Computational fluid dynamics simulations of biomass fast pyrolysis in a gas-solid vortex reactor

Laboratory for Chemical Technology, Ghent University

http://www.lct.UGent.be

ICCK-2017, Chicago, 22/05/2017
Outline

• Biomass fast pyrolysis
• Gas-Solid Vortex Reactors (GSVR)
• Reactive GSVR Design
• Cold flow experiments & simulations
 – Pie vs Full geometry comparisons
• Reactive Simulations
 – Reaction mechanism & simulation details
 – Product yields
 – Radial segregation
• Conclusions & future work
Short gas residence time
Effective heat transfer between gas and solid
Fast removal of generated bio-oil vapours & rapid condensation
Gas-Solid Vortex Reactors

Rotating Fluidized Beds In Static Geometry

Centrifugal Drag

Gas-Solid slip velocities

Packed beds

Process intensification in terms of heat & mass transfer

Short Gas Residence time
Proof of concept, first reactive GSVR

Diagram:
- $L_c = 1\ mm$
- $\gamma = 10^\circ$
- $D_g = 30\ mm$

Dimensions:
- $D_f = 20\ mm$
- $L_R = 15\ mm$
- $D_j = 125\ mm$
- $A - B$
- $A - B$

Image of a fabricated reactive GSVR component.
Reduced backflow due to profiled bottom plate

Pressure drops
~ 9 kPa (slots)
~ 20 kPa (total)

Uniform velocities across slots
Solid: 0.5 mm diameter Aluminium particles

Gas: Compressed Air

Stable, packed, rotating bed of ~ 7mm height
Simulation Geometries

Full Geometry

~ 2.5 x 10^6 cells

Pie Geometry

~ 0.25 x 10^6 cells
Simulation Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Full Geometry</th>
<th>Pie Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air inlet Temp (K)</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Air inlet flow (kg s(^{-1}))</td>
<td>0.0143</td>
<td>0.00179</td>
</tr>
<tr>
<td>Aluminium loading (kg)</td>
<td>0.0107</td>
<td></td>
</tr>
<tr>
<td>Aluminium density (kg m(^{-3}))</td>
<td>2700</td>
<td></td>
</tr>
<tr>
<td>Aluminium dp (m)</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Aluminium feeding</td>
<td>Via UDF (0.0385 < r < 0.0395 m)</td>
<td></td>
</tr>
<tr>
<td>Turbulence Model</td>
<td>Re-Normalization Group k-(\epsilon) (KE-RNG)</td>
<td></td>
</tr>
<tr>
<td>Time Step (s)</td>
<td>2 X 10(^{-5})</td>
<td>10(^{-4})</td>
</tr>
</tbody>
</table>

Simulation Procedure (using ANSYS FLUENT v15.0.7):

Gas only simulation \rightarrow Solid feeding in developed gas field via UDF \rightarrow stable bed data
Pie-geometry can be chosen for computational ease.
Reactive CFD Simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen inlet Temp (K)</td>
<td>842</td>
</tr>
<tr>
<td>Nitrogen inlet flow (kg hr(^{-1}))</td>
<td>18</td>
</tr>
<tr>
<td>Biomass Loading (kg)</td>
<td>0.001 (batch feed)</td>
</tr>
<tr>
<td>Biomass feed temp (K)</td>
<td>842</td>
</tr>
<tr>
<td>Time Step (s)</td>
<td>(10^{-4})</td>
</tr>
<tr>
<td>Turbulence Model</td>
<td>k-ε RNG</td>
</tr>
<tr>
<td>Primary Phase</td>
<td>Gas Mixture (N(_2), pyrolysis gas, bio-oil vapours)</td>
</tr>
<tr>
<td>Secondary Phase – I (Granular)</td>
<td>Biomass Phase</td>
</tr>
<tr>
<td>Secondary Phase – II (Granular)</td>
<td>Char Phase</td>
</tr>
<tr>
<td>Interphase interactions</td>
<td>Various closure models in FLUENT Drag: Gidaspow correlation Heat Transfer: Gunn Correlation</td>
</tr>
</tbody>
</table>
Fast Pyrolysis Reaction Mechanism

Biomass (dry) → v.Hemicellulose → a.Hemicellulose
(47 %)

v.Cellulose → a.Cellulose
(36 %)

v.Lignin → a.Lignin
(17 %)

Biomass Phase
dp = 0.5 mm

Char Phase
dp = 0.2 (0.3 mm)

Char_c + Gas

Char_h + Gas

Char_l + Gas

Bio-oil → Gas

Bio-oil → Gas

Bio-oil → Gas

Key Results

(Results scaled for the full reactor configuration)

<table>
<thead>
<tr>
<th>Product Distribution</th>
<th>Previous (2-D) Simulations1</th>
<th>Current Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Char</td>
<td>14 – 17 %</td>
<td>20.92 %</td>
</tr>
<tr>
<td>Bio-oil</td>
<td>73 – 76 %</td>
<td>68.19 %</td>
</tr>
<tr>
<td>Pyrolysis Gas</td>
<td>8.5 - 9.5 %</td>
<td>10.89 %</td>
</tr>
</tbody>
</table>

Radial Segregation

- Density ratio: 0.9 & dp ratio: 2.5 show positive radial segregation

- Streamlines near the outlet indicate likeliness of char exiting the reactor as compared to biomass

- Segregation is transient and char bed moves radially outwards as biomass reacts.

- To sustain segregation and reduce char residence time in reactor, continuous biomass feeding could be implemented.

Solids v.f. profiles displayed at axial plane: z = 0.01 m

Biomass
dp = 0.5 mm
\(\rho = 450 \text{ kg m}^{-3} \)

Char
dp = 0.2 mm
\(\rho = 500 \text{ kg m}^{-3} \)
Radial Segregation – II

Biomass
$dp = 0.5 \text{ mm}$
$\rho = 450 \text{ kg m}^{-3}$

Biomass
$dp = 0.3 \text{ mm}$
$\rho = 500 \text{ kg m}^{-3}$

Solids v.f. profiles displayed at axial plane: $z = 0.01 \text{ m}$
Conclusions & Future Work

• Pie-geometry suitable for running qualitative reactive simulations. Detailed experimental comparison with simulations necessary.

• Simulations indicate transient radial char and biomass segregations within a range of biomass to char diameter ratios. Leads to process intensification favorable for fast pyrolysis.

• Char, bio-oil yields lesser than those in previous (2-D) reactive simulations, indicating strong influence of end-wall effects.

• Comprehensive reaction mechanisms coupled with CFD for studying favourable products formation.
Acknowledgements

EU RESEARCH FUNDING 2007-2013
7TH FRAMEWORK PROGRAMME

FUNDING BY EU MEMBER STATE

Institute for the Promotion of Innovation by Science and Technology in Flanders

Research Foundation Flanders
Opening new horizons

Vlaams Supercomputer Centrum
Backup Slides
Reactive GSVR Unit
<table>
<thead>
<tr>
<th>Reactiona,b</th>
<th>ΔH_{rxn} (kJ/kg)</th>
<th>A_f (1/s)</th>
<th>E_A (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL$_v$ → CL$_a$</td>
<td>0</td>
<td>2.80×10^{19}</td>
<td>242.4</td>
</tr>
<tr>
<td>HC$_v$ → HC$_a$</td>
<td>0</td>
<td>2.10×10^{16}</td>
<td>186.7</td>
</tr>
<tr>
<td>LG$_v$ → LG$_a$</td>
<td>0</td>
<td>9.60×10^{8}</td>
<td>107.6</td>
</tr>
<tr>
<td>CL$_a$ → Tar</td>
<td>255</td>
<td>3.28×10^{14}</td>
<td>196.5</td>
</tr>
<tr>
<td>HC$_a$ → Tar</td>
<td>255</td>
<td>8.75×10^{15}</td>
<td>202.4</td>
</tr>
<tr>
<td>LG$_a$ → Tar</td>
<td>255</td>
<td>1.50×10^{9}</td>
<td>143.8</td>
</tr>
<tr>
<td>CL$_a$ → 0.35 Char$_c$ + 2.6 Pgas</td>
<td>−20</td>
<td>1.30×10^{10}</td>
<td>150.5</td>
</tr>
<tr>
<td>HC$_a$ → 0.6 Char$_h$ + 1.6 Pgas</td>
<td>−20</td>
<td>2.60×10^{11}</td>
<td>145.7</td>
</tr>
<tr>
<td>LG$_a$ → 0.75 Char$_l$ + Pgas</td>
<td>−20</td>
<td>7.70×10^{6}</td>
<td>111.4</td>
</tr>
<tr>
<td>Tar → 4Pgas</td>
<td>−42</td>
<td>4.25×10^{6}</td>
<td>108.0</td>
</tr>
</tbody>
</table>
Biomass Experiments - I

Nitrogen:
- 12 – 29 g/s
- Slot vel = 75 – 140 m/s

Pinewood
- 500 kg/m³
- Max dimension: 1.5 mm
- 8-10 gm biomass

- Start gas flow rate
- Feed biomass particles
- Wait till bed stabilizes and no particles entrain with gas
- Record PIV data
- 3 repeats
Results - II

Full geometry simulations closer to the experimental data; both numerically and the trend as well.
Velocities in the bed and freeboard match excellently. Near exhaust, values differ, probably due to effect of outlet size (r=0.01m) & shape.

Slightly expanded bed observed in pie geometry: non-inclusion of adjacent slot effects which is more pronounced in full geometry.