Advanced search
1 file | 5.27 MB

TRUST, I : a 3D externally illuminated slab benchmark for dust radiative transfer

Author
Organization
Abstract
Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. Aims. We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. Methods. The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Results. The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between different codes of the scattered flux at high optical depths is quantified for the first time. Convergence tests using one of the Monte Carlo codes illustrate the sensitivity of the solutions to various model parameters. Conclusions. We provide the first 3D dust radiative transfer benchmark and validate the accuracy of this benchmark through comparisons between multiple independent codes and detailed convergence tests.
Keywords
methods: numerical, ISM: general, radiative transfer, SPECTRAL ENERGY-DISTRIBUTIONS, YOUNG STELLAR OBJECTS, EDGE-ON GALAXIES, TRANSFER SIMULATIONS, TRANSFER CODE, INTERSTELLAR CLOUDS, SPIRAL GALAXIES, MULTIPLE-SCATTERING, STARBURST GALAXIES, INFRARED-EMISSION

Downloads

  • Gordon et al. 2017.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 5.27 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Gordon, Karl, Maarten Baes, S Bianchi, Peter Camps, M Juvela, R Kuiper, T Lunttila, et al. 2017. “TRUST, I : a 3D Externally Illuminated Slab Benchmark for Dust Radiative Transfer.” Astronomy & Astrophysics 603.
APA
Gordon, K., Baes, M., Bianchi, S., Camps, P., Juvela, M., Kuiper, R., Lunttila, T., et al. (2017). TRUST, I : a 3D externally illuminated slab benchmark for dust radiative transfer. ASTRONOMY & ASTROPHYSICS, 603.
Vancouver
1.
Gordon K, Baes M, Bianchi S, Camps P, Juvela M, Kuiper R, et al. TRUST, I : a 3D externally illuminated slab benchmark for dust radiative transfer. ASTRONOMY & ASTROPHYSICS. 2017;603.
MLA
Gordon, Karl, Maarten Baes, S Bianchi, et al. “TRUST, I : a 3D Externally Illuminated Slab Benchmark for Dust Radiative Transfer.” ASTRONOMY & ASTROPHYSICS 603 (2017): n. pag. Print.
@article{8538445,
  abstract     = {Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. 
Aims. We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. 
Methods. The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. 
Results. The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10\%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between different codes of the scattered flux at high optical depths is quantified for the first time. Convergence tests using one of the Monte Carlo codes illustrate the sensitivity of the solutions to various model parameters. 
Conclusions. We provide the first 3D dust radiative transfer benchmark and validate the accuracy of this benchmark through comparisons between multiple independent codes and detailed convergence tests.},
  articleno    = {A114},
  author       = {Gordon, Karl and Baes, Maarten and Bianchi, S and Camps, Peter and Juvela, M and Kuiper, R and Lunttila, T and Misselt, KA and Natale, G and Robitaille, T and Steinacker, J},
  issn         = {1432-0746},
  journal      = {ASTRONOMY \& ASTROPHYSICS},
  keyword      = {methods: numerical,ISM: general,radiative transfer,SPECTRAL ENERGY-DISTRIBUTIONS,YOUNG STELLAR OBJECTS,EDGE-ON GALAXIES,TRANSFER SIMULATIONS,TRANSFER CODE,INTERSTELLAR CLOUDS,SPIRAL GALAXIES,MULTIPLE-SCATTERING,STARBURST GALAXIES,INFRARED-EMISSION},
  language     = {eng},
  pages        = {21},
  title        = {TRUST, I : a 3D externally illuminated slab benchmark for dust radiative transfer},
  url          = {http://dx.doi.org/10.1051/0004-6361/201629976},
  volume       = {603},
  year         = {2017},
}

Altmetric
View in Altmetric
Web of Science
Times cited: