MODEL-BASED DESIGN OF REACTION CONDITIONS FOR SEGMENTED COPOLYMER SYNTHESIS BY COMBINING STEP- AND CHAIN-GROWTH POLYMERIZATION

Lies De Keer,1 Thomas Gegenhuber,3 Paul H.M. Van Steenberge,1 Anja S. Goldmann,3 Marie-Françoise Reyniers,1 Christopher Barner-Kowollik,2,3 Dagmar R. D’hooge1,4

1Laboratory for Chemical Technology (LCT), Ghent University
2School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT)
3Preparative Macromolecular Chemistry, Karlsruhe Institute of Technology (KIT)
4Centre for Textile Science and Engineering (CTSE), Ghent University
POLYMER CONJUGATION

Functional groups within polymer backbone:

Conjugation of macromolecular building blocks

Applications: *e.g.* introducing automated degradability in polymer chains

Research questions:
- *adjustable segment length*?
- *synthesis strategy*?
- *reaction conditions*?

=> *model-based design*
2 PHASE SYNTHESIS STRATEGY

1) Step-growth polymerization:
 light-induced Diels-Alder reaction

2) Chain-growth polymerization:
 RAFT polymerization

bifunctional ortho-methyl benzaldehyde (AA)

bisfumarate bearing a trithiocarbonate group (BB)
MULTI-SCALE MODELING STRATEGY

Derboven et al. Macromolecules 2015, 48, 492

KINETIC MONTE CARLO METHOD

Start

input:

- Reactions
- Temperature T
- Initial number of molecules \(n_{Ao}, n_{Bo}, \ldots \)
- Intrinsic kinetic parameters \(k_{chem}, f_{chem} \)
- Diffusion parameters for calculation of \(D_{AB} \)
- Total polymerization time \(t_{Tot} \)

Calculation of:

- Volume \(V = f(T, n_{Ao}, n_{Bo}, \ldots) \)
- Concentrations \(C = f(n_{Ao}, n_{Bo}, \ldots, V, N_A) \)
- Apparent “Monte Carlo rate coefficients” for each reaction \(v \)
 \(k_{app,MC}^v = f(k_{chem}, D_{AB}, V, N_A) \)

End

t = t_{Tot}?

yes

Update of:

- Number of molecules: \(n_A, n_B, \ldots \)
- \(t = t + \tau \)

Random selection of:

- Reaction channel (\(\mu \))
- Chain length

Random selection of:

\[\sum_{v=1}^{\mu-1} P(v) \leq r_2 \leq \sum_{v=1}^{\mu} P(v) \]

Calculation of:

- Monte Carlo reaction rates:
 \(R(v) = k_{app,MC}^v n_A n_B \)
- Time between two reactions:
 \(\tau = -ln(r_1) \left[\sum_v R(v) \right]^{-1} \)
- Reaction probabilities:
 \[P(v) = R(v) \left[\sum_v R(v) \right]^{-1} \]

Composite binary trees

OUTLINE

Light-induced step-growth polymerization
- Experimental observations
- Theoretical framework
- Rate coefficients in view of design
- Design step-growth precursor toward high molar masses

Chain extension by RAFT polymerization
- Experimental observations
- Theoretical framework
- Rate coefficients in view of design
- Design toward microstructural control

Conclusions
EXPERIMENTAL OBSERVATIONS

Main:

\[
\text{AA} + \text{BB} \xrightarrow{k_{\text{main}}} \text{P1}
\]

\[
\begin{align*}
\text{Monomer stability} & \\
\text{AA} & \xrightarrow{\text{hv}}, \text{DCM, RT} & \text{BB} & \xrightarrow{\text{hv}}, \text{DCM, RT}
\end{align*}
\]

Side:

\[
\text{AA} + \text{AA} \xrightarrow{k_{\text{diff-AA}}} \text{P2}
\]

\[
\begin{align*}
\text{Monomer stability} & \\
\text{AA} & \xrightarrow{\text{hv}}, \text{DCM, RT} & \text{BB} & \xrightarrow{\text{hv}}, \text{DCM, RT}
\end{align*}
\]

Gegenhuber et al. Macromolecules 2017 50, 6451

\[
\text{R} = \text{H, Ph}
\]

\[
\text{Photoenol}
\]
THEORETICAL FRAMEWORK AND RATE COEFFICIENTS

k_{main} via small molecule study

$k_{\text{self, AA}}$ via monomer stability test
DESIGN STEP-GROWTH PRECURSOR TOWARD HIGH MOLAR MASSES

Equimolar conditions, \(r = \frac{N_{A,0}}{N_{B,0}} = 1 \quad [\text{AA}]_0 = [\text{BB}]_0 = 0.02 \text{ mol L}^{-1} \)

\[
X_W = \frac{1 + p_A}{1 - p_A}
\]

No high molar mass chains
Off-stoichiometric conditions, \(r = \frac{N_{A,0}}{N_{B,0}} = 1.75 \)

\[[AA]_0 = 0.07 \text{ mol L}^{-1}; [BB]_0 = 0.02 \text{ mol L}^{-1} \]
DESIGN STEP-GROWTH PRECURSOR TOWARD HIGH MOLAR MASSES

Incorporation of AA homopolymer after depletion of BB

Longer AA homopolymer chains if excess of AA

Stage 1
Stage 2
DESIGN STEP-GROWTH PRECURSOR TOWARD HIGH MOLAR MASSES

$p_A = 0.1$

$p_A = 0.45$

$p_A = 0.8$

$r = 1$

$r = 1.75$
OUTLINE

Light-induced step-growth polymerization
- Experimental observations
- Theoretical framework
- Rate coefficients in view of design
- Design step-growth precursor toward high molar masses

Chain extension by RAFT polymerization
- Experimental observations
- Theoretical framework
- Rate coefficients in view of design
- Design toward microstructural control

Conclusions
EXPERIMENTAL OBSERVATIONS

Precursor copolymer

- solubility
- still copolymer
- time for p_A

Retention time / min

normalized RI response

$M_w / \text{kg mol}^{-1}$

r

M_w (exp.)

trendline

6 h

Precursor copolymer

Segmented copolymer

P1
THEORETICAL FRAMEWORK

DORMANT CHAINS

<table>
<thead>
<tr>
<th>Precursor polymer</th>
<th>After chain growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{AAA} (n=4n)</td>
<td>D_{A0} (n=3n+k)</td>
</tr>
<tr>
<td>AABB</td>
<td>AABB</td>
</tr>
<tr>
<td>BB</td>
<td>BB</td>
</tr>
</tbody>
</table>

MACRORADICALS

<table>
<thead>
<tr>
<th>D_{mAAA} (n=4n+k)</th>
<th>R_{m0} (n=4n+k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABB</td>
<td>AABB</td>
</tr>
</tbody>
</table>

Bivariate

1. Chain length
2. Number of RAFT moieties
Step-growth polymer precursor for $r = \frac{N_A,0}{N_B,0} = 1.5$

$[\text{Styrene}]_0 = 8.74 \text{ mol L}^{-1}$

$[\text{AIBN}]_0 = 4.85 \times 10^{-3} \text{ mol L}^{-1}$

Step-growth polymer precursor for $r = \frac{N_A,0}{N_B,0} = 1$

$[\text{Styrene}]_0 = 8.74 \text{ mol L}^{-1}$

$[\text{AIBN}]_0 = 4.85 \times 10^{-3} \text{ mol L}^{-1}$
Step-growth precursor

$X_{\text{styrene}} = 1\%$

$X_{\text{styrene}} = 3\%$

$X_{\text{styrene}} = 6\%$

$N_{A,0} = 1.5$

RAFT groups well-located

Incorporation of styrene

Chain extension $\sim \# \text{RAFT}$

\rightarrow Multisegment copolymers with on average 70 monomer units per segment
OUTLINE

Light-induced step-growth polymerization

- Experimental observations
- Theoretical framework
- Rate coefficients in view of design
- Design step-growth precursor toward high molar masses

Chain extension by RAFT polymerization

- Experimental observations
- Theoretical framework
- Rate coefficients in view of design
- Design toward microstructural control

Conclusions
CONCLUSIONS

- **Step-growth polymerization** of benzaldehyde and fumarate monomers containing a trithiocarbonate **RAFT moiety** employing **light-induced Diels Alder chemistry** is introduced.

- Unconventional **off-stochiometric conditions** necessary to compensate for the unavoidable **homopolymerization of the benzaldehyde monomer**.

- The step-growth precursor polymer is **successfully** employed as a **multifunctional CTA** for RAFT polymerization, leading to a **well-defined segmented copolymer**.

- **Polymer synthesis** and **advanced kinetic modeling** strategies are combined to identify optimal synthetic conditions and to predict their structural composition.
ACKNOWLEDGMENTS

- Fund for Scientific Research Flanders (FWO; 1S37517N)
- Karlsruhe Institute of Technology, KIT, Germany: STN and BIFTM
- Queensland University of Technology, Australia
- Australian Research Council
- Baden-Wuerttemberg Stiftung
- Elite Network Bavaria
LABORATORY FOR CHEMICAL TECHNOLOGY

Technologiepark 914, 9052 Ghent, Belgium

E info.lct@ugent.be
T 003293311757

https://www.lct.ugent.be