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1      Angiogenesis 

The establishment of a well-organized circulatory system is considered a pivotal step 

in the development of large multicellular organisms. Blood vessels provide the highways 

for blood trafficking including the delivery of oxygen, inflammatory and progenitor cells, 

as well as the removal of waste products (Logsdon et al., 2014). The emergence of blood 

vessels occurs via vasculogenesis and angiogenesis. Vasculogenesis is the de novo 

formation of a primitive vascular plexus from endothelial precursor cells, whereas 

angiogenesis is defined as the process of further expansion and remodeling of a pre-existing 

vascular plexus (Carmeliet, 2000). During early embryonic development, the initial 

vascular plexuses are formed by vasculogenesis, but embryos require angiogenesis during 

organ growth and further development (Carmeliet, 2005).  

Angiogenesis is an important mechanism for vascular network remodeling not only 

in the developing, but also in the adult animal (Riseau, 1997). In adults, angiogenesis 

occurs in conditions requiring an increase in blood and oxygen supply, including 

reproduction (e.g. cyclic organ growth), physiological repair (e.g. wound healing) and 

exercise (Egginton, 2009; Sung et al., 2010). Angiogenesis is also associated with several 

diseases, notably various cancers and ocular disorders, but also cardiovascular diseases, 

chronic inflammation, psoriasis and vascular malformations (Griffioen and Molema, 

2000; Carmeliet, 2003). On one hand, angiogenesis can be advantageous in many diseases 

which are characteristized by lack or regression of blood vessels, such as pre-eclampsia, 

ischemia, and osteoporosis (Ferrara and Alitalo, 1999; Carmeliet, 2005; Logsdon et al., 

2014). On the other hand, uncontrolled angiogenesis can also aggravate the pathology e.g. 

in tumors, atherosclerosis, inflammatory bowel disease, arthritis and diabetic retinopathy 

(Carmeliet, 2005). Taking all the above into account, the process of angiogenesis is a very 

important therapeutic target and a better understanding of its mechanism will facilitate the 

development of pro- and antiangiogenic therapies (Potente et al., 2011; De Spiegelaere et 

al., 2012).   
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1.1    Angiogenic mechanisms  

To date, three different angiogenic mechanisms have been identified. Sprouting 

angiogenesis (SA) is the oldest reported and most investigated mechanism of angiogenesis 

(Clark and Clarck, 1939; Mato and Ookawara, 1982). In addition to SA, intussusceptive 

angiogenesis (IA) (Djonov et al., 2002) and looping angiogenesis, have been described 

(Benest and Augustin, 2009; Kilarski and Gerwins, 2009). Although SA (chapter 1.1.1) has 

been the main focus of angiogenic research, the importance of the other two mechanisms 

has been proved beyond doubt. Intussusceptive angiogenesis (chapter 1.1.3) has gained a 

lot of attention because of its role not only in embryonic development, but also because of 

its implication in cancer vasculature (Hlushchuk et al., 2008). Finally, looping 

angiogenesis (chapter 1.1.2), although only recently discovered, plays an important role in 

wound healing (Kilarski et al., 2009). 

 

1.1.1 Sprouting angiogenesis 

During sprouting angiogenesis a vascular sprout arises on a pre-existing vessel and 

forms a new vascular branch (Fig. 1). The process of capillary sprouting is initiated with 

the conversion of a previously quiescent endothelial cell into a tip cell via Vascular 

Endothelial Growth Factor (VEGF), Notch, and Delta-like 4 protein (Dll4) signalling 

(Metzger and Krasnow, 1999). The tip cell forms cytoplasmic projections called filopodia 

which probe the surrounding environment for angiogenic stimuli. These filopodia secrete 

large amounts of proteolytic enzymes, which digest a pathway through the extracellular 

matrix (ECM) for the developing sprout (Carmeliet, 2000). Meanwhile, the capillary 

sprout elongates because endothelial stalk cells proliferate as they follow behind the tip 

cell. Blood flow drives lumen expansion during sprouting angiogenesis in vivo by inducing 

spherical deformations of the apical membrane of endothelial cells, in a process termed 

inverse blebbing (Gebala et al., 2016). When the tip cells of two or more capillary sprouts 

converge, the tip cells fuse together creating a continuous lumen through which blood can 
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flow. Maturation and stabilization of the capillary require recruitment of pericytes and 

deposition of ECM (Schmidt and Carmeliet, 2010). 

 

 

Fig. 1. Graphic representation of an angiogenic sprout. Adapted from Rice et al. (2012). 
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1.1.2 Looping angiogenesis 

Looping angiogenesis is a mechanism of neovascularization recently identified in the 

chick chorioallantoic membrane (CAM) and the healing mouse cornea models (Kilarski et 

al. 2009). Looping angiogenesis is not regulated by vessel-specific cells, such as pericytes 

and endothelial cells, but is a mechanically driven mode of vessel translocation. During 

this mechanism, fibroblasts and proto-myofibroblasts initially migrate and populate the 

provisional matrix, which is surrounded by a vascularized region. Subsequently, these cells 

differentiate into myofibroblasts, which then remodel and contract the matrix causing 

translocation of the surrounding vasculature into the provisional matrix. These mechanical 

forces pull vessels from the preexisting vascular bed as vascular loops with functional 

circulation (Kilarski et al. 2009; Rice et al., 2012) (Fig. 2).  

A mechanism similar to looping angiogenesis, named vascular co-option, is present 

in tumor vasculature. The tumor coopts the blood vessels of the surrounding tissue leading 

to their subsequent integration in the tumor (Holash et al., 1999; Qian et al., 2016). This 

way, tumors grow to a certain extent without eliciting a specific angiogenic response.  
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Fig. 2. Graphic representation of the mechanisms of tissue vascularization: vasculogenesis and 

angiogenesis (sprouting and intussusceptive). Looping angiogenesis proposes the translocation of intact 

vessels by biomechanical forces as a third mechanism of angiogenesis. (From Benest and Augustin, 2009). 
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1.1.3  Intussusceptive angiogenesis 

The mechanism of IA was first discribed in the rat pulmonary microcirculation by 

Caduff et al. (1986) although earlier reports discovered a similar process in skeletal muscles 

(Ogawa Y, 1977; Appell, 1980). Using vascular corrosion casts and scanning electron 

microscopy (SEM), Caduff et al. (1986) observed small holes in the sheet-like alveolar 

microvasculature. These regular and non-random holes were temporally and spatially 

associated with rapid expansion of the microcirculation. Importantly, the diameter of the 

new alveolar capillaries was smaller suggesting that the holes were involved not only in 

capillary replication, but also in capillary remodeling. The authors concluded that the small 

holes reflected a mechanism of “in-itself” or “intussusceptional” growth. These holes 

corresponded to thin transcapillary (intraluminal) tissue pillars, spanning the lumen of the 

blood vessels. The intraluminal pillars are considered the characteristic features of the 

morphogenetic process of intussusception (Caduff et al. 1986; Burri and Tarek, 1990; Patan 

et al., 1996). 

Ever since, intravascular pillars have been identified in small vessels in a variety of 

experimental models. A few examples of IA are the developing avian kidney (Makanya et 

al., 2005), the porcine mesonephros (De Spiegelaere et al., 2010), the developing chick 

chorioallantoic membrane (Makanya et al., 2009) and the physiologic angiogenesis 

associated with skeletal muscle training (Egginton et al., 2001). Similar intraluminal pillars 

have also been described in a variety of tumors (Ribatti and Djonov, 2012) and in the 

angiogenic response following chemically-induced murine colitis (Konerding et al., 2010). 
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1.1.3.1 Mechanism of intussusceptive angiogenesis 

The process of IA can be divided in four phases. Initially, the endothelium is 

quiescent (Fig. 3a). Endothelial cells directly opposite from one another within the 

capillary wall are drawn towards each other and form a small “interendothelial 

transluminal bridge” (Fig. 3b). After this contact, the endothelial bilayer forms a 

perforation at the center of the capillary, creating a cylindrical tissue bridge that extends 

across the lumen and is lined by extensions of endothelial cells. An interstitial pillar core 

is formed and successively invaded by cytoplasmatic extensions of migrating 

myofibroblasts and pericytes and subsequently by interstitial fibers (Fig. 3c). In the last 

phase (Fig. 3d), the slender pillar grows and fuses with adjacent pillars (pillar diameter > 

2.5 μm) (Burri and Tarek 1990; Burri et al., 2004). This process eventually leads to 

remodeling and separation of the initial capillary into two capillaries.  

 

 

Fig. 3. 3D (top half) and 2D (bottom half) representation of the 4 phases of intussusceptive 

angiogenesis. (a) quiescence, (b) interendothelial bridge formation, (c) pillar core invasion by 

pericytes and (d) growth and fusion of pillars leading to vessel splitting. Pr: pericyte, EC: 

endothelial cell, Fb: fibroblast, Co: collagen. Adapted from Burri et al. (2004). 
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1.1.3.2 Pillar ultrastructure 

Due to their intraluminal location, intussusceptive pillars have been largely defined 

by vascular corrosion casting and SEM (Patan et al., 1996; Makanya et al., 2009). 

Nevertheless, corrosion casts provide very little information regarding the cellular or 

extracellular composition of the pillar, since the surrounding tissue is digested away. To 

visualize the ultrastructural detail of the endothelial cells and the tissue comprising the 

pillar, the most commonly used approach is transmission electron microscopy (TEM) 

(Nico et al., 2007). Without a sufficiently high prevalence of intussusceptive pillars with a 

predictable orientation, it is difficult to reliably identify pillars in 2D (Mentzer et al., 2014). 

Because of the potential that other structures are misconceived as pillars, serial sections are 

recommended. Even though TEM is time-consuming and has a high cost, it has identified 

the composition of the pillars in several tissues including skeletal muscle (Williams et al., 

2006), murine colitis (Konerding et al., 2010) and experimental subcutaneous tumors 

(Paku et al., 2011). 

The mechanism of pillar formation is still not entirely understood. It was initially 

believed that perivascular cells or pericytes may play a role in the initial steps by exerting 

a pushing force on the vessel wall (Burri et al., 2004). This concept was questioned by Paku 

et al. (2011), who presented a detailed model of pillar formation, named inverse sprouting, 

in tumor-induced IA. During this process, endothelial bridges are formed and 

subsequently, the bridge-forming endothelium attaches to a type I collagen bundle in the 

underlying connective tissue. A pulling force is then exerted by the actin cytoskeleton of 

the endothelial cell to the collagen bundle, resulting in the transport of the latter through 

the vessel lumen. This model was the first to identify the force behind pillar formation, but 

it still remains to be proven whether the same mechanism occurs in healthy conditions too. 
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1.1.3.3   Types of intussusceptive angiogenesis 

Pillar formation and growth can duplicate an existing vessel (Djonov et al., 2000a; 

Egginton et al., 2001), modify the branching angle of a bifurcating vessel (Djonov et al., 

2002; Ackermann et al., 2013) and prune a redundant or energetically inefficient vessel 

(Lee et al., 2011). The selective growth or extension of intravascular pillars can efficiently 

modify vessel structure resulting in different phenotypes of the vasculature.  

Intussusceptive microvascular growth (IMG) permits rapid expansion of the capillary 

plexus and increases the complexity of capillary beds. Intussusceptive arborization 

remodeling (IAR) can be recognized by the occurrence of a series of pillars and is involved 

in the formation of immediate pre- and postcapillary vessels. Intussusceptive branching 

remodeling (IBR) leads to optimization of the branching geometry and the hemodynamic 

conditions of the vascular tree. IBR can also lead to the removal of branches by pruning in 

response to changes in metabolic needs (Djonov et al., 2003) (Fig. 4).  

All types of intussusceptive angiogenesis are fast and have a low metabolic cost for 

the organism, in contrast to sprouting angiogenesis. Blood vessels are generated more 

rapidly since it does not directly require cell proliferation, only migration and 

rearrangement of the existing vessel architecture (Djonov et al., 2003; Ribatti and Djonov, 

2012).   
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Fig. 4. Schematic illustration presenting the different types of intussusceptive angiogenesis. 

(A) intussusceptive microvascular growth, (B) intussusceptive arborization remodeling, (C) 

intussusceptive branching remodeling and (D) intussusceptive pruning. (De Spiegelaere, 

2011). 
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1.2    Molecular mediators in angiogenesis 

The process of angiogenesis is regulated by a wide spectrum of angiogenic and 

angiostatic factors. The most commonly described angiogenic growth factors and 

cytokines include vascular endothelial growth factors (VEGF), the angiopoietins 

(ANGPT), fibroblast growth factor (FGF), tumor necrosis factor-alpha (TNF-α), 

transforming growth factor-beta (TGF-β) and platelet derived growth factor (PDGF). 

Sources of these growth factors include endothelial cells, fibroblasts, smooth muscle cells, 

platelets, inflammatory cells and cancer cells (Ferrara N and Alitalo K, 1999; Kubis and 

Levy, 2003; Bouis et al., 2006; Ucuzian et al., 2010).  

VEGF and ANGPT (Fig. 5) are key players governing the process of angiogenesis 

(Carmeliet, 2000; Kässmeyer et al., 2009; Jeltsch et al., 2013). VEGF receptors (VEGFR 

1-4) and angiopoietin receptors (TIE1 and TIE2) are receptor tyrosine kinases largely 

restricted to endothelial cells, but they are also expressed in a few other cell types, such as 

hematopoietic progenitor cells, a subset of megakaryocytic cells and TEMs (TIE2 

expressing monocytes) (Sato et al., 1998; Olsson et al., 2006; De Palma et al., 2013; Ito et 

al., 2016). While the current research focuses on the ANGPT-TIE system, a small 

introduction will be given about the VEGF family, too, due to its crucial role in 

angiogenesis. 
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Fig. 5. Schematic presentation of TIE and VEGF receptors and their ligands in mammalian 

endothelial cells of blood vessels (red) and lymph vessels (green). Adapted from Jeltsch et al. (2013). 

 

1.2.1      VEGF-VEGFR system 

The mammalian vascular endothelial growth factors, VEGF-A, VEGF-B, VEGF-C, 

VEGF-D and placenta growth factor (PlGF) show preferential binding to the VEGF 

receptors (Ferrara, 2000; Jeltsch et al. 2013). There are three VEGF receptors, of which 

VEGFR-1 and VEGFR-2 are expressed in blood vascular endothelial cells whereas 

VEGFR-3 is expressed in lymphatic endothelial cells. Neuropilin-1 acts as a co-receptor 

for VEGFR-2 and neuropilin-2 acts as a co-receptor for both VEGFR-2 and VEGFR-3 

(Favier et al., 2006; Karpanen et al., 2006). 

From the three VEGFR, only VEGFR-2 and VEGFR-3 drive angiogenesis whereas 

VEGFR-1 mostly acts to restrict angiogenic responses (Ho et al., 2012) and to recruit 

macrophages for tissue remodeling (Pipp et al., 2003). Ligand binding to VEGFR-2 

induces a robust tyrosine phosphorylation and results in a strong angiogenic response 

(Waltenberger et al., 1994). Stimulation of VEGFR-3 elicits a similar response in lymphatic 

endothelial cells (Tammela et al., 2008).  
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VEGF-A is the most potent and best described angiogenic growth factor in the VEGF 

family. It induces endothelial migration, functions as a survival factor for endothelial cells 

and enhances vascular permeability (Otrock et al., 2007). During SA, VEGF-A acts as 

chemoattractant to the migrating tip cells and induces proliferation of stalk cells, resulting 

in the guidance and growth of the newly formed sprouts (Gerhardt et al., 2003). Specific 

isoforms of  VEGF-A play an important role in IA too, since inhibition of VEGF-signalling 

decelerates intussusceptive-dependent capillary maturation in the CAM vasculature 

(Baum et al., 2010).    

 

1.2.2 ANGPT-TIE system  

Angiopoietins and their receptors (TIE) form the second endothelial growth factor 

receptor signalling pathway, which regulates blood and lymphatic vessel remodeling after 

the VEGF-driven phase of active angiogenesis. The ANGPT-TIE system contributes to 

vascular homeostasis by regulating endothelial barrier function, inflammation and vessel 

remodeling. It also plays an important role in angiogenesis and lymphangiogenesis in 

mature and pathological tissues (Augustin et al., 2009; Eklund and Saharinen, 2013). 

The ANGPT–TIE system consists of endothelial TIE1 and TIE2 receptor tyrosine 

kinases and the ligands of TIE2, ANGPT1, ANGPT2 and ANGPT4 (the latter 

representing a human orthologue for mouse ANGPT3) (Partanen et al., 1992; Dumont et 

al., 1993; Sato et al., 1993; Kim et al., 1999; Valenzuela et al., 1999). ANGPT3/4 are the 

least studied angiopoietins, mostly investigated in experimental models of tumor 

angiogenesis and metastasis. ANGPT3 inhibits pulmonary metastasis in mice (Xu et al., 

2004) whereas ANGPT4 can both, promote glioblastoma progression by enhancing tumor 

angiogenesis (Brunckhorst et al., 2010) and inhibit angiogenesis induced by GLC19 tumor 

cells (Olsen et al., 2006). The opposite results of ANGPT4 in humans have derived from 

different studies and might be due to different tumor microenvironments. 
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ANGPT1-2 are the best studied angiopoietins and the moste important ligands of 

TIE2. ANGPT1 is an obligatory TIE2 agonist expressed by mesenchymal cells 

surrounding the blood vessels (Davis et al., 1996). In contrast with paracrine ANGPT1, 

ANGPT2 is expressed by endothelial cells and acts as an autocrine context-dependent 

agonist/antagonist of TIE2 (Maisonpierre et al., 1997). ANGPT2 is stored in endothelial 

cells in intracellular secretory granules named Weibel–Palade bodies (Fiedler et al., 2004; 

Scharpfenecker et al., 2005). Inflammatory and hypoxic stimuli increase ANGPT2 

expression, decreasing vascular stability and promoting endothelial activation, 

neoangiogenesis and remodeling (Oliner et al., 2004; Fiedler et al., 2006; Benest et al., 

2013; Le et al., 2015).  

ANGPT2 agonist/antagonist function has not been fully elucidated, but it may 

depend on ANGPT2 multimerization or structural differences in the receptor-binding 

interface (Yu et al., 2013). Conversely, ANGPT1 promotes vessel stability in adults 

(Thurston et al., 2000), inhibits tissue fibrosis (Jeansson et al., 2011) and mediates vessel 

normalization during anti-angiogenic therapy (Koh, 2013). 

TIE receptors are almost exclusively expressed in endothelial cells although TIE2 is 

also expressed in certain human haematopoietic cell lineages (Armstrong et al., 1993; 

Batard et al., 1996; Sato et al., 1998). TIE2 is also found in human and murine TIE2-

expressing monocytes, macrophages and muscle satellite cells located among skeletal 

muscle myofibres in association with the microvasculature (Abou-Khalil et al., 2009; De 

Palma et al., 2013; Doan et al., 2013; Ito et al., 2016).    

TIE1 remains an orphan receptor with no identified ligand, despite overall homology 

with TIE2, especially in the intracellular tyrosine kinase domain (Partanen et al., 1992). 

TIE1-TIE2 interactions have been already implicated in the regulation of ANGPT1-

induced TIE2 signal transduction, indicating ligand-independent functions of TIE1 

(Saharinen et al., 2005; Seegar et al., 2010). Recently, it was determined that both 

ANGPT1 and ANGPT2 binding to TIE2 increases TIE1-TIE2 interactions in a β1 
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integrin–dependent manner (Korhonen et al., 2016). TIE1 directly interacts with TIE2 to 

promote ANGPT-induced vascular responses under noninflammatory conditions, 

whereas in inflammation, TIE1 cleavage contributes to loss of ANGPT2 agonist activity 

and vascular stability (Korhonen et al., 2016). 

 

1.2.2.1   ANGPT-TIE  signalling  

In vitro experiments on human endothelial cell lines showed that ANGPT induce 

translocation and activation of the TIE receptors in certain subcellular compartments, 

dependent on the cell microenvironment, and may partly explain versatile functions of 

angiopoietins during vessel quiescence and remodeling (Fukuhara et al., 2008; Saharinen 

et al., 2008; Pietila et al., 2012). In contacting endothelial cells, such as those in the 

quiescent vasculature, ANGPT1 induces the formation of trans TIE receptor signalling 

complexes across the endothelial junction. These junctional TIE complexes mediate cell 

survival signals via the phosphatidylinositol 3-kinase (PI3K-Akt) pathway, which results 

in activation of the endothelial nitric oxide synthase (eNOS) (Kim et al., 2000). Akt also 

phosphorylates the transcription factor forkhead box O1 (FOXO1), inducing its nuclear 

exclusion and the reduced expression of FOXO1 target genes involved in metabolic and 

cell growth regulation (Wilhelm et al., 2016). On the contrary, in mobile ECs, matrix-

bound ANGPT1 activates TIE2 in endothelial-extracellular matrix (EC–ECM) adhesions, 

promoting extracellular-regulated kinases (ERK) and docking protein-R (DOK-R) 

activation, matrix adhesion and cell migration (Fukuhara et al., 2008; Saharinen et al., 

2008) (Fig. 6).  
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Fig. 6. Schematic representation of a model of ANGPT1–TIE2 interactions at (A) cell–matrix 

and at (B) cell–cell contacts in cultures of human lung microvascular endothelial cells. Akt: 

protein kinase B, eNOS: endothelial nitric oxide synthase, Dok-R: docking protein-R, VE–PTP: 

vascular endothelial protein tyrosine phosphatase. Adapted from Saharinen et al. (2008). 

 

ANGPT2 also induces TIE2 translocation to cell–cell junctions, but activates TIE2 

only weakly (Maisonpierre, 1997; Saharinen et al., 2008). Since ANGPT1 and ANGPT2 

bind in a similar fashion to TIE2 (Barton et al., 2006; Yu et al., 2013), ANGPT2 binding 

may lead to inhibition of ANGPT1-induced TIE2 signalling, especially when the 

ANGPT2/ANGPT1 ratio is elevated, such as in the tumor vasculature. Attenuation of the 
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ANGPT1–TIE2 pathway can then lead to an increase in nuclear FOXO1, which 

stimulates ANGPT2 gene transcription (Kim et al., 2016; Korhonen et al., 2016). 

Furthermore, ANGPT2, but not ANGPT1, induces TIE2 translocation into specific 

extracellular matrix contact sites that may weaken EC–ECM adhesion (Pietila et al., 2012).      

 

1.2.2.2    ANGPT-TIE cooperation with integrins 

In addition to TIE receptors, angiopoietins have been reported to interact with 

multiple integrin cell adhesion receptors both in endothelial and non-endothelial cells. 

ANGPT2 can stimulate focal adhesion kinase (FAK) phosphorylation via integrins in 

murine TIE2-low endothelial cells and in human tumor cells, thereby promoting cell 

migration (Felcht et al., 2012; Lee et al., 2014). In transgenic mice, ANGPT2-induced 

translocation of the α5β1-integrin into the ends of actin fibers stimulates the formation of 

actin stress fibers, leaky endothelial junctions and destabilization of the endothelium 

(Hakanpaa et al., 2015). Furthermore, in bovine and human endothelial cell lines, α5β1-

integrin is required for ANGPT1 induced formation of a TIE1-TIE2 receptor complex in 

endothelial junctions, TIE2 phosphorylation and downstream FOXO1 phosphorylation 

(Daly et al., 2004; Korhonen et al., 2016). In summary, these results indicate that 

ANGPT1, ANGPT2 and TIE2 control the EC-ECM interplay together with the integrins, 

which may also serve as co-receptors for angiopoietins (Eklund et al., 2017).  

 

 1.2.2.3   ANGPT-TIE during intussusceptive angiogenesis 

The ANGPT-TIE system appears to act at a later stage of neovessel formation 

compared to the VEGF-VEGFR system (Augustin et al., 2001). Angiopoetins are likely 

candidates for mediating cell-cell interactions during intussusceptive angiogenesis 

(Augustin, 2001; Kurz et al., 2003). Indeed, there are indications that the ANGPT-TIE 

system is involved in controlling IMG (Sato et al., 1995; Suri et al., 1996). The vasculature 
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of mice lacking ANGPT1 and TIE2 remains at a primitive stage of development and fails 

to undergo further remodeling. Targeted deletion of TIE2 expression in mice leads to 

deficient pillar formation (Patan, 1998). Additionally, ANGPT1 overexpression in 

combination with VEGF is characterized by the presence of abundant small holes at vessel 

bifurcations, a finding that is symptomatic of intussusception (Burri and Tarek, 1990; 

Thurston et al., 1999; Thurston et al., 2005). Depending on the presence or absence of 

VEGF-A, ANGPT2 induces angiogenesis or vascular degeneration, respectively (Lobov et 

al., 2002; Scharpfenecker et al., 2005). In addition, overexpression of ANGPT2 affects 

ongoing intussusceptive angiogenesis in the CAM as it leads to the remodeling of a 

previously uniform capillary mesh into an arborized vascular tree (Winnik et al., 2009). 

 

1.2.2.4   ANGPT-TIE signalling in inflammation  

As agonist and antagonist of TIE2, ANGPT1 and ANGPT2 respectively, represent 

the balance between resting and activated vascular endothelium. ANGPT1 exerts potent 

anti-inflammatory effects (Thurston et al., 1999; Thurston et al., 2000;  Baffert et al., 2006) 

and therefore higher expression of ANGPT1 can be considered as a switch that controls 

the transition from inflammatory or pro-angiogenic to resting endothelium (Imhof and 

Aurrand-Lions, 2006). On the contrary, ANGPT2 acts in synergy with inflammatory 

cytokines (Benest et al., 2013). As a result, high levels of ANGPT function as a built-in 

switch controlling the transition of the resting quiescent endothelium towards the activated 

endothelium (Fiedler and Augustin, 2006).      

 

1.2.2.5   ANGPT-TIE signalling in disease 

The ANGPT–TIE system is involved in tumor angiogenesis as well. In a wide range 

of tumors, although absolute levels of either angiopoietin may increase or decrease, the 

ratio of ANGPT1:ANGPT2 shifts in favour of ANGPT2 (Tait and Jones, 2004). Given 

the fact that ANGPT2 is a destabilization factor, it is suggested that tumors shift the 
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angiogenic balance towards a pro-angiogenic state through altering the balance between 

the angiopoietins. This has implicated ANGPT2 as a candidate for the angiogenic switch 

during tumorigenesis and extensive research has been dedicated to its role as a therapeutic 

target. More specifically, ANGPT2 blocking biologicals and genetic deletion of TIE1 

decreased tumor angiogenesis in mice by reducing cell proliferation and endothelial 

sprouting and decelerated tumor growth by inducing vessel regression and endothelial 

apoptosis (Hashizume et al., 2010; D’Amico et al., 2014). Furthermore, anti-ANGPT2 

monoclonal antibodies and peptide-Fc fusion proteins which selectively neutralize the 

interaction of ANGPT2 or both ANGPT1 and ANGPT2 with TIE2 have demonstrated 

inhibition of tumor growth and angiogenesis in human tumor xenografts and orthotopic 

mouse tumors (Oliner et al., 2004; Saharinen et al., 2011; Holopainen et al., 2012). 

Conversely, ANGPT1 blocking failed to provide tumor growth inhibition, but it prevented 

tumor vessel normalization, supporting the hypothesis that ANGPT1 contributes to vessel 

stabilization during anti-angiogenic therapy (Falcón et al., 2009; Coxon et al., 2010). 

Additionally, increased ANGPT2 levels are associated with numerous human 

diseases, including sepsis, infectious diseases, diabetes, atherosclerosis and tissue injury. 

Therefore, the ANGPT–TIE system is an attractive target for the development of future 

vascular therapies (Parikh et al., 2006; Milam and Parikh, 2015).   

 

1.3   Experimental models of angiogenesis 

A variety of in vivo and in vitro models of SA have been developed and have 

contributed greatly to the understanding of this mechanism. In vitro models with isolated 

endothelial cell lines have allowed to study selected aspects of the angiogenic process, 

including endothelial migration, proliferation, proteolytic digestion of the extracellular 

matrix and capillary tube formation (Cimpean et al., 2010). Among the in vivo models, the 

most commonly used are the rabbit corneal assay (Muthukkaruppan and Auerbach, 1979), 

the developing mouse retina (Fruttiger, 2007) and the intersegmental vessel growth in 
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zebrafish (Lawson and Weinstein, 2002). Additionally, many murine models have been 

developed to study tumor angiogenesis (Staton et al., 2004; Eklund et al., 2013). 

Conversely, there is limited availability of experimental models for IA due to the 

difficulty to induce and visualize it in vitro and in vivo (Augustin, 2001). To date, the chick 

CAM assay is the only in vivo (ex ovo) model developed to study IA in physiologic tissue 

(Baum et al., 2010; Belle et al., 2014). With this model, both pillar formation and the 

influence of angiogenic factors can be studied. Furthermore, IA has been observed in 

different murine disease models, including models of liver cirrhosis (Van Steenkiste et al., 

2010) and inflammation (Konerding et al., 2010; Rossi-Schneider et al., 2010). Human and 

mouse tumor growth models have also been used to study IA (Patan et al., 1996; Paku et 

al., 2011). In addition, IA was observed to start glomerular repair in a model of induced 

Thy-1.1 nephritis in rats (Notoya et al., 2003). IA has already been visualized through 

descriptive methods in chick glomeruli where a switch of the angiogenic phenotype from 

SA to IA has been described (Makanya et al., 2005). Moreover, the numerous glomeruli 

in the kidney are easily identifiable and delineable regions in which IA takes place, 

allowing specific sampling. Since mammals are phylogenetically closer to humans and 

have potentially more clinical relevance compared to birds, mammalian metanephric 

glomeruli could be a very interesting model to study IA. 
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2     The mammalian kidney 

Renal organogenesis of vertebrates proceeds in pairs through a series of successive 

phases, each marked by the development of a more advanced kidney, namely the 

pronephros, mesonephros and metanephros. In mammals, the pronephros is a vestigial 

structure which is soon replaced by the mesonephros. The mesonephros is a functional 

excretory organ (Ludwig and Landmann, 2005), but it is eventually replaced by the 

metanephros which persists as the definitive adult kidney (Carlson, 2004). The primary 

filtration unit in both mesonephric and metanephric kidneys is the glomerulus. The current 

research, though, focuses on the metanephros where glomerular development follows a 

predictable and topographically traceable pattern, regardless of the fetal developmental 

stage. 

 

2.1 Structure of metanephric glomeruli 

The glomerulus is a highly developed vascular bed that acts as a filter, allowing a 

filtrate of small molecules, such as water, sugars, electrolytes and small proteins, to pass 

through a barrier that retains high molecular weight proteins and cells in the circulation. It 

is a dynamic structure whose integrity depends on signalling between the three major cell 

lineages: podocytes, endothelial and mesangial cells (Quaggin and Kreidberg, 2008) (Fig. 

7).  

The glomerular endothelial cells (GEC) are highly fenestrated and form the 

glomerular capillaries (Haraldsson et al., 2008). GEC are covered by a glycocalyx 

comprising mainly proteoglycans, which appear to be important in regulating the 

permeability of the glomerulus (Salmon et al., 2012). The intraglomerular mesangial cells, 

which lay in between the capillaries, provide structural support and regulate blood flow of 

the glomerular capillaries due to their contractile activity (Schlöndorff, 1996). 

 



General introduction 

34 
 

 

 

Fig. 7. Schematic representation of a metanephric glomerulus. GBM: glomerular 

basement membrane, P: podocyte, M: intraglomerular mesangial cell, GEC: 

glomerular endothelial cell, GCX: glycocalyx. Adapted from Gnudi et al. (2016). 

 

These two cell types are enclosed within the glomerular basement membrane (GBM) 

which is formed by the fusion of the basement membranes of endothelial cells and 

podocytes. The main components of the GBM, collagen type IV, laminins, nidogen and 

proteoglycans, contribute to its selective permeability based on size and charge (Levidiotis 

and Power, 2005). Podocytes, which are specialized epithelial cells, reside on the other side 

of the GBM. Foot processes (pedicles), which extend from the podocytes, wrap themselves 

around the capillaries of the glomerulus to form the filtration slits. The pedicles increase 

the surface area of the cells enabling efficient ultrafiltration (Pavenstädt et al., 2003) (Fig. 

8). 
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Fig. 8. Scanning electron micrograph depicting podocyte processes enveloping a mesonephric 

glomerulus of a porcine embryo (CRL: 10 cm). P: podocyte cell body, arrows point to the podocyte 

foot processes. (De Spiegelaere, 2011). 

 

2.2  Metanephric development 

The metanephric kidney develops from the union of the ureteric bud with the 

metanephric blastema (Potter, 1972). In porcine embryos, the metanephros appears at 

embryonic day (E) 20 and becomes active at E30 (Egerer et al., 1984). The formation of 

nephrons proceeds in a centrifugal pattern so that new nephrons are formed in the 

superficial cortex of the kidney and the oldest and most mature nephrons are located in the 

juxtamedullary area (Kazimierszak, 1971; Nash and Edelmann, 1973) (Fig. 9). 

Five stages of nephron development can be discerned (Friis, 1980). Mesenchymal 

cells condense around branches of the ureter into a renal vesicle (stage I), which matures 

in an S-shaped body (stage II). The latter becomes invaded by endothelial cells, which 

assemble into a single glomerular capillary loop, which subsequently expands into a 

complex tuft of branched capillaries (glomerulus). Mesangial cells, which share a common 
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origin with smooth muscle cells and pericytes, also infiltrate the glomerulus (Gomez and 

Norwood, 1999). The stage III glomerulus is spherical or oval, it has a distinct Bowman’s 

space and a few capillary loops are present. The stage IV glomerulus has a round shape 

and contains more capillary loops. In both stages a monolayer of cuboidal epithelial cells 

(presumptive podocytes) is arranged at the outer side of the glomerulus. The stage V 

glomerulus contains multiple capillaries and the podocytes and endothelial cells are 

flattened. 

 

 

Fig. 9. Micrograph of metanephric kidney (E54) showing the centrifugal pattern of nephron 

formation. Stage I (renal vesicles), II (S-shaped bodies) and III nephrons are visible in the outer 

part of the cortex (nephrogenic zone) along with the ampullae (a) of the growing collecting duct. 

Stage IV and V nephrons are situated in the inner cortex, at the juxtamedullary area. Scale bar is 

100 µm. 
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2.3 Angiogenesis during metanephric development 

Subsequent to the formation of the embryonic vascular network by vasculogenesis, 

most of the new vessels in the developing organism arise through angiogenesis (Risau, 

1997). In the avian developing kidney, the initial vascular plexuses of the renal lobules are 

formed via angiogenic sprouting. Later on, the vascular growth model switches to 

intussusceptive angiogenesis which contributes to vascular expansion and remodeling. 

Ultimately, the maturation of the vasculature is achieved by intussusceptive pruning and 

branching remodeling (Makanya et al., 2005). Similar findings are presented for the 

developing chick eye and CAM (Djonov et al., 2000b). The researchers proposed, that due 

to the increasing metabolic demands of those organs, growth of the capillary networks 

switches from sprouting to intussusceptive angiogenesis. Additionally, in the porcine 

kidney, intussusceptive angiogenesis is present in the mesonephros (De Spiegelaere et al., 

2010) but no data are available for the metanephros.  

  

2.4 ANGPT-TIE system during metanephric develoment 

Information about the involvement of the ANGPT-TIE system in metanephrogenesis 

is insufficient. Moreover, it is mostly limited to angiopoietins, whereas little is known about 

their receptors. Angiopoietin and TIE genes are expressed in the normal developing kidney 

and the TIE genes are required for the survival of metanephric capillaries (Kim et al., 2005). 

TIE expressing endothelial precursors exist in the renal mesenchyme, and probably the 

same cells contribute to the formation of glomerular capillaries (Woolf et al., 2009). Low 

levels of angiopoietins and TIE2 transcripts are present from the inception of the 

metanephros, but they are upregulated when the first layers of vascularized glomeruli are 

forming (Loughna et al., 1997; Yuan et al., 1999; Kolatsi-Joannou et al., 2001). In the 

porcine developing metanephros, ANGPT1 is predominantly present in mature glomeruli, 

whilst ANGPT2 is observed in all stages of glomerular maturation (De Spiegelaere et al., 
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2011). Further research regarding the TIE expression in porcine metanephric kidneys is 

necessary for gaining further insights into their involvement in glomerulogenesis. 

 

2.5 ANGPT-TIE system in glomerular disease 

In view of the fact that angiopoietins affect podocyte as well as glomerular endothelial 

biology, imbalanced angiopoietin signalling contributes to glomerular pathobiology 

(Woolf et al., 2009). ANGPT2 overexpression is linked to microalbuminuria due to 

increased protein losses in the glomerular filtrate caused by defects in the filtration barrier 

(Davis et al., 2007). Upregulated ANGPT2 has also been reported in a model of 

streptozotocin-induced diabetic nephropathy in mice (Yamamoto et al., 2004). Glomerular 

downregulation of ANGPT1 and  upregulation of ANGPT2 correlating with glomerular 

endothelial apoptosis was also described in in a mouse model of anti–glomerular basement 

membrane glomerulonephritis (Yuan et al., 2002). ANGPT1 expression levels are 

important in the pathophysiology of diabetic glomerular disease and could confer 

protection against high-glucose-mediated glomerular capillary injury (Jeansson et al., 

2011). The combination of high ANGPT1 levels and low VEGF-A signalling in diabetic 

nephropathy is likely to represent an important mechanism that favours a more stable 

capillary wall paralleled with a reduction in glomerular endothelial cell proliferation 

(Gnudi et al., 2016).  

To summarize, angiopoietins could represent pharmacologic targets for the treatment 

of glomerular diseases and modulation of their signalling system could be very beneficial 

for treatments. However, such therapies may need to be tailored to specific primary kidney 

diseases, otherwise they could also cause side effects such as enhanced fibrosis and 

inflammation (Long et al., 2008). Therefore, it is of high importance to further explore the 

role of the ANGPT-TIE system in glomerular diseases. 
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Intussusceptive angiogenesis (IA) is not easily approachable experimentally and major 

questions about its mechanism remain unanswered. Especially the mechanism leading to 

the initiation of IA and the morphological evolution of intraluminal pillars still need to be 

elucidated. Furthermore, angiopoietins are important mediators of IA, since these factors 

are directly linked to vascular homeostasis and activation. However, the role of the 

angiopoietin receptors (TIE) in relation to IA needs to be further investigated.  

In the present thesis, we used the developing porcine metanephric glomerulus as a 

model to investigate the involvement of the ANGPT-TIE system in IA. This model was 

used to gain insight into the expression pattern of the TIE receptors glomeruli, and to study 

the morphology, formation and ultrastructure of the intussusceptive pillar in the specific 

setting of the glomerulus.  

 

The specific aims addressed in this thesis were: 

 

     • to identify a possible correlation between IA and fetal development by studying the 

temporal and spatial presence of IA in the porcine metanephric kidney and to investigate 

how the expression of TIE1 and TIE2 progresses during development (Chapter III). 

     • to pinpoint the exact subcellular localization of TIE1 and TIE2 in the endothelial 

cells of the glomerular capillaries and test whether the differential localization of TIE 

receptors presented in in vitro conditions can be also seen in in situ metanephric kidney 

samples during development. (Chapter IV). 

     • to determine the ultrastructure of intussusceptive pillars and the cells which 

participate in their formation and to test the hypothesis if pillar formation in the specific 

vascular setting of the glomerulus occurs according to the original described process or if 

another mechanism is involved. (Chapter V). 

  

 

  



 

 
 

  



 

 
 

 

 

 

 

Chapter III 

Intussusceptive angiogenesis and expression of TIE receptors 

during porcine metanephric kidney development 

  

 

 

 
 

Adapted from: Logothetidou A, Vandecasteele T, Van Mulken E, Vandevelde K, Cornillie 

P (2017) Intussusceptive angiogenesis and expression of TIE receptors during porcine 

metanephric kidney development. Histol Histopathol. 32:817-824 
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3.1    Abstract  

 

Intussusceptive angiogenesis (IA) is required for normal embryonic vascular 

development. The TIE family of receptors and their ligands, the angiopoietins, play an 

important role in the growth or regression of blood vessels which are important not only 

during development but also throughout an organism's life. The presence of IA was 

investigated in glomerular capillaries of the fetal porcine metanephros using Mercox II 

resin casts. The first signs of IA were observed in stage III glomeruli. Stage IV and V 

glomeruli showed numerous signs of aligned pillar formation and their successive merging 

to delineate the vascular entities. Furthermore, immunohistochemistry was used to 

determine the exact locations of the TIE receptors in the developing porcine metanephric 

kidneys. TIE1 and TIE2 were found in endothelial cells of all glomeruli. Strong expression 

of the receptors was found in podocytes of stage V glomeruli whereas a weaker expression 

was observed in the cuboidal epithelial cells of stage III and IV glomeruli. Remarkably, the 

receptors were also found in the parietal epithelium of Bowman’s capsule. These findings 

indicate that there might be an association between the TIE receptors and IA during 

porcine metanephric development and during glomerulogenesis in particular. 
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3.2    Introduction 

After the formation of the embryonic vascular network by vasculogenesis (Risau, 

1997), most of the new vessels in the developing organism and in the adult arise through 

angiogenesis. This process is responsible for the growth of the primary vascular plexus into 

a mature and efficient transport route for the blood (Papetti and Herman, 2002). The two 

main mechanisms of angiogenesis, sprouting and intussusceptive angiogenesis (IA), play 

a major role in the expansion of a capillary network but IA is also involved in its 

remodeling (Burri and Tarek, 1990). Specifically, the origin of the renal vasculature is 

controversial: the classical experiments that support its development via angiogenesis 

involve the transplantation of the avascular metanephros onto the quail chorioallantoic 

membrane (Sariola et al., 1983). On the other hand, experiments to support that the renal 

vasculature originates via vasculogenesis involved the use of TIE1/LacZ transgenic mice 

to follow kidney endothelial cell development. TIE1 receptor tyrosine kinase is expressed 

in endothelial precursor cells and cells expressing this marker were found in the avascular 

metanephros (Loughna et al., 1997). According to Makanya et al. (2005), the first step in 

metanephric microvascular growth involves angiogenic sprouting and then switches to 

intussusception which contributes to vascular amplification and remodeling.  

IA is a type of new blood vessel formation in which a capillary is longitudinally split 

into two vascular channels due to the formation and merging of intraluminal tissue pillars 

(Caduff et al., 1986). Pillars in the initial stages are recognized as tiny shallow depressions 

on the surface of resin intravascular casts. Larger tissue pillars appear as deep broader holes 

on the casts and can be differentiated from tissue meshes purely by their sizes, with all 

holes < 2.5 µm in diameter being considered to represent tissue pillars (Makanya et al., 

2009).  

Vascular endothelial growth factors (VEGF) and angiopoietins (ANGPT) form two 

families of growth factors which are crucial for the development of renal vasculature 

(Wakelin et al., 2004; Woolf et al., 2009). In previous studies on mouse  
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metanephrogenesis, low levels of angiopoietins and TIE2 transcripts were present from the 

inception of the metanephros; there were relatively low levels of ANGPT1 and TIE2 

mRNA and proteins expressed around E12.5, when interstitial capillaries populate the 

organ; protein levels of ANGPT1, ANGPT2 and TIE2 were upregulated by E14.5 and 

E16.5, when the first layers of vascularized glomeruli are forming (Kolatsi-Joannou et al., 

2001). Later, TIE2 was expressed by capillaries in the nephrogenic cortex, glomerular tufts, 

and vasa rectae. ANGPT1 mRNA was found to localize to condensing renal mesenchymal 

cells, proximal tubules and glomeruli in addition to maturing tubules of the outer medulla. 

ANGPT2 transcripts were more spatially restricted, being detected only in differentiating 

outer medullary tubules and the vasa recta bundle area (Yuan et al., 1999). In order to gain 

more insight into the molecular mechanism of IA, the present study focuses on the 

localization of the angiopoietin receptors TIE1 and TIE2 in the porcine glomeruli using 

immunohistochemical staining. Additionally, SEM is used to identify the presence of IA 

on vascular casts of kidneys and to search for a possible link between the topography of IA 

and the TIE expression. 

 

3.3    Materials and methods 

3.3.1 Samples 

           Porcine gravid uteri were obtained on different occasions in a local slaughterhouse 

from sows that were slaughtered for human consumption. Fetuses of different fetal stages 

were collected, i.e. fetuses with a crown-rump length (CRL) of 5.2 cm (E41), 7.5 cm (E48), 

9.5 cm (E55), 14 cm (E64), 22 cm (E100) and 29 cm (E112). Their approximate age in 

embryonic days post conception (E) was deduced from their CRLs (Evans and Sack, 1973). 

The fetuses were separated into two groups to be further used for either vascular corrosion 

casting in order to visualize the glomerular capillaries (group 1, 2-5 fetuses/age), or for 

immunohistochemistry in order to investigate the distribution of the TIE receptors (group 

2, 2 fetuses/age). 
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3.3.2 Vascular corrosion casting 

 

The fetuses from group 1 were removed from their fetal membranes and an umbilical 

artery in the umbilical cord still attached to the fetus was catheterized with a 26G flexible 

catheter. After the artery was flushed with isotonic fluid (0.9 % NaCl), the second umbilical 

artery and the umbilical vein were clamped. Mercox II resin and catalyst (Ladd Research, 

Wemmel, Belgium) were mixed (0.5 g of catalyst for 20 ml of resin) and colored with 0.05 

% (w/v) of a red dye. The resin mixture was then injected through the catheter with gentle 

pressure using 5 ml plastic syringes until filling of subcutaneous veins was observed or 

intraperitoneal leakage was discovered. When the polymerization was completed, the fetal 

tissues were macerated in 25 % potassium hydroxide for approximately 2 days followed by 

rinsing of the resulting cast in running tap water. The obtained casts of the kidney 

vasculature were washed in multiple changes of distilled water for 2-3 days and left to dry 

in a fume hood. After the casts were dissected in small pieces, their surface was coated with 

platinum using the JEOL JFC-1300 (Jeol, Zaventem, Belgium) auto fine coater for further 

analysis with the JEOL JSM-5600LV (Jeol, Zaventem, Belgium) scanning electron 

microscope. 

 

3.3.3 SDS PAGE and Western Blotting 

Kidney tissue from two extra fetuses of E55 and E64 was isolated and homogenized 

in TNE lysis buffer (50 mM Tris, pH 7.5, 140 mM NaCl, 5mM EDTA) and a protease 

inhibitor cocktail (PI, Sigma, Diegem, Belgium) at 4 ◦C. Lysates were clarified by 

centrifugation for 5 min at 13.000 rpm at 4 ◦C and the supernatant was stored at -20 ◦C 

until further use. Protein concentration was determined using bovine serum albumin as a 

standard in a Bradford reagent assay (Bio-Rad, Nazareth, Belgium). Total lysates were 

separated by SDS-PAGE electrophoresis and then blotted to PVDF membranes (Thermo 

Scientific, Leusden, Netherlands). The membranes were blocked in 5% skimmed milk 

powder in PBS and then incubated with PBS (negative control) or with 1:1000 anti-TIE1 
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and anti-TIE2 custom-made antibodies. These affinity-purified polyclonal rabbit 

antibodies were raised against an antigenic determinant in the tyrosine kinase domain of 

porcine TIE1 and the fibronectin type III domain of porcine TIE2, respectively (GenScript, 

USA). Any homology regions between the two receptors were excluded from the antigenic 

regions chosen for the development of the two primary antibodies. After washing three 

times with 0.3% Tween 20 in PBS, they were incubated with EnVision labeled polymer-

HRP anti-rabbit for 1h at RT (K4010, Dako, Heverlee, Belgium). Detection was performed 

by Fast Western Blot Kit, ECL Substrate (Thermo Scientific, Leusden, Netherlands). 

Western blot signals were acquired and analyzed by ChemiDoc MP Imaging system and 

the Image Lab software 4.0.1 (Bio-Rad, Nazareth, Belgium). 

 

3.3.4 Immunohistochemistry 

The second group of fetuses was removed from the uteri and the kidneys were excised 

and directly fixated in 4% formalin for 24h. The specimens were further processed using a 

STP 420D Tissue Processor (Microm, Prosan, Merelbeke, Belgium) and paraffin 

embedded with the embedding center EC 350-1 and EC 350-2 (Mircom, Prosan, 

Merelbeke, Belgium). Sections were cut at 5 µm thickness using a HM 360 rotary 

microtome (Microm, Prosan, Merelbeke, Belgium), adhered to APES-coated slides, dried 

for 1 h at 56 ◦C and incubated overnight at 37 ◦C. The next day, they were dewaxed in 

xylene and rehydrated in decreasing alcohol series. Endogenous peroxidase activity was 

quenched by immersing the slides in a solution of 3% H2O2 in methanol for 5 min. The 

sections were then blocked with 30% bovine serum in PBS. The afore-mentioned primary 

antibodies, diluted 1:100 in PBS supplemented with 2% bovine serum albumin, were added 

to the sections and incubated for 1h. After washing, EnVision labeled polymer-HRP anti-

rabbit  was added on the slides for 30 min. Following washing, the liquid DAB+ Substrate 

Chromogen system was added for 5 min. After a nuclear counterstaining using Mayer’s 

hematoxylin, the slides were mounted with DPX mounting medium (Sigma–Aldrich, 
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Bornem, Belgium) and examined with an Olympus BX61 light microscope (Olympus 

Belgium NV, Aartselaar, Belgium). As negative controls, the primary antibodies were 

replaced with PBS or pre-incubated with the blocking peptide. As positive control, sections 

of human placenta were used.  

 

3.4    Results 

3.4.1 Evaluation of the corrosion-casted glomeruli 

III, IV and V stage glomeruli were identified in the capillary casts according to their 

shape and diameter. The maturing metanephric V glomeruli had a larger number of 

capillary loops and were found deeper in the cortex as compared to III and IV glomeruli. 

The first developmental stage in which small casting holes with a diameter of 1–10 µm 

were recorded was III glomeruli (Figure 1A). These holes were also present in IV and V 

glomeruli. The holes were frequently found next to bifurcations of the capillaries (Figure 

1B) and in linear arrangements (Figure 1C). Signs of pillar formation appeared first as 

round holes in the casts. In further stages, the holes were slit-like and appeared to merge 

with each other along their longitudinal axes (Figures 1D, 1E). Interestingly, holes in the 

cast were not only observed in the capillary bed, but also in the branches of the efferent 

arteriole (Figure 1F).  
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Figure 1. Vascular corrosion casts illustrating the process of intussusceptive angiogenesis in the 

metanephric porcine kidney. Using 2-5 corrosion casts per age, 10 fields per visible glomerulus 

were examined. A) Initially, small depressions appear on the surface of the Mercox casted 

glomerular capillaries (arrows). These depressions indicate the early stages of pillar formation (III 

glomerulus, E41). B)  Signs of IA are frequently found next to bifurcations of capillaries (arrow) 

(IV glomerulus, E64). C) As the two opposite components of the pillar approximate and 

subsequently fuse, the pillar is now represented by a hole that pierces through the vessel cast 

(arrows) (IV glomerulus, E41). Signs of pillars are often found in a linear arrangement on the casts 

(V glomerulus, E55). D, E) The newly formed vessels are separated longitudinally by pillars that 

have increased in girth and have fused (asterisks) (V glomerulus, E48). F) Pillars are depicted in 

the two branches of the efferent arteriole (arrows) (V glomerulus, E55). 
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3.4.2 Western Blotting 

Western Blotting results showed the high specificity of the antibodies for the TIE 

receptors. Anti-TIE1 antibody detected a prominent ~120 kDa band whereas anti-TIE2 

detected a ~250 kDa band. Control blots, in which the primary antibody was omitted, 

showed no immunoreaction (data not shown).       

 

Figure 2. Western blotting analysis of TIE1 and TIE2 in kidney tissue lysates of a fetus of E64. 

Images were derived from identical gels loaded with the same amount (12 µg) of the same protein 

extract samples. A band ~120 kDa is recognized by the anti-TIE1 antibody and a band ~250 kDa 

is recognized by the anti-TIE2 antibody. 

 

3.4.3 Immunohistochemistry 

TIE1 receptors were present in S-shaped bodies and III, IV, V stage glomeruli, as 

shown by the strong TIE1 staining (Figure 3A). More specifically, TIE1 was found in 

endothelial cells lining the capillary loops of all glomeruli. Podocytes of IV and V glomeruli 

as well as the parietal epithelium of Bowman’s capsule also expressed TIE1 (Figure 3B). 

TIE2 receptors were also found in all developmental stages of glomeruli (Figure 3C), 

specifically in endothelial cells and podocytes as well as on the epithelium of Bowman’s 

capsule (Figure 3D). A monolayer of cuboidal epithelial cells which is positioned apically 

on the immature glomeruli also showed a weak staining for TIE1 and TIE2 (Figure 3E). 

In the human placenta, which was used as a positive control tissue, TIE staining was 

present in the endothelium, the chorionic villi, the syncytiotrophoblast and the 

cytotrophoblast (Figure 3F). Control sections, in which the primary antibody was either 

pre-incubated with the blocking peptide (Figure 3G) or was omitted (Figure 3H), showed 

no immunostaining.  
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Figure 3. TIE1 and TIE2 immunostaining of the porcine metanephros. Using 2 kidney samples per 

age, 10 glomeruli were examined per kidney. A) Staining of TIE1 is observed in the S-shaped bodies 

(S) and all maturation stages of glomeruli (III, IV, V) (E48). B) Strong staining of TIE1 is observed 

in the endothelial cells and the podocytes of the V glomeruli, as well as the parietal epithelial cell 

layer of Bowman’s capsule (pe) (E64). C) TIE2 immunostaining is observed in all maturation stages 

of glomeruli (E100). D) TIE2 is strongly expressed in endothelial cells and podocytes of the V 

glomeruli and pe (E55). E) In a IV glomerulus TIE2 is expressed in the endothelial cells and the 

pe. The cuboidal epithelial cells (arrows) show light staining (E55). F) Human term placenta 

expresses TIE2 in the endothelium (en) and the trophoblast (tr). G) Pre-incubation of TIE2 with 

the blocking peptide results to no staining (E112). H) Negative control, in which the primary 

antibody TIE2 was omitted, shows no staining. In panels A, C, G and H the scale bar is 100 µm. 

In panels B, D and F the scale bar is 20 µm. In panel E the scale bar is 50 µm. 
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3.5    Discussion 

The analysis of corrosion casts with SEM provides a good approach for screening 

various tissues for the presence of IA. Holes of diameter ~2.5 µm in the vascular casts are 

representative landmarks for the process of intussusception. Many examples of these 

findings in different organs and species have been published by other authors (Caduff, 

1986; Makanya et al., 2009). 

Typical holes in the casts, representing transcapillary pillar formation, were observed 

in capillary segments of immature and maturing glomeruli. The first signs of IA appeared 

in G1 glomeruli and that is possibly when the switch from sprouting to intussusceptive 

angiogenesis occurs. IA was also present in larger vessels in the kidney such as the efferent 

arteriole. The presence of pillars in small arteries and veins is supported by other 

publications (Patan et al., 1993; Djonov et al., 2000b). Numerous small depressions were 

found on the capillary casts, frequently close to bifurcations, which most likely indicate the 

initial stages of pillar formation. More mature pillars were represented by larger holes 

piercing through the cast. Further expansion of these holes delineated new vascular 

entities. Signs of pillar formation were found on corrosion casts of all samples, but the 

larger fetuses had a higher number of mature glomeruli and therefore more vessels where 

IA marks could be seen. 

Western Blotting results showed that the custom-made antibodies display a high 

specificity. The anti-TIE1 recognized one ~120 kDa protein which has the same molecular 

weight as the TIE1 receptor. Anti-TIE2 recognized a protein ~250 kDa, although the 

molecular weight of the TIE2 receptor is also around 120 kDa. Similar results have been 

found previously by Bogdanovic et al. (2009) who suggested that the minimal oligomeric 

state of TIE2 on the cell membrane is a dimer. 

Immunohistochemical results showed that TIE receptors were present on the cell 

membrane of endothelial cells in the more mature glomeruli where more capillaries are 

present. Podocytes, found in V glomeruli, and their precursor cuboidal epithelial cells 
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found in III and IV glomeruli as well as the parietal epithelium of Bowman’s capsule also 

express TIE receptors. Although TIE2 as well as TIE1 were considered endothelial 

markers, TIE2 staining was also reported in podocytes in human (Satchell et al., 2002) and 

mice (Dessapt-Baradez et al., 2014) as well as the parietal epithelium of Bowman’s capsule 

of adult human glomeruli (Satchell et al., 2002). The detection of TIE2 on podocytes 

suggests that there may also be an autocrine loop in the regulation of angiopoietin 

expression. Additionally, TIE2 was found in several cell types including smooth muscle 

cells, fibroblasts, epithelial cells, monocytes, neutrophils, eosinophils and glial cells 

(Makinde and Agrawal, 2008). 

TIE1 and TIE2 showed a similar and constant expression pattern in glomeruli, 

regardless of the fetal age. Likewise, in mice the TIE receptor genes are also expressed from 

the onset of glomerulogenesis (Loughna et al., 1997; Kolatsi-Joannou et al., 2001). 

However, mice TIE2 levels increase during kidney development (Yuan et al., 1999), 

whereas our results show no difference in the expression level of the receptors. The 

expression of the receptors throughout the metanephric development should probably be 

explained by focusing on the interplay between the two receptors and the angiopoietins, 

rather than focusing on each receptor separately. Angiopoietin levels also increase during 

metanephrogenesis in mice and both show similar levels of expression (Yuan et al., 1999). 

However, in the study of De Spiegelaere et al. (2011) which focuses on the angiopoietin 

expression in the different developmental stages of the porcine glomeruli, ANGPT1 

staining is almost exclusively expressed in mature glomeruli of fetuses > 2 cm CRL, 

whereas ANGPT2 expression is strong in maturing III and IV glomeruli and weaker in 

mature V glomeruli of the developing porcine kidney. Since the receptors are constantly 

expressed, ANGPT1 could act as a vessel maturing factor in the more developed V 

glomeruli, whereas ANGPT2 could lead to either angiogenesis or vascular regression. On 

the other hand, as presented by Saharinen et al. (2008), the cellular localization of TIE2 

after ANGPT1 stimulation is crucial: TIE2 in the abluminal side of the endothelial cell 

leads to growth and proliferation of endothelial cells, whereas TIE2 close to the 
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interendothelial junctions leads to vessel wall stabilization. Therefore it is very important 

to further investigate the cellular localization of the TIE receptors in the endothelial cells 

by means of electron microscopy, in order to understand the molecular mechanism of IA 

in the developing metanephros. 
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4.1    Abstract 

Angiopoietins (ANGPT) and their TIE receptors are important regulators of vascular 

stability and remodeling. These molecules are involved not only in the normal 

development of kidney glomeruli, but also in disease, thus making them promising targets 

for therapies. Although TIE receptors are mainly found in endothelial cells, some reports 

observed TIE2 expression in glomerular podocytes as well. This suggests a role of 

angiopoietins in the regulation of podocytes. In the present study, we aimed to map the 

subcellular localization of TIE receptors in metanephric glomeruli of fetal pigs using high-

resolution immunogold electron microscopy and the relative labeling index stereological 

approach. TIE1 and TIE2 antibody labeling was detected on the abluminal side of 

endothelial cell membranes. In endothelial cells, 4.5% of TIE2 was observed close to cell-

cell contacts and 11.9% of TIE2 was found in closely associated pairs, which suggests the 

presence of homodimers. Interestingly, TIE1 and TIE2 were also expressed in podocyte 

foot processes indicating that they may play a similar role in podocytes as in endothelial 

cells. 
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4.2    Introduction 

Angiogenesis, the process of vascular network formation and remodeling, is 

regulated by a combination of hemodynamics and growth factors (Burri and Djonov, 2002; 

De Spiegelaere et al. 2012). The ANGPT–TIE ligand–receptor system is a key regulator 

for the developing renal vasculature (Wakkelin et al., 2004; Woolf et al., 2009) and 

glomerulogenesis in particular (De Spiegelaere et al., 2010; Kolatsi-Joannou et al., 2001, 

Yuan et al., 2000, 1999). Furthermore, angiopoietins play an important role in glomerular 

diseases, but they have also been proposed as therapeutic targets for the treatment of these 

diseases (Davis et al., 2007; Dessapt-Baradez et al., 2014). 

In developing glomeruli, ANGPT expression has been found mainly in podocytes and 

mesangial cells. This led to the hypothesis that mesangial cells and podocytes regulate the 

glomerular endothelium through a paracrine signalling of ANGPT1 and ANGPT2 (Woolf 

et al., 2009). However, Satchell et al. (2002) have shown expression of TIE2 on glomerular 

podocytes, which suggests that the ANGPT-TIE signalling may also be important for 

podocytes. In the present study, our objective was to investigate the exact location of both 

receptors in glomeruli of porcine fetal kidneys in order to give insight into their function in 

each cell type. 

 

4.3    Materials and methods  

4.3.1. Sample collection, fixation and embedding 

Porcine gravid uteri were obtained on different occasions in a local slaughterhouse from 

sows that were culled for human consumption. Fetuses of different fetal stages were 

collected, i.e. fetuses with a crown-rump length (CRL) of 7 cm (E47), 12.5 cm (E62) and 

22 cm (E98). Their approximate age in embryonic days post conception (E) was deduced 

from their CRLs (Evans and Sack, 1973). Two fetuses/age were removed from their fetal 

membranes and their kidneys were dissected. Small pieces of kidney cortex ~ 1 mm³ were 
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excised and placed in a mild fixative (2.5% paraformaldehyde and 0.3% glutaraldehyde in 

0.1 M cacodylate buffer, pH 7.2). After overnight fixation at 4 °C, the samples were washed 

with 0.1 M cacodylate buffer and were then dehydrated in a series of alcohol dilutions. 

Subsequently, the samples were impregnated in graded mixtures of LR white embedding 

medium (Aurion Immuno Gold Reagents & Accessoires, Wageningen, Netherlands) and 

alcohol and finally in pure LR white for 24 h. Afterwards, they were placed in gel capsules 

and were embedded in LR white, in which they remained for at least 14 days at 37 °C to 

allow resin polymerization.  

 

4.3.2. Immunogold labeling of TIE1 and TIE2 receptors 

 

Ultrathin sections were cut with a Leica EM UC6 ultramicrotome (Leica 

Microsystems, Diegem, Belgium) using a DiATOME ultra 45° diamond knife (Diatome 

AG, Nidau, Switzerland) and collected on single slot formvar pre-coated copper grids. All 

steps of the immunolabeling were performed at room temperature and during each step the 

grids were floated upside-down on 25 µl of aliquots. Initially, the sections were incubated 

with 50 mM glycine/PBS in order to inactivate free aldehyde groups of the fixative. 

Following a step with a blocking solution containing bovine serum, the sections were then 

incubated for 1 h with 1:200 anti-TIE1 or anti-TIE2 custom made antibodies. These 

affinity-purified polyclonal rabbit antibodies were raised against an antigenic determinant 

in the tyrosine kinase domain of porcine TIE1 and the fibronectin type III domain of 

porcine TIE2, respectively (GenScript, New Jersey, USA). Any homology regions between 

the two receptors was excluded from the antigenic regions chosen for the development of 

the two primary antibodies. Afterwards, the sections were incubated for 30 min with 

protein A conjugated to colloidal gold particles of 10 nm diameter. After every step, the 

sections were washed with BSA-c, which is prepared by acetylation of bovine serum 

albumin and prevents a charge based background by interacting with polycationic areas in 
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the tissue samples. Finally, the sections were contrasted with 2% uranyl 

acetate/ethanol for 15 min and then rinsed. Examination of the sections was performed at 

80 kV with a JEM-1400 Plus transmission electron microscope (Jeol, Zaventem, Belgium). 

Sections where the primary antibodies were omitted, served as negative controls. All 

materials and reagents were purchased from Aurion (Aurion Immuno Gold Reagents & 

Accessoires, Wageningen, Netherlands). 

 

4.3.3. Quantitative and statistical analysis 

  

A simple and efficient method by Mayhew et al. (2002) was implemented in order to 

quantify immunogold labeling of antigens localized in different cellular compartments and 

to statistically evaluate the resulting labeling distributions. Briefly, the labeling of each 

TIE1 and TIE2 was analyzed in 18 capillaries which were randomly selected. Since TIE2 

was previously found on the membranes of endothelial cells and podocyte processes, the 

region of interest consisted of the following compartments: podocyte foot processes, the 

glomerular basement membrane, the fenestrated endothelium and the extracellular space 

(Fig. 1). Test-point lattices (grids) were superimposed on capillaries and design-based 

stereology was used to count the corresponding test points (p) for the different 

compartments of the region of interest. The observed gold particles (n0) were quantified in 

these compartments. Using the total number of observed gold particles and the relative 

surfaces of each compartment, an expected gold particle count distribution (ne) assuming 

a random staining could be obtained. The ratio of observed gold particles to randomly 

expected gold particles (n0/ne) provided a relative labeling index (RLI) for each 

compartment. For random labeling, the predicted RLI = 1 and for preferential labeled, the 

RLI > 1. Chi-squared test (χ2) was used to test if the observed gold distributions differed 

significantly from a random staining. The null hypothesis of random gold particle 

distribution must be rejected at a probability level of P < 0.001. 
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Fig. 1. Transmission electron micrographs showing the ultrastructure of a mature glomerulus 

(porcine fetus E62). A) The glomerulus is composed of a capillary network. Between the capillaries 

(c) few intraglomerular mesangial cells (m) are present. Scale bar: 10 µm. B) Endothelial cells (ec), 

lining the capillaries (c), are fenestrated (small arrows). The associated glomerular basement 

membrane (gbm) (thick arrow) surrounds the capillary and is enveloped by the interdigitating foot 

processes (pp) of podocytes (p). The region of interest lies between the two demarcation lines and 

consists of endothelium, podocyte processes, glomerular basement membrane and extracellular 

space. Scale bar: 1 µm. 

 

 

4.4    Results 

 

Anti-TIE1 (Table 1) revealed preferential labeling in podocyte processes and 

endothelium, with the podocyte processes being the most important contributor to total χ2. 

The RLI of the glomerular basement membrane and the extracellular space are < 1 

meaning that TIE1 labeling is not preferential in these compartments (non-specific 

labeling). Anti-TIE2 (Table 2) demonstrated also preferential labeling in podocyte 

processes and endothelium, but this time endothelium was the most important contributor 

to total χ2. Similarly to TIE1, TIE2 labeling in the glomerular basement membrane and the 

extracellular space was non-specific. For 3 degrees of freedom (2-1 columns by 4-1 rows) 

the null hypothesis of random gold distribution must be rejected at a probability level of P 

< 0.001. 
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Table 1. Quantification of TIE1 antibody labeling. Observed and expected distributions of gold 

particles in the compartments of the region of interest and calculation of relative labeling index 

(RLI) and χ2 values. Asterisks (*) identify compartments that are preferentially labeled.  

Compartment 
Observed 

points, p 

Observed 

particles, 

n0 

Expected 

particles, ne 

RLI, 

n0/ne 
χ2 values 

Podocyte processes 380 100 61 1.64* 24.9* 

Glomerular basement 

membrane 308 6 49 0.12 37.7 

Endothelium 237 62 38 1.63* 15.2* 

Extracellular space 146 3 23 0.13 17.4 

Totals 1071 171 171 1 95.2 

 

 

Table 2. Quantification of TIE2 antibody labeling. Observed and expected distributions of gold 

particles in the compartments of the region of interest and calculation of relative labeling index 

(RLI) and χ2 values. Asterisks (*) identify compartments that are preferentially labeled. 

Compartment 
Observed 

points, p 

Observed 

particles, 

n0 

Expected 

particles, ne 

RLI, 

n0/ne 
χ2 values 

Podocyte processes 402 107 69 1.55* 20.9* 

Glomerular basement 

membrane 301 4 51 0.08 43.3 

Endothelium 218 67 37 1.81* 24.3* 

Extracellular space 138 3 24 0.13 18.4 

Totals 1059 181 181 1 106.9 

 

Regarding the localization of the receptors in endothelial cells, TIE1 was always 

found at the cell membrane facing the glomerular basement membrane, i.e. the abluminal 

side of the cell. (Fig. 2). TIE2 was also expressed predominantly at this side of the 

endothelial membrane, although 4.5% or 3/67 gold particles were localized close to 

endothelial cell-cell contacts (Fig. 3). Furthermore, 11.9% or 8/67 gold particles were in 

very close proximity to each other (~ 10 µm) (Fig. 4). Overall, the expression of TIE 

receptors showed similar levels in both endothelial cells and podocytes. Finally, for both 

TIE1 and TIE2, staining occurred scarcely in the nuclei and cytoplasm of glomerular cells 
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(Fig. 5) and on mesangial cell membranes (Fig. 6). In control experiments where the 

primary antibodies were omitted, no labeling was observed in any cell compartments (data 

not shown). 

 

 

Fig. 2. TIE1 subcellular localization in porcine fetal glomeruli (E47). A) Endothelial cells (ec) of a 

glomerular capillary are surrounded by the glomerular basement membrane (arrow) and foot 

processes (pp) of podocytes (p). A mesangial cell (m) and its nucleus are also visible. Scale bar: 1 

µm. B) Inset of A: Immunogold labeling (arrows) in endothelial cells is localized on the cell 

membrane that faces the glomerular basement membrane (gbm) and it is also observed in podocyte 

processes. Scale bar: 200 nm.  

 

 

 

Fig. 3. TIE2 subcellular localization in porcine fetal glomeruli (E62). A) Region of interest showing 

the lumen of a capillary, its endothelial cell (ec), the glomerular basement membrane (arrow) and 

the foot processes (pp) of podocytes (p). Scale bar: 1 µm. B) Inset of A: TIE2 (arrows) is primarily 

expressed in the abluminal side of the endothelial cell facing the glomerular basement membrane 

(gbm) but also close to cell-cell contacts (white arrow) between two endothelial cells (ec1, ec2). 

Additionally, TIE2 is expressed in podocyte processes. Scale bar: 200 nm. 
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Fig. 4. Immunoreactivity of TIE2 in endothelial cells of porcine fetal glomeruli (E98). A) Region 

of interest with two capillaries (c1, c2), their endothelial cells (ec), the glomerular basement 

membrane (arrows) and the interdigitating podocyte processes (pp). Scale bar: 1 µm. B) Inset of A. 

Gold particles can be found in pairs (white arrow) and in close proximity of ~ 10 nm. Scale bar: 

200 nm. 

 

 

Fig. 5. Immunoreactivity of TIE2 in porcine fetal glomeruli (E47) shows staining (arrows) on the 

membranes of endothelial cells (ec) and podocyte processes (pp) and scarse staining (white arrow) 

in the cytoplasm of an endothelial cell. The associated glomerular basement membrane (gbm) is 

also visible. Scale bar: 500 nm. 
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Fig. 6 Subcellular localization of TIE2 in mesangial cells in porcine fetal glomeruli (E62). A) A 

mesangial cell (m) adjacent to a capillary (c) is surrounded by glomerular basement membrane 

(thick arrows). Endothelial cells (ec) are also visible. Scale bar: 1 µm. B) Inset of A. TIE2 labeling 

(arrow) is observed on the mesangial cell membrane. Podocyte processes (pp) are also present. 

Scale bar: 200 nm. 

 

4.5    Discussion 

Electron microscopy, when combined with molecular detection methods, is the only 

technique with sufficient resolution to localize proteins in intracellular compartments and 

small membrane domains (Koster et al., 2003). Immunogold labeling offers great 

sensitivity and the relative amounts of labeling can be quantified. Nevertheless, this 

technique has also some limitations such as background staining and/or less penetration 

of the immunoreagents through the resin. In the present study, visualization of TIE1 and 

TIE2 receptors in the developing fetal glomeruli was achieved with high resolution 

immunogold labeling. Using the stereological approach of Mayhew et al. (2002), we 

quantified the immunogold labeling distributions of the receptors, expressing them as 

indices of relative labeling and testing whether or not their distributions indicate random 

or differential labeling. Since there was already available information of TIE2 possible 

antigen sites in endothelial cells and podocytes close to the glomerular filtration barrier 

(Satchell et al., 2002), we restricted the number of compartments to these two cell types. 

In order to make the statistical testing effective, we sampled additional compartments 

unlikely to be specifically labeled, such as the extracellular space. 
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Our results provide strong evidence that both TIE1 and TIE2 are expressed in 

endothelial cells and podocyte foot processes, which is in accordance with previous results 

of immunohistochemistry, stating that these receptors were constantly expressed in the 

metanephric glomeruli (Logothetidou et al., 2016). Although TIE receptors were 

considered to be mainly restricted to endothelial cells, TIE2 has been previously 

immunolocalized in rat podocytes in vivo (Satchell et al., 2002) and murine podocytes in 

vitro (Davis et al., 2007). The present study is the first report for TIE1 expression in 

podocytes. The expression of both receptors in these cells further promotes the importance 

of their interactions during angiopoietin signalling. Previously, the study of Davis et al. 

(2007) indicated a direct effect of ANGPT2 on podocytes. However, it was not clear 

whether this effect was mediated through TIE receptor signalling on the podocytes or 

through integrin interactions with angiopoietins. The hypothesis behind the presence of 

TIE receptors in podocytes is that the effect of angiopoietins on podocytes and endothelial 

cells might be similar (Woolf et al., 2009). Our findings of both receptors in podocytes 

further support this hypothesis. The expression of TIE receptors in podocytes could 

represent a direct autocrine feedback loop or a paracrine pathway through ANGPT 

expression from mesangial or endothelial cells. It remains to be determined how podocytes 

react to angiopoietin stimulation. Scarce staining was also found in mesangial cells. 

However, we cannot be sure whether this is a genuine labeling of TIE receptors since non 

preferential staining was also observed in the nuclei of glomerular cells.  

Numerous studies demonstrated that TIE receptors and angiopoietins play an 

important role in metanephric development and glomerulogenesis (De Spiegelaere et al., 

2011, Kolatsi-Joannou et al., 2001, Loughna et al., 1997, Yuan et al., 2000, 1999). The 

present study reveals that TIE1 and TIE2 expression in endothelial cells is predominantly 

observed at the abluminal side of the cell, namely the side that faces the glomerular 

basement membrane. TIE receptors found on this site is in agreement with the hypothesis 

that ANGPT1 can bind to the extracellular matrix and that ANGPT-TIE signalling 

interacts with integrin cell adhesion receptors (Eklund et al., 2017). Although TIE2 is 
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mainly found at the abluminal side, TIE2 expression was also found close to endothelial 

cell-cell contacts. This localization indicates the in vivo existence of receptor signalling 

complexes at cell junctions between neighboring endothelial cells. Previous work by 

Fukuhara et al. (2008) and Saharinen et al. (2008) showed that ANGPT1-activated TIE2 

signalling complexes at endothelial cell junctions lead to PI3K-Akt mediated cell survival 

and increased vessel stabilization (Eklund et al., 2017; Saharinen et al., 2008). 

In conclusion, the present study shows clear evidence of TIE1 and TIE2 expression 

both in endothelial cells and podocytes in the developing porcine glomerulus. Their 

presence indicates that angiopoietins might have an effect on podocytes too.  
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5.1    Abstract 

Intussusceptive angiogenesis (IA) is a dynamic process which contributes to vascular 

expansion and remodeling. Intraluminal pillars have long been the distinctive structural 

indicator of intussusceptive angiogenesis. However, the mechanism of their formation has 

not been fully elucidated yet. Using light and electron microscopy, we studied 

intussusceptive vascular growth in the developing porcine metanephric kidney. Utilizing 

serial semithin sectioning, we observed intraluminal pillars formed by endothelial cells in 

the vasculature of developing glomeruli. Their diameter was < 2.5 µm, consistent with the 

diameter of nascent pillars. Transmission electron microscopy revealed that the majority 

of these pillars consisted only of endothelium. However, a central core of extracellular 

matrix (ECM) covered by endothelium, reminiscent of a mature intussusceptive pillar, was 

also found in the lumen of glomerular capillaries. Interestingly, although collagen fibers 

were not detected in this matrix, pillar formation proceeded in the absence of fibrillar 

collagen indicating that the mechanism of pillar formation might be tissue-specific. In 

addition, perivascular cells or pericytes were not involved in the pillar structure during 

these stages of formation. This study suggests that ECM deposition preceeds 

pericyte/perivascular cell involvement in the intraluminal pillars during intussusceptive 

angiogenesis in porcine metanephric glomerular capillaries. 
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5.2    Introduction 

Angiogenesis, the process through which the vascular system expands, occurs mostly 

during development and cyclic organ growth but also in pathological conditions involving 

tissue repair, organ regeneration, chronic inflammation and tumorigenesis (Paku and 

Paweletz, 1991; Risau, 1997; Augustin, 1998, 2001; Conway et al., 2001; Bergers and 

Benjamin, 2003; Carmeliet, 2003; Rajashekhar  et al., 2006; Eming et al., 2007; Konerding 

et al., 2010; Song et al., 2011). The two best known angiogenic mechanisms, i.e. sprouting 

and intussusceptive angiogenesis (IA), lead to the expansion of the capillary network. 

However, they involve different cell types and are regulated by different molecules 

(Augustin, 2001). Sprouting angiogenesis is responsible purely for vascular growth; yet, IA 

can also involve vascular remodeling through pruning of excessive blood vessels (De 

Spiegelaere et al., 2012). Intraluminal pillars are considered the characteristic features of 

the morphogenetic process of IA (Patan et al., 1996, 2001; Djonov et al., 2001, Makanya 

et al., 2005).  

In pathological tissues such as tumors, various mechanisms of angiogenesis have 

been identified (Döme et al., 2007). In murine ascites tumor vessels, intraluminal bridging 

has been described during which endothelial cytoplasmic processes extend into and across 

the vessel lumen, forming transluminal bridges that divide blood flow into multiple 

smaller-sized channels (Nagy et al., 1995). More specifically, in the vasculature of 

experimental subcutaneous tumors, a detailed model of vascular division due to 

endothelial bridging was proposed by Paku et al. (2011). During this mechanism, 

endothelial bridges are formed and subsequently the bridge-forming endothelium attaches 

to a type I collagen bundle in the underlying connective tissue. The actin cytoskeleton of 

the endothelial cell then exerts a pulling force to the collagen bundle, resulting in the 

transport of the latter through the vessel lumen. This process, named inverse sprouting, 

generates a connection between the processes of endothelial bridging and intussusceptive 

angiogenesis and identifies the collagen-pulling force behind pillar formation. 
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In the present study, the presence of intussusceptive angiogenesis and the pillar 

ultrastructure were investigated in  the glomerular capillaries of the porcine metanephric 

kidney at different developmental stages using serial sectioning combined with light and 

electron microscopy. Previous studies have shown that IA is active during renal and 

glomerular development in vertebrates (Makanya et al., 2005; Logothetidou et al., 2016). 

Moreover, the numerous glomeruli in the kidney are easily identifiable and delineable 

regions in which IA takes place, allowing specific sampling. The developing kidney enables 

the investigations of different stages of vascular development, as the formation of nephrons 

proceeds in a centrifugal pattern so that the the newly formed nephrons are found in the 

superficial cortex whereas the oldest and most mature nephrons are located in the 

juxtamedullary area regardless of the fetal age (Kazimierszak, 1971; Nash and Edelmann, 

1973). 

 

5.3    Materials and methods 

5.3.1 Sample collection and processing 

Porcine fetuses of different developmental stages were obtained from gravid uteri 

collected in a local slaughterhouse and their approximate age in embryonic days post 

conception (E) was calculated from their crown-rump length (CRL) (Evans and Sack, 

1973). The fetuses used in this research had a CRL of  6.5 cm (E46), 9.5 cm (E55), 14 cm 

(E64) and 22 cm (E98). For both light and electron microscopic studies, small pieces ± 1 

mm³ of fetal kidney cortex were fixated overnight in Karnovsky fixative (2% 

paraformaldehyde and 2.5% glutaraldehyde in 0,1 M sodium cacodylate buffer, pH 7.2). 

The tissue blocks were then postfixated in 1% reduced osmium tetroxide for 1.5 h, 

dehydrated through ascending concentrations of ethanol and embedded in EPON 812 

resin. 
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5.3.2 Light microscopy and 3D reconstruction of semithin sections 

Four kidney samples of different embryonic ages were used for serial semithin 

sectioning which was performed as described by Ruthensteiner (2008). Briefly, after the 

application of glue on one side of the EPON block, a diamond knife with a big boat 

(DiATOME, histo jumbo, ultra 45° 8 mm) was used to cut serial semithin sections of 0.5 

µm. As the sectioning progressed, the sections formed a ribbon due to the glue in between 

and were later detached from the knife and transferred onto pretreated glass slides. After 

stretching and drying, the ribbons were stained with toluidine blue, mounted with DPX 

and observed with an Olympus BX61 (Olympus, Belgium) microscope. All the glomeruli 

present in each serial section were captured by an Olympus BX-UCB camera, followed 

throughout > 200 semithin sections and analyzed for the presence of pillars. Endothelial 

protrusions in  the capillary lumen were considered as intraluminal pillars only when they 

appeared and then disappeared in consecutive sections, spanning from one endothelial wall 

towards the opposite one. In that way, other structures such as vessel bifurcations, 

endothelial folds or artifacts were not accidentally attributed as pillars. Digitized images of 

areas of interest were transferred to the Amira 6.1.1 software program (FEI, France) using 

the protocol described by Cornillie et al. (2008) in order to perform three-dimensional (3D) 

reconstruction of the pillar formation. 

 

5.3.3 Transmission electron microscopy (TEM) 

Two additional fetal kidney samples were used for ultrathin sectioning starting at a 

random point in the tissue block. An ultra 45° 2.5 mm diamond knife (DiATOME, 

Switzerland) was utilized to cut 150 consecutive ultrathin sections of ± 80 nm thickness 

which were then collected on precoated formvar copper grids. Sections were contrasted 

with 1% uranyl acetate in 10% ethanol and afterwards with a lead citrate buffer (133 mg 

lead nitrate and 175 mg sodium citrate in 10 ml double distilled water). The sections were 

viewed at 80 kV with a JEM-1400 Plus transmission electron microscope (Jeol, Belgium) 
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equipped with a Quemesa TEM CCD camera (Olympus, Belgium). Image analysis was 

performed with the Radius software (EMSIS, Belgium). All reagents and materials were 

purchased from Aurion (Aurion ImmunoGold Reagents & Accessoires, the Netherlands). 

 

5.4    Results 

5.4.1 Intussusceptive pillars in metanephric glomerular capillaries 

The semithin sections of the different fetal kidney samples showed that the 

metanephros consisted of several tubules in the medullar area and S-shaped bodies and 

glomeruli in the cortical area. Glomeruli of different developmental stages, i.e. stages III, 

IV and V as described by Friis (1980) were easily discerned in the cortex (Fig. 1A). The 

glomerular tuft, the Bowman’s capsule and the vascular and urinary poles of the renal 

corpuscle were clearly identifiable (Fig. 1B). From the numerous endothelial protrusions 

found in the glomerular capillaries, we were able to prove that several of them were indeed 

pillars. Analysis of the serial sections demonstrated endothelial cytoplasmic processes 

which elongated in the lumen towards the opposite side of the vessel wall and finally 

disappeared. Their diameter was always < 2.5 µm which is consistent with the diameter of 

a nascent pillar. By following serial sections, the point at which a pillar started and its 

intraluminal extent until the end point could be clearly identified (1C-F). Three-

dimensional reconstruction was performed using these serial sections in order to highlight 

the recreated structures (Fig. 1G). 

  



Chapter V 

78 

 

 

Fig. 1. Semithin sections (0.5 µm) showing the kidney morphology of a porcine fetus of E55. A) S-

shaped bodies (II) and metanephric glomeruli of different maturation stages (III, IV and V) are 

located in the cortex of the metanephros. Tubuli (t) are located in the kidney medulla. Scale bar: 

100 µm. B) Higher magnification of a stage IV metanephric glomerulus in which the vascular (v) 

and urinary poles (u) are depicted. The glomerular tuft is enclosed in Bowman’s capsule (arrow). 

Endothelial cells (ec), intraglomerular mesangial cells (m) and podocytes (p) are indicated. Scale 

bar: 10 µm. C-F) Consecutive semithin sections demonstrating an intraluminal tissue pillar within 

a glomerular capillary. The open lumen of the vessel in C and F indicates the emergence and end 

of the pillar, respectively. The width of the pillar is 1.2 µm close to the endothelium and 0.59 µm 

in the middle of the lumen. Scale bar: 5 µm. G) 3D reconstruction of the transcapillary pillar 

represented in C-F. The endothelial cell wall (ec) and the surrounding tissue are indicated in green. 

Arrow points to the intraluminal pillar. 

 

5.4.2 Ultrastructural changes in glomerular capillaries during development 

The TEM analysis revealed ultrastructural changes in the capillaries during 

glomerular development. The immature capillaries of the metanephros showed endothelia 

with a large amount of cytoplasm and abundant euchromatin in their nuclei. The 

endothelium lacked fenestrations and the podocyte processes were not formed yet (Fig. 

2A). As the capillaries mature, a more prominent glomerular basement membrane was 

formed and interdigitations of podocyte pedicles were developed showing primary and 
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more developed foot processes (Fig. 2B). Finally, the mature capillaries exhibited 

fenestrated thin endothelium with relatively scanty cytoplasmic organelles and well-

developed glomerular basement membrane and podocyte processes (Fig. 2C). 
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Fig. 2. Transmission electron micrographs illustrating various capillary phenotypes in the 

developing porcine metanephric glomeruli of a fetus of E64. A) Immature capillary showing 

different signs of activation: thickened endothelial cells (ec), numerous organelles in the cytoplasm, 

nuclei with enlarged amount of euchromatin (*). The endothelium is continuous and the podocytes 

(p) have not developed foot processes yet. B) Maturing capillary with a narrow lumen exhibiting a 

few intraluminal protrusions (arrowheads). The endothelium is not fenestrated. The podocyte 

processes (pp) show different morphology (primary and more developed foot processes). The 

glomerular basement membrane (thick arrow) is prominent and its three layers are visible (from 

podocyte towards endothelium: lamina rara externa, lamina densa, lamina rara interna). C) 

Mature glomerular capillary displaying thin endothelial cells (ec) with sparse organelles. 

Endothelial fenestrations (arrowheads) are present. The glomerular basement membrane (arrow) 

is prominent and the podocyte processes (pp) are fully developed. p: podocyte. Scale bars: 2 µm. 

 

5.4.3 Ultrastructure of intussusceptive pillars 

 

 

Fig. 3. Serial ultrathin sections (approximately 80 nm thick) demonstrating a glomerular capillary 

of a fetus of E64. The capillary consists of multiple endothelial cells (ec) with a fenestrated 

endothelium. Podocyte foot processes (pp) envelop the capillary. The nascent pillar consists of 

endothelial cytoplasm and is present in 16 sections. A) section 24, B) section 29, C) section 33, D) 

section 35, E) section 37, F) section 39. Scale bar: 1 µm. 
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Most of the intraluminal pillars were formed by single endothelial cell processes.  

These processes connected to a different part of the vessel wall on the opposite side of the 

lumen. Interstitial tissue was not present within these nascent pillars (Fig. 3).  

A structure resembling a more mature intraluminal pillar was also identified in the 

capillary lumen. This structure consisted of extracellular matrix covered by endothelium 

and its diameter was ±  1.2 µm (Fig. 4). Moreover, no other types of cells except endothelial 

cells participated in the formation of both aforementioned pillar structures. 

 

 

 

Figure 4. Transmission electron micrograph depicting a pillar-like structure in a glomerular 

capillary of a porcine fetus of E98. A) Capillary consisting of multiple endothelial cells (ec) with a 

continuous endothelium. The podocytes enveloping the capillary have interdigitated foot processes 

(pp). The pillar-like structure (*) consists of extracellular matrix and is covered by endothelium. 

Arrow points to the endothelial cell membrane covering the pillar structure. Scale bar: 500 nm. 
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5.5    Discussion 

It is established that many changes occur within the glomerular cells during 

glomerulogenesis. More specifically in developing glomeruli, capillary loops increase in 

number and endothelial and podocyte cell layers begin to resemble their fully mature 

counterparts (Abrahamson, 2009). In the current study, we observed similar structural 

changes in the capillary phenotype, and there seems to be a correlation between the 

observed pillars and the maturation of the capillaries, since pillars were found in more 

mature capillaries. On the other hand, the identified pillars were rather scarce due to the 

strict criteria of our methodology. Consequently, we do not have enough data to 

undeniably establish a correlation between pillar formation and glomerular developmental 

stage. 

The vasculature in the glomerular tuft showed characteristics of intussusceptive 

angiogenesis, i.e. intraluminal pillar formation, at various stages of development. The 

regions of interest were followed throughout serial sections to exclude vessel bifurcations 

or other structures, which may look like intraluminal pillars in single sections. Thus, it was 

ensured that they represented endothelial pillars with a determined starting and ending 

point, connecting opposite sides of the endothelial wall. These pillars were the two-

dimensional depiction of the holes seen in the Mercox casts in our previous research 

(Logothetidou et al., 2016).  

Although the formation of transluminal pillars is considered the most characteristic 

feature of intussusceptive angiogenesis (Djonov et al., 2003; Burri et al., 2004; Makanya et 

al., 2009), the exact mechanism of this process has yet to be completely clarified. In the 

glomerular capillaries, the pillars originated from an endothelial cell and extended in the 

lumen towards the opposite side of the vessel wall. This is in contrast with the original 

hypothesis of intussusceptive angiogenesis, during which opposite endothelial walls form 

a bridging contact (Burri and Tarek, 1990). Furthermore, both maturation stages of pillars 

demonstrated in the current research showed no involvement of perivascular cells. 
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Therefore, we can hypothesize that, in the very specific vascular setting of the glomerulus, 

perivascular cells are not a driving force in the initiation of pillar formation mechanism. 

This is in agreement with the original hypothesis of intussusceptive angiogenesis (Burri 

and Tarek 1990) and the mechanism presented in tumor-induced intussusceptive 

angiogenesis (Paku et al., 2011).  

Most pillars identified in this research were nascent pillars, consisting only of 

endothelium. During pillar maturation, interstitial tissue is involved in the pillar formation. 

In both physiological and pathological situations, the core of a mature pillar reveals a 

bundle of collagen fibers (Burri and Tarek, 1990; Burri and Djonov, 2002; Paku et al., 

2011). The current study demonstrated a structure resembling a mature pillar and its cross 

section showed extracellular matrix covered by endothelium. However, the core of this 

structure did not contain collagen fibers. Since the only type of collagen found in glomeruli 

is type IV (Ishimura et al., 1989; Miner, 1999), it is most likely that this type is present in 

the ECM of the pillar. Collagen IV forms meshworks, not fibers, and it is found in the 

glomerular basement membrane and the mesangial extracellular matrix (Shoulders and 

Raines, 2009). Furthermore, endothelial cells, mesangial cells and podocytes of developing 

glomeruli are known to synthesize different alpha chains of collagen IV (Abrahamson et 

al., 2009).    

In conclusion, this study demonstrates the presence of intussusceptive pillars in 

glomerular capillaries of the porcine developing kidney. Perivascular cells or pericytes do 

not participate in the initial stages of pillar formation and ECM invasion seems to precede 

their involvement in the mature pillar. The absence of collagen fibers in the core of the 

pillar proves that collagen bundles are not necessary for intussusceptive angiogenesis in the 

metanephric glomerulus and indicates that the mechanism of pillar formation might be 

tissue-specific.  
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Research in angiogenesis is very important, not only because of the role of 

angiogenesis in physiologic conditions e.g. during embryonic development and wound 

healing, but also because of its implication in numerous diseases such as cardiovascular 

diseases, ocular disorders, chronic inflammation and cancer (Griffioen and Molema, 2000; 

Carmeliet, 2005; Andres and Djonov, 2010; Rajappa et al., 2010; Eklund et al., 2017). Of 

the main angiogenic mechanisms, sprouting angiogenesis, has been intensely studied with 

a plethora of models (Fantin et al., 2010; Unterleuthner et al., 2017), whereas only a small 

number of research groups has focused on intussusceptive angiogenesis (Djonov et al., 

2003; Konerding et al., 2010). Previous research on the role of angiopoietins during porcine 

mesonephric development, conducted in our department, indicated that angiopoietins are 

involved in intussusceptive angiogenesis (IA). With the intent to contribute to the current 

knowledge on intussusceptive angiogenesis, this research setup aimed to address the 

following topics (1) pinpoint the occurrence of IA in the porcine metanephros, (2) identify 

the mechanism of pillar formation in the glomeruli and (3) investigate the expression 

pattern of TIE receptors during glomerular development and find a possible link between 

the receptors and IA. 

The first priority was to identify the spatial and temporal characteristics of IA in order 

to gather topographic data for the following experiments (section 3.4.1). Vascular 

corrosion casts of fetal kidneys provided evidence of IA, in the form of capillary holes when 

viewed with SEM. Holes corresponding to intussusceptive pillars were identified in 

capillaries of stages III, IV and V in all tested developmental stages, namely E41 until E112. 

This proves that intussusceptive angiogenesis is active throughout the porcine fetal 

development and ensures the continuous growth of functional metanephric glomeruli and 

is in line with previous research in other species. During the initial steps of its 

organogenesis, the avian metanephros is characterized by intensive sprouting angiogenesis 

but early on the vascular growth mode switches to IA (Makanya et al., 2005) which is 

energetically and metabolically more economical than sprouting (Djonov et al., 2003). 
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Although SA was not investigated in the current study, a similar switch could also happen 

in the porcine metanephric glomeruli since developing avian and mammalian kidneys 

show great similarities in the process of maturation in analogous nephron types between 

these two classes of vertebrates (Gambaryan, 1992). Additionally, glomerular filtration is 

not jeopardized, since no basement membrane degradation occurs during IA, as seen in 

sprouting angiogenesis (Ribatti and Djonov, 2012). Although no quantification of IA 

occurrence was performed, the holes were more frequently observed in mature stage V 

glomeruli, possibly because they consist of more capillaries than the developing III and IV 

stages. Moreover, some of these holes were located close to vessel bifurcations, which 

might indicate their involvement in remodeling and pruning of these microvessels (Djonov 

et al., 2002). Holes reminiscent of IA have been previously observed in the porcine 

mesonephros (De Spiegelaere et al., 2010) and in a range of tissues and species, such as the 

rat lung (Burri and Tarek, 1990), the CAM (Patan et al., 1993) and the chick kidney 

(Makanya et al., 2005).  

Since the mechanism of pillar formation is not entirely understood, we focused on 

the morphology and the mechanism behind pillar formation during metanephric 

glomerulogenesis (sections 5.4.1 and 5.4.3). Taking into account our previous results, we 

chose to investigate III, IV and V glomeruli of different fetal stages. Our experimental setup 

combined serial sectioning and TEM which allowed us to identify in great detail structures 

which were certainly pillars, since they were followed throughout several sections ensuring 

their starting and ending points. The majority of the intraluminal pillars consisted of 

endothelial processes and had a diameter < 2.5 µm, corresponding to nascent pillars. Along 

the immature pillars, a more mature pillar was also identified. This structure contained 

extracellular matrix and was covered by endothelium. According to the original hypothesis 

of IA, mature pillars are invaded by collagen fibers (Burri and Tarek, 1990). In a model of 

tumor-induced intussusceptive angiogenesis, after subcutaneous transplantation of tumors 

in mice, it was proved that the collagen in the pillar core is type I (Paku et al., 2011). This 

could be explained by the fact that type I collagen is abundant in all dermal layers (Meigel 
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et al., 1977). Notably, the pillar found in our research did not contain collagen fibers. This 

finding indicates that collagen bundles are not necessary for pillar formation and the 

mechanism of intussusceptive angiogenesis might be tissue-specific, depending on the 

characteristics of the microenvironment. Moreover, it can be hypothesized that the ECM 

in the pillar found in the current research could contain collagen type IV since it is the only 

type found in the glomerulus (Ishimura et al., 1989; Miner, 1999). Immunstaining against 

collagen type IV would help validate this hypothesis. 

Except for the involvement of endothelial cells and extracellular matrix, our TEM 

study did not reveal any contribution of glomerular pericytes, namely intraglomerular 

mesangial cells (Smith et al., 2012) or perivascular cells (podocytes) to the pillar formation 

during these stages of pillar maturation. This finding indicates that these cells are not the 

driving force behind the initial phases of pillar development in the metanephric glomeruli. 

This is in agreement with the original hypothesis of IA and the previously mentioned 

model of tumor induced IA, where it is stated that pericytes invade the pillar at later stages 

of its maturation and therefore are not driving its initial formation (Burri and Tarek, 1990; 

Paku et al., 2011). Although a fully mature pillar was not identified in our samples, we can 

hypothesize that podocytes would be involved later in the pillar formation and subsequent 

vessel splitting. Based on our observations of vascular bifurcations in the glomerular 

capillaries, the splitting is initiated at the outer side of the capillary, opposite of the side 

where the mesangial cell resides. Glomerular basement membrane and podocytes follow 

the invagination of the endothelium, leading to the formation of two capillaries from a pre-

existing one (Fig. 10).  
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Fig. 10. TEM micrograph depicting a capillary bifurcation in a porcine metanephric glomerulus 

(E64). Vessel splitting begins from the endothelial wall opposite from the mesangial cell (m). 

Glomerular basement membrane (arrow) and podocyte processes (pp) follow the endothelial 

invagination. Ec: endothelial cell, p: podocyte. Scale bar is 2 µm. 

 

A great number of consecutive sections and different samples were used in this TEM 

study but our criteria were very strict in order to avoid misattribution of other structures to 

pillars. This could explain why we couldn’t identify many examples of different maturation 

stages of pillars. While TEM analysis is very reliable in tissues with a high density of 

intraluminal pillars, such as tumors (Paku et al., 2011), using it in a normally developing 

tissue, such as our model can be very time-consuming and laborious. Alternative 

techniques, which could somewhat minimize the effort and time needed, are the recently 

invented automatic tape-collecting ultramicrotome-SEM (ATUM-SEM) process (Schalek 

et al., 2011) and the serial sectioning combined with field emission SEM (FE-SEM) 

allowing 3D reconstruction (Kremer et al., 2015). With the first technique, the ultrathin 

sections are immediately and automatically collected from the knife's water boat onto the 



General discussion 

91 
 

surface of a partially submerged conveyor belt. Low resolution SEM imaging of the series 

of sections is then used to map the dataset so that the time consuming process of high 

resolution imaging can be intelligently targeted and automatically executed. A semi-

automatic microscope control software package can orchestrate all of these steps to 

produce volume EM image sets from an ATUM tape (Hayworth et al., 2014). The second 

technique combines automate sectioning (Gatan 3View2 ultramicrotome) with image 

capture of 3D ultrastructure using (FE-SEM). This system that enables the analysis of 

specimens up to 400 μm3. Although both of these techniques are promising and facilitate a 

more effortless way of sample analysis, they require special equipment and are expensive. 

TIE1 and TIE2 receptor tyrosine kinases are expressed during embryonic 

development (Sato et al., 1995) and regulate embryonic angiogenesis by the mechanism of 

intussusceptive microvascular growth (Patan, 1998). Therefore, the molecular part of this 

study was initiated by immunohistochemically mapping the expression pattern of the TIE 

receptors in the developing metanephros (section 3.4.3). In our research, we found that 

both receptors were expressed not only in endothelial cells in the glomerular capillaries, 

but also in podocytes, namely specialized epithelial cells. TIE1 and TIE2 showed a similar 

and constant expression pattern in glomeruli and S-shaped bodies, regardless of the fetal 

age. Therefore, a clear link between TIE expression and intussusceptive angiogenesis could 

not be identified. It is possible that, whereas TIE receptors are expressed throughout fetal 

development, the differential expression of angiopoietins controls the balance between 

quiescence and angiogenesis. ANGPT2, which promotes angiogenesis, is strongly 

expressed early during glomerular development and its expression is attenuated in mature 

glomeruli (De Spiegelaere et al., 2011). ANGPT1 is expressed in later stages of glomerular 

development (De Spiegelaere et al., 2011) and in mature glomeruli (Satchell et al., 2002), 

where it is thought to promote vascular maturation and maintenance  

Although TIE expression is considered largely restricted to endothelial cells, there 

are a few publications demonstrating that some epithelial cells express TIE genes. Both 
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receptors have been previously found in the the primary cilia in the female reproductive 

organs (Teilmann and Christensen, 2005) and TIE2 has been found in rodent 

cholangiocytes in polycystic liver diseases (Fabris et al., 2006). Interestingly, TIE2, but not 

TIE1, expression was shown in human (Satchell et al., 2002) and murine (Dessapt-Baradez 

et al., 2014) podocytes. The role of TIE1 and TIE2 in endothelial cells has been investigated 

to a great extent (Dumont et al., 1994; Puri et al., 1995). TIE receptors mediate interactions 

between endothelial cells with their extracellular matrix and with surrounding 

mesenchymal cells. These interactions are crucial for normal endothelial cell motility 

and/or attachment and also for recruitment of periendothelial cells (Patan et al., 1998). 

Conversely, the role of TIE receptors in podocytes remains a mystery. Since ANGPT-TIE2 

signalling was also described in nonendothelial cells, such as monocytes (De Palma et al., 

2013) and muscle satellite cells (Abou-Khalil et al., 2009), angiopoietin signalling could be 

an important regulator in podocytes, too. A first hypothesis might be that TIE2 receptors 

in podocytes act as decoy receptors, controlling the overexpression of ANGPT. Another 

possibility is that TIE2 in podocytes could play a special role in patterning and/or 

maintaining the glomerular vessels through angiopoietin signalling. This offers a very 

promising perspective, because ANGPT-TIE signalling in podocytes could help explain 

some nonendothelial effects observed when angiopoietins are overexpressed (Davis et al., 

2007). The function of TIE1 remains somewhat obscure in the current literature and our 

research is the first report of TIE1 in podocytes. Our finding further supports the hypothesis 

that the effect of angiopoietins on podocytes and endothelial cells might be similar (Woolf 

et al., 2009). Therefore, the role of TIE1 could be the same in podocytes as in endothelial 

cells, namely acting as an inhibitory co-receptor of TIE2. Within sites of active 

angiogenesis, endothelial TIE1 and TIE2 associate to form heterodimers which inhibit 

TIE2 activation and clustering (Kim et al., 2006; Seegar et al., 2010). ANGPT2 is unable 

to dissociate the inhibitory TIE2-TIE1 complexes upon binding TIE2 and, therefore, does 

not induce TIE2 clustering and signalling, yet behaves as a competitive antagonist by 

blocking further binding of ANGPT1. This antagonistic effect of ANGPT2 opposes the 
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activation of downstream signalling generated by ANGPT1, promoting either vascular 

degeneration or angiogenesis (Seegar et al., 2010). This hypothesis is in accordance with 

the observations in the present study, in which TIE1 was continuously expressed in 

developing metanephric glomeruli, which kept on growing throughout development. 

Previous in vitro studies have linked translocation of TIE receptors in different areas 

of the endothelial cell membrane with the activation of different molecular pathways. More 

specifically, TIE2 receptor signalling complexes across the endothelial junction mediate 

cell survival signals, whereas TIE2 at cell–substratum contacts elicits a potent angiogenic 

response (Fukuhara et al., 2008; Saharinen et al., 2008). Therefore, it was interesting to 

investigate the distribution of TIE receptors on the endothelial cell membrane of 

metanephric glomerular capillaries (section 4.4). Using high-resolution immunogold 

labeling and the relative labeling index stereological approach, this study demonstrated 

that both receptors were predominantly expressed on the abluminal side of endothelial cell 

membranes, namely the side that faces the glomerular basement membrane. Our finding 

that the vast majority of TIE2 is close to the production site of ANGPT1, namely the 

podocytes, could indicate that these receptors are able to interact with ANGPT1 to further 

promote angiogenesis. According to the same hypothesis, the small number of TIE2 

receptors detected close to interendothelial junctions, could be ANGPT-activated 

translocated TIE2 receptors which would promote vascular quiescence. Although such an 

explanation makes sense in our model, where angiogenesis is indeed active, it has to be 

further investigated since the original studies showed that the activation of different 

molecular pathways depends on the presence or absence of neighboring endothelial cells. 

However, this was not the case in our experiments, since our study was an in situ 

investigation and neighboring cells were always present.  

We recognize that immunogold has some drawbacks such as limited penetration of 

the immunoreagents through the resin which can influence the labeling intensity (Mayhew, 



Chapter VI 

94 
 

2011). Nevertheless, the expression of TIE receptors in podocytes, at similar levels to 

endothelial expression, is very intriguing and deserves further research. 

The kidney is a good model to study cellular and molecular mechanisms of 

organogenesis for most known developmental processes are involved in its morphogenesis 

(Kuure et al., 2000). Kidney development requires reciprocal inductive signalling between 

mesenchyme and epithelium (Little and McMahon, 2012). It is noteworthy that similar 

cellular interactions (mesenchyme-to-epithelial transition) and signalling molecules e.g. 

paired box gene 2 (PAX-2), Wilms tumor protein (WT-1), VEGF and platelet derived 

growth factor β (PDGF-β) seem to be involved in the development of all the kidney types 

(Carroll and Vize, 1996; Heller and Brandli, 1997; Little and cMahon, 2012). This may 

suggest some degree of conservation in the genetic program of kidney organogenesis. More 

specifically, the ultrastructural components of mesonephros and metanephros show a high 

degree of similarity, although the vascularization pattern of the organs differs markedly 

(Tiedemann and Egerer, 1984). This makes the mesonephros, along with the metanephros, 

interesting models in organogenesis, especially in pigs where active mesonephroi are 

present in a relatively large embryos (Gersh, 1937). Additonally, the numerous and easily 

identifiable and delineable glomeruli in these kidneys offer interesting models not only for 

nephrogenesis but also angiogenesis. 

 

Conclusions and future perspectives 

The present PhD thesis provided strong evidence that intussusceptive angiogenesis 

occurs throughout the fetal development of the porcine metanephros. Initially, the 

intussusceptive pillars consist only of endothelial processes whereas extracellular matrix 

with no collagen fibers invades the pillar at a later stage. Because podocytes were not 

associated with these pillars, they are not considered the driving force behind pillar 

formation in the glomerulus. Nevertheless, their role and the timeframe of their 

involvement in the intraluminal pillar formation has to be further clarified, since the 
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glomerular capillaries are a very specialized setting of blood vessels. Additionally, this 

study proved that TIE receptors, which are crucial for the growth and morphogenesis of 

the glomerular vasculature, are present in the developing porcine metanephros in both 

endothelial cells and podocytes. However, their functions in podocytes remain 

hypothetical and should still be further investigated in future studies. 

The complexity of angiogenesis, a morphogenetic process with numerous stimuli, 

multiple steps and several cell types involved, makes its study difficult using reductionist 

techniques alone. For this reason, it is very important to develop a method to investigate 

intussusceptive angiogenesis in its full complexity. Hlushchuk et al. (2016) have developed 

a model of in vivo-imaging down to single cells within the living organism, followed with 

the light and electron microscopy of the site of interest harvested at the chosen time-point. 

However, this model was developed in the zebrafish caudal fin, which offers the possibility 

for repetitive in vivo observation at high resolution because the distal tip of the fin is less 

than 150 μm thick and is organized in an almost single plane (Huang et al., 2003). Such 

technique cannot be utilized in a mammalian kidney, e.g. the porcine metanephros used 

in the current research. An example of a model with a sheet-like organization which would 

allow such investigations is the CAM vasculature. Intussusceptive angiogenesis was 

previously reported in the CAM (Patan et al., 1993) and this fact makes it a very good 

candidate for this correlative microscopy method or the 3D FE-SEM system, previously 

mentioned as an alternative method (Kremer et al., 2015).  

The zebrafish and the CAM models could be useful tools to further investigate 

ANGPT-TIE involvement in IA, although there are some major drawbacks which should 

be mentioned. Both organisms, zebrafish and chicken, are phylogenetically more distant 

from human compared to mammals. Moreover, the CAM model is restricted only to avian 

species and the CAM vasculature is highly angiogenic and this fact might hamper the 

extrapolation of results to other species (De Spiegelaere et al., 2012). Another point that 

should be raised is that the adult zebrafish have mesonephric kidneys whereas mammals 
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and birds have metanephric (Swanhart et al., 2011), a difference which should be taken 

into consideration when extrapolating date to mammalian species. Nevertheless, there is a 

striking similarity in the molecular and segmental organization of the mammalian and 

zebrafish nephrons (Wingert et al. 2007; Wingert and Davidson, 2008) and the zebrafish 

has become an important model system for studying renal disease thanks to the anatomical 

simplicity of the embryonic kidney (Drummond, 2005).  

The current research indicated a possible link between TIE receptors and 

intussusceptive angiogenesis, but additional research is needed to prove their role in the 

mechanism of IA. A good experimental approach would be to generate conditional 

knockout models targeting TIE1, TIE2, and/or angiopoietins. Specifically in zebrafish, a 

strategy allowing tissue- or temporal-specific disruption of genes has been developed 

(Maddison et al., 2012). After identifying embryos with the insertional mutants, their 

vasculature can be studied for growth restriction, vascular defects, absence of patterning in 

the targeted tissue, but in the whole embryo, too. Moreover, knockouts generated with site-

specific recombinase technology can be induced in the pregnant dam in order to knock out 

the targeted allele at each embryonic day, as presented in mice (Jeansson et al., 2011). 

Furthermore, the fact that the ANGPT-TIE system might not be exclusive in 

endothelial cells of the blood and lymphatic vasculature could provide new insights into 

the development and function of renal glomeruli. The discovery that both TIE1 and TIE2 

are found in podocytes, indicates a mechanism of podocyte regulation via angiopoietin 

signalling. Preliminary Western Blotting results from our research group already showed 

TIE1 expression in an immortalized mouse podocyte cell line (Shankland et al., 2007). 

Additionally, a human podocyte cell line will also be used to validate that the obtained 

results are not specific to the cell-line or parent species. Future investigations of human and 

murine pococyte cell lines should focus on the effect of ANGPT-TIE signalling on 

podocyte survival, proliferation, migration and permeability after treatment with 

recombinant ANGPT1 and ANGPT2. Moreover, the molecular pathways that are 



General discussion 

97 
 

involved in angiopoietin signalling should be also explored. Since ANGPT1 mediates 

endothelial survival through the PI3K/AKT pathway (Kim et al., 2000), its possible 

activation in podocytes upon angiopoietin stimulation should be tested. Finally, in order 

to clarify whether TIE1 acts as an inhibitory TIE2 co-receptor in podocytes, as in 

endothelial cells, TIE1 knockdown can be used to investigate changes in TIE2 

phosphorylation levels.
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Summary 

Glomeruli are a part of the primary filtration units of the vertebrate kidney. Although 

the molecular pathways behind glomerular development have not been fully elucidated, 

intussusceptive angiogenesis (IA) has a major contribution to vascular expansion and 

remodeling of the glomerular vasculature. The ANGPT-TIE system signals between 

mesangial cells, endothelial cells and podocytes to maintain the structure and integrity of 

the glomeruli. These molecules are involved not only in the normal development of kidney 

glomeruli, but also in disease, making them promising targets for angiogenic or anti-

angiogenic therapies. 

The general introduction (Chapter I) of this doctoral thesis provides a comprehensive 

overview of the current literature on angiogenesis and its significance during development 

and disease. This research focuses on the mechanism of IA, which is responsible for the 

expansion and remodeling of most vascular beds but is not fully elucidated yet. One of the 

most important angiogenic growth factor systems linked with IA are the ANGPT and their 

receptors TIE. Numerous studies have focused on ANGPT-TIE involvement in 

angiogenesis, but the conflicting functions of ANGPT and the unclear role of TIE1 still 

represent big obstacles. Intussusceptive angiogenesis and the ANGPT-TIE pathway are 

important during metanephric development and specifically during glomerulogenesis. 

Metanephric glomerular development follows a predictable and topographically traceable 

pattern in all fetal stages, making the metanephros a good model for a study on IA.  

Chapter II describes the objectives of the experimental work which was performed 

during this PhD thesis. The focus of this thesis was to gain insight into the expression 

pattern of the TIE receptors in developing porcine glomeruli, and to study the morphology, 

formation and ultrastructure of the intussusceptive pillar in the metanephric kidney.  

In Chapter III, the presence of IA and the TIE expression in metanephric glomeruli 

are investigated, in order to find a link between the receptors and IA. The temporal and 
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spatial occurence of IA was identified in capillaries of stage III, IV and V glomeruli 

throughout fetal porcine development, using vascular corrosion casting and SEM. 

Additionally, TIE1 and TIE2 were immunohistochemically detected in endothelial cells 

and podocytes in all developmental stages of glomeruli. To our knowledge, this is the first 

report of TIE1 in glomerular podocytes. The presence of these receptors during active IA 

indicates an association between the TIE receptors and IA during glomerulogenesis in the 

porcine metanephros. 

Since the localization of TIE2 receptors plays an important role in eliciting 

differential responses towards quiescence or angiogenesis, we aimed to map the subcellular 

localization of TIE receptors using high-resolution immunogold electron microscopy 

(Chapter IV). Quantitative analysis showed that TIE1 and TIE2 antibody labeling was 

predominantly detected on the abluminal side of endothelial cell membranes. This could 

indicate that these receptors are able to interact with ANGPT1 from the adjacent 

podocytes, further promoting angiogenesis. Similar expression levels of the receptors in 

both endothelial cells and podocytes promotes the hypothesis that TIE1 and TIE2 

interplay, as described in endothelial cells, might also be present in podocytes.  

In Chapter V, the mechanism of intraluminal pillar formation, the structural 

indicator of intussusceptive angiogenesis, was studied. Using serial semithin sectioning 

and TEM, intraluminal pillars were observed in the vasculature of developing glomeruli. 

The majority of these pillars were nascent, consisting of endothelial processes, although a 

more mature pillar was also identified. The mature pillar had a central core of extracellular 

matrix covered by endothelium. Collagen fibers were not visible in the pillar core indicating 

that  they are not necessary for pillar formation or maturation. Such finding might mean 

that the mechanism of IA is tissue-specific. Additionally, perivascular cells and pericytes 

were not involved in the pillar structure during these stages of its formation, suggesting that 

they are not the driving force behind pillar initiation. This is in agreement with the 
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currently described mechanisms of IA, stating that the pillar is only invaded by pericytes 

at the last stage of its maturation. 

The general discussion (Chapter VI) tackles the most important points which raised 

questions. Additionally, it highlights the strengths and weaknesses of the techniques and 

the experimental model used in this research and eventually, suggests future perspectives 

that could further aid angiogenic research. Overall, the results of this study indicated a link 

between IA and TIE receptors, but further investigations are needed to prove the role of 

these receptors in the mechanism of IA. In addition, the presence of TIE receptors in 

podocytes, led us to the hypothesis of ANGPT-TIE signalling in podocytes, a possibility 

that should be explored in the future. Furthermore, the study of pillar formation in the 

metanephric glomeruli showed similarities, but also differences with the current described 

mechanisms in other tissues, such as the absence of collagen fibers in the mature pillar. 

This led us to postulate that IA might be a tissue-specific mechanism.  
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Samenvatting 

Glomeruli vormen bij de gewervelde dieren een onderdeel van het primaire 

filtratieapparaat in de nieren. Ondanks het feit dat het moleculaire mechanisme dat de 

glomerulogenese aanstuurt nog onvoldoende opgehelderd is, is het wel zeer duidelijk dat 

intussusceptieve angiogenese (IA) een belangrijke rol speelt in de ontwikkeling, uitbreiding 

en remodellering van het bloedvatenkluwen waaruit de glomerulus is opgebouwd. 

Hierbinnen is signaaltransductie binnen het ANGPT-TIE-systeem tussen mesangiale 

cellen, endotheelcellen en podocyten van belang voor de instandhouding van de structuur 

en integriteit van de glomeruli. De ANGPT en hun receptoren zijn evenwel niet enkel van 

belang tijdens de normale ontwikkeling van de nieren, maar hebben ook een duidelijke rol 

in een aantal pathologische processen, waardoor ze een interessant doelwit vormen voor 

angiogene therapieën. 

In de algemene inleiding van deze doctoraatsthesis (Hoofdstuk I) wordt een bondig 

overzicht gegeven van de huidige wetenschappelijke literatuur rond angiogenese, met 

bijzondere aandacht voor de rol ervan in fysiologische en pathologische processen. Hierbij 

gaat de aandacht voornamelijk naar de focus van het onderzoek die ligt op het mechanisme 

van IA. IA is verantwoordelijk voor de uitbreiding en de remodellering van de meeste 

vasculaire netwerken, maar ondanks zijn belang en algemeen voorkomen is het proces tot 

op heden nog onvoldoende uitgeklaard. Een van de belangrijkste angiogene groeifactoren 

die betrokken zijn in IA zijn de angiopoietines en hun TIE-receptoren. Hun rol hierin 

wordt bevestigd door talrijke studies, al leverden deze contradictorische gegevens op voor 

wat betreft de functies van de ANGPT en blijft er ondanks alles redelijk wat 

onduidelijkheid over de exacte rol van de TIE1-receptor, wat het verwerven van diepere 

inzichten in hun actiemechanisme bemoeilijkt. Intussusceptieve angiogenese en de 

ANGPT-TIE reactieweg zijn belangrijk tijdens de ontwikkeling van de metanefros of 

definitieve nier, en in het bijzonder tijds de glomerulogenese. De ontwikkeling van 

glomeruli in de metanefros vindt plaats volgens een voorspelbaar en topografisch 
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lokaliseerbaar patroon, ongeacht de foetale leeftijd, waardoor de metanefros een geschikt 

model vormt voor het diepgaand bestuderen van IA. 

De specifieke doelstellingen van de experimentele studies binnen dit doctoraat 

werden opgelijst in Hoofdstuk II. Het algemeen doel was verdere inzichten te verwerven 

in het expressiepatroon van de beide TIE-receptoren in ontwikkelende glomeruli in de 

metanefros bij het varken, en de morfologie, ontstaanswijze en ultrastructuur van de 

intussusceptieve intraluminale zuil te beschrijven. 

Hoofdstuk III omvat de studie waarin de aanwezigheid van IA en de expressie van 

TIE-receptoren en de correlatie tussen beiden in de metanefrotische glomeruli onderzocht 

werd. Zowel de plaats als tijdstip van voorkomen van IA in de capillairen van glomeruli 

van stadium III, IV & V van de ontwikkeling werd in kaart gebracht aan de hand van 

vaatgietsels die via SEM onderzocht werden. Daarenboven werden in alle glomerulaire 

ontwikkelingsstadia TIE1 en TIE2 immunohistochemisch gedetecteerd ter hoogte van de 

endotheliale cellen en de podocyten. De aanwezigheid van TIE1 in podocyten is hierbij 

opmerkelijk, want voor zover we konden nagaan werd dit nog nooit eerder in de literatuur 

beschreven. De aanwezigheid van deze receptoren gedurende actieve IA toont alvast een 

verband aan tussen de TIE-receptoren en IA gedurende de glomerulogenese in de 

metanefros van het varken. 

Aangezien de specifieke lokalisatie van de TIE2-receptoren op de endotheliale 

celmembraan bepalend is of uitgelokte respons na activatie leidt tot angiogenese dan wel 

tot vasculaire stabiliteit, hadden we in Hoofdstuk IV tot doel de subcellulaire lokalisatie 

van de TIE-receptoren via immunogoud-transmissie-elektronenmicroscopie in hoge 

resolutie in kaart te brengen. Via kwantitatieve analyse werd aangetoond dat anti-TIE1 en 

anti-TIE2 kleuring ter hoogte van de celmembraan voornamelijk voorkwam aan de 

abluminale zijde van de endotheelcellen. Dit is een aanwijzing dat deze receptoren 

mogelijk interageren met ANGPT1 afkomstig van de podocyten, die hiermee de 

angiogenese aansturen. Gelijkaardige expressiepatronen van TIE1 en TIE2 zowel in de 



Samenvatting 
 

109 
 

endotheelcellen als de podocyten kan er op wijzen dat het samenspel van beide receptoren, 

zoals al eerder beschreven ter hoogte van de endotheelcellen, zich ook voordoet ter hoogte 

van de podocyten. 

In Hoofdstuk V werd het mechanisme van de vorming van de intraluminale zuil, een 

morfologisch kenmerk tekenend voor intussusceptieve angiogenese, nagegaan. Via 

lichtmicroscopische observatie van semidunne seriecoupes alsook van ultradunne 

seriecoupes via TEM werd de ruimtelijke configuratie van de intraluminale zuilen in de 

ontwikkelende glomeruli in beeld gebracht. Het merendeel van de waargenomen zuilen 

waren pas ontstane, primitieve structuren, die uitsluitend uit endotheliale uitlopers waren 

opgebouwd. Een meer mature zuil werd evenwel ook waargenomen. Deze bestond uit een 

centrale as van extracellulaire matrix die omgeven was door endotheel. In deze centrale as 

werden geen collageenvezels waargenomen, wat er op kan wijzen dat dezeniet 

noodzakelijk zijn voor de vorming en verdere maturatie van de intraluminale zuil.  Voorts 

kan dit er op wijzen dat het mechanisme van intussusceptieve angiogenese op een 

weefselspecifieke manier verloopt. Daarenboven waren perivasculaire cellen en pericyten 

niet betrokken in de zuilvorming, althans niet voor de geobserveerde stadia, wat kan 

betekenen dat zij niet de stuwende kracht zijn in de initiële aanleg van de intraluminale 

zuil. Deze bevinding komt overeen met de huidige inzichten in de mechanismen van IA, 

waarbij aangegeven wordt dat de invasie van de zuil door pericyten slechts optreedt in de 

laatste stadia van de ontwikkeling van de zuil. 

In de algemene discussie (Hoofdstuk VI) worden de belangrijkste twistpunten en de 

nieuwe vragen die voortvloeien uit het gevoerde onderzoek gepareerd. Ook de sterktes en 

tekortkomingen van de gehanteerde technieken en het gebruikte experimentele model 

worden belicht en er wordt vooruit gekeken naar mogelijke vervolgonderzoeken. 

Algemeen gesproken kon aan de hand van huidig onderzoek de betrokkenheid van de TIE-

receptoren in intussusceptieve angiogenese aangetoond worden, maar de exacte rol van 

hun interacties met elkaar en hun liganden dient nog verder uitgeklaard te worden. De 
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complexe interactie van de ANGPT en de TIE-receptoren zoals beschreven op het niveau 

van het endotheel, kan, dankzij onze waarneming van de TIE-receptoren ter hoogte van 

de podocyten, ook op dit niveau een belangrijke rol spelen in de angiogenese. Ook deze 

hypothese verdient verder onderzoek. Ten slotte vertoonde het proces van intraluminale 

zuilvorming niet enkel gelijkenissen maar ook enkele markante verschillen met de vormen 

van IA die momenteel in de literatuur beschreven zijn, zoals de afwezigheid van 

collageenvezels in de groeiende zuil. Hieruit leidden we af dat het mechanisme van IA 

mogelijk weefselspecifiek is.
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