Revisiting the Anion Framework Conservation in Cation Exchange Processes

Noga Meir,† Beatriz Martín-García,‡ Iwan Moreels,‡ and Dan Oron*,†,§

†Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
‡Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, IT-16163 Genova, Italy

Supporting Information

ABSTRACT: We investigated the effect of cation exchange on the anionic framework of lightly doped CdSe:Te/CdS nanorods. In contrast with previously studied core/shell systems, the Te dopant, located in the center of the CdSe core, provides an extremely sensitive indicator for any structural changes of the anionic framework that may occur as a result of the cation exchange process. We first optimized the cation exchange procedure in order to retain the fluorescence properties of the CdSe:Te/CdS nanorods after exchange of Cd$^2+$ for Cu$^+$ and back to Cd$^2+$. Next, using multiexciton spectroscopy, we were able to probe the magnitude of the exciton−exciton repulsion interaction and use that to assess the degree of crystal structure conservation. Our findings provide a much stronger proof that the anion framework is indeed rigid, showing no evidence of significant migration of the anionic dopant.

INTRODUCTION

The process of cation exchange in semiconducting nanocrystals has been in use for many years as an important synthetic tool to access a variety of chemical and crystallographic phase nanocrystals which are not easily accessed by hot-injection methods. In recent years a variety of reversible,1,2 sequential,3,4 and partial5−10 cation exchange techniques were demonstrated in quantum dots (QDs). The relative simplicity with which one can perform cation exchange, as well as the excellent conservation of the overall crystal structure achieved in many cases, are just some of the advantages of using cation exchange for the purpose of synthesizing novel nanomaterials.

However, insufficient attention was given to the possible effect cation exchange processes can have on the anionic framework of the crystal. Although this issue was addressed by examination of a cyclic cation exchange performed on the extensively studied CdSe/CdS dot-in-rod system,11 the spectroscopic tools used for this end—namely, linear absorption and photoluminescence spectroscopy—were not sensitive enough to account for subtle changes of the anionic crystal structure, both in the core and in the vicinity of the core/shell interface. More recent work on cation exchange from Cu$_2$Te to CdTe nanodisks12 did reveal that displacements in the anion sublattice can lead to a reconstruction of the crystal. However, it required detailed investigation of the samples using high resolution transmission electron microscopy to reveal the changes—a method which is difficult to implement when contrast between different atoms in the lattice is poor.

In this study we propose to spectroscopically investigate the effect of cation exchange using a modified version of the CdSe/CdS nanorods (NRs). These nanorods’ CdSe cores are very lightly doped with only one or a few atoms of Te, located at the center of the CdSe core via nucleation doping (Figure 1). Upon excitation, a hole from the top of the CdSe host valence band undergoes fast nonradiative relaxation to the Te trap state, leading to a relatively large Stokes shift compared to undoped CdSe QDs.13−15 Upon further excitation of these QDs, the strong localization of the hole wave function around the Te dopant evokes a significant Coulombic hole−hole repulsion, resulting in a large blue-shift of the biexciton (BX) relative to the single exciton.14,13 Unlike most emission properties (and specifically the band-edge emission color), the magnitude of the exciton−exciton interaction strongly depends on the position of the Te dopants within the nanocrystal.15 This provides us with a unique and highly sensitive spectroscopic handle through which we can identify whether Te dopants have diffused toward...
an exciton–exciton interaction. These measurements also serve as a control experiment for the main section of this manuscript, investigating the effect of cation exchange using Te-doped CdSe/CdS NRs. A dilute solution of the NRs dispersed in toluene was excited by a 5 ns pulsed laser at 450 nm and increasing intensities, reaching excitation levels as high as 10 photons/QD on average for each excitation pulse (details regarding the calculation of the amount of photons/dot can be found in the Supporting Information). Time-resolved fluorescence signals were filtered through a monochromator and then collected by a photomultiplier tube, at wavelengths ranging from 540 to 700 nm. These were then integrated around the peak of the excitation pulse to construct the transient emission spectrum as a function of the (increasing) excitation intensity. Figure 2 presents the constructed emission spectra of the CdSe/CdS NRs, before and after the cation exchange. In order to resolve the biexcitonic (BX) feature, the emission spectrum at low excitation intensity was used to determine the emission line shape of the singly excited dots, followed by a numerical global fit of the three highest intensity spectra to a sum of three spectral components. More details regarding the BX analysis are presented in the work of Banin and co-workers17 and in the Supporting Information.

For both samples we observe a red-shift of the main emission peak and the emergence of a blue-shifted shoulder at increasing excitation intensities. The former is associated with the BX emission whereas the latter is due to emission from higher excited states. The nature of the exciton–exciton interaction in this system is known to be dependent on the dimensions of the core, which can lead to either type-I or quasi-type-II behavior due to changes in the extent of electron delocalization.18 In this particular case, we should expect an attractive interaction, and indeed we observed a red-shift of the BX of ∼30 meV, both before and after the cation exchange. The nature and magnitude of the exciton–exciton interaction are both in accordance with previously published results.18

We now turn to discuss our findings regarding the spectroscopic examination of the Te-doped NRs. Te-doped CdSe QD cores were synthesized in three different sizes and

![Figure 2](image-url). Emission spectra at increasing excitation intensities, ranging from 0.1 ppd (photon per dot) to 10 ppd, of CdSe/CdS NRs (a) before and (b) after the cation exchange. Locations of the X and BX centers were extracted from the numerical fit. In both cases, the BX red-shift is ∼30 meV.
later overcoated with rod-like CdS shells. These will be referred throughout the rest of this manuscript as small-, medium- and large-core samples, with respective core diameters of 2.6 nm, 3.6 nm, and 4.2 nm. All three types of Te-doped nanorods were also subjected to the cyclic cation exchange, under the same conditions used for the undoped CdSe/CdS NRs.

Standard optical characterization of a typical medium-core NR sample is presented in Figure 3, showing the linear absorption and emission spectra before and after the cation exchange (Figure 3a,b, respectively). Comparing these two emission spectra, we see no new excitonic features, as well as conservation of the PL bandwidth (fwhm is ∼100 nm, characteristic of emission associated with the Te dopant), indicating no change in the sample size distribution occurred. However, in contrast with the undoped samples, there is a noticeable blue-shift of the emission peak after the cation exchange, which appeared in all samples of the Te-doped NRs examined, for all three core sizes (note that to some extent such a shift was observed also in ref 11). Generally speaking, such a blue-shift can be attributed to a decrease either in the core diameter or in the shell thickness. A change in the effective core diameter in a dot-in-nanorod system can occur as a result of alloying around the core/shell interface. However, Klimov and co-workers have already shown that for CdSe/CdS core/shell QDs, the emission blue-shift resulting from alloying in the core/shell interface was significantly lower than in our case, even when a considerable portion of the interface was alloyed.19

TEM data showed that the emission blue-shift is likely due to etching of the CdS shell. Analyzing the sizes of ∼100 NRs from TEM micrographs of this sample, both before and after the cation exchange (typical TEM images shown in Figure 3c,d), showed a decrease of ∼0.8 nm in the NR diameter. Assuming the core diameter remained unaltered, this changes the thickness of the CdS shell in the radial direction from ∼0.7 nm to ∼0.3 nm, equivalent to a decrease from two monolayers (MLs) of wurtzite CdS to only one. In previous studies, in which core/shell CdSe/CdS QDs were synthesized with a core diameter similar to that in our case and with a thin CdS shell at various thicknesses,20,21 the difference in the emission wavelength resulting from decreasing the shell thickness from 2 to 1 ML is comparable with the emission blue-shift measured here (∼66 meV), strengthening our conclusion linking the emission blue-shift to etching of the CdS shell. The fact that this etching was not observed for the undoped CdSe/CdS NRs is reasonable considering the different synthetic procedures used to fabricate the doped and undoped CdSe cores and the presence of different organic ligands used to passivate the cores prior to the NR seeded growth. These can potentially lead to a different surface chemistry that can affect the subsequent shell growth and finally the cation exchange process, even though similar synthetic procedures were used for the CdS shell growth. Despite the small etching, the cation exchange did not significantly reduce the PL QY, as final values for the three types of NRs reach approximately 80% of the initial PL QY. Note that the slight decrease is more consistent with reducing the thickness of a thin passivating CdS layer20,22 and less typical for alloying in the core/shell interface.19 The QY values and their standard deviations are presented in Table 1.

Table 1. Average QY Values Measured before and after the Cation Exchange

<table>
<thead>
<tr>
<th></th>
<th>before CE</th>
<th>after CE</th>
<th>QY recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>small cores</td>
<td>69 ± 3%</td>
<td>60 ± 3%</td>
<td>87%</td>
</tr>
<tr>
<td>medium cores</td>
<td>76 ± 1%</td>
<td>64 ± 5%</td>
<td>84%</td>
</tr>
<tr>
<td>large cores</td>
<td>86 ± 1%</td>
<td>63 ± 6%</td>
<td>74%</td>
</tr>
</tbody>
</table>

As stated before, the linear absorption and emission spectroscopy, while corroborating the work of Jain et al.,11 do not yet provide a definite proof for full conservation of the anionic framework in these QDs. Indeed, as was shown by Franceschetti and co-workers,15 the Stokes shift due to the Te dopant is quite insensitive to the dopant position. This calls for a more sensitive technique such as BX spectroscopy to verify the absence of changes in the anion framework. Measuring the BX properties of the Te-doped NRs was conducted in the same manner described before for the undoped CdSe/CdS NRs. Figure 4 presents typical emission spectra for a medium-core sample, taken at increasing excitation intensities, before and after the cation exchange. Here, the photon fluence of the excitation beam reached excitation levels as high as 15 ppd, and the fluorescence transients were recorded from 540 to 900 nm. Similarly to the undoped CdSe/CdS NRs, we can see the development of the BX feature with the increase of photon fluence. In this case, however, it is reflected as a blue-shift of the main emission peak due to the repulsive nature of the X–X interaction. Also detectable is an additional feature around ∼50 nm. This short-lived feature appeared in all measurements performed for the Te-doped NRs and is attributed to surface-trap emission from the CdS, which was also taken into account in the analysis. Notably, all of the Te-doped NRs exhibited a noticeable blue-shift of the BX emission, even after the cation exchange process.

We performed the BX spectroscopy measurements for all three core sizes. For each core size we measured several cation-exchanged samples, as we have noticed that in the case of the doped cores post-cation-exchange samples are more prone to experience some damage, likely due to the surface modification. To avoid the possibility of sample degradation, the NRs were measured as close as possible to the time of the cation exchange.
exchange, and in the meantime they were stored under inert atmosphere. For each measurement the BX emission peak was extracted and the energy difference between the X and the BX (here referred to as “BX shift”) was plotted against the emission wavelength of the same sample. This plot is presented in Figure 5. Two cation-exchanged NR samples exhibited significant deviation from the measured trend, as well as considerably lower QY compared to other samples with the same dimensions. Therefore, the data points corresponding with these samples were redacted from this plot. The corresponding plot, including the redacted data points, appears in the Supporting Information.

This is due to the fact that as the Te impurity moves away from the CdSe center, the hole wave function becomes more shallow and less localized around the Te inclusion, thus reducing the BX repulsion. For example, for ~1 nm migration of the Te impurity from the center of the CdSe core, we should expect a decrease of the BX repulsion of ~50 meV. Looking at Figure 5, it is clear that the BX shift in the cation exchanged samples is either equal to or higher than its value before cation exchange. The increase in BX shift appears to be surprising at first. Since, however, for all three core sizes we can see a blue-shift of the singly excited dot emission after the cation exchange, we need to also take into account its secondary effect on the BX shift.

Examining in detail the trend exhibited by each of the core sizes, we detect little to no change of the BX shift following cation exchange for the large and medium cores and a small increase for the small cores. The trend of the BX shift with the emission wavelength for the small-cores samples is very close to −1 meV/nm (as labeled with a dashed line in Figure 5). This is consistent with the change of the BX shift with shell thickness in Te-doped core/shell CdSe/CdS, which has already been experimentally characterized for this core size. From simple effective mass considerations this slope should be smaller for larger cores, where the degree of carrier delocalization into the shell is smaller.

Overall, based on the results presented in Figure 5, we can therefore determine that the X−X interaction was unaltered after the cation exchange process for all core sizes. The work of Franceschetti and co-workers clearly showed that any change in the position of the Te dopants from the center of the CdSe host, whether it is a migration of a single Te atom toward the edges of the nanocrystal or a diffusion of more than one dopant to form a somewhat “random” distribution of the few Te atoms across the CdSe core, will result in a significant decrease of the magnitude of the hole−hole repulsive interaction and therefore of the BX shift as well. Thus, the BX shift measurements not only provide further confirmation for the etching of the CdS shell after the cation exchange, but more importantly, they
verify the validity of the claims regarding the extreme rigidity of the anionic framework.

CONCLUSIONS

We used multiexciton spectroscopy of lightly doped CdSe:Te/CdS nanorods, which underwent a cyclic cation exchange, in order to evaluate the influence of such process on their anionic crystal structure. Although the optical properties of the NRs measured before and after the cation exchange indicated some structural change, we could attribute this to surface effects as the modifications resulted from a slight etching of the outer CdS shell. Analysis of the emission related to biexcitons revealed that the Te dopants, whose location is strongly dependent on the X−X interaction, did not diffuse within the crystal. Therefore, we conclude that the anionic framework of the NRs was not altered by the cation exchange process.

Unlike other methods formerly employed to detect subtle changes in the crystal structure of QDs, such as high-resolution electron microscopy, multiexciton spectroscopy is far simpler to execute and does not require individual probing of each isolated QD. Furthermore, multiexciton spectroscopy can be employed to measure other QD properties which can be highly sensitive to ion migration (such as multiexciton Auger lifetimes), potentially providing a more general method for evaluating lattice conservation, even without the need for doping.

METHODS

Synthesis. Te-Doped CdSe Cores Synthesis. A total of 52 mg CdO, 240 mg of TDPa, and 20 mL of ODE were degassed in a 50 mL flask under vacuum at 120 °C for 30 min. The temperature was raised to 290 °C under argon flow, and a mixture of 2 mL Se:TOP (0.1 M) and 120 μL Te:TOP (0.1 M) solutions was injected into the flask. The reaction was stopped after 10 s−3 min. A total of 2 mL of nonanoic acid were added upon cooling (at ~100 °C).

CdSe Cores Synthesis. A total of 60 mg CdO, 280 mg of ODPA, and 3 g of TOP were degassed in a 50 mL flask under vacuum at 120 °C for 30 min. The temperature was then raised to 380 °C under Ar flow. At ~340 °C the CdO started to dissolve, and 1.8 mL of TOP was injected. At 380 °C, a solution containing 58 mg of Se in 0.5 mL of TOP was injected into the flask, and the heating was removed immediately.

CdSeTe/CdS or CdSe/CdS Rod Synthesis. Purified CdSe:Te dots were used as cores for the seeded-growth of CdS nanorods. A total of 64 mg CdO, 312 mg of ODPA, 82 mg of HPA, and 3 g of TOP were degassed in a 50 mL flask under vacuum at 120 °C for 1 h. The temperature was raised to 350 °C under argon flow, and 2 mL of TOP were added upon dissolution of the CdO. At 350 °C, a solution of 120 mg of S in 2 mL of TOP, mixed with 1 mL of CdSe:Te or CdSe in TOP, was injected into the flask. The amounts of core dots used for the synthesis of the small, medium, and large-core Te-doped NRs were 53, 35, and 15 mmol, respectively. The amount of core dots used for the undoped NRs was 60 mmol. The reaction was stopped after 2−3 min. A total of 2 mL of nonanoic acid was added upon cooling (at ~100 °C).

Cation Exchange. Both steps of the cation exchange were performed in an air- and moisture-free glovebox. For the Cd2+ → Cu2+ exchange, 2 mL of a NR solution in toluene was taken with [Cd2+], 1 mM. The Cd2+ concentration was determined by the CdSe/CdS absorbance at 295 nm, using the absorption coefficient of Anioloni et al.13 (see Supporting Information). Under vigorous stirring, 1 mL of a solution containing 30 mg of tetraakis(acetonitrile) copper(I) hexafluorophosphate in MeOH was added dropwise. The mixture was stirred for another 40 min followed by precipitation with 1 mL of MeOH and redispersion in 1 mL of toluene. For the Cu2+ → Cd2+ exchange, 1 mL of the Cu-based NRs in toluene and 1 mL of ODE (previously degassed at 150 °C for 3 h) was heated to 250 °C. Then, 392 μL of TOP was added slowly, followed by dropwise addition of 46 mg of Cd(II) acetate in 375 μL of oleylamine. The solution was kept in 250 °C while stirring for 40 min, after which it was cooled to room temperature and the NRs were precipitated with 0.5 mL of toluene and 1 mL of MeOH and redispersed in toluene. This step was repeated either once or twice to further reduce the fraction of residual Cu in the Cd-exchanged NRs.

Elemental Analysis. Samples were prepared in a 25 mL volumetric flask, drying a known amount of toluene NR solution under nitrogen flow and digesting the dry residue overnight in 2.5 mL of aqua regia (HCl:HNO3, 3:1 by volume). Prior to the measurement, the sample was diluted to a total volume of 25 mL with Millipore water and stirred by vortex for 10 s at 2400 rpm. Then, the sample was filtered using a PTFE membrane (0.45 μm pore size). Measurements were carried out with a ThermoFisher ICAP 6000 Duo inductively coupled plasma optical emission spectrometer. Three measurements were performed to obtain the final averaged value.

TEM and Optical Characterization. TEM images of the QDs were taken at 120 kV, using a transmission electron microscope (CM-120, Philips). UV−vis absorption spectra were measured using a UV−vis/NIR spectrophotometer (V-670, JASCO). PL spectra were measured using a custom-made orthogonal collection setup. The excitation was with a fiber coupled 405 nm LED Light Source (prizmatrix), collecting the fluorescence through a fiber, to measure the fluorescence spectrum with a USB4000 Ocean Optics spectrometer. QY measurements were conducted using an absolute quantum yield characterization system (Hamamatsu Quantumus QY).

Biexciton Spectroscopy. Excitation pulses were generated by a frequency tripled Nd:YAG Q-switched laser oscillator pumping an optical parametric oscillator (OPO) (NT342/C/3/UVE, EKSPLA) with pulse durations of ~5 ns at a repetition rate of 10 Hz. Excitation pulses at 450 nm were obtained from the OPO and focused into a 10 × 10 mm rectangular quartz cuvette (Starna Cells), containing a solution of a low concentration of QDs dispersed in toluene. Fluorescence signals were collected at a right-angle by a 0.4 NA objective. After spectral filtering by a dielectric long-pass filter, the signal was further passed through a monochromator (SpectraPro 2150i, Acton) for complete filtering of the laser pulses from the fluorescence. Time-resolved signals were measured by a photomultiplier tube (R10699, Hamamatsu Photonics, Hamamatsu City, Japan). Data was collected by a 600 MHz oscilloscope (WaveSurfer 62Xs, Teledyne LeCroy). Pulse energies were measured by a pyroelectric sensor (PE9-C, Ophir Optronics). The excitation beam area was measured using a high resolution CCD camera (DCU223M, Japan). Data was collected by a 600 MHz oscilloscope (WaveSurfer 62Xs, Teledyne LeCroy). Pulse energies were measured by a pyroelectric sensor (PE9-C, Ophir Optronics). The excitation beam area was measured using a high resolution CCD camera (DCU223M, Japan).

Excitation pulses were generated by a frequency tripled Nd:YAG Q-switched laser oscillator pumping an optical parametric oscillator (OPO) (NT342/C/3/UVE, EKSPLA) with pulse durations of ~5 ns at a repetition rate of 10 Hz.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.6b03332.

A more detailed account of the nanocrystal synthesis, ICP results, BX spectroscopy analysis, and CdSe/CdS NRs optical characterization (PDF)

AUTHOR INFORMATION

Corresponding Author
*(D.O.) E-mail: dan.orons@weizmann.ac.il.

Present Address
*(D.O.) Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel.

Author Contributions
N.M. performed the nanocrystals synthesis, EM characterization, and spectroscopic experiments. B.M.-G performed the...
cation exchange and related characterization. The work was
conceived and supervised by D.O. and I.M. The manuscript was
written by N.M. with significant contributions of all authors. All
authors have given approval to the final version.

Funding
This work is funded by the Ministry of Science, Technology
and Space of the state of Israel, the Ministero degli Affari Esteri
e della Cooperazione Internazionale of Italy (IONX-NC450L),
and by the Crown Photonics Center of the Weizmann Institute
of Science. This project has also received funding from the
European Union’s Horizon 2020 research and innovation
program under Grant Agreement No. 696656 (Graphene-
Core1).

Notes
The authors declare no competing financial interest.

Acknowledgments
The authors thank M. Kazes (VIS) for important contributions
at the early stages of this work and for helpful discussions
throughout it. F. Drago and G. La Rosa (IIT) are acknowledged
at the early stages of this work and for helpful discussions.

References
(1) Jain, P. K.; Beberwyck, B. J.; Fong, L.-K.; Polking, M. J.;
Alivisatos, a. P. Highly Luminescent Nanocrystals From Removal of
Impurity Atoms Residual From Ion-Exchange Synthesis. Angew. Chem.,
(2) Son, D. H.; Hughes, S. M.; Yin, Y.; Alivisatos, A. P. Cation
(3) Luther, J. M.; Zheng, H.; Sadler, B.; Alivisatos, A. P. Synthesis of
PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology
by Sequential Cation Exchange Reactions. J. Am. Chem. Soc. 2009, 131,
16851–16857.
(4) Li, H.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.; Giannini,
C.; Manna, L. Sequential Cation Exchange in Nanocrystals: Preservation of
Crystal Phase and Formation of Metastable Phases. Nano Lett. 2011, 11,
4964–4970.
(5) Robinson, R. D.; Sadler, B.; Demchenko, D. O.; Erondeens, C.
K.; Wang, L.-W.; Alivisatos, A. P. Spontaneous Superlattice Formation in
Vannaelbergh, D. Anisotropic Cation Exchange in PbSe/CdSe Core/Shell Nanocrystals of Different Geometry. Chem. Mater. 2012,
24, 294–302.
Merkle, M. G.; Dahmen, U.; Wang, L.; Alivisatos, A. P. Selective Facet
Reactivity during Cation Exchange in Cadmium Sulfide Nanorods
Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide
(8) Smith, A. M.; Nie, S. Bright and Compact Alloyed Quantum Dots
With Broadly Tunable Near-Infrared Absorption and Fluorescence
Spectra through Mercury Cation Exchange. J. Am. Chem. Soc. 2011,
(9) Justo, Y.; Sagar, L. K.; Flamee, S.; Zhao, Q.; Vantommene, A.; Hens,
(10) Tu, R.; Xie, Y.; Bertoni, G.; Lak, A.; Gaspari, R.; Rapallo, A.;
Cavalli, A.; De Trizio, L.; Manna, L. Influence of the Ion Coordination
Number on Cation Exchange Reactions with Copper Telluride
(11) Jain, P. K.; Amirav, L.; Aloni, S.; Alivisatos, A. P. Nano-
heterostructure Cation Exchange: Anionic Framework Conservation. J.
(12) Li, H.; Brescia, R.; Povia, M.; Prato, M.; Bertoni, G.; Manna, L.;
Moreels, I. Synthesis of Uniform Disk-Shaped Copper Telluride
Nanocrystals and Cation Exchange to Cadmium Telluride Quantum
12278.
(13) Avidan, A.; Oron, D. Large Blue Shift of the Biexciton State in
Tellurium Doped CdSe Colloidal Quantum Dots. Nano Lett. 2008, 8,
2384–2387.
(14) Avidan, A.; Deutsch, Z.; Oron, D. Interactions of Bound
Excitons in Doped Core/shell Quantum Dot Heterostructures. Phys.
(15) Zhang, L.; Lin, Z.; Luo, J.-W.; Franceschetti, A. The Birth of a
Type-II Nanostructure: Carrier Localization and Optical Properties of
Isoelectronically Doped CdSe:Te Nanocrystals. ACS Nano 2012, 6,
8325–8334.
(16) Li, H.; Brescia, R.; Krahne, R.; Bertoni, G.; Alcocer, M. J. P.;
Cavalli, A.; Scotognella, F.; Tassone, F.; Zanella, M.; De Giorgi, M.;
Manna, L. Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/shell
Nanocrystals Prepared from CdSe/Cds Nanocrystals by Sequential
(17) Oron, D.; Kazes, M.; Banin, U. Multie excitons in Type-II
(18) Sitt, A.; Della Sala, F.; Menagen, G.; Banin, U. Multie exciton
Engineering in Seeded Core/shell Nanorods: Transfer from Type-I to
(19) Bae, W. K.; Padilha, L. a.; Park, Y.-S.; McDaniel, H.; Rebcl, L;
Pietyra, J., M.; Klumov, Y. I. Controlled Alloying of the Core-Shell Interface in CdSe/Cds Quantum Dots for Suppression of Auger
Johnson, M. B.; Peng, X. Large-Scale Synthesis of Nearly
Monodisperse CdSe/Cds Core/shell Nanocrystals Using Air-Stable
Reagents via Successive Ionic Layer Adsorption and Reaction. J. Am.
(21) Van Embden, J.; Jasieniak, J.; Mulvaney, P. Mapping the Optical
Properties of Cdse/Cds Heterostructure Nanocrystals: The Effects of
Core Size and Shell Thickness. J. Am. Chem. Soc. 2009, 131, 14299–
14309.
(22) Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.;
Grim, J. Q.; Casu, a.; Genovese, a.; Vicidomini, G.; Diaspro, a.;
Brovelli, S.; Manna, L.; Moreels, I. Synthesis of Highly Luminescent
Wurtzite CdSe/CdS Giant-Shell Nanocrystals Using a Fast Conti-
(23) Angeloni, I.; Raja, W.; Brescia, R.; Polovitsyn, A.; De Donato, F.;
Canepa, M.; Bertoni, G.; Proietti Zaccaria, R.; Moreels, I. Disentangling the Role of Shape, Ligands, and Dielectric Constants in the
Absorption Properties of Colloidal Cdse/Cds Nanocrystals. ACS

DOI: 10.1021/acs.chemmater.6b03332
Chem. Mater. 2016, 28, 7872–7877