Introduction

Wide band target:
- Low frequency: high flux, high μ_r
- High frequency: propagation in the winding
- Nanocrystalline material
- By chance possible to use common mode chokes

Electrical properties given by the manufacturer

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test conditions</th>
<th>Value</th>
<th>Unit</th>
<th>Tol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance</td>
<td>10 kHz 0.1 mA</td>
<td>L</td>
<td>2×3.0</td>
<td>$\pm50%$/10%</td>
</tr>
<tr>
<td>Rated current</td>
<td>Φ 70°C</td>
<td>I_q</td>
<td>26.0 A</td>
<td>mA</td>
</tr>
<tr>
<td>DC Resistance</td>
<td>Φ 20°C</td>
<td>R_{DC}</td>
<td>2×4.5</td>
<td>mΩ</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>50 Hz</td>
<td>U_0</td>
<td>250 V</td>
<td>V DC</td>
</tr>
<tr>
<td>Insulation test voltage</td>
<td>50 Hz 5 mA 2 sec</td>
<td>U_T</td>
<td>1500 V</td>
<td>V DC</td>
</tr>
</tbody>
</table>

Common mode choke

- **Strong points:**
 - Wide band: from 0.5 Hz up to 50 MHz is possible, ratio 10^8.
 - Low phase shift in a wide frequency range.
 - Known limits of operation.
 - High current capability
 - Single pulse operation is possible

- **Weak points:**
 - No DC output, saturation at 2.2A DC at input;
 - Saturates early at low frequency
 - Low output voltage level

Manufacturer data of insertion loss with a 50 ohm load

Operation limits

Saturation, shunt temperature, eddy current

Transfer using 10 times higher shunt resistance

Real design goes to lower freq.

PCB Lay-out

Conclusions

Strong points:
- Wide band: from 0.5 Hz up to 50 MHz is possible, ratio 10^8.
- Low phase shift in a wide frequency range.
- Known limits of operation.
- High current capability
- Single pulse operation is possible

Weak points:
- No DC output, saturation at 2.2A DC at input;
- Saturates early at low frequency
- Low output voltage level