Advanced search
1 file | 2.90 MB

Detection, localization and quantification of impact events on a stiffened composite panel with embedded fiber bragg grating sensor networks

(2017) SENSORS. 17(4).
Author
Organization
Abstract
Nowadays, it is possible to manufacture smart composite materials with embedded fiber optic sensors. These sensors can be exploited during the composites' operating life to identify occurring damages such as delaminations. For composite materials adopted in the aviation and wind energy sector, delaminations are most often caused by impacts with external objects. The detection, localization and quantification of such impacts are therefore crucial for the prevention of catastrophic events. In this paper, we demonstrate the feasibility to perform impact identification in smart composite structures with embedded fiber optic sensors. For our analyses, we manufactured a carbon fiber reinforced plate in which we embedded a distributed network of fiber Bragg grating (FBG) sensors. We impacted the plate with a modal hammer and we identified the impacts by processing the FBG data with an improved fast phase correlation (FPC) algorithm in combination with a variable selective least squares (VS-LS) inverse solver approach. A total of 164 impacts distributed on 41 possible impact locations were analyzed. We compared our methodology with the traditional P-Inv based approach. In terms of impact localization, our methodology performed better in 70.7% of the cases. An improvement on the impact time domain reconstruction was achieved in 95.1% of the cases.
Keywords
ALGORITHM, INTERROGATION, PERFORMANCE, fiber Bragg grating, optical sensing, composite materials, impact, identification, inverse methods

Downloads

  • sensors-17-00743.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.90 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Lamberti, Alfredo, Geert Luyckx, Wim Van Paepegem, Ali Rezayat, and Steve Vanlanduit. 2017. “Detection, Localization and Quantification of Impact Events on a Stiffened Composite Panel with Embedded Fiber Bragg Grating Sensor Networks.” Sensors 17 (4).
APA
Lamberti, Alfredo, Luyckx, G., Van Paepegem, W., Rezayat, A., & Vanlanduit, S. (2017). Detection, localization and quantification of impact events on a stiffened composite panel with embedded fiber bragg grating sensor networks. SENSORS, 17(4).
Vancouver
1.
Lamberti A, Luyckx G, Van Paepegem W, Rezayat A, Vanlanduit S. Detection, localization and quantification of impact events on a stiffened composite panel with embedded fiber bragg grating sensor networks. SENSORS. Basel: Mdpi Ag; 2017;17(4).
MLA
Lamberti, Alfredo et al. “Detection, Localization and Quantification of Impact Events on a Stiffened Composite Panel with Embedded Fiber Bragg Grating Sensor Networks.” SENSORS 17.4 (2017): n. pag. Print.
@article{8534703,
  abstract     = {Nowadays, it is possible to manufacture smart composite materials with embedded fiber optic sensors. These sensors can be exploited during the composites' operating life to identify occurring damages such as delaminations. For composite materials adopted in the aviation and wind energy sector, delaminations are most often caused by impacts with external objects. The detection, localization and quantification of such impacts are therefore crucial for the prevention of catastrophic events. In this paper, we demonstrate the feasibility to perform impact identification in smart composite structures with embedded fiber optic sensors. For our analyses, we manufactured a carbon fiber reinforced plate in which we embedded a distributed network of fiber Bragg grating (FBG) sensors. We impacted the plate with a modal hammer and we identified the impacts by processing the FBG data with an improved fast phase correlation (FPC) algorithm in combination with a variable selective least squares (VS-LS) inverse solver approach. A total of 164 impacts distributed on 41 possible impact locations were analyzed. We compared our methodology with the traditional P-Inv based approach. In terms of impact localization, our methodology performed better in 70.7% of the cases. An improvement on the impact time domain reconstruction was achieved in 95.1% of the cases.},
  articleno    = {743},
  author       = {Lamberti, Alfredo and Luyckx, Geert and Van Paepegem, Wim and Rezayat, Ali and Vanlanduit, Steve},
  issn         = {1424-8220},
  journal      = {SENSORS},
  keywords     = {ALGORITHM,INTERROGATION,PERFORMANCE,fiber Bragg grating,optical sensing,composite materials,impact,identification,inverse methods},
  language     = {eng},
  number       = {4},
  pages        = {13},
  publisher    = {Mdpi Ag},
  title        = {Detection, localization and quantification of impact events on a stiffened composite panel with embedded fiber bragg grating sensor networks},
  url          = {http://dx.doi.org/10.3390/s17040743},
  volume       = {17},
  year         = {2017},
}

Altmetric
View in Altmetric
Web of Science
Times cited: