- Author
- Shaoguang Huang (UGent) , Hongyan Zhang and Aleksandra Pizurica (UGent)
- Organization
- Keywords
- REMOTE-SENSING IMAGES, MORPHOLOGICAL PROFILES, VECTOR MACHINES, RECOVERY, PURSUIT, SUPPORT, FUSION
Downloads
-
sensors-17-02087.pdf
- full text
- |
- open access
- |
- |
- 1.64 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8537836
- MLA
- Huang, Shaoguang, et al. “A Robust Sparse Representation Model for Hyperspectral Image Classification.” SENSORS, vol. 17, no. 9, MDPI AG, 2017, doi:10.3390/s17092087.
- APA
- Huang, S., Zhang, H., & Pizurica, A. (2017). A robust sparse representation model for hyperspectral image classification. SENSORS, 17(9). https://doi.org/10.3390/s17092087
- Chicago author-date
- Huang, Shaoguang, Hongyan Zhang, and Aleksandra Pizurica. 2017. “A Robust Sparse Representation Model for Hyperspectral Image Classification.” SENSORS 17 (9). https://doi.org/10.3390/s17092087.
- Chicago author-date (all authors)
- Huang, Shaoguang, Hongyan Zhang, and Aleksandra Pizurica. 2017. “A Robust Sparse Representation Model for Hyperspectral Image Classification.” SENSORS 17 (9). doi:10.3390/s17092087.
- Vancouver
- 1.Huang S, Zhang H, Pizurica A. A robust sparse representation model for hyperspectral image classification. SENSORS. 2017;17(9).
- IEEE
- [1]S. Huang, H. Zhang, and A. Pizurica, “A robust sparse representation model for hyperspectral image classification,” SENSORS, vol. 17, no. 9, 2017.
@article{8537836, articleno = {{2087}}, author = {{Huang, Shaoguang and Zhang, Hongyan and Pizurica, Aleksandra}}, issn = {{1424-8220}}, journal = {{SENSORS}}, keywords = {{REMOTE-SENSING IMAGES,MORPHOLOGICAL PROFILES,VECTOR MACHINES,RECOVERY,PURSUIT,SUPPORT,FUSION}}, language = {{eng}}, number = {{9}}, publisher = {{MDPI AG}}, title = {{A robust sparse representation model for hyperspectral image classification}}, url = {{http://doi.org/10.3390/s17092087}}, volume = {{17}}, year = {{2017}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: