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We present a variational method for approximating the ground state of spin models close to (Richardson-
Gaudin) integrability. This is done by variationally optimizing eigenstates of integrable Richardson-Gaudin
models, where the toolbox of integrability allows for an efficient evaluation and minimization of the energy
functional. The method is shown to return exact results for integrable models and improve substantially on
perturbation theory for models close to integrability. For large integrability-breaking interactions, it is shown
how (avoided) level crossings necessitate the use of excited states of integrable Hamiltonians in order to accurately
describe the ground states of general nonintegrable models.
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I. INTRODUCTION

Integrable models take a special place within the broader
class of quantum many-body systems [1–4]. They can be
solved exactly in polynomial time and can as such be used
to investigate the physics of strongly correlated systems
beyond the reach of conventional methods [5]. Whereas exact
diagonalization of the Hamiltonian by definition also returns
exact results for arbitrary systems, it is necessarily limited
to small system sizes due to the exponential scaling of the
Hilbert space. However, the advantage of exact solvability
comes at a price—for a model to be integrable, and thus
exactly solvable, all parameters and interactions of the system
need extraordinary fine-tuning. Even slight perturbations to the
Hamiltonian break integrability, and it is still an open question
how much of the features of integrability are retained for
systems “close to integrability”. Theoretically, we immediately
lose the full underlying framework, and it is in general no
longer possible to solve such systems exactly.

It is then a natural question to ask how well the wave
functions of systems close to integrability can be approximated
using exact eigenstates of integrable systems. Given a set
of such trial states, we propose to perform a variational
optimization in order to obtain the optimal approximation
to the ground state of a given Hamiltonian within this set
of eigenstates of integrable models. The main requirement for
any variational method to be feasible is being able to efficiently
and accurately calculate and minimize the energy functional,

E[ψ] = 〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 , (1)

for any given Hamiltonian Ĥ and any given trial state |ψ〉
[6]. The theoretical and numerical toolbox of integrability
provides us with exactly this [7–14]. The Bethe ansatz
structure of these eigenstates indeed allows for a calculation of
expectation values and overlaps at a computationally favorable
(polynomial) scaling.
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For Hamiltonians close to integrability, we can then expect
the trial states to be able to capture the physics of the
problem and this variational method should return an accurate
approximation to the exact ground state. Thanks to the use
of eigenstates of unperturbed integrable models as trial states,
the variational energy is also guaranteed to be an improve-
ment upon the energy obtained from first-order perturbation
theory, serving as further motivation for the choice of trial
states. More specifically, we describe a variational method
using the eigenstates of Richardson-Gaudin (RG) integrable
Hamiltonians [4,15,16] as trial states. We apply this method
to spin systems consisting of an integrable model plus an
integrability-breaking perturbation term. We focus on the
specific class of RG integrable models because it provides
us with a large amount of variational parameters [3,12,17]
and because RG models are known to qualitatively describe
a wide variety of physical systems [17–33]. The freedom in
the choice of variational parameters is subsequently expected
to provide accurate approximations to the ground states of
a variety of nonintegrable Hamiltonians. We exploit that the
energy of a given Hamiltonian can be efficiently evaluated as
a sum of determinants and apply a gradient descent method to
minimize the energy functional [34].

If no integrability-breaking terms are present, then the pro-
posed method leads to the exact ground state by construction.
Otherwise, the improvement compared to perturbation theory
is investigated, and it is shown that this method is also able to
return accurate approximations in the region where perturba-
tion theory is not expected to hold, provided the perturbative
interactions do not influence the qualitative physics of the
model. In this case, the bulk of the correlations in the ground
state of the nonintegrable system is captured by the ground
state of the integrable system, and the variational optimization
returns an accurate approximation. If this is not the case, then
we show that a more accurate description can be obtained
by variationally optimizing an excited state of an integrable
model. This is illustrated by comparing overlaps and correla-
tion functions and can be understood as (avoided) level cross-
ings in the spectrum of the nonintegrable Hamiltonian [35].

In a broader context, this research fits within the general
development of wave-function-based methods (as compared
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to density-based methods) for the description of strongly-
correlated models. In this aspect, the present study is also mo-
tivated by recent developments in the theory of antisymmetric
product of geminals (APG) in molecular physics and quantum
chemistry [36–39]. Composed as a generalized valence-
bond wave function, APG wave functions are tailormade
for the description of resonating electron-pair configurations
and tune in directly with the Lewis picture of molecular
bonding. Notwithstanding these sound physical foundations,
APG theory is severely limited for applications in large
molecular systems, due to the highly multireference character
of its wave function. Recently, it has been realized that the
Richardson-Gaudin eigenstates fit within the class of geminal
wave functions. This has given rise to various computationally
tractable versions of APG, including a variational formulation
based on the RG wave functions [38,40]. However, pioneering
calculations for simple molecular systems [38] showed that
the variational method was surpassed in accuracy and effi-
ciency by coupled-cluster-based APG methods [37,41]. These
preliminary results then naturally shifted the research focus
to the coupled-cluster variant of APG theory in recent years
[41–46]. However, it is presently becoming clear that further
developments in APG theory will benefit from a well-defined
Hilbert space, which is conveniently obtained through the
connection with a variational Richardson-Gaudin APG state
and the associated integrable Hamiltonian.

In principle, this method can be applied to arbitrary
Hamiltonians, but in this work we focus on Hamiltonians
consisting of an integrable part and a perturbative term, where
the approximations can be made clearer and the advantages
and limitations of the integrable wave functions can be better
understood. So, one of the purposes of this work is to reassess
the variational APG procedure based on the RG eigenstate
and shed light on the variational procedure and eigenstate
optimization. For this, the direct link with integrable systems is
crucial, hence the preference for a study of a couple of minimal
integrable models and integrability-breaking systems.

The paper is organized as follows. Section II contains
a discussion on breaking integrability, placing this work
within the general context of integrability-based techniques
for nonintegrable systems. Section III presents an overview
of relevant results for RG models and describes the proposed
method. This is then applied to two classes of nonintegrable
systems in Sec. IV, where the accuracy of the method is
assessed by comparing with results from exact diagonalization
for select systems. Section V is then reserved for concluding
remarks.

II. MOVING AWAY FROM INTEGRABILITY

A rich variety of methods has been developed for the
approximation of the ground state of general nonintegrable
systems. Here the distinction can be made between wave-
function-based methods such as mean-field theory [47], the
related coupled cluster and configuration interaction theories
[48], tensor networks [49], and variational quantum Monte
Carlo methods [50] compared to density-based density func-
tional theory [51]. Within the wave-function-based methods,
the common approach is that a specific structure is imposed on
a wave function, which is then optimized (often variationally)

in order to approximate the ground state of a given system [6].
The success of any approach is then judged by how well the
proposed structure of the wave function matches that of the
exact ground state.

For integrable Richardson-Gaudin spin systems [4,15,16],
any eigenstate can be exactly written as [52]

|ψRG〉 =
N∏

α=1

(
L∑

i=1

S
†
i

εi − λα

)
|↓ . . . ↓〉 , (2)

where the different spins in the system are labeled i = 1, . . . ,L

and the spin operators constitute an su(2) algebra (see Sec. III).
The parameters εi,i = 1 . . . L and λα,α = 1 . . . N have a clear
physical interpretation within integrability but can simply be
thought of as arbitrary parameters for the time being. For this
state to be an eigenstate of an integrable Hamiltonian, these
variables are not independent and are coupled through the
Bethe (or Richardson-Gaudin) equations

1 + g

2

L∑
i=1

1

εi − λα

− g

N∑
β �=α

1

λβ − λα

= 0, α = 1 . . . N, (3)

where g is an arbitrary parameter further tuning the corre-
lations within the underlying integrable model. It is worth
stressing that although all variables in this equation can be
connected to the physics of an integrable system, it is not
strictly necessary to interpret them as such. They can equally
be treated as variational parameters, and we now propose
to use this wave function as a variational ansatz. Given the
Hamiltonian Ĥ of a strongly correlated system, we wish to
find the RG eigenstate that minimizes the energy (1), resulting
in a variational energy

EVar. = min E[ψRG]. (4)

The scaling of this method is then set by the efficiency of
the evaluation and minimization of the energy. In general, for
arbitrary wave functions of the form (2) (so-called off-shell
states), this scales exponentially with system size but can be
reduced to a polynomial complexity once the equations (3)
are satisfied (leading to on-shell states), as shown in Sec. III.
The exponential scaling explains why generalized spin states
such as in Eq. (2) have not attracted much consideration
as a variational ansatz. For a generalized product state to
be computationally tractable, it needs to be dressed with
additional structure, which is here provided by integrability. It
is worth noting that the projected Bardeen-Cooper-Schrieffer
(BCS) method can be reinterpreted as a special case of
variational RG integrability, providing a connection between
the variational wave function (2) and the BCS mean-field wave
function [53]. Systems successfully described by mean-field
theory, where the particles can be treated as noninteracting
particles, also arise as a particular limit of the Bethe ansatz. In
fact, a crucial feature of the wave function (2) is that it exhibits
a similar product structure as the Hartree-Fock wave function
[6]. The variational method can thus already be expected to
return accurate results for weakly correlated systems.

The key question is then if the on-shell condition restricts
the physics that can be captured by this ansatz. While
integrable Hamiltonians are necessarily quite schematic, they
have shown remarkable success in the description of general
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physical phenomena. Richardson’s original solution to the
(reduced) BCS Hamiltonian [15,16] already succeeded in
qualitatively describing regular superconductivity [54,55], and
only afterwards was it recognized that this Hamiltonian is
integrable [56].

Furthermore, various efforts have shown how concepts
from integrability may still prove useful when dealing with
nonintegrable systems. Form factors in integrable theories are
exactly known and can be used to build a perturbation theory
for nonintegrable models [57–62]. Approximate scattering
matrices for low-lying excited states of nonintegrable systems
have also been constructed from approximate (coordinate)
Bethe ansatz techniques [63–66]. Despite these models being
nonintegrable, accurate results could still be obtained by
applying techniques from integrability. Integrability-based
methods have also been proposed in the description of time
evolution governed by an integrable Hamiltonian plus a
perturbation, both in the description of the initial behavior
[31,67] and the infinite-time behavior [68] of observables.
Such problems have also been tackled using a numerical
renormalization group expressed in the basis of eigenstates
of the integrable model [69].

The majority of these results essentially build on the same
idea as our proposed method—integrability can be used to
describe the bulk of the correlations, on which corrections
can be added. While using the same technical toolbox as
these methods, our results are mainly similar in spirit to the
use of perturbation theory for nonintegrable system, where
the important distinction is that the variational optimization
guarantees a more accurate approximation of the ground-state
wave function than perturbation theory.

One final remark is that there exists no clear-cut definition
of quantum integrability [2]. Currently, the distinction between
integrability and nonintegrability is often made by numerically
distinguishing statistical properties of the eigenvalue spectrum
[70,71], where integrability-breaking leads to a crossover
between two different behaviors [72–76]. Since this distinction
occurs at the level of the total spectrum and not at the level
of separate eigenstates, this suggests that, while it is not
possible to approximate the total spectrum of a nonintegrable
model by an integrable model, it might still be possible
to approximate the ground state of a nonintegrable model
by that of an integrable one, the main goal of the current
work.

III. METHODS

In this work, we will make use of the theoretical and nu-
merical framework underlying Richardson-Gaudin integrable
models [4,15,16]. Their integrability and exact solvability have
been derived in multiple ways [3,9,10,17,52,77–85]. We will
give an overview of the main ingredients and refer the reader
to Ref. [17] for a more extensive introduction to these systems
and their applications.

A. Richardson-Gaudin models

The class of Richardson-Gaudin models [4,15,16] are
based on the su(2) algebra of (quasi-)spin operators [86]. For
systems describing the interactions between L spins labeled

i = 1 . . . L, we first define a set of independent su(2) algebras
satisfying

[S0
i ,S

†
j ] = δijS

†
i , [S0

i ,Sj ] = −δijSi, [S†
i ,Sj ] = 2δijS

0
i .

(5)

One of the distinguishing characteristics of integrable systems
is the existence of conserved charges, which are a set of mutu-
ally commuting operators in involution with the Hamiltonian.
This means that each of these operators defines a quantity
which is conserved under time evolution. The existence of a
large amount of such conservation laws goes hand in hand
with the existence of an exact solution and is in fact one of the
core aspects of quantum integrability [2].

Richardson-Gaudin systems can then be defined through an
explicit construction and parametrization of these conserved
charges as

Ri = S0
i + g

L∑
j �=i

1

εi − εj

[
1

2
(S†

i Sj + SiS
†
j ) + S0

i S
0
j

]
. (6)

For any choice of the free variables �ε = {ε1 . . . εL} these satisfy
[Ri,Rj ] = 0,∀i,j = 1 . . . L. For our purpose, these variables
will play the role of variational parameters in the eigenstates.
An integrable Hamiltonian can be obtained by taking a linear
combination of these operators as

Ĥ =
L∑

i=1

ηiRi, ηi ∈ R. (7)

Such a Hamiltonian is integrable, since it commutes with
the conserved charges Ri (i = 1 . . . L) by construction. The
Hamiltonian and the conserved charges can then be simul-
taneously diagonalized by unnormalized Bethe ansatz (BA)
eigenstates of the form

|�ε,�λ〉 =
N∏

α=1

S†(λα) |↓ . . . ↓〉 , (8)

defined by a product of generalized raising operators

S†(λ) =
L∑

i=1

S
†
i

εi − λ
, (9)

where each generalized raising operator is fixed by a single
parameter λ ∈ C. This is known as a Bethe ansatz wave
function and is an eigenstate provided the variables �λ =
{λ1 . . . λN } (also called rapidities) are coupled through the
Richardson-Gaudin equations (3). The generalized raising
operators are fully determined by the relative position of λ with
respect to �ε in the complex plane, since the weight and phase
of S

†
i follows from (εi − λ)−1. In this way, eigenstates can be

determined by solving a set of coupled nonlinear equations
scaling linearly in system size, which can be contrasted with
the usual diagonalization of a Hamiltonian in an exponentially
scaling Hilbert space. This is what is generally understood by
exact solvability by Bethe ansatz.

From the definition of the integrable Hamiltonian, we find
that the most general Hamiltonian (containing maximally
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quadratic interactions) solvable by this method can be written
as

Ĥ =
L∑

i=1

ηiS
0
i + g

2

L∑
i,j �=i

ηi − ηj

εi − εj

[
1

2
(S†

i Sj + SiS
†
j ) + S0

i S
0
j

]

=
L∑

i=1

ηiS
0
i + g

2

L∑
i,j �=i

ηi − ηj

εi − εj

�Si · �Sj , (10)

for any set of variables �ε and �η. This Hamiltonian contains
2L free variables (g can be absorbed in the definition of �ε),
and it is due to this freedom that we expect that Hamiltonians
with similar interaction terms can be efficiently approximated
within this approach. These Hamiltonians belong to the so-
called rational (XXX) class of Richardson-Gaudin models, and
can straighforwardly be extended towards hyperbolic (XXZ)
models where the interaction between spins is anisotropic [3].
In the following, we will restrict ourselves to the rational mod-
els for clarity, but the proposed method can straightforwardly
be extended towards these hyperbolic models.

B. Calculating expectation values

The building block for any variational method is the energy
functional of a given wave function E[ψ] (1), which needs to
be minimized with respect to the variational parameter defining
the trial state |ψ〉 ≡ |�ε,�λ〉. The Bethe ansatz structure of the
eigenstates allows for an efficient and relatively straightfor-
ward calculation of such expectation values and can afterwards
also be used to calculate observables from the obtained
wave function. This expectation value is computationally
tractable by making use of the overlap between an arbitrary
(off-shell) Bethe state and a state where the variables satisfy
the Richardson-Gaudin equations (on-shell state). For off-shell
Bethe states (2) such expressions can only be evaluated
through the use of extensive combinatorics, which cannot be
evaluated in polynomial time, but the demand that the state
is on-shell allows for simplifications [12]. Once the variables
satisfy the Richardson-Gaudin equations, inner products and
expectations values can be expressed as determinants of
matrices. Whole classes of such determinant expressions exist
for this problem, following famous results by Slavnov [7], with
the advantage that determinants can be efficiently evaluated
numerically in polynomial time [34]. Suppose we have two
states determined by the same set of variables �ε and different
variables (rapidities) �v = {v1 . . . vN } and �w = {w1 . . . wN },
where {v1 . . . vN } satisfies the Richardson-Gaudin equations
and {w1 . . . wN } is arbitrary. Then the overlap between these
two states is given by [7]

〈�ε,�v|�ε, �w〉 =
∏

b

∏
a �=b(va − wb)∏

b<a(wb − wa)
∏

a<b(vb − va)

× det SN (�v, �w), (11)

with SN (�v, �w) an N × N matrix defined as

SN (�v, �w)ab = vb − wb

va − wb

⎡
⎣ L∑

i=1

1

(va − εi)(wb − εi)

− 2
N∑

c �=a

1

(va − vc)(wb − vc)

⎤
⎦. (12)

This is the well-known Slavnov determinant expression. Al-
ternative determinant expressions can be found with a simpler
structure, and it is possible to switch between determinant
representations in order to control numerical stability [87].

From Slavnov’s determinant, it immediately follows that
the norm of an on-shell Bethe state can be calculated as the
determinant of the Gaudin matrix

〈�ε,�v|�ε,�v〉 = det GN (�v), (13)

with GN (�v) an N × N matrix defined as

GN (�v)ab =
{∑L

i=1
1

(εi−va )2 − 2
∑N

c �=a
1

(vc−va )2 if a = b
2

(va−vb)2 if a �= b
.

(14)

Slavnov’s determinant can then be used for the calculation
of expectation values [8,10], as illustrated in the Appendix.
Here the key feature is that the action of any Hamiltonian
on an on-shell Bethe state can be written as a (polynomially
large) sum of off-shell Bethe states, so expectation values can
always be written as a polynomial summation of Slavnov
determinants. This, combined with the determinant for the
normalizations, allows the variational energy (4) to be evalu-
ated in a polynomial time for on-shell states. We refer to the
Appendix for an analysis of the computational scaling.

C. Numerics

The framework of integrability reduces the problem of
finding eigenstates of a Hamiltonian to solving a set of
nonlinear equations (3), and numerical methods have been
tailored to this specific problem [19,88–92]. In practice, the
Richardson-Gaudin equations (3) are rarely solved directly
because they exhibit singular behavior.

A common approach, known as the eigenvalue-based
method, maps the Richardson-Gaudin equations (3) to an
equivalent set of equations for the variables [13,14,25,52,93–
99]

	i =
N∑

α=1

1

εi − λα

, (15)

which satisfy the set of quadratic equations

	2
i = − 2

g
	i +

L∑
j �=i

	i − 	j

εi − εj

, i = 1, . . . ,L. (16)

Because these equations are quadratic, they are more stable
than the original Richardson-Gaudin equations, which suffer
from numerical singularities at the so-called singular points
[100–102]. While the number of equations that needs to be
solved has increased (L compared to N ), these remain within
the same order of magnitude and the increase in numerical
stability more than makes up for this. Equation (16) can then
be solved using iterative methods such as the Newton-Raphson
method [34]. Once these variables have been obtained, the
rapidities �λ still need to be determined for the calculation
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of expectation values (see Appendix). One way this can be
realized is by defining a polynomial with the rapidities as
roots

P (z) =
N∏

a=1

(z − va), (17)

which satisfies the ordinary differential equation (ODE)
[52,95,103]

P ′′(z) + F (z)P ′(z) − G(z)P (z) = 0, (18)

with

F (z) = 2

g
+

L∑
i=1

1

εi − z
, G(z) =

L∑
i=1

	i

εi − z
. (19)

Once the variables 	i have been obtained, the differential
equation (18) is fixed and efficient algorithms have been
developed to find the roots of this polynomial, extracting the
rapidities [95]. Solving for an eigenstate thus consists of a
two-part process: First a set of quadratic equations are solved
for the variables 	i , after which the rapidities are obtained
by using the BA/ODE correspondence. This method provides
accurate results for models with up to a few hundred spin
levels.

D. Optimizing the wave function

So, for a given Hamiltonian Ĥ = Ĥint + V̂ , with Ĥint an in-
tegrable (Richardson-Gaudin) Hamiltonian, and V̂ containing
additional interactions breaking the integrability, we wish to
minimize

E[ψRG] = 〈ψRG|Ĥ |ψRG〉
〈ψRG|ψRG〉 , (20)

where |ψRG〉 ≡ |�ε,�λ〉, with �ε = {ε1 . . . εL} and �λ = {λ1 . . . λN }
coupled through the Richardson-Gaudin equations. It is im-
portant to note that the variables in the wave function are
independent from those in the integrable Hamiltonian, since
the former are the degrees of freedom over which we optimize,
while the latter are a characteristic of the unperturbed system.
Obviously, in the limit of a vanishing perturbation V̂ = 0
the Hamiltonian Ĥ becomes integrable, and the variational
optimization should return the variables in the Hamiltonian
as variational parameters, since this wave function is then the
exact ground state of the integrable Hamiltonian.

While these states explicitly depend on L + N variables
�ε and �λ, the demand that these states are on-shell (3) leaves
us with L degrees of freedom over which to optimize, which
we choose as �ε, and we can simply denote E[ψRG] = E[�ε],
with the implicit assumption that all rapidities �λ uniquely
follow through the Richardson-Gaudin equations, resulting
in a manifold of states only determined by the variables �ε.
However, we have an additional discrete degree of freedom—
the choice of eigenstate. Each eigenstate of an integrable

Hamiltonian defined by a set of variables �ε can be written
as (2), so we need to somehow specify what state we wish
to target. This degree of freedom will initially be disregarded,
and we will restrict ourselves to the state that is adiabatically
connected to the ground state of the integrable Hamiltonian in
the limit of a vanishing perturbation. For small perturbations,
it is expected that this state will be the most relevant. Later, it
will be shown that this choice is not guaranteed to be optimal
for large perturbations, and the excited states will prove to be
important.

We choose to optimize over the variables �ε using a
gradient descent method [34]. The necessary ingredient for
this algorithm is the gradient of the function to be minimized,
which is here calculated by a finite-difference estimation using
a numerically small step 
ε for a two-point estimation to
obtain

( �∇E[�ε])i ≈ E[�ε + 
ε · �1i] − E[�ε − 
ε · �1i]

2
ε
. (21)

It should be noted that a change in one of the variables �ε
also implies a resulting change in all rapidities �λ, since we
demand the wave function to be on-shell at each step of the
calculation. Often, this can be done using a straightforward
Newton-Raphson approach, but care should be taken when
multiple rapidities are close together. In our approach, we
optimize the eigenvalue-based variables 	i using a Newton-
Raphson approach and afterwards extract the updated variables
using the BA/ODE correspondence starting from the previous
rapidities.

So our approach can be summarized in Algorithms 1 and
2. While the gradient descent method is a straightforward one,
care should again be taken with the implicit dependence of the
rapidities �λ on the variables �ε. This is illustrated in Algorithm
2, exploiting previous numerical work on Richardson-Gaudin
models. The procedure outlined here takes care to avoid the
singularities arising in the Richardson-Gaudin equations.

Algorithm 1. Variational optimization of an on-shell Bethe ansatz
state.

Define Ĥ = Ĥint + V̂

Define �ε0 � Follows from Ĥint

Define �λ0 � Solve RG eq. given �ε0

�ε,�λ ← �ε0,�λ0


E ← 0
while 
E < 0 do � Update state while energy decreases.

Calculate E[�ε] and �∇E[�ε] � Update �λ for gradient.
μ ← 0
while E[�ε − μ �∇E[�ε]] decreases do

Increase μ

Calculate E[�ε − μ �∇E[�ε]] � See Algorithm 2.

E ← E[�ε − μ �∇E[�ε]] − E[�ε]
�ε ← �ε − μ �∇E[�ε] � Update state.

Optimized energy E[�ε]
Optimized state |�ε,�λ〉
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Algorithm 2. Update energy E[�ε] to E[�ε + �δ] for an on-shell
Bethe ansatz state.

Define Ĥ

Define �ε, �λ, �	 � Known from previous calc.
�ε ← �ε + �δ
�	′ ← Update �	 from �ε + �δ � Substituted quadr. eq.
�λ′ ← Update �λ from �	 � BA/ODE
E[�ε + �δ] ← 〈�ε + �δ, �λ′|Ĥ |�ε + �δ, �λ′〉 / 〈�ε + �δ, �λ′|�ε + �δ, �λ′〉

IV. RESULTS

In this section, we will apply the proposed algorithm to
the two predominant classes of Richardson-Gaudin integrable
models: the central spin model [4] and the reduced BCS
(Richardson) Hamiltonian [15,16].

A. Perturbing the central spin model

The results will first be illustrated on the central spin model
with perturbations restricted to operators acting on one or two
spins. The central spin Hamiltonian is given by

Ĥcs = BSz
1 + g

L∑
i �=1

�S1 · �Si

ε0,1 − ε0,i

, (22)

describing the interaction of a single spin (where we have
identified Sz

1 ≡ S0
1 ), on which a magnetic field B is applied,

with a bath of surrounding spins. This model is often studied
in the context of NV centers or semiconductor quantum dots
[28–31]. The Hamiltonian (22) equals one of the conserved
charges (6) and is thus integrable for any choice of the
interaction modulated by ε0,i , which has been written in this
way in order to make this connection explicit.

In this model, the bath spins do not interact among
themselves and do not experience the magnetic field applied
to the central spin. However, such interactions may be added
in a perturbative way by introducing terms of the form S0

i and
�Si · �Sj in the Hamiltonian. The basic physics in this model
can be easily understood—B determines the orientation of
the central spin 〈Sz

1〉, either parallel or antiparallel to the
quantization axis, while the signs of g/(ε0,1 − ε0,i) determine
the relative orientation of the bath spin �Si with the central spin
〈�S1 · �Si〉.

In the following, we considered system sizes L = 12
for which exact diagonalization methods can be used as
benchmark and parametrize the Hamiltonian with ε0,i =
L − i as a picket-fence model [104]. The strength of the
interaction is fixed by setting B = 1 and g = −2, intermediate
between strong and weak coupling [102]. For this choice of
parametrization, the central spin and all surrounding spins
tend to align, while also being restricted by conservation
of spin projection Sz = ∑

i S
z
i . In the following, we always

choose Sz = 0 (or L = 2N ), since this is the sector where the
dimension of the Hilbert space is maximal.

Single-spin perturbation. First, we perform calculations for
a Hamiltonian

Ĥ = Ĥcs + μS0
i , (23)

applying a magnetic field of size μ to one of the spins in the
bath (here labeled i). Such a model has previously also been
investigated in the context of integrability breaking [105,106].
Here we calculate the variational energy and compare with
the ground-state energy obtained by exact diagonalization.
In Fig. 1, we plot the variational energy (Var.), the exact
ground-state energy (Exact), and the energy obtained by
first-order perturbation theory (PT) for varying perturbation
strengths μ, with i = 2 chosen to maximize the deviation from
the integrable model, since the central spin interacts most
strongly with this bath spin. Since the ground-state energy
deviation is intimately connected to the overlap between the
approximate ground state and the exact ground state, this is
also given in Fig. 1. As the error in the energy is generally
quadratic in the error in the overlap, the latter can be seen
as a more sensitive measure for the accuracy of the proposed
method.

Labeling the parameters of the unperturbed integrable
model as �ε0, the relevant energies can be contrasted as

EVar. = min
�ε

E[�ε], EPT = E[�ε0], (24)

making clear why the variational method provides a guaranteed
improvement on first-order perturbation theory. In the chosen
model, perturbation theory is guaranteed to provide a good
approximation to the exact ground-state energy only when
|μ 〈S0

i 〉 | � 
E, with 
E the energy difference between the
ground state and the first excited state. In the following, this
roughly corresponds to |μ| � 1, which we will consider to be
a small perturbation.
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Ĥ

PT
Var.
Exact

−1.0 −0.5 0.0 0.5 1.0

μ

0.75

0.80

0.85

0.90

0.95

1.00

ψ
|ψ

E
x

.

PT
Var.

FIG. 1. Results for the central spin model with perturbation μS0
i .

Top: Variational energy (Var.), exact ground-state energy (Exact), and
first-order perturbation theory (PT) energy for different values of the
perturbation strength. Bottom: Overlap of the exact ground state with
the variational ground state and the ground state of the unperturbed
model.
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FIG. 2. Variational parameters for the Hamiltonian (23). Position of �ε (squares) and �λ (dots) for the variationally optimized wave function
in the complex plane at different values of the perturbation strength. The white square denotes the variable εi associated with the level on which
the perturbation is applied.

The overlaps given are those between the variationally ob-
tained wave function (Var.) and the exact ground state, together
with the overlap between the ground state of the unperturbed
model and the exact ground state (PT). The variational wave
function is able to accurately model the ground state for a wide
range of the perturbation strength, even going up to the limit
where the size of the perturbation interaction equals that of
the unperturbed central spin interaction (|μ| = 1), providing a
substantial improvement over first-order perturbation theory.
Here, the variational optimization plays a crucial role, as
can be seen by comparing the overlap of the exact ground
state with the ground state of the unperturbed Hamiltonian to
the overlap with the variationally optimized wave function,
which is improved by several orders of magnitude (from an
overlap of 0.7754 to 0.9908 for μ = −1). However, since
the perturbation here only acts on a single spin site, it is not
expected that this will fundamentally influence the correlations
in the model, and more intrusive perturbations may be more
physical.

Some more insight in the role of the optimization and the
structure of the wave function can be obtained by considering
the evolution of the variables �ε and �λ in the wave function.
These are given in Fig. 2 for different values of the perturbation
strength. The variables �ε are restricted to be real, while the
rapidities �λ are either real or arise as complex conjugate pairs.
The single-spin character of the perturbation is clear from
these figures. Only the variable εi (i = 2), associated to the
perturbed level, is significantly sensitive to the perturbation,
whereas all other variables are largely unaffected. While the
on-shell condition still connects both sets of variables, it
can be seen that the variables �λ are quite robust against
perturbations. This also motivates the use of �ε as variational
parameters.

Double-spin perturbation. Second, this method is applied
to a nonintegrable Hamiltonian

Ĥ = Ĥcs + μ�Si · �Sj , (25)

where μ again determines the perturbation strength, and
repeat the same calculations, where we choose bath spins

i,j = 2,L − 1 for similar reasons as before. The results for
the energy and overlap are given in Fig. 3.

It can be seen that the variational method still provides an
accurate description for negative μ, but interestingly fails to
model the behavior of the wave function for large positive
μ. The method holds in the limit where we can interpret the
additional term as a perturbation (|μ 〈�Si · �Sj 〉 | � 
E), but
moving away from this limit the method quickly breaks down.

The reason for this can be inferred from perturbation theory
for the two different regimes (positive and negative μ). In the
ground state of the unperturbed model 〈�Si · �Sj 〉 > 0, since
all spins tend to align. So the perturbation will lower the
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FIG. 3. Results for the central spin model with perturbation
μ�Si · �Sj , with i,j = 2,L − 1. Top: Variational energy, exact ground-
state energy, and first-order perturbation theory energy for different
values of the perturbation strength. Bottom: Overlap of the exact
ground state with the variational ground state and the ground state of
the unperturbed model.
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Ĥ

PT
Var.
Exact

PT - Exc.
Var. - Exc.

0.0 0.2 0.4 0.6 0.8 1.0

μ

0.0

0.2

0.4

0.6

0.8

1.0

ψ
|ψ

E
x

.

PT
Var.

PT - Exc.
Var. - Exc.

FIG. 4. Results for the central spin model with perturbation
λ�Si · �Sj . Top: Variational energy, exact ground-state energy, and
first-order perturbation theory energy starting from the ground and
excited state of the integrable model for different values of the
perturbation strength. Bottom: Overlap of the exact ground state with
the variational ground state and the ground state of the unperturbed
model starting from both the ground and excited state of the integrable
model. The perturbation has been applied to the spin with the strongest
interaction with the central spin in order to maximize the effect of the
perturbation.

ground-state energy if μ < 0 and increase the energy if μ > 0.
In the former case, the perturbation does not qualitatively
change the physics in the model, whereas the latter introduces a
counteracting interaction, lowering the energy if the two spins
are antiparallel. For larger μ (μ � 0.2), the energy then again
lowers, pointing to a change in qualitative character of the
ground state. The sudden drop in overlap with the exact ground
state in Fig. 3 then hints at an avoided crossing between the
ground state and an excited state for increasing μ, where if μ is
increased the ground state would resemble an excited state of

the original system rather than the ground state. The variational
optimization is still capable of increasing the overlap by more
than a factor 2, but is ultimately unable to obtain an accurate
description for large μ. This can be understood since, while the
perturbation increases the energy of the unperturbed ground
state, it simultaneously lowers the energy of selected excited
states of the unperturbed model.

For relatively simple perturbations, the relevant excited
state can be gathered from the limit |μ| → ∞, where the
perturbation becomes dominant, and we can variationally
optimize the state which is adiabatically connected to this
excited state in the limit μ → 0.

For positive μ, the results for a variational optimization
starting from both the ground state and this excited state
are presented in Fig. 4. At small μ, the unperturbed ground
state is the energetically favourable one, while for increasing
perturbation strength the energy of the unperturbed excited
state drops below that of the unperturbed ground state. Such
crossings are observed both in perturbation theory and in
the variational method, albeit occurring for smaller values of
the perturbation in the variational method. This behavior can
also be observed from the overlaps, where a similar crossing
occurs in the same region. The variational optimization again
plays an important role in lowering the energy and increasing
the overlap, both for the variational state obtained from the
unperturbed ground and excited state, resulting in an improved
approximation to the ground state. Note that, while this results
in a much improved description, there is still a part of the wave
function that cannot be captured by the variational method, and
for which we would either need to apply perturbation theory on
the optimized wave function, or use a multireference approach
with multiple Bethe ansatz wave functions in the variational
optimization. However, the technicality of these approaches
exceeds the range of the current article.

The structure of the optimized variables �ε and �λ can again
be compared (Figs. 5 and 6). The two-spin character of the
interaction is clearly visible, where the optimization is mainly
sensitive to the two variables εi,εj (i = 2,j = 11) in the region
where the optimization performs well. When the optimization
fails to provide an accurate wave function, the rapidities exhibit
a qualitative change (complex conjugate variables become
real) and quickly increase in absolute value, pointing out that
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FIG. 5. Variational parameters for the Hamiltonian (25). Position of �ε (squares) and �λ (dots) for the variationally optimized wave function
in the complex plane at different values of the perturbation strength. The white squares denote the variables εi,εj associated with the levels on
which the perturbation is applied.
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FIG. 6. Results for the central spin model with perturbation
λ�Si · �Sj . Position of �ε (squares) and �λ (dots) for the variationally
optimized wave function starting from an excited state in the complex
plane at different values of the perturbation strength. The white
squares denote the variables εi,εj associated with the levels on which
the perturbation is applied.

they are qualitatively wrong. Starting from the excited state
in the unperturbed model, it is observed that the rapidities
already have the correct structure and remain bounded during
the optimization.

More physical insight can be gathered from expectation
values and correlation coefficients calculated from both wave
functions. In Figs. 7 and 8, we present the expectation
values 〈 �Si · �Sj 〉 ,∀i,j , motivated by the choice of perturbation
interactions, and the unconnected correlation coefficients
σij = 〈S0

i S
0
j 〉 − 〈S0

i 〉 〈S0
j 〉 ,∀i,j for both exact and variational

wave functions at different values of μ. It is clear that the
correlations within the wave function only change slightly for
negative μ, and as such the wave function is able to easily adapt
to the perturbation. Comparing the exact and the variational
ground state for positive μ, it is notable that the correlations
between the two spins affected by the interactions have not

been captured by the variational ground-state wave function.
Comparing this with the results from the variational excited
wave function, it can be seen that the missing correlations
are reintroduced there, as was expected. For low perturbation
strengths, the variational wave function is able to adapt to
the correlation structure of the exact ground state through
the optimization. The change in correlation coefficients also
points towards the failure of perturbation theory. In the region
μ � 0.2, the unconnected correlation coefficients from the
approximate wave function for the levels on which we apply
the perturbation vanish, and this level effectively decouples
from the many-body system. In the exact wave function,
this decoupling does not occur and instead these coefficients
change sign. From this, it can be concluded that the wave
function can adapt to the perturbation for as long as the general
structure of the correlations does not change. By starting the
variational optimization from the excited state, the correct
structure is again recovered, as can be seen in the bottom
row of Figs. 7 and 8.

This can now also be compared to the expected range of
applicability of perturbation theory. For the given Hamilto-
nians Ĥ = Ĥcs + μV̂ , perturbation theory starting from the
integrable μ = 0 limit can be expected to provide accurate
results only if |μ 〈V̂ 〉 | � 
E, in the regime where the ad-
ditional term can be considered a small perturbation on the
integrable model. The variational optimization starting from
the ground state results in a relatively accurate approximation
for a larger range of μ, even when the additional term can no
longer be considered to be a small perturbation, provided there
occur no avoided crossings between the ground and excited
states of the integrable Hamiltonian in the spectrum of the
nonintegrable Hamiltonian when the perturbation strength μ

is adiabatically increased from 0 to the given value. Because
these Hamiltonians are nonintegrable these are expected to
be avoided crossings, but this reasoning should also hold for
allowed level crossings.
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FIG. 7. Absolute value of the expectations values 〈 �Si · �Sj 〉 for the central spin model with perturbation μ�Si · �Sj , with i,j = 2,L − 1. The
expectation values are taken with respect to the exact ground state and the variational state obtained by starting from both the ground state and
excited state of the unperturbed model.
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j 〉 for the central spin model with perturbation μ�Si · �Sj , with i,j = 2,L − 1. These

correlation coefficients are calculated for the exact ground state and the variational state obtained by starting from both the ground state and
excited state of the unperturbed model.

We have checked that the same behavior is observed
when introducing more involved perturbations, where small
perturbations can be accurately described starting from the
ground state of the integrable Hamiltonians, and for larger
perturbations variational optimization starting from an excited
state is necessary in order to obtain the optimal approximative
state. However, at present it is not always clear which excited
state should be chosen for arbitrary perturbations. In practice,
this problem could be circumvented using a stochastic ap-
proach, since it was found that several excited states can lead to
the same variationally optimized state. In practice, all relevant
excited states for considered perturbations were obtained as
so-called 1p-1h or 2p-2h excitations of the ground state [3].

B. Perturbing the Richardson model

The other emblematic example of Richardson-Gaudin
models is the Richardson (or reduced BCS) Hamiltonian as
given by

ĤBCS =
L∑

i=1

εiS
0
i + g

L∑
i,j=1

S
†
i Sj . (26)

This Hamiltonian can be used to describe fermion pairing
in, e.g., nuclear pairing and superconductivity [86], and is
exactly solvable under the key assumption that the pairing
interactions are uniform and fully determined by a single
pairing constant g [15,16]. Because of this exact solvability,
this model has recently become a testing ground for novel
many-body methods focusing on pairing interactions [46,107–
109]. It is worthwhile to stress that the proposed integrability-
based method will return the exact ground-state energy of
this model by construction. Moving away from integrability,
the restriction of uniform interactions can be relaxed by
introducing nonuniformities in a perturbative way, resulting in
a more physical model. The Hamiltonians under consideration

are of the form

ĤBCS =
L∑

i=1

εiS
0
i +

L∑
i,j=1

GijS
†
i Sj . (27)

While such models are solvable by U (1)-breaking BCS
mean-field theory in the thermodynamic limit, it is important
to obtain an accurate description for medium-size systems
as well [46,108,109]. In fact, it has been shown that the
Richardson-Gaudin equations are equivalent to the BCS
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FIG. 9. Results for the inhomogeneous BCS model. Top: Varia-
tional energy, exact ground-state energy, and first-order perturbation
theory for different values of the perturbation strength. Bottom:
Overlap of the exact ground state with the variational ground state
and the ground state of the unperturbed model.
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FIG. 10. Results for the inhomogeneous BCS model. Position of �ε (squares) and �λ (dots) for the variationally optimized wave function in
the complex plane at different values of the perturbation strength.

mean-field equations for thermodynamically large systems,
and as such the BCS wave function and the Bethe ansatz wave
function coincide in this limit [53]. The results are presented in
Fig. 9 for an interaction matrix Gij = g + μgij , with g = −1
and gij random numbers uniformly distributed over the interval
[0,1]. We again take system size L = 12, parameters according
to the picket-fence model and take L = 2N corresponding to
half-filling.

The same behavior as for the central spin model can be
observed, where it should be noted that the error on the
energy and overlap is much smaller compared to the results
for the central spin model. This implies that a general pairing
Hamiltonian can already be efficiently approximated by taking
the average pairing interaction as single parameter, consistent
with the success of BCS mean-field theory in the description of
such Hamiltonians. From the structure of the optimized wave
function (Fig. 10), it can be seen that only minor modifications
are necessary in order for the wave function to provide an
accurate description.

V. CONCLUSION AND DISCUSSION

In this work, we showed how the ground states of noninte-
grable Hamiltonians consisting of an integrable (Richardson-
Gaudin) Hamiltonian and an integrability-breaking
Hamiltonian can be approximated by modified eigenstates
of related integrable Hamiltonians. Due to the inherent
structure of these Bethe ansatz eigenstates, it is possible
to efficiently calculate and minimize the expectation value
of given Hamiltonians with respect to these states, and we
showed how such a variational approach can be implemented.
This was then shown to provide accurate results for select
perturbed nonintegrable Hamiltonians, where the accuracy of
the variational approach is only limited by the appearance
of avoided level crossings in the spectrum of nonintegrable
Hamiltonians. When the exact ground state can be considered a
perturbation of the nonperturbed integrable Hamiltonian (i.e.,
there are no avoided crossings), the variational optimization
starting from the nonperturbed ground state will provide
accurate results. The effects of such crossings can then
be taken into account by variationally optimizing excited
states of the integrable Hamiltonian instead of restricting

the optimization to the ground state of the integrable
model.

At present the selection of the proper excited state on
which to perform the variational optimization is the main
bottleneck in the procedure. One can envision several methods
to cope with this problem. The method used in this paper is to
capitalize on the physical insight in the perturbation. Often, the
integrability-breaking term in the Hamiltonian itself has a clear
physical interpretation, and it is only the competition between
the integrable and nonintegrable part of the Hamiltonian
which is the main cause for complications. Consequently,
the correct choice of variational manifold among the excited
states can be deduced from the ground-state structure of the
integrability-breaking term. This is the approach used in the
present paper; however, other methods will be explored in
the future, making use of ideas of stochastic sampling, the
correspondence with coupled-cluster approaches [37,41–46]
or the pp-Tamm-Dancoff approximation adiabatic connection
[102,110].
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APPENDIX: EXPECTATION VALUES
FROM INNER PRODUCTS

In this Appendix, we show how to obtain determinant
expressions for expectation values starting from the inner
product between two Bethe states. This construction is based
on the commutation properties of the Gaudin algebra, and we
will illustrate this for the expectation value of Sz

i . Then we
have

[
S0

i ,S
†(λα)

] = S
†
i

εi − λα

,
[[

S0
i ,S

†(λα)
]
,S†(λβ)

] = 0, (A1)
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where we can rewrite the first commutator as

[
S0

i ,S
†(λα)

] = lim
λ→εi

εi − λ

εi − λα

S†(λ). (A2)

The action of S0
i on a Bethe state is then given by

S0
i |λ1 . . . λN 〉 = S0

i

N∏
α=1

S†(λα) |↓ . . . ↓〉

=
N∑

α=1

N∏
β �=α

S†(λβ)
[
S0

i ,S
†(λα)

] |↓ . . . ↓〉

+
N∏

α=1

S†(λα)S0
i |↓ . . . ↓〉

= lim
λ→εi

N∑
α=1

εi − λ

εi − λα

S†(λ)
N∏

β �=α

S†(λβ) |↓ . . . ↓〉

− 1
2

N∏
α=1

S†(λα) |↓ . . . ↓〉 , (A3)

where the structure of Bethe states can again be recognized,
with the variable λα replaced by λ, making them off-shell and

allowing this to be rewritten as

S0
i |λ1 . . . λN 〉 = lim

λ→εi

N∑
α=1

εi − λ

εi − λα

|λ1 . . . λ
α
. . . λN 〉

− 1

2
|λ1 . . . λN 〉 . (A4)

Expectation values now follow by taking the inner product of
this state and |λ1 . . . λN 〉, and this can be expressed as a sum
of determinants once we have an expression for

lim
λ→εi

εi − λ

εi − λα

〈λ1 . . . λN |λ1 . . . λ
α
. . . λN 〉 , (A5)

which follows from the known inner product of an on-shell
state (|λ1 . . . λN 〉) with an off-shell state (|λ1 . . . λ

α
. . . λN 〉). In

many cases, this sum over determinants can even be further
simplied, as shown in Refs. [9–11]. More specifically, for a
single-spin operator, the number of determinants that need to
be calculated equals N . For a two-spin operator Sz

i S
z
j or S

†
i Sj ,

the number of determinants will be given by N2 when applying
a similar commutator scheme [9,10]. However, starting from
the Slavnov determinant this summation can again be reduced
to the evaluation of 2N (for Sz

i S
z
j ) or N (for S

†
i Sj ) determinants

through some algebraic manipulations [11]. For a given
Hamiltonian containing Ls (Ld ) single-spin (double-spin)
operators, the expected scaling of O(LsN + LdN

2) can hence
be reduced to O(LsN + LdN ). For the central spin model,
this final expression results in a total number of determinants
scaling as O(LN ), whereas this number scales as O(L2N ) for
the reduced BCS Hamiltonian.
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[68] F. Lange, Z. Lenarčič, and A. Rosch, Nat. Commun. 8, 15767

(2017).
[69] J.-S. Caux and R. M. Konik, Phys. Rev. Lett. 109, 175301

(2012).
[70] M. V. Berry and M. Tabor, Proc. R. Soc. London A 356, 375

(1977).
[71] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett.

52, 1 (1984).
[72] D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, and G. Montam-

baux, Europhys. Lett. 22, 537 (1993).
[73] D. A. Rabson, B. N. Narozhny, and A. J. Millis, Phys. Rev. B

69, 054403 (2004).
[74] A. Relaño, J. Dukelsky, J. M. G. Gómez, and J. Retamosa,

Phys. Rev. E 70, 026208 (2004).
[75] L. F. Santos and M. Rigol, Phys. Rev. E 81, 036206 (2010).
[76] G. P. Brandino, R. M. Konik, and G. Mussardo, J. Stat. Mech.:

Theory Exp. (2010) P07013.
[77] L. Amico, A. Di Lorenzo, and A. Osterloh, Phys. Rev. Lett.

86, 5759 (2001).
[78] L. Amico, A. Di Lorenzo, and A. Osterloh, Nucl. Phys. B 614,

449 (2001).
[79] J. von Delft and R. Poghossian, Phys. Rev. B 66, 134502

(2002).
[80] T. Skrypnyk, Phys. Lett. A 334, 390 (2005).
[81] T. Skrypnyk, J. Phys. A: Math. Theor. 40, 13337 (2007).
[82] T. Skrypnyk, J. Phys. A: Math. Theor. 42, 472004 (2009).
[83] T. Skrypnyk, J. Math. Phys. 50, 033504 (2009).
[84] T. Skrypnyk, Nucl. Phys. B 806, 504 (2009).
[85] C. Dunning, M. Ibañez, J. Links, G. Sierra, and S.-Y. Zhao,

J. Stat. Mech. (2010) P08025.
[86] I. Talmi, Simple Models of Complex Nuclei (CRC Press, Boca

Raton, FL, 1993).
[87] P. W. Claeys, D. Van Neck, and S. De Baerdemacker, SciPost

Phys. 3, 028 (2017).
[88] S. Rombouts, D. Van Neck, and J. Dukelsky, Phys. Rev. C 69

061303 (2004).
[89] X. Guan, K. D. Launey, M. Xie, L. Bao, F. Pan, and J. P.

Draayer, Phys. Rev. C 86, 024313 (2012).
[90] F. Pan, B. Li, Y.-Z. Zhang, and J. P. Draayer, Phys. Rev. C 88,

034305 (2013).
[91] X. Guan, K. D. Launey, M. Xie, L. Bao, F. Pan, and J. P.

Draayer, Comput. Phys. Commun. 185, 2714 (2014).

155149-13

https://doi.org/10.1103/PhysRevB.88.085323
https://doi.org/10.1103/PhysRevB.88.085323
https://doi.org/10.1103/PhysRevB.88.085323
https://doi.org/10.1103/PhysRevB.88.085323
https://doi.org/10.1103/PhysRevLett.110.040405
https://doi.org/10.1103/PhysRevLett.110.040405
https://doi.org/10.1103/PhysRevLett.110.040405
https://doi.org/10.1103/PhysRevLett.110.040405
https://doi.org/10.1103/PhysRevB.90.155117
https://doi.org/10.1103/PhysRevB.90.155117
https://doi.org/10.1103/PhysRevB.90.155117
https://doi.org/10.1103/PhysRevB.90.155117
https://doi.org/10.1103/PhysRevC.84.061301
https://doi.org/10.1103/PhysRevC.84.061301
https://doi.org/10.1103/PhysRevC.84.061301
https://doi.org/10.1103/PhysRevC.84.061301
https://doi.org/10.1088/1742-6596/533/1/012058
https://doi.org/10.1088/1742-6596/533/1/012058
https://doi.org/10.1088/1742-6596/533/1/012058
https://doi.org/10.1088/1742-6596/533/1/012058
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1016/j.comptc.2012.09.030
https://doi.org/10.1016/j.comptc.2012.09.030
https://doi.org/10.1016/j.comptc.2012.09.030
https://doi.org/10.1016/j.comptc.2012.09.030
https://doi.org/10.1021/ct300902c
https://doi.org/10.1021/ct300902c
https://doi.org/10.1021/ct300902c
https://doi.org/10.1021/ct300902c
https://doi.org/10.1021/jp502127v
https://doi.org/10.1021/jp502127v
https://doi.org/10.1021/jp502127v
https://doi.org/10.1021/jp502127v
https://doi.org/10.1103/PhysRevB.89.201106
https://doi.org/10.1103/PhysRevB.89.201106
https://doi.org/10.1103/PhysRevB.89.201106
https://doi.org/10.1103/PhysRevB.89.201106
https://doi.org/10.1021/ct500759q
https://doi.org/10.1021/ct500759q
https://doi.org/10.1021/ct500759q
https://doi.org/10.1021/ct500759q
https://doi.org/10.1039/c3cp53301h
https://doi.org/10.1039/c3cp53301h
https://doi.org/10.1039/c3cp53301h
https://doi.org/10.1039/c3cp53301h
https://doi.org/10.1063/1.4904384
https://doi.org/10.1063/1.4904384
https://doi.org/10.1063/1.4904384
https://doi.org/10.1063/1.4904384
https://doi.org/10.1063/1.4880819
https://doi.org/10.1063/1.4880819
https://doi.org/10.1063/1.4880819
https://doi.org/10.1063/1.4880819
https://doi.org/10.1103/PhysRevB.93.125124
https://doi.org/10.1103/PhysRevB.93.125124
https://doi.org/10.1103/PhysRevB.93.125124
https://doi.org/10.1103/PhysRevB.93.125124
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.21468/SciPostPhys.3.1.007
https://doi.org/10.21468/SciPostPhys.3.1.007
https://doi.org/10.21468/SciPostPhys.3.1.007
https://doi.org/10.21468/SciPostPhys.3.1.007
https://doi.org/10.1016/S0550-3213(02)00317-6
https://doi.org/10.1016/S0550-3213(02)00317-6
https://doi.org/10.1016/S0550-3213(02)00317-6
https://doi.org/10.1016/S0550-3213(02)00317-6
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1016/S0370-1573(00)00099-5
https://doi.org/10.1016/S0370-1573(00)00099-5
https://doi.org/10.1016/S0370-1573(00)00099-5
https://doi.org/10.1016/S0370-1573(00)00099-5
https://doi.org/10.1016/S0375-9474(97)00418-1
https://doi.org/10.1016/S0375-9474(97)00418-1
https://doi.org/10.1016/S0375-9474(97)00418-1
https://doi.org/10.1016/S0375-9474(97)00418-1
https://doi.org/10.1016/0550-3213(96)00265-9
https://doi.org/10.1016/0550-3213(96)00265-9
https://doi.org/10.1016/0550-3213(96)00265-9
https://doi.org/10.1016/0550-3213(96)00265-9
https://doi.org/10.1016/j.physletb.2005.05.002
https://doi.org/10.1016/j.physletb.2005.05.002
https://doi.org/10.1016/j.physletb.2005.05.002
https://doi.org/10.1016/j.physletb.2005.05.002
https://doi.org/10.1016/S0550-3213(98)00063-7
https://doi.org/10.1016/S0550-3213(98)00063-7
https://doi.org/10.1016/S0550-3213(98)00063-7
https://doi.org/10.1016/S0550-3213(98)00063-7
https://doi.org/10.1016/j.nuclphysb.2006.05.007
https://doi.org/10.1016/j.nuclphysb.2006.05.007
https://doi.org/10.1016/j.nuclphysb.2006.05.007
https://doi.org/10.1016/j.nuclphysb.2006.05.007
https://doi.org/10.1016/j.nuclphysb.2005.12.024
https://doi.org/10.1016/j.nuclphysb.2005.12.024
https://doi.org/10.1016/j.nuclphysb.2005.12.024
https://doi.org/10.1016/j.nuclphysb.2005.12.024
https://doi.org/10.1088/1751-8121/aa7d41
https://doi.org/10.1088/1751-8121/aa7d41
https://doi.org/10.1088/1751-8121/aa7d41
https://doi.org/10.1088/1751-8121/aa7d41
https://doi.org/10.1103/PhysRevB.44.9772
https://doi.org/10.1103/PhysRevB.44.9772
https://doi.org/10.1103/PhysRevB.44.9772
https://doi.org/10.1103/PhysRevB.44.9772
https://doi.org/10.1143/JPSJ.63.3598
https://doi.org/10.1143/JPSJ.63.3598
https://doi.org/10.1143/JPSJ.63.3598
https://doi.org/10.1143/JPSJ.63.3598
https://doi.org/10.1103/PhysRevB.60.4043
https://doi.org/10.1103/PhysRevB.60.4043
https://doi.org/10.1103/PhysRevB.60.4043
https://doi.org/10.1103/PhysRevB.60.4043
https://doi.org/10.1103/PhysRevB.92.125136
https://doi.org/10.1103/PhysRevB.92.125136
https://doi.org/10.1103/PhysRevB.92.125136
https://doi.org/10.1103/PhysRevB.92.125136
http://arxiv.org/abs/arXiv:1301.0308
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1103/PhysRevLett.109.175301
https://doi.org/10.1103/PhysRevLett.109.175301
https://doi.org/10.1103/PhysRevLett.109.175301
https://doi.org/10.1103/PhysRevLett.109.175301
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1209/0295-5075/22/7/010
https://doi.org/10.1209/0295-5075/22/7/010
https://doi.org/10.1209/0295-5075/22/7/010
https://doi.org/10.1209/0295-5075/22/7/010
https://doi.org/10.1103/PhysRevB.69.054403
https://doi.org/10.1103/PhysRevB.69.054403
https://doi.org/10.1103/PhysRevB.69.054403
https://doi.org/10.1103/PhysRevB.69.054403
https://doi.org/10.1103/PhysRevE.70.026208
https://doi.org/10.1103/PhysRevE.70.026208
https://doi.org/10.1103/PhysRevE.70.026208
https://doi.org/10.1103/PhysRevE.70.026208
https://doi.org/10.1103/PhysRevE.81.036206
https://doi.org/10.1103/PhysRevE.81.036206
https://doi.org/10.1103/PhysRevE.81.036206
https://doi.org/10.1103/PhysRevE.81.036206
https://doi.org/10.1088/1742-5468/2010/07/P07013
https://doi.org/10.1088/1742-5468/2010/07/P07013
https://doi.org/10.1088/1742-5468/2010/07/P07013
https://doi.org/10.1103/PhysRevLett.86.5759
https://doi.org/10.1103/PhysRevLett.86.5759
https://doi.org/10.1103/PhysRevLett.86.5759
https://doi.org/10.1103/PhysRevLett.86.5759
https://doi.org/10.1016/S0550-3213(01)00385-6
https://doi.org/10.1016/S0550-3213(01)00385-6
https://doi.org/10.1016/S0550-3213(01)00385-6
https://doi.org/10.1016/S0550-3213(01)00385-6
https://doi.org/10.1103/PhysRevB.66.134502
https://doi.org/10.1103/PhysRevB.66.134502
https://doi.org/10.1103/PhysRevB.66.134502
https://doi.org/10.1103/PhysRevB.66.134502
https://doi.org/10.1016/j.physleta.2004.11.041
https://doi.org/10.1016/j.physleta.2004.11.041
https://doi.org/10.1016/j.physleta.2004.11.041
https://doi.org/10.1016/j.physleta.2004.11.041
https://doi.org/10.1088/1751-8113/40/44/014
https://doi.org/10.1088/1751-8113/40/44/014
https://doi.org/10.1088/1751-8113/40/44/014
https://doi.org/10.1088/1751-8113/40/44/014
https://doi.org/10.1088/1751-8113/42/47/472004
https://doi.org/10.1088/1751-8113/42/47/472004
https://doi.org/10.1088/1751-8113/42/47/472004
https://doi.org/10.1088/1751-8113/42/47/472004
https://doi.org/10.1063/1.3072912
https://doi.org/10.1063/1.3072912
https://doi.org/10.1063/1.3072912
https://doi.org/10.1063/1.3072912
https://doi.org/10.1016/j.nuclphysb.2008.07.017
https://doi.org/10.1016/j.nuclphysb.2008.07.017
https://doi.org/10.1016/j.nuclphysb.2008.07.017
https://doi.org/10.1016/j.nuclphysb.2008.07.017
https://doi.org/10.1088/1742-5468/2010/08/P08025
https://doi.org/10.1088/1742-5468/2010/08/P08025
https://doi.org/10.1088/1742-5468/2010/08/P08025
https://doi.org/10.21468/SciPostPhys.3.4.028
https://doi.org/10.21468/SciPostPhys.3.4.028
https://doi.org/10.21468/SciPostPhys.3.4.028
https://doi.org/10.21468/SciPostPhys.3.4.028
https://doi.org/10.1103/PhysRevC.69.061303
https://doi.org/10.1103/PhysRevC.69.061303
https://doi.org/10.1103/PhysRevC.69.061303
https://doi.org/10.1103/PhysRevC.69.061303
https://doi.org/10.1103/PhysRevC.86.024313
https://doi.org/10.1103/PhysRevC.86.024313
https://doi.org/10.1103/PhysRevC.86.024313
https://doi.org/10.1103/PhysRevC.86.024313
https://doi.org/10.1103/PhysRevC.88.034305
https://doi.org/10.1103/PhysRevC.88.034305
https://doi.org/10.1103/PhysRevC.88.034305
https://doi.org/10.1103/PhysRevC.88.034305
https://doi.org/10.1016/j.cpc.2014.05.023
https://doi.org/10.1016/j.cpc.2014.05.023
https://doi.org/10.1016/j.cpc.2014.05.023
https://doi.org/10.1016/j.cpc.2014.05.023


CLAEYS, CAUX, VAN NECK, AND DE BAERDEMACKER PHYSICAL REVIEW B 96, 155149 (2017)

[92] C. Qi and T. Chen, Phys. Rev. C 92, 051304
(2015).

[93] O. Babelon and D. Talalaev, J. Stat. Mech: Theory Exp. (2007)
P06013.

[94] A. Faribault, O. El Araby, C. Sträter, and V. Gritsev, Phys. Rev.
B 83, 235124 (2011).

[95] O. El Araby, V. Gritsev, and A. Faribault, Phys. Rev. B 85,
115130 (2012).

[96] H. Tschirhart and A. Faribault, J. Phys. A: Math. Theor. 47,
405204 (2014).

[97] A. Faribault, H. Tschirhart, and N. Muller, J. Phys. A: Math.
Theor. 49, 185202 (2016).

[98] P. W. Claeys, S. De Baerdemacker, M. Van Raemdonck,
and D. Van Neck, J. Phys. A: Math. Theor. 48, 425201
(2015).

[99] A. Faribault and H. Tschirhart, SciPost Phys. 3, 009
(2017).

[100] R. Richardson, Phys. Rev. 141, 949 (1966).

[101] F. Domínguez, C. Esebbag, and J. Dukelsky, J. Phys. A: Math.
Gen. 39, 11349 (2006).

[102] S. De Baerdemacker, Phys. Rev. C 86, 044332 (2012).
[103] P. Dorey, C. Dunning, and R. Tateo, J. Phys. A: Math. Theor.

40, R205 (2007).
[104] J. G. Hirsch, A. Mariano, J. Dukelsky, and P. Schuck,

Ann. Phys. 296, 187 (2002).
[105] B. Erbe and J. Schliemann, Phys. Rev. Lett. 105, 177602

(2010).
[106] J. Schliemann, Phys. Rev. B 81, 081301 (2010).
[107] M. Sambataro and N. Sandulescu, J. Phys. G 40, 055107

(2013).
[108] J. Ripoche, D. Lacroix, D. Gambacurta, J.-P. Ebran, and T.

Duguet, Phys. Rev. C 95, 014326 (2017).
[109] J. A. Gomez, T. M. Henderson, and G. E. Scuseria, Mol. Phys.,

1 (2017).
[110] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer Science and Business Media, Berlin, 2004).

155149-14

https://doi.org/10.1103/PhysRevC.92.051304
https://doi.org/10.1103/PhysRevC.92.051304
https://doi.org/10.1103/PhysRevC.92.051304
https://doi.org/10.1103/PhysRevC.92.051304
https://doi.org/10.1088/1742-5468/2007/06/P06013
https://doi.org/10.1088/1742-5468/2007/06/P06013
https://doi.org/10.1088/1742-5468/2007/06/P06013
https://doi.org/10.1103/PhysRevB.83.235124
https://doi.org/10.1103/PhysRevB.83.235124
https://doi.org/10.1103/PhysRevB.83.235124
https://doi.org/10.1103/PhysRevB.83.235124
https://doi.org/10.1103/PhysRevB.85.115130
https://doi.org/10.1103/PhysRevB.85.115130
https://doi.org/10.1103/PhysRevB.85.115130
https://doi.org/10.1103/PhysRevB.85.115130
https://doi.org/10.1088/1751-8113/47/40/405204
https://doi.org/10.1088/1751-8113/47/40/405204
https://doi.org/10.1088/1751-8113/47/40/405204
https://doi.org/10.1088/1751-8113/47/40/405204
https://doi.org/10.1088/1751-8113/49/18/185202
https://doi.org/10.1088/1751-8113/49/18/185202
https://doi.org/10.1088/1751-8113/49/18/185202
https://doi.org/10.1088/1751-8113/49/18/185202
https://doi.org/10.1088/1751-8113/48/42/425201
https://doi.org/10.1088/1751-8113/48/42/425201
https://doi.org/10.1088/1751-8113/48/42/425201
https://doi.org/10.1088/1751-8113/48/42/425201
https://doi.org/10.21468/SciPostPhys.3.2.009
https://doi.org/10.21468/SciPostPhys.3.2.009
https://doi.org/10.21468/SciPostPhys.3.2.009
https://doi.org/10.21468/SciPostPhys.3.2.009
https://doi.org/10.1103/PhysRev.141.949
https://doi.org/10.1103/PhysRev.141.949
https://doi.org/10.1103/PhysRev.141.949
https://doi.org/10.1103/PhysRev.141.949
https://doi.org/10.1088/0305-4470/39/37/002
https://doi.org/10.1088/0305-4470/39/37/002
https://doi.org/10.1088/0305-4470/39/37/002
https://doi.org/10.1088/0305-4470/39/37/002
https://doi.org/10.1103/PhysRevC.86.044332
https://doi.org/10.1103/PhysRevC.86.044332
https://doi.org/10.1103/PhysRevC.86.044332
https://doi.org/10.1103/PhysRevC.86.044332
https://doi.org/10.1088/1751-8113/40/32/R01
https://doi.org/10.1088/1751-8113/40/32/R01
https://doi.org/10.1088/1751-8113/40/32/R01
https://doi.org/10.1088/1751-8113/40/32/R01
https://doi.org/10.1006/aphy.2002.6230
https://doi.org/10.1006/aphy.2002.6230
https://doi.org/10.1006/aphy.2002.6230
https://doi.org/10.1006/aphy.2002.6230
https://doi.org/10.1103/PhysRevLett.105.177602
https://doi.org/10.1103/PhysRevLett.105.177602
https://doi.org/10.1103/PhysRevLett.105.177602
https://doi.org/10.1103/PhysRevLett.105.177602
https://doi.org/10.1103/PhysRevB.81.081301
https://doi.org/10.1103/PhysRevB.81.081301
https://doi.org/10.1103/PhysRevB.81.081301
https://doi.org/10.1103/PhysRevB.81.081301
https://doi.org/10.1088/0954-3899/40/5/055107
https://doi.org/10.1088/0954-3899/40/5/055107
https://doi.org/10.1088/0954-3899/40/5/055107
https://doi.org/10.1088/0954-3899/40/5/055107
https://doi.org/10.1103/PhysRevC.95.014326
https://doi.org/10.1103/PhysRevC.95.014326
https://doi.org/10.1103/PhysRevC.95.014326
https://doi.org/10.1103/PhysRevC.95.014326
https://doi.org/10.1080/00268976.2017.1302610
https://doi.org/10.1080/00268976.2017.1302610
https://doi.org/10.1080/00268976.2017.1302610



