Advanced search
1 file | 1.64 MB Add to list

A robust sparse representation model for hyperspectral image classification

(2017) SENSORS. 17(9).
Author
Organization
Keywords
REMOTE-SENSING IMAGES, MORPHOLOGICAL PROFILES, VECTOR MACHINES, RECOVERY, PURSUIT, SUPPORT, FUSION

Downloads

  • sensors-17-02087.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.64 MB

Citation

Please use this url to cite or link to this publication:

MLA
Huang, Shaoguang, et al. “A Robust Sparse Representation Model for Hyperspectral Image Classification.” SENSORS, vol. 17, no. 9, MDPI AG, 2017, doi:10.3390/s17092087.
APA
Huang, S., Zhang, H., & Pizurica, A. (2017). A robust sparse representation model for hyperspectral image classification. SENSORS, 17(9). https://doi.org/10.3390/s17092087
Chicago author-date
Huang, Shaoguang, Hongyan Zhang, and Aleksandra Pizurica. 2017. “A Robust Sparse Representation Model for Hyperspectral Image Classification.” SENSORS 17 (9). https://doi.org/10.3390/s17092087.
Chicago author-date (all authors)
Huang, Shaoguang, Hongyan Zhang, and Aleksandra Pizurica. 2017. “A Robust Sparse Representation Model for Hyperspectral Image Classification.” SENSORS 17 (9). doi:10.3390/s17092087.
Vancouver
1.
Huang S, Zhang H, Pizurica A. A robust sparse representation model for hyperspectral image classification. SENSORS. 2017;17(9).
IEEE
[1]
S. Huang, H. Zhang, and A. Pizurica, “A robust sparse representation model for hyperspectral image classification,” SENSORS, vol. 17, no. 9, 2017.
@article{8537836,
  articleno    = {{2087}},
  author       = {{Huang, Shaoguang and Zhang, Hongyan and Pizurica, Aleksandra}},
  issn         = {{1424-8220}},
  journal      = {{SENSORS}},
  keywords     = {{REMOTE-SENSING IMAGES,MORPHOLOGICAL PROFILES,VECTOR MACHINES,RECOVERY,PURSUIT,SUPPORT,FUSION}},
  language     = {{eng}},
  number       = {{9}},
  publisher    = {{MDPI AG}},
  title        = {{A robust sparse representation model for hyperspectral image classification}},
  url          = {{http://doi.org/10.3390/s17092087}},
  volume       = {{17}},
  year         = {{2017}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: