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Abstract

Highly ethanol-tolerant bacteria for the production of biofuels, bacterial patho-

genes which are resistant to antibiotics and cancer cells are examples of pheno-

types that are of importance to society and are currently being studied. In order to

better understand these phenotypes and their underlying genotype-phenotype rela-

tionships it is now commonplace to investigate DNA and expression profiles using

next generation sequencing (NGS) and microarray techniques. These techniques

generate large amounts of omics data which result in lists of genes that have mu-

tations or expression profiles which potentially contribute to a specific phenotype

under research. These lists often include a multitude of genes and are troublesome

to verify manually as performing literature studies and wet-lab experiments for a

large number of genes is very time and resources consuming. Therefore, (computa-

tional) methods are required which can narrow these gene lists down by removing

generally abundant false positives from these lists and can ideally provide addi-

tional information on the relationships between the selected genes.

Other high-throughput techniques such as yeast two-hybrid (Y2H), ChIP-Seq

and Chip-Chip but also a myriad of small-scale experiments and predictive com-

putational methods have generated a treasure of interactomics data over the last

decade and a lot of it is now publicly available. By combining this data into a bio-

logical interaction network, which contains all molecular pathways that an organ-

ism can utilize and thus is the equivalent of the blueprint of an organism, it is pos-

sible to integrate the omics data obtained from experiments with these biological

interaction networks. Biological interaction networks are key to the computational

methods presented in this thesis as they enables methods to account for important

relations between genes (and gene products). Doing so it is possible to not only

identify interesting genes but also to uncover molecular processes important to the

phenotype.

As the best way to analyze omics data from an interesting phenotype varies

widely based on the experimental setup and the available data, multiple methods

were developed and applied in the context of this thesis.



vi ENGLISH SUMMARY

In a first approach, an existing method (PheNetic) was applied to a consortium

of three bacterial species that together are able to efficiently degrade a herbicide

but none of the species are able to efficiently degrade the herbicide on their own.

For each of the species expression data (RNA-seq) was generated for the consor-

tium and the species in isolation. PheNetic identified molecular pathways which

were differentially expressed and likely contribute to a cross-feeding mechanism

between the species in the consortium.

Having obtained proof-of-concept, PheNetic was adapted to cope with experi-

mental evolution datasets in which, in addition to expression data, genomics data

was available. Two publicly available datasets were analyzed: Amikacin resistance

in E. coli and coexisting ecotypes in E.coli. The results allowed to identify both

well-known and newly found molecular pathways involved in these phenotypes.

Experimental evolution sometimes generates datasets consisting of mutator

phenotypes which have high mutation rates. These datasets are hard to analyze due

to the large amount of noise (most mutations have no effect on the phenotype). To

this end IAMBEE was developed. IAMBEE is able to analyze genomic datasets

from evolution experiments even if they contain mutator phenotypes. IAMBEE

was tested using an E. coli evolution experiment in which cells were exposed to

increasing concentrations of ethanol. Part of the results were validated in the wet-

lab.

In addition to methods for analysis of causal mutations and mechanisms in bac-

teria, a method for the identification of causal molecular pathways in cancer was

developed. As bacteria and cancerous cells are both clonal, they can be treated

similar in this context. The big differences are the amount of data available (many

more samples are available in cancer) and the fact that cancer is a complex and

heterogenic phenotype. Therefore we developed SSA-ME, which makes use of

the concept that a causal molecular pathway often has at most one mutation in a

cancerous cell (mutual exclusivity). However, enforcing this criterion is computa-

tionally hard. SSA-ME is designed to cope with this problem and searches for mu-

tual exclusive patterns in relatively large datasets. SSA-ME was tested on cancer

data from the TCGA PAN-cancer project. From the results we could, in addition

to already known molecular pathways and mutated genes, predict the involvement

of a few rarely mutated genes.



Nederlandse samenvatting

–Summary in Dutch–

Bacteriën die in hogere concentraties ethanol kunnen leven voor de productie van

biobrandstoffen, bacteriële pathogen die resistent zijn tegen antibiotica en kanker-

cellen zijn voorbeelden van fenotypes die van belang zijn voor onze maatschap-

pij en die momenteel worden bestudeerd. Om deze fenotypes en hun onderlig-

gende genotype-fenotype relatie beter te begrijpen bestudeert men tegenwoordig

het DNA en de expressieprofielen die worden verkregen door middel van next-

generation sequencing (NGS) en microarray technieken. Deze technieken genere-

ren grote hoeveelheden omics data hetgeen resulteert in een lijst van genen met in-

teressante mutaties of expressieprofielen die potentieel bijdragen aan het fenotype.

Deze lijsten bevatten vaak zeer veel genen. Het is problematisch om deze genen

manueel te verifiëren omdat literatuurstudies en laboratoriumexperimenten voor

een groot aantal genen veel tijd en middelen vergt. Daarom zijn (computationele)

methodes nodig die deze genlijsten kunnen reduceren door, meestal abundante,

vals positieve genen te verwijderen. In het ideale geval rapporteren deze methoden

ook de relaties tussen de geselecteerde genen.

Andere hoge doorvoer technieken zoals yeast two-hybrid (Y2H), ChIP-Seq en

Chip-chip maar ook veel experimenten op kleine schaal en predictieve computa-

tionele methodes hebben het afgelopen decennium een schat aan interactomics

data gegenereerd. Door deze data te combineren tot een biologisch interactienet-

werk, dat alle moleculaire paden bevat die een bepaald organisme kan gebruiken

en dus de blauwdruk van dat organisme voorstelt, is het mogelijk om omics data

uit experimenten met zulk biologisch interactienetwerk te combineren. Biologi-

sche interactienetwerken staan centraal in de computationele methodes die in deze

thesis worden voorgesteld omdat ze toelaten om belangrijke relaties tussen genen

(en genproducten) in rekening te brengen. Zo doende is het mogelijk om niet enkel

interessante genen te identificeren maar ook om moleculaire processen die belang-

rijk zijn voor een fenotype in kaart te brengen.

De beste manier om omics data van een interessant fenotype te analyseren

hangt af van de experimentele opstelling en de beschikbare data. Daarom werden

verschillende methodes ontwikkeld en toegepast binnen deze thesis.
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Vooreerst werd een bestaande methode (PheNetic) toegepast op een consor-

tium van drie bacteriële soorten die samen in staat zijn om een herbicide efficiënt

af te breken maar waarvan geen enkele soort het herbicide op zichzelf efficiënt kan

afbreken. Voor elke soort werd er expressiedata (RNA-seq) gegenereerd voor zo-

wel het consortium als de soort in isolatie. Hieruit bleek dat PheNetic moleculaire

paden kan identificeren die differentieel geëxpresseerd zijn en wellicht bijdragen

tot een cross-feeding mechanisme tussen de soorten in het consortium.

Na het verkrijgen van proof-of-concept werd PheNetic aangepast om experi-

mentele evolutie datasets waarin behalve expressiedata ook genomische data aan-

wezig is, te analyseren. Twee publiek beschikbare datasets werden geanalyseerd:

Amikacine resistentie in E. coli en coëxisterende ecotypes in E. coli. Uit de resul-

taten konden reeds beschreven maar ook nieuwe moleculaire paden die belangrijk

zijn voor deze fenotypes worden geı̈dentificeerd.

Experimentele evolutie genereert soms datasets die bestaan uit mutator feno-

types die hoge mutatiesnelheden hebben. Deze datasets zijn moeilijk om te ana-

lyseren omdat er veel ruis in zit (de meeste mutaties hebben geen effect op het

fenotype). Hiervoor werd IAMBEE ontwikkeld. IAMBEE kan genomische data-

sets van evolutie-experimenten analyseren, zelfs als ze mutator fenotypes bevatten.

IAMBEE werd getest op een E. coli evolutie-experiment waarin cellen werden

blootgesteld aan stijgende ethanol concentraties. Een deel van de resultaten werd

gevalideerd in het laboratorium.

Naast methoden om causale mutaties en mechanismen in bacteriën te analyse-

ren, werd ook een methode ontwikkeld om causale moleculaire paden in kanker te

identificeren. Omdat bacteriële cellen en kankercellen beiden klonaal zijn, kunnen

ze in deze context als gelijkaardig worden behandeld. De grote verschillen zijn de

hoeveelheid data die typisch beschikbaar is (veel meer monsters in kanker) en het

feit dat kanker een complex en heterogeen fenotype is. Hiervoor werd SSA-ME

ontwikkeld. SSA-ME maakt gebruik van het concept dat een causaal moleculair

pad slechts één mutatie heeft in een kankercel (mutuele exclusiviteit). Het toepas-

sen van dit criterium is echter computationeel moeilijk. SSA-ME is ontworpen om

om te gaan met dit probleem en zo mutueel exclusieve patronen in relatief grote

datasets te vinden. SSA-ME was getest op kankerdata van het TCGA PAN-kanker

project. De resultaten lieten toe om, naast reeds gekende moleculaire mechanis-

men en gemuteerde genen, de betrokkenheid van enkele genen te voorspellen die

slechts zelden gemuteerd zijn in kankerpatiënten.
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1
Introduction

In the last decade high-throughput techniques which generate large quantities of

omics data have become commonplace as their costs continued to drop [1]. One

example is that through Next-generation sequencing (NGS) technologies, the cost

of sequencing a human genome, which refers to the DNA molecules in a human

cell, has dropped from roughly $100 million in 2001 to nearly $1200 in 2015

(Figure 1.1). The availability and integration of this omics data has revolutionized

a multitude of fields in biology as it lead to a significant increase in our knowledge

of systems biology, especially in model oragnisms [2, 3]. But in order to analyze

this ever-increasing stream of omics data, further efforts in data curation and multi-

omics data integration are needed [4, 5]. This thesis contributes to the latter by

the development of methods which integrate interactomics data, in the form of a

biological interaction network, with genomics and/or transcriptomics data in order

to elucidate the genotype-phenotype relationship underlying a specific phenotype

under research [6–8]. This chapter serves as an introduction to some important

concept used in this thesis.
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Figure 1.1: Genome sequencing cost per human genome over time. (source:

https://www.genome.gov/images/content/cost pergenome2015 4.jpg)

1.1 The central dogma of molecular biology

Living cells have the ability to perform vital biological functions such as the pro-

duction of specific enzymes needed for the digestion of food, cellular respiration to

produce energy in order to keep the cell alive or cell division needed for growth and

procreation. Information on how these functions should be performed is contained

within the DNA of each cell. The process of using this information to produce pro-

teins which carry out these functions is known as ”the central dogma of molecular

biology” [9] which is explained in the following paragraph.

A living cell contains DNA, which is a double helix structure of which both

helices consist solely of four different molecules, called nucleotides. Some parts

of DNA contain a specific sequence of nucleotides which can be transcribed into

messenger RNA (mRNA) by the cellular machinery. These parts are called genes.

This mRNA contains roughly the same information as the DNA for a specific

gene but can be translated by ribosomes which use this information in order to

produce a protein. The ribosome performs this function by reading the nucleotides

of the mRNA molecule in triplets. Each triplet represents a code which maps to

a unique amino acid, which is then recruited by the ribosome. Due to the specific

order in which these amino acids are recruited, the protein (which is a sequence

of amino acids, folded in a specific way) will fold itself. Because mRNA degrades

rather quickly after it has been transcribed, using this system a cell can regulate
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the production of specific proteins and as such react to sudden changes in the

environment.

The specific nucleotide sequence of the DNA of an organism is called its

genotype and is closely related to the observable traits of the organisms, which

together are called the organism’s phenotype. Variation in the genotypes of indi-

viduals leads to different proteins being produced and thus to distinct phenotypes

between individuals. For example eye colors in humans is largely determined by

the alteration of a single nucleotide in several genes [10]. Likewise, a mutation in

the DNA of a cell can cause some cellular functions to behave differently or even

fail.

As an organism’s environment plays an important role in determining how a

cell should behave, the phenotype cannot be fully predicted by only looking at the

organism’s genotype but it does play a large role in determining the phenotype. A

lot of research, including the research presented in this thesis, tries to identify this

genotype-phenotype relationship for a specific trait by looking at how mutations

in genes vary with the observed phenotype of an organism [11].

1.2 Omics data

The term ”omics” refers to a field of study in biology. Multiple types of omics data

exist. Examples include genomics (the study of genomes), lipidomics (the study of

lipids), proteomics (the study of proteins) and transcriptomics (the study of RNA).

This thesis focuses only on genomics and transcriptomics as those are the omics

data sources most commonly generated when trying to disentangle the genotype-

phenotype relationship and these data sources were used to develop the proposed

methods.

Genomics data

Genomics data refers to data generated about an organisms’s genome and is thus

used to determine the genotype of an organism (the nucleotide sequence of its

DNA). Knowing the genotype of an organism under research is of primordial im-

portance when investigating the relationship between an organisms genotype and

its phenotype.

Gathering information on the genotype of an organism is called DNA sequenc-

ing. This was performed for the first time in 1970 by Ray Wu at Cornell university

who partially sequenced DNA from bacteriophage λ and 186 DNA [12]. This was
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later improved so any DNA sequence could be sequenced. It was Frederick Sanger

who, in 1977, adopted the sequencing strategy from Wu to create a more rapid

way of sequencing DNA [13] which has been the dominant method for DNA se-

quencing for some time. In fact, the first human genome was sequenced using

Sanger sequencing during the human genome project which started in 1990 and

was completed in 2003 [14]. Modern efforts which require at least large parts of

multiple genomes to be sequenced, such as cancer genome analysis, would have

been impossible using Sanger sequencing because it would take up too much time

and would be too costly.

Today NGS technologies such as Illumina sequencing and Roche 454 sequenc-

ing are used to generate genomics data [15, 16]. The primary advantage of using

these methods as compared to the previously used Sanger sequencing is that they

are able to produce large amounts of data in small amounts of time with low costs.

In general the genome of an organism is first fragmented using enzymes or son-

ication. These (single stranded) fragments are then immobilized and amplified to

create a large concentration of the same fragment in a fixed place. In order to read

the sequence of every fragment, one specific nucleotide is added to it at a time and

it is detected which complementary nucleotide is added where each time. Because

of the large concentration of identical fragments, the signal is strong enough for

detection [17]. Using this technique the sequence of all fragments can be deter-

mined in parallel which greatly contributes to the amount of data one can generate

in a given time.

The result is the sequence of all fragments which constitute the entire genome.

These sequences are called ”reads”. As the order of the reads is undefined, the

organism’s genome cannot be directly reconstructed from these reads. When no

reference genome is available for the organism under research, specific software is

used to assemble the reads (put them in the right order), reconstructing the genome

[18]. This genome is then normally annotated which means that the positions of

genes are determined and their function is inferred based on information from

other (closely related) species. Alternatively, when a reference genome is already

available, the reads are aligned to the reference genome in order to infer their

identity [19].

Often one is interested in the mutations which occurred in the genome during

an event, for example before and after an adaptive sweep. This is done by compar-

ing the genome of an evolved organism to the genome of the organism from which

it evolved (see the section on evolution experiments). These variants can be SNP’s

(single nucleotide polymorphisms), small INDEL’s (INSertions or DELetions of

a few base pairs) or larger genomic rearrangements such as translocations or the

loss/duplication of large parts of a chromosome. Multiple computational methods
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are available for variant calling [20–22].

But one is not always interested in sequencing the entire genome, known as

whole genome sequencing (WGS). In higher eukaryotes a large fraction of the

genome consists of non-coding DNA, which is not translated into proteins. For a

lot of studies, just looking at the parts of the genome which are expressed and thus

translated into proteins is adequate. This part of the genome is referred to as the

”exome” and sequencing only this part is referred to as whole exome sequencing

(WES) [23–25]. However, non-coding DNA can play a role in the functioning of an

organism as some is transcribed into RNA (but not further translated into proteins)

and this RNA can perform other functions such as inhibiting the translation of other

RNA molecules (RNA interference) or help with the recruitment of amino acids

to the ribosomes (tRNA). When screening patients for specific genetic diseases

an even more concise way of genome sequencing is used in which only one or a

couple of specific genes are sequenced and screened for variants known to cause

disease, as is done when screening for Huntington’s disease [26].

Transcriptomics data

Transcriptomics data refers to the number of mRNA molecules that an organism

produces for every gene. As mRNA is translated into proteins by the ribosomes

in the cell, mRNA is assumed to be a proxy for the number of proteins produced.

Transcriptomics data can thus shed light on the activity of cellular processes. Tran-

scriptomics data are particularly valuable when it is generated together with ge-

nomics data for two distinct but related cases (for example before and after a bac-

teria gains resistance to a specific drug). In such a case it is possible to link the

identified mutations to changes in gene expression allowing to identify the mu-

tation(s) responsible for changes in the expression profiles of genes belonging to

a specific cellular mechanism (this is called eQTL mapping). Two popular tech-

niques exist for the generation of transcriptomics data: RNA microarrays [27] and

RNA-seq [28]. Both techniques are able to quantify the amount of mRNA tran-

scribed for every gene in the genome.

A microarray is a solid plate with a large number of microscopic spots. Each

of these spots contains single stranded DNA probes for a specific gene. By sub-

merging the microarray into a pool of single stranded cDNA strains (obtained from

the RNA sample under research), hybridization occurs. The probes are designed

such that a hybridization event produces an optical result (usually a green or red

fluorescent signal) which can be measured. Due to noise and nonlinear charac-

teristics of the optical signals, it is nontrivial to convert the optical signals to a

measure which quantifies the amount of mRNA present in the sample [29,30] and

to determine which genes have different expression levels when comparing the re-
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sults from microarrays of the same organism or strain in two different conditions

(which is known as differential expression analysis). Therefore, statistical software

is available to solve these issues. Examples of such software include LIMMA [31]

and MAANOVA [32].

RNA-seq uses NGS technologies to sequence cDNA, obtained from RNA, in-

stead of the genome. The experimental procedure is thus very similar to genome

sequencing. The difference resides in the fact that when performing RNA-seq one

is also interested in the quantity of mRNA molecules in the sample instead of only

the sequence. Therefore, the resulting reads are mapped to the genome and the

number of reads which map to each gene are counted [33]. Because read counts

cannot be readily used to compare different samples and thorough statistical anal-

ysis is needed to decide which genes are differentially expressed in differential

expression analysis, statistical software packages to analyze RNA-seq data are

available. They include DeSeq2 [34] and TopHat/Cufflinks [35].

1.3 Evolution experiments

Often phenotypes are studied because they are useful in economic applications (for

example ethanol resistance for the production of alcoholic beverages or biofuels).

In order to study such acquired phenotypes it can be required to study organisms

under very specific conditions during multiple generations to assess the relation-

ship between the phenotype and the mutations which arise during adaptation to

these conditions. This is impractical to do in nature as it is often impossible to

find these conditions, let alone in combination with a suitable organism to study.

Therefore, when studying such a phenotype, evolution experiments are widely

used [36–38]. While it is possible to conduct evolution experiments in sexual re-

producing organisms [39], bacteria are often used due to their short generation

times (only about 20 minutes for E. coli) which allows to study more generations

in the same time frame. Therefore, the evolution experiments described in this sec-

tion apply to bacteria. Evolution experiments usually start with an ancestral strain

which is exposed to a specific environment. Natural selection favors mutations

that confer a benefit in the chosen condition leading to improved phenotypes [40].

The environment can be static [41, 42] or gradually increasing in intensity over

time [43, 44] (Figure 1.2).
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Figure 1.2: Evolution experiment over time. Initially, an ancestral strain is exposed to a low stress

level. When the strain has adapted to the stress level, it is transferred and exposed to a higher stress

level. Doing so the strain becomes increasingly more adapted to the imposed stress over time. courtesy

of Toon Swings.

The advantages of performing evolution experiments to study adaptive pheno-

types are twofold: 1) the environment to which the strain adapts can be controlled

and 2) both the ancestral strain, which does not exhibit the adaptive phenotype,

and the adapted strain are available. As such, when omics data are generated, it is

possible to focus on the differences between the ancestral strain and the adapted

strain.

1.4 Cancer

Cancer is a disease of the genome which is caused by aberrant mutations that lead

to dysregulation of specific cellular system [45]. This causes an uncontrolled divi-

sion of the affected cell, leading to the formation and growth of tumors. As tumors

thus originate from a patients own cells, it is not trivial to design drugs specifically

targeting cancer cells, as can be done with pathogenic bacteria through antibiotics

which usually specifically target unique components of bacterial cells. It is thus of

importance to understand how aberrant mutations in the (human) genome give rise
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to cancer in order to identify druggable targets for specific cases [46, 47]. Cancer

research is further complicated by the observation that cancer is a very heteroge-

neous disease, even within cancers with identical primary sites. In this respect it is

known that for example within different gastric and breast cancers, amongst oth-

ers, there exist multiple subtypes each with their own genetic cause, survival rate

and response to treatments [48, 49]. This means that knowing the primary site of

a tumor is not enough to propose an appropriate treatment and treatment should

most likely be based on the genomes of the patient’s cancer cells.

Like bacteria, cancer cells have clonal evolutionary properties [50]. In general,

tumor progression is controlled by a series of somatic mutations which are ac-

quired during a person’s life and that each individually give the cell an increased

rate of clonal expansion [51] as these mutations promote uncontrolled divisions.

Cells with higher clonal expansion rates will overgrow others and become domi-

nant, forming tumors. Patients which have mutations in their germline (inherited

mutations) that contribute to the onset of cancer will typically have higher chances

to develop cancer as fewer somatic mutations are needed. Mutations which con-

tribute to healthy cells becoming cancerous can arise in two types of genes: onco-

genes and tumor suppressor genes (TSG). Oncogenes are genes which in normal

circumstances promote cell growth and division while TSG’s are genes involved

in mechanisms which counter-act spurious growth such as apoptosis and cell cy-

cle checkpoints [52]. Mutations in oncogenes can lead to an abundance of growth

promoting signals while mutations in TSG’s can disrupt the cell’s control mecha-

nisms [53].

As both technical and ethical problems prohibit the use of evolution experi-

ments to study human cancer, efforts are being made to collect genomics data from

multiple patients with similar cancer. Results of such analyses are often stored in

(partly) publicly available databases [54]. The most prominent examples are The

Cancer Genome Atlas (TCGA) [55] and the International Cancer Genome Consor-

tium (ICGC) [56]. Because genomics data from both cancerous tissue and healthy

tissue are usually available, it is possible to focus analysis on somatic mutations.

1.5 Biological interaction networks

Networks are currently used in a myriad of disciplines ranging from social net-

works in business [57] and social sciences [58] to neural networks in machine

learning [59]. All these networks have in common that they consist of nodes which

represent entities and edges which represent interactions between these entities.

Edges can be either directed (the interaction is only valid in one direction) or undi-



CHAPTER 1 1-9

rected (the interaction is valid in both directions). In biological networks nodes

represent genes and/or gene products (such as proteins or RNA) and edges repre-

sent the interactions between these nodes.

Biological networks are seldom homogeneous as different types of interac-

tions are usually present. This is important as different types of interactions have

different properties, are discovered using different techniques and are gathered in

different databases (see below). More advanced network-based methods also take

into account interaction types while analyzing data. Therefore, biological interac-

tion networks are usually multi-layered [60, 61].

The different layers can be subdivided in two groups: physical interactions and

functional interactions. Physical interactions are derived from experiments which

prove direct physical interactions between genes/gene products. Genes/gene prod-

ucts involved in functional interactions are not proven to physically interact with

each other but are associated with each other in other ways. Examples of func-

tional interactions include co-expression when genes share expression profiles in

multiple environments [62, 63], predicted interactions in a species by inferring

them from known interactions in related species based on phylogeny [64] and text-

mined interactions [65,66]. As in physical interaction networks the mechanisms of

the interactions are clear and to avoid overconnecting the interaction network, we

focus only on physical interaction networks in the context of this thesis (Figure

1.3).

The interactomics data required to construct a biological physical interaction

network are maintained within a plethora of databases. Usually each database fo-

cuses on a specific layer. An important aspect to consider when consulting an in-

teraction database is how the data are curated as each database has its own cura-

tion rules [67]. Curation can be high-throughput or literature curated. Literature

curated resources contain a large number of small-scale experiments while high-

throughput resources contain large-scale experiments. Literature-curated resources

are mostly used when benchmarking data mining technologies as the superior reli-

ability of literature curated resources is generally assumed [68]. Another important

aspect of an interaction is its reliability. This expresses how likely it is that an in-

teraction exists in reality and is dependent on the experimental technique(s) used

to infer the interaction. Note that even if two databases are both literature curated

they can have different curation rules and therefore contain different interactions

and/or assign different reliabilities to the same interactions. Because of this, efforts

such as IMEx, which integrates different databases using identical curation rules,

have been made [69].
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In the following an introduction to each of the different physical interaction

layers is given together with a brief summary of the use of biological subnetworks

to analyze omics data.

Figure 1.3: Multi-layered physical biological interaction network. In the context of this thesis, Phys-

ical interaction networks are used which consist of multiple layers of physically interacting genes

and/or gene products. Here the different layers are depicted at the top of the figure and include a

signaling layer, consisting of purple colored signaling interactions such as (de)phosphorylation and

(de)methylation, a (post)transcriptional layer consisting of red (protein-DNA) and blue colored (sRNA)

post-transcriptional interactions, a protein-protein layer consisting of green colored protein-protein

interactions such as protein complexes and a metabolic layer consisting of yellow colored metabolic

interactions referring to enzymatic reactions.

Protein-protein interactions

In protein-protein (PP) interactions, nodes represent proteins and edges represent

a physical binding of the proteins to each other [70]. As experimental techniques

to discover PP interactions search for interactions between proteins, the direction

of PP interactions is always undirected.

Low-throughput methods to detect PP interactions include Nuclear magnetic

resonance (NMR) [71], crystallography [72] and spectroscopic methods [73]. High-

throughput methods are largely restricted to two-hybrid screens [74] and tandem

affinity purification (TAP) tagging [75].
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Protein-protein interactions are available in several databases [76] ranging from

organism or taxonomic group-specific databases such as the Human Protein Refer-

ence Database (HPRD) [77] and the microbial protein interaction database (MPI-

DB) [78] which focus on humans and microbes respectively, to databases which

contain PP interactions for a large number of organisms such as BioGRID [79]

and String [64]. Even efforts which enable users to query multiple PP interaction

databases simultaneously have been made (e.g. PSICQUIC [80]).

(Post)Transcriptional interactions

(Post)Transcriptional interactions regulate gene expression in cells. In transcrip-

tional interactions the source node of the interaction is a regulator and the end

node is a target gene of that regulator [81]. Transcriptional interactions are there-

fore directed. These interactions regulate translation after transcription and thus

involve interfering with mRNA. These are interactions between molecules (such

as miRNA or sRNA) and the mRNA of a target gene [82] and are also directed.

Transcriptional interactions are mainly obtained using ChiP-chip [83] or ChIP-

seq [84, 85] experimental techniques. But integrating interaction data from multi-

ple Chip experiments does not take the experimental conditions into account. This

leads to situations where it is not clear whether different regulators controlling the

same gene need to act together to perform a specific regulatory function [86]. Be-

cause of this and technical limitations of Chip-chip and ChiP-seq techniques [87],

methods have been developed that use expression data together with interaction

data in order to infer transcriptional interactions [88, 89].

Databases that contain (post)transcriptional interactions include species-spe-

cific databases such as RegulonDB for E. coli K-12 [90] and regulatory networks

based on ENCODE data for human [91]. Also less specific databases exist such as

animalTFDB [92] and RegPrecise which focuses on reconstructing transcription

factor regulons in prokaryotes [93].

Metabolic interactions

Metabolic interactions represent the metabolism of a cell. Nodes represent en-

zymes and edges represent the interactions they catalyze. Metabolic interactions

are therefore directed.

In recent times, metabolic interactions for a specific organism are not neces-

sarily derived from experiments but rather from hight-throughput genomics data

[94, 95]. In general, the genome of the organism is assembled and annotated as to

identify genes which code for enzymes [96, 97]. Using highly curated metabolic
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interactions known from past experiments [98], these genes are then mapped to

metabolic interactions. Software tools such as metaSHARK [99] provide an auto-

mated way of inferring metabolic interactions from genomics data.

Multiple databases provide metabolic interaction data. Examples are KEGG

[100], BRENDA [101] and MetaCyc [102].

Signaling interactions

Signaling interactions control essential cellular processes and mediate quick re-

sponse to changing environments. Examples include post-translational modifica-

tion of proteins (e.g. (de)phosphorylation [103] and (de) acetylation [104]) and

receptor pathways in which a receptor binds to specific molecules and passes the

signal down to other cellular processes [105]. The source nodes in signaling inter-

actions are proteins such as kinases, acetylation agents or members of a receptor

pathway and the target nodes are the targets of these proteins. the edges are di-

rected.

To study modifications of a single protein, experimental techniques include

chromatographic purification or antibody precipitation to obtain samples of, for ex-

ample, phosphorylated or acetylated proteins [106]. The use of mass-spectrometry

methods allows to assess the presence of multiple (de)phosphorylated or (de)acety-

lated proteins at the same time at different points in time, making it possible

to investigate post-translational modification after the pertubation of the environ-

ment [107].

Databases which contain signaling interactions include KEGG [100] (small

number of signaling interactions for a large number of organisms) and SPIKE

[108] (multiple signaling pathways specific for human).

Weighted interaction networks

An important aspect for many network-based methods is the concept of a weighted

interaction network. In a weighted interaction network each node or edge has a

weight assigned to it. This weight can reflect multiple features of the node or

edge. Because experimental techniques to infer interactions vary with respect to

their accuracy and some edges might have been inferred by multiple experimen-

tal techniques, it is not uncommon to assign a weight to the edges which reflects

the probability that the interaction is present in the organism [64]. Alternatively,

some network-based methods have problems with nodes which have a large num-

ber of edges. Most biological networks exhibit a scale-free property with respect

to the distribution of the number of interactions each node has [109]. This means
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that there are many nodes with few interactions but few nodes with a very large

number of interactions. Nodes with a very large number of interactions are called

”hubs” and can overconnect the network. Therefore, some network-based meth-

ods weight the network based on the network’s topology to mitigate the effects of

such hubs [6, 110]. Weights are used by methods as a priori information thereby

decreasing the odds of a node/edge to show up in the solution if it has a low weight

and vice versa [110–112].

1.6 Network-based methods

Currently, biological interaction networks are often used in combination with omics

data. How the biological interaction network is used and which data are integrated

with the network largely depends on the the research question. Applications in-

clude hypothesis generation about a protein’s or gene’s function [113, 114], motif

detection, [115] inference of interactions between genes [116], prioritization of

gene lists [117] and inference of subnetworks of the interaction network which

are involved in a specific phenotype or which are active when exposed to a spe-

cific environment [6,111,118]. In this thesis, the focus is on subnetwork inference

methods and prioritization of gene lists.

The most naive approach would be to identify the most interesting genes from

omics data (e.g. mutated genes or genes with high expression values) and map

them to the network to see if a subset of them are connected in the network. Sub-

sequent GO enrichment analysis of the connected components [119] could then

help to identify the molecular pathways from the set of interesting genes. A more

advanced way of doing this would be to first weight the interaction network by

assigning scores to the nodes or the edges based on the omics data (e.g. log-fold

changes or functional impact scores of mutations). Subnetworks are then inferred

by simply selecting the parts of the network which have highest score. These ap-

proaches are commonly referred to as ”guilt-by-association” as the premise is that

genes which are associated with each other in the network will have similar func-

tion [120, 121].

Another approach is to propagate the information over the network, thereby

using the network’s topology and in some cases the direction of the edges to dif-

fuse the data through the network. An important added value of diffusion methods

as opposed to simply mapping the data to the network is that intermediate nodes,

which were not measured or do not show clearly in the data due to technical limita-

tions or their biological properties, can be recovered in this way. Examples include

diffusion kernel-on-graphs [122–124].
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The network-based methods developed in the context of this thesis explicitly

search for biologically relevant paths which are subsequently used to infer the

subnetwork of the interaction network that represents the interesting part of the

network, given the data. A path is simply a series of consecutive nodes and edges.

When searching for paths the directions and types of the interactions are taken into

account. For example a path between a mutation and a differentially expressed

gene must end with a regulatory edge towards the differentially expressed gene.

Based on the experimental data, these paths are then assigned a score. Finally an

optimization function is utilized to select the subset of paths which make up the

best subnetwork [6, 8, 111, 125].

Network visualization

Visual inspection of (sub)networks is primordial to interpret the results of network-

based methods. To this end multiple software platforms are available such as cy-

toscape [126], Osprey [127] and BioLayout Express3D [128]. Some of these plat-

forms offer functionality to analyze network properties or to perform enrichment

analyses [119, 129, 130].



2
Scientific problem and aim

The methods proposed in this thesis are designed to help analyze data from omics

experiments. We address the need for methods capable of analyzing different ex-

perimental design and that can cope with large amounts of data, possibly contain-

ing a lot of noise. The focus is specifically on the interpretation of genomics and/or

transcriptomics data from clonal systems as the analysis of omics data from clonal

systems poses additional challenges in comparison with sexual reproducing organ-

isms. This chapter first focuses on these additional challenges as it discusses the

scientific problem and secondly gives an overview of the developed methods and

explains their aims.

2.1 Scientific problem

Search for molecular pathways

NGS sequencing enabled rapid characterization of genetic variance between mul-

tiple individuals of the same species. Correlating this genetic variation to specific

phenotypes or molecular traits using statistical methods, respectively GWAS [131]

and eQTL mapping [132], offers potential for the identification and/or prioritiza-

tion of alleles underlying important properties [133] or diseases [134]. GWAS/e-

QTL approaches assume, however, that individuals who have similar phenotypes,
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have similar alleles and that enough samples are available to prove correlation.

The assumption that individuals who have similar phenotypes (because for ex-

ample they are gathered from parallel evolution experiments in which the condi-

tions were identical), have similar alleles is embodied in the fact that traditionally

these methods search for recurrently mutated genes. This is a narrow definition of

parallelism as mutations in genes belonging to the same molecular pathway can

equally well confer the same phenotype [41, 135, 136]. This is especially true for

clonal systems which reproduce asexual and therefore DNA exchange between

individuals is minimal. Because of this, when a population of clones adapts to a

specific environment, individual clones in the population will evolve and adapt

independently of each other. This means that when a clone obtains a beneficial

mutation, that mutation cannot spread to the offspring of other clones and as such

another beneficial mutation in another clone can lead to the formation of subpopu-

lations which have similar phenotypes but different genotypes. This phenomenon

is known as clonal interference [137, 138](Figure 2.1). As such, when collect-

ing clones from end points in parallel evolution experiments (which have similar

phenotypes) the chance of them having identical mutations is lower than would

be expected for sexual reproducing organisms. As such, searching for recurrently

mutated genes, as is often done [139, 140], might not be adequate. Having access

to a large amount of independently evolved samples with similar phenotypes could

offset this problem but in reality usually only few samples are available.

This, together with the fact that experiments which exploit sexual reproduc-

tion in order to increase the observed mutation frequency in causal genes, such

as bulked or pooled segregant analysis [141, 142] is not possible, calls for another

strategy to perform genotype-phenotype mapping in clonal systems. As stated ear-

lier, genes belonging to the same molecular pathway can also confer the same

phenotype. That is why in this thesis methods are proposed to search for molecu-

lar pathways which are recurrently mutated in parallel evolved clonal populations

(Figure 2.2) instead of consistently mutated genes [41, 135, 136]. In order to do

this, it is needed to integrate interactomics data with the obtained genomics (and

possible transcriptomics) data in the form of an interaction network which contains

data on how the biomolecules within a cell interact with each other.
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Figure 2.1: Clonal interference. The relative abundance of genotypes in a clonal population (y-axis)

in time (x-axis) during experimental evolution. Different colors depict different subpopulations. Figure

taken from Barrick et al. [143].

Driver and passenger mutations

When looking at genomics data obtained from an evolution experiment on a clonal

system, it is important to note that not all mutations are causal to the observed

phenotype. These causal mutations are called ”driver mutations”. While this is

also the case in sexually reproducing organisms, in clonal systems, because of

clonal interference, typically a smaller fraction of the observed mutations is causal

to the phenotype. This is the case because when two driver mutations arise in

different individuals within a clonal population at the same time they cannot be

recombined in the next generation. Instead these individuals compete with each

other and multiple subpopulations arise which have different driver mutations.

In practice this leads to the fact that when a clone acquires a driver mutation,

all mutations in the genome of that clone are under positive selection, not just the

driver mutation. This is the case because there is no transfer of genetic informa-

tion between individuals and thus when the clone increases in frequency in the

population, so do all of its mutations. Therefore neutral or slightly deleterious mu-

tations which were present at the time of acquiring the beneficial driver mutation

will ”hitchhike” with the driver mutation and rise to the same frequency in the

population as that driver mutation [144]. These mutations are called ”passenger

mutations”. As this can happen in multiple subpopulation at the same time, at lot

of passenger mutations will hitchhike and be picked up by variant calling. This

results in a low signal-to-noise ratio and, together with the need for searching con-

sistently mutated pathways, makes analysis of genomics data in clonal systems

non-trivial.
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The search for consistently mutated molecular pathways can cope with the

noise from these passenger mutations because it exploits parallelism between in-

dependently evolved populations. Driver mutations are likely to be found in molec-

ular pathways related to the adaptive phenotype throughout different indepen-

dently evolved populations while passenger mutations do not show this consis-

tency (Figure 2.2).

Figure 2.2: Visual representation of a consistently mutated pathway. Each bacterium represents a

clonal system which has adapted to the same condition and thus exhibits a similar phenotype.

Hypermutator phenotypes

Clonal populations can sometimes yield hypermutator phenotypes [145–147]. A

clone with a hypermutator phenotype has an elevated mutation rate which is of-

ten caused by defective mismatch repair systems [148]. Hypermutator phenotypes

can be under positive selection because of their increased probability of generat-

ing adaptive mutations which are beneficial in a specific environment [149, 150].

However, most of the acquired mutations will be neutral or even slightly delete-

rious in the specific environment but strongly deleterious in other environments,

thereby hampering the ability of the hypermutator phenotype to survive and adapt

to other environments [151, 152]. Therefore, mutation rates are strongly regulated

and the reversion of mutations which lead to a hypermutator phenotype or the gain

of compensatory suppressor mutations can lead to a quick decrease of hypermuta-

tor phenotypes within a clonal population [153].

When generating omics data from an evolution experiment which contains (a)

population(s) with a hypermuator phenotype, there will be a lot of false positive

driver mutations in the omics data as neutral and slightly deleterious mutations,
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which are prominently present in hypermutator phenotypes, will show up in the

data. This makes datasets containing hypermutator phenotypes very hard to ana-

lyze, often resulting in the deletion of hypermutator phenotypes from the data or

the inability to analyze the dataset entirely.

The case for cancer

Some cancer genome databases contain up to 2000 patients for one specific cancer

type at the time of writing. Because these amounts of data are available for some

types of cancer (in bacteria there are usually only between 1 and 20 samples), it

is possible to perform GWAS studies [154–156]. However, GWAS studies tend

to identify common alleles with low penetrance and are ill-equipped to identify

causal mutations which are rare. In addition, the mechanisms underlying the iden-

tified mutations are often unclear [157]. Therefore, novel analysis techniques are

warranted.

As statistical association analysis techniques such as GWAS use no prior knowl-

edge, the incorporation of prior knowledge in the form of interactomics data (which

is abundantly present for human) has potential. Network-based methods are able

to account for known interactions between genes when analyzing genomics data,

leading to the possible identification of (rare) mutations in which the underlying

mechanisms are more clear [8].

Wet-lab mutations testing

Because epistasis between mutations occurs often [158,159] during evolution, wet-

lab testing of a list of interesting mutations is not trivial. As every mutation can

potentially influence another mutation, simply testing the mutations one-by-one

in the ancestral background will likely only lead to the explanation of part of the

phenotype. In principle, every possible combination of identified mutations should

be tested in the ancestral background until a minimal set which explains the phe-

notype completely is found [160]. But this quickly becomes infeasible as even

with as few as 4 genes, there are 15 possible combinations to test and this number

rises quickly with the number of mutations identified. Therefore, methods which

prioritize mutations based on how likely it is that they contribute to the observed

phenotype can be very useful as a guidance for which genes and combinations of

genes should be tested first.
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2.2 Aim

The aim of this thesis is to provide computational methods which can help re-

searchers to interpret large genomics and/or transcriptomics datasets. This inter-

pretation includes the use of biological interaction networks to prioritize mutated

or differentially expressed genes and the inference of the subnetwork of the bio-

logical interaction network which explains the data best. These results will provide

researchers in the wet-lab with additional insights into the molecular mechanisms

of the phenotype under study and provide a starting point for further experiments.

Additionally the results can also be used for hypothesis generation.

More specifically, the aim is to provide methods which are able to analyze

experiments from four different experimental designs which each have their own

available data and data gathering strategies. In brief, computational methods for

the analysis of data from experiments with bacteria were developed and/or tested

for the analysis of 1) expression data, 2) genomics data coupled with expression

data and 3) only genomics data from hypermutator phenotypes. The fourth exper-

imental design refers to the analysis of a large amount of genomic profiles from

cancer patients. A more in-depth overview of the different experimental designs

treated in this thesis, together with the specific strategies utilized to tackle them, is

provided in the following chapter.
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Overview of the proposed methods

In order to achieve the aim, in this thesis three different network-based methods

were developed and one existing method was tested. Each addresses a specific

experimental design in which different data are available. Each method is unique

in that it capitalizes on specific biological insights and/or available data while si-

multaneously dealing with the specific problems of the experimental design. The

remainder of the thesis largely consists of the scientific papers of these methods.

This chapter is meant to give readers a general overview of the methods and the

experimental designs for which they were developed but also to provide insight

into the relationships between the different methods.

In chapter 4 subnetwork inference was tested on a transcriptomics dataset us-

ing the network-based method PheNetic, which existed prior to this thesis. The

method was applied in the context of an ecological study: a consortium of bacteria

which occur together in nature is able to degrade the herbicide linuron efficiently

while its constituents grown in isolation are not. In this system it was unclear

which carbon source(s) support the growth of the primary linuron degrader and

how the synergistic interactions between the constituents of the consortium are

established. In order to gain insight in these mechanisms, RNA-seq data was gen-

erated for both the consortium grown in the presence of linuron as well as for each

of its constituents which were grown in isolation and in the presence of linuron

or a hydrolysis product of linuron. To this end, differential expression analysis
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was used to determine the change in expression profiles of genes when comparing

consortium conditions to isolation conditions. As limited interactomics data were

available for the bacterial species in the consortium, the network was compiled

mainly from highly curated metabolic interactions and few signaling interactions.

Even when using only limited interactomics data together with differential expres-

sion data, it proved feasible to infer a subnetwork of the interaction network which

contained molecular processes likely to play a role in the establishment of syner-

gism between the species. PheNetic is able to analyze this dataset by utilizing a

sophisticated subnetwork inference procedure. Briefly this works by first weight-

ing the edges of the network based on the differential expression data of the genes

and the topology of the network in order to construct a probabilistic subnetwork.

Secondly paths between significantly differentially expressed genes in the interac-

tion network are found and assigned a score based on the probabilities of the edges

which make up the path (this is called the pathfinding step). Finally probabilistic

logic programming is applied to reason about which subset of these paths explains

the data best, given an objective function and the scores of the found paths (this is

called the optimization step) [161,162]. This inferred subset of paths is referred to

as a the optimal subnetwork of the interaction network.

After the successful application of PheNetic to a transcriptomics dataset it was

realized that the rationale of the method could be used in different experimen-

tal designs, where different types of omics data are available. This is possible by

redesigning both the construction of the probabilistic subnetwork to include the

available data and the pathfinding step such that relevant paths are being collected

and that the score of a path reflects the probability that the path is involved in the

phenotype under research. When these conditions are satisfied, the optimization

step which infers the optimal subnetwork can be used as such. Chapters 5 and 6

redefine the construction of the probabilistic subnetwork and the pathfinding step

based on the available omics data and the (biological) specificities of different ex-

perimental designs to develop new computational methods. A general overview of

these methods can be found in figure 3.1.
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Figure 3.1: General overview of computational methods used in chapters 4, 5 and 6. In general,

for every experiment, first the interaction network is weighted based on the available data (depicted

by the variations of gray) to construct a probabilistic subnetwork (probabilities are depicted as the

thickness of the edges). Then relevant paths are collected and scored in the pathfinding step. Finally,

an optimization function is used to infer the optimal subnetwork. The first two steps are dependent on

the available omics data (to weight the probabilistic subnetwork) and the specific biological context

of the experimental design (to define what is an interesting path) while the optimization step is always

identical, given that adequate definitions can be found for the first two steps.

In chapter 5 the aim was to develop a network-based method able to analyze

coupled expression and genomics (eQTL) data. The focus was specifically on evo-

lution experiments as in those cases differential expression data can be coupled to

the mutations obtained during adaptation to a specific environment to find molec-

ular mechanisms which are important for adaptation together with the mutations

which are responsible for expression changes in these mechanisms. Additionally,

to help wet-lab researchers reconstruct the phenotype efficiently, the aim as ex-

panded to not only identify genes that harbor adaptive mutations but also to priori-

tize them based on the probability that they are involved in the adaptive phenotype.

To this end we adapted PheNetic and tested the new method on two publicly avail-

able datasets: one dataset contained four independently evolved strains of E. coli

K-12 MDS42 in the presence of the drug Amikacin. The other contained a popu-

lation of E. coli B REL606 that had been experimentally evolved and now consists

of two distinct ecotypes which stabily coexist within the population. Using the

new method it was possible to identify previously known molecular mechanisms

responsible for Amikacin resistance and cross-feeding between the ecotypes. In

addition, the prioritization of the mutated genes corresponded to findings obtained

by wet-lab experiments.
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In chapter 6 a network-based method named IAMBEE was developed. This

method is able to analyze genomics data without having access to coupled expres-

sion data. The ability to analyze genomics data in isolation is useful as the cost

of performing RNA-seq (which has to be performed at least in triplicate in order

to generate reliable results) can be prohibitively large, especially for experiments

including a large number of parallel samples and/or the sequencing of multiple

time points throughout evolution. Additionally, the method deals with hypermuta-

tor phenotypes which are frequently observed in evolution experiments [163,164].

Datasets including hypermutators are especially hard to analyze, often leading to

the exclusion of hypermutators from the dataset or the inability to analyze the

dataset at all. By using a specific experimental design and incorporating additional

data, the method successfully analyzed a dataset consisting of 16 independently

evolved E. coli K-12 MG1655 populations, all of which developed a hypermutator

phenotype, in the presence of an increasing ethanol concentration.

In chapter 7 a network-based method named SSA-ME was developed to ana-

lyze cancer datasets. The big difference in cancer datasets as compared to micro-

bial datasets is the amount of data. In cancer, datasets of several hundred individ-

uals exist while for bacteria there are usually a lot less samples. As such, different

biological properties which require the availability of a large number of samples

in order to observe them, can be utilized. One such property is mutual exclusivity

in cancer. Mutual exclusivity refers to the observation that once a biological path-

way involved in oncogenesis has obtained a causal mutation in one of its genes,

a second mutation in that pathway will not confer any fitness advantage anymore

and will thus not be fixated [165, 166]. Finding such patterns in large datasets is,

however, a complex problem as simply testing for all possible combinations of

genes is computationally intractable. Therefore, an adaptation of the PheNetic al-

gorithm was not adequate and a completely different network-based method was

developed to find patterns of mutually exclusive mutations in large cancer datasets.

The method was applied to multiple cancer datasets from the TCGA PAN-cancer

project [124] and was able to identify known oncogenic pathways and propose

newly found genes which were rarely mutated.



4
Uncovering interspecies interactions

from RNA-seq data

4.1 Introduction

This chapter presents the analysis of a consortium of three species which together

degrade linuron in an efficiënt way but cannot in isolation. To gain insight into

which interactions between the constituents of the consortium can explain this ob-

servation, RNA-seq data was generated for the consortium and for each of the

constituents grown in isolation. After performing differential RNA-seq analysis,

PheNetic was used to analyze the differential expression data between consortium

and isolation conditions for the two most interesting species. together with pre-

vious work [6], this chapter represents the proof-of-concept of the network-based

methods described in the rest of this thesis.

PA and BW analyzed the data, interpreted the results and wrote the manuscript.

PA performed the biological experiments, BW performed the differential RNA-

seq analysis and applied PheNetic. RDM, KM and DS conceptualized the study,

designed the experiments, discussed the results and edited the manuscript.



4-2 UNCOVERING INTERSPECIES INTERACTIONS FROM RNA-SEQ DATA

4.2 Paper

Interspecies interactions during linuron mineraliza-
tion
Albers, P.†, Weytjens, B.†, De Mot, R., Marchal, K. and Springael, K.(2017). Interspecies interactions
during linuron mineralization. tbd, Submitted.

† these authors contributed equally to this paper

4.2.1 Abstract

The proteobacteria Variovorax sp. WDL1, Comamonas testosteroni WDL7 and

Hyphomicrobium sulfonivorans WDL6 compose a triple-species consortium that

synergistically degrades and grows on the phenylurea herbicide linuron. To ac-

quire a better insight in the interactions between the consortium members and the

underlying molecular mechanisms, we compared the transcriptomes of the key

biodegrading strains WDL7 and WDL1 grown as biofilms in either isolation or

consortium conditions by differential RNA-seq analysis. Differentially expressed

pathways and cellular systems were inferred using the network-based algorithm

PheNetic. Co- culturing affected mainly metabolism in WDL1. Significantly en-

hanced expression of hylA encoding linuron hydrolase was observed. Moreover,

differential expression of several pathways involved in carbohydrate, amino acid,

nitrogen and sulfur metabolism was observed indicating that WDL1 gains carbon

and energy from linuron indirectly by consuming excretion products from WDL7

and/or WDL6. Moreover, in consortium conditions WDL1 showed a pronounced

stress response and overexpression of cell-to-cell interaction systems such as quo-

rum sensing, contact-dependent inhibition and Type VI secretion. Since the latter

two systems can mediate interference competition, it prompts the question if syn-

ergistic linuron degradation is the result of true adaptive cooperation or rather a

facultative interaction between bacteria that coincidentally occupy complementary

metabolic niches.

4.2.2 Introduction

Mineralization of organic xenobiotic compounds is often performed by microbial

consortia by means of metabolic association in which one organism in the consor-

tium converts the organic xenobiotic into metabolites that are degraded by other

consortium members [167]. Further degradation of downstream metabolites can

enhance the initial degradation step resulting in an overall increased efficiency of

mineralization of the organic xenobiotic in which case the metabolic association

between consortium members is called synergistic. Members of organic xenobi-
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otic degrading consortia are often heterotrophic organisms that also feed singly

on compounds other than the organic xenobiotic. Therefore, it is not always clear

whether metabolic association between consortium members is a beneficial inter-

action that has evolved by cooperative adaptation, at least in part because of this

purpose [168], or rather represents a facultative interaction between species that

coincidentally occupy complementary metabolic niches. In fact, the evolution of

cooperative traits is estimated to be rare in the microbial world [169]. The rare

examples of cooperation among bacteria show that the involved bacteria typically

have developed specialized molecular mechanisms necessary for synergistic func-

tioning of the consortium, such as co-aggregration or bacterial signaling [170,171].

The identification of such molecular mechanisms can therefore be indicative of the

evolution of cooperation between bacterial consortium members.

A consortium that synergistically degrades an organic xenobiotic compound

has been described for mineralisation of the widely used phenylurea herbicide lin-

uron [172]. The consortium was enriched from an orchard soil with a history of

linuron treatment and originally consisted of five to six species with functional

redundancy. The consortium can be reduced to three partners, i.e. strains Variovo-

rax sp. WDL1, Comamonas testosteroni WDL7 and Hyphomicrobium sulfonivo-

rans WDL6, that together provide all steps of the catabolic pathway for linuron

mineralisation [172]. Metabolic association, i.e., the exchange of linuron metabo-

lites, has been identified as the major driver for synergistic linuron degradation by

the consortium. Variovorax sp. WDL1 hydrolyzes linuron into 3,4-dichloroaniline

(3,4-DCA) and N,O-dimethylhydroxylamine (N,O-DMHA) using the phenylurea

hydrolase HylA [172, 173]. Although WDL1 contains dca and ccd clusters en-

coding for the further degradation of 3,4-DCA to 3-oxoadipate via a chlorocate-

chol intermediate, 3,4-DCA is degraded inefficiently by WDL1. Instead, 3,4-DCA

and N,O-DMHA are excreted by WDL1 and used as carbon and energy source

by WDL7 and WDL6, respectively [172]. An overview of linuron degradation

by the consortium is depicted in Figure 4.1. When the consortium is grown as

a biofilm on linuron as the sole carbon, nitrogen and energy source, the removal

of 3,4-DCA by WDL7 increases the rate of linuron hydrolysis by strain WDL1

whereas N,O-DMHA degradation by WDL6 has no effect on linuron hydrolysis.

Therefore, WDL7 is considered to act as a mutualistic partner of WDL1 whereas

WDL6 is suggested to have a rather commensal role [174]. The metabolic inter-

action between the three strains is further reflected in their close co-localization

when grown as biofilms on linuron [174]. Conservation of species composition of

linuron-degrading consortia as suggested by the isolation of such consortia from

geographically separated and physico- chemically different soils [174] and from

molecular ecology studies [167, 174, 175], underlines the ecological relevance of

this multi-species bacterial organization. Although metabolic association during

linuron degradation appears the major driving force of the consortium composition

and functionality, we do not know whether other interactions underlie the synergis-

tic degradation of linuron. For instance, it is not yet clear which carbon source(s)

support the growth of the primary linuron degrader strain WDL1 in the consortium.
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Neither do we know whether contact dependent and/or independent mechanisms

drive the establishment of synergistic interactions between the consortium mem-

bers, and which could be indicative of true cooperative adaptation [168].

Differential transcriptomics using next generation Illumina RNA-seq, in which

global gene expression is compared between strains when grown in consortium and

in isolation, has been recently successfully used to identify candidate genes rele-

vant for interspecies interactions in both artificially composed consortia [176] and

in syntrophic consortia [177–180]. In its first application to scrutinize an organic

xenobiotic-degrading consortium, we used differential RNA-seq to identify molec-

ular mechanisms mediating synergistic interactions between the members of the

linuron-degrading consortium consisting of Variovorax sp. WDL1, C. testosteroni

WDL7 and H. sulfonivorans WDL6, grown as biofilms. Focus was on mutualistic

partners WDL1 and WDL7 for which gene expression was compared between con-

sortium and monoculture biofilms fed with linuron or 3,4-DCA as the sole carbon

and energy source.

Figure 4.1: Overview of linuron degradation by the triple-species consortium. Figure taken from

Dejonghe et al. [172]
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4.2.3 Results

4.2.3.1 Linuron and 3,4-DCA degradation performance of consortium and

monoculture biofilms

For differential gene expression analysis, biofilms of the consortium containing

WDL1, WDL6 and WDL7 as well as monoculture biofilms of WDL1 and WDL7

were grown on inorganic nitrogen-containing mineral medium (MMO) [172] sup-

plemented with linuron or 3,4-DCA as the sole carbon source. The synergistic

degradation of linuron by the consortium was evident from the linuron degrada-

tion efficiency of consortium biofilms compared to this of WDL1 monoculture

biofilms (Figure 4.2 A). The latter degraded linuron inefficiently and effluent con-

centrations never dropped below 96% of the linuron influent concentration. In the

consortium biofilms, the linuron effluent concentration started to decrease after

two weeks of operation. After 29 days, steady-state conditions were attained with

linuron effluent concentration stagnating around 35% of the influent concentration.

Minor accumulation of 3,4-DCA was observed in both consortium and WDL1

monoculture biofilms, never exceeding 3% and 2% (molar equivalent) of the lin-

uron influent concentration, respectively. In WDL7 monoculture biofilms fed with

3,4- DCA, effluent 3,4-DCA concentrations started to decrease after two days of

operation. After 4 days, steady-state degradation was obtained and effluent 3,4-

DCA concentrations remained around 14% of the influent concentration (Figure

4.2 B).

Figure 4.2: Time lapse effluent concentrations of metabolites. A) Time lapse effluent concentrations

of linuron (solid lines) and 3,4-DCA (dotted lines) in flow channels containing WDL1/WDL7/WDL6

consortium (squares) and WDL1 monoculture biofilms (triangles). B) Time lapse effluent concentration

of 3,4-DCA in flow channels containing WDL7 monoculture biofilms (diamonds). Each data point with

error bar represents the mean and standard deviations of three replicate systems.
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Table 4.1: Summary of sequencing results and read alignment of the different RNA-seq

libraries.

Replicate # read

pairs

# filtered

read pairs

(Phred

score >

30)

# uniquely

mapped

read pairs

# read

pairs

uniquely

mapped

to CDS

# read

pairs

uniquely

mapped

to rRNA

WDL1 1 8.090.000 7.921.052 6.491.448 26.258 6.032.872

WDL7 1 1.360.000 1.329.361 1.169.256 12.466 1.077.552

WDL7 2 470.000 463.034 420.385 6.008 384.077

WDL7 3 3.330.000 3.248.923 2.783.049 41.470 2.478.562

Consortium 1 15.850.000 15.441.928 13.920.873 107.069 13.080.821

Consortium 2 25.040.000 24.490.945 22.529.095 227.025 14.805.214

Consortium 3 20.590.000 20.005.138 18.442.744 134.644 17.227.266

Total 74.720.000 72.900.381 65.756.850 554.940 55.086.363

4.2.3.2 Overall analysis and validation of RNA-seq data

Samples for transcriptome analysis were taken after two weeks of steady linuron

or 3,4-DCA degradation. Sequencing of all cDNA libraries resulted in a total of

74 million read pairs (Table 4.1). Monoculture and consortium libraries had been

multiplexed in a 1:5 concentration ratio for sequencing which was reflected by the

numbers of reads from consortium libraries being higher than those from monocul-

ture libraries. However, the number of read pairs between replicates were highly

variable (Table 4.1). After the trimming step, read pairs were mapped on the com-

piled genome sequences of strains WDL1, WDL6 and WDL7. A challenge for

performing RNA-seq analysis using transcript data from mixed cultures is the

risk that reads will be mapped erroneously to orthologous genes present in the

other strains. Therefore, reads that show non157 unique alignment on the com-

piled triple-species reference genome sequence were discarded. Results show that

on average only 9 (± 1)% of the reads of the consortium samples were as such dis-

carded. Finally, 76 to 88% of the read pairs in the samples could be unambiguously

mapped on the compiled triple-species reference genome sequence (Figure 4.3).

Despite the rRNA depletion treatment, on average 88% of these retained read pairs

aligned with rRNA genes. The percentage of retained read pairs that mapped to

CDSs was low for all samples: 0.4% for the WDL1 monoculture biofilm, 1.1-1.5%

for the three WDL7 monoculture biofilms, and 0.7-1.0% for the three consortium

biofilms. The number of read pairs mapping to CDSs ranged from 6.008 to 227.025

which is lower than what was observed in comparable studies (300.000-1.000.000

read pairs) [179,181]. Rarefaction curve analysis (Figure 4.4) showed that despite

the low number of mapped read pairs, the number of expressed CDS detected in the
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consortium samples and one WDL7 monoculture sample (50%-66%) was close to

the estimated asymptotic value of 70%. On the other hand, the sequencing depth

for two WDL7 monoculture replicates and the WDL1 monoculture sample only

covered the expression of 26%-40% of the genes, indicating that for those sam-

ples a part of the genes with low expression levels remained undetected. Overall,

gene expression values obtained for biological replicates of the different samples

were highly correlated, with a Pearson correlation (R) of on average 0.99 between

pairs of WDL1 in consortium samples, of 0.93 for pairs of WDL7 in consortium

samples, and of 0.97 between the WDL7 monoculture samples. RNA-seq inferred

differential expression levels observed between consortium and monoculture con-

ditions were reassessed by qRT-PCR for five genes of WDL1 (hylA, dcaQ, ccdC

and phoA) and four genes of WDL7 (pcaF, glxR, pilM, pilY1 and yrbC). Those

genes were selected as they were considered as potentially involved in interspecies

interactions based on annotation (hylA, dcaQ, ccdC, pcaF, pilY1) and/or because

their RNA-seq-inferred differential expression levels ranged from underexpression

(pcaF) over non-differential (dcaQ, ccdC, phoA, pilY1, yrbC) to overexpression

(hylA, glxR, pilM) in consortium conditions. qRT-PCR and RNA-seq based val-

ues showed a high Pearson correlation (R = 0.97) (Supplementary Figure S4.1).

The high reproducibility between similar samples and the confirmation of RNA-

seq-based differential expression by means of qRCR indicates that one WDL1

monoculture sample is sufficient for correctly analyzing the differential response

of WDL1 to consortium growth.

Figure 4.3: Average percentages of retained and discarded RNA-seq read pairs. Read pairs obtained

with one WDL1 monoculture (WDL1), three WDL7 monoculture (WDL7) and three consortium (con-

sortium) biofilm samples after mapping the read pairs to the compiled triple-species reference genome

of Variovorax sp. WDL1, C. testosteroni WDL7 and H. sulfonivorans WDL6.
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Figure 4.4: Rarefaction curves. The curves show the proportion of CDSs of the genome of WDL1 or

WDL7 that were expressed (with read pair count ≥ 1) in the monoculture and consortium biofilms (as

determined by RNA-seq) as a function of the number of read pairs uniquely mapping to CDSs of WDL1

or WDL7: expressed proportion of WDL1 genome in the WDL1 monoculture biofilms (black diamond),

expressed proportion of WDL1 genome in the WDL1/WDL6/WDL7 consortium biofilms (black circles),

expressed proportion of WDL7 genome in the WDL7 monoculture biofilms (white diamonds) and ex-

pressed proportion of WDL7 genome in the WDL1/WDL6/WDL7 consortium biofilms (white circles).

4.2.3.3 Transcriptional responses in Variovorax sp. WDL1 when grown in

consortium conditions

In WDL1, 1372 CDSs showed differential expression between monoculture and

consortium conditions. The differentially expressed CDSs were functionally cat-

egorized based on KEGG orthology (Figure 4.5) and PheNetic was used to find

pathways underlying the differentially expressed genes (Figure 4.6). Only a few

genes of catabolic clusters involved in linuron degradation in WDL1 were dif-

ferentially expressed. The linuron hydrolase gene hylA in WDL1 appeared more

than 100-fold overexpressed in consortium conditions, while all three genes of the

oxoadipate catabolic operon (pcaFIJ) required for converting the linuron metabo-

lite 3197 oxoadipate into TCA cycle intermediates (K01031, K00632 and K01032),

were 2-to 4-fold underexpressed in consortium conditions (Figure 4.6; Table 4.2).

All other genes putatively involved in linuron degradation to TCA intermediates,

i.e., all genes belonging to the dcaQT-A1A2B gene cluster encoding the 3,4-DCA

multicomponent dioxygenase and the ccdCFDE gene cluster encoding conversion

of chlorocatechols to 3-oxoadipate were not differentially expressed between con-

sortium and monoculture conditions. The dcaQTA1A2B-, ccd-, and pca-clusters

represented about 11%, 5% and 0.2%, respectively, of the total number of tran-

script read pairs mapping with CDSs in both consortium conditions and monocul-

ture conditions indicating their high expression in WDL1 regardless of the strain

was grown alone or together with WDL7 and WDL6 (results not shown). The re-

sults further showed that overall, general cell metabolism was altered in WDL1
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in consortium conditions compared to monoculture conditions. When grown in

consortium conditions, 351 enzyme encoding genes were differentially expressed

genes in WDL1. About 17% of these genes (61 CDS) were involved in carbohy-

drate metabolism (Figure 4.5) and several carbohydrate metabolizing pathways

were selected by PheNetic (Figure 4.6). For an in-dept analysis of the found

molecular pathways and their genes, we refer to Appendix A.

Figure 4.5: KEGG orthology based functional categorization of CDSs. This figure depicts the num-

ber of CDSs in several functional categories that are over-or under-expressed in WDL1 or WDL7

when grown in WDL1/WDL7/WDL6 triple-species biofilms compared to their growth in monoculture

biofilms.
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Figure 4.6: Molecular pathways differentially expressed between consortium and monoculture con-

ditions for WDL1 as inferred by PheNetic. This figure shows all genes and interactions between genes

inferred by PheNetic. Log2-fold change in expression is indicated on a color scale from green to red,

with red signifying underexpression in consortium conditions and green representing overexpression in

consortium conditions. Blue-highlighted genes are genes for which no transcripts were recorded. Genes

that are differentially expressed (|Log2-fold change| ≥ 1) are indicated by diamond shapes. Discussed

pathways are boxed and annotated.
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4.2.3.4 Transcriptional responses elicited in C. testosteroni WDL7 when grown

in consortium biofilms

Only 169 CDSs in WDL7 showed differential expression when comparing mono-

culture with consortium conditions. Similar to WDL1, only a few genes of the

gene clusters predicted to be involved in 3,4-DCA degradation, were differentially

expressed in WDL7. The dcaB gene of the dcaQTA1A2B cluster encoding the oxy-

genation of 3,4-DCA in WDL7 was twofold underexpressed in consortium condi-

tions. Furthermore, in contrast to WDL1, only pcaF of the pcaFIJ operon, i.e., the

gene encoding acetyl-CoA acetyltransferase was threefold underexpressed in con-

sortium conditions (Table 4.2). However, the latter was not confirmed by transcrip-

tional fusion reporter analysis (Supplementary Figure S4.2 A). catAB, CMBL

and tfdF encode conversion of chlorocatechol to 3-oxoadipate in WDL7 [182],

and were not differentially expressed between consortium and monoculture condi-

tions. As in WDL1, most DCA catabolic genes (dcaQTA1A2, catAB, CMBL, tfdF

and pcaIJ) were not differentially expressed and all DCA catabolic genes repre-

sented together more than 25% of the transcript reads indicating a high expression

of the DCA catabolic pathway in WDL7.

One system that was selected by PheNetic as clearly underexpressed in WDL7

under consortium conditions was the high affinity cbb3-type cytochrome c oxi-

dase (K00404, K00405, K00406; Figure 4.7; Table 4.2). None of the other three

terminal respiratory oxidase gene clusters in WDL7 showed altered expression in

consortium conditions compared to monoculture conditions. For an in-dept analy-

sis of the found molecular pathways and their genes we refer to Appendix A.

Figure 4.7: Molecular pathways differentially expressed between consortium and monoculture con-

ditions for WDL7 as inferred by PheNetic. Log2-fold change in expression is indicated on a color scale

from green to red, with red signifying underexpression in consortium conditions and green representing

overexpression in consortium conditions. Genes that are differentially expressed (|Log2-fold change| ≥
1) are indicated by diamond shapes. Discussed pathways are boxed and annotated.
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Table 4.2: Log2-fold change values for genes belonging to discussed molecular pathways.

Knumber/gene name Log2-fold

change

monoculture-

consortium

Knumber/gene name Log2-fold

change

monoculture-

consortium

WDL1

linuron catabolism nitrogen metabolism

hylA -6.8 K00459 -1.6

K00632/pcaF 1.3 K00373 -1.6

K01032/pcaJ 1.4 K00370 -1.8

K01031/pcaI 2.1 K07673 -2.2

polyhydroxybutyrate synthesis K07712 -1.4

K00626 -1.2 K07708 -2.2

K03821 -1.8 K03320 -1.4

K00023 -1.3 K02575 -1.0

cysteine and methionine metabolism K01915 1.2

K12339 1.2 sulfur metabolism

K00548 -1.7 K00390 1.6

K01251 2.7 K00381 1.8

K00549 1.1 K00957 0.9

K00789 2.7 K02046 1.5

K00641 2.6 K02048 -1.1

K00640 1.6 K02045 -1.5

glutamate family K03147 3.7

K05597 2.7 K03154 2.2

K01925 -2.3 heat shock regulon

K01956 -1.7 K04043/dnaK -1.3

K00764 -1.7 K04077 -1.2

K01915 1.2 K11907/clpB -2.8

K00472 -2.6 K03705/hrcA -1.7

K00286 -1.4 K04079htpG -1.3

K01750 1.6 dnaJ -1.7

K01584 1.4 K07263 -1.6

K01428 1.2 K03089/rpoH -1.1

K00611 1.9 K04078 -1.4

DNA repair/recombination K13993 -1.9

K01142 -2.1 K03687/grpE 1.4

K04764 -1.2 nucleotide metabolism

K00567 1.7 K01591 2.0

K03702 -1.4 K00761 1.5

K01972 -1.9 K01081 1.7

K03703 -2 K01241 -1.1

K04485/recA -1.5 K01756 1.4

K03553 1.0 K01923 1.2

K02343 -2.5 K00758 1.2
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K10563 -2.3 K00525 -1.1

K00525 -1.1 K00088 1.9

K03574 -1.3 K00951 -1.0

K10979 -1.3 K02343 -2.5

K01971 -1.3 K02338 -1.2

K10979 -1.4 K01494 -1.1

K03724 -1.2 type VI secretion system

K03582 -1.9 K11893 -1.5

K10860 -1.1 K11891 -1.3

K02338 -1.2 K11890/impM -1.4

K03584 -1.1 K11903 -1.7

K03554 -1.1 K11900/impC -1.6

K03530 -1.1 K11901/impB -1.6

CDI K11907/clpB -2.8

K15125 -1.0 K11904/vgrG -2.8

putative CDI antitoxin -1.1 K11906/vasD -1.0

K15125 -1.4 quorum sensing

porphyrin metabolism K18098/luxR family -3.9

K02496 -1.3 K18096/luxI -1.7

K02303 -1.1 pentose phosphate pathway

K01599 -2.3 K00615 -1.3

K02495 -2.0 K00033 -2.4

K00036 -2.0

K00616 -2.1

K01623 -1.6

K01835 -1.6

WDL7

glycerate biosynthesis operon cytochrome c oxidase

K01608 -2.2 K00406/CcoP 1.8

K00042 -2.3 K00405/CcoO 1.9

K01816 -1.9 K00404/CcoN 1.7

linuron catabolism

K00632/pcaF 1.7

dcaB 1.0

4.2.4 Discussion

4.2.4.1 Co-culturing of strains modulates additional metabolic pathways in

the linuron-degrading consortium

As reported above, we recently observed that WDL1 consists of a linuron-hy-

drolyzing and a DCA-oxidizing subpopulation. Considering that the linuron-hy-
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drolyzing WDL1 subpopulation retrieves no energy nor carbon from linuron hy-

drolysis, its growth on linuron in consortium conditions can only be explained by

the uptake and metabolism of alternative carbon sources produced by the other

consortium members during linuron degradation. Cross-feeding and growth on

compounds other than linuron metabolites is indeed supported by the many differ-

entially expressed genes, particularly in WDL1, that can be linked to the exchange

of metabolites with their environment. Firstly, the high number of genes coding

for functions involved in transport and two-component systems in WDL1 that are

overexpressed in consortium conditions (Figure 4.5), likely reflects a substantial

change in the chemical composition of the local environment surrounding WDL1

cells. Since the three consortium members are closely associated when grown to-

gether as a biofilm [174], each strain is confronted with the metabolic footprint

of the other strains. The metabolic footprint, i.e., the ensemble of metabolites

in the extracellular space as a result of uptake of nutrients and the excretion of

metabolites, was previously shown to be, among other factors, a species specific

trait [183, 184]. A similar change in expression of genes coding for membrane

proteins in multispecies biofilms of soil bacteria was observed before [185]. Sec-

ondly, the altered expression of genes encoding enzymes involved in metabolic

pathways (Figure 4.5) is similarly indicative of cross-feeding between the consor-

tium members. Amino acids appear as one such type of molecules exchanged in the

consortium as suggested by the altered expression in WDL1 of genes involved in

amino acid metabolism and transport, but also by a change in expression of genes

involved in nitrogen regulation, uptake of inorganic nitrogen and assimilation via

glutamine synthetase (Table 4.2). Differential expression of genes involved in ni-

trogen metabolism in bacteria as a response to multiculture growth was previously

observed and suggested to be associated with the exchange of amino acids or other

nitrogen containing compounds between consortium partners [178,180,186,187].

Interestingly, addition of amino acids was previously shown to enhance degrada-

tion of linuron in monocultures of linuron-degrading Variovorax strains that were

recovered from linuron-degrading consortia with compositions similar to the tri-

partite WDL1/WDL6/WDL7 consortium [174]. Alternatively, the altered nitrogen

metabolism in WDL1 can be merely a consequence of the loss of 3,4-DCA as the

nitrogen- delivering metabolite of linuron degradation by the WDL1 cells in con-

sortium conditions, due to the more efficient uptake by WDL7. The underexpres-

sion of genes involved in the biosynthesis of sulfur-containing compounds such as

thiamine, methionine and cysteine in consortium conditions in WDL1 (Table 4.2)

could point towards a lower dependence on de novo synthesis of these compounds

when they are obtained from other strains in consortium conditions. This was also

observed previously in a cyanobacterial-heterotrophic co-culture [180].

Compared to WDL1, WDL7 shows a less extensive metabolic response upon

co-culturing. Only a clear overexpression of the glycerate biosynthesis gcl operon

was observed in WDL7 during consortium growth (Table 4.2). This operon was

shown to be induced by glyoxylate in Escherichia coli [188], suggesting that WDL7

senses a higher concentration of glyoxylate when grown in consortium conditions
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and thus that glyoxylate is a candidate metabolite that WDL7 could receive dur-

ing consortium growth. As WDL7 does not show a strong change in regulation

of metabolic pathways between growth conditions, 3,4-DCA seems to remain the

main carbon and energy source of WDL7 both in monoculture and consortium

biofilm conditions. In contrast to the non-differential expression of metabolic path-

ways in WDL7, its growth rate does seem to increase in consortium conditions

based on the abundant overexpression of one third of WDL7 genes encoding for

ribosomal proteins. This has been described before in other consortia and was sug-

gested to be a metric of in situ growth rate [177,189]. A higher growth rate is also

expected for WDL1 in consortium conditions from the increase of DNA synthe-

sis [190].

4.2.4.2 Co-culturing of consortium strains triggers a stress response in WDL1

Growth in consortium conditions engenders the overexpression of stress related

proteins in WDL1, like the heat shock regulon (Table 4.2). Some of these molec-

ular chaperones were also found to be overexpressed in a phototrophic bacterial

consortium [187] and in a halophilic co-culture of closely related strains [189] in-

dicating that a stress response upon co-growth of strains mutually benefiting from

the interaction is not unique to the linuron-degrading consortium. Also several

genes involved in DNA repair and recombination appear to be upregulated indi-

cating that increased DNA damage occurs in WDL1 under consortium conditions

(Table 4.2). DNA damage can be caused by change in metabolic activity result-

ing in an enhanced production of reactive oxygen species that are continuously

generated during metabolism [191] but can also be caused by exogenous agents

such as toxins [192]. On the other hand, increased DNA repair and recombination

might also be due to the increased DNA synthesis in WDL1 in consortium con-

ditions as indicated by the underexpression of degradation of purine and pyrimi-

dine nucleotides and overexpression of formation of deoxynucleotides (Table 4.2).

Nevertheless, coexistence in the linuron-degrading consortium appears to be expe-

rienced by WDL1 as a stressful situation implying that the ecological interactions

between the consortium members are more complex than merely the exchange of

metabolites.

4.2.4.3 Potential involvement of cell-to-cell interactions in shaping the lin-

uron degrading consortium

In this study, we observed two types of contact-dependent interaction systems

(T6SS, a Type VI secretion system and CDI) that were overexpressed in con-

sortium conditions in WDL1 (Table 4.2). In both T6SS and CDI, toxic effec-

tor proteins and antitoxins form a functional pair and mediate growth inhibition

of neighboring competitor cells that do not produce the identical toxin/antitoxin
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pair [193, 194]. The T6SS and CDI systems might be used by WDL1 for contact-

dependent interference competition with WDL6 and WDL7. However, CDI and

T6SS can also mediate cooperation and communication between bacteria express-

ing the same toxin-antitoxin system in which case they are immune to each others

toxins and are called ”self” -bacteria. Alternative ecological roles beyond com-

petition have been proposed for CDI and T6SS, where the toxin protein could

be interpreted as a contact-dependent signal molecule by ”self” -bacteria. In this

way, toxin-antitoxin systems can contribute to community architecture, but they

can also enforce cooperative behavior in ”self”-bacteria when the toxin-antitoxin

pair is co-regulated with genes coding for social traits by killing self-bacteria that

do not express social traits [193]. In that context, it was recently shown that the

CDI system of Burkholderia dolosa alters gene expression in Burkholderia thai-

landensis showing that self-bacteria can belong to different species as long as they

produce the same toxin-antitoxin pair [194]. However, we only identified T6SS or

CDI toxin or antitoxin genes in WDL1 and not in the other consortium members.

4.2.5 Conclusion

Using a differential transcriptomic approach, we revealed that next to metabolic

association between the members of a linuron-degrading consortium, additional

cross-feeding interactions are expected to be present and that amino acids are one

type of metabolites that are possibly exchanged between the consortium members

that in particular are used by WDL1 for growth. In comparison to WDL7, WDL1

shows a more extensive response upon co-culturing with WDL6 and WDL7, in-

cluding the increased expression of hylA encoding linuron hydrolase which can

be directly linked with enhanced linuron degradation and a stress response. Fur-

thermore, several cell-to-cell interaction systems were overexpressed that could be

involved in interspecies signaling such as quorum sensing, contact-dependent inhi-

bition and Type VI secretion. Whether or not those signaling systems contribute to

the well-functioning of the consortium remains to be elucidated. On the contrary,

Type VI secretion and contact-dependent inhibition could also be used by WDL1

in interference competition with WDL6 or WDL7. This raises the question if syn-

ergistic linuron degradation by the consortium involves true adaptive cooperation

or is rather a byproduct of selfish interactions between the consortium strains that

are competing for other nutrients and space. The apparent experience of stress by

WDL1 favors the latter hypothesis. Furthermore, a large number of differentially

expressed genes in WDL1 and WDL7 were coding for hypothetical, putative and

unknown proteins which was also observed in similar studies with other consor-

tia [181, 189, 195]. These uncharacterized proteins might include novel functions

that are important for the well-functioning of consortia and their study is of interest

for gaining more insight in the synergistic mechanisms in bacterial consortia.
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4.2.6 Experimental procedures

4.2.6.1 Bacteria, media and biofilm growth conditions

Biofilms were grown at 25 °C in a continuous flow chamber system (BioCentrum

DTU, Denmark) as described by Breugelmans et al. [174]. Variovorax sp. WDL1

(LMG 27260), C. testosteroni WDL7 (LMG 27261) and H. sulfonivorans WDL6

(LMG 27262) cell suspensions for inoculation were prepared as described by

Horemans et al. [196]. Consortium biofilms and WDL1 monoculture biofilms

were grown on MMO [197] supplemented with 20 mg L-1 linuron. Monoculture

biofilms of WDL7 were grown on MMO supplemented with 14 mg L-1 3,4- DCA.

Consortium biofilms as well as WDL1 and WDL7 monoculture biofilms were

grown in triplicate. Triplicate non-inoculated control systems for abiotic removal

of linuron or 3,4-DCA were operated in parallel. At regular time intervals, one ml

effluent samples were taken, centrifuged at 10,000 g for 5 min, and the supernatant

stored at -20°C prior to HPLC analysis of linuron and 3,4-DCA concentrations as

described [198]. The theoretical maximal accumulated concentration of 3,4-DCA

in linuron-fed biofilms was calculated as the molar equivalent of the linuron in-

fluent concentration, i.e., the concentration of 3,4-DCA in case all linuron is con-

verted into 3,4-DCA. Consortium and WDL1/WDL7 monoculture biofilms were

harvested after two weeks of steady-state linuron and/or 3,4-DCA degradation. In

all experiments, linuron and 3,4-DCA PESTANAL analytical standards (99.9 %;

Sigma-Aldrich, Belgium) were used.

4.2.6.2 Determination of differential gene expression values

Sequences were trimmed to only retain bases with a PHRED quality score of at

least 30 near their ends using Trimmomatic version 0.32. For every replicate sep-

arately, the trimmed reads were aligned against a triple-species reference genome

sequence consisting of the compiled genome sequences of strains WDL1, WDL6

and WDL7. Bowtie 2 version 2.2.6 was used for the alignment of paired-end data.

Read pairs aligning at different positions in the triple-species reference genome

with identical mapping scores were classified as ambiguous and discarded. When

a read pair mapped only one time discordantly, i.e. only one of the reads from

the pair mapped uniquely to the triple species reference genome, that read was

considered as mapped and retained. Simply discarding ambiguous reads would

reduce the estimated expression level of genes with similar sequences and hence

result in false expression rates [199]. Therefore, we adapted a method developed

by Ilut et al. [199] in which for each gene a scaling factor is calculated that ad-

justs the expression levels inferred from read counts to account for the likelihood

of undercounting expression of genes with similar sequences. For both WDL1 and

WDL7 only 0.3% of the genes had a scaling factor different from 1, meaning this
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adjustment has an insignificant effect on the analysis. The calculated scaling fac-

tors for all genes in WDL1 and WDL7 can be found as supporting information

(Supplementary Table S4.1). To generate read counts for each gene in consor-

tium and monospecies conditions, the number of retained read pairs were counted

in every sample using HTseq version 0.6.1 for strand specific paired-end reads

using intersection nonempty as overlap resolution mode [33]. Differential expres-

sion of genes between consortium and mono-species conditions was obtained us-

ing the DEseq2 package in R [34]. The independent filtering setting was used in

order to increase experiment-wide power and the BenjaminiHochberg correction

was used to correct for multiple hypothesis testing. To check if sequencing depth

was sufficient, we adapted a method used in biodiversity sampling studies [200],

by plotting the proportion of identified coding sequences (CDS) of the WDL1 or

WDL7 genome that were expressed (read pair count = 1) as a function of the sam-

pling size in consortium and monoculture RNA-seq libraries. The sampling size

was expressed as the number of read pairs that uniquely mapped to CDS of WDL1

or WDL7 in each library. Genes were called differentially expressed between con-

sortium and monoculture conditions when |log 2 fold change|= 1. We did not take

into account the p-values of the differential expression analysis as this would be

too restrictive. This was shown before to be a valid approach to analyze differen-

tial transcriptomic data [42, 180, 201]. While this approach is more prone to false

positives, this is offset by the subsequent pathway analysis which is more robust

to false positives.

4.2.6.3 Differential gene expression analysis

Analysis of differentially expressed genes was based on the Kyoto Encyclopedia

of Genes and Genomes (KEGG) orthology classification of proteins (http://www.

genome.jp/kegg/). KEGG identifiers for the coding sequences (CDS) of the three

genomes of the consortium members were obtained by exporting the amino acid

sequences of all CDS from the RAST server and uploading them on the KEGG

automatic annotation server (KAAS) (http://www.genome.jp/tools/kaas/). To un-

veil pathways and other cellular systems underlying the differentially expressed

genes between consortium conditions and isolated conditions for both WDL1 and

WDL7, the network-based algorithm PheNetic [6] and the Search Brite tool for

functional classification using KEGG orthology [202] were both used. PheNetic

searches for common pathways between differentially expressed genes based on

an interaction network. The used interaction networks in WDL1 and WDL7 con-

sisted of metabolic, (de)methylation, and (de)phosphorylation interactions from

KEGG [202] version 80.0. For WDL1 and WDL7, respectively interactions doc-

umented in any of four Variovorax strains (V. paradoxus S110, V. paradoxus EPS,

V. paradoxus B4 and Variovorax sp. PAMC 2877) and any of two C. testosteroni

strains (CNB-2, TK102) were used. The standard parameters were applied, run

mode was set to ”downstream” and the cost was set to 0.15 for WDL1 and 0.1 for
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WDL7. These costs were determined by running a sweep over the cost parameter.

In order to avoid selecting noise, identified pathways consisting of at most three

genes were discarded The subsystem tool from RAST [203] was used to look

for additional genes with no KEGG identifier that could be linked with the dif-

ferentially expressed pathways and other cellular systems. The RNA-seq derived

expression of four genes of WDL1 (hylA, dcaQ, catA and phoA) and five genes

of WDL7 (pcaF, glxR, pilM, pilY1 and yrbC) were validated by real time quan-

titative PCR (qRT-PCR). For detailed information, see Supporting Experimental

Procedures.

For information on draft genome sequencing of the consortium members, RNA

extraction and library prep an how differential transcription was verified, we refer

to the Additional experimental procedures in Appendix A
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Supplementary

4.2.8 Supplementary figures and tables

Figure S4.1: RNA-seq data validation. Correlation between RNA-seq and qRT-PCR data of four

genes of WDL1 and five genes of WDL7 showing log2-fold change of gene expression in monoculture

versus consortium conditions.
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Figure S4.2: Phenetic inferred map of porphyrin metabolism Flow cytometric profiles of WDL7-

Rfp transcriptional gene fusions assessing differential gene expression from A) the promotor region

of the oxoadipate catabolic pca operon and B) the promotor region of the glycerate biosynthesis gcl

operon, grown in consortium conditions (red dots) vs monoculture conditions (blue dots). Both promo-

tor regions are in fusion with gfpmut3.1 in pRU1097. The dot plot profiles show the amount of green

fluorescence (excitation 488 nm, emission filter FL02 (530/40)) on the x-axis, while red fluorescence

(excitation 488 nm, emission filter FL01(580/30)) is shown on the y-axis.

Table S4.1: Only non-1 scaling factors are depicted. Scaling factors for all other genes

are equal to 1.

peg ID WDL 1 scaling factor peg ID WDL 7 scaling factor

ID = f ig|6666666.13192.peg.1 0 ID = f ig|6666666.13171.peg.1 0

ID = f ig|6666666.13192.peg.2 0 ID = f ig|6666666.13171.peg.2 0

ID = f ig|6666666.13192.peg.3 0 ID = f ig|6666666.13171.peg.3 0

ID = f ig|6666666.13192.peg.4 0 ID = f ig|6666666.13171.peg.4 0

ID = f ig|6666666.13192.peg.3689 0.142516872 ID = f ig|6666666.13171.peg.5 0.16307947

ID = f ig|6666666.13192.peg.5 0.16307947 ID = f ig|6666666.13171.peg.2839 0.2271777

ID = f ig|6666666.13192.peg.6 0.497746273 ID = f ig|6666666.13171.peg.6 0.497746273

ID = f ig|6666666.13192.peg.10 0.501577287 ID = f ig|6666666.13171.peg.10 0.501577287

ID = f ig|6666666.13192.peg.8 0.643989552 ID = f ig|6666666.13171.rna.57 0.571813511

ID = f ig|6666666.13192.rna.47 0.804181185 ID = f ig|6666666.13171.rna.12 0.643989552

ID = f ig|6666666.13192.peg.4835 0.946582804 ID = f ig|6666666.13171.peg.11 0.804657629

ID = f ig|6666666.13192.rna.44 0.951161462 ID = f ig|6666666.13171.peg.2499 0.963350785

ID = f ig|6666666.13192.peg.11 0.963350785 ID = f ig|6666666.13171.peg.4167 0.978855513

ID = f ig|6666666.13192.peg.6989 0.969519019 ID = f ig|6666666.13171.peg.8 0.980474665

ID = f ig|6666666.13192.peg.3037 0.97631723 ID = f ig|6666666.13171.peg.7 0.985572588

ID = f ig|6666666.13192.peg.7290 0.978653829

ID = f ig|6666666.13192.peg.7 0.978855513

ID = f ig|6666666.13192.peg.5723 0.985004686

ID = f ig|6666666.13192.peg.6754 0.991871676

ID = f ig|6666666.13192.peg.6992 0.996460627

ID = f ig|6666666.13192.peg.4902 0.99970856





5
Prioritization of driver genes and

pathways from eQTL data

5.1 Introduction

In this chapter an adaptation of the network-based method PheNetic, which was

used in the previous chapter, is presented. This adapted version is specifically de-

signed to analyze differential expression data together with genomics data (eQTL

data). As such the method uses a biological interaction network to uncover which

mutated genes lead to significant changes in the expression profile of molecular

pathways. On top of the identification of causal mutated genes and molecular path-

ways, the method also ranks the observed mutation based on their likelihood to be

causal to the phenotype. By testing the method on two publicly available datasets

which had previously been analyzed using literature research and wet-lab exper-

iments, it was possible to automatically reconstruct the results and propose new

causal mutations.

DDM and BW conceptualized the study, developed the method, analyzed the

data, interpreted the results and wrote the manuscript. LDR and KM conceptual-

ized the study, discussed the results and edited the manuscript.
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5.2 Paper

Network-based analysis of eQTL data to prioritize
driver mutations
De Maeyer, D.†, Weytjens, B.†,De Raedt, L., Marchal, K. (2016). Network-based analysis of eQTL

data to prioritize driver mutations. Genome biology and evolution, 8(3): 481-494.
† these authors contributed equally to this paper

5.2.1 Abstract

In clonal systems, interpreting driver genes in terms of molecular networks helps

understanding how these drivers elicit an adaptive phenotype. Obtaining such a

network-based understanding depends on the correct identification of driver genes.

In clonal systems, independent evolved lines can acquire a similar adaptive phe-

notype by affecting the same molecular pathways, a phenomenon referred to as

parallelism at the molecular pathway level. This implies that successful driver

identification depends on interpreting mutated genes in terms of molecular net-

works. Driver identification and obtaining a network-based understanding of the

adaptive phenotype are thus confounded problems that ideally should be solved si-

multaneously. In this study, a network-based eQTL method is presented that solves

both the driver identification and the network-based interpretation problem. As in-

put the method uses coupled genotype-expression phenotype data (eQTL data) of

independently evolved lines with similar adaptive phenotypes and an organism-

specific genome-wide interaction network. The search for mutational consistency

at pathway level is defined as a subnetwork inference problem, which consists of

inferring a subnetwork from the genome-wide interaction network that best con-

nects the genes containing mutations to differentially expressed genes. Based on

their connectivity with the differentially expressed genes, mutated genes are pri-

oritized as driver genes. Based on semi-synthetic data and two publicly available

data sets, we illustrate the potential of the network-based eQTL method to priori-

tize driver genes and to gain insights in the molecular mechanisms underlying an

adaptive phenotype.

5.2.2 Introduction

Because of their short generation times, large population sizes and quasi clonal be-

havior, experimental evolution of micro-organisms offers great potential for trait

selection and testing evolutionary theory [204, 205]. Evolution experiments start

from a single clone propagated for many generations under a predefined condi-
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tional set up, defined as the selection regime. As the organisms propagate they

gradually accumulate genetic variation (SNPs, INDELs, etc.). Some of this varia-

tion will cause a clonal fitness increase and a concomitant selective sweep, which

ultimately increases population fitness. The acquired genetic variation can be iden-

tified in the evolved lines of the population through sequencing. Genes containing

mutations that are fixed in the population, that reach a high frequency in the pop-

ulation, or of which the origin coincides with an increase in fitness [135,136,206]

are pinpointed as likely drivers, where a driver in this context is defined as any

gene carrying adaptive mutations, that in isolation or in combination with other

drivers can elict a fitness increase and concomittant clonal expansion. In most evo-

lution studies however, a mechanistic understanding of how the selected driver

mutations elicit the adaptive phenotype is still lacking. Such a mechanistic inter-

pretation depends on correctly identifying and interpreting driver genes in terms

of the genome-wide interaction network of the organism of interest in order to find

the molecular pathways that drive the observed adaptive phenotype. The identifi-

cation of the driver genes is in itself not trivial because during a selection sweep,

passenger mutations, i.e. mutations that do not contribute to the phenotype, are

likely to hitchhike to fixation along with driver mutations [150]. Furthermore, be-

cause under strong selection pressures hyper mutators frequently arise [153, 207],

the ratio of driver genes to passenger genes can become low, further complicating

the identification of driver genes. To identify driver genes, one can exploit paral-

lelism of mutations at the gene/nucleotide level. Genes observed to be recurrently

mutated in independently evolved lines with a similar phenotype are more likely to

be drivers [41,136]. However, independently evolved lines can also acquire similar

adaptive phenotypes by mutations in different genes that affect the same molecu-

lar pathways [41, 135, 136], rather than by sharing exactly the same mutations or

mutated genes. Identifying driver genes underlying an observed phenotype thus

requires identifying mutational parallelism between independently evolved lines

at the molecular pathway level [208–211]. In other words, driver gene identifi-

cation and acquiring a network-based understanding of the adaptive phenotype

are confounded problems that have to be solved simultaneously. In this study, we

illustrate how a network-based method in combination with coupled genotype-

expression phenotype data (eQTL data) of parallel evolved lines can aid in simul-

taneously prioritizing driver genes and providing a network-based interpretation of

the molecular mechanisms underlying the evolved adaptive traits. To this purpose

the network-based eQTL method uses an organism-specific genome-wide interac-

tion network, compiled from publicly available interactomics data [60,61] to drive

the search for mutational consistency at the pathway level. By generating a semi-

synthetic experimental evolution benchmark, the ability of the method to prioritize

driver genes is demonstrated. To illustrate the performance of both driver gene

prioritization and network-based interpretation of the data in a real setting, the

method is applied to eQTL data obtained from two previously described evolution

experiments in Escherichia coli. The first data set aims at identifying the adaptive

pathways that gave rise to improved Amikacin resistance in four independently

evolved lines [201]. The second data set focuses on unveiling the molecular in-
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teractions between two distinct ecotypes that evolved from a common ancestor

in the long term evolution experiment of Lenski et al. [212]. For both data sets

the method prioritizes driver genes that contribute to the adaptive phenotypes and

unveils their molecular modes of action.

5.2.3 Materials and Methods

5.2.3.1 Network-based eQTL method

The eQTL analysis method is based on the probabilistic logical querying lan-

guage ProbLog [213]. To simultaneously prioritize driver genes and unveil adap-

tive molecular pathways, elicited by these driver mutations, the driver gene iden-

tification problem is reformulated as a decision theoretic subnetwork inference

problem [161] over multiple probabilistic networks Qi, derived from the genome-

wide interaction network G. The method consists of three steps (Figure 5.1):

5.2.3.2 Construction of probabilistic networks

For each of the parallel evolved lines i of an evolution experiment, the genome-

wide directed interaction network G is converted into a probabilistic network Qi

by assigning to each edge a weight that reflects the probability the edge is play-

ing a role under the assessed condition, given the differential expression data as

depicted in Figure 5.1 A. To this end, per node the probability is calculated that

an expression value at least as extreme as the one associated with that node would

be observed by chance, given the null hypothesis that the expression value of the

gene which corresponds to the node is not significantly differentially expressed, is

true. Calculation is performed using a two-tailed p-test assuming that the log2 fold

changes follow a normal distribution N(µ,σ ) [214,215]. By standardizing this dis-

tribution to N(0,1) this probability can be calculated for any differential expression

value Dgene using Equation 5.1 in which Zgene corresponds to the standard score

associated with Dgene.

Pgene =

{

P(X > Zgene)+P(X <−Zgene) i f Zgene > 0

P(X < Zgene)+P(X >−Zgene) i f Zgene < 0
GivenN(0,1) (5.1)

As in the network-based eQTL method the edges, not the nodes, are weighted,

the value Pgene is propagated to the edges that terminate in it. A high value for

the probability that a specific edge is involved in a specific experimental condi-

tion is assigned to edges that terminate in highly differentially expressed genes.
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Therefore, 1-Pend gene will be assigned to all edges. Using the cumulative normal

distribution of N(µ,σ ) which is written as φ(µ,σ), this can be simplified as shown

in Equation 5.2.

Pedge = (|0.5−φ(µ,σ) ∗ (Dendgene)|)∗2 (5.2)

Where Dend gene is the differential expression data of the end gene of the inter-

action. If no differential expression data is available for Dend gene, Pedge is set to

0.5.

5.2.3.3 Pathfinding in probabilistic networks

Each probabilistic network Qi allows for determining the probability of connect-

edness between a gene Ci,j, from a set of genes Ci, and a gene set Ai, defined as

P(path(Ci,j,Ai)|Qi). This probability of connectedness expresses how likely it is

that there exists a path that connects the gene Ci,j to any gene in the gene set Ai,

in the probabilistic network Qi. A path between two nodes is a sequence of con-

secutive edges from the genome-wide interaction network that connects these two

nodes and for which all edges are directed in the same direction. The probability

of such a path is simply the product of the probabilities of the edges it contains.

In the proposed eQTL setting each gene Ci,j is defined as significantly differen-

tially expressed in evolved line i and gene set Ai is the set of mutated genes ob-

tained from evolved line i. A path connects a significantly differentially expressed

gene to genes mutated in the same evolved line. The rationale behind this is that

the significantly differentially expressed genes are effects of mutations and thus

connect to the “causal” mutations through the probabilistic network. The proba-

bility of connectedness P(path(Ci,j,Ai)|Qi) represents the probability with which

the differential expression of Ci,j can be induced by the set of mutations, given

the probabilistic interaction network Qi and quantifies which mutations are most

likely to cause the differential expression of Ci,j.

5.2.3.4 Inference of the optimal subnetwork by combining the data from all

evolved lines

Identifying driver mutations from a set of independent end points with the same

phenotype corresponds to inferring a single subnetwork Koptimal over all indepen-

dent end points that best connects the significantly differentially expressed genes

Ci,j and the set of mutations Ai for all end points together as depicted in Figure

5.1 C. A subnetwork K of a network G is defined as a subset of the edges in G

together with the nodes occurring in the selected edges. Note that a subnetwork
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in this context can thus consist of any number of disconnected parts of the orig-

inal network G. For each subnetwork K from G the probability of connectedness

changes to P(path(Ci,j,Ai )|Qi,K) as paths that are valid in Qi are not necessarily

valid in a subnetwork K. Therefore, the probability of connectedness changes to

P(path(Ci,j,Ai)|Qi,K) when working with subnetworks K, denoting that the edges

along the path have to be present in both Qi and K. Each subnetwork K should

be scored based on the sum of probabilities that there exists a path between each

significantly differentially expressed gene Ci,j in Ci and the list of mutated genes

Ai, for each independently evolved line i, out of a total of n independently evolved

lines as described in Equation 5.3. Between different end points it is expected

that the same adaptive pathways are triggered (parallel evolution). Also, within

every end point separately, multiple paths are expected to be found in regions with

many significantly differentially expressed genes that are likely to be important for

the phenotype. Therefore, paths between driver genes selected from different end

points and their respective sets of differentially expressed genes should overlap in

the optimal subnetwork. By restricting the size of the network through a cost based

on the number of edges |K| in the subnetwork the method will preferentially select

these overlapping paths. This edge cost can be modulated using the cost factor xe.

Koptimal is defined as the subnetwork that has the maximum possible value of the

score function S(K):

S(K) =
n

∑
i

(
l

∑
j

(P(path(Ci, j,Ai)|Qi,K)))−|K| ∗ xe (5.3)

Computing the probability that there exists a path between two nodes in a

probabilistic network is known as the two-terminal reliability problem, which is

NP-hard. This explains why there is no known efficient exact inference algorithm

and why we employ an approximation algorithm to compute P(path(Ci,j,Ai)|Qi).
This probability is approximated by using only the N most likely paths of maxi-

mal length l between the differentially expressed gene Ci,j and any mutated gene

of Ai [162, 213]. The resulting paths (for all Ci) are then represented as a Boolean

formula (as in probabilistic logic programming languages [213]): each path cor-

responds to a conjunction of the edges that are present in the path, and a set of

such paths corresponds to the disjunction of the conjunctions corresponding to

these paths. This formula is then compiled into an equivalent deterministic De-

composable Negation Normal Form (d-DNNF) using knowledge compilation tech-

niques [216]. The advantage of the d-DNNF is that it contains the same informa-

tion as the original set of paths and that it can efficiently be evaluated in polynomial

time for each subnetwork K [217]. Selecting such a subnetwork K corresponds to

setting all edges not in K to false when evaluating the d-DNNFs. The optimal sub-

network Koptimal is determined by sampling different subnetworks K from G by

performing a random-restart hill climbing optimization as outlined in [161]. Note

that, as Koptimal is a subset of G, Koptimal is not necessarily connected.
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5.2.3.5 Driver gene prioritization

Because subnetworks obtained using a higher edge are more enriched in driver

genes than subnetworks obtained using a low edge cost (higher PPV, more strin-

gent conditions) and subnetworks detected at high edge costs are in general con-

tained within the ones retrieved at lower edge costs, mutated genes are prioritized

based on the highest edge cost for which they are still selected (i.e. ranks of mu-

tated genes are based on the most stringent condition under which they are still

selected). The reason for this is that mutated genes that are detected at the high-

est edge cost (most stringent parameter) represent the most pronounced signals in

the data. Mutated genes that represent weaker signals (mutations that explain less

of the expression data) are only retrieved at less stringent edge parameter costs.

To this end, for each data set multiple optimal subnetworks are inferred using a

gradually decreasing edge cost, i.e. a parameter sweep over the edge cost. Mutated

genes that are retrieved using a high edge cost are strongly connected to the expres-

sion phenotype and thus receive the lowest (best) rank. Note that this prioritization

strategy can result in assigning identical ranks to different mutated genes. These

prioritized mutated genes, together with the inferred subnetworks are visualized

by depicting the union of all edges and nodes present in the different inferred sub-

networks.

5.2.3.6 Parameter settings

To infer subnetworks the maximum length of a path is set to four edges based on

both biological [218, 219] and computational considerations. To approximate the

probability of connectedness P(path(Ci,j,Ai|Qi,K) the 20-best paths were used

that connect each differentially expressed gene Ci,j to the set of mutated genes Ai.

The edge cost parameter determines the size of the inferred subnetwork and forces

the selection of overlapping paths. The behavior of the edge cost is characterized

on a semi-synthetic data set as indicated in the result section. As described in

the driver gene prioritization paragraph, a parameter sweep of the edge cost was

performed in order to prioritize the mutated genes. As lower edge costs do not

affect ranks of genes prioritized at higher edge costs, the choice of the lower bound

on the edge cost does not interfere with the results of the highest ranked genes. For

convenience and visualization purposes we choose a cut-off on the sweep at a cost

that corresponds to finding a network of no more than 120 nodes. Conversely,

when setting the conditions too stringent i.e. very high edge cost, subnetworks can

no longer be inferred. Therefore, as smallest edge cost we chose the most stringent

value at which a subnetwork could be inferred. This resulted in a parameter sweep

of the edge cost from 1.75 to 0.25 for the AMK resistance data set and from 0.975

to 0.025 for the co-existence ecotypes data set. The edge cost sweep was performed

with a step size of 0.025. Note that the upper limit of the edge cost in the sweep

corresponds to the value for which no subnetwork was inferred anymore.
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5.2.3.7 Data sets

Semi-synthetic benchmarking set

The semi-synthetic benchmark data set was based on data published by Stincone

et al. (publicly available from Gene Expression Omnibus under accession number

GSE13361) assessing for 27 E. coli K-12 MG1655 single gene knock-out strains

involved in acid resistance, the expression profiles relative to a wild type E. coli

K-12 MG1655 [220]. Levels of differential expression of single gene knock-out

strains (27 strains) with respect to the reference were obtained from COLOM-

BOS [221]. As no repeats were available for the different experiments, and thus

no relevant p-values were available, significantly differentially expressed genes

were determined as genes having a log2 fold expression change larger than 2. For

each KO strain, the knocked out gene was considered a known driver gene and the

measured levels of differential expression as the corresponding expression pheno-

type. Five of those strains, namely phoH, cadB, ycaD, spy, yjbJ and grxA, were

discarded for benchmarking, because these genes only have incoming interactions

in the genome-wide interaction network or, in the case of yjbJ, are not present in

the interaction network. In addition the experiment corresponding to the hns KO

strain was removed as the COLOMBOS database did not contain the appropriate

data. For each of the remaining 20 strains the presence of passenger genes was

mimicked by randomly selecting a nucleotide position in the reference genome

and mapping this position to a gene. Passenger mutations had to obey following

conditions: 1) randomly selected genes did not belong to the set of driver genes

and 2) they were connected in the genome-wide interaction network with outgo-

ing interactions. The number of passenger mutations assigned to each data set was

selected from a binomial distribution with n, the total number of selected muta-

tions, being equal to 9 and p, the chance of adding a passenger mutation, being

equal to 0.5. On average this mimics an addition of 5 passenger mutations with a

standard deviation of 1.5 for each of the 20 strains in each data set. This way the

total number of mutated genes in the semi-synthetic data set is of the same order

of magnitude as the number of passenger mutations per driver mutation observed

in real data sets [41, 201, 206].

AMK resistance data set

The genomic data for the four amikacin resistant strains was obtained from Suzuki

et al [201]. Raw sequencing data was available at the DDBJ Sequence Read Archive

under accession number PRJDB2980. Only the Illumina reads were used. The data

of the four Amikacin resistant lines was mapped to the ancestral E. coli K-12

MDS42 strain using bowtie2 [19]. SNPs and small INDELs were called using free-

bayes [222] while large INDELs were called using Pindel [20]. This resulted in a

total of 59 mutations throughout the four strains. These mutations were mapped

to genes as follows: mutations within the coding region of a gene were mapped

to the encoded gene, mutations in intergenic regions were mapped to the closest
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gene if there was a gene within 250 bp of the intergenic region. This resulted in

51 mutated genes. Of these 51 mutated genes, 41 could be mapped to the E. coli

K-12 MDS42 reference genome. Normalized expression data for each of the four

Amikacin resistant strains and the ancestral line was obtained from GEO under

accession code GSE59408. Differentially expressed genes were defined as genes

having an absolute log2 fold expression change value higher than 2. This cut off

value was selected as no repeated measurements were available and thus no p-

values could be calculated. Differential expression values were obtained between

the Amikacin resistant strains and an ancestral line.

Coexisting ecotypes data set

Genomic data was obtained from Plucain et al [212]. Mutations present in both

clones of the same ecotype, but not in clones of the other ecotype, were selected as

candidate driver mutations that could explain the origin of speciation into the ob-

served coexisting ecotypes. It was hereby assumed that potential driver mutations

are likely to be ecotype-specific, as mutations common to all clones most likely

originated before divergence of the ecotypes. This resulted in the selection of 87

candidate driver mutations, which could be mapped to 86 potential driver genes.

The mapping of mutations to genes was taken from Plucain et al. [212]. Of those

86 genes, 62 genes could be mapped to the E. coli B REL606 genome-wide inter-

action network which were used as input. As expression phenotype we used the

degree to which gene expression differed between respectively the L and S eco-

type as determined by microarray experiments performed by Le Gac et al. [223]

(publicly available from GEO under accession number GSE30639). Microarrays

of 6 biological replicates of the L ecotype, 6 biological replicates of the S ecotype

and 5 biological replicates of the ancestor were available. Using PCA analysis one

microarray of the S ecotype and one microarray of the ancestor were found to

be outliers and were discarded from subsequent analyses (Supplementary Figure

S5.1). The LIMMA package [224] was used to identify the degree of differential

expression between the ecotypes. As for this data set repeated measurements for

the expression data were available, significantly differentially expressed genes are

defined as genes having a p-value of maximum 0.05 and an absolute value of log2

fold change of minimal 0.75. The cut off on the log2 fold change was taken lower

than in the other data sets as here we impose an additional cut off on the p-value.

5.2.3.8 Genome-wide interaction networks

In this paper a genome-wide interaction network refers to a comprehensive rep-

resentation of current interactomics knowledge on the organism of interest. Net-

works are represented as graphs G(N,E) in which nodes N correspond to genetic

entities (genes, proteins or sRNAs) and edges E to the interactions between these

entities. Every edge is assigned an edge type, indicating the molecular layer to
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which the interaction represented by the edge belongs (e.g. protein-DNA, protein-

protein, metabolic or signaling interactions). Depending on its type and provided

the proper information is available, an edge will be added as a single directed inter-

action (e.g. protein-DNA interactions, sRNA-DNA, kinase-target, etc.) or two di-

rected interactions (protein-protein interactions, undirected metabolic interactions,

etc.).

Table 5.1: Data sets used to compile the Escherichia coli genome-wide interaction net-

works.

interaction type E. coli K12 MG1655 E. coli B REL606 E. coli K12 MDS42a

Protein-protein 2737 27282 2534

Protein-DNA 4492 3415 3890

Sigma 727 1225 592

Metabolic 2798 5146 2530

(de)Phosphorylation 44 38 44

Srna 213 2 171

Size (edges) 11011 12554 9761

Size (nodes) 2732 2643 2422

a The E. coli K12 MDS42 network was derived from the E. coli K12 MG1655 network by deleting all

edges connecting genes that do not exist in E. coli K12 MDS42.

An overview of the genome-wide interaction networks used in this study for

the three different E. coli strains: E. coli K-12 MDS42, E. coli B REL606 and E.

coli K-12 MG1655 is given in Table 5.1. To compile these networks metabolic

interactions and (de)phosphorylation interactions were derived from KEGG [225]

version 72.1, protein-DNA, sigma interactions and sRNA-DNA interactions from

RegulonDB version 8.6 [90] and high-confidence physical protein-protein interac-

tions from String [226] version 10. Interactions involving RpoD, the primary sigma

factor, were removed from these interaction networks as RpoD regulates over half

of the genes in the interaction network.
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5.2.4 Results

5.2.4.1 Method overview

A network-based eQTL method was devised to simultaneously prioritize driver

genes and unveil molecular pathways involved in the adaptive phenotype. As in-

put the method requires a genome-wide interaction network of the organism of

interest and coupled genotype-expression phenotype (eQTL) data for a set of in-

dependently evolved lines (strains/populations) with similar phenotypes (Figure

5.1). The expression phenotype is defined as the level of differential expression of

every gene between an evolved line and a reference. To prioritize driver genes, all

genes from the end points carrying allelic variants (hereafter referred to as mutated

genes) will be assessed for their ability to explain the adaptive expression pheno-

type. Hereto the method infers from the genome-wide interaction network the sub-

network that best connects the mutated genes in each of the evolved lines to the set

of significantly differentially expressed genes in the corresponding evolved lines,

assuming that 1) the expression phenotype is at least partially a consequence of the

driver mutations and 2) the adaptive molecular pathways, but not necessarily the

driver genes, are to some extent similar, resulting in parallelism at the molecular

pathway level.

An overview of the proposed network-based eQTL method is given in Figure

5.1. The method consists of three steps (see 5.2.3). In a first step (Figure 5.1 A)

the genome-wide interaction network is for each evolved line separately converted

into a condition-specific probabilistic network using the expression data of the cor-

responding evolved line. These condition-specific probabilistic networks are sub-

sequently, in a second step (Figure 5.1 B), used to find all paths between mutated

and significantly differentially expressed genes for each evolved line separately. A

path is here defined as a sequence of consecutive edges in the genome-wide inter-

action network. These paths represent possible molecular mechanisms by which

mutations could induce the observed pattern of differential expression. In the third

step (Figure 5.1 C) all these paths are analyzed together to find the optimal sub-

network, which aims at selecting the subnetwork of the genome-wide interaction

network that captures the molecular mechanisms that drive the adaptive phenotype

common to all evolved lines. The optimization enforces the selected subnetwork

to have two properties. First, it selects the subnetwork that contains the most likely

paths that explain the connection between the mutated and differential expressed

genes. Second, it enforces the network to contain parallel molecular pathways be-

tween the different evolved lines. The optimal subnetwork thus contains the molec-

ular mechanisms likely to drive adaptation. Possible driver mutations which occur

in the optimal subnetwork are prioritized based on the strength of their connectiv-

ity with downstream effects and their involvement in parallel molecular pathways

(see 5.2.3).
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Figure 5.1: Overview of the network-based eQTL method. The input of the method consists of re-

spectively coupled genotype and expression phenotype data for a set of evolved lines with the same

phenotype and a genome-wide interaction network. Red and green indicate respectively over- and un-

der expression with respect to a reference. Genes that are considered to be significantly differentially

expressed (called diffex genes in the legend of the figure) according to a test statistic, are indicated by

a specific symbol as displayed on the figure legend. Mutated driver and passenger genes are indicated

with two different symbols as displayed on the legend. The numbering of each mutated gene indicates

the evolved line in which this mutated gene occurred. A. Construction of the end point specific prob-

abilistic subnetworks: for each evolved line the genome-wide interaction network is converted into a

probabilistic subnetwork by assigning to each edge in the genome-wide interaction network a weight

that is interpreted as the probability that the edge has an influence on the assessed phenotype. These

weights depend on the level of differential expression of the terminal node of the edge. Genes that are

more differentially expressed (darker red/green) will give rise to higher weights on the edges (indicated

by the width of the edge). B. Pathfinding in each of the probabilistic subnetworks. The mutated and

significantly differentially expressed genes occurring in each of the evolved lines are mapped to the cor-

responding end point specific probabilistic subnetworks. For each significantly differentially expressed

gene all possible paths from this gene to all mutated genes in the same end point are searched for (paths

are shown as black curves). C. Optimal subnetwork selection. Optimization is performed by integrating

the paths found in all end point specific probabilistic networks according to a predefined cost function

that positively scores the addition of paths connecting pairs of mutated genes-differentially expressed

genes observed in any of the end points, but that penalizes the addition of edges. As a result, paths that

are strongly connected to the expression phenotype and that overlap with each other are selected as

the optimal subnetwork.

5.2.4.2 Performance of network-based eQTL method on a semi-synthetic

data set

To assess the performance of prioritizing causal mutations by the network-based

eQTL method, a semi-synthetic benchmark data set was constructed based on a

previously published knock-out expression profiling experiment. This study as-

sesses differential expression profiles between 20 knock-out strains with altered

fitness in acidic conditions and the wild type E. coli K12 strain. To mimic the
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eQTL set up, each of the knocked out genes was considered a ”driver gene” and the

presence of passenger genes was simulated by adding a number of randomly se-

lected genes to each knock-out data set (see 5.2.3). Differential expression profiles

between each knock-out strain and the wild type were derived from the original

publication data (see 5.2.3). The performance of the network-based eQTL method

was measured in terms of correctly distinguishing driver from passenger genes.

Figure 5.2: Performance assessment of the network-based eQTL method on the semi-synthetic data

set based on data from 100 randomizations. Data of all selected mutated genes at specific ranks are

presented as Tukey boxplots. Note that multiple mutated genes can have identical ranks as ranks are

assigned based on the maximal edge cost for which a mutation is present within the subnetwork and

thus multiple mutated genes can have identical maximal edge costs for which they are present within the

subnetwork. The upper plot shows the positive predictive value (PPV, fraction of the selected mutations

which are true positives, i.e. driver mutations) in terms of the ranks of the selected mutations. It can be

seen that low ranks have higher PPV values. Note that at rank 1 the variance is high. This is because

inferred subnetworks for rank 1 are small, and therefore more prone to random effects. i.e. the selection

of one additional false positive in a particular random set largely affects the PPV. Solutions are clearly

less variable from rank 2 onwards. The lower plot shows the sensitivity (fraction of all possible true

positives selected) in terms of the ranks of the selected mutations. Sensitivity increases with rank,

implying a trade-off between PPV and sensitivity.

The main parameter of the method is the edge cost, i.e. the cost for selecting an

edge in the inferred subnetwork (see 5.2.3). As a lower amount of mutated genes

will be selected using a higher edge cost, mutated genes can be prioritized by the

maximum edge cost for which they are selected. This allows assigning a rank for

every selected mutated gene based on the maximum edge cost. This prioritization

is motivated by the fact that mutations which are selected at high edge costs need
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to be better connected to the expression and/or have a higher degree of parallelism

with other mutations than mutations which are selected at lower edge costs. This

reasoning was tested by analyzing the semi-synthetic data set for a wide range

of edge costs (see 5.2.3 for specific parameter settings). As can be seen in Fig-

ure 5.2, the positive predictive value (PPV) is high for low ranks and decreases

for higher ranks, meaning mutated genes having low ranks are likely to be driver

genes. Furthermore the sensitivity clearly increases with increasing rank, leading

to a trade-off between selecting few passenger mutations and selecting many driver

mutations. Even for high ranks, results are still better than a random selection of

genes as this would correspond to a PPV of 0.2 (on average for every driver gene,

4 passenger genes were added).

5.2.4.3 Unveiling the molecular mechanisms underlying Amikacin resistance

We applied the eQTL analysis on the eQTL data set from the study of Suzuki et

al. [201]. In this study four independent E. coli MDS 42 lines were grown in the

presence of the aminoglycoside antibiotic until all four strains attained increased

Amikacin resistance compared to the parental strains. The network-based eQTL

method was applied using the genome-wide interaction network of E. coli MDS 42

and the data of the 4 parallel evolved strains (see 5.2.3). Out of 41 mutated genes,

we prioritized 12 as potential drivers based on their association with the expression

data (Table 5.2). The inferred adaptive pathways containing those prioritized genes

are visualized in Figure 5.3.
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Figure 5.3: Visualization of subnetworks inferred from the Amikacin resistance data set. The visual-

ization was created by merging separate inferred subnetworks resulting from a parameter sweep of the

edge cost from 0.25 to 1.75. The width of an edge displays the stringency at with the edge was selected

(the wider the edge the more stringent the condition. More Stringent conditions correspond to higher

edge costs). Node borders are subdivided into four parts in order to visualize in which line a mutation

occurred (evolved lines compared to ancestral line). The inner color of the nodes is also subdivided

into four parts where each part represents the degree of differential expression in the corresponding

line. Overexpression means that the gene was expressed more in the evolved strain as compared to the

ancestral strain. The colors of the edges represent the edge types.

One very plausible driver mutation is fusA, encoding the elongation factor G

which is consistently carrying a missense mutation in all 4 strains (mutational

consistency at gene level). Mutations in the fusA ortholog have previously been

found to confer aminoglycoside resistance in Staphylococcus aureus [227]. Prior-
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itized genes that are also plausible candidate drivers are those that are consistently

mutated at pathway level. Examples of those are the highly prioritized genes cyoB,

nuoG, nuoN and nuoC, affected in lines 2 and/or 4 by nonsense or frameshift muta-

tions. These genes are members of the electron transport chain which are known to

down regulate the protein complexes to which they belong (NADH dehydrogenase

or terminal oxidase, see Supplementary Figure S5.2) implying an involvement of

the electron transport chain in the adaptive phenotype. cpxA is another likely driver

as it shows mutational consistency at gene level in two lines (lines 1 and 3). cpxA

is a sensor kinase that is known to regulate the cpx response in conjunction with

the transcription factor cpxR. The mutations in cpxA seem to result in lines 1 and

3 in an activation of the cpx response with the targets of cpxR being overexpressed

compared to the ancestral strain. This increased cpx response has previously been

found to have an effect on the electron transfer chain [228]. These results are con-

sistent with what is described in the original paper of Suzuki et al. [201] and are

in line with the knowledge that Amikacin uptake is dependent on proton-motive

force [229]. Our results confirm these previous findings although the different lines

seem to be triggered through two different molecular systems, either by directly

affecting the electron transfer chain or through mutations in cpxA. In addition to

genes associated with the proton motive force, the method prioritizes additional

genes, such as rseA explain a large part of the expression phenotype and therefore

receive a high rank. However, as a mutation in the anti-sigma factor which inhibits

rpoE leads to large effects on the expression phenotype and other independently

evolved lines do not show effects in molecular pathways associated with rseA or

rpoE, we would need more data to completely rule out the rseA mutation in line 4

being a false positive.

5.2.4.4 Unveiling the molecular mechanisms of coexisting ecotypes in glucose-

limited minimal medium

A second test case consisted of transcriptomics data and genomics data, described

respectively by Plucain et al. [212] and Le Gac et al. [223]. These data sets pro-

vide the molecular characterization at generation 6500 of Ara-2, one of the 12

populations that were evolved in the E. coli long term evolution experiment in glu-

cose minimal medium [36, 143]. By this time the ancestral line had diverged into

two distinct, stable ecotypes [223]. Associated studies by Rozen et al. [230–232]

showed that the L ecotype grows faster on glucose, but secretes byproducts that

S can exploit, implying a cross-feeding mechanism between the L and S ecotypes

that can explain their stable coexistence. Plucain et al. experimentally identified a

minimal set of mutations. Two S-specific mutations in respectively arcA and gntR

and one in spoT, shared by both the L and S strains that when reintroduced together

in the ancestral strain were sufficient to mimic the evolved S ecotype in invading

and stably coexisting with the L ecotype. However, the fitness level of this recon-

structed S ecotype was lower than the fitness level of the evolved S ecotype [212],
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suggesting that additional mutations play a role in establishing the phenotype of

the evolved S ecotype. Both the L and S ecotypes are hyper mutators and have ac-

cumulated a large number of mutations. Such setting complicates the identification

of the correct driver genes. By applying the network-based eQTL method on this

coupled genomics-transcriptomics (eQTL) data [212,223] (see 5.2.3), we tested to

what extent we could successfully prioritize the known important driver genes in a

data-driven way and could identify missing drivers explaining the adaptive pheno-

type. The network-based eQTL method resulted in prioritizing 11 mutated genes

out of 62 identified mutated genes (Table 5.2, Figure 5.4).

Figure 5.4: Visualization of subnetworks inferred from the coexisting ecotypes data set. The visu-

alization was created by merging separately inferred subnetworks resulting from a parameter sweep

of the edge cost from 0.025 to 0.975. The width of the edges represents the maximal mutation cost for

which these edges were selected. The width of the edge displays the stringency at with the edge was

selected (the wider the edge the more stringent the condition. More Stringent conditions correspond

to higher edge costs). Node borders are subdivided into two parts in order to visualize in which strain

a mutation occurred. The inner color of the nodes represents the degree of differential expression (L

ecotype compared to S ecotype thus overexpression means that there was more expression in the L

ecotype). The colors of the edges represent the edge types.
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Given the available data, we could only focus on identifying drivers that orig-

inated after the divergence between both ecotypes. Using this input data we were

able to successfully prioritize the driver genes originally identified by Plucain

et al., which are arcA and gntR, but not spoT as this mutation was present be-

fore the divergence of the two ecotypes. The selected subnetwork (Figure 5.4)

shows that, consistent with the prioritized mutations in arcA and gntR, the TCA

cycle and the Entner-Doudoroff pathway are up-regulated in S as compared to

L. (Supplementary Figure S5.3 and Supplementary Figure S5.4). Figure 5.4

shows how the S-specific mutation in gntR is responsible for the observed up reg-

ulation of the Entner-Doudoroff pathway (gntT, gntK, edd, eda). As gntT is a glu-

conate transmembrane transporter protein, the inferred subnetwork provides an

explanation of one of the previously described mechanisms of the cross-feeding

phenotype [231] in which the gluconate released by the L ecotype is metabo-

lized by the S ecotype. The S-specific mutation in the arcA gene relates to the

S-specific up regulation of the TCA cycle (gltA, fumC, sdhC, sdhD, sdhA, sdhB).

ArcA was previously found to be repetitively mutated in strains of fast switching

phenotypes [233], meaning that the S ecotype could have a fast switching pheno-

type.Besides the already previously prioritized adaptive alleles, the method could

prioritize several additional mutated genes. acs, carrying an S-specific mutation in

a cis binding site element known to promote acs expression [234] was prioritized.

Consistently, the network shows how acs is highly up-regulated in the S-strain as

compared to the L strain. acs is an extracellular acetate scavenger involved in the

conversion of acetate to acetyl coenzyme which implies that, in addition to glu-

conate, acetate might also be (partly) responsible for the cross feeding phenotype

between L and S. Acetate consumption has previously been linked to the origin

of cross-feeding phenotypes in experimental evolution [150,206]. Interestingly an

intergenic mutation associated to dnaK in the S ecotype appears highly priori-

tized (Table 5.2). Overexpression of the gene dnaK, a heat shock chaperone, has

previously been found to mitigate the effect of deleterious mutations in hyper mu-

tators [235]. Although in our network this mutation does not lead to significantly

higher expression levels of dnaK, the mutation could indirectly interfere with e.g.

the stability of the mRNA and as such affect protein expression [236], hereby pro-

tecting both hyper mutator strains. For the S ecotype the molecular mechanism

involved in triggering the coexistence phenotype are clear, the mechanism of the

L ecotype in the coexistence phenotype is, given the available data, less obvious.

However, the uxuA and uxuB genes are more pronouncedly expressed in the L

strain than in the S strain. Both genes are involved in catalyzing the reaction of D-

fructuronate to 2-dehydro-3-deoxy-D-gluconate, which could play an important

role in gluconate cross-feeding.
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Table 5.2: Selected mutated genes prioritized as driver genes.

AMK resistance Coexisting ecotypes

Gene

name

ranka Line type Gene

name

ranka Line type

CyoB 1 2,4 frameshift gntR 1 S missense

CpxA 2 1,3 missense arcA 1 S missense

NuoG 3 2 nonsense evgA 1 S missense

rseA 3 4 nonsense dnaK 2 S intergenic

nuoN 3 4 In-frame del acs 3 S intergenic

nuoC 4 4 missense flgG 4 S synonymous

fusA 5 1,2,3,4 missense fbaB 5 L missense

phoQ 6 1 missense cpsG 5 L Large del

arcB 7 3 Frameshift del fruK 6 S missense

gapA 8 2 missense rpiR 7 L intergenic

ClsA 9 1 missense glk 7 S intergenic

rho 10 1 missense

5.2.5 Discussion

Here we present a network-based eQTL method that exploits parallelism between

independently evolved lines to search for mutational consistency at the molecu-

lar pathway level. Because the method searches for parallel molecular pathways

between the different evolved lines, these identified driver mutations are likely to

be adaptive. In the context of this paper this adaptive effect is different from di-

rectly affecting fitness as some of the adaptive mutations will elicit their effect on

the phenotype only in the presence of additional adaptive mutations (epistasis).

Key to the method is the use of the interaction network to guide the search. The

method belongs to the class of subnetwork selection methods that have been used

to interpret differential expression data on networks [110,237,238], for gene prior-

itization [239] or for linking KO genes or genes from a genetic screen to an expres-

sion phenotype [118, 240], but that have not yet been used to solve the combined

problem of searching for molecular pathway consistency in independently evolved

clones and driver gene identification. Several recent studies in cancer have shown

how searching for mutational consistency at pathway level between independently

evolved samples can aid in prioritizing drivers. These methods use genomic in-

formation as input and identify driver genes as genes carrying somatic mutations

that are frequently mutated in different tumor samples and/or that are in each others

neighborhood in a human genome-wide interaction network [123,241–243] and/or

that display patterns of mutual exclusivity over different tumor samples [244,245].

All of the abovementioned techniques rely mainly on genomic information and

are applicable only when large numbers of independent samples are available (in a

cancer setting often at least 1000 tumor samples are available [55]. This in contrast
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to evolution experiments in micro-organisms which contain too few independently

evolved samples (clones) to directly apply the abovementioned data-driven meth-

ods that mainly rely on genotype data. Therefore, we combine molecular profiling

data (expression data) with genomic data to increase the signal of mutational con-

sistency at the molecular pathway level. This compensates partly for the number of

evolved samples usually available in studies on microbial clonal systems. Because

of the eQTL setting drivers that affect expression are more likely to be identified.

Based on the few eQTL studies that have been performed it appears that at least in

microbes adaptive mutations often result in a sometimes marginal but significant

expression response compared to their (immediate) ancestor [246, 247]. Further-

more, In contrast to the statistical and diffusion based methods used in cancer re-

search, we have developed a method that can more explicitly exploit prior informa-

tion to drive the search for drivers. To that end our method relies on a probabilistic

subnetwork selection technique that in a first pathfinding step uses an explicit path

definition to find paths in a weighted (by expression data) and annotated proba-

bilistic subnetwork. This allows integrating prior and/or condition specific data on

the biological process of interest to steer the search towards specific parts of the

genome-wide interaction network by exploiting the directionality of the network

and the properties of the edges to define biologically relevant paths and by assign-

ing prior weights to the edges of the network that are likely to be active under the

assessed conditions. The optimization function actively searches for overlap in the

selected subnetworks allowing to detect mutational consistency at molecular path-

way level, despite even a low number of independently evolved lines. The required

overlap between paths can be tuned using the edge cost parameter. Driver muta-

tions exhibit a high degree of mutational consistency at the molecular pathway

level. Therefore, using a high edge cost, which forces the selection of subnetworks

with a large overlap between paths over the different evolved lines, leads to fewer

false positives amongst the identified driver mutations. On the semi-synthetic data

set it was illustrated how a sweep on the edge cost parameter can be used to suc-

cessfully prioritize the most likely candidate drivers. Using two biological data

sets, the potential of applying the method on eQTL data for studying the molec-

ular mechanisms underlying adaptive traits was illustrated. From a large number

of potential mutations the method was able to select previously identified driver

mutations. In addition to this, potential driver mutations could be identified and

verified with literature. The potential of the method to distinguish passengers from

driver mutations was also shown on mutator phenotypes, where a large amount of

passenger mutations are present but where the method was able to rank the previ-

ously identified driver genes as highly likely to be driver genes. It is important to

note that even if few mutations are available, it is often not clear which of those

are the drivers (as is illustrated in the case of the Amikacin resistance) and which

are potentiating mutations. Microbial systems are not guaranteed to display mu-

tational consistency at gene level, solely relying on mutational consistency of the

same mutation in independent lines to identify drivers might fail. Because of this,

the experimental identification of drivers is tedious as it requires reintroducing all

possible individual driver mutations and, in case of complex phenotypes, their pos-
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sible combinations in the ancestral strain [150]. As illustrated with the biological

test cases, the combination of an eQTL setting with the dedicated network-based

approach allows to drastically reduce the list of possible driver genes. Using a ded-

icated network-based analysis to an eQTL data sets is key to better understanding

basic concepts of microbial evolution. Experimental evolution has become an im-

portant experiment in wet-lab practice to study interesting phenotypes, e.g. the role

of epistasis [158, 159, 248, 249] or to understand the degree to which parallelism

occurs [41, 135, 158, 206]. Interpreting identified drivers in terms of the molecu-

lar interaction network can potentially contribute to a better understanding of why

epistasis or parallelism occurs beyond the level of mutational consistency. An il-

lustration of such parallelism was shown in the analysis of the Amikacin dataset,

where based on only 4 independently evolved lines, the network method was able

to identify two different mechanisms by which strains alter their proton motive

force to lower Amikacin uptake. Each of these mechanisms was identified by ex-

ploiting parallelism at molecular pathway level. Interestingly both mechanisms,

one involving direct mutations in the electron transport chain and one involving

mutations in cpxA, appeared mutually exclusive i.e. strains had either mutations

in their electron transfer chain or in cpxA but never simultaneously in both. This

shows that the network-based eQTL method is not only able to successfully exploit

parallelism, but also allows identifying convergent ways of evolution that lead to

the same adaptive phenotype. In this study we presented a network based analysis

method that exploits public interactomics knowledge to analyze eQTL data sets.

The results of this method provide a simultaneous prioritization of driver muta-

tions and an understanding of the adaptive phenotype at the molecular pathway

level. This method exploits the potential of coupled genotype-expression data sets

to study experimental evolution and bacterial trait selection in bacteria.
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Supplementary

5.2.7 Supplementary Figures

Figure S5.1: PCA analysis of transcriptomics data of the coexisting ecotypes data set as obtained

from Le Gac et al. [223]. Genes are treated as variables, strains as observations. Dots of identical

shape and color represent replicate cultures. Circular/red dots represent ancestral strains, square/-

green dots represent L ecotypes and diamond shaped/blue dots S ecotypes. It is expected that dots of

equal shape and color will group together because ideally they should exhibit identical expression lev-

els for each gene. A) PCA plot of the observations on the first two PCs. Except for two outliers (one

ancestral and one S ecotype) observations group together according to their label. B) PCA plot of

the observations on the first two PCs after removing the outliers from the data set. As can be seen,

the observations group together far better according to their label when removing the outliers. To re-

duce noise on the part of the transcriptomics data, the two microarrays corresponding to the outlier

observations were discarded.
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Figure S5.2: Mapping of the inferred subnetwork from all four lines of the Amikacin resistance

data set to the oxidative phosphorylation from KEGG pathways. Light green boxes correspond to

genes/gene products present in E. coli MDS 42.Green boxes correspond to genes/gene products present

in the inferred subnetwork which are down regulated as compared to the ancestral strain. It can be seen

that NADH dehydrogenase and cytochrome oxidase complexes are down regulated in the AMK resistant

strains.

Figure S5.3: Mapping of the inferred subnetwork from the coexisting ecotypes data set to the TCA

cycle from KEGG pathways. Light green boxes correspond to genes/gene products present in E. coli

B REL606. Green boxes correspond to genes/gene products present in the inferred subnetwork and

up-regulated in the S ecotype as compared to the L ecotype. It can be seen that multiple components of

the TCA cycle are up-regulated in the S ecotype as compared to the L ecotype.
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Figure S5.4: Mapping of the inferred subnetwork from the coexisting ecotypes data set to the pen-

tose phosphate pathway from KEGG pathways. Light green boxes correspond to genes/gene products

present in E. coli B REL606. Green boxes correspond to genes/gene products present in the inferred

subnetwork and up-regulated in the S ecotype as compared to the L ecotype. Red boxes correspond to

genes/gene products present in the inferred subnetwork and overexpressed in the L ecotype as com-

pared the S ecotype. Blue boxes correspond to genes/gene products present in the inferred subnetwork

and mutated in the L ecotype. It can be seen that multiple components of the Entner-Doudoroff pathway

are up-regulated in the S ecotype as compared to the L ecotype implying S-specific uptake of gluconate.



6
Ranking of driver genes and pathways

from genomics data

6.1 Introduction

This chapter describes IAMBEE, a network-based method which was specifically

designed for use with evolution experiments in which genomics data is available

before and after an adaptive sweep. In such an experimental set-up, data on the

increase in frequency of every mutation during the adaptive sweep is available. By

combining this data with information about the functional effects of each mutation

and correcting for possible samples which exhibit a mutation rate which is much

higher than the other samples, IAMBEE can prioritize molecular pathways which

harbor adaptive mutations. It is shown that IAMBEE can lead to additional insights

in the acquisition of a specific trait. For example, in this chapter mutual exclusiv-

ity of mutations on the level of molecular pathways was found in an evolution

experiment in which E. coli was exposed to ethanol.

TS and BW conceptualized the study, analyzed and interpreted the results and

wrote the manuscript. TS designed and performed the biological experiments, BW

designed IAMBEE and used it to analyze the sequence data. CB helped in per-

forming the biological experiments. NV, JM and KM conceptualized the study,

designed the experiments, discussed the results and edited the manuscript.
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6.2 Paper

Network-Based Identification of Adaptive Pathways
in Evolved Ethanol-Tolerant Bacterial Populations
Swings, T.†, Weytjens, B.†, Schalck, T., Bonte, C., Verstraeten, N., Michiels, J.§ and Marchal, K.§

(2017). Network-based identification of adaptive pathways in evolved ethanol-tolerant bacterial popu-
lations. Molecular Biology and Evolution, msx228.

† these authors contributed equally to this paper
§ these authors contributed equally to this paper

6.2.1 Abstract

Efficient production of ethanol for use as a renewable fuel requires organisms with

a high level of ethanol tolerance. However, this trait is complex and increased tol-

erance therefore requires mutations in multiple genes and pathways. Here, we use

experimental evolution for a system-level analysis of adaptation of Escherichia

coli to high ethanol stress. As adaptation to extreme stress often results in complex

mutational datasets consisting of both causal and non-causal passenger mutations,

identifying the true adaptive mutations in these settings is not trivial. Therefore, we

developed a novel method named IAMBEE (Identification of Adaptive Mutations

in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of

the acquisition of mutations during evolution in combination with the functional

implications of each mutation at the protein level. These data are mapped to a

genome-wide interaction network to search for adaptive mutations at the level

of pathways. The 16 evolved populations in our dataset together harbored 2286

mutated genes with 4470 unique mutations. Analysis by IAMBEE significantly

reduced this number and resulted in identification of 90 mutated genes and 345

unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only

enabled the identification of previously known pathways involved in ethanol toler-

ance, but also identified novel systems such as the AcrAB-TolC efflux pump and

fatty acids biosynthesis and even allowed to gain insight into the temporal profile

of adaptation to ethanol stress. Moreover, this method offers a solid framework for

identifying the molecular underpinnings of other complex traits as well.

6.2.2 Introduction

Experimental evolution offers great potential to gain insights into the molecular

mechanisms that contribute to the acquisition of complex traits [149, 205, 250].

Previously, experimental evolution has been used not only to study the mecha-

nisms underlying clinically [251–253] or industrially relevant phenotypes [254],
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but also to improve key industrial traits for the production of advanced evolution-

ary engineered strains [254]. Laboratory evolution experiments usually start from

a single clone that is cultivated for prolonged periods of time in predefined con-

ditions. During this period of time, natural selection favors mutations that confer

a benefit in the chosen condition leading to improved phenotypes [40]. Fitness is

tracked over time and clones displaying increased fitness are genotyped to identify

the underlying mutations [255]. While some phenotypes are established by only

one or just a few mutations, complex traits often lead to complex mutational pro-

files, severely complicating identification of the causal adaptive mutations [256].

In this study, we used experimental evolution to study high ethanol tolerance

in the bacterium Escherichia coli. Usually, microbial ethanol production capacity

is severely limited by the toxic effect of ethanol itself. Therefore, higher ethanol

tolerance and increased ethanol production are inherently linked [257, 258]. Even

though understanding and improving this trait is vital for strain engineering, it

has been challenging to fully elucidate the underlying mechanisms. Previous stud-

ies have identified single genes [259,260] as well as epistatically interacting genes

[261] involved in higher ethanol tolerance. However, tolerance to ethanol is clearly

a complex trait established by the interaction of multiple genes and pathways

[259–263] and a broad understanding of ethanol tolerance in E. coli is currently

lacking. Moreover, in a previous study we found that hypermutation drives evolu-

tion under severe stress, such as ethanol stress, to enable adaptation of at least some

individuals to avoid extinction [44]. An increased mutation rate was found in all

high ethanol tolerant populations and resulted in a higher ratio of passenger versus

adaptive mutations, leading to an extremely complex mutational profile. Conse-

quently, this increased complexity impedes the ability to statistically distinguish

between true adaptive mutations and passenger mutations.

In most studies, this distinction between adaptive and passenger mutations is

based on identifying mutations or mutated genes that recurrently emerge in inde-

pendent evolutionary lines [139, 264–268]. This narrow definition of parallelism

assumes that only frequently mutated genes contribute to an adaptive phenotype.

However, in populations that evolve independently, there is no guarantee that ex-

actly the same mutation or even the same mutated gene is responsible for the ob-

served adaptive phenotype. Affecting the same pathway through different and not

necessarily frequently mutated genes might equally well induce the same adap-

tive phenotype [41, 135, 136]. Rather than identifying recurrent mutations, one

can search for consistently mutated molecular pathways, assuming that adaptive

mutations will hit the same adaptive pathways in independently evolved popula-

tions, while passenger mutations will be spread randomly over the genome. Ap-

proaches that search for consistent changes in molecular pathways are typically

network-based and have been applied successfully, mainly in the context of cancer

genomics [8, 124, 269, 270] but not yet for the mapping of genotypes to complex

traits in clonal micro-organisms such as bacteria.
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To cope with the specificities of clonal evolution experiments that aim to study

complex traits, we developed a novel network-based method, IAMBEE. IAMBEE

exploits the information gained from the trajectory of individual mutations along

the evolution experiment to reduce the complexity of identifying adaptive path-

ways/genes. Our experimental set-up combined with this unique network-based

approach resulted in the identification of several adaptive pathways that conferred

ethanol resistance in E. coli. The role of the 30S ribosomal subunit pathway [271,

272] as well as the osmotic stress response pathway (ompR/envZ) [273, 274] were

confirmed. In addition, newly predicted molecular mechanisms such as the mul-

tidrug efflux pump AcrAB-TolC and the fatty acid biosynthesis pathway were ex-

perimentally validated. These results demonstrate the value of IAMBEE to analyze

complex mutational datasets including even datasets resulting from a hypermuta-

tor phenotype, to obtain a comprehensive overview of the pathways and its specific

mutated components involved in the establishment of the trait.

6.2.3 Results

6.2.4 Ethanol tolerant populations display a hypermutator phe-

notype

We set up an evolution experiment in which 16 independent E. coli populations

were experimentally evolved under increasing ethanol concentrations (Figure 6.1).

Changes in ethanol tolerance due to accumulation of beneficial mutations were

tracked in time to obtain a fitness trajectory for each population (Supplementary

Figure S6.1). These trajectories show remarkable selective sweeps between 5%

and 6% ethanol tolerance (further referred to as the initial selective sweep) and

from 6% to 6.5% ethanol tolerance (further referred to as the second selective

sweep). Populations were sampled right before and right after each increase in

ethanol tolerance and were subjected to pooled sequencing. Primary analysis of the

data showed that each of the ethanol tolerant populations evolved a hypermutation

phenotype. In depth study of this observation led to the conclusion that near-lethal

conditions require rapid adaptation of at least some individuals to avoid extinc-

tion of the population [44]. Hypermutation considerably facilitates rapid adapta-

tion by increasing the mutational supply rate thereby increasing the probability to

acquire a beneficial mutation [44, 249, 275]. While hypermutation enables adapta-

tion, it also leads to complex mutational profiles with multiple mutations in random

genes [140], further impeding identification of causal mutations. In our dataset of

16 evolved populations a total of 2286 mutated genes, containing 4470 unique

mutations were detected. To identify causal mutation despite this complexity, we

developed a method that overcomes the limitations of only identifying recurrent

mutations.
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Figure 6.1: Set-up of the experiment, data acquisition and workflow of adaptive pathway identifica-

tion. A first input consists of all mutations observed in independently evolved populations before and

after a selective sweep. As a second input, an interaction network is used which is topology-weighted in

order to account for hubs. This network is constructed using publicly available datasets. Subsequently,

IAMBEE maps all mutated genes (input 1) to this topology-weighted interaction network (input 2) and

calculates a relevance score for each mutation (green genes have higher and red genes lower rele-

vance scores). The details on the calculation of these relevance scores are shown in Figure 6.2. The

relevance scores of the genes (nodes in the network) as well as the weights of the edges (interactions

between genes), which are derived from the topology-weighting, are used to weight the paths (shown

as black lines) between mutated genes from different populations found in the pathfinding step. Thick

black lines represent paths that contain genes that have a high probability to be involved in the phe-

notype while thin black lines depict paths with low probability. Finally, a subnetwork inference step

takes place which selects a subset of these paths in such a way that as many as possible paths connect-

ing genes with large relevance scores are selected, but which is forced to select a sparse subnetwork

as it minimizes the number of edges included. The result is that overlapping paths tend to be chosen

and this leads to the selection of recurrently mutated connected subnetwork components. As a final

output IAMBEE shows the inferred subnetwork containing highly prioritized network components that

represent the identified adaptive pathways underlying the observed phenotype.
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6.2.5 Exploiting parallel evolution to identify adaptive path-

ways

To distinguish between adaptive and passenger mutations and to identify pathways

underlying complex traits we have developed IAMBEE, which integrates prior in-

formation on gene interactions (i.e. an interaction network) with the specificities

of the experimental design. Key to the concept of IAMBEE is the use of multiple

independently evolved populations to search for recurrently mutated molecular

pathways. This search is driven by the interaction network and based on a decision

theoretic subnetwork inference problem [6, 7]. However, given the high mutation

rate and the relatively low number of indpedently evolved populations, additional

information in the form of functional impact scores of the individual mutations

is needed to drive the analysis. We hereby assume a priori that not all mutations

are equally likely to be involved in the adaptive phenotype. Mutations that in-

crease in frequency during a selective sweep and/or that have a functional impact

on the protein in which they occur, are more likely to be involved in the pheno-

type. Figure 6.1 gives a conceptual overview of IAMBEE. The input consists of

called mutations from multiple, independently evolved populations and a genome-

wide interaction network of the organism of interest. After topology-weighting the

interaction network to downweight the effect of hubs on the final solution (see

Materials and Methods), IAMBEE proceeds in three steps (Figure 6.1): 1) the rel-

evance score is calculated for each mutated gene in each population. The relevance

score consists of three components. The first component describes the change in

frequency of the mutation during a selective sweep in the population. Mutations

that increase in frequency during a selective sweep are more likely to be adaptive

than mutations that decrease in frequency. However, not necessarily all adaptive

mutations will increase in frequency during a sweep (e.g. potentiating mutations)

and conversely passenger mutations that hitchhike with driver mutations will also

increase in frequency [144]. Therefore, the frequency change component is com-

plemented with a second component: the functional impact score. The functional

impact score reflects the effect of the mutation on the function of the protein. Mu-

tations that are likely to alter a proteins function are more likely to be adaptive. A

last component of a mutations relevance score relates to the mutation rate of the

population in which the mutation occurs: we assume that mutations that originate

from populations with a significantly higher mutation rate than the other popula-

tions should contribute relatively less to the final solution as they contain a larger

number of passenger mutations (more noise) and a mutation of such a line should

thus exhibit a stronger signal in order to be selected. A detailed overview of the

calculation of the relevance scores by IAMBEE is shown in Figure 6.2 and is de-

scribed in Materials and Methods. 2) The pathfinding step embodies the search for

paths, which are defined as consecutive sets of edges connecting mutated genes

from different populations, on the topology-weighted interaction network. These

paths are weighted based on the relevance scores of the involved mutations and the

weights of the edges involved in the path. The weight of a path reflects the degree
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of belief that the path is involved in the adaptive phenotype. 3) Subnetwork infer-

ence (optimization strategy) is subsequently used to select a subset of the paths

found during the pathfinding step. This subset is selected such that a maximum

number of mutated genes with high relevance scores are included but a minimal

number of edges is selected. This means that overlapping paths are more easily

selected as they share edges, which reflects the search for molecular pathways that

are consistently mutated throughout independently evolved populations. The re-

sulting subset of paths makes up a subnetwork that consists of multiple connected

components which are parts of molecular pathways. For a more detailed explana-

tion of these steps, we refer to the methods section.

6.2.5.1 Validation of IAMBEE using synthetic data

To validate and characterize IAMBEE, we generated 100 synthetic datasets, each

with randomly selected adaptive and passenger mutations (Supplementary meth-

ods). Running IAMBEE on one of these datasets with a specific parameter setting

resulted in a subnetwork containing prioritized mutated genes. Every synthetic

dataset was run with 50 different parameter settings ranging from settings which

result in small subnetworks to settings which result in larger subnetworks. As in

this synthetic setting the true adaptive mutations (true positives) are known, we

used PPV (the ratio of true positives to the total number of prioritized mutations)

and sensitivity (the number of true positives to the total number of true positives in

the dataset) as performance criteria. Results showed that, as expected for a method

that makes relevant non-random predictions, small subnetworks have a high PPV

at the expense of a lower sensitivity and subnetworks (of any size) rarely have both

low sensitivity and PPV (Supplementary Figure S6.2). This indicates that users

should start exploring small solutions when identifying candidates for experimen-

tal validation while progressing to larger solutions allows gaining a more complete

pathway level insight into the adaptive phenotype but risks identifying false pos-

itives. This information is also included in the output of IAMBEE where more

opaque edges represent edges which are involved in both small and large solutions

(high PPV) while less opaque edges are only involved in small solutions (lower

PPV) (Figure 6.3, Figure 6.4).
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Figure 6.2: Calculation of the relevance scores for each mutation by IAMBEE. In the data acqui-

sition step, a selective sweep of interest is chosen from an evolution experiment involving multiple par-

allel evolved populations. Samples taken at time points just before (blue arrows) and just after (orange

arrows) this selective sweep are sequenced and mutations are called. For every mutation, a functional

impact score and frequency change in the population are determined by the IAMBEE software. The

frequency change is derived from the degree to which the mutation changes in frequency before (blue)

and after (orange) the selective sweep. Genes with mutations that rise in frequency have higher fre-

quency increase scores (green square) while a low frequency increase score is assigned to genes with

mutations that decrease in frequency in the population (red squares). Next, a functional impact score

is assigned to each mutation by using SIFT4G ( [276]). Genes with mutations having a high functional

impact score are depicted with green triangles and vice versa. In addition, populations with a mutation

rate that is significantly higher than the mutation rates of the other populations are detected. The rele-

vance of mutated genes in populations with a significantly higher mutation rate are corrected (red star)

to avoid overrepresentation of mutations from these populations. Finally, combining a genes frequency

score, functional impact score and the correction for mutation rates allows calculating a relevance

score for every mutated gene in every population. Mutated genes with a high relevance score (green

circles) are more likely to harbor mutations that increase in frequency during the selective sweep, have

high functional impact scores and are not involved in a population with significantly higher mutation

rate than the rest of the populations.
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6.2.5.2 Network-based analysis unravels adaptive pathways for high ethanol

tolerance

We pooled the mutation data observed in the 16 different lines for respectively the

first and second selective sweep and applied IAMBEE to the pooled data of each

sweep to unveil pathways that drive increases in ethanol tolerance during each

of the sweeps. We identified connected components that were common to both

sweeps and components that were unique to each of the sweeps. Identified con-

nected network components representative of adaptive pathways or at least parts

of adaptive pathways are shown in Figure 6.3 and Figure 6.4, respectively. 32

connected network components, involving 108 genes harboring 228 mutations,

were prioritized by IAMBEE out of a total of 1646 mutated genes harboring 2511

mutations in 16 populations. Likewise, in the second selective sweep 22 con-

nected components, involving 90 genes harboring 345 mutations, were prioritized

by IAMBEE out of a total 2286 mutated genes harboring 4470 mutations in the

same 16 populations. 15 of these connected components were partly or entirely

selected in both sweeps (Supplementary Figure S6.3). The fact that both unique

and shared clusters are detected for each selective sweep demonstrates fundamen-

tal differences between initial adaptation to high ethanol stress and prolonged ex-

posure to increasing ethanol concentration. Below, we describe important identi-

fied connected network components and their putative roles in ethanol tolerance. A

more detailed overview and description of all identified ethanol tolerance related

pathways is given in the supplementary results of Appendix B.
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Figure 6.3: Subnetwork consisting of multiple connected components inferred by analyzing the

mutation data observed in all 16 populations during the initial selective sweep. Nodes represent genes

and edges represent interactions between the genes. Around each node an inner and an outer circle

is indicated, which are both divided in 16 equal parts, representing mutations in population HT1 to

population HT16 (see legend). A colored part of the inner circle represents a mutation which increases

in frequency during an initial selective sweep for that gene in the corresponding population while a

colored part of the outer circle represents a mutation which increases in frequency during the second

selective sweep in that same population. An overview of all possible mutation patterns can be found at

the top of the figure (note that as the outcome of the initial selective sweep is compared to the ancestral

strain, it is impossible for a mutation to decrease in frequency during an initial selective sweep). The

color of the edges represents their type (see legend). The opacity of the edges represents the maximum

edge cost for which those edges were selected (a measure for the degree of belief that the interaction is

implicated in the adaptive phenotype). Opaque edges are selected in cases with high edge costs (high

degree of belief) while edges with low opacity are only selected in cases with low edge costs (lower

degree of belief). The online version of the resulting subnetwork is provided in the online version of this

paper.
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Figure 6.4: Subnetwork consisting of multiple connected components inferred by analyzing the mu-

tation data observed in all 16 populations during the second selective sweep. Nodes represent genes

and edges represent interactions between the genes. Colors of the nodes and the edges are identical

to Figure 6.3. The online version of the resulting subnetwork is provided in the online version of the

paper.

6.2.5.3 The fatty acids biosynthesis pathway is selected exclusively for initial

adaptation

An important network component that was exclusively identified in the initial se-

lective sweep is the fatty acid biosynthesis pathway, encoded by the fab genes.

The prioritization of this pathway in the initial, but not in the subsequent selective

sweep, means that most mutations in the fab genes were already fixed in the latter

step, explaining why they were not selected as being adaptive in the second selec-
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tive sweep. This early fixation of fab mutations indicates that changing the fatty

acid composition in the membrane is an initial adaptation strategy, but does not suf-

fice to confer resistance to higher concentrations of ethanol. Both fabA and fabB

accumulated mutations in different parallel populations. The amount of unsatu-

rated fatty acids eventually present in the membrane depends on the competition

for intermediates at the FabA branch point in the pathway [277–279]. Mutations in

either the fabA gene itself or in genes downstream (e.g. fabB or fabG) can perma-

nently change the ratio saturated versus unsaturated fatty acids thereby changing

the fluidity of the membrane. Changes in membrane composition, such as the ratio

of saturated versus unsaturated fatty acids, have previously been reported to affect

ethanol tolerance [280, 281] although mutations in the fab genes have not been

associated with ethanol resistance in the past.

To validate whether mutations in the fab genes affect membrane composition,

we compared fatty acid content of selected strains harboring these mutations with

that of the wild type (Figure 6.5). When exposed to 5% ethanol, the percentage

unsaturated fatty acids in wild-type cells increases 2-fold (Figure 6.5a). This ob-

servation corroborates previous results showing ethanol-induced inhibition of sat-

urated fatty acid synthesis [280]. The percentage unsaturated fatty acids in the

absence of ethanol in the two mutant populations harboring a fabA (HT15) and a

fabB (HT12) mutation equals that of the wild-type ancestor. However, in the mu-

tant populations subjected to 5% ethanol the percentage unsaturated fatty acids

also increases, but not to the same extent as for the wild type (Figure 6.5b). This

difference suggests a direct effect of the identified fab mutations on the ethanol-

induced shift in saturated versus unsaturated fatty acids ratio. Increased propor-

tions of unsaturated fatty acids fluidizes the membrane. Mutations in the fab genes

possibly counteract this shift to become more tolerant against ethanol by maintain-

ing structural rigidity of the membrane.

6.2.5.4 Pathways involved in both initial and consecutive adaptation

Several highly prioritized pathways conferring tolerance to ethanol were identified

in both the initial and second sweep. When a pathway is selected in both sweeps,

typically only few genes are prioritized in the initial sweep, whereas newly ac-

quired mutations are prioritized in the second sweep (Figure 6.3, Figure 6.4).

Multidrug efflux pumps

One network component of particular interest is linked to multidrug efflux

complexes. The genes acrA, acrB and acrD, encoding the AcrAB-TolC and the

AcrAD-TolC multidrug efflux pump were found to be frequently mutated during

the initial selective sweep. Multidrug efflux pumps usually consist of three parts:

an inner-membrane transporter, such as AcrB, a membrane fusion protein such as



CHAPTER 6 6-13

AcrA and an outer-membrane transport channel such as TolC. AcrD, like AcrB,

binds to AcrA and forms a complex with TolC to constitute a multidrug efflux

pump. Despite their association with tolerance to organic solvents [282–284], ef-

flux pumps have to our knowledge not yet been specifically linked to ethanol toler-

ance. To validate the role of the efflux pump in ethanol tolerance, we constructed a

deletion mutation in acrB, one of the subunits of the AcrAB-TolC multidrug efflux

pump that accumulated most mutations. Indeed, the ∆acrB deletion mutant has

an increased growth rate compared to the wild-type ancestor under 5.5% ethanol

stress (Figure 6.6). Moreover, the relative difference in growth compared to the

wild type increases with the ethanol percentage in the medium (Supplementary

Figure S6.3).

Whereas acrA, acrB and acrD are mutated in the initial selective sweep, dur-

ing the second selective sweep additional mutations occurred in mdtA and mdtF.

MdtA, like AcrA, is a membrane fusion protein in the MdtABC-TolC multidrug

efflux pump [285, 286]. MdtF is the counterpart of AcrB and acts as a transporter

in the MdtEF-TolC multidrug efflux pump [287]. The mutations in mdtA and mdtF

that rise in frequency during the second selective sweep frequently occurred in

populations that already harbored a mutation in the AcrAB-TolC efflux pump
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Figure 6.5: Effect of fab mutations on the percentage of unsaturated fatty acids in the plasma

membrane. a, The membrane composition of E. coli changes dramatically when grown in the presence

of 5% ethanol. Especially the proportion of palmitoleic acid (16 1 w7c) increases considerably, while

the proportion of palmitic acid (16 0) decreases. Additionally, we can see that the larger fatty acids with

chain lengths higher than 18 disappear. A switch to shorter chain length is also part of the response

to ethanol stress. The first number in the name of the fatty acids denotes the length (or number of C-

atoms) in the chain. The second number denotes the number of double bonds: a zero means a saturated

fatty acid and a 1 or 2 means a mono- or di-unsaturated fatty acid. The ”w” followed by a number

shows the position of the double bond, while the ”c” means cis instead of trans. b, The total percentage

of unsaturated fatty acids in the wild type doubles upon exposure to ethanol. In the two high ethanol

tolerant populations, in which we identified mutations in fabA and fabB the percentage of unsaturated

fatty acids still increases, but less pronounced compared to the wild type. These results demonstrate

that rewiring of unsaturated fatty acid biosynthesis through involved genes, such as fabA and fabB can

confer high tolerance to ethanol.
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originating from the earlier selective sweep (4 out of 7). Subsequent mutations

in paralogous AcrAB-TolC and MdtABC-TolC multidrug efflux systems thus are

likely to enable gradual adaption and further improve fitness under high ethanol

concentrations. Intriguingly, even though TolC is the common outer membrane

channel for all above mentioned efflux pumps no mutations occurred in the tolC

gene, suggesting that only the inner membrane transporter and fusion protein are

altered to increase fitness under ethanol stress.

Figure 6.6: Effect of acrB deletion on growth under high ethanol stress. a, The graph shows the

growth of both the wild-type strain and the acrB deletion mutant under 5.5% ethanol stress. The ∆acrB

mutant grows faster and reaches a higher carrying capacity (higher final optical density) under these

conditions. b, The growth curves were fitted using the Gompertz equation and specific growth rate was

extracted. The acrB deletion mutant has a significantly increased growth rate compared to the wild

type. Both growth rates were statistically compared using an unpaired two-sided Students t-test (n=6,

box = median, whiskers = min to max, ****: p<0.0001). These results confirm a selective advantage

of the ∆acrB mutant compared to the wild type.

DNA repair

One highly prioritized pathway includes several genes involved in DNA repair

mechanisms, such as the methyl-directed mismatch repair pathway (MMR, mutS,

mutL and mutH), the nucleotide excision repair pathway (NER, uvrA, uvrB and

uvrC) and the DNA helicase encoded by uvrD which is involved in both the MMR

and NER pathways. Mutations in these pathways explain the observed higher mu-

tation rates that were observed in the evolution experiment. Prioritization of this

network component substantiates our previous work where we demonstrated the

crucial role of mutations in the mismatch repair pathway for adaptation to ethanol

under high stress conditions [44].
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6.2.5.5 Pathways exclusively involved in the second adaptation step

One smaller network component that was exclusively, but highly, prioritized in the

second selective sweep consist of two genes fadB and gabT. FadB plays a role in

fatty acid oxidation and is regulated by FadR [288]. Interestingly, a fadR deletion

mutant was also recently found to increase organic solvent tolerance [289] pointing

to a similar process.

Several additional identified pathways that have never been linked to ethanol

tolerance before, but that might influence this trait are discussed in Appendix B.

In conclusion, we state that IAMBEE is able to detect previously known as well

as new adaptive pathways. The identified adaptive pathways in ethanol tolerance

might serve as a basis for future strain improvement efforts.

6.2.5.6 Indications for epistasis at the pathway level

Remarkably, adaptive mutations in the fatty acid pathways tend to occur in a mu-

tual exclusive way: 8 populations have mutations in fadB-gabT, 9 populations have

mutations in the fabA-B system, 2 populations (HT13 and HT14) have mutations

in both pathways and only 1 population (HT3) has no mutations in either of the

respective pathways. Strikingly, this would imply negative epistasis at the pathway

level, i.e. a mutation in either pathway increases ethanol resistance but mutations

in both mechanisms do not lead to a greater increase in resistance. The incom-

plete pattern of mutual exclusivity in HT14 can be explained by the fact that both

the mutation in fabA (present in 50% of population) and fadB (present in 12% of

population) are not fixated in the population. Therefore, it is possible that these

mutations exist in different subpopulations. As was the case in the co-occurrence

of mutations in the acrAB-tolC/fab pathway, the incomplete pattern of mutual ex-

clusivity in HT13 could be explained by the fact that the fabA mutation is situated

towards the end of the fabA protein (7 amino acids near the end), which makes

it likely that this mutation is not functionally relevant. Indeed, by determining the

membrane composition we confirmed that the percentage of unsaturated fatty acids

in absence and in response to 5% ethanol did not differ from the wild-type strain,

suggesting that this particular mutation does not contribute to higher ethanol stress

by changing the membrane composition (Supplementary Figure S6.4).

Additionally, mutations in the AcrAB-TolC efflux pump tend to co-occur with

mutations in the previously mentioned fab pathway. From the 10 populations which

have a mutation in acrAB-tolC and the 9 populations which have a mutation in the

fab pathway, 8 populations overlap. According to the mutational trajectories, mu-

tations in both pathways arise during the same selective sweep (5%-6%) in 7 popu-

lations. Only in one population (HT10), the mutation in acrAB-tolC was obtained

late during the second selective sweep, following an earlier mutation in the fab
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pathway. Only population HT13 had a fabA mutation but not a mutation in acrAB-

tolC. Again, this specific mutation in fabA is located at 7 amino acid residues near

the end of the FabA protein (Supplementary Figure S6.4).

6.2.5.7 Comparison with per gene mutation frequency approach

To show the value of the network-based approach of IAMBEE, we compared our

results with those obtained by a frequency-based approach which ranks genes

based on the number of populations in which they were mutated (Figure 6.7, Sup-

plementary file available in supplementary data of the originally published online

version of this paper). Although our method does not explicitly search for genes

that are recurrently mutated across populations, it also prioritizes most of the fre-

quently mutated genes which are associated with ethanol resistance (e.g. rpsL and

envZ). We subsequently tested whether mapping the frequently mutated genes (136

and 153 for respectively the first and the second selective sweep) to the genome-

wide interaction network also allowed identifying adaptive pathways. Connected

components identified in this way show (Supplementary Figure S6.5 and Supple-

mentary Figure S6.6) that adaptive pathways which were identified by IAMBEE,

such as the fatty acid biosynthesis pathway, fadB-gabT and acrAB-tolC, are largely

or completely missed. This can be explained by the fact that these pathways are

composed of genes that are not necessarily frequently mutated (e.g. some con-

necting genes were only found mutated in one or two populations). By exploiting

all mutated genes over the network using information from mutational trajectories

and functional impact scores IAMBEE can, in contrast to the frequency-based ap-

proach, extract adaptive pathways consisting of less frequently mutated but highly

connected genes (Table 6.1). However, as IAMBEE is network-based it is possible

that some genes are missed because they are not present in the network (e.g. marC

and tqsA [283,290]). Nevertheless, this does not outweigh the benefit of IAMBEE

to retrieve more complete pathways and to be able to reason about the temporal

aspects of mutation acquisition, which is not possible by simply assuming that the

most frequently mutated genes are the only driver genes.



6-18 RANKING OF DRIVER GENES AND PATHWAYS FROM GENOMICS DATA

Figure 6.7: Comparison of the output generated by IAMBEE with the per gene mutation frequency

approach. By performing a pooled analysis of the mutation data observed in the 16 populations during

respectively the first and second selective sweep IAMBEE identified respectively 32 and 22 connected

network components. The alternative method using exclusively the number of mutations per gene al-

lowed (partial) identification of respectively 9 and 6 connected network components in the first and

second selective sweep. This result clearly demonstrates that only a fraction of the involved adaptive

pathways are identified by using the approach that only takes into account frequently mutated genes.

By combining mutation frequency data and functional impact scores, IAMBEE enables identification

of the network components underlying an adaptive phenotype. More details on the specific connected

network components prioritized by both approaches are given in Table 6.1 and Supplemental Figures

S6.5 and S6.6.
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6.2.6 Discussion

Evolution experiments have been successfully used to identify the role of specific

genes in an adaptive phenotype [201, 252]. However, genetic data derived from

parallel evolution experiments is usually interpreted by looking at the mutation

frequencies of the individual genes. Especially when dealing with complex traits,

these studies do not necessarily yield insight into the complex interactions of the

genes that contribute to the adaptive phenotype. Key to unraveling the genetic

mechanisms underlying high ethanol tolerance is the development of a dedicated

analysis method. IAMBEE is unique in prioritizing adaptive mutations by combin-

ing information on each individual mutation inferred from functional impact scores

and relative frequency increases during a selective sweep, with information on the

interactions between genes (a genome-wide interaction network). Using our newly

developed method, we were able to prioritize multiple pathways that were recur-

rently mutated in different independent high ethanol tolerant populations. Among

the highly prioritized pathways, those related to translation, anti-termination and

amino acid metabolism were previously associated with high ethanol tolerance.

Recovering these well-known pathways confirms the ability of IAMBEE to iden-

tify true adaptive pathways.

On top of those well-known systems, we identified a yet undescribed role for

multidrug efflux pumps in the continuous adaptation to high ethanol stress and

the role of fatty acid metabolism in allowing the cell to cope with the toxic ef-

fects of ethanol on the membrane [291]. Related to the latter mechanism, binding

and penetration of ethanol into the lipid bilayer increases membrane fluidity [292],

thereby inducing secondary effects, such as osmotic stress [293–295]. Response

to osmotic stress has previously been shown to induce alterations of the mem-

brane composition including cis-to-trans isomerization of unsaturated fatty-acids

as a short-term response [278] and alteration of the ratio of saturated versus unsatu-

rated fatty acids as a long-term response [280,281]. Both changes to the membrane

composition can result in denser packing of the fatty acids thereby increasing the

rigidity of the membrane which enables the cell to withstand the toxic effect of

ethanol [261, 292]. Although there has been confusion about the effect of unsat-

urated fatty acids on ethanol tolerance [280, 281, 296], we provide evidence that

tempering the shift to higher ratios of unsaturated fatty acids confers higher resis-

tance to ethanol (Figure 6.5). We could indeed show that mutations in representa-

tive genes of the fab pathway resulted in increased ethanol tolerance by affecting

the ratio of saturated versus unsaturated fatty acids.

As IAMBEE is designed to be used in combination with a dedicated experi-

mental set-up, which includes sequencing of the evolving populations before and

after a selective sweep, it is possible to gain insight in the temporal profile of adap-

tation. Using this unique feature of the method we found that mutations in the fatty

acid biosynthesis pathway occur early in the evolutionary trajectory of ethanol re-
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sistance in E. coli while mutations in other pathways have less strict temporal con-

straints. In this context, we also found that mutations in respectively the pathway

for fatty acid biosynthesis (fabA, fabG and fabB) and a pathway involved in fatty

acid oxidation (gabT, fadB) were mutually exclusive while having high coverage

(15 out of the 16 populations had a mutation in either pathway). This implies that

fatty acids play a pivotal role in ethanol tolerance, but that either a mutation in one

of the two pathways does not lead to a significant increase in fitness if a mutation

in the other pathway is already present (negative epistasis) or that having a mu-

tation simultaneously in both pathways is lethal (synthetic lethality as an extreme

form of negative epistasis). In contrast, mutations in the fatty acid biosynthesis

pathway (fabA,fabG and fadB) and the AcrAB-tolC efflux pump (acrA and acrB)

significantly co-occur, suggesting positive epistasis between these pathways.

When compared to a naive approach which is based on recurrence of mutations

across experiments at the level of individual genes, it is obvious that IAMBEE

offers not only the advantage of being able to identify adaptive mutations which

are not frequently mutated but also to interpret adaptive mutations and epistasis

at the level of pathways. As such, IAMBEE is very useful and meets the need for

adequate tools to analyze highly complex mutational datasets.

6.2.7 Conclusions

Experimental evolution can readily yield insight in complex traits assuming low

complexity of the resulting mutational profiles. However, in the case of complex

traits and especially when hypermutation arises, evolution experiments often lead

to complex mutational profiles with high rates of passenger mutations that are

difficult to interpret. Traditionally, adaptive genes are identified by counting the

number of mutations per gene across independently evolved populations. While

this approach is valid in some datasets, in complex mutational profiles it neglects

less frequently mutated genes, resulting in the inability to generate a broad under-

standing of the adaptive phenotype. Therefore, we developed IAMBEE, a method

that exploits the interaction network, combined with information from mutational

trajectories and functional impact scores, to identify adaptive genes and pathways

from complex mutational datasets. By applying IAMBEE to an evolution exper-

iment consisting of 16 independently evolved E. coli populations subjected to

increasing ethanol concentrations, pathways that were previously linked to high

ethanol resistance as well as novel pathways, which were experimentally validated,

could be identified. In conclusion, IAMBEE is a powerful tool that successfully al-

lows to generate a broader understanding of (complex) traits that could not be fully

elucidated so far.
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6.2.8 Materials and Methods

6.2.8.1 Data acquisition

6.2.8.2 Functional impact scores and frequency of mutations

To calculate functional impact scores for each mutation we used SIFT scores which

were calculated using the SIFT4G annotator version 2.2 with the E. coli (GCA -

000005845.1.21) database [276]. Note that while SIFT scores were used in this pa-

per, any functional impact score measure can be inserted in IAMBEE. As IAMBEE

tries to identify the causal molecular pathways which lie at the basis of a selective

sweep, mutations which decrease in frequency during a selective sweep are not

taken into account. Therefore, we have to determine when a mutation ”decreases”

in frequency. As the precision of frequency calling of mutations is finite, the naive

way of viewing all mutations with a negative frequency increase as ”decreasing” is

not valid. This would discard too many mutations which remained stable or, most

of the time, were fixed previously in the population. As these mutations could be

potentiating mutations, we do not want to discard them. Because of this, and the

specifications of the CLC variant caller (a required significance of 1%), we viewed

all mutations with a decrease in frequency of at least 2% as decreasing. All muta-

tions in both selective sweeps, together with their SIFT scores and their increase

in frequency during the selective sweep are given in Supplemental file 1 which is

available in the online version of this paper.

6.2.8.3 Genome-wide interaction network

We used a directed genome-wide interaction network of E. coli K-12 MG1655

compiled from (de)-methylation, (de)phosphorylation and metabolic interactions

from KEGG version 80 [100,225], protein-DNA, sigma factor binding and sRNA-

DNA interactions from regulonDB version 9.2 [297] and protein-protein interac-

tions from STRING version 10 (RRID:SCR 005223) [64]. To reduce the num-

ber of false positive interactions in the interaction network, only direct (physi-

cal) associations with a score of at least 0.8 were retained from STRING. Interac-

tions involving the primary sigma factor RpoD were removed as RpoD regulates

over half of the genes in the interaction network. Furthermore, self-edges were

deleted. The final genome-wide interaction network contains 2678 nodes (genes)

and 14702 edges (interactions between genes/sRNAs), representing about 63% of

E. coli K-12 genes. This interaction network is supplied together with IAMBEE at

http://bioinformatics.intec.ugent.be/IAMBEE.



6-24 RANKING OF DRIVER GENES AND PATHWAYS FROM GENOMICS DATA

6.2.8.4 Construction of the probabilistic

genome-wide interaction network

IAMBEE is guided by a directed genome-wide interaction network with the nodes

representing genes and the edges representing interactions between these genes. A

topology-based weighting of the genome-wide interaction network was performed

to reduce the effect of hubs in the subsequent analysis steps: a power law distri-

bution [298] was estimated based on the out-degrees of the nodes in the interac-

tion network. Next, a sigmoidal function was constructed using as inflection point

the out-degree that corresponded to the 90th percentile. This leads to following

topology-based weighting of each edge between node i and node j [6]:

weight(i, j) =
1

1+ e

out degree(i)-inflection point
inflection point

6

(6.1)

This sigmoidal function is utilized to mainly down-weight interactions orig-

inating from large hubs while avoiding to penalize interactions involving nodes

with low out-degrees. The value 6, which together with the inflection point value

dictates the slope of the sigmoidal, was chosen as such because it led to good re-

sults when used with multiple bacterial interaction networks (results not shown).

As bacterial interaction networks tend to follow similar scale-free distributions it

is expected that this sigmoidal will perform well on other bacterial interaction net-

works as well.

For the materials and methods on the used experimental evolution setup, the

sequencing and mutation calling and the mapping of mutations to genes we refer

to Appendix B.2.

6.2.9 IAMBEE

6.2.9.1 Calculation of relevance scores

Not all mutations are equally likely to be involved in the adaptive phenotype.

Therefore, a relevance score was assigned to each mutation based on its estimated

functional impact on the coding/promoter sequence and based on its relative in-

crease in frequency in the population during a fitness increase. The functional

impact score reflects how likely a mutation causes a functional change in the re-

sulting protein(s). Here it is based on the degree of conservation of amino acid

residues in sequence alignments from closely related sequences using the SIFT

algorithm (RRID:SCR 012813) ( [276, 299, 300]). To derive frequency increases,

for each population the adaptive trajectory (e.g. fitness profile) is used to delin-
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eate selective sweeps (sudden jumps in fitness or an increase in adaptation towards

the experimental conditions). The frequency increase of a mutation is equal to the

difference of its frequency in the population just after and just before the sweep.

To assess the relative importance of a mutations frequency increase or functional

impact score, we first estimate both the distribution functions, based on the fre-

quency increase/impact score of all mutations from all evolved populations. As

neither the functional impact score distribution, nor the frequency increase distri-

bution is expected to follow any known mathematical distribution, the distributions

are estimated using a nonparametric cumulative distribution function (MathWorks

2017). As synonymous mutations would skew the distribution of the functional im-

pact scores towards low functional impact scores, which could result in assigning

relatively high relevance scores to mutations with poor functional impact scores,

synonymous mutations are removed from the data when estimating the functional

impact distribution function. Note that because some synonymous mutations do

have relevant functional impact scores they are not discarded but only ignored

when estimating the functional impact distribution. While the functional impact

distribution function is estimated using all mutation data from all evolved popu-

lations, the frequency increase distribution is estimated on a per-population basis

as the population dynamics can differ between populations. This means that one

functional impact distribution is estimated, while the number of frequency increase

distributions is equal to the number of parallel evolved populations are estimated.

Based on these distributions a relevance score is calculated for each mutated gene

in each population as follows:

relevance(S,n) = (1− eCDFf un(Functional score(S,n)))

× eCDFf req,n(Frequency increase(S,n))
(6.2)

with eCDF f un(Functional score(S,n)) the value of the cumulative distribution func-

tion of the functional impact scores for the mutation in gene S in population n with

the most deleterious functional impact score (note the 1−eCDF f un(Functional -

score(S,n)). This is needed as we use SIFT scores which are low when the mutation

is deleterious.), eCDF f req,n(Frequency increase(S,n)) the value of the cumulative

distribution function in population n of the frequency increases for the mutation in

gene S in that population with the highest frequency increase. relevance(S,n) is a

value between 0 (gene S is unlikely to be relevant towards adaptation in popula-

tion n) and 1 (gene S is very likely to be relevant towards adaptation in population

n). Genes without mutations are assigned the mean functional impact score and

frequency increase when calculating their relevance.

Furthermore, if the dataset contains populations with a mutation rate which is

significantly higher than the mutation rates of the other populations, the search for

paths in the pathfinding step (see following paragraph) would be skewed towards

this population (Table 6.2). In order to reduce the impact of this feature without

completely discarding these populations, a correction factor for each population is
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calculated. To detect populations with significantly higher rates we use the modi-

fied z-score for outlier detection ( [301]) as follows:

modified Z-score(n) =
0.6745× (mutations(n)−median(n1, . . . ,ni))

MAD(n)

MAD(n) = median(|mutations(n)−median(n1, . . . ,ni)|)

(6.3)

with mutations(n) the number of mutations in population n, median(n1, . . . ,ni) the

median number of mutations in a population and MAD(n) the mean absolute devi-

ation of population n. Note that in the original publication the modified Z-score is

defined as the absolute value of the measure used in this paper. We intentionally left

out the absolute value to avoid down weighting populations with few mutations.

Populations with a significantly higher mutation rate are defined as populations

having a modified Z-score of at least 3.5 [301]. From this modified Z score a pop-

ulation specific correction factor is calculated, based on a parameter p which sets

the upper limit for the correction factor. In our analysis we set this to 3 to have an

upper limit of 0.85 but based on how a user would like to deal with populations

having significantly higher mutation rates, the factor can be anywhere between 0

and 3,5:

correction(n) =

{

p
modified Z-score(n)

if modified Z-score(n) ≥ 3.5

1 else
(6.4)

Due to the modified Z score, the correction factor intrinsically assigns a lower

value to outlier populations when the study contains a larger number of indepen-

dent populations, hereby largely removing populations with high mutation rates

to reduce noise when a large number of independent populations is present while

largely retaining them, as in that case they will be needed to exploit parallelism, if

only few populations are present. The relevance score and the correction factor are

integrated into a single score for every mutated gene in every population. This is

implemented as follows:

corrected relevance(S,n) = relevance(S,n)× correction(n) (6.5)

With S a mutated gene in population n
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Table 6.2: Percentage of paths found at the end of the pathfinding step on the data ob-

tained for the second selective sweep, with and without correction for significantly higher

mutation rates. It can be seen that the correction inhibits the most prominent outlier (HT14)

from consuming nearly a fourth of all paths.

Population Without correction With correction # mutations

HT1 7.86 9.12 324

HT2 3.66 2.43 142

HT3 0.73 1.82 79

HT4 2.01 4.26 124

HT5 3.29 5.17 113

HT6 4.02 9.12 164

HT7 7.68 4.26 342

HT8 1.28 3.34 82

HT9 10.97 13.68 621

HT10 4.75 3.95 195

HT11 11.33 15.81 478

HT12 3.29 7.90 164

HT13 5.12 8.81 157

HT14 23.95 1.82 1121

HT15 4.94 6.69 184

HT16 5.12 1.82 180

6.2.9.2 Pathfinding between mutated genes

All genes with at least one mutation in any independent population are mapped on

the topology-weighted genome-wide interaction network. Subsequently, all possi-

ble paths originating from a mutated gene in a population and ending in any other

gene which is mutated in another population, are enumerated. A path is defined

as a series of consecutive edges in the interaction network. We exclude paths be-

tween mutated genes in the same populations, reasoning that because of the clon-

ality a single mutation in a pathway will confer most of its fitness advantage [8]

and including paths between mutated genes within one population would not be

informative as this does not reflect parallel evolution.

Each path is assigned a probability which reflects the degree of belief that the

path is associated with the adaptive phenotype under study. This probability takes

into account the weights of the edges which make up the path (calculated based

on the network topology in the previous step) and the corrected relevance scores

from both the start gene and the terminal gene of the path (calculated based on
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the frequency increase and the functional impact score of both genes in the data

preparation step). Only the relevance scores of the start gene and the terminal gene

are considered because whether or not intermediate genes are mutated should not

be taken into account. If they were taken into account, even one passenger mu-

tation in the middle of an interesting molecular pathway would severely decrease

the probability of every found path in that molecular pathway. This leads to the

following equation for the probability of a path:

probability(S,n,E,m)(S 6=E,n6=m) = ∏
(i, j)∈P

weight(i, j)× relevance(S,n)

× relevance(E,m)

(6.6)

with (S,n,E,m) the path which starts in gene S, which is mutated in population n

and terminates in gene E, which is mutated in population m. P is the collection of

edges which make up the path and (i,j) is the edge from node i to node j.

Enumerating all possible paths is computationally expensive and leads to a pro-

hibitively large computational cost in the subsequent subnetwork inference step.

Therefore, the following heuristics are used:

1. Based on biological considerations [218, 219] the maximum path length is

set to four.

2. From all possible paths originating from a mutated gene in a specific popu-

lation, only the 25 paths with highest probabilities are retained.

6.2.9.3 Subnetwork inference and prioritization of molecular pathways

The final step of the analysis is the inference of a subnetwork containing the molec-

ular pathways responsible for the adaptive phenotype. This subnetwork consists of

a subset of the paths selected in the previous step. This subset of paths is obtained

by optimizing the following function:

S(K) = ∑
n∈R

( ∑
S∈Qn

(P(path(mutS,n,mutall)|probabilities,K)))−|K|× xe (6.7)

Where S(K) is the score of the selected subnetwork and needs to be maximized, |K|
is the number of edges selected, xe is the imposed cost for each edge, R is the col-

lection of strains, Qn the collection of mutated genes in n and P(path(mutS,n,mutall))
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| probabilities,K) is the probability that there exists a path between a mutated gene

S in population n and any other mutated gene in any other population, given the

degrees of belief (probabilities) of all found paths in the pathfinding Step and the

selected subnetwork K. The calculation of this term is a generalization of the two-

terminal reliability problem [302,303] and the implementation of the search for the

highest scoring subnetwork, according to this optimization function is explained in

chapter 5 of this thesis as the exact same strategy was used. Note that the optimal

subnetwork, which is the selected subnetwork with the highest score S(K), is not

necessarily a connected graph.

As the complexity of this problem inhibits a deterministic solution, a greedy

hill-climbing heuristic is used in which the previously found paths get sampled

pseudo-randomly based on the overlap the paths have with each other: Overlapping

paths are more likely to be sampled together. As this procedure is probabilistic in

nature, the procedure is repeated 20 times and the best solution with respect to the

optimization score S(K) is used as the solution.

The xe parameter is an important parameter as it incentives IAMBEE to pri-

marily select overlapping paths with high probabilities because doing so a single

edge can be used multiple times while the cost for selecting this edge only has

to be paid once. This is biologically relevant as molecular mechanisms in which

multiple (partly) overlapping paths with high probabilities are found, are likely

mechanisms of interest for a specific selective sweep.

Setting the xe parameter is not trivial as its optimal value is dataset specific.

If xe is set too high the subnetwork will be small and multiple causal molecular

pathways are likely missed. Conversely if xe is set too low the subnetwork will be

too large and of little practical use as the fraction of false positives in the solution

increases (Figure 6.2). Therefore, instead of calculating the optimal subnetwork

for one specific cost, we perform a parameter sweep over the xe parameter and

summarize the results in the form of a network, which is obtained by taking the

union of all found optimal subnetworks and where the edges are prioritized based

on the maximum edge cost for which they are still included in an optimal sub-

network. This means that edges with a high priority (visualized in the output as

opaque edges) get selected even when the edge cost xe is high. This is useful as

the PPV (positive predictive value) of a subset of opaque edges is higher (Syn-

thetic data in Subsection 6.2.5.1) and thus a good starting point for experimental

validation.

6.2.9.4 Parameter setting

The parameters of IAMBEE were set as follows for both jumps in ethanol toler-

ance: The path length was kept at the default value of 4 and the maximum number

of paths between every pair of mutated genes was kept at the default value of 25.
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The sweep over the edge cost parameter xe was set from 0.1 to 1.5 in steps of 0.025

and the maximum size for an optimal subnetwork to be accepted was set to 80 (in

terms of nodes) in order to keep the resulting subnetwork small enough to interpret

manually.

6.2.9.5 Validation of IAMBEE features

To show the importance of the different features of IAMBEE, which include mu-

tation frequencies, functional scores, a correction factor for populations with ex-

treme mutation rates and the use of an interaction network, the method was ad-

justed several times to exclude one feature each time. Each of these adjusted ver-

sions of IAMBEE was applied to the synthetic dataset. PPV and sensitivity plots

were constructed (Supplemental Figure S6.2) and demonstrated that each feature

led to an increase in performance. The results are discussed in Supplemental

Methods.
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Supplementary

6.2.13 Supplementary methods

6.2.13.1 Synthetic data

As complete and reliable gene sets of causal mutations for complex traits are rarely

available and previous methods do not advocate the analysis of experimental evo-

lution data in complex traits from clonal organisms, we used synthetic datasets to

illustrate that IAMBEE can identify causal mutated genes and mechanisms. For

the construction of the synthetic datasets, the same E. coli MG1655 genome-wide

interaction network as used in the analysis of the ethanol tolerance dataset was

used. Each synthetic dataset was constructed by randomly choosing a number of

populations between 5 and 30 to simulate a wide range of possible evolution ex-

periments with different amounts of data. In order to make sure that IAMBEE

will have to deal with hypermutators in at least some datasets, each population

has a 15% chance of being a hypermutator. Each normal population has a random

number of mutated genes between 5 and 40 [289] while each hypermutator popu-

lation harbors a random number of mutated genes between 100 and 200 [41]. The

causal mechanisms are determined by randomly sampling a gene together with all

of its outgoing interactions from the interaction network. Isolated genes are with-

held. The union of all genes involved in the sampled interactions is labeled as the

causal mechanism. As the complexity of traits vary, for each dataset 1 to 5 causal

mechanisms are present. For every causal mechanism, every population has a 50%

chance to have a mutation in a random gene from that causal mechanism with the

additional constraint that parallel evolution is, at least to some extent, present and

thus every causal mechanism has at least two mutations from two different popu-

lations. For obvious reasons, every population is forced to have at least one causal

mutation. To determine the frequency increase and the functional impact score

data for each mutated gene in every population in a synthetic dataset, we sample

from respectively the frequency increase data and the functional impact score data

of the mutations implicated in the used E. coli MG1655 ethanol tolerance dataset

in the main paper. As the used mutation rates for a synthetic data are based on

non-synonymous mutations, we only sample from non-synonymous mutations in

the ethanol tolerance dataset. Because the ethanol tolerance dataset is dominated

by passenger mutations, we randomly sample from all mutations when setting the

frequency increase and functional impact score for the synthetic passenger muta-

tions. When setting these values for the synthetic adaptive mutations, we sample

only from the mutations which are amongst the 20% highest frequency increase/-

functional impact score. 100 such synthetic datasets were created and analyzed

with identical settings as the E. coli MG1655 ethanol tolerance experiment, using

a parameter sweep over the edge cost parameter from 0.05 to 2.45 in steps of 0.05.



6-32 RANKING OF DRIVER GENES AND PATHWAYS FROM GENOMICS DATA

The results are depicted in Supplementary Figure S6.7.

6.2.13.2 Using synthetic data to validate IAMBEE features

In order to validate and disentangle the contribution of the different features of

IAMBEE (mutation frequency, functional data, correction factor and the network)

we performed the same analysis on the synthetic data with different versions of

IAMBEE, each time leaving out one feature. Note that in the case of leaving out

the network, subnetworks are not inferred but instead the genes were ranked based

on their relevance scores and e.g. a solution of size 5 for a specific synthetic dataset

consists of the 5 highest ranked genes in that synthetic dataset. These results are

depicted in Supplementary figure S6.2. As can be seen, in general PPV and sen-

sitivity are both higher in the original version of IAMBEE. This means that the

resulting subnetworks of the original version will overall contain a higher pro-

portion of adaptive mutations and that the original version is more likely to find

(nearly) all adaptive mutations. This is especially true for the relatively smaller

subnetworks which is important as the prioritization of interactions is based on the

assumption that mutations found in small subnetworks are more likely to be adap-

tive mutations. From the plots of PPV in terms of sensitivity it can be seen that few

subnetworks have both low sensitivity and low PPV (which are bad solutions) in

the original version of IAMBEE while other versions generate more bad solutions.

These results indicate that, even in simple synthetic datasets where adaptive mu-

tations are guaranteed to have high scores for frequency increase and functional

impact score, all features of IAMBEE contribute to better results.
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6.2.14 Supplementary figures

Figure S6.1: Ethanol tolerance profiles of HT populations. For each population the changes in

ethanol tolerance due to accumulation of beneficial mutations were tracked in time to obtain a fitness

trajectory. Each red diamond represents an intermediate time point during the evolution experiment.

At these time points the population showed growth to an optical density of 0.2 or higher. Depending on

the time necessary to obtain this optical density the concentration of ethanol was either increased, kept

unchanged or decreased. The blue diamonds represent the time points that correspond to the second

selective sweep. The pooled sequences of the time points before and after both selective sweeps were

used as datasets for the implementation of IAMBEE.
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Figure S6.2: Synthetic data analysis results. PPV plots, sensitivity plots and PPV in terms of sensitiv-

ity plots from the analysis of 100 synthetic datasets using 50 different parameter settings per synthetic

dataset. Results with sizes larger than 80 are not shown. Every row depicts a slightly different ver-

sion of IAMBEE. The top row shows the results for the normal version of IAMBEE while in the other

rows one feature of IAMBEE is left out each time (see labels). Left column: Box plots for the PPV in

terms of different ranges of subnetwork sizes. Small subnetworks tend to have high PPV while larger

subnetworks tend to have lower PPV. Middle column: Box plots for the sensitivity in terms of different

ranges of subnetwork sizes. Small subnetworks tend to have low sensitivity while larger subnetworks

tend to have high sensitivity. Right column: Plot of PPV in terms of sensitivity. Each dot represents an

optimal subnetwork from a specific synthetic dataset and a specific parameter setting (edge cost). Size

is reflected through the colors of the dots.
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Figure S6.3: Growth advantage of a ∆acrB mutant under ethanol stress increases with the con-

centration of the stress. The graph shows both the relative growth rate (left) and the relative carrying

capacity (right; the relative number of cells that can be supported by the environment indefinitely) of

the ∆acrB mutant compared to the wild type under 4% ethanol (blue) and 5% ethanol stress (red).

Increased concentration of ethanol result in a significantly higher growth benefit reflected by a higher

relative growth rate as well as a higher carrying capacity. Relative growth rates and relative carrying

capacities were statistically compared using an unpaired two-sided Students t-test (n=9, average ±
s.d., *: p<0.05; ****: p<0.0001).
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Figure S6.4: fabA mutation in HT13 does not affect the shift in percentage unsaturated fatty acids

in response to ethanol. a, The amber mutation in fabA identified in population HT13 is located near

the end of the FabA protein. b, Membrane analysis in the absence and presence of 5% ethanol shows

no decrease in shift to unsaturated fatty acids for population HT13 compared to the wild type. This was

the case in other high tolerant populations HT12 and HT15 (Figure 5). Therefore, the fabA mutation

in HT13 might not influence ethanol tolerance through altered changes in unsaturated fatty acids ratio

as response to 5% ethanol stress.
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Figure S6.5: Results of mapping the mutations identified with the frequency-based approach for the

initial selective sweep on the interaction network. All genes with at least one mutation in three different

populations were mapped. Nodes represent genes and edges represent interactions between the genes.

The color of the edges represents their type (legend). Around each node there are an inner and an outer

circle, which are both divided in 16 equal parts, representing population HT1 to population HT16

(clockwise). The inner circle is colored in case the corresponding population has a mutation in the

gene at the 6% ethanol time point. The outer circle is colored in case the corresponding population

has a mutation which increases during the second selective sweep. In case the outer circle is black in

the position corresponding to a specific population, the mutation in the gene decreased in frequency

during the second selective sweep. In case there is a mutation at the 6% ethanol time point which

remains stable during the second selective sweep the inner circle is colored but the outer circle is white

in the part corresponding to the specific population.
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Figure S6.6: Results of mapping the mutations identified with the frequency-based approach for

the second selective sweep on the interaction network. All genes with at least one mutation in three

different populations were mapped. Nodes represent genes and edges represent interactions between

the genes. Colors of the nodes and the edges are identical to Supplementary Figure S6.5.
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Figure S6.7: Degree to which pathways identified in the two distinct ethanol sweeps overlap. For

each selective sweep the identified connected network components identified by IAMBEE are repre-

sented. If two connected components identified in distinct sweeps overlapped in two or more genes this

component was considered to overlap between both sweeps. Mutations in overlapping network com-

ponents are likely to driving the adaptation to higher ethanol tolerance, while components unique to

one of the two selective sweeps are likely necessary for either early adaptation or fine-tuning higher

tolerance in later steps of the evolution.
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Mutual exclusivity to detect cancer

driver genes

7.1 Introduction

This chapter presents the development of SSA-ME, a network-based method which

can analyze large genomic datasets in the context of cancer. SSA-ME uses the con-

cept of mutual exclusivity to patterns of mutual exclusive mutated genes within

the dataset. As mutual exclusivity is computationally expensive to calculate, SSA-

ME uses a biological interaction network and a reinforcement learning heuristic

to restrict the search space and produce an approximate but adequate result within

reasonable time. SSA-ME was tested on all cancer datasets belonging to PAN-

cancer [55] and was able to predict the involvement of a couple of rarely mutated

genes.

SPT, BW, DDM and KM conceived the study. SPT, BW and DDM devel-

oped the SSA framework. SPT and BW developed, tested and analyzed the perfor-

mance of the SSA application to mutual exclusivity. SPT, BW and KM wrote the

manuscript. All authors reviewed the manuscript.
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7.2 Paper

SSA-ME Detection of cancer driver genes using mu-
tual exclusivity by small subnetwork analysis
Pulido-Tamayo, S.†, Weytjens, B.†, De Maeyer, D., Marchal, K. (2016). SSA-ME Detection of cancer
driver genes using mutual exclusivity by small subnetwork analysis. Scientific Reports, 6: 36257.

† these authors contributed equally to this paper

7.2.1 Abstract

Because of its clonal evolution a tumor rarely contains multiple genomic alter-

ations in the same pathway as disrupting the pathway by one gene often is suf-

ficient to confer the complete fitness advantage. As a result, many cancer driver

genes display mutual exclusivity across tumors. However, searching for mutually

exclusive gene sets requires analyzing all possible combinations of genes, leading

to a problem which is typically too computationally complex to be solved with-

out a stringent a priori filtering, restricting the mutations included in the analysis.

To overcome this problem, we present SSA-ME, a network-based method to de-

tect cancer driver genes based on independently scoring small subnetworks for

mutual exclusivity using a reinforcement learning approach. Because of the al-

gorithmic efficiency, no stringent upfront filtering is required. Analysis of TCGA

cancer datasets illustrates the added value of SSA-ME: well-known recurrently

mutated but also rarely mutated drivers are prioritized. We show that using mu-

tual exclusivity to detect cancer driver genes is complementary to state-of-the-art

approaches. This framework, in which a large number of small subnetworks are

being analyzed in order to solve a computationally complex problem (SSA), can

be generically applied to any problem in which local neighborhoods in a network

hold useful information.

7.2.2 Introduction

Because of internationally coordinated efforts such as TCGA [55, 304] and ICGC

[56], a vast number of cancer datasets are publicly available. Using these datasets

to identify mutations and pathways driving cancer phenotypes has become an ac-

tive field of research [165, 245, 305, 306].

Efforts to search for driver genes in cancer tend to use single-gene tests, e.g.

identification of significantly mutated genes based on background mutation rates

(MutSigCV [264], MuSiC [265]), identification of genes which are enriched in
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mutations with high functional impact (Oncodrive-FM [305]) or identification of

genes involved in tumorigenesis based on the spatial distribution of their muta-

tions (somInaClust [307]). Most single-gene methods heavily rely on recurrent

mutations in single genes across samples, thereby risking to miss rarely mutated

genes.

Other methods do not perform their analysis at single gene level, but at the

level of gene sets by exploiting the clonal properties of cancer. Tumorigenesis and

tumor progression follow a clonal evolutionary model [308–311]. This has two

consequences: first different tumors evolve independently. It has been shown that

different tumors evolve by triggering the same driver pathways but not necessarily

by affecting the same genes. Tumors thus display recurrent mutations at pathway

level rather than at single gene level. A second property of the clonal evolutionary

model is mutual exclusivity. In this view, the disruption of a single gene in a molec-

ular pathway often yields the complete fitness advantage associated with disruption

of that pathway, making additional mutations in the same pathway redundant11.

This evolutionary property can be exploited to understand cancer mechanisms and

identify driver mutations by searching for groups of genes that display mutual ex-

clusivity with each other (i.e. groups of genes which have mostly one mutation per

tumor).

A first series of methods that analyze gene sets assume that, because of the

clonal properties of cancer cells, recurrent mutations should occur at the pathway

level rather than at single gene level. These methods search for gene sets rather

than single genes that display a certain property (high functional impact score,

high frequency of mutations) and that are closely connected on an interaction net-

work. This connectivity constraint reduces the search space in possible number of

genes sets that have to be evaluated. As these methods (e.g. HotNet2 [124]) rely

on propagating information on an interaction network, they require information to

be defined at the gene level (e.g. mutation frequency or gene scores).

A second series of methods make use of the mutual exclusivity property to analyze

gene sets. They usually search for patterns of mutually exclusive genes (e.g. Den-

drix [245], MultiDendrix [244] and CoMEt [312]). The identification of groups of

genes showing mutual exclusivity across patients in large datasets has already been

proven useful for the detection of driver mutations/pathways in single cancer types

such as triple-negative breast cancer [313], Lung Adenocarcinoma [244] and in a

pan-cancer setting [124,314]. Due to the combinatorics properties of the problem,

these methods apply stringent upfront filtering to be able to analyze the data.

Some methods combine both clonal properties i.e. they search for mutual ex-

clusivity and for recurrently mutated pathways (sets of mutually exclusive genes

that tend to occur in pathways). However, because the mutual exclusivity infor-

mation can only be defined at the level of gene sets and not at the level of single

genes, using the network does not sufficiently constrain the combinatorics of the

problem. Because these methods have to analyze a large number of combinations
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of genes, the problem typically gets computationally too complex to be solved.

Consequently, these methods use upfront filtering to reduce this computational

complexity, thereby reducing the number of genes to analyze. Doing so, methods

as MEMo [165] and mutex [269] filter upfront based on mutational frequency and

are thus unable to take into account rarely mutated genes.

In order to provide a framework to assess mutual exclusivity while incorporat-

ing biological pathway information without the need for stringent upfront filtering,

we developed SSA-ME (Small Subnetwork Analysis with reinforcement learn-

ing to detect driver genes using Mutual Exclusivity). SSA-ME is a computational

tool that searches for genes that show mutual exclusivity and that are closely con-

nected on an interaction network to prioritize drivers. It uses a novel methodology

named Small Subnetwork Analysis with reinforcement learning (SSA) that divides

a complex problem, i.e. finding driver genes that exhibit mutual exclusivity, into

many simpler ones by calculating measures for mutual exclusivity in many small

subnetworks. By solving these simpler problems iteratively, each time biasing the

search space based on results of previous iterations, SSA-ME can prioritize poten-

tial driver genes with linear algorithmic complexity. This, in principle, allows it to

process large input datasets in short computational times and therefore, in contrast

to previous approaches, requires little upfront filtering.

To assess the performance of SSA-ME we analyzed each of the 12 TCGA

Pan-Cancer tumor types [314]. Despite adding many more mutations to the input,

we could prioritize well-known drivers that are found to be recurrently mutated in

different tumors. However, in addition to prior findings we could prioritize several

genes that displayed mutual exclusivity and pathway connectivity with well-known

drivers, but that were rarely mutated in the different tumors and were missed by

other methods that search for mutual exclusivity.

7.2.3 Results

7.2.3.1 SSA-ME implementation

To identify cancer driver genes, we developed SSA-ME, a method that searches

for small subnetworks of the interaction network containing mutated genes that

show mutual exclusivity. SSA-ME approaches the complex problem of detecting

driver genes by solving many independent and less complex sub-problems. In each

sub-problem the method scores a set of genes which are close to each other in the

interaction network for mutual exclusivity. SSA-ME scores many of these small

subnetworks for their potential to contain genes exhibiting mutual exclusivity. Us-

ing these small subnetwork scores in a reinforcement learning framework allows

prioritizing individual genes that are likely involved in the cancer phenotype.
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The method is outlined in Figure 7.1. SSA-ME searches the local neighbor-

hood around a set of predefined seed genes. In this case, the seed genes correspond

to all genes mutated in at least one sample. In each iteration step of the algorithm,

genes in the neighborhood of a seed gene are selected into a small subnetwork

with a chance proportional to their gene scores (which are chosen to be uniformly

distributed in the first iteration). These small subnetworks are subsequently scored

based on the mutual exclusivity signal of the genes in each small subnetwork. Indi-

vidual gene scores are updated proportional to the mutual exclusivity scores of the

selected small subnetworks to which they belonged. Updating of the gene scores

modifies the likelihood with which each gene will be selected in subsequent itera-

tion steps. The iterative process continues until the method converges to a solution

or a maximum number of iterations is reached. The output of SSA-ME consists

of a ranked list of prioritized potential drivers supported by bootstrap and an in-

teractive network visualizing the prioritized drivers together with supporting files

compatible with Cytoscape [126].

Figure 7.1: Overview of SSA-ME. The input consists of a matrix containing genomic alterations

(i.e. mutations or copy number alterations, among others) across patients (depicted as black tiles) and

a human reference network. In a first initialization step, every gene which has at least one genomic

alteration across all patients is selected as a seed gene (colored genes in the network). The gene scores

(represented as the opacity of the genes in the networks) are uniformly set to a value of 0.5. In every

subsequent iteration step, small subnetworks will be generated, starting at every seed gene. Every gene

adjacent to the small subnetwork has a chance proportional to its score to be incorporated in the small

subnetwork. When a certain size has been reached the small subnetwork generation will stop and a

score for each selected small subnetwork will be calculated based on the mutually exclusivity pattern

found within this small subnetwork. At the end of every iteration step these small subnetwork scores

will be used to update gene scores, altering the chance of genes to be incorporated into the small

subnetwork in subsequent iteration steps. Upon convergence it can be seen that a few genes have high

scores while others have scores close to 0. Genes are ranked based on their gene scores which reflects

their potential to belong to a mutual exclusivity pattern.
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7.2.3.2 Performance on simulated data

To evaluate the robustness of the method with respect to the used reference net-

work, we applied SSA-ME on a simulated dataset in combination with a high

quality human reference network and underconnected/overconnected versions of

this reference network (with respectively 10%, 25% and 50% of the network edges

being deleted or added). Per network, 100 simulations were performed. Each sim-

ulated dataset contained a target gene set of mutually exclusive genes consisting

of maximally 20 genes that are connected on the reference network and that were

mutated in 30% of the samples (see Materials and Methods).

Applying SSA-ME on each simulated dataset resulted in a ranked gene list.

The top x% of the gene list were considered as driver genes. Performance was

evaluated by plotting the sensitivity versus the specificity where the sensitivity

is defined as the percentage of genes belonging to the target gene set that was

retrieved amongst the x% highest ranked genes and the specificity is defined as the

proportion of genes not present in the target gene set that were correctly classified

as non-drivers. The results are shown in Figure 7.2 A for the highest ranked genes

as this is the range that is of biological relevance (correctly identifying positives).

The full ROC plot and the sensitivity/PPV plots can be found in Supplementary

Figure S7.1.

(Figure 7.2 A) indicates that the best performance is obtained using the refer-

ence network without added or deleted edges, as for the same relative increase in

sensitivity less false positives are predicted (lower relative increase in 1-sensitivity).

The method shows in general a high resilience of the results to using an overcon-

nected network. In this case the method is capable of successfully prioritizing most

of the genes in the mutually exclusive gene set with a low number of false positives

(which is the range we envisage when only showing the values of the 1-specificty

between 0 and 0.01). With an underconnected network the maximal sensitivity that

can be reached will get restricted as some of the genes that show mutual exclusivity

can no longer be connected in the network.
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Figure 7.2: Performance on Simulated Data. A) Robustness of the predictions with respect to the used

reference network. The X-axis represents 1-specificity and the Y-axis represents sensitivity (ROC curve).

Underconnected networks lead to lower performance while overconnected networks result in similar,

although lower, performance as compared to the performances obtained with the original network.

Note that, for clarity reasons, the range of the x-axis is restricted to [0, 0.01]. B) Heat map depicting

parameter sensitivity. Area under the ROC curve (AUC) values for every analyzed parameter pair are

depicted. Warm colors depict higher AUC values while cold colors depict lower AUC values. It can

be seen that the best performance is achieved on the diagonal for combinations of reinforcement and

forgetfulness of 1. C) Plot visualizing convergence and stability of convergence of gene scores. The

X-axis represents the number of performed iterations, the Y-axis displays all genes in the reference

network (black lines in the plot) and the Z-axis represents the gene scores. All genes start on the right

side with a gene score of 0.5. Most of them converge fast to 0 or 1. As no inflecting lines are observed,

convergence is stable. Results are shown on a plot depicting scores for all genes at every iteration

step. D) Plot showing linear time complexity of the algorithm with respect to the number of seed genes.

Each dot on the plot represents the time to convergence of a separate run. Per tested number of seed

genes, 10 simulations were performed. Results were obtained by running the algorithm on one single

processor Intel(R) Xeon(R) CPU E5-2670 0 2.60GHz.

To assess the sensitivity of the method versus its parameter settings we ran

SSA-ME on the same simulated data each time using a different combination of the

reinforcement and forgetfulness parameters. Reinforcement determines the maxi-

mal value by which a gene score can be increased in the next iteration. Forgetful-

ness determines the fraction of the gene score that is retained in each subsequent

iteration. Hereby reinforcement values were varied from 0.0005 to 0.0100 in steps

of 0.0005. Forgetfulness values varied from 0.99 to 0.9995 in steps of 0.0005. Note

that values of the forgetfulness closer to 1 imply that less is forgotten and values
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of reinforcement are consistently lower than the ones of the forgetfulness to en-

sure that only true positives will be reinforced. For each parameter combination

10 simulated datasets were analyzed. The performance per parameter combination

was assessed using the mean value of the area under the ROC curve (Figure 7.2

B). In general, a low performance is obtained if the forgetfulness is relatively low

compared to the reinforcement. In those settings false positives might become re-

inforced relatively more than some weak or isolated true positives. However, when

the forgetfulness is close to 1, the performance is more robust to the choice of the

reinforcement value. Alternatively, when the forgetfulness is too high compared

to the reinforcement, true positives retain too little gene score which results in a

more random selection of nodes, hence incorporating more false positives. Best

performances were obtained on the diagonal where the sum of the values of r and

f is close to one: r+f = 1. In most cases, a combination where the sum of the rein-

forcement and the forgetfulness is higher than one results in lower performances

because then again the reinforcement becomes relatively high compared to the

forgetfulness, resulting in relatively more false positives.

To show that the method converges to a stable solution, we ran it on one sim-

ulated dataset for 50.000 iterations. Figure 7.2 C shows that the method exhibits

a consistent behavior, i.e. after a gene obtains a high gene score, it will remain

consistently high or vice versa. Furthermore, this figure shows that the algorithm

converges, provided a sufficient number of iterations have been performed.

To analyze its complexity with respect to the number of seed genes, we ran

SSA-ME on 10 different simulated datasets, each time using an increasing num-

ber of seed genes (ranging from 1 to 8000 genes). Datasets contained incremen-

tally more added seed genes. Seed genes were added gradually according to the

frequency with which they were found mutated in the different tumor samples,

hereby assuming that the most frequently mutated genes are the ones that in a real

setting would also be prioritized as the most promising seeds. These runs were

repeated on 10 different simulated datasets. Results are visualized in Figure 7.2 D

and clearly show the linear complexity of the algorithm with respect to the number

of seed genes.

7.2.3.3 Analysis of TCGA data

To test the biological relevance of SSA-ME, we applied it to each of the Pan-

Cancer TCGA cancer datasets [314]. In this section we primarily focus on the well-

studied Breast cancer dataset as a benchmark but also show the most interesting

results of the Pan-Cancer analysis. All remaining Pan-Cancer TCGA results can

be found in the online version of this paper.

For the analysis we used a high quality human interaction network (see Mate-

rials and Methods). As seed genes we used all genes carrying at least one somatic
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mutation or copy number alteration in any of the samples. After running SSA-ME,

genes were prioritized as putative drivers based on their ranks by using a cut-off on

the ranked list. This cut-off was chosen to provide a good trade-off between sensi-

tivity and precision (i.e. an adequate positive predictive value (PPV) based on the

genes present in the Cancer Gene Census (CGC) [315] as true positives) (Figure

7.3 A). Note that the PPV represents a lower boundary on the actual number of

true positive predictions as all genes not present in the CGC are regarded as false

positives. This is particularly true in this analysis because CGC defines known

cancer genes merely based on their somatic mutational load: This excludes genes

implicated in cancer based on expression values, epigenetics, germline variants

and amplifications/deletions if it is deemed that the amplification/deletion cannot

be attributed to a single or a few genes with a sufficient amount of evidence [315].

In the breast cancer dataset, we identified 34 potential driver genes. Figure 7.3

B displays these genes in the form of an interaction network where the nodes are

genes and the edges are interactions connecting them. Because of the nature of

the method this prioritized gene list contains putative drivers, but also linker genes

that connect genes showing mutual exclusivity but that are not mutated themselves

in any of the breast cancer samples. These linker genes are therefore not drivers

within the available tumor samples, but have driver potential as they were found to

connect drivers through the network.

Most of the prioritized genes (26 out of 34) have previously been mentioned in

catalogues of genes implicated in cancer (CGC, NCG or the most relevant Malac-

ard) (Supplementary Table S7.1). 2 genes of 26 (CDC42 and BCL2L1) were se-

lected as linker genes (i.e. did not display alterations in the breast cancer dataset).

CDC42 is a candidate cancer driver according to NCG and is also listed in the

Breast cancer malacard. BCL2L1 is mainly associated with colorectal cancer and

lung cancer [316–318] through gene expression changes and is also selected as a

driver mutation in other TCGA datasets (see below). This confirms the driver po-

tential of the identified linker genes. Amongst the prioritized genes, 9 are rarely

altered (in ¡ 1% of the samples, at most 10 alterations in the breast cancer dataset,

i.e. BCL2L1, CDC42, DDX5, AKT1, VAV2, EPHA2, CRK, UFD1L, NGFR and

APC), indicating our method is able to also prioritize genes with few genomic al-

terations. For genes with such low mutational load it is impossible to statistically

or visually prove mutual exclusivity. These rarely mutated genes are retrieved by

SSA-ME, despite having few mutations, when they exhibit at least partial mutual

exclusivity with the surrounding genes in the network. If these surrounding genes

exhibit sufficient mutual exclusivity with each other, the rarely mutated gene is

selected based on its association with that pattern of mutual exclusivity. The fact

that of the 10 rarely mutated genes, 5 (BCL2L1, CDC42, DDX5, AKT1 and APC)

are listed in cancer gene databases indicates such association-based selection is

useful.
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Figure 7.3: Application of SSA-ME on TGCA Breast Cancer dataset. A) Determination of the num-

ber of genes to be prioritized as cancer drivers. Genes were ranked according to their gene score

obtained by SSA-ME. The X-axis represents the number of genes in the list of prioritized genes ob-

tained by setting a cut-off on the rank. The Y-axis represents the positive predictive value (PPV) for

the genes present in each list that corresponds to a given rank threshold. The PPV is defined as the

number of true driver genes prioritized divided by the number of prioritized genes. Note that the true

driver genes are defined as all genes present in CGC. At the chosen threshold (arrow) 34 potential can-

cer drivers were prioritized. B) Subnetwork obtained after using SSA-ME on the TGCA breast cancer

dataset. Genes are represented by nodes. If the gene had been associated with cancer, this is indicated

by the color of the database in which the association was described. Gray genes correspond to genes

not present in the Census of Cancer Genes, Malacards (breast cancer) or the Network of Cancer Genes

database. The size of the node reflects the number of samples in which a gene was found mutated.

To uncover the driving force behind the selection of the prioritized genes, the

five small subnetworks with the highest mutual exclusivity scores (see Materials

and Methods) were retained for each prioritized gene. As an illustrative example

the mutual exclusivity pattern of the union of these networks is shown for EPHA2,

one of the prioritized genes that was rarely mutated in breast cancer and not listed

in any of the used reference cancer databases. The EphA2 receptor is involved

in multiple cross-talks with other cellular networks including EGFR, FAK and

VEGF pathways, with which it collaborates to stimulate cell migration, invasion

and metastasis [319]. We did prioritize EPHA2 as a driver in breast cancer, despite

its relatively low number of mutations. This because it showed (near) perfect mu-

tual exclusivity with the well-known drivers PIK3CA, GAB2, PAK1 and RPS6KB

and all members of the PI3K pathway known to act downstream of EPHA2. These

results were confirmed by the visualization of the mutual exclusivity patterns at

pan-cancer level (Figure 7.4). The clear mutual exclusivity of EPHA2 with the

aforementioned genes at pan-cancer level are mainly due to the contribution of

the Head and Neck squamous cell carcinoma tumor samples (HNSC) in which

EPHA2 was found to be more frequently mutated. Consistently, EPHA2 was also

highly prioritized by our analysis of the HNSC dataset (see Supplementary Ma-
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terial available in the originally published online version of this paper). The il-

lustrative example shown in Figure 7.4 also demonstrates that although SSA-ME

is not designed to retrieve the largest mutual exclusive subnetwork, the selected

small subnetworks that drive the selection of the prioritized genes do show mutual

exclusivity. Note that PAK1 and GAB are by definition not mutually exclusive as

they belong to the same amplicon (see Supplementary results).

Figure 7.4: Mutual exclusivity pattern for EPHA2.Green tiles depict copy number gains, orange

tiles depict somatic mutations and red tiles depict losses of copy number. The top figure is the mutual

exclusivity pattern for EPHA2 in the breast cancer dataset. The middle figure is the same pattern but

with PIK3CA and TP53 left out in order to allow zooming in on the least frequently mutated genes. The

bottom figure provides the pan-cancer view of the pattern detected in breast cancer (also with PIK3CA

and TP53 left out). Patterns were created with Gitools [320].

Figure 7.5 shows that the somatic mutations carried by the 34 prioritized genes

follow a CADD [321] score distribution significantly higher (Wilcoxon rank sum

test, W= 44197000, p= 2.2x10-16) than the CADD score distribution of all present

somatic mutations, pointing towards the functional relevance of at least some of

the mutations carried by the predicted drivers. Of the 34 ranked genes, 10 genes

were not listed in cancer gene databases (VAV2, EPHA2, BCL2L1, CRK, GAB2,

TPS6KB1, UFD1L, NGFR, MCL1 and PAK1) based on CGC version 77, NCG

5.0 or the Malacards Breast Cancer category version 1.11.724. To further inves-

tigate these putative cancer drivers, we compared the distributions of the mutual

exclusivity scores of the small subnetworks derived from respectively the real and

randomized data to which the putative driver genes belonged (Supplementary
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Figure S7.2). These results indicate that the mutual exclusivity scores of the sub-

networks from which the prioritized genes were derived were always significantly

higher in the real than in the randomized data, even when accounting for the fact

that the mutual exclusivity scores decrease globally when using randomized data

(Supplementary Table S7.2).

Figure 7.5: Analysis of selected genes. CADD score distribution of all mutations (left histogram), and

of the set containing the mutations in the genes prioritized by SSA-ME (right histogram). The X-axis

depicts the CADD score and the Y-axis depicts the frequency of mutations having a CADD score within

a certain range.

We also ran SSA-ME on the remaining 11 Pan-cancer datasets (see supplemen-

tary materials in the online version of this paper). In order to identify promising

candidate driver genes, we identified the genes that were recurrently prioritized

as driver genes in different Pan-cancer datasets. Interesting prioritized genes in-

clude VCAN (identified in STAD, LUAD, BLCA and fell just out of PPV cutoff in

UCEC), UBE2I (identified in OV, STAD and fell just out of PPV cutoff in HNSC)

and BCL2L1 (identified in OV, BLCA, COADREAD, LUAD, UCEC and LUSC).

BCL2L1 was selected in 7 out of 12 analyzed cancers. While it was selected as

a linker gene in BRCA, it has primarily gain of copy numbers in OV, BLCA,

COADREAD, LUAD, UCEC and LUSC. Further literature-based evidence for the

most interesting putative driver genes from the BRCA dataset and the PAN-cancer

dataset can be found in Supplementary results and Appendix C respectively.
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7.2.3.4 Comparison with other methods

To compare SSA-ME to other methods, we obtained the results of MutSigCV

[264], MutSig2CV [322], Mutex [269] and Oncodrive-FM [305] when run on

the TCGA Breast cancer data. MutSigCV and MutSig2CV are representatives of

single-gene prioritization methods that test whether a gene is mutated more than

expected by chance. Oncodrive-FM prioritizes by searching for genes that are en-

riched in mutations with a high functional impact. Mutex searches for mutual ex-

clusivity modules using a reference network.

We used the positive predictive value using genes mentioned in CGC as true

positives to compare the performance of the different methods to each other. These

results are depicted in Figure 7.6 A. From this it can be seen that SSA-ME per-

forms about equally well as its competitors given the evaluation criteria. In all

cases the methods will be penalized for finding relevant novel predictions not

present in CGC. As the known drivers might be biased towards unknown prop-

erties (e.g. mutational recurrence) it is hard to predict which methods will be af-

fected most by false negatives in CGC. The relative under/over performance of

certain methods over other methods should therefore be interpreted with care.

Figure 7.6 B shows to what extent the different methods prioritize the same

genes. For each method we selected from the top 61 ranked genes (61 is the num-

ber of genes ranked by SSA-ME after bootstrapping on the top 100 ranked genes

prior to bootstrapping) only those present in CGC and we show their overlap. We

used genes present in CGC to reduce the number of false positives for this anal-

ysis. As expected, the more similar the concept of two methods, the more similar

their results. The single gene methods MutSigCV and Mutsig2CV are comparable

and SSA-ME shows the highest relative overlap with Mutex as both methods are

network-based and use mutual exclusivity. However, in general SSA-ME selects

several known cancer genes that were not selected by any of the other methods

(58% of genes selected by SSA-ME), indicating the complementary of SSA-ME

to the other methods in selecting drivers. The complementarity with single gene

methods is understandable given that SSA-ME uses different properties (mutual

exclusivity of a gene set rather than frequency-based properties of single genes).

Part of the difference between SSA-ME and Mutex can be explained by the dif-

ference in filtering (we can find more genes as we do not need to apply a stringent

criteria). Remaining differences might relate also to the fact that Mutex uses, as an

integral part of the method, a directed signaling network different from the inter-

action network used by SSA-ME. Note that the genes selected by SSA-ME show

a very low number of mutations in some genes. For example, of the 18 genes se-

lected only by SSA-ME, 7 genes contained less than five mutations compared to

just one of the 19 genes selected only by MutSig2CV and MutSigCV together.

This indicates that SSA-ME is complementary to the other methods in finding

rarely mutated driver genes.
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Figure 7.6: Comparison between SSA-ME and related methods. A) The positive predictive value

(PPV) of the results of multiple methods when analyzing the breast cancer dataset. The PPV is defined

as the number of true driver genes prioritized divided by the number of prioritized genes. Note that the

true driver genes are defined as all genes mentioned in CGC. B) Overlap of prioritized driver genes

between the different methods. Venn diagram created with VENNY [323]
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A widely used method that is conceptually most similar to SSA-ME is MEMo

as it also uses mutual exclusivity over an interaction network. However, we were

not able to run MEMo on the used datasets so we could not directly include it in the

comparison described above. In order to compare the results with MEMo, we ran

SSA-ME on the 2012 TCGA BRCA data using the same criteria to filter the input

data as was used in the original MEMo publication. It can be shown that we are

able to find largely the same results in this case. The main advantage of SSA-ME

compared to MEMo is that SSA-ME can be run on larger, much less stringently

upfront filtered, datasets. The result of this comparison is in Supplementary Notes.

7.2.4 Discussion

We introduce SSA-ME, a tool for prioritizing cancer driver genes using mutual

exclusivity with SSA (Small Subnetwork Analysis). SSA is a small subnetwork

analysis technique with reinforcement learning which solves a complex combi-

natorial search problem over an interaction network by calculating, in this case,

measures for mutual exclusivity in many small subnetworks. The framework can

be generically applied to any problem in which local neighborhoods in a network

hold useful information.

Here we applied SSA to prioritize cancer driver genes that are in each others

neighborhood in the interaction network and at the same time display mutual ex-

clusivity across different tumor samples (referred to as SSA-ME). To overcome

the inherent high algorithmic complexity posed by its combinatorial nature, the

problem of identifying drivers is iteratively solved and in each iteration multiple

small subnetworks are independently analyzed for mutual exclusivity. All results

of these small subnetwork analyses are used in subsequent steps to bias the search

space. The advantage of splitting the complex problem into multiple less complex

problems, is that SSA-ME is not restricted by the number of mutated genes in the

input data. By circumventing the stringent filtering strategy that is required by most

other methods to evaluate mutual exclusivity, SSA-ME can identify drivers that are

rarely mutated. These mutations are normally lost when an upfront filtering is used

based on the mutation frequency across samples.

When prioritizing drivers by searching for closely connected genes on an in-

teraction network that exhibit mutual exclusivity, the incompleteness of the inter-

action network might lead to an underestimation of the number of potential driver

genes. Missing edges in the interaction network could refrain the method from

connecting some driver genes. Given we search for small subnetworks, our method

shows resilience towards incomplete or underconnected networks as was shown by

the simulated data and was able to find drivers even when mutual exclusivity had

been heavily disrupted.

The search for small subnetworks comes at the expense of never explicitly
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searching for the largest patterns of mutual exclusivity. Such largest patterns of

mutual exclusivity can only be approximated by merging small subnetworks with

high scores to which a prioritized gene belongs. They provide a good approxima-

tion but there is no guarantee that all genes within such pattern are mutual exclusive

with each other.

The performance of SSA-ME in terms of a positive predictive value based on

known genes associated with cancer was comparable to widely used methods. An

important observation is the fact that, while the SSA-ME and the other driver iden-

tification methods share some findings, SSA-ME was also able to prioritize a large

number of genes not found by any other method, indicating the complementarity

between SSA-ME and the other methods. In contrast to the single-gene methods,

SSA-ME relies also on the use of the interaction network and mutual exclusivity.

As compared to MEMo and Mutex, which use an interaction network and mu-

tual exclusivity, SSA-ME is the only method that can deal with a large number of

input mutations and is therefore able to use mutual exclusivity to drive the gene

prioritization.

7.2.5 Materials and Methods

7.2.5.1 SSA-ME

Small Subnetwork Analysis with reinforcement learning to detect driver genes us-

ing Mutual Exclusivity (SSA-ME) is an algorithm that uses an interaction network

to detect driver genes by exploiting mutual exclusivity in cancer. To accomplish

this, SSA-ME performs two independent functions in an iterative manner: small

subnetwork selection/scoring and reinforcement learning. Each gene (node) in the

interaction network is initialized with a uniform gene score. Then, iteratively: start-

ing from a set of seed genes, small subnetworks are selected favoring genes with

high gene scores. Each selected small subnetwork is then scored based on how well

the genes composing the small subnetwork exhibit mutual exclusivity. Genes that

consistently belong to small subnetworks with high mutually exclusivity scores

are more likely to be selected in subsequent iterations. This will lead to high gene

scores for genes which are involved in local gene sets showing mutual exclusivity,

and therefore are possible drivers. The pseudocode describing the algorithm can

be found in Figure 7.7.

Initialization

The algorithm is initialized by giving each gene (node) an initial gene score of 0.5.

A static list of seed genes is defined that contains genes which are possibly driver

mutations. Any type of biologically relevant filtering can be used to generate such

gene list. In the context of this paper, seed genes are defined as all genes that were
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found to be altered in at least one sample (tumor).

Figure 7.7: Pseudocode of SSA-ME algorithm.

Small subnetwork selection and scoring

Within each iteration step small subnetworks of equal size are selected. Starting

from every seed gene, subnetworks are selected by subsequently adding a gene

which is connected to the current subnetwork, expressing the assumption that mu-

tually exclusive genes are likely to be located in the same adaptive pathway. In

order to evaluate gene sets of different sizes for mutual exclusivity, the size of the

small subnetworks varies from 3 to 6 genes between iterations. The probability of

adding a gene to a small subnetwork is proportional to the gene scores of genes

connected to the small subnetwork. Once constructed, each small subnetwork re-

ceives a mutual exclusivity score (MES). Each sample (tumor) contributes to this

score with a weight that is inversely related to the number of genes from the small

subnetwork that were found mutated in that sample using following equation:

MES(sn) = ∑v∈V

√

∑s∈S

1

m(s,v,V )
(7.1)

Where V are the genes present in small subnetwork sn ordered according to the

number of samples in which these genes were found to be mutated (from large to

small). S is the set of samples pending to contribute to the mutual exclusivity score.

Initially S includes every sample with a mutation in one of the genes in the small

subnetwork, but every time a sample is used to calculate m(s,v,V) it is removed

from S. In this way a sample can only contribute once to MES(sn). m(s,v,V) is
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the number of genes in V which are mutated in sample s with the restriction that

sample s must have a mutation in v, otherwise sample s is not yet used to calculate

m(s,v,V). m(s,v,V) will be equal to 1 if the genes in patient s are all members of a

perfect mutual exclusive pattern and |V | if all genes in s are also mutated in all other

samples. The square root allows giving relatively higher mutual exclusivity scores

to small subnetworks for which each gene is mutated in approximately the same

number of samples (Figure 7.8). When an unambiguous ordering of the samples

is not possible due to an identical number of mutated genes in multiple patients,

MES(sn) is calculated for every possible ordering and the resulting MES(sn) is

taken as the mean of these results. Next, the MES are ranked from highest to

lowest and their ranks are divided by the maximum rank (Figure 7.8). We end up

with a ranked MES (rMES) between zero and one where zero refers to the small

subnetwork having the least evidence for mutual exclusivity and one refers to the

small subnetwork having the most evidence for mutual exclusivity.
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Figure 7.8: Calculation of MES and corresponding rMES scores for three different small subnet-

works. Genes which make up the small subnetwork are represented as columns, patients are represented

as rows. Genes with alterations in a specific patient are depicted as black tiles. Small subnetworks

exhibiting perfect mutually exclusivity patterns (two most left small subnetworks) have higher rMES

scores than small subnetworks with non-perfect mutual exclusivity patterns (most right small subnet-

work). Also, small subnetworks having a more uniform distribution of gene alterations across patients

have higher rMES scores as shown by the two most left small subnetworks.

Reinforcement learning

Using the rMES for each small subnetwork, the reinforcement learning step up-

dates gene scores based on two parameters: reinforcement and forgetfulness. The

reinforcement is a parameter that determines the maximal value by which a gene

score can be increased in the next iteration. The reinforcement is multiplied by the

highest rMES score of all small subnetworks to which the gene belongs, so the

gene score of genes which are consistently in small subnetworks with high rMES

scores will further increase with iterations. The forgetfulness determines the frac-

tion of the gene score that is retained in every subsequent iteration. This means

that part of the gene score is effectively lost every iteration step and thus the gene

scores of genes having persistently low scores will go to zero. To calculate gene

scores, the following formula is used:

gi+1 = gi ∗ f ∗ [1+ r ∗ max
sn∈SNg

rMES(sn)] (7.2)

Where gi is the gene score at iteration i, f is the forgetfulness, r the reinforce-

ment and SNg the set of small subnetworks containing the gene. If the gene score

resulting from the formula is larger than 1, it is topped off at 1 as the maximal

gene score can never be larger than 1. The default parameters of the method are

forgetfulness f =0.995, reinforcement r=0.005 and 5000 iterations. In general, the
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sum of forgetfulness and reinforcement should be close to 1 and the reinforcement

should be small (smaller than 0.01). This because small values for forgetfulness

or large values for reinforcement would make the algorithm prone to stochastic

effects. Note that genes which are not part of any small subnetwork are assigned a

value of zero for max rMES(sn).

In a final step we assign a rank to each gene that reflects the possibility of it

being a driver gene. Hereto we exploit the fact that driver genes that exhibit mutual

exclusivity tend to have a consistent increase in their gene score between iterations

over time. Genes are ranked according to the maximal gene score they reach and

in case of ties are based on how fast their score converges.

Bootstrapping

In order to eliminate predicted driver mutations which are likely artefacts of spe-

cific samples in the data, we perform a bootstrap analysis. Here, we randomly sam-

ple with replacement an equal number of tumor samples as in the original dataset

and run SSA-ME on this new dataset. Each bootstrap dataset will contain some

duplicate samples but will also lack some samples from the original dataset. For

each dataset we generate and evaluate 1000 bootstrap datasets. We then evaluate

these results by assessing at which minimal rank threshold (the rank threshold is

the highest (worst) rank still considered in the calculation of the bootstrap support

across all bootstrap results) a gene can attain a bootstrap support of 95% (selected

in at least 95% of bootstrap results). We do this by gradually increasing the rank

threshold. The final rank of the genes is based on the order in which this 95% boot-

strap support is attained by the genes, the highest ranked gene being the gene which

attained a bootstrap support of 95% using the most strict minimal rank threshold.

7.2.5.2 Simulated data

To assess the performance of SSA-ME we used simulated data. The set of true pos-

itive driver genes was defined first by creating a target gene set of mutual exclusive

genes which in biological terms corresponds to a driver pathway. The target gene

set was generated using a random walker with restart (5% restart chance) to se-

lect genes from the local network neighborhood of a randomly selected gene until

20 interactions have been visited in a high quality human reference network. This

high quality human reference network was composed of HINT [324] version 3,

Interactome (HI-II-14) [325] and Reactome [326] interaction data.

To mimic real tumor data, we counted the number of mutated genes present

in each tumor sample in the TCGA 2012 study and assigned an equal number of

alterations to random genes, thus conserving the distribution of mutated genes per

sample. We added mutually exclusive mutations to genes present in the target gene

set in 30 % of the samples. Each sample had 5% chance to also be mutated in any
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of the other genes belonging to the mutually exclusivity gene set as we allowed for

non-perfect mutual exclusivity module.

To evaluate the robustness of the method with respect to the used reference net-

work, multiple simulated datasets were analyzed for different degrees of connect-

edness in the high quality human reference network: highly underconnected (50%

of the edges were deleted from the reference network), mildly underconnected

(25% of the edges deleted), lowly underconnected (10% edges deleted), origi-

nal network (i.e. the high quality human reference network), lowly overconnected

(10% additional random edges added to the reference network), mildly overcon-

nected (25% additional edges) and highly overconnected (50% additional edges).

We generated 100 different simulated datasets per network and ran SSA-ME. Per-

formance was measured by receiver operating characteristic (ROC) curves.

To assess parameter sensitivity, we tested the effect of using different parame-

ter combinations on the performance. This included 400 simulations for all com-

binations of reinforcement r (from 0.0005 to 0.0100 in steps of 0.0005) and forget-

fulness f (from 0.99 to 0.9995 in steps of 0.0005). Performance for each parameter

combination was measured using the area under the curve (AUC).

7.2.5.3 TCGA Data

TCGA data was downloaded from GDAC Firehose [327–329]. We used somatic

mutations annotated by MutatorAssesor [330] together with copy number alter-

ations (CNAs) inferred with GISTIC [331]. We removed samples containing more

than 500 genomic alterations to avoid taking into account hypermutator samples.

In our analysis only copy number altered genes in samples with high-level thresh-

olds (threshold 2 in GISTIC) for amplifications/deletions and for which copy num-

ber alteration showed a positive correlation (q < 0.05) with expression data were

used. Prioritization results were obtained by running SSA-ME on a non-stringently

filtered input set, consisting of all genes having at least one genetic alteration (mu-

tation or amplification/deletion) in the dataset. As a high quality human reference

network we compiled information data from HINT [324] version 3, Interactome

(HI-II-14) [325] and Reactome [326]. Results for MutSigCV and MutSig2CV

were downloaded from GDAC Firehose [332, 333]. Results for Mutex were taken

from supplementary of the original paper [269]. Results for Oncodrive-FM were

obtained by running Oncodrive-FM using default settings and functional impact

scores (SIFT [334], mutation assessor [330] and PolyPhen2 [335]).
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7.2.5.4 Patterns of mutual exclusivity

SSA-ME searches for small subnetworks that display a high degree of mutual ex-

clusivity. To visualize the patterns of mutual exclusivity for any prioritized gene,

SSA-ME selects the five best subnetworks (with highest MES score) to which that

prioritized gene belongs. In many cases the five best small subnetworks to which

the prioritized gene belongs, overlap and thus the union of these genes is used as

a pattern of mutual exclusivity with the prioritized gene. However, as we do not

explicitly impose the constraint that within such a union there should be mutual

exclusivity, there is no guarantee that all genes within the retrieved pattern are mu-

tually exclusive. It is perfectly possible that such a union consist of two separate

patterns of mutual exclusivity, each involving the prioritized gene.
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Supplementary

7.2.9 Supplementary results

7.2.9.1 Comparison with MEMo

In order to compare the results of SSA-ME with those of MEMo, a method that

searches for mutual exclusivity patterns using an interaction network, we obtained

the results from MEMo on the TCGA 2012 breast cancer dataset [304] and ran

SSA-ME on the same TCGA 2012 dataset, which was obtained directly from the

TCGA breast cancer analysis portal. To maximize comparability between our re-

sults and those of MEMo, we reproduced to the best possible extent the filtering

approach and network of the original MEMo study to run SSA-ME.

The used network is a non-curated network consisting of Reactome [326], Pan-

ther [336], KEGG [337], INOH [338] and interactions from non-curated sources

like high-throughput derived proteinprotein interactions, gene co-expression, pro-

tein domain interaction, GO annotations, and text-mined protein interactions [339].

The genetic alteration data was prepared according to the description in the origi-

nal paper, i.e. only retaining genes that were altered in at least ten samples.

Just like Mutex, MEMo is primarily designed to detect patterns of mutual ex-

clusivity but does not explicitly extract drivers. To compare the results of MEMo

with these of SSA-ME and because of the high similarity of the mutual exclu-

sivity patterns detected by MEMo in the original paper (patterns consisting of

maximally 8 genes that varied in most cases in no more than one gene), we col-

lapsed the 23 genes of all patterns found by MEMo and depicted them as a network

(Supplementary Figure S7.3 A). The subnetwork obtained by SSA-ME consisted

of 33 genes (applying a FDR cutoff, as described in the main text) of which 18

were also found in the MEMo network (Supplementary Figure S7.3 B). 5 genes

retrieved by MEMo were not detected by SSA-ME: 3 genes (NBN, CHECK2 and

MDM4) because they were no longer present in the filtered list we used as input,

whereas they must have been present in the original input of MEMo: in contrast

to what has been described in the original TGCA paper we found these genes to

be mutated in less than 2 samples and therefore removed them from our analysis,

the score of ATM just fell below the chosen threshold of the ranked list of SSA-

ME (ATM ranked 36 whereas with the chosen cut-off we only retained the 33 top

ranked genes) and ATK3 was truly missed in our analysis as the small subnetworks

to which it belonged never received consistently high scores during subsequent it-

eration steps.

On the other hand, we found 10 additional genes that were not retrieved by

MEMo. Some of these additional genes had previously been associated to breast
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cancer (AR and ESR1) or to cancer in general (MUC4 and CCDN1). The reason

why we detect more genes than MEMo is partially due to the choice of the cut-

off, but also because of the inherent differences in selection criteria between the

methods: MEMo searches for patterns of mutual exclusivity in which all genes

need to be mutually exclusive which each other (have to pass a permutation test)

whereas the mutual exclusivity criteria of SSA-ME are less stringent. Also, our

method does not require stringent filtering which leaves the possibility of selecting

rarely mutated genes.

These results thus show that SSA-ME is able to reproduce largely the same

results as MEMo, provided the same input data are used. Genes that are highly

ranked by MEMo are also highly ranked by SSA-ME.

7.2.9.2 Literature-based evidence for predicted cancer drivers in the breast

cancer dataset

Of the 34 ranked genes, 8 genes were not listed in cancer gene databases (MCL1,

GAB2, RPS6KB1, CRK, NGFR, EPHA2, VAV2 and UFD1L) based on CGC ver-

sion 77, NCG 5.0 or the Malacards Breast Cancer category version 1.11.724. These

genes are discussed below. Some of these are well known cancer drivers not re-

ported in CGC, because they contain CNVs rather than somatic mutations. For

selected genes which are not listed in cancer gene databases, for which the muta-

tions are mainly SNPs and which have at least 20 SNPs in all pan-cancer datasets

combined (to ensure the pattern can be visually convincing), we show the uncov-

ered mutual exclusivity profiles (EPHA2 and VAV2 showed).

MCL1 was found frequently (64 times) amplified in the dataset. MCL1 is in-

volved in apoptosis modulation and signaling [340]. Its alterations by CNVs have

been reported in literature before [341]. It has been associated with a number of

cancers because of its involvement in the regulation of apoptosis versus cell sur-

vival [342].

Both GAB2 and PAK1 were frequently amplified (respectively 58 and 61 times)

in the TCGA breast cancer dataset. Both genes belong to the same amplicon as the

well-known breast cancer driver CCND1 [343], which was in concordance also

frequently amplified. However, because it cannot be excluded that more genes in

the same amplicon are causal to cancer and because CCND1, GAB2, and PAK1

each show a strong mutual exclusivity with a subset of selected genes closely re-

lated in the network, each of them might act independently from one another as

a true driver. Whereas both CCND1, a regulatory protein involved in mitosis, and

PAK1, a protein belonging to the family of serine/threonine p21-activating kinases

that are involved in cytoskeleton reorganization and nuclear signaling, have been

reported in at least one of the cancer related databases, GAB2 is not. GAB2 was

prioritized because of its mutual exclusivity and close network connectivity with
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amongst others PIK3CA, PTEN and EPHA2 (Figure 7.4). GAB2 is a scaffolding

adapter protein that transduces cellular signals between receptors (tyrosine kinase

receptors) and intracellular downstream effectors (PI3K, SpH2) and is required

for efficient ErbB2-driven mammary tumorigenesis and metastatic spread by act-

ing downstream of ErbB2 [321, 344]. Interestingly, it was also shown that a focal

amplification of GAB2 independently of CCND1 in breast tumors contributes to

diverse oncogenic phenotypes in breast cancer by activating, amongst others, the

PI3K pathway, further confirming the role of GAB2 as primary driver in breast

cancer [345].

RPS6KB1 was found to be frequently (77 times) amplified in the TCGA breast

cancer dataset. RPS6KB1, encoding a ribosomal S6 kinase 1 (S6K1) is a member

of the frequently mutated PI3K pathway and has been reported to be involved in

cell proliferation and protein translation. A link between the S6K1 function and

cancer was suggested by the finding that RPS6KB1 resided in the chromosomal

region 17q22-17q23 and was often amplified in lung and breast cancers [346,347].

Other genes we prioritized were not listed in cancer gene databases but were

previously associated with cancer because of their expression behavior expression.

The signaling adaptor protein Crk has been shown to play an important role in

various human cancers. In the used breast cancer dataset CRK only had one SNP.

The CRK family proteins all act as molecular bridges between tyrosine kinases and

their substrates and modulate the specificity and stoichiometry of signaling pro-

cesses. Evidence suggests that cellular Crk proteins are overexpressed in human

tumors and that expression levels correlate with aggressive and malignant behav-

ior of cancer cells [348]. Using RNAi-mediated knockdown, Fathers et al. [349]

have shown in their study that CRK is required for cell migration and invasion of

metastatic breast cancer cells in vitro and for metastatic growth in vivo. However,

a mechanistic understanding of Crk proteins in cancer progression in vivo is still

lacking, partly because of the highly pleiotropic nature of Crk signaling [350].

NGFR (nerve growth factor receptor). It had 1 SNP in the BRCA dataset.

NGFR inactivates p53 by promoting its MDM2-mediated ubiquitin dependent pro-

teolysis and by directly binding to its central DNA binding domain and preventing

DNA-binding activity. Biologically, cancer cells hijack the negative feedback reg-

ulation of p53 by NGFR to their growth advantage, as down regulation of NGFR

induces p53-dependent apoptosis and cell growth arrest as well as suppressed tu-

mor growth [351]. Overexpression of NGFR has been observed in many metastatic

cancers and promotes tumor migration and invasion [352–354].

The EphA2 receptor is involved in multiple cross-talks with other cellular net-

works including EGFR, FAK and VEGF pathways, with which it collaborates to

stimulate cell migration, invasion and metastasis [355]. It had 7 mutations in the

BRCA dataset (3 SNPs, 1 amplification and 3 deletions). While its overexpression
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has been correlated to stem-like properties of cells and tumor malignancy as for

instance in colon cancer, less information is available on the role of EPHA2 as

a driver gene. We did prioritize EPHA2 as a driver in breast cancer, despite its

relatively low number of mutations. This because it showed (near) perfect mutual

exclusivity with, amongst others, the well-known drivers PIK3CA, PTEN, GAB2

and RP6KB1, and all members of the PI3K pathway known to act downstream of

EPHA2. A recent study shows that rare SNPs in receptor tyrosine kinases, amongst

which EPHA2, can be associated with negative outcome. This further points to-

wards the clinical relevance of these less frequently mutated drivers [356]. See

(Figure 7.4) for the retrieved mutual exclusivity pattern of EPHA2 in BRCA and

in all pan-cancer datasets.

VAV2 was also prioritized in the breast cancer dataset but rarely mutated (only

2 mutations in BRCA). VAV2 is a gene involved in altering cell shape and mi-

gration and has previously been associated with metastasis in breast cancer [304].

It was prioritized because of its association with PIK3CA and ERBB2, a signal-

ing subnetwork that was shown in literature to be involved in ovarian tumor cell

migration and growth through activation of PI3K in HER2 ovarian tumors. This

activation leads to the recruitment of actin and actinin to ERBB2, which then colo-

calizes with the VAV2 guanine nucleotide exchange factor to induce Rac1 and

Ras signaling and the concomitant activation of ovarian tumor cell migration and

growth [357]. See (Supplementary Figure S7.4) for the retrieved mutual exclu-

sivity pattern of VAV2.

UFD1L was prioritized in BRCA but has only 1 SNP. As there is only limited

evidence to support the involvement of UFD1L in tumorigenesis [358] we cannot

rule out UFD1L is a false positive.
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7.2.10 Supplementary figures and tables

Figure S7.1: Robustness of the predictions with respect to the used reference network. The X-axis

represents 1-specificity and the Y-axis represents sensitivity. Underconnected networks result in a lower

performance while overconnected networks result in similar, although lower, performance to the true

network. Complete ROC curve.
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Figure S7.2: Differences in mutual exclusivity scores of small subnetworks derived from respec-

tively real and randomized datasets. Note that in order to have complete information about the mutual

exclusivity scores of the small subnetworks to which a specific gene can be assigned we, for each ran-

domized dataset and also for the real data, ran the algorithm 100 times and each time retained the

mutual exclusivity score of the subnetwork with which that gene is associated upon convergence of

the method. This leads to the score distributions depicted in these figures. A) Distributions of mutual

exclusivity scores of the small subnetworks in randomized datasets (orange) and the real dataset (blue)

for some putative driver mutations prioritized by SSA-ME. B) Distribution of mutual exclusivity scores

of the small subnetworks in randomized datasets (orange) and the real dataset (blue) for all genes. C)

Graph showing per gene the average score of the small subnetworks it belonged to upon convergence

of the algorithm as derived from the real data (X-axis) and from the randomized data (Y-axis). Mutual

exclusivity scores are normalized by the size of the small subnetworks. Randomization were performed

by shuffling gene names. See (Supplementary table S7.2) for the confidence intervals of the differences

in mutual exclusivity scores between randomized datasets and the real dataset for the putative driver

genes and all genes together.
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Figure S7.3: Comparison between SSA-ME and MEMo. Prioritized driver networks obtained by

MEMO as retrieved from the original mutually exclusive modules outlined in the breast cancer TCGA

paper (Panel A) and obtained by SSA-ME using the filtered data (Panel B). Genes are represented as

nodes. Colors refer to the databases in which associations of the indicated genes with breast cancer

or cancer have been described. Gray genes were not found to be associated with breast cancer/cancer

according to the used reference databases. The right figure in panel B represents the PPV analysis of

results obtained by SSA-ME. The Y-axis represents the PPV according to the reference databases. The

X-axis represents the number of genes in lists of prioritized genes of increasing order. The size of the

gene list was determined by ranking the genes according to their gene scores and counting the number

of genes with a rank lower than a given threshold. The Arrow indicates the thresholds that was chosen

to select the genes in the network. We choose the threshold on the ranked list so that an adequate

trade-off between sensitivity and precision was obtained.
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Figure S7.4: Mutual exclusivity patterns of selected genes. Green tiles depict copy number gains,

blue tiles depict somatic mutations and red tiles depict losses of copy number for all these patterns.

A) Mutual exclusivity pattern of VAV2. The top figure visualizes the pattern in the BRCA dataset in

which the pattern was originally detected. The bottom figure provides the pan-cancer view of the same

pattern. TP53 and PIK3CA, which were also part of the pattern, were omitted from the visualization to

allow zooming in on the less frequently mutated genes. B) Mutual exclusivity patterns of VCAN. Top

panel shows the pattern in each of the three pan-cancer datasets in which the pattern was prioritized

(LUAD, STAD and BLCA). The bottom figure provides the pan-cancer view of the same pattern. The

genes shown correspond to the intersection of the genes present in the 5-best small subnetworks which

showed highest mutual exclusivity values for each dataset in which VAV2 was prioritized (LUAD, STAD

and BLCA). TP53 which was also part of the pattern but was omitted from the visualization to allow

zooming in on the less frequently mutated genes.
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Table S7.1: Ranked genes for the BRCA dataset. For every gene it was checked if it was

present in a database of known (or putative) cancer genes (CGC,NCG or Malacards).

GeneSymbol CGC NCG Malacards

PIK3CA TRUE TRUE TRUE

TP53 TRUE TRUE TRUE

CCND1 TRUE TRUE TRUE

MYC TRUE TRUE TRUE

PTEN TRUE TRUE TRUE

PAK1 FALSE TRUE FALSE

PIK3R1 TRUE TRUE FALSE

CDH1 TRUE TRUE TRUE

DDX5 TRUE TRUE FALSE

ERBB2 TRUE TRUE TRUE

RPS6KB1 FALSE TRUE FALSE

UFD1L FALSE FALSE FALSE

RB1 TRUE TRUE FALSE

APC TRUE TRUE FALSE

STAT3 TRUE TRUE TRUE

GAB2 FALSE FALSE FALSE

EPHA2 FALSE FALSE FALSE

FOXA1 TRUE TRUE FALSE

EGFR TRUE TRUE TRUE

VAV2 FALSE FALSE FALSE

MAP3K1 FALSE TRUE TRUE

CRK FALSE FALSE FALSE

BRCA1 TRUE TRUE TRUE

AKT1 TRUE TRUE TRUE

NGFR FALSE FALSE FALSE

MDM2 TRUE TRUE TRUE

RHOA FALSE TRUE FALSE

MCL1 FALSE FALSE FALSE

MYB TRUE TRUE TRUE

ATM TRUE TRUE TRUE

CDC42 FALSE TRUE FALSE

BCL2L1 FALSE FALSE FALSE

MTOR FALSE FALSE TRUE

AR FALSE TRUE TRUE
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Table S7.2: 95% confidence intervals for the difference in mutual exclusivity scores be-

tween randomized data sets and the real data set.Note that, as the 95% confidence intervals

of any putative driver gene does not overlap with the 95% confidence interval of all genes to-

gether, the putative driver genes are involved in small subnetworks with significantly higher

mutual exclusivity scores than expected by chance.

GENE 95% confidence Interval

all data 1.777 1.788

MCL1 4.940 5.594

VAV2 3.344 3.843

CRK 2.519 2.958
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7.3 Critical reflections and future work

The above manuscript shows that a method which uses an interaction network to

find sets of genes that are mutually exclusive in a (large) population of cancer

patients is useful and that an objective function to uncover such gene sets, that

trades of mutual exclusivity and coverage, is adequate to fulfill this task.

While the proposed method has proven its value, after publication algorithm

was reassessed and certain aspects were identified which could be improved. As

this would benefit the general applicability of the method and possibly allow the

method to analyze larger datasets with higher accuracy and precision, these as-

pects are being re-implemented at the time of writing in the form of a new algo-

rithm which nevertheless adheres to the same foundations as SSA-ME, being the

trade-off between mutual exclusivity and coverage. This section enumerates and

discusses these aspects.

In order to solve the highly combinatorial problem of finding sets of genes

which exhibit mutual exclusivity, SSA-ME uses a reinforcement learning approach

based on the ideas of ant colony optimization which were originally applied to

solve the traveling salesman problem, which is also a combinatorial problem [359,

360]. As explained in the manuscript, this involves a multitude of agents which

traverse the network in multiple rounds and in each round decide which edges to

take based on a dynamic gene score which is assigned to the nodes. At the end

of each round the gene scores are updated based on the extent to which the node

was part of an important gene set (based on an objective function). After some

time the agents only visit the ”important” parts of the network and the involved

genes will have high gene scores and are thus prioritized. While this method works

in all cases analyzed in the manuscript, It is based on a complex heuristic that

propagates the effects through the network. For this heuristic it is hard to prove

convergence (when one group of genes has high gene scores while the other has

very low). Furthermore the results might be sensitive to the initial values of the

edges. This means that for some specific datasets the method might not converge

(in final time) to a solution or extensive testing of the initial values of the edges

has to be done in order to find a satisfactory solution. Furthermore, this strategy of

exploring the search space does not guarantee to find the most optimal gene sets

as it is prone to local optima. A possible alternative to explore the search space

would be to enumerate and evaluate all possible paths of a fixed length against

an objective function using a random walk approach and subsequently check the

nodes which occur in a large number of high scoring gene sets for larger interesting

gene sets as such an approach would exhaustively check the network for gene sets

of a fixed size and does not rely on convergence. Such an approach is currently

under development and preliminary results show an increase in PPV in comparison

with other methods when analyzing large populations and populations for which

germline mutations are available.



7-34 MUTUAL EXCLUSIVITY TO DETECT CANCER DRIVER GENES

The calculation of the MES score for a specific gene set is shown in equation

7.1. This equation reflects three important aspects of a desirable gene set: mutual

exclusivity of the observed mutations in the patients (more mutual exclusive is

more desirable), coverage (more mutations in the genes is more desirable) and a

uniform distribution of mutated genes over the patients (more uniform is more de-

sirable). The equation is rather complex as it requires the patients in S to be sorted

in a specific way prior to computation and S is altered during execution. Therefore

pseudocode for the formula is provided in Figure 9. This complexity can lead to

confusion in cases were multiple patients have an identical number of mutations

as the score of the gene set can be different depending on the ordering of such

patients. Therefore, the algorithm will compute all possible orderings and take the

mean of them as the score for the gene set. This, together with the observation that

the three important aspects of the formula cannot be independently tuned which

might prove useful in different use cases, prompted us to design a more elegant

objective function for use in a future implementation. This function will certainly

retain the three aspects as they have proven to work well but could, for example,

be a weighted sum of these aspects so the function can be easily tuned for other

cases.

Figure 9: Pseudocode for MES calculation.
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Overall conclusions and perspectives

8.1 Conclusions

This thesis embodies work done over the past four years. During this time the aim

was to develop three subnetwork inference methods which could cope with the

analysis of omics data from different experimental designs. Each of these methods

uses the (biological) specificities of the experimental design at hand together with

an interaction network of the organism under research to infer a subnetwork of

the interaction network which explains the observed omics data. All three were

successfully tested and validated on publicly available or in-house data.

In chapter 4 it was shown that an in-house subnetwork inference method, Phe-

Netic [6,162], could be applied to differential expression datasets, even in the con-

text of a naturally occurring multi-species consortium. This consortium consisted

of three bacterial species which together were capable to efficiently degrade the

herbicide linuron but could not do so efficiently in isolation. Therefore, RNA-seq

data was generated for the bacteria degrading linuron in consortium conditions and

in isolation. By performing differential expression analysis, using PheNetic, multi-

ple metabolic pathways which were likely involved in the studied mechanism were

uncovered. Having obtained this proof-of-concept, it was realized that the method

could be adapted for use in different experimental designs.



8-2 OVERALL CONCLUSIONS AND PERSPECTIVES

The network-based method developed in chapter 4 roughly consists of three

steps: first the network is weighted based on the available data, then a pathfinding

step in which paths between differentially expressed genes are gathered, based on

a biologically motivated definition, is performed. The edges of the network are

weighted based on 1) differential expression data which is obtained from measur-

ing expression data for a population in two different conditions and 2) the topol-

ogy of the network. The found paths are given probabilities based on the weights of

their edges. Finally, an optimization step in which the method reasons about which

is the optimal subnetwork is performed. The optimal subnetwork is found by opti-

mizing an objective function using the paths found in the pathfinding step. In order

to achieve the aim of analyzing experiments with different experimental designs,

in chapters 5 and 6 the network weighting and pathfinding steps are adapted to

incorporate the available data and biological specificities of these datasets. The

results are methods which respectively can be used with expression data coupled

with genomics data from evolution experiments and with solely genomics data

from evolution experiments which include hypermutator phenotypes. The follow-

ing two paragraphs briefly explain how the method was altered to allow analysis

of these experiments.

In chapter 5 two evolution experiments were analyzed: one in which four pop-

ulations of an E. coli strain were evolved to resist the drug Amikacin and one in

which a population of an E. coli strain diverged into two stably co-existing eco-

types during an evolution experiment in conditions with an elevated citrate con-

centration. In order to cope with these experimental designs, the method’s path

definition was adapted to analyze differential expression data coupled with ge-

nomics data. This was done by changing the pathfinding step to now search for

all paths which start in a mutated gene and end in any significantly differentially

expressed gene, keeping into account that a path should always go downstream

(the mutation should be the cause and the differentially expressed gene the ef-

fect). In addition, the aim was to also allow ranking of the mutated genes as this

is of importance when designing follow-up experiments in the lab. Ranking was

based on how strongly a mutated gene is connected to the expression data, and

thus how likely it is that it explains part of the phenotype. By performing a pa-

rameter sweep of the edge cost in the optimization function, optimal subnetworks

were identified for very stringent settings (only selecting very small subnetworks)

to very relaxed settings (selecting large subnetworks). We reasoned that mutated

genes which were identified in stringent settings as well as relaxed settings were

more strongly connected to the differential expression data than mutated genes

which were only selected in relaxed settings. The resulting method was effec-

tive in reconstructing the relevant molecular processes and in the prioritization

of mutated genes in two publicly available datasets. The method is available at

http://bioinformatics.intec.ugent.be/phenetic/#/index.

In chapter 6 a very specifically designed evolution experiment was analyzed:

16 different populations of a strain of E. coli were independently evolved in the
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presence of increasing concentrations of ethanol. The ethanol tolerance of these

populations, in terms of in what concentration of ethanol they could still grow,

was constantly assessed and the populations were sequenced before and after each

adaptive sweep (when a population significantly increases its tolerance). There

was, however, no expression data available because it was both costly and possibly

useless as all these populations had developed a mutator phenotype. By thoroughly

redesigning the pathfinding step, such challenging datasets consisting only of mu-

tation data and containing a lot of hypermutator phenotypes, were addressed. As

in this case the expression data could not be used to weight the interaction network

and drive the search for paths, a solution was found in the incorporation of addi-

tional data in the form of functional impact data (the predicted effect a mutation

has on the protein it encodes) and frequency increase (the increase in frequency

of a specific mutation during an adaptive sweep). This requires the sequencing of

clonal populations before and after an adaptive event, as was done, in order to de-

rive the frequency increase. On top of that, the definition of a biologically valid

path was changed to ”any path starting in a gene which is mutated in a population

and ending in any gene which is mutated in another population” because clusters

of mutations within a population are not interesting but molecular pathways which

are mutated in several populations are. This method, called IAMBEE, prioritized

several interesting mutated genes and gave insight in the molecular mechanisms

involved. It even allowed to generate a hypothesis about epistasis on the level of

molecular pathways. The most promising of these mutations were validated in the

wet-lab. IAMBEE is available at http://bioinformatics.intec.ugent.be/IAMBEE.

In chapter 7 we proposed a network-based method for the identification of

molecular pathways that lie at the basis of certain cancer types. This was done by

looking for patterns of mutations in molecular pathways which are mutually exclu-

sive (have at most one mutation in a cancerous cell) as it is known that molecular

pathways causal to cancer often exhibit this pattern. But while the network-based

methods derived from PheNetic perform well on datasets from (clonal) evolution

experiments, they could not be used directly to search for patterns of mutual ex-

clusivity in human cancer datasets. This is the case because mutual exclusivity is a

property of gene sets, not of individual genes and it is thus impossible to combine

the different found paths during the optimization step as the path scores do not hold

when combining them. As such, in the case of mutual exclusivity the combination

of two paths, which are both very mutual exclusive by themselves, is not neces-

sarily mutual exclusive. Instead, a multi-agent system using a heuristic approach

in the domain of reinforcement learning, called SSA-ME was developed. SSA-

ME was applied to all 12 cancer datasets in the TCGA PAN-cancer project [124]

and was able to recover important molecular pathways involved in cancer while

simultaneously predicting few rarely mutated possible cancer genes. As SSA-ME

was built modular and the specificities for mutual exclusivity are just an objective

function, SSA-ME can be used in different settings where subnetworks need to be

inferred based on a metric which is a property of a set. SSA-ME is available at

github (https://github.com/spulido99/SSA).
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The successful development of these methods shows that network-based meth-

ods are useful to analyze omics data in multiple experimental designs, but that no

one general method exists which is suitable in all cases. The method needs to ex-

ploit the data as well as the underlying biological mechanisms of the specific ex-

periment. It is therefore important that these methods are designed modular such

that specific parts can easily be adapted and additional functionality easily added.

In this thesis the most common experimental designs in evolution experiments as

well as genomics data in cancer were addressed.

8.2 Limitations

Interaction networks

While the developed methods performed well in the datasets presented in chapters

4 through 7, the availability of interactomics data for the organism is a prerequisite

for any network-based method to function properly. This limitation was clear in

chapter 4, where no complete interaction network could be constructed for Vari-

ovorax paradoxus WDL1 or Comamonas testosteroni WDL7. In order to construct

an interaction network, metabolic interactions of closely related organisms were

used but no transcriptional interactions and only a very limited amount of signal-

ing interactions could be recovered. However, for model organisms such as human,

Escherichia coli, Bacillus subtilis and Arabidopsis thaliana high quality interac-

tion networks are available. Therefore, when planning (evolution) experiments in

which the specific organism is not of primordial importance (for example when

the mode of action of resistance to a specific compound is studied in gram nega-

tive bacteria one could design the experiment using Escherichia coli) one should

opt for the use of a model organism. Luckily this is already common practice as the

wealth of information generated for model organisms in the past, such as gene and

GO annotation, are indispensable when analyzing experimental results in general.

For the study of naturally occurring organisms/populations on the other hand,

there is no choice and network-based analysis might be limited. As shown in

chapter 3, when working with organisms that have not been sequenced yet, the

genome can be assembled and annotated [97, 361] prior to reconstructing a net-

work. This network will be limited as regulatory and signaling interactions are

typically species-specific and cannot be inferred from mapping annotated genes

to curated interaction pathways, except when such interactions are available for a

closely related species. On top of that, specific metabolic interactions (such as for

example the catabolism of xenobiotics) will be missing. It was shown that even

with this limited (largely metabolic) network, network-based analysis could be

performed on omics data and yields interesting but possibly incomplete results.
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Comparison between different subnetwork inference methods

A multitude of subnetwork inference methods, which are usable in a variety of ex-

perimental designs, are now available but there is no consensus on which method-

ologies work best. This has three main reasons: 1) it is hard to compare differ-

ent subnetwork inference method due to the lack of a proper benchmark dataset,

2) subnetwork inference methods are often developed for a specific experimental

design or at least for use with specific input data and 3) the results of subnet-

work inference methods are dependent on the provided interaction network. Some

methods might be more robust towards more noisy, overconnected networks while

others may perform better in slightly underconnected networks which lack some

interactions. As interaction networks continue to grow, it is thus hard to propose a

benchmark interaction network.

It is possible that two subnetwork inference methods generate different subnet-

works when run on the same data set. Because of the reasons mentioned above it is

often hard to tell which of the methods performs best. Therefore, subnetwork infer-

ence methods are rarely compared to each other. Validation is performed by either

reconstructing the results of a small-scale experiments [118,311,362], by studying

well-known mechanisms so results can be easily compared to literature [312, 363]

and/or by using synthetic data [7].

Use of network-based methods

While it is shown that network-based methods can effectively analyze large omics

datasets in multiple experimental designs, it is important to emphasize that these

results should be used to guide further research, not replace it. Critical analysis

of the results is still needed as false positives are likely to be amongst the results.

However, in large and often complicated clonal omics datasets these methods can

significantly reduce the time and resources needed to analyze the results and in

some cases (as with hypermutators) analysis would be near-impossible without

the help of network-based methods.

8.3 Perspectives

Non-coding part of genomes

All networks used in this thesis use protein coding genes as nodes. This means

that information on non-coding entities such as long non-coding RNA and miRNA

cannot be used as it cannot be mapped to any gene. However, in principle this data

could be added to the networks, provided that information regarding the position

of these components in the genome and interactions between these components

and genes (as it is known that these entities often have gene regulatory properties

[364]) is known. As this data is becoming available with the construction of on-
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line databases such as lncrnadb [365] it can now be readily added to these networks

and used provided whole-genome sequencing data is generated for the dataset to

be analyzed.

Networks in multi-organisms studies

Efforts such as the study of the human gut [366, 367] and other bacterial ecol-

ogy studies [368, 369] have been made in order to elucidate interactions between

multiple species in bacterial communities. In these, often large, communities of

species 16S rRNA is traditionally used to characterize the constituents of these

communities [370]. This data can then be used to correlate the presence/abun-

dance of taxonomic groups to clinical factors [371]. As these communities can

be very complex, containing up to 5000 unique genes [372], more recently meta-

transcriptomics studies have been performed on these communities in order to

gain a deeper understanding of these systems and how their constituents inter-

act [373, 374]. combining omics data such as RNA-seq data of the entire com-

munity with an interaction network might help to further uncover the functional

characteristics of such communities. As in practice it is impossible to readily have

interaction networks available for all identified (possibly unknown) species in a

community sample, a representation of the community would most likely be as-

sembled through functional annotation of the identified genes in the community to-

gether with known consensus pathways in the identified higher taxonomic groups.

In the past, using this reasoning only a limited number of network representations

to study metagenomics datasets have been proposed [375]. However, as a cell is

a closed system, metabolites and signaling molecules must be exchanged between

cells through the environment, using diffusion or active transport mechanisms to

expel or obtain them. This implies that a meta-interaction network should explic-

itly model the interactomes of the taxonomic groups separately, together with the

environment in which chemical interactions can occur [376, 377]. This makes the

assembly of a meta-interaction network challenging but once available, they can

be integrated with the network-based approaches presented here in the context of

bacterial datasets through minimal adaptation of the methods. The incorporation of

these meta-interaction networks in network-based methods is the logical next step

to expand the methods to new experimental designs and more complex biological

systems.

Increasing the resolution of interaction networks

Traditionally, the nodes of a biological interaction network represent genes/gene

products and the edges represent the interactions between these nodes [109]. This

implies that all data must be mapped to genes/gene products for use in the inter-

action network. The drawback of this approach is that only genes, not individual

mutations, can be selected. However, it would be interesting if one could pinpoint

the part of the gene (for example a causal mutation or a region in which causal

mutations occur) in which mutations can be responsible for some phenotype. For
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example in human cancer a specific BRAF mutation was correlated to a specific

drug treatment while other mutations in the same gene were not [378]. A possi-

bility for assessing such effects would be to expand the network representation by

duplicating the nodes which correspond to genes in which different ”subclasses” of

mutations can be identified (for example when multiple mutational hotspots [307]

can be identified within one gene or when a significant number of mutations of

specific types are found within one gene). Doing so, network-based methods could

select one specific ”subclass” of mutations in that gene.

From static to dynamic networks

Most available network-based methods, including the ones proposed in this thesis,

use static interaction networks [111, 124, 269, 362]. Static refers to the fact that

these networks are compiled a priori from available interactomics data and are not

changed during analysis. It is however known that mutations can cause interac-

tion networks to ”rewire”, as is required for evolution [379–381]. This rewiring

can potentially create interactions which are important to explain the observed

phenotype, leading to the inability of network-based methods which utilize static

interaction networks to explain the phenotype. A possible solution is to abandon

static interaction networks and allow the networks to be dynamic by encouraging

the method to infer new interactions while analyzing the data. A possible way

to achieve this would be to a priori propose a set of possible (and potentially

weighted) new interactions based on the data, for example by looking at muta-

tions within promotor regions or the DNA-binding domains of transcription fac-

tors. Given the data, a network-based method can then decide whether one or more

of the proposed interactions contributes significantly to an explanation of the data,

possibly inferring the existence of the new interaction.

Condition/tissue-specific interaction networks

Interaction networks are commonly compiled from publicly available databases

which gather interactomics data for specific organisms in different conditions,

and from different tissue types in case of multicellular organisms such as hu-

man [64, 80, 90, 100]. By merging this data without keeping into account in which

conditions/from which tissues the interactions were obtained, valuable information

is discarded and the resulting network will potentially be overconnected. This is

particularly true when investigating human cells, which are differentiated to use a

specific subset of molecular pathways. In the past efforts have been made to con-

struct condition-dependent and tissue-dependent interaction networks [382–385].

However, most network-based methods still do not use condition-dependent or

tissue-dependent interaction networks. As more experiments are being performed

and more condition/tissue-specific interaction data becomes available it will be-

come interesting to use them.

It can be concluded that network-based methods, although they have their
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limitations, are useful in clonal systems to analyze a multitude of different ex-

perimental designs involving different types of input data. This thesis specifi-

cally illustrated its use to discover differentially expressed molecular pathways

between two conditions, to perform genotype-phenotype mapping in evolution

experiments and to find patterns of mutual exclusive mutated genes in cancer

genomes. It is expected that over the years to come these methods will be fur-

ther expanded to include additional types of data such as proteomics and methyla-

tion data. Also, the networks and perhaps network representations will most likely

expand as more data concerning non-coding elements and molecular interactions

will become available. As more heterogeneous data will be incorporated in these

methods, it is my opinion that network-based methods will have to employ more

explicit biological reasoning when searching the interaction network as to assure

that the found mechanisms make biological sense and can be explained in a mech-

anistic manner.
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A
Additions to chapter 4

A.1 Additional results

A.1.1 Transcriptional responses in Variovorax sp. WDL1 when

grown in consortium conditions

Genes involved in polyhydroxybutyrate (PHB) synthesis from acetoacetyl-CoA

(K03821, K00626 and K00023) were overexpressed in consortium conditions as

well as a large fraction of the genes determining the anabolic pentose phosphate

pathway (K00615, K01623, K00616, K01835, K00036 and K00033) including

genes encoding the conversion of -D-glucose-6P to D-ribulose-5P and of D217

glyceraldehyde-3P to D-ribulose-5P and/or D-ribose-5P (Additional Figure A1).

Another important fraction (88 CDS) of the enzyme encoding genes that were dif-

ferentially expressed, were involved in amino acid metabolism and PheNetic se-

lected several differentially expressed pathways related to amino acid metabolism.

Genes encoding interconversion reactions between molecules of the glutamate

family were differentially expressed (Additional Figure A2). Similarly, genes

involved in the degradation of phenylacetate to acetyl-CoA in the phenylalanine

metabolism were largely overexpressed in consortium conditions (Additional Fig-

ure A3. Moreover, in cysteine and methionine metabolism, several genes that were

involved in cycling of the central metabolite S- adenosylmethionine (K01251,
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K00548, K00549, K00789) and genes involved in cysteine synthesis (K12339,

K00640) were underexpressed in consortium conditions (Additional Figure A4.

The differential expression of several genes encoding transporters involved in the

uptake of amino acid and carbohydrate molecules was also indicative of a metabolic

response upon co-culturing. Most of the transporters are members of the ATP-

binding cassette (ABC) superfamily. Changes in general cell metabolism were fur-

ther suggested by altered expression in pathways involved in sulfur and nitrogen

transport and metabolism. Pathways involved in sulfur transport and metabolism

were underexpressed in consortium conditions such as the synthesis of the sulfur

containing metabolite thiamine (K03147, K0315-4) as well as an operon spanning

three genes (K00390, K00381, K00957) involved in assimilatory sulfate reduc-

tion. Differentially expressed genes associated with nitrogen metabolism included

genes involved in ammonium and nitrate/nitrite transport (K03320, K02575), as-

similation of inorganic nitrogen via glutamine synthetase (K00370, K00373 and

K01915) and several nitrogen regulatory and sensor proteins (K07673, K07712

and K07708).

Also DNA metabolism appeared to be affected. Increased DNA synthesis in WDL1

when grown in consortium conditions is suggested by the underexpression of

degradation of purine and pyrimidine nucleotides (K00758, K01081), and overex-

pression of formation of deoxynucleotides (K02343, K02338, K01494, K00525).

See Additional Figure A5 and Additional Figure A6. In accordance with the sug-

gested increased DNA synthesis of WDL1, 20 genes involved in different mecha-

nisms of DNA repair and recombination were overexpressed (Figure 4.5 in chap-

ter 4). Also, a part of the porphyrin metabolism was selected by PheNetic. Addi-

tional manual analysis showed that genes involved in heme production (K01599,

K02495, K02492 and K01698) were overexpressed in consortium conditions. See

Additional Figure A7.

Besides the metabolic pathways that were mainly identified by Phenetic, additional

cellular systems were found to be differentially expressed between growth condi-

tions in WDL1 (Figure 4.5 in chapter 4). Several of those systems are related to

cell-to-cell interactions. These included overexpression under consortium condi-

tions of eight out of thirteen genes coding for a type VI secretion system (T6SS),

two genes that encode a toxin/antitoxin pair participating in systems mediating

contact- dependent inhibition (CDI), a gene encoding a putative adhesin and genes

encoding a putative quorum sensing circuit (Figure 4.5 in chapter 4). Interest-

ingly, the latter are located just downstream of linuron hydrolase encoding gene

hylA and encode a LuxR-type transcriptional regulator (K18098) and LuxI-type

acyl-homoserine lactone (AHL) synthase (K18096).

Another set of genes with altered expression are associated with stress response

indicating that WDL1 experiences cellular stress in consortium conditions. rpoH

and hrcA were overexpressed in consortium compared to monoculture conditions.

rpoH encodes sigma factor s32 which controls genes involved in heat shock re-
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sponse and protein homeostasis. Genes encoding chaperones DnaK, DnaJ, GroEL,

GroES, HtpG and ClpB and a zinc protease were all overexpressed, whereas grpE

was underexpressed. The log2-fold change values of all genes mentioned in this

paragraph can be found in Table 4.2 in chapter 4

A.1.2 Transcriptional responses elicited in C. testosteroni WDL7

when grown in consortium biofilms

Another operon that was strongly affected in WDL7 in consortium conditions was

the glycerate biosynthesis operon (gcl; K01608, K00042, K01816). This operon

is involved in the conversion of glyoxylate to glycerate and showed clear over-

expression in consortium versus monoculture conditions. Its overexpression in

consortium conditions was confirmed by transcriptional fusion reporter analysis

(Supplementary Figure S4.2 B in chapter 4). Furthermore, seventeen out of 53

genes coding for ribosomal proteins in WDL7 were overexpressed in consortium

conditions. Nearly one third of the genes belonging to an unknown prophage ele-

ment were underexpressed. In contrast to WDL1, no differentially expressed genes

involved in cell-to-cell interaction were identified in WDL7 while overexpression

was observed for only one gene that is related to stress (dnaK, log2-fold change

of -1.3) and underexpression for one gene related to DNA repair and recombina-

tion (K01247, log2-fold change of 1.1). The log2-fold change values of all genes

mentioned in this paragraph can be found in Table 4.2 in chapter 4

A.2 Additional discussion

A.2.1 Semi-synthetic benchmarking set

The WDL1 hylA gene encoding linuron hydrolase showed strong overexpression

in consortium conditions. The higher expression of hylA per cell in WDL1 under

consortium conditions is remarkable but can be at least partially explained by re-

cent observations that (i) WDL1 consists of two subpopulations, one carrying hylA

and lacking the 3,4-DCA downstream pathway and one that carries only the 3,4-

DCA pathway, and (ii) the linuron-hydrolyzing WDL1 subpopulation becomes

more abundant (up to 10 fold) when grown in consortium conditions than when

grown in monoculture, as shown by qPCR targeting hylA and the dca gene cluster

in other identically operated biofilm experiments (P. Albers, unpublished results).

Regardless of the dynamics of the linuron-hydrolyzing WDL1 subpopulation, the

overall higher abundance of hylA transcripts in consortium conditions suggests an

increased production of HylA, which can obviously be linked with the enhanced

degradation of linuron in consortium biofilms. The pcaFIJ operon consisting of
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three genes encoding the last steps in linuron conversion to TCA cycle intermedi-

ates, was underexpressed in WDL1 in consortium conditions. As in Sinorhizobium

meliloti, the pca operon of WDL1 is preceded by a regulatory gene that encodes an

IclR-type regulator which upon interaction with 3-oxoadipate results in induction

of the sinorhizobial pca operon [387]. This suggests that the pca operon in WDL1

is also inducible by 3-oxoadipate and that underexpression is possibly due to less

3-oxoadipate being used by WDL1 cells during consortium growth. On the other

hand, it could be speculated that a lower expression of the pca operon in WDL1 is a

consequence of catabolic repression by metabolic waste products or nutrients sup-

plied by the other strains [388]. Regarding the linuron catabolic genes in WDL7,

dcaB was the only gene of the dca operon of WDL7 that was slightly underex-

pressed in consortium condition. Other genes of the linuron catabolic operons of

WDL7 were all highly but not differentially expressed, supporting the assumption

that 3,4- DCA is a major carbon source for WDL7, not alone in monoculture, but

also in consortium biofilm conditions [172]. This observation further confirms that

there is metabolic association between WDL1 and WDL7 during linuron degrada-

tion.

A.3 Additional experimental procedures

A.3.0.1 Draft genome sequence of the consortium members

Cell cultures of strains WDL1, WDL6 and WDL7 for sequencing were prepared

as follows. WDL1 was plated from a cryoculture and grown on R2A [389] sup-

plemented with 20 mg L-1 linuron for 4 days at 25°C. WDL6 was plated and

grown on MMO agar plates supplemented with 1% (vol/vol) methanol [197] for

6 days at 25C; WDL7 was plated and grown on Luria-Bertani (LB) agar [390]

overnight at 25°C. A smear of colonies of WDL1, WDL6 and a colony of WDL7

was inoculated in R2B supplemented with 20 mg L-1 linuron, in liquid MMO

supplemented with 1% (vol/vol) methanol and in LB, respectively and cultures

were grown for 4 days, 4 days and overnight, respectively until exponential phase.

Genomic DNA was extracted from the cultures using the Puregene Core kit A (Qi-

agen) following the manufacturers instructions. A paired-end library (90 bp reads

with an insert length of 500 bp) of WDL6 genomic DNA was sequenced by BGI

Tech Solutions (Hong Kong) using the Illumina Hi-seq platform resulting into 418

MB of sequence information. Sequencing of the WDL7 and WDL1 genomes was

performed by Baseclear (The Netherlands) using Illumina Hi-seq based on 75 cy-

cle paired-ended reads with an insert length of 400 bp resulting in a total of 751

MB of WDL7 and 300 MB of WDL1 genomic sequence information. Nucleotides

with a PHRED quality score < 20 were trimmed from the end of raw reads and

trimmed reads with a length < 10 were discarded using the FASTX-Toolkit-0.0.12

software (http://hannonlab.cshl.edu/fastx toolkit/). Draft genome sequences were
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obtained by assembling the trimmed paired-end reads into contigs using Velvet

(version 1.2.01) with an optimized k-mer length of 41, 51 and 41 for WDL1,

WDL6 and WDL7, respectively and a minimal contig length of 100 bp [391].

The draft genomes were annotated using the web-based RAST server [203]. The

PHAST web server was used to identify prophages in the bacterial genomes [392].

Undetected or erroneously annotated linuron catabolic genes were identified and

reannotated manually. The details of the draft genome assemblies are summarized

in Additional Table A1.

A.3.0.2 RNA extraction, library preparation and sequencing

Biofilm cells were flushed out of the flow chambers by injecting and pipetting up

and down (10 times) 1 mL of ice cold RNase-stop solution (5% water-saturated

phenol/95% ethanol mixture diluted (1:5 v/v) in deionized water). The cells were

snap frozen in liquid nitrogen and stored at -80°C. After thawing on ice, biofilm

biomass was pelleted by centrifugation at 15,000 g for 2 min at 4°C and total RNA

was extracted using the SV total RNA Isolation kit (Promega) with minor modifi-

cations. Briefly, the pellet was resuspended in 100 L lysis buffer containing 50 mg

mL-1 chicken egg white lysozyme (Sigma-Aldrich) and incubated for 4 minutes at

room temperature. Further extraction was performed according to the manufactur-

ers instructions, except that after washing and dissolving in RNase-free water, the

nucleic acid extract was treated twice with TURBO DNase using a TURBO DNA-

free kit (Ambion). Lack of DNA contamination was verified by conventional PCR

targeting the 16S rRNA gene of WDL1 and WDL7 as described in Supporting Ex-

perimental Procedures. rRNA was removed from the RNA extracts through sub-

tractive hybridization using the MICROBExpressTM kit (Ambion) according to

the manufacturers protocol. The rRNA-depleted RNA was dissolved in nuclease-

free water. RNA quality and concentration were estimated by spectrophotometry

(NanoDrop) and gel electrophoresis (Experion, Bio-Rad) before and after rRNA

depletion.

1.0 -1.5 ng of rRNA-depleted RNA was used to construct RNAseq libraries using

the ScriptSeqTMv2 RNAseq Library Preparation kit (Epicentre) for three consor-

tium biofilms, three WDL7 monoculture biofilms and one WDL1 monoculture

biofilm. Only one WDL1 biofilm RNA extract was used since insufficient RNA

was extracted from the other two WDL1 monoculture biofilm samples. Index reads

were added to the libraries using the Scriptseq Index PCR Primers (Epicentre) and

the barcoded libraries were PCR amplified according to the manufacturers instruc-

tions. The Agencourt AMPure XP system (Beckman Coulter) was used to purify

both the 3-terminal-tagged cDNA and the final RNAseq library. Size distribution

of the libraries was assessed by agarose gel electrophoresis. Library cDNA con-

centrations were quantified using a QubitTM fluorometer (Invitrogen) and adjusted

to 2 nM. Since WDL6 represents about 10% of the total biovolume in consortium
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samples [174], the seven equimolar consortium and monoculture libraries were

multiplexed in a 5:1 volume ratio prior to sequencing to obtain sufficient transcript

reads of all strains in the consortium samples. Hundred cycle paired-ended reads

were obtained by Illumina Hiseq sequencing at the Genomics Core UZ Leuven

facility (KU Leuven).

A.3.0.3 Verification of differential transcription using transcriptional gene

fusions

Transcriptional gene fusions between the promotor regions of the glycerate biosyn-

thesis operon (gcl) and of the 3-oxoadipate catabolic operon (pca) of WDL7 with

the promoterless gfpmut3.1 in the broad host range vector pRU1097 were con-

structed in WDL7 and tested for expression in WDL7 monoculture and WDL1-

WDL7-WDL6 consortium biofilms as reported in Supporting Experimental Pro-

cedures.

A.3.0.4 Nucleotide sequence accession numbers

The draft genome sequences of Variovorax sp. WDL1, C. testosteroni WDL7 and

H. sulfonivorans WDL6 have been deposited at DDBJ/EMBL/GenBank under the

accession numbers LMTS00000000, LMXT00000000 and LMTR00000000.

A.4 Additional figures and tables

Table A1: Summary of draft genome sequencing results. *PExx = Paired-end sequencing

followed by a number that refers to the read length.

WDL1 WDL6 WDL7

N50 76000 94254 106400

Contigs>100bp 493 109 151

Coverage 24 44 45

Genome size (bp) 8,170,112 3,705,164 5,541,122

GC content (%) 66.4 61.1 61.5

Number of CDSs 7759 3496 5069

Sequencing details* PE 75 PE90 PE75

Total data size 575 MB 418 MB 751 MB
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Figure A1: Phenetic inferred map of part of the pentose phosphate pathway. Overexpressed and

underexpressed WDL1 genes in consortium conditions compared to monoculture conditions in green

and red, respectively.

Figure A2: Phenetic inferred map of interconversion glutamate family. Overexpressed and underex-

pressed WDL1 genes in consortium conditions compared to monoculture conditions in green and red,

respectively.
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Figure A3: Phenetic inferred map of part of the phenylalanine metabolism. Overexpressed and

underexpressed WDL1 genes in consortium conditions compared to monoculture conditions in green

and red, respectively.

Figure A4: Phenetic inferred map of part of the cysteine/methionine metabolism. Overexpressed and

underexpressed WDL1 genes in consortium conditions compared to monoculture conditions in green

and red, respectively.
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Figure A5: Phenetic inferred map of part of the pyrimidine metabolism. Overexpressed and under-

expressed WDL1 genes in consortium conditions compared to monoculture conditions in green and

red,respectively.
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Figure A6: Phenetic inferred map of multiple parts of the purine metabolism.
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Figure A7: Phenetic inferred map of part of the porphyrin metabolism Overexpressed and underex-

pressed WDL1 genes in consortium conditions compared to monoculture conditions in green and red,

respectively.
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Additions to chapter 6

B.1 Additional results

B.1.1 Hypothetical ethanol tolerance related pathways

Our analysis was able to select several molecular pathways that were previously

linked to the response to ethanol stress and to increasing ethanol tolerance. These

results show the potential of IAMBEE to comprehensively analyze complex mu-

tational datasets and select molecular pathways that are involved in the trait of in-

terest. Additionally, IAMBEE selected few molecular pathway that were not pre-

viously directly linked to ethanol tolerance, but that could hypothetically play a

role. These pathways are important, as they can provide new routes to genetically

engineer higher ethanol tolerance in industrially relevant strains. In what follows

we will shortly discuss some of these newly identified pathways and their possible

role in ethanol tolerance.

B.1.2 Transcription and translation

Other highly prioritized pathways are linked to transcription and translation. We

found a frequently mutated connected network component containing several well-
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known genes involved in transcription termination and anti-termination (rho, nusG

and nusA). Additionally, we found a frequently mutated subnetwork containing

translation-linked genes encoding for 30S ribosomal subunit proteins (rpsL, rpsD,

rpsB and rpsH) and the protein chain initiation factor infB. Selection of these path-

ways further corroborates earlier results that demonstrate early ethanol-induced

transcription termination and ethanol-induced translational misreading during pro-

tein synthesis. Mutations in genes involved in transcription or translation might

confer higher ethanol tolerance through compensation for these toxic effects [393–

395].

Remarkably, we observed co-occurrence of mutations prioritized in transcription

(anti-) termination factors, such as rho, nusA and nusG and ribosomal genes, such

as rpsB, rpsD, rpsL and rpsH. These are consistently observed in the same popula-

tions and follow the same trajectories, suggesting that they are dependent on each

other in driving the observed tolerance towards ethanol (Figure 6.4, Figure 6.5 in

chapter 6). This observation suggests an epistatic interaction that corresponds to

previous findings of Freddolino et al. who showed that mutations in rpsL increase

ethanol tolerance in a mutant rho background [396] and Haft et al. who demon-

strated the role in ethanol tolerance of epistatic interactions between a mutation in

rho and rpsQ [393].

B.1.3 Osmotic stress response

Of note, also the envZ-ompR two-component system that regulates outer mem-

brane porin genes in response to changes in extracellular osmotic pressure was

prioritized [273, 274]. Ethanol increases membrane fluidity, thereby causing leak-

age and osmotic stress as shown by Goodarzi et al. [260]. Mutations in envZ and

ompR suggest adaptations to the increased osmotic stress under high ethanol con-

ditions.

B.1.4 Amino acid biosynthesis

Finally, several of the prioritized pathways and genes are involved in amino acid

biosynthesis, such as isoleucine and valine biosynthesis (ilvD, ilvC, ilvB, ilvE, ilvI,

tdcB), alanine and phenylalanine biosynthesis (ilvE, alaA), methionine biosynthe-

sis (metE, metB, metH), biosynthesis of tetrahydrofolic acid, which is a precur-

sor in the metabolism of amino acids (folD, purH), a gene involved in arginine

biosynthesis (argH), and a gene involved in threonine and glycine biosynthesis

(itaE) [397]. A role of amino acid biosynthesis and transport in tolerance towards

ethanol stress has previously been suggested in yeast, because of impaired deliv-

ery of amino acids into the cell as a result of membrane functions being disrupted

by ethanol [398, 399]. Our results are also in line with those of Horinouchi et al.
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(2015) [400] who observed in their adapted ethanol tolerant strains upregulation

of several genes involved in amino acid biosynthesis. They attributed the upregu-

lation of amino acid biosynthesis genes to a significant decrease in expression of

genes related to the tricarboxylic acid (TCA) cycle and consequently of precursors

in amino acid biosynthesis [400].

B.1.5 DNA damage and repair

A molecular pathway of particular interest is the pathway containing genes in-

volved in DNA damage and repair, such as umuC, umuD, recF and recA. Both

UmuC and UmuD are subunits of the error-prone polymerase PolV, which is spe-

cialized in trans-lesion synthesis [401]. This polymerase has a LexA binding motif

in its promoter region and is consequently regulated by the SOS response [402].

Upon DNA damage, RecA binds to the single stranded DNA gap and induces

cleavage of the LexA repressor, resulting in activation of SOS genes necessary for

repair of the damaged DNA [403]. The selection of these genes strongly suggest

that ethanol causes DNA lesions and adaptation might occur through mutations in

genes involved in the repair. Interestingly, the rapA gene was also linked to this

pathway. RapA is an RNA polymerase recycling factor that enables recycling of

stalled RNA polymerases [404]. The selection of this gene further corroborates

the role of mutations found in rho, nusA and nusG, transcription termination or

anti-termination factors as described above.

B.1.6 Protein stress

Another interesting pathway contains genes involved in protein stress and protein

misfolding, such as dnaK, htpG and rpoH. Both DnaK (Hsp70) and HtpG (Hsp90

family) are chaperones involved in folding polypeptide chains and rescue of mis-

folded proteins [405,406]. They also interact with RpoH, the alternative sigma fac-

tor σ32, to control the heat shock response in response to temperature and increase

in misfolded proteins in E. coli [407]. Interestingly, overexpression of GroESL, an-

other chaperone system, was recently linked to increased viability upon exposure

to various organic solvents, such as ethanol and butanol [408]. Finally, the selec-

tion of this pathway substantiates the role of mutations found in rpsL rpsD, rpsB

and rpsH that possibly increase accuracy of translation by ribosomes as previously

discussed.
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B.1.7 Acid stress response

The resulting pathways also include one that contains rstA, which encodes for a

transcriptional regulator. RstA is involved in many biological processes, such as

acid tolerance [409]. Upregulation of genes involved in the acid stress response in

response to ethanol stress was previously reported [259, 260].

B.1.8 Pyrroloquinoline quinone biosynthesis

A rather peculiar pathway that was selected contains genes cyoB and pqqL. Little

is known on the function of PqqL. Interestingly, pqqL from E. coli was able to

complement pqqE and pqqF mutants from Methylobacterium organophilum [410].

The pqqEF genes are required for pyrroloquinoline quinone (PQQ) biosynthesis

in Methylobacterium extorquens [411]. PQQ on his turn is a prosthetic group that

is required for many bacterial dehydrogenases, including alcohol dehydrogenases

[411, 412]. Hypothetically, pqqL might also play a role in PQQ cofactor synthesis

that is required for the function of alcohol dehydrogenases in E. coli. Goodarzi et

al. (2010) previously discovered ethanol degradation through adhE as an adaptive

strategy to high ethanol stress [260]. The mutated pqqL might confer a similar

resistance mechanism by activating an alcohol dehydrogenase through its PQQ

cofactor. Alternatively, it was found that PqqL interacts with proteins involved in

ribosome biogenesis, which might suggest an additional role in translation [413].

B.1.9 Biofilm formation

A final molecular pathway of particular interest contains the tamAB genes. Both

genes are frequently mutated in different parallel populations and mutations rise

in frequency in the initial selective sweep as well as in the second selective sweep.

TamA and TamB are components of a translocation and assembly complex. TamA

is the outer membrane protein while TamB is the inner membrane protein. The

complex is involved in secretion of the adhesin protein Ag43 [414]. Ag43 is in-

volved in biofilm formation by promoting cell-to-cell aggregation [415, 416]. Ex-

posure to stress conditions promotes to activation of biofilm formation, possibly

to decrease exposure to the stress and increase the chances to survive [417]. Alter-

ing the biofilm formation capabilities through mutations in the tamAB genes might

confer higher resistance to the ethanol stress.
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B.2 Additional methods

B.2.1 Experimental evolution

We used a set of 16 parallel evolved E. coli populations. Of these highly ethanol-

tolerant populations, 7 originated from our previously conducted evolution exper-

iment [44]) and we initiated a new experiment using the same workflow to add

an additional 9 populations to the final dataset. All populations acquired a hyper-

mutator phenotype, which is necessary to enable evolution under near-lethal stress

conditions [44]). For ease of reading, we renamed al populations HT1-16 (High

Tolerance). In brief, all parallel populations originated from the same ancestral

strains SX4 and SX25. We used lysogeny broth (LB) supplemented with 5% (v/v)

ethanol as primary stress conditions to initiate the evolution experiment. We main-

tained growth in exponential phase in each population. As parameters to monitor

evolution, we used both the optical density (A595nm) and the time to reach a spe-

cific optical density, typical for exponential growth. When a population reached

exponential phase (A595nm around 0.2) within 24 hours, we transferred it to fresh

LB medium that was supplemented with an additional 0.5% (v/v) ethanol. If the

population needed more than 24 hours but less than 14 days to reach exponential

growth, we transferred it to fresh medium with the same percentage of ethanol. In

case the strain did not grow within 14 days, we revived the sample from the pre-

vious time point from the -80C stock and used it to restart the evolving population

in fresh medium with a 0.5% reduced ethanol concentration. Upon each transfer

to fresh medium, a sample was stored in a -80C glycerol stock for further analysis.

Based on the adaptation trajectories of these populations (Figure S6.1 in chapter

6) we decided to analyze both the selective sweep from 5% to 6% ethanol and

the selective sweep from 6% to 6.5% ethanol in order to also gain insight into the

temporal aspects of the adaptive pathways.

B.2.2 Sequencing and mutation calling

High-quality genomic DNA from overnight cultures of the ancestor and interme-

diate points of evolved populations was isolated (DNeasy Blood & Tissue kit, Qi-

agen). 100 bp paired-end sequencing libraries with an average insert size of 200

bp were prepared at GeneCore (EMBL, Heidelberg) and used for massive par-

allel sequencing with the Illumina HiSeq2000. We used CLC Genomics Work-

bench version 7.6 (https://www.qiagenbioinformatics.com) (RRID:SCR 011853)

for analysis of the sequences. Following quality assessment of the raw data, reads

were trimmed using quality scores of the individual bases (quality limit = 0.01;

maximum number of ambiguous bases = 2). Reads shorter than 15 bases were dis-

carded from the set. We used the CLC Assembly Cell 4.0 algorithm to map the
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trimmed reads to the E. coli MG1655 reference genome (NC 000913.1) yielding

a minimal coverage of 150x (mismatch cost = 2; insertion cost = 3; deletion cost

= 3; length fraction = 0.8; similarity fraction = 0.8). Mutations were called using

the CLC Low Frequency Variant Detector (required significance = 1%; minimum

coverage = 10; minimum frequency = 10%). Finally, the mutations in the SX4

compared to the MG1655 reference genome were discarded.

B.2.3 Mapping of mutations to genes

The mapped mutations were checked for anomalies. Around position 570000-

580000 (DLP12 prophage) and position 1600000-1700000 (Qin prophage) we

found a very large number of mutations (Additional Figure B1 a). As the call-

ing of mutations in these prophage regions is likely erroneous, mutations in and

between prophage-related genes (i.e. aaaD, exoD, nohD, nohB, nohQ, rrrD, rzpD,

yecD, yfdL and ylcH) were filtered out (Additional Figure B1 b). There was also

a bias towards mutations in HT4, HT3, HT8, HT2, HT5 and HT9. In these popula-

tions 204 identical SNVs or INDELS were detected while these mutations did not

occur in one of the other populations. These populations originated from the new

evolution experiment. As opposed to the populations that we previously reported

on [44], these new populations were all initiated from a single ancestral popula-

tion. As these mutations are not independent from each other (Additional Figure

B2), we removed them from the analysis. Lastly, the lacZ gene shows a high num-

ber of mutations throughout the experiments but this was due to a known insertion

element ( [44, 252, 418]), which CLC did not call correctly. As such, mutations in

the lacZ gene were also discarded.
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B.3 Additional figures

Figure B1: Mutational profile of all mutations from the 16 evolved populations. a, Before filtering

of mutations in prophage regions. It can be seen that there are an unusual amount of mutations around

region 570000-580000 and region 1600000-1700000. As these are prophage regions, mutations in

prophage regions were filtered out. b, After filtering of mutations in prophage regions the profile is

more balanced.

Figure B2: Lineage tracking of HT1-9 populations show common predecessor. The graph shows

the common mutations and InDels found in these populations. It is clear that a mutS mutation initially

occurred and all populations evolved further from this mutator mutant. Interestingly, populations HT2,

HT3, HT4, HT5, HT8 and HT9 shared a set of specific mutations. Identical SNPs and InDels which

were found at least 4 times in these populations but not in any other population were discarded from

the dataset as these mutations did not arise independently during evolution.
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C.1 Literature-based evidence for frequently

predicted cancer drivers in the

TCGA PAN-cancer datasets

We also analyzed data from BLCA, COADREAD, GBM, HNSC, KIRC, LAML,

LUAD, LUSC, OV, UCEC and STAD datasets. These results can be found in the

online version of the paper presented in chapter 7. All datasets used for these anal-

yses were downloaded from GDAC firehose. Here we only focus on a detailed

description of genes that were prioritized recurrently in these datasets and that

were not yet mentioned as drivers in the used cancer gene reference databases.

Versican (VCAN) was selected in three out of twelve different pan-cancer datasets

(LUAD STAD, BLCA) and fell just below the PPV cutoff value in UCEC. VCAN

is a major component of the extracellular matrix (EM) involved in cell adhesion,

proliferation, migration and angiogenesis. Increased VCAN expression has been

observed in a wide range of malignant

tumors and has been associated with both cancer relapse and poor patient outcomes

[419–421]. Despite its well documented role in triggering tumor proliferation [422,

423], VCAN itself is not frequently mutated (mutations in 215 samples on a total of
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5986 samples in the used pan-cancer datasets). In the LUAD dataset, VCAN was

interacting and mutual exclusive with EGFR, BCL9 and CTNNB1 (b1 catenin).

CTNNB1 is a well-known driver gene that plays a central molecule in the wnt

pathway and that is involved in the transcriptional regulation of VCAN [424]. The

uncovered mutual exclusivity pattern can be seen in Supplementary figure S7.4

in chapter 7.

BCL2L1 (BCL2 like 1, BCLX, BCLXL), belongs together with Mcl-1 to the Bcl2

family. BCL2L1 is an anti-apoptotic gene that has just like MCL1 has been ob-

served to be amplified in a variety of cancers. This is in accordance with our find-

ings where BCL2L1 was selected as a potential driver gene in 66% of the pan-

cancer datasets (OV, BLCA, COADREAD, LUAD, UCEC and LUSC) in which it

mostly had gains of copy number. Overexpression of anti-apoptotic Bcl-2 proteins

in cancers tilts the apoptosis signaling pathway towards cell survival. BCL2L1 is,

next to its role in promoting cancer cell survival by suppressing apoptosis, also

involved in promoting metastasis in a way that is independent of the anti-apoptotic

activity [341].

UBE2I Was prioritized in the ovarium (OV) and in the stomach adenocarcinoma

(STAD) pan-cancer datasets (as a linker gene). The ubiquitin-conjugating enzyme

9 (Ubc9), the sole conjugating enzyme for sumoylation, regulates protein function

and plays an important role in sumoylation-mediated cellular pathways. Sumoy-

lation plays a key role in DNA repair and tumorigenesis. Indeed, overexpress-

ing Ubc9 has been shown to contribute to EOC progression and cell proliferation

through the PI3K/Akt pathway [425]. In addition, the SUMO pathway mediated

by Ubc9 was shown to critically contribute to the transformed phenotype of KRAS

mutant cells [418]. UBE2I was prioritized in OV because of its association with

TP53 and RNF144B. The latter protein is an E3 ubiquitin-protein ligase that ac-

cepts ubiquitin from the E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6

and then directly transfers the ubiquitin to targeted substrates, thereby promoting

their degradation. It induces apoptosis via a p53/TP53-dependent mechanism and

affects cell death by affecting the ubiquitin-dependent stability of BAX, a pro-

apoptotic protein [426].
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Dittmar, Stéphane Cruveiller, Béatrice Chane-Woon-Ming, Claudine Médigue,

Richard E Lenski, and Dominique Schneider. Mutation rate dynamics in a bacte-

rial population reflect tension between adaptation and genetic load. Proceedings of

the National Academy of Sciences, 110(1):222–227, 2013.

[154] Gilles Thomas, Kevin B Jacobs, Meredith Yeager, Peter Kraft, Sholom Wacholder,

Nick Orr, Kai Yu, Nilanjan Chatterjee, Robert Welch, Amy Hutchinson, et al. Mul-

tiple loci identified in a genome-wide association study of prostate cancer. Nature

genetics, 40(3):310–315, 2008.

[155] Paul DP Pharoah, Ya-Yu Tsai, Susan J Ramus, Catherine M Phelan, Ellen L Goode,

Kate Lawrenson, Melissa Buckley, Brooke L Fridley, Jonathan P Tyrer, Howard

Shen, et al. GWAS meta-analysis and replication identifies three new susceptibil-

ity loci for ovarian cancer. Nature genetics, 45(4):362–370, 2013.



12 REFERENCES

[156] David J Hunter, Peter Kraft, Kevin B Jacobs, David G Cox, Meredith Yeager, Susan E

Hankinson, Sholom Wacholder, Zhaoming Wang, Robert Welch, Amy Hutchinson,

et al. A genome-wide association study identifies alleles in FGFR2 associated with

risk of sporadic postmenopausal breast cancer. Nature genetics, 39(7):870–874,

2007.

[157] John S Witte. Genome-wide association studies and beyond. Annual review of public

health, 31:9–20, 2010.

[158] Aisha I Khan, Duy M Dinh, Dominique Schneider, Richard E Lenski, and Tim F

Cooper. Negative epistasis between beneficial mutations in an evolving bacterial

population. Science, 332(6034):1193–1196, 2011.

[159] Hsin-Hung Chou, Hsuan-Chao Chiu, Nigel F Delaney, Daniel Segrè, and Christo-
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Rebecca J Leary, Dong Shen, Simina M Boca, Thomas Barber, Janine Ptak,

et al. The genomic landscapes of human breast and colorectal cancers. Science,

318(5853):1108–1113, 2007.
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