Effect of the vinyl group on the reactivity of lignin H, G, S units during biomass fast pyrolysis

SriBala Gorugantu¹, Diana C. Vargas¹², Hans-Heinrich Carstensen¹, Kevin M. Van Geem¹, Guy B. Marin¹

¹Laboratory for Chemical Technology, Ghent University, Technologiepark-Zwijnaarde 914 - 9052 Ghent, Belgium
²Departamento de Ingeniería Química, Universidad San Francisco de Quito, Casilla Postal: 17-12-841, Quito, Ecuador
Background
Lignin structure

Coniferyl alcohol (Guaiacyl units)

p-coumaryl alcohol (Hydroxyphenyl units)

Sinapyl alcohol (Syringyl units)
Vinyl core structure

Experiments

- Phenolic acids as precursors to study 4-vinyl guaiacol pyrolysis chemistry
- Hypothesis: Vinyl group will impact reactivity by stabilizing the effect on the radical.
Micropyrolyzer set-up at LCT

TOF-MS

Micro-pyrolyzer

Customized Trace GC 1310

GC × GC
Micropyrolyzer set-up at LCT

- **Micro-pyrolyzer unit**
 - Two stage reactor
 - Large T-range: 40 - 900 °C
 - Multi-shot sample introduction
 - Cryo-trap for fast injection

- **Analytical section**
 - GC×GC - FID/TOF-MS: Simultaneous identification and quantification
 - Customized Trace GC 1310 with 3 Detectors
 - a. *TCD-1*: Water, formaldehyde
 - b. *TCD-2 & PDD*: Permanent gases up to C2
Preliminary Results

Gasification at low temperatures

- Gasification at 150°C
- Gasification at 300°C

Pyrolysis at high temperatures

- Even at high temperatures, the pyrolysis of ferulic acid mainly yields 4-vinyl guaiacol
- Additionally observed products could result from subsequent reactions of 4-vinyl guaiacol
- Planned gas phase studies will clarify this.

TOF-MS chromatogram for the pyrolysis of ferulic acid at 800°C

- Decomposition, not vaporization

Desired

\[
\text{(s)} \xrightarrow{\text{Decomposition}} \text{(g)}
\]

Observed

\[
\text{(s)} \xrightarrow{\text{Decomposition}} \text{(g)} + \text{CO}_2
\]
Future work

- Further investigate the vapourization/gasification of ferulic acid and other model compounds

- Study the influence of vinyl group on the reactivity as a function of temperature by comparing the other lignin model compounds phenol, guaiacol and syringol to their vinyl counterparts

- Investigate the influence of the presence of a methyl ester on reactivity

- Obtain complete experimental data sets to develop suitable kinetic models
Acknowledgments

- The SBO proposal “Bioleum” supported by IWT, Belgium.
- Research Board of Ghent University (BOF).
- The Belgian Development Cooperation through VLIR-UOS.
- European Research Council
LABORATORY FOR CHEMICAL TECHNOLOGY

Technologiepark 914, 9052 Ghent, Belgium

E info.lct@ugent.be
T 003293311757

https://www.lct.ugent.be