Pentanol: A Promising Fuel and Petrochemical Building Block

Kevin M. Van Geem, Cato A.R. Pappijn, Ruben Van de Vijver, Judit Zádor

Laboratory for Chemical Technology, Ghent University, Ghent, Belgium
Sandia National Laboratories, Livermore, CA, USA

AIChe Spring Meeting, San Antonio, TX, USA, 28/03/2017
Current energy industry

• Combustion is the main source of energy
• Combustion fuels from fossil resources
• Global energy demand and use keep increasing

Primary energy consumption by fuel

Source: BP Energy Outlook
Source: EIA, 2016
Current energy industry

- Combustion is the main source of energy
- Combustion fuels from fossil resources
- Global energy demand and use keep increasing

- Greenhouse gas emissions
- Small particles formation

Source: globalclimate.ucr.edu
Source: NASA Earth Observatory
Current energy industry
• Combustion is the main source of energy
• Combustion fuels from fossil resources
• Global energy demand and use keep increasing

False Greenhouse gas emissions
False Soot particles formation

→ Need for alternatives, i.e. bio-derived resources
→ Need for better understanding
 → Underlying combustion/pyrolysis chemistry
 → Engine/reactor technology
Introduction

Why use pentanol?
- Higher energy content
- Higher boiling point
- Less hygroscopic
- Several possible production processes

This study
- Pyrolysis of pentanol in flow reactor
- Kinetic model building using Genesys
- Reactor simulations and model validation
Most important aspects:

- Tubular reactor: $L = 1.5m$, $D = 0.006m$, Incoloy HT
- Analysis equipment: GCxGC-FID/(TOF-MS) Light Oxygenates Analyser Refinery Gas Analyser
- Conditions: $T = 913 - 1073K$; $P = 0.17$ MPa

- Pentanol flow rate $1.3-3.3 \times 10^{-2} \text{ g s}^{-1}$
- Pentanol inlet mole fraction $0.2-0.5$
Kinetic model generation

Microkinetic model
- Only includes elementary steps
- The number of species and reactions can become very large
- Manual generation nearly impossible
→ Use of automatic kinetic model generation software
Kinetic model generation: Genesys

Use of chemoinformatics
- Molecular representation
- Graph and group theory
- Not tailored to specific applications

Molecules
- Unique Representation
- Thermo-dynamics

Reaction families
- Reaction Identification
- Kinetic Parameters

Reaction rules
- Kinetic model enlargement
- Termination criterion

OpenBabel

CDK
Kinetic model generation: Termination

Rule-based

- No reactor simulations
- No dependence on rate coefficients
- Constraints can be defined at several levels (atoms, functional groups, reactants, products), i.e. wide applicability

- Too many unimportant reactions in final model
- Need for user expertise

Rate-based

- Only include important reactions
- More accurate final model

- Dependent on kinetics, thus need for accurate rate coefficients
- Edge can become very large: computational limitations (memory)

Genesys uses a combination of both

- Keeps size of edge manageable through constraints
- Accurate rate coefficients via group additivity from CBSQB3 calculations
- No inclusion of redundant pathways
Thermodynamic data

2-methylnonane

Atoms in large molecules

Group additivity

Atoms in small molecules with similar surroundings

Group definition based on surroundings (ligands)

Additivity:

\[
\begin{align*}
\text{>Additivity:} & \quad \text{[Diagram]} \\
& = 1 \text{ green} + 6 \text{ blue} + 3 \text{ orange}
\end{align*}
\]
Kinetic data

Rate coefficients

Arrhenius equation

\[k(T) = \kappa n_e \tilde{A} \exp \left(-\frac{E_a}{RT} \right) \]

Group additivity for Arrhenius parameters

\[E_a = E_{a,\text{ref}} + \sum_{i=1}^{n} \Delta GAV^{0}_{Ea}(X_i) \]

\[\log \tilde{A} = \log \tilde{A}_{\text{ref}} + \sum_{i=1}^{n} \Delta GAV^{0}_{\log \tilde{A}}(X_i) \]

\[\kappa = 1 + \left(\frac{162}{T} \right)^{3} \cdot E_{a,exo} + 2.71 \cdot 10^{-6} \cdot \exp \left(-\frac{T - 300}{26} \right) \cdot E_{a,exo}^{4} \]

\[n_e = \frac{n_{opt, \dagger \dagger}}{\prod_{r} \sigma_{r}} \cdot \prod_{r} \sigma_{r} \]

ΔGAV° Library

<table>
<thead>
<tr>
<th>SMARTS</th>
<th>C_1</th>
<th>log(A)</th>
<th>E_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-(H)</td>
<td>+0.101</td>
<td>-20.2</td>
<td></td>
</tr>
<tr>
<td>S-(C)</td>
<td>-0.273</td>
<td>+28.5</td>
<td></td>
</tr>
<tr>
<td>S-(CS)</td>
<td>-0.789</td>
<td>+22.0</td>
<td></td>
</tr>
<tr>
<td>S-(Ct)</td>
<td>+0.566</td>
<td>+35.1</td>
<td></td>
</tr>
<tr>
<td>S-(Cb)</td>
<td>+0.406</td>
<td>+24.3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference reaction

\[\text{CH}_3\text{S}^* + \text{CH}_4 = \text{CH}_3\text{SH}^* + \text{CH}_3 \]

\[\log(A) = 7.970 \quad 107.6 \]

\[\Delta GAV° \text{ Library} \]

<table>
<thead>
<tr>
<th>SMARTS C_1</th>
<th>log(A)</th>
<th>E_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-(H)_{3}(C)</td>
<td>-0.300</td>
<td>-19.4</td>
</tr>
<tr>
<td>C-(C)_{2}(H)</td>
<td>-0.101</td>
<td>-36.3</td>
</tr>
<tr>
<td>C-(H)_{2}</td>
<td>+0.475</td>
<td>+31.1</td>
</tr>
<tr>
<td>C_{r}(H)</td>
<td>+0.251</td>
<td>+9.5</td>
</tr>
<tr>
<td>C_{r}(C)</td>
<td>+0.027</td>
<td>-7.9</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pentanol kinetic model generation

Hydrogen abstractions

\[
R_1 H + \dot{R}_2 \rightarrow \dot{R}_1 + R_2 H
\]

\[
H R_1 \rightarrow R_2 \rightarrow R_1 \rightarrow R_2 H
\]

Beta-scissions

\[
\begin{align*}
\cdot & R_2 R_3 \rightarrow R_1 = R_2 + \dot{R}_3 \\
\cdot O & R \rightarrow O=\dot{C} + \dot{R}
\end{align*}
\]

Alpha-scissions

Base mechanism from literature
Initial homolytic bond scissions from literature
Final Model

- 448 species
- 4752 reactions
Additional \textit{ab initio} calculations

\textbf{KinBot}

Code for automatically exploring a Potential Energy Surface (PES)
Identifies stationary points directly using 3D coordinates of atoms
Reactions are searched for via possible transformations programmed in the code

- Systematic and exhaustive searches
- On-the-fly coupling with Gaussian
- Off-line coupling with MolPro and Master Equation codes
- Both for uni- and bimolecular reactions
Additional *ab initio* calculations

C₅H₁₁O PES

Automatically explored using the KinBot software

Geometry optimization
M062X/6-311++G(d,p)

Energy calculation
UCCSD(T)-F12/cc-pVTZ-F12

1D hindered rotors

Rate coefficients from master equation calculations
Reactor modeling

1. Conversion [%] vs Temperature [K]
2. Ethene mass fraction [%] vs Conversion [%]
3. Methane mass fraction [%] vs Conversion [%]
4. CO mass fraction [%] vs Conversion [%]

Graphs showing the relationship between various masses and conversions.

References:
Wang et al. Combust Flame. 2015;162(9):3277-3287
Rate of production analysis

Initial chemistry

Radical chemistry
Pentanol as biofuel or chemical building block?

- Many reaction pathways for pyrolysis or combustion
- Use of Genesys for kinetic model construction
- Additional ab initio calculations for the C$_5$H$_{11}$O reactions
- Promising model validation, but more experimental data is also needed
- Combustion behaviour
Acknowledgements

Long Term Structural Methusalemen Funding by the Flemish Government Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen)