shown in Figure 9.35. Note that the effect of the dominant
harmonic combination’s penetration depth can clearly be seen.
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Torque ripple

Figure 9.36 shows the evolution of the torque ripples as a function of the SC’s
conductivity. It is clear that the evolution is very similar to that of the parameter
study in which the idealized BLDC current is imposed. However, as illustratedin
Figure 9.37,∆T (2)

% reaches its minimum at a different conductivity, i.e.16 · 105
S
m instead of6 · 105 S

m. This is, amongst others, due to the changing of the current
waveform at different conductivities, which in turn affects the relativeimportance
of different harmonic combinations.
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9.4.2 Eddy-current losses as a function of the SC’s conductivity

Figure 9.38 shows the evolution of the eddy current losses as a function of σSC .
It can be seen that the lower harmonic content of the current, when compared to
the idealized BLDC current, results in much lower losses in the magnets. The
evolution of the different loss components is similar, but less pronounced,to the
evolutions found in Section 9.3.3.

9.4.3 Conclusion

This last set of parameter studies has again demonstrated a number of interesting
aspects of high-speed PMSMs.
First of all, it was found that the conductivity of the shielding cylinder affects the
inductance of the machine, and therefore its current as well. That is also the reason
why in this section no parameter study oftSC has been performed; varyingtSC
has an even larger effect on the machine’s inductance. The results obtained from
such a study would therefore be mainly determined by the variations in the current
instead of by the actual thickness of the shielding cylinder.
Secondly, the importance of the current’s time-harmonic content has been illus-
trated by the much lower losses in the magnets when compared to the study with
the idealized BLDC current.
Finally, this section showed that it is indeed interesting to be able to impose the
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Figure 9.38: Eddy-current losses as a function ofσSC

voltage instead of a fixed current waveform. Indeed, the parameter variations have
an effect on the current.

9.5 Conclusion

In the above chapter, the effect of the shielding cylinder’s conductivityand thick-
ness on the torque and the eddy-current losses has been studied for various source
terms. During these studies, a great number of interesting observations was made.
The following lists the most important findings of this chapter in three categories.
A first set of important observations relates to the division of the torque in acom-
ponent related to the magnets and a component related to the shielding cylinder. It
was found such a division is indeed interesting. This is probably best illustrated by
Figures 9.12 and 9.23, where it provides an explanation for the fact thatthe total
torque cannot be predicted using Carter’s factor.
The division of the torque has also allowed to observe that the torque in the shield-
ing cylinder has the same characteristics as the torque in an induction machine,as
shown in a.o. Figure 9.7. This validates the hypothesis that the torque produced
in the SC is due to interaction with asynchronous harmonic combinations in the
magnetic field.
Another finding related to the torque in the magnets and the torque in the SC is that
their ripples are shifted in time with respect to each other, as illustrated in Figure
9.10. This could indeed have been expected as the phenomena that causethese
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ripples, i.e. alignment with the rotor and variation of the magnetic field, do not
necessarily synchronize in time.
Finally, it was observed that, unlike expected, the torque in the magnets depends on
the SC’s conductivity, as shown in Figure 9.5. By studying the harmonic content of
the machine, as in Figure 9.6, it was found that variations in the asynchronous con-
tent of the machine propagate to the synchronous harmonic combinations through
the slotting effect.
The second set of noteworthy observations relates to the presence of higher time-
harmonic orders. As can clearly be seen from the differences betweenfor example
Figures 9.14, 9.26 and 9.38, accounting for higher time-harmonic orders inthe cur-
rent or voltage signal may be very important. Especially when studying the torque
ripple or the eddy-current losses.
Another interesting finding is that the penetration depth of harmonic combinations
with higher time-harmonic orders is much smaller than expected. This has been
illustrated in Figure 9.28. Predicting the actual penetration depth proofs to bea
complicated problem and is not really in the scope of this work. It was therefore
not considered here.
The last set of interesting observation relates to the Fourier-based modelitself.
First of all it should be noted that the FB model has really proven its value in an-
alyzing electric machines. One good illustration of that is the harmonic study of
Figure 9.28.
The differences between the results in Sections 9.2-9.4 clearly illustrate thatim-
posing the correct source term to the FB model is paramount. It is for example not
satisfactory to assume an idealized current waveform, as illustrated by the depen-
dency of the current on the SC’s conductivity, shown in Figure 9.35.
Although it remains difficult to extrapolate the above findings quantitatively to
other machines, the results do provide a better understanding of high-speed SM
PMSMs.



Chapter 10

Concluding remarks

The following chapter concludes this dissertation by listing its most important as-
pects. This is done based on the goals that were set in the introduction.
This chapter also provides insights in what the possibilities for future research are.
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10.1 Conclusion

In Section 1.4, two major goals were set for this PhD. The first goal was to con-
tribute to a faster, more flexible and more accurate calculation of the magnetic
field in electric machines. The second goal was to provide more insight in surface-
mounted permanent-magnet synchronous machines with a shielding cylinder.

As motivated in Chapter 1, Fourier-based analytical models were chosen to
tackle both of the above-mentioned goals. As this work has been the first atGhent
University to elaborate on the technique of Fourier-based analytical modeling, it
was opted to start the dissertation with a thorough discussion on its basics. This was
done by sketching the physical background of Fourier-based modelingin Chapter
2 and by discussing its implementation in Chapter 3. Both of these chapters are
formulated in a very general way. They can therefore be used as the basis for stud-
ies on a much broader set of electric machines than the SM PMSMs considered in
this work.
In addition to Chapters 2 and 3, an extensive overview of the possibilities ofFB
models is provided in Chapter 4. More specifically, the choosing of a magneticpo-
tential and a spatial coordinate system, the way in which time dependency, source
terms, the slotting effect and eccentricity are accounted for and the computation of
electromagnetic quantities is discussed. This discussion is coupled to the existing
literature on Fourier-based modeling. As a result, Chapter 4 can be used as an
overview for anyone who wants to use, or study, FB modeling.

Based on the previous, the first actual goal was met in Chapters 5 and 6;con-
tributing to the technique of Fourier-based modeling.
Chapter 5 focused on reducing the computational time of FB models. This was
achieved by simplifying the machine’s geometry and by using preliminary knowl-
edge on the harmonic content of electric machines. The latter is especially inter-
esting as it can reduce the computational time by more than99% without affecting
the accuracy of the model.
Chapter 6, focused on increasing the flexibility and accuracy of FB modelsby cou-
pling the magnetic calculations of the FB model to the classical equation for the
terminal voltage of an electric machine. The resulting model can account forvolt-
age sources, as opposed to the current-density sources in traditional FB models.
This is, for example, interesting in optimization procedures of voltage-fed systems
or if the effect of PWM voltages on the machine’s performance has to be evaluated.

The second goal, i.e. providing more insight in the physics of high-speed
PMSMs, has been tackled in Chapters 7-9.
Chapter 7 introduced the calculation of electromagnetic properties, based on the
results from the FB model. Its major contribution is that it proposes a division
of the torque in two components; one related to the magnets and an other to the
shielding cylinder. This division has proven to be very useful to gain moreinsight
in SM PMSMs with a SC.
In Chapter 8, an experimental setup for high-speed PMSMs was introduced. Al-
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though the majority of the work on that setup is not in the scope of this dissertation,
it was used to validate some of the calculation that have been performed in previ-
ous Chapters.
Finally, Chapter 9 evaluates the effect of the SC’s design on the torque and the
eddy-current losses in SM PMSMs with the help of various parameter studies.
This has resulted in a number of interesting insights in the high-speed operation
of PMSMs. Apart from confirming the usefulness of dividing the torque inits
components, it was found that, unlike expected, the SC does affect the machine’s
synchronous harmonic content. Another interesting finding is that whetheror not
a SC reduces the eddy-current losses greatly depends on the harmoniccontent of
the applied current.

10.2 Recommendations for future research

Although this work provides quite some research on Fourier-based modeling and
high-speed machines, there are a number of aspects that have not beenconsidered
and would be interesting for future research.

A first interesting idea concerns the application of the FB models that were
presented in this PhD. These models have a lot of potential in optimization pro-
cedures. Especially because the models with a voltage source can, relatively easy,
be coupled to models of power electronic systems. This would allow to consider
the entire electric drive and its control algorithm. Something that is especially
interesting because of the increasing popularity of integrated drives.

A second idea relates to the slotting effect and the eddy-current reactionfield
of the magnets. As mentioned in Chapter 4, Dubas [69] and Spranger [99]have
recently developed techniques to account for the slotting effect without the need to
assume an infinite permeability of the stator yoke. As these techniques also allow
to calculate the magnetic potential in the stator yoke, their implementation would
allow to calculate additional electromagnetic quantities such as the stator’s iron
losses. The same techniques could be applied to consider the eddy-current reaction
field of the magnets. This would further improve the accuracy of the model.
Moreover, during this PhD an effort to formulate an alternative for Dubas’ super-
position technique and Spranger’s technique of variable permeabilities hasbeen
made. Although that effort did not yet result in a working model, the investigated
technique is promising. Especially because it is expected to be more computa-
tionally efficient than the superposition technique and less sensitive to Gibb’s phe-
nomenon than the technique of variable permeabilities. The development of this
technique is thus definitely an interesting idea for future research.

Thirdly, there is still a lot of research that can be conducted on the shielding
cylinder. One example is a more detailed study on the penetration depth of har-
monic combinations with higher time-harmonic orders. Other possibilities are an
evaluation of its effect on other electromagnetic quantities, such as the iron losses
in the stator yoke.
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Finally, it would be interesting to extend the study of this PhD to other machine
types. It would, for example, be interesting to evaluate the effect of the shielding
cylinder in machines with fractional-slot concentrated windings. Although these
machines often rotate at lower speeds, their harmonic content is typically much
larger. Another possibility is studying solid-rotor induction machines.



Appendix A

Star of slots

The so-called star-of-slots (SoS) is a technique that is used to assign the phases
of the applied current system to the slots of an electrical machine. It is described
by a large number of authors [141, 151, 152] and can be used for bothintegral
and fractional slot windings. N. Bianchiet al. have extended the technique to
determine the winding layout of single layer [151] and multilayer [152] topologies.
An extensive description of the SoS technique is beyond the scope of this appendix.
However, an understanding of the SoS’s basics is required for the discussion in
Appendix B. Therefore, this appendix briefly introduces the technique inSection
A.1. In Section A.2 the concept of slot groups is introduced, the results ofthat
discussion will be used in Appendix B.
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A.1 Star of slots

The star of slots technique consists of four steps, each of which will briefly be
explained in the following.
In a first step, the machine’s periodicity (τ ) is calculated as the greatest common
divisor of the number of slots and the number of pole pairs:

τ = gcd(Ns, p) (A.1)

Secondly, a system ofNs

τ
phasors, called spokes, with a mutual shift ofp 2π

Ns
radians

is drawn. This is illustrated in Figure A.1 for a machine with 12 slots and 5 pole
pairs(τ = 1). Every spoke now corresponds to a slot in the electrical machine.
Logically, the spoke with numberi corresponds to the slot with numberi.
The third step is drawing the phase zones. Every phase is assigned two zones, a
positive zone and a negative zone. Each phase zone spansπ

m
radians. The shift

between two phase zones equals the shift between their corresponding phases, as
illustrated in Figure A.1 for a three-phase system. Consequently the time shift be-
tween the currents linked to the phases of subsequent phase zones is1

ωe

π
m

seconds.
The resulting diagram defines one conductor of each coil by linking the spokes,
and thereby the slots, to the phases of the applied current system. The slotcorre-
sponding to the other conductor of the same coil is determined by the coil throw,
which is calculated as:

yq = round

(

Ns

2p

)

(A.2)

The obtained distribution is repeated afterNs

τ
slots.

The winding distribution obtained from the star-of-slots in Figure A.1 is shownin
Figure A.2.
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Figure A.1: Star of slots for a machine withNs = 12 andp = 5
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Figure A.2: Winding distribution of a machine withNs = 12 andp = 5

A.2 Slot groups

In this section the term slot group is introduced as a number of subsequentslots so
that, under synchronous operation, the mechanical shift between two slot groups
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equals the time shift of their corresponding current densities. In other words, the
time the rotor needs to rotate from one slot group to the next equals the time shift
of the current densities related to those slot groups.
For simplicity reasons the slot groups are chosen so that each group is dominated
by one phase, this is illustrated in Figure A.3.
In the following the mechanical shift and the time shift of subsequent slot groups
are calculated to prove that they indeed correspond.

phases
A
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C

group 1

group 3

2π
m

(a) Machine withNs

τ
odd

group 1

group 3

group 4

group 5 group 6

2π
2m

(b) Machine withNs

τ
even

Figure A.3: Slot groups

A.2.1 Mechanical shift

First, the mechanical shift is regarded. If the number of slots per machine period
is odd, every phase will dominate one slot group per machine period. Indeed,
every phase should dominate an equal number of similar slot groups, otherwise the
winding distribution can never be balanced. A phase dominating more than one
slot group, on the other hand, would imply two coinciding spokes in the star of
slots. This in turn would imply that all of the following spokes also coincide with
another spoke, this can only happen if these spokes belong to another machine
period. Therefore a machine withNs

τ
odd containsmτ slot groups. The number of

slots per slot group(Ng) can then be calculated as:

Ng =
Ns

mτ
(A.3)

If Ns

τ
is even, spokei+Ns

2τ will be opposite to spokei. Indeed, the rotation between
these spokes is:

Ns

2τ
p
2π

Ns
=
p

τ
π (A.4)
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SinceNs

τ
is even andτ is the greatest common divider ofNs andp, p

τ
has to be

odd. This means that spokesi andi+ Ns

2τ are indeed opposite.
Because of the fact that this is true for every spoke, every phase will dominate two
similar groups of slots per machine period. One due to the spokes in its positive
phase zone and one due to the spokes in its negative phase zone, this canbe seen in
Figure A.3(a). This implies that the number of slot groups is now2mτ , the number
of slots in every slot group is then:

Ng =
Ns

2mτ
(A.5)

The mechanical shift between similar slots of subsequent slot groups cannow be
calculated as:

Ns

υmτ

2π

Ns
=

2π

υmτ
(A.6)

with υ = 1 if Ns

τ
is odd andυ = 2 is Ns

τ
is even.

The mechanical shift, found in (A.6), translates to a time shift when divided by the
synchronous pulsation:

1

ω

2π

υmτ
=

Tt

υmτ
(A.7)

A.2.2 Time shift

Secondly, the time shift between subsequent slot groups will be computed.In the
SoS, the angle between two subsequent slots isp 2π

Ns
electrical radians. This implies

that in the SoS the angle between similar slots of subsequent slot groups is:

Ns

υmτ
p
2π

Ns
= p

2π

υmτ
(A.8)

As shown in the above, the SoS consists of2m phase zones with a mutual shift
of π

m
radians. Knowing this, the number of phase zones between similar slots of

subsequent slot groups can be calculated as:

p 2π
υmτ
π
m

=
2p

υτ
(A.9)

The time shift between currents linked to consecutive phase zones in the SoS is π
m

electrical radians. Consequently the shift in electrical radians between the currents
linked to similar slots of subsequent slot groups is:

2p

υτ

π

m
(A.10)

Which results in a time shift when divided by the electrical pulsation:

2p
π

υmτ

1

pω
=

Tt

υmτ
(A.11)
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This indeed equals (A.7).
Practically this implies that the rotor will experience the same current density after
Tt

mτ
or Tt

2mτ
seconds, depending on whetherNs

τ
is odd or even. From the stator point

of view it means that afterTt

mτ
or Tt

2mτ
seconds the armature reaction field will be

identical but shifted over2π
mτ

or π
mτ

mechanical radians respectively.
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Harmonic content of PMSMs

In Section 5.3, the computational time of Fourier-based models was reduced with
the help of preliminary knowledge of the studied machine’s harmonic content. Al-
though the harmonic content of electric machines is a topic that has extensively
been studied ever since such machines were first used, literature lacks acomplete
discussion of the harmonic content of synchronous machines. To be applicable for
Section 5.3, such a discussion should account for higher time-harmonic orders and
for every winding configuration that can be obtained with the star of slots. In the
scope of this PhD a paper on harmonic content was published [139]. That study
will be repeated here to support the work in Section 5.3. Note that an overview of
the existing literature can be found in [139].
Section B.1 discusses the different sources of harmonic content. Basedon that
discussion, Section B.2 presents simple rules on which harmonic combinations are
present in no-load, armature-reaction and load conditions.
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B.1 Sources of harmonic content

A harmonic combination(n, k) can only be present in an electric machine if it is
either introduced by the source terms or the machine’s geometry. Both aspects are
considered in this section.
Note that the following discussion is limited to unsaturated PMSMs that are syn-
chronously operated, but can easily be broadened to other machine types and oper-
ation modes.

B.1.1 Permanent magnets

The magnets are a source of magnetic flux. They can, however, only introduce
components of the magnetic field with a harmonic combination that is present in
B0. For that reason it is important to understand which harmonic combinations are
available in the distribution of the remanent magnetic flux density.
First of all, as already mentioned in Section 3.3.3, the synchronous rotation of the
magnets implies that they can only introduce synchronous harmonic combinations,
i.e. combinations for whichn = k.
Secondly, as can be seen in Figure 3.6, the magnet distribution containsp identical
parts along theφ-direction. These repetitions imply that the spatial period in theφ-
direction isp times smaller than the mechanical spatial period. This smaller period
is referred to as the fundamental spatial period and it equals2π

p
mechanical radians.

To comply with the fundamental spatial period,B0 can only contain harmonic or-
ders that are a multiple ofp. Note that this demand requiresp identical repetitions
of the magnet distribution. If for example one of the magnets is demagnetised, itis
no longer valid.
Finally, in most machines the spatial distribution of the remanent magnetic flux
density is symmetrical in theφ-direction over half a fundamental period. This
symmetry can only be maintained if, when referred to the fundamental spatial pe-
riod, there are no even harmonic orders, i.ek

p
is odd. Indeed, as illustrated in Figure

B.1, even harmonic orders do not show symmetry with respect to the middle of half
a period. Note that the demand for odd spatial-harmonic orders is common butnot
absolute, one could build a machine with asymmetrical magnets.
As a conclusion it can be stated that the magnets will only introduce time-harmonic
orders,n, whereforen ∈ hm. With hm the set of time-harmonic orders for which
B0,n,k 6= 0. In a healthy machinehm will only contain multiples ofp. Due to the
assumption of synchronous operation, the magnets will only introduce harmonic
combinations for whichn = k. If the magnets are symmetrical over half a period,
an extra constraint can be imposed;k

p
should then be odd.
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Figure B.1: Illustration of symmetry in the magnet distribution

B.1.2 Stator-current density

Like the magnets, the current density is a source of magnetic flux. But again, re-
strictions can be imposed on the induced harmonic combinations. In order to study
these restrictions, the applied current and the spatial distribution of the windings
through which these currents flow are regarded separately.

Current

The current is time-dependent and will determine which time-harmonic ordersare
introduced by the current density. The applied current system is a balanced system
with an odd number of evenly distributed phases(m). This means that the rotation
between neighboring phases is2π

m
electrical radians, as illustrated in Figure B.2 for

a five-phase system.
The current, related to an arbitrary phase with numberi ∈ [1,m], can be written as
a Fourier series over time:

I(i) =
∞
∑

n=−∞
I(i)n e−jn(ωt−(i−1) 2π

m ) (B.1)

The current density in the machine can only introduce components of the magnetic
field whose time-harmonic ordern corresponds to a non-zeroI(i)n . The following
general consideration on the time-harmonic content ofI(i) can be made.
For the sake of uniformity, the mechanical pulsation has been used in (B.1).How-
ever, the base pulsation of currentI(i) is the electrical pulsationpω. This implies
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Figure B.2: Balanced five-phase current system

that only multiples ofp are eligible forn.
The assumption that the applied system is balanced implies that the sum of the
current phasors should always equal zero. When referred to the fundamental time
period, this means that the current does not contain time-harmonic orders that are
a multiple ofm. This consideration results inn

p
6= cm, with c an integer.

The above considerations allow stating that the current density will only intro-
duce harmonic combinations with time-harmonic orders that are multiples ofp and
whereforen

p
is no multiple ofm. More generally it can be stated that, ifhc con-

tains the time-harmonic orders that are present inI(i), the current density will only
introduce time-harmonic orders, whereforen ∈ hc.

Winding distribution

As opposed to the current, the distribution of the windings has a spatial depen-
dency and will determine which spatial-harmonic orders are present. There are a
great number of possibilities to distribute the windings around the stator surface.
However, mostly the so called Star-Of-Slots (SOS) technique is used to assign the
slots to one or more phases. The technique is introduced in Appendix A, important
for the following is the definition of the machine’s period(τ). This is the number
of times the winding topology is repeated along the stator surface, it is calculated
as:

τ = gcd(p,Ns) (B.2)

whereNs is the amount of stator slots. In Appendix A the termslot group has
been defined as a set of adjacent stator slots so that, at synchronous operation,
the mechanical shift between similar slots of different slot groups corresponds to
the time shift of the current densities linked to these slots. These slot groupsare
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illustrated in Figure A.3.
It was shown in Appendix A that, depending on whetherNs

τ
is odd or even, the

magnetic field will be identical but rotated over2π
mτ

or π
mτ

mechanical radians after
Tt

mτ
or Tt

2mτ
seconds. This can be written mathematically for the magnetic vector

potential:

A(r, φ, t0) = A

(

r, φ+
2π

υmτ
, t0 +

Tt

υmτ

)

(B.3)

whereυ is 1 if Ns

τ
is even and 2 ifNs

τ
is odd. Note that (B.3) relates to the field

of the entire machines, not to individual subdomains. These will be considered in
Chapter 5.
The above time periodicity is not only valid for the complete function, it is also
valid for every separate(n, k)-component of the magnetic field. Indeed, another
harmonic component of the magnetic field can only have the same rotational speed
if it has both a different time and a different spatial-harmonic order. This,in turn,
would imply a different source term,I(i)n′ .
It can thus be written that:

An,k(r)e
j(kφ−nωt0) = An,k(r)e

j
(

k(φ+ 2π
υmτ )−nω

(

t0+
Tt

υmτ

))

(B.4)

Knowing thatωTt = 2π, the above can be simplified:

1 = ej(k−n) 2π
υmτ (B.5)

With c an integer, this results in:

k − n = cυmτ (B.6)

Equation (B.6) imposes a relation between the time- and spatial-harmonic orders.
As a conclusion it can be stated that the current density will only introduce time-
harmonic orders that are present in the applied currents, i.e.n ∈ hc. Due to the
distribution of the windings, the induced spatial-harmonic orders have to satisfy
(B.6).

Machine geometry

Unlike the permanent magnets and the stator-current density, the machine’sgeom-
etry is not a source of magnetic flux. Nevertheless, the geometry can introduce
additional harmonic combinations. At no-load for example, harmonic combina-
tions, different from the synchronous ones found in Section B.1.1, arepresent in
the magnetic field.
The reason for these extra harmonic orders is a variation alongφ of the magnetic
permeance. This effect is best known as the slotting effect and is mostly associ-
ated with slotted machine topologies. The latter is because the amplitude of the
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induced harmonic components depends on the difference in magnetic permeance,
the greater this difference the greater the amplitude. In slotless machines, where
the highly permeable teeth are replaced with non-magnetic teeth, the difference
between the permeability of the copper windings and that of the synthetic teeth is
very small. The slotting effect is then so small that most authors neglect it.
As mentioned, the source of the induced spatial-harmonic orders is a difference
in magnetic permeance. The reason is that such differences introduce a timepe-
riodicity, similar to the one in (B.3). Indeed, under synchronous operation, the
machine’s rotor will have rotated over one slot pitch after a time ofTt

Ns
seconds.

The rotor will then experience the same stator topology. Under no-load conditions,
the magnetic field will then be equal but shifted over one slot pitch. This can be
expressed mathematically in terms of the magnetic vector potential:

A(r, φ, t0) = A

(

r, φ+
2π

Ns
, t0 +

Tt

Ns

)

(B.7)

As explained in the above, this has to be true for every time- and spatial-harmonic
combination separately:

An,k(r)e
j(kφ−nωt0) = An,k(r)e

j
(

k
(

φ+ 2π
Ns

)

−nω
(

t0+
Tt
Ns

))

(B.8)

And again a relation between the spatial- and time-harmonic orders is found:

k − n = cNs (B.9)

Wherec is an integer. The above-mentioned time periodicity is only introduced
due to different magnetic permeances in theφ-direction, consequently changes in
ther-direction do not introduce harmonic combinations.
Note that, concerning the armature reaction, the effect of the geometry is embedded
in the winding distribution. Therefore the geometry will have no further effect on
the harmonic combinations introduced due to the current distribution.
Finally, it should also be noted that differences in the magnetic permeance can also
occur on the rotor. However, due to the synchronous rotation of the rotor, these
differences do not affect the periodicity found in (B.7).
As a conclusion, it can be stated that, under no-load conditions, the machine’s
geometry will introduce harmonic combinations whereforek−n = cNs. However,
in a slotless machine, the field components related to combinations for whichc 6= 0
may be considered negligible.

B.2 Harmonic combinations

In Section B.1, the harmonic orders introduced due to the magnets, the current
density and the geometry were discussed. Based on that discussion it canbe con-
cluded that, on the one hand, the source terms, being the permanent magnetsand
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the applied current density, determine which time-harmonic orders will be present.
On the other hand, the distribution of the windings and the machine’s geometry
determine the present spatial-harmonic orders.
Practically, no-load, armature-reaction and load conditions are considered. This
section discusses the harmonic combinations for each of these conditions based on
the findings in the previous sections.

No load

Under no-load conditions, the currents in the slots equal zero. This meansthat the
harmonic combinations found in Section B.1.2 will not be present. The magnets
will introduce synchronous harmonic combinations(n = k) that are present in
the magnet distribution. For every present time-harmonic ordern, the geometry
will introduce spatial-harmonic orders that satisfy (B.9). The restriction onthe
harmonic combinations under no-load conditions can thus be summarized as:

{

n ∈ hm

k − n = cNs

(B.10)

With c an integer andhm the time-harmonic orders for whichB0,r,n,k 6= 0 or
B0,φ,n,k 6= 0. In a healthy machinehm can only contain time harmonics that are
multiples ofp. If the magnets are symmetrical over half a fundamental period, no
time-harmonic orders whereforen

p
is even are present.

Armature reaction

WhenB0 = 0, the permanent magnets will not introduce any harmonic combina-
tions. The current density will only introduce the time-harmonic orders that are
present in the applied current. The introduced spatial-harmonic orders are defined
by the distribution of the current density (B.6). The restrictions on the harmonic
combinations can then be summarized as:

{

n ∈ hc

k − n = cυmτ
(B.11)

With c an integer andhc the time-harmonic orders for whichIn 6= 0. hc can only
contain multiples ofp and will not contain any time-harmonic orders for whichn

p

is a multiple ofm.

Load

The load situation is a superposition of the no-load and the armature-reactionsit-
uations. This implies that all the harmonic combinations that satisfy either (B.10)
or (B.11) will be present in the magnetic field.
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