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1.1 Plant stress in Arabidopsis thaliana 

1.1.1 A. thaliana as model organism 

A. thaliana is the most widely-studied plant and serves as a model organism to understand 

the complex processes required for plant growth and development (Rhee et al., 2003). 

Furthermore, many aspects of adaptation of plants to adverse conditions and diseases are 

studied in A. thaliana (Delseny and Pelletier, 2001). For almost every aspect of life, humans 

depend on plants and as a result of an increasing world population and climate instability, 

knowledge of plant processes will be crucial to meet the exponentially increasing 

requirements for food and fuel supplies (Lavagi et al., 2012). Although research on 

A. thaliana can facilitate the identification of related genes of importance in crop plants and 

as such can help to solve problems related to agriculture, energy, industry, human health 

and the environment, it should be noted that the extrapolation from A. thaliana to crops is 

not always possible (Meinke et al., 1998; Sivasubramanian et al., 2015). 

A. thaliana is a small flowering plant which is part of the Brassicaceae or mustard family. One 

of the advantages to work with this model organism is the fully sequenced and annotated 

small genome. Moreover, the small size of the plant, the rapid generation time, the ability of 

self-pollination, the large seed set and the establishment of transformation protocols are 

other advantages of this model organism. All these favourable characteristics make 

A. thaliana into the reference plant for plant biology (Meinke et al., 1998; Delseny and 

Pelletier, 2001; Lavagi et al., 2012). Many ecotypes have been gathered from natural 

populations and are available, but the Columbia (Col) and Landsberg erecta (Ler) ecotypes 

are the conventional standards for research (Meinke et al., 1998). 

The genome of A. thaliana was sequenced by the Arabidopsis Genome Initiative in 2000 (The 

Arabidopsis Genome Initiative, 2000). The genome of 135 megabases is organized into five 

chromosomes (TAIR101;Meinke et al., 1998). Out of a total of 33,602 genes; 27,416 genes 

are coding for proteins; 4,827 are pseudogenes or transposable element genes and 1,359 

sequences represent non coding RNAs (TAIR101). As these numbers indicate, the genome of 

A. thaliana is highly enriched for coding sequences. On average every five kilobases one 

protein coding gene is present in the Arabidopsis genome. Moreover, half of these protein 

coding genes are found to be closely related to genes from other organisms ranging from 

bacteria to humans (Meinke et al., 1998). According to The Arabidopsis Information 

Resource 10 (TAIR10) genome release, at least one Gene Ontology (GO) annotation is 

available for 77 % of all Arabidopsis genes (Lamesch et al., 2012). A large number of genes 

are part of multigene families, not so surprisingly knowing that almost 60 % of the 

A. thaliana genome encompasses duplicated regions (The Arabidopsis Genome Initiative, 

                                                      
 

1
 https://www.arabidopsis.org/portals/genAnnotation/gene_structural_annotation 
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2000; Delseny and Pelletier, 2001). These gene duplicates arose by segmental, whole 

genome and tandem duplication events. Three whole genome duplication events occurred in 

A. thaliana after its separation from rice. The impact of these whole genome duplications is 

large because all genes were duplicated at once. In contrast, each tandem duplication only 

involves a small number of genes. However, tandem duplications contributed significantly to 

the expansion of gene families, approximately 17 % of all Arabidopsis genes are part of 

tandem duplications (The Arabidopsis Genome Initiative, 2000; Hanada et al., 2008). 

1.1.2 Plant stress 

Plant stress groups all unfavourable environmental conditions which create potentially 

damaging physiological changes within plants. Plants are often exposed to a combination of 

different stresses which have negative effects on plant growth and development (Atkinson 

and Urwin, 2012; Osakabe et al., 2013). The combination of these stresses not only 

threatens important crops but also plants in natural environments that are part of the 

ecosystem (Gassmann et al., 2016). Since plants are sessile, they evolved complex adaptive 

and defence mechanisms in response to those environmental stresses. These mechanisms 

are activated in the tissues exposed to stress but also in distal portions of the plant, not 

directly exposed to stress (Osakabe et al., 2013; Baxter et al., 2014). 

Plant stress is generally classified into abiotic and biotic stresses. Abiotic stresses such as 

heat, cold, drought, salt, water, light, ... have a large impact on world agriculture. They can 

reduce the average yields of major crop plants by more than 50 %. Biotic stresses are caused 

by fungi, bacteria, viruses, nematodes and herbivorous insects. Each stress, abiotic or biotic, 

evokes a complex cellular and molecular response to prevent damage and ensure survival of 

the plant. These responses cost energy and consequently diminish the growth and the yield 

of the plants (Atkinson and Urwin, 2012; Huber and Bauerle, 2016). 

1.1.2.1 Abiotic stress 

Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and 

oxidative stress cause serious crop losses in agriculture throughout the world, the average 

yields for most major crop plants are diminished by more than 50 % (Wang et al., 2003; 

Sewelam et al., 2014). Moreover in future, the timing of abiotic stress will be less predictable 

in addition to more severe abiotic stress. Additionally, the influence of multiple abiotic 

stresses is expected to rise significantly with climate change. Because of a rapidly expanding 

world population, the need for food rises. To secure our future food supply, crop plants 

adapted to survive the environmental stress will be necessary (Kazan, 2015; Le Gall et al., 

2015). 

Because of the vast amount of data related to implications of abiotic stress in A. thaliana this 

chapter will focus on some major threats, in particular osmotic and heat stress, stress 

treatments that will also be investigated in chapter 3. Drought, salinity and extreme 

temperatures are often interconnected and activate similar signalling pathways and cellular 
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responses. Drought and high salinity stress appear primarily as osmotic stress and as such 

both result in the disruption of homeostasis and ion distribution in the cell. On the other 

hand, all three stresses cause oxidative stress, which results in the denaturation of important 

biomolecules. Typical cellular responses on this osmotic and oxidative stress are the 

production of stress proteins and anti-oxidants, and the accumulation of compatible solutes 

(Wang et al., 2003). 

1.1.2.1.1. Osmotic stress 

In nature, high salinity and drought are the major causes of osmotic stress (Xiong and Zhu, 

2002). Drought and salt stress affect more than 10 % of the arable land, resulting in crop 

losses with a serious economic impact and which are predicted to increase with global 

climate change (Roychoudhury et al., 2013). Global climate changes are resulting in 

increased temperature and atmospheric CO2 levels as well as changing rainfall patterns. As a 

consequence, periods of inadequate rainfall will appear more frequently, leading to more 

drought stress (Bhargava and Sawant, 2013). 

Osmotic stress results in disruption of homeostasis and ion distribution in the cell (Wang et 

al., 2003). Upon osmotic stress, plants react with a wide range of responses at molecular, 

cellular and morphological levels (Xiong and Zhu, 2002; Wang et al., 2003). Examples of 

responses at morphological level are the inhibition of shoot growth and the enhancement of 

root growth. Examples of cellular responses are the adjustment of ion and water transport, 

and metabolic changes (e.g. synthesis of compatible solutes or osmoprotectants). All these 

cellular and morphological responses are regulated at the molecular level by inducing the 

expression of stress-responsive genes (Xiong and Zhu, 2002; Golldack et al., 2014). 

The phytohormone abscisic acid (ABA) plays a crucial role during osmotic stress. Many 

drought and high salinity-responsive genes, respond to ABA. However, next to this 

ABA-dependent pathway, some drought-responsive genes are regulated independent of ABA 

(Roychoudhury et al., 2013). The ABA-dependent pathway is described in the 'Hormonal 

signalling' section. ABA-independent regulation uses the cis-acting promoter elements, 

named dehydration-responsive element (DRE) and cold-responsive element or C-repeat 

(CRT). Both contain the core CCGAC sequence which suggest a cross-talk between cold and 

drought stimuli. Transcription factors (TFs) belonging to the apetala2 (AP2)-type family, 

called dehydration-responsive element binding (DREBs) bind DREs in the promoters of 

stress-responsive genes and as such activate these genes. TFs that can bind CRT cis-acting 

elements are called C-repeat binding factors or CBFs (Wang et al., 2003; Bhargava and 

Sawant, 2013; Roychoudhury et al., 2013). Calcium is a secondary messenger in the 

cross-talk between the ABA-dependent and ABA-independent pathway (Vishwakarma et al., 

2017). ABA, drought stress, cold stress and high salt stress all induce high intracellular 

calcium levels in plant cells, which is sensed by different calcium sensors (Figure 1.2) 

(Mahajan and Tuteja, 2005). 



Chapter 1 

6 

 Hormonal signalling 

ABA, a phytohormone, is a key regulator in the plant stress response to drought and salinity, 

and has a crucial function as a growth inhibitor (Golldack et al., 2014). ABA plays also an 

important role toward a wide range of other stresses like heavy metal, heat, cold, radiation 

stress and some biotic stresses (Vishwakarma et al., 2017). Moreover, ABA functions in seed 

germination, seed dormancy, closure of stomata, carbohydrate and lipid metabolism 

(Golldack et al., 2014; Vishwakarma et al., 2017). 

Upon dehydration and high salinity, ABA de novo synthesis takes place and during 

rehydration, its degradation occurs in plant roots and terminal buds at the top of the plant. 

ABA biosynthesis starts from β-carotene with the involvement of various enzymes. The 

increase in the endogenous ABA levels is due to stress-related induction of genes that code 

for the ABA biosynthesis enzymes (Roychoudhury et al., 2013; Vishwakarma et al., 2017). 

One of these biosynthesis enzymes is 9-cis-eposycarotenoid dioxygenase (NCED) 

(Vishwakarma et al., 2017). NCED3 from A. thaliana is most strongly induced by drought and 

salt stress (Roychoudhury et al., 2013). Overexpression of NCED3 in A. thaliana revealed an 

improvement of shoot growth under drought stress and its knockout mutant showed a 

dehydration sensitive phenotype (Iuchi et al., 2001; Roychoudhury et al., 2013). 

ABA perception occurs via multiple cellular receptors that function in different subcellular 

compartments (Figure 1.1)(Shan et al., 2012). The first class are the nucleocytoplasmic 

receptors pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA 

receptors (PYR/PYL/RCAR) which can bind intracellular ABA and as such inhibit type 2C 

protein phosphatases (PP2Cs) such as ABI1 and ABI2. Due to the inactivation of these PP2Cs, 

active SNF1-related protein kinases (SnRK2s) accumulate and phosphorylate ABA-responsive 

TFs which in turn activate ABA-responsive genes (Golldack et al., 2014). These receptors 

mediate the ABA-regulated seed germination, growth and guard cell movement (Shan et al., 

2012). The second class are plasma membrane-localized ABA receptors which are 

G protein-coupled receptor-type G proteins (GTGs). ABA can be bound by GTG1/GTG2 which 

contain nucleotide-binding and guanosine-5'-triphosphatase (GTPase)-activating domains. 

The binding of ABA by GTGs is enhanced by guanosine-5'-diphosphate (GDP). The G protein 

alpha subunit 1 (GPA1) interacts with GTG1 and GTG2, and represses their GTPase activity. 

ABA binding is not inhibited since GDP only enhances this binding. These receptors have 

been shown to function as voltage-dependent anion channels and as such play a role in 

growth and development. A third kind of ABA receptor is localized in the chloroplast namely 

the chelatase H subunit (CHLH) of Mg-chelatase. CHLH transfers the signal to the nucleus via 

binding of its C-terminus to the transcription repressors WRKY40, WRKY18 and WRKY60 in 

the cytoplasm. This receptor mediates seed germination, seedling growth and guard cell 

movement (Shan et al., 2012; Golldack et al., 2014). 

Note that there is some controversy related to the chloroplast CHLH and the plasma 

membrane GTG ABA receptors (Fan et al., 2016; Verslues, 2016). Tsuzuki et al. (2011) 
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demonstrated that recombinant CHLH did not bind ABA, while recombinant PYR showed 

specific ABA binding. In contrast, ABA binding was shown for recombinant GTGs (Kharenko 

et al., 2013). 

 

Figure 1.1 ABA perception and signalling (Adapted from Shan et al., 2012). Multiple cellular 
receptors function in different subcellular compartments for ABA perception. The PYR/PYL/RCAR 
receptors are nucleocytoplasmic ABA receptors and inhibit PP2Cs upon ABA binding. Inhibition of 
PP2Cs leads to the activation of SnRK2s and as such phosphorylation of ABA-responsive TFs, which in 
turn activate ABA-responsive genes. The GTG ABA receptors are localized on the plasma membrane 
and GDP enhances the binding of ABA. After binding of ABA, the signal is transferred to the nucleus. 
The CHLH/ABAR ABA receptors are localized in the chloroplast membrane. After binding of ABA, 
CHLH/ABAR inhibit the transcription repressors WRKY40, WRKY18 and WRKY60 and as such 
ABA-responsive genes are activated. PYR: pyrabactin resistance, PYL: pyrabactin resistance-like, 
RCAR: regulatory component of ABA receptors, PP2C: type 2C protein phosphatase, SnRK2: SNF1-
related protein kinase, GTG: G protein-coupled receptor-type G protein, GTP: guanosine-5'-
triphosphate, GDP: guanosine-5'-diphosphate, GPA1: G protein alpha subunit 1, CHLH: chelatase H 
subunit, ABAR: ABA-receptor, TF: transcription factor, P: phosphorylation. 

Eventually ABA signalling controls the movement of stomata, tissue hydraulic conductivity, 

growth of root and shoot, and communication between root and shoot (Vishwakarma et al., 

2017). Roots sense changes in abiotic factors (e.g. drought). Consequently, ABA is 

synthesized in the roots and transported through the xylem to the shoots. ABA is one of the 

chemical signals for root-to-shoot communication, next to pH, cytokinins and ethylene 
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precursors. In the shoots, ABA is transported to the guard cells, where it regulates the 

closure of the stomata (Malladi and Burns, 2007; Zhang et al., 2015). Moreover, Kuromori 

and Shinozaki (2010) reported two ATP-binding cassette (ABC) transporter genes in 

Arabidopsis which function as ABA transporters (export or import). The stomatal closure, 

initiated by ABA during drought stress, prevents more water loss via transpiration. Nitric 

oxide (NO) is an important compound in the ABA driven closure of stomata. This closure is 

mediated by guard cell depolarization and alterations of guard cell turgor and volume 

(Roychoudhury et al., 2013). Also, it was shown that ABA mediates the production of 

reactive oxygen species (ROS), which can on their turn, activate defensive responses 

(Sakamoto et al., 2008). 

The promoters of the genes controlled by ABA contain ABA-responsive elements (ABREs) 

which have an ACGT core. Several TFs belonging to the basic leucine zipper (bZIP) and MYB 

family are ABRE-binding proteins (AREBs/ABFs). These TFs can induce ABA-responsive genes 

through binding of the ABREs in their promoter sequence (Wang et al., 2003; Bhargava and 

Sawant, 2013; Roychoudhury et al., 2013). The expression of these stress-responsive genes 

should ultimately lead to stress tolerance or resistance. Three major categories of stress-

related genes are identified and include those involved in signalling cascades and 

transcriptional control, those with a function in protecting membranes and proteins, and 

those required for water/ion uptake and transport (Wang et al., 2003). 

 Drought stress 

Drought or dehydration is defined as an imbalance between soil water availability and 

evaporative demand. Plant growth and yield is reduced by this major environmental stress 

and the following physiological changes are generated: loss of turgor, osmotic adjustment 

and reduced leaf water potential. The low turgor pressure causes a reduction or cessation of 

growth by decreasing cell extensibility and cell expansion (Le Gall et al., 2015). 

Drought stress is sensed by a membrane-bound two-component histidine kinase (HK), an 

osmoreceptor. This receptor, ATHK1 in A. thaliana, in turn activates phospholipase C (PLC), 

which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Figure 1.2). IP3, as second messenger, 

releases calcium from internal stores (endoplasmatic reticulum, vacuole and chloroplast) 

and these calcium molecules are sensed by Ca2+-sensors (e.g. calcineurin B-like protein (CBL) 

and calmodulin (CaM)). These sensors activate downstream protein kinases and 

phosphatases leading to the activation of TFs that bind DREs and induce the expression of 

several drought-responsive genes (Mahajan and Tuteja, 2005; Beck et al., 2007; Tran et al., 

2007). This pathway is ABA-independent but ATHK1 also positively regulates stress 

responses through the ABA-dependent pathway (Tran et al., 2007). 
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Figure 1.2 Drought perception and signalling (Adapted from Mahajan and Tuteja, 2005). Drought 
receptors activate PLC upon drought stress. PLC hydrolyzes PIP2 into IP3 and DAG. IP3 releases 
calcium from internal stores which is sensed by calcium sensors. Calcium sensors activate 
downstream kinases and phosphatases which in turn activates TFs that induce expression of several 
drought-responsive genes. PLC: phospholipase C, PIP2: phosphatidylinositol 4,5-bisphosphate, IP3: 
inositol 1,4,5-trisphosphate, DAG: diacylglycerol, InsP: inositol phosphates, CBL: calcineurin B-like 
protein, CaM: calmodulin. 

 Salt stress 

Soil salinity is another major abiotic stress that affects plant growth and productivity. Up to 

30 % of land loss is expected within the next 15 years caused by an increasing salinization of 

arable land (Le Gall et al., 2015). Moreover, salinization may occur in more than 50 % of 

arable land by the year 2050 (Wang et al., 2003). High salt concentrations in the soil can be 

caused via the deposition of oceanic salts by wind and rain and via the erosion of rocks that 

release soluble salts (Le Gall et al., 2015). The major effect of salt stress to the plant is water 

deficit leading to growth inhibition and plant death during prolonged exposure (Zhu, 2007; 

Le Gall et al., 2015). Most plants cannot tolerate salt stress and are called glycophytes. 

Glycophytes cannot tolerate soil salt concentrations of 40 mM and more. In contrast to that, 

halophytes naturally grow under high salinity conditions and can cope with salt soil 

concentrations higher than 200 mM (Zhu, 2007; Flowers and Colmer, 2008). 
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To recover ion homeostasis upon salt stress, plants developed the salt overly sensitive (SOS) 

pathway (Figure 1.3). The SOS pathway consists of three major proteins namely SOS1, SOS2 

and SOS3. SOS1 encodes a plasma membrane Na+/H+ antiporter which is responsible for 

Na+-efflux, at the expense of H+. The sodium extrusion activity of SOS1 is dependent from 

SOS2 and SOS3. Salt stress is sensed by an unknown plasma membrane sensor causing 

cytoplasmic calcium perturbations. SOS2 is a serine/threonine protein kinase which can 

interact with SOS3. SOS3 encodes a Ca2+-binding protein with a myristoylation sequence at 

the N-terminus of the protein. Upon calcium binding, the SOS3-SOS2 complex is activated 

and SOS2 can activate SOS1 by phosphorylation (Xiong and Zhu, 2002; Wang et al., 2003; 

Mahajan and Tuteja, 2005; Zhu, 2007; Gupta and Huang, 2014). Shi et al. (2003) reported 

that overexpression of SOS1 results in an improved salt tolerance in transgenic Arabidopsis. 

 

Figure 1.3 SOS pathway to recover the ion balance upon salt stress (Gupta and Huang, 2014). 
Unkown plasma membrane sensors cause higher levels of intracellular calcium upon salt stress. SOS3 
senses calcium and activates SOS2, a serine/threonine protein kinase. The SOS3-SOS2 complex can 
activate SOS1 by phosphorylation. SOS1 is a plasma membrane Na+/H+ antiporter which is 
responsible for Na+-efflux. SOS: salt overly sensitive, P: phosphorylation, 
ATP: adenosine-5'-triphosphate. 

1.1.2.1.2. Heat stress 

In light of the global warming, heat stress will likely be an important abiotic stress to which 

plants will have to adapt. Heat stress is defined as an increasing temperature inducing 

irreversible damage to plant growth and development. Heat stress can lead to a serious yield 

reduction in many areas. Roots are more susceptible to heat stress than shoots. As a 

consequence high soil temperature is more harmful than high air temperature (Le Gall et al., 

2015). 

One of the earliest responses upon heat stress is global inhibition of translation. Secondly, 

plants have to cope with the osmotic and oxidative stress caused by the initial heat stress. 

Heat stress factors (Hsfs) and heat shock proteins (Hsps) play a central role in the plant 

response upon heat stress. Hsfs are TFs that play an important role in the control of the 

expression of several heat responsive genes. Hsfs can bind to heat shock cis-regulatory 

promoter elements (HSEs) in the promoters of these heat responsive genes. Heat responsive 

genes consist of two major groups namely signalling components and functional genes. 
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Signalling components such as protein kinases and TFs, functional genes such as Hsps and 

catalase. Hsps and other chaperones play an important role to prevent protein unfolding and 

misfolding caused by heat stress. When this mechanism is overwhelmed, proteases degrade 

the unfolded and denaturated proteins (Wang et al., 2003; Qu et al., 2013; Echevarría-

Zomeño et al., 2016). 

1.1.2.2 Biotic stress 

Similar to abiotic stresses, biotic stresses affect the growth and the yield of major crop plants 

around the world. Biotic agents like bacteria, fungi, nematodes, aphids, ... can cause severe 

plant diseases and epidemics threatening crop yield and food security. Rapid spreading of 

these diseases over great distances occurs via wind, water, insects and humans (Dangl et al., 

2013). The knowledge of immune signalling upon perception of biotic stresses will provide 

the foundation to generate broad-spectrum disease resistant crop plants which will help to 

establish a more sustainable agriculture by replacing costly and unsustainable chemical 

controls (Dangl et al., 2013; Couto and Zipfel, 2016). 

Plants contain a well developed plant innate immune system which results in basal defence. 

If the invader is not able to circumvent this system, the basal defence leads to resistance of 

the plant (Dangl and Jones, 2001). Indeed, most plants are resistant to infection by most 

pathogens because of the plant innate immune system and are called non-hosts (Jones and 

Dangl, 2006). This immune system consist of two major mechanisms: pathogen-associated 

molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) 

(Figure 1.4). PTI is triggered by molecular patterns common to many types of 

microorganisms and results in no symptoms or hypersensitive response (HR). ETI is triggered 

by the recognition of pathogen effectors and is often associated with HR, this local plant cell 

death can restrict the growth of the pathogen (Tsuda and Katagiri, 2010; Kushalappa et al., 

2016). Before invaders are confronted with PTI and ETI, they have to deal with several 

barriers at the plant surface such as wax layers, rigid cell walls, cuticular lipids, antimicrobial 

enzymes or secondary metabolites. Invaders first have to enter the host tissue through 

direct penetration of the plant surface, physical injuries or natural openings such as stomata 

(Muthamilarasan and Prasad, 2013). 

PTI is also triggered by microbial-associated molecular patterns (MAMPs) and 

damage-associated molecular patterns (DAMPs), next to PAMPs (Muthamilarasan and 

Prasad, 2013). MAMPs are similar to PAMPs, all PAMPs are MAMPs, but not all MAMPs are 

PAMPs. PAMPs originate from pathogenic microorganisms, but MAMPs can also originate 

from non-pathogenic microorganisms (Boller and Felix, 2009). Several examples of MAMPs 

are bacterial flagellin, elongation factor Tu (EF-Tu), peptidoglycans, lipopolysaccharides and 

fungal chitin (Tsuda and Katagiri, 2010; Couto and Zipfel, 2016). DAMPs are generated as a 

consequence of damage to the structural barriers of plant tissues by lytic enzymes produced 

by the microbes. These DAMPs are localized in the apoplast, examples are cell wall 

fragments, cutin monomers and peptides (Muthamilarasan and Prasad, 2013). 
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Figure 1.4 The plant immune system (Dangl et al., 2013). 1) Recognition of MAMPs and DAMPs by 
PRRs to activate PTI. 2) Invaders secrete effector proteins. 3) Inhibition of PTI. 4) NLR receptors are 
activated through a) direct binding with effector proteins, b) binding with a decoy of the target from 
effectors or c) binding with a modified target from the effectors. PRR: pattern recognition receptor, 
PAMP: pathogen-associated molecular pattern, MAMP: microbial-associated molecular pattern, PTI: 
PAMP-triggered immunity, ETI: effector-triggered immunity, TTSS: type III secretion system (also 
T3SS), NLR: nucleotide-binding leucine-rich repeat. 

The receptors on the plant cell surface that recognize the MAMPs and DAMPs are called 

pattern recognition receptors (PRRs) (Jones and Dangl, 2006). This PRR family resides in the 

plasma membrane and can be subdivided in two major groups of receptors. The first group 

includes receptor-like kinases (RLKs) which have an extracellular ligand-binding domain, a 

transmembrane domain and an intracellular serine/threonine kinase domain. The second 

group is called receptor-like proteins (RLPs) and are similar to RLKs except that they lack an 

intracellular kinase domain, to activate downstream signalling. As such these RLPs require 

interaction with adaptor molecules for signal transduction (Tsuda and Katagiri, 2010; 

Muthamilarasan and Prasad, 2013; Couto and Zipfel, 2016). The extracellular ligand-binding 

domains can vary and as such can bind different kinds of MAMPs. PRRs containing a 

leucine-rich repeat (LRR) prefer to bind proteins or peptides e.g. bacterial flagellin and EF-Tu. 

Other PRRs containing an extracellular Lysin Motif (LysM) domain, can bind carbohydrates 

such as bacterial peptidoglycans and fungal chitin whereas S-lectin domain containing PRRs 

bind extracellular ATP or lipopolysaccharides. All PRRs recruit regulatory receptor kinases 

upon ligand binding and further signalling proceeds through receptor-like cytoplasmic 
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kinases (RLCKs). These RLCKs are the link between MAMP or DAMP perception and 

downstream signalling. The affinity of RLCKs for different PRRs and the ability to activate 

different branches of the downstream signalling, varies among the large repertoire of RLCKs. 

In Arabidopsis 160 RLCKs are identified (Couto and Zipfel, 2016). 

The recognition of MAMPs and DAMPs by PRRs is necessary to create PTI in plants (step 1, 

Figure 1.4) (Dangl et al., 2013). Invaders can react to PTI by secreting effector proteins, 

encoded by avirulence (Avr) genes, in the plant cell which will inhibit PTI (step 2 and 3, 

Figure 1.4). The inhibition of PTI makes the plant susceptible and is called effector-triggered 

susceptibility (ETS) (Surico, 2013). Plants encode resistance (R) genes which encode 

nucleotide-binding leucine-rich repeat (NLR) receptors and react on these effectors resulting 

in ETI (step 4 and 5, Figure 1.4). Intracellular NLR receptors can sense the effector proteins in 

three different ways. NLR receptors can be activated through direct binding to the effectors 

(step 4a, Figure 1.4) or by a modified target from the effectors (or a decoy of the target) 

(step 4c and 4b, respectively, Figure 1.4) (Dangl et al., 2013). There are 125 NLR receptors 

identified in Arabidopsis (Jones and Dangl, 2006). Next to these intracellular NLR receptors, 

extracellular LRR classes of R proteins exist (Dangl and Jones, 2001). 

The first PTI defence responses of the plant are very fast and occur within minutes, lasting 

up to several days. These responses are drastic ion-flux changes at the plasma membrane, 

elevation of cytoplasmic Ca2+ levels and ROS production. Ca2+ level elevations in the cytosol 

play a pivotal role in salicylic acid (SA) production, stomatal closure and ROS production. 

Stomatal closure limits the entry of microbial organisms into leaf tissues. ROS production 

occurs by activation of the respiratory burst oxidative homolog (RBOH) enzymes in the 

plasma membrane. These RBOH enzymes are activated directly by RLCKs or by calcium 

dependent protein kinases (CDPKs). CDPKs are in turn activated by the elevated Ca2+ levels 

and also convey immune signalling to the nucleus resulting in transcriptional reprogramming 

during PTI. Next to CDPKs, mitogen-activated protein kinase (MAPK) cascades are activated 

by RLCKs upon MAMP or DAMP perception and transfer the signal to the nucleus to 

establish PTI by transcriptional reprogramming. Several TFs are regulated by CDPKs and 

MAPKs and are responsible for this transcriptional reprogramming during PTI, resulting in 

the production of antimicrobial enzymes or compounds, deposition of callose at the cell 

wall, cell wall lignification and synthesis of hormones. Callose between the cell wall and the 

plasma membrane will limit the penetration of microorganisms. Biosynthesis of hormones 

such as SA, jasmonic acid (JA) and ethylene (ET) is crucial for local and systemic acquired 

resistances (Muthamilarasan and Prasad, 2013; Couto and Zipfel, 2016). 

If the invader produces and secretes effector proteins into the plant cell, PTI can be inhibited 

by these effectors and the ETI defence responses are triggered. Not all effectors inhibit PTI, 

some effectors can suppress ETI and some effectors are necessary to change the host 

metabolism (e.g. to supply nutrients to the pathogen). ETI responses are essentially similar 

to the responses during PTI, but differ in their strength and duration. Immune responses 
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during ETI are more prolonged and robust than those during PTI. The ROS production for 

example is also RBOH dependent, but is of much higher magnitude and sustained upon 

effector recognition by R proteins (during ETI) (Tsuda and Katagiri, 2010). These similar 

responses are calcium influx, activation of MAPK cascades, ROS production and 

transcriptional reprogramming (Dangl and Jones, 2001). ROS are involved in the elimination 

of the invaders, but also in the activation of transcription. TFs to reprogram transcription are 

activated by MAPK cascades, next to ROS. They regulate the transcription of several defence 

genes in and around the infected cell. These defence genes have a function in biosynthesis 

of hormones (SA, JA and ET), strengthening the cell wall, production of antimicrobial 

compounds and initiating HR. ETI generates local and systemic acquired resistance (Dangl 

and Jones, 2001; Tsuda and Katagiri, 2010; Muthamilarasan and Prasad, 2013). 

Among the biotic stresses applied on Arabidopsis plants in chapter 3, Pseudomonas syringae 

and Botrytis cinerea belong to the phytopathogenic microorganisms or pathogens, Myzus 

persicae belongs to the herbivorous insects. The PTI and ETI response, as well as the 

hormone signalling, will only be discussed for P. syringae, since this is the only pathogen 

used in the stress tolerance experiments in chapter 4. 

1.1.2.2.1. Plant pathogens 

Two major groups of plant pathogens can be distinguished. The first group of pathogens first 

kills the host, usually by the production of toxins, and subsequently feeds on the contents, 

they are called necrotrophs. In contrast, biotrophs depend on living host tissues to obtain 

nutrients to complete their life cycle. Pathogens that act as biotrophs or necrotrophs 

depending on the conditions or the stage of their life cycle, are called hemibiotrophs. 

Hemibiotrophs act initially as biotrophs, but usually kill the host (necrotrophs) at a later 

stage of infection (Muthamilarasan and Prasad, 2013; Surico, 2013). Plants, in turn, respond 

on these pathogens with their sophisticated mechanisms, called the innate immune system 

(PTI and ETI) resulting in an adaptive response (Dangl and Jones, 2001). 

Pseudomonas syringae is a hemibiotrophic bacterium, belonging to the prokaryotic 

microorganisms (Surico, 2013). P. syringae belongs to the gram-negative plant-pathogenic 

bacteria which can cause several diseases and as such is responsible for major crop yield 

losses (Büttner, 2016). In crops, seeds infected with P. syringae are often the source of 

disease and disease development is preceded by epiphytic growth of P. syringae on the leaf 

surfaces (Katagiri et al., 2002). Multiple genomes of different strains of P. syringae have 

been sequenced enabling the use of A. thaliana-P.syringae as a model system for 

plant-pathogen interactions (Katagiri et al., 2002; Morris et al., 2013). Arabidopsis plants of 

the ecotype Col are susceptible to P. syringae pv. tomato DC3000, one of the most widely 

used virulent strains of P. syringae. Disease development starts with the typical 

water-soaked patches on the leaves which become necrotic and dark-colored later on, 

surrounded by leaf tissue which shows chlorosis (Katagiri et al., 2002). P. syringae can enter 

the host through physical injuries and natural openings such as stomata (usually on the 
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leaves) (Katagiri et al., 2002). Once they entered the plant, they inhabit the intercellular 

spaces and if the plant is susceptible multiply there to high population levels (Tsuda and 

Katagiri, 2010; Muthamilarasan and Prasad, 2013). 

In Figure 1.5 the most important PRRs, regulatory receptor kinases and RLCKs from 

A. thaliana are illustrated and those sensing bacterial PAMPs will be discussed in more detail 

(Couto and Zipfel, 2016). Chitin is a building block of the fungal cell walls and AtPep1 is a 

DAMP, an endogenous peptide from A. thaliana, derived from PROPEP1, its precursor 

protein (Yamaguchi et al., 2010; Wirthmueller et al., 2013). Exogenous application of AtPeps 

(Pep1 - Pep7) has been shown to enhance immunity against P. syringae (Yamaguchi et al., 

2010). 

The bacterial flagellum is important for bacterial pathogenicity in plants (Jones and Dangl, 

2006). This flagellum consists of the structural protein bacterial flagellin (Katagiri et al., 

2002). Felix et al. (1999) showed that a synthetic 22-amino-acid peptide (flg22), a conserved 

peptide among flagellins of eubacteria, including P. syringae, was able to induce many 

cellular defence responses. Flagellin sensing 2 (FLS2), a PRR from A. thaliana, was identified 

as receptor for bacterial flagellin (Figure 1.5) (Katagiri et al., 2002; Couto and Zipfel, 2016). 

FLS2 belongs to the LRR-RLKs and upon flg22 perception acts together with a regulatory 

receptor kinase namely BRI1-associated receptor kinase 1 (BAK1) or somatic embryogenesis 

receptor kinase 3 (SERK3) to activate several downstream RLCKs such as 

brassinosteroid-signalling kinase 1 (BSK1), pattern-triggered immunity compromised 

receptor-like cytoplasmic kinase 1 (PCRK1) and botrytis-induced kinase 1 (BIK1) (Figure 1.5) 

(Katagiri et al., 2002; Tsuda and Katagiri, 2010; Couto and Zipfel, 2016). Arabidopsis fls2 

mutants revealed enhanced susceptibility to P. syringae, indicating the importance of flg22 

recognition in plant immunity, limiting the growth of P. syringae (Zipfel et al., 2004). 
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Figure 1.5 Arabidopsis PRRs, regulatory receptor kinases and RLCKs (Adapted from Couto and 
Zipfel, 2016). Flg22: 22-amino-acid conserved peptide of bacterial flagellin, FLS2: flagellin sensing 2, 
BAK1: BRI1-associated receptor kinase 1, SERKs: somatic embryogenesis receptor kinases, BSK1: 
brassinosteroid-signalling kinase 1, PCRK1: pattern-triggered immunity compromised receptor-like 
cytoplasmic kinase 1, BIK1: botrytis-induced kinase 1, EF-Tu: elongation factor Tu, EFR: EF-Tu 
receptor, PEPR: Pep receptor, LYK5: LysM-containing receptor-like kinase 5, CERK1: chitin elicitor 
receptor kinase 1, LYM: LysM domain-containing GPI-anchored protein, PBL27: AvrPphB 
susceptible 1 (PBS1)-like kinase 27, LRR: leucine-rich repeat, RLCK: receptor-like cytoplasmic kinase. 

EF-Tu, the most abundant bacterial protein, is highly conserved in all bacteria, hence also in 

P. syringae. The EF-Tu receptor (EFR) specially recognizes the elf18 peptide which is an 

N-acetylated peptide consisting of the first 18 amino acids (aa) of the N-terminus of EF-Tu 

(Kunze et al., 2004; Muthamilarasan and Prasad, 2013). As well as FLS2, EFR interacts with 

BAK1 or SERK3, the regulatory receptor kinaes, upon ligand binding. RLCKs PCRK1 and BIK1 

are subsequently activated and take care of the downstream signalling (Figure 1.5) (Couto 

and Zipfel, 2016). Arabidopsis efr mutants revealed a higher efficiency of Agrobacterium 

tumefaciens mediated transferred DNA (T-DNA) transformation, concluding these mutants 

are more susceptible to A. tumefaciens (Zipfel et al., 2006). Kunze et al. (2004) compared the 

alkalinization-inducing activity of EF-Tu peptides of A. tumefaciens and P. syringae, and 

showed a lower alkalinization-inducing activity of the EF-Tu peptide from P. syringae. 

Peptidoglycan is a major component of the bacterial cell wall (Willmann et al., 2011). LysM 

domain-containing GPI-anchored proteins (LYMs) from A. thaliana, more specific LYM1 and 

LYM3, contain each two extracellular LysM domains and recruit chitin elicitor receptor 

kinase 1 (CERK1) during peptidoglycan recognition (Couto and Zipfel, 2016). LYM1 and LYM3 

contain no intracellular kinase domain and as such belong to the LysM-RLPs 

(Muthamilarasan and Prasad, 2013). CERK1 is, equally to BAK1 or SERK3 a regulatory 
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receptor kinase. Together, LYM1, LYM3 and CERK1 mediate antibacterial immune responses 

upon binding of peptidoglycan (Figure 1.5) (Couto and Zipfel, 2016). Willmann et al. (2011) 

showed a largely enhanced susceptibility of lym1, lym3 and lym1 lym3 Arabidopsis mutants 

to infection with P. syringae. 

Upon perception of these described PAMPs by their PRRs, PTI is initiated via regulatory 

receptor kinases and RLCKs (Figure 1.5). Most gram-negative bacteria, like P. syringae, 

deliver their Avr or effector proteins to inhibit PTI to the plant cell by their type III secretion 

system (T3SS) (Katagiri et al., 2002; Büttner, 2016). This T3SS produces a continuous channel 

for effectors to be translocated directly into the cytoplasm of the plant cells (Büttner and He, 

2009). Next to the interference with PTI, effectors also interfere with signal transduction, 

proteasome-dependent protein degradation, phytohormone signalling, plant gene 

expression and the plant cytoskeleton (Büttner, 2016). In total 57 families of effectors were 

identified in P. syringae with each P. syringae strain expressing 15 - 30 effector proteins 

(Lindeberg et al., 2012). Virulent bacteria translocate 15 - 30 effectors via the T3SS into the 

plants cells. These effectors act as a TF, remodel chromatin and/or affect host TF activity. 

Generally they inhibit PTI and promote the release of nutrients required for pathogen 

survival (Feng and Zhou, 2012). For example AvrPphB, a cysteine protease from P. syringae, 

cleaves different Arabidopsis RLCKs, as such inhibiting PTI. One of these RLCKs is PBS1 and 

the cleavage of PBS1 by AvrPphB is monitored by RPS5, an R protein from A. thaliana, 

initiating ETI. Other RLCKs from A. thaliana that can be cleaved by AvrPphB from P. syringae 

are BIK1, PBL1 and PBL2 (Zhang et al., 2010b). Büttner (2016) gives an overview of the 

targets of several other P. syringae Avr or effector proteins. 

 Hormonal signalling 

SA, JA and ET are the classical immune system phytohormones involved in biotic stress 

responses. SA signalling leads to local and systemic resistance against many biotrophs and 

hemibiotrophs such as P. syringae, while JA and ET signalling promote defence against 

necrotrophs (Jones and Dangl, 2006; Tsuda and Katagiri, 2010; Couto and Zipfel, 2016). SA 

and JA mostly work antagonistically (Dangl and Jones, 2001). Note that this is true for 

A. thaliana, but certainly not for all plants. Moreover, other hormones like ABA, gibberellins, 

auxins, cytokinins and brassinosteroids also play a role in plant immune signalling (Jones and 

Dangl, 2006; Tsuda and Katagiri, 2010; Pieterse et al., 2012). Only SA perception and 

signalling will be discussed since this hormone is linked to P. syringae infections in 

Arabidopsis and this is the only biotic stress factor used in the stress experiments in 

chapter 4. 

Biosynthesis of SA is triggered during PTI and ETI upon recognition of PAMPs or effector 

proteins of biotrophs and hemibiotrophs such as P. syringae (Mishina and Zeier, 2007). SA 

biosynthesis starts from chorismate or phenylalanine via isochorismate synthase (ICS/SID2) 

or phenylalanine ammonia lyase (PAL), respectively (Garcion and Métraux, 2007). 

Downstream of SA, expression of several defence-related genes such as 
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pathogenesis-related (PR) genes is regulated by non-expressor of PR genes 1 (NPR1) (Figure 

1.6) (Moore et al., 2011). Several PR genes encode proteins with antimicrobial activity (van 

Loon et al., 2006). To regulate the expression of these defence-related genes, NPR1 has to 

be transported to the nucleus via nuclear pore proteins called modifier of snc1 (MOS) 3, 6 

and 7. Only NPR1 monomers can be transported by the MOS nuclear pore proteins 

(Monaghan et al., 2010). 

 

Figure 1.6 Downstream SA signalling (Adapted from Fu and Dong, 2013). Left panel: upon pathogen 
infection, SA is produced and binds to NPR3, allowing NPR3-mediated degradation of NPR1. This 
leads to cell death or HR and ETI. Right panel: SA levels in adjacent cells are lower, insufficient to 
mediate NPR3-NPR1 interaction. NPR4 can still bind SA and as such NPR4-mediated degradation of 
NPR1 is inhibited. NPR1 monomers accumulate and interact with TFs leading to the activation of 
different SAR genes. NPR1: non-expressor of PR genes 1, TRXs: thioredoxins, GSNO: S-
nitrosoglutathione, SA: salicylic acid, ICS1: isochorismate synthase 1, Cul3: Cullin 3 E3 ligase, NPR3: 
non-expressor of PR genes 3, NPR4: non-expressor of PR genes 4, ETI: effector-triggered immunity, 
TF: transcription factor, Ub: ubiquitinylation, SAR: systemic acquired resistance. 

In the absence of SA, almost all NPR1 is oligomeric because of intermolecular disulfide 

bridges and as such cannot be transported into the nucleus (Tada et al., 2008). The NPR1 

monomers present can be transported into the nucleus but are ubiquitinylated and 

degraded in the proteasome (Spoel et al., 2009). Changes in the cellular redox state, induced 

by SA, activate the thioredoxins (TRXs). These TRXs monomerize the oligomeric NPR1, which 

is subsequently transported into the nucleus (Figure 1.6). S-nitrosoglutathione (GSNO) in 

contrast facilitates NPR1 oligomer formation in the absence of SA (Tada et al., 2008). NPR3 

and NPR4 directly interact with Cullin 3 E3 ligase (Cul3) and as such function as two adaptor 

proteins mediating the degradation of NPR1. NPR4 is involved in the degradation of NPR1 in 

the absence of SA, while NPR3 degrades NPR1 upon binding with SA (Figure 1.6). Without 

pathogen infection, NPR1 is constantly degraded by Cul3 via its interaction with NPR4 (not 

shown in Figure 1.6). As such unnecessary activation of plant defence is prevented. Upon 

pathogen infection, SA is produced which can bind to NPR3 and allows NPR3-mediated 

degradation of NPR1. This leads to HR and ETI (Figure 1.6 left panel). In adjacent cells, the SA 

levels are lower, too low to mediate the NPR3-NPR1 interaction, but high enough to bind 
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NPR4 and as such disrupt the NPR4-NPR1 interaction. Neither NPR4 or NPR3 mediate the 

NPR1 degradation resulting in an accumulation of NPR1 (Fu et al., 2012; Fu and Dong, 2013). 

Consequently, NPR1 monomers can interact with several members of the TGA subclass of 

the basic leucine zipper TF family, which in turn can bind promoters of SA-responsive genes 

(Fan and Dong, 2002). This leads to cell survival and systemic acquired resistance (SAR) 

(Figure 1.6 right panel) (Fu and Dong, 2013). 

Some P. syringae strains produce the toxin coronatine which causes tissue chlorosis (Katagiri 

et al., 2002). Coronatine is a structural mimic of JA and suppresses the SA signalling pathway 

and thus several defence responses e.g. stomatal closure. The inhibition of the stomatal 

closure helps P. syringae to get access to the apoplast (Jones and Dangl, 2006; Couto and 

Zipfel, 2016). 

1.2 Lectins 

The term 'lectin' is derived from 'legere', the Latin word for 'to select' (Van Damme et al., 

2008). Indeed, lectins bind selectively to carbohydrate structures. Today, lectins denote all 

proteins which contain at least one non-catalytic domain that binds reversibly to a specific 

mono- or oligosaccharide. Lectins are of non-immune origin, found widespread througout 

life on earth including bacteria, fungi, viruses, plants and animals (Peumans and Van 

Damme, 1995; Van Damme et al., 1998). 

Plant lectins can be divided in two main classes. One class groups all lectins that are 

constitutively expressed in high amounts in seeds and vegetative storage tissues. Most of 

these lectins contain a signal peptide and are as such directed to the secretory pathway. 

There is evidence that these lectins combine a function as a storage protein with an 

important role in plant defence against herbivorous insects or animals (Peumans and Van 

Damme, 1995; Van Damme et al., 1998). The other class contains the nucleocytoplasmic 

lectins which are expressed in response to certain stress conditions e.g. pathogen attack or 

environmental changes. In contrast with the abundant vacuolar lectins, these lectins are 

present in low concentrations in the nucleus and the cytoplasm of the plant cell. Upon 

stress, the expression of these lectins is elevated, but they are still not that abundant as the 

vacuolar lectins. Evidence has been presented that these lectins probably interact with 

glycans at the surface or inside the plant cell and as such play a role in signalling in or 

between plant cells as part of e.g. plant defence pathways (Lannoo and Van Damme, 2010, 

2014). 

Most lectins consist of at least one other functional domain, next to their carbohydrate 

binding domain (Van Damme, 2014). Based on the sequence homology of their carbohydrate 

binding domain, plant lectins are divided in twelve families. These twelve families are: the 

Agaricus bisporus agglutinin family, the amaranthins, the homologs of class V 

chitinase-related agglutinin (CRA), the cyanovirin family, the Euonymus europaeus lectin 
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(EUL) family, the Galanthus nivalis agglutinin (GNA) family, the hevein family, the 

jacalin-related lectin (JRL) family, the legume lectin family, the LysM domain family, the 

Nicotiana tabacum agglutinin (Nictaba) family and the ricin B lectin family (Van Damme et 

al., 2008). Among lectins in the same lectin family, different carbohydrate binding 

specificities were reported e.g. Nictaba from tobacco and F-box Nictaba from Arabidopsis in 

the Nictaba family (Stefanowicz et al., 2012). This makes it impossible to classify lectins 

according to their carbohydrate binding specificity (Van Damme, 2014). 

1.3 Nictaba and homologs in A. thaliana 

1.3.1 Nictaba 

Nictaba, the Nicotiana tabacum agglutinin, was the first discovered lectin in the Nictaba 

family (Chen et al., 2002). The Nictaba family groups the nucleocytoplasmic lectins that show 

sequence homology to the tobacco lectin and is known to be widespread in the plant 

kingdom (Figure 1.7) (Lannoo and Van Damme, 2010; Delporte et al., 2015; Van Holle et al., 

2017a). Nictaba consists out of two identical non-covalently linked subunits of 19 kDa and 

the determination of its subcellular localization revealed a localization in the nucleus and the 

cytoplasm of the plant cell (Chen et al., 2002; Lannoo et al., 2006). At plant tissue level, 

Nictaba is expressed in very young tissues including the apical and root meristems, the 

cotyledons and the first true leaves (Delporte et al., 2011). Expression of Nictaba was not 

detectable in tobacco leaves under normal growth conditions. Treatment of the tobacco 

leaves with methyl jasmonate (MeJA) and insect herbivory revealed a several fold increased 

expression of Nictaba (Chen et al., 2002; Vandenborre et al., 2009). Lannoo et al. (2006) 

reported the specificity of Nictaba towards N-acetyl-D-glucosamine (GlcNAc) oligomers, 

high-mannose and complex N-glycans. Mutational analysis of four conserved amino acid 

residues in the Nictaba carbohydrate binding site showed that Trp15 and Trp22 play an 

important role in carbohydrate binding (Schouppe et al., 2010). The identification of core 

histones as interacting partners for Nictaba and the carbohydrate dependence of this 

interaction suggest that Nictaba might fulfil a signalling role in response to stress by 

interacting with O-GlcNAcylated histones in the plant cell nucleus (Schouppe et al., 2011; 

Delporte et al., 2014). 

1.3.1 Nictaba homologs in A. thaliana (ArathNictabas) 

A. thaliana is an important model organism as discussed in section 1.1.1 of this chapter. The 

genome of A. thaliana contains 30 Nictaba related sequences, which are discussed in detail 

in chapter 2 of this thesis. Nictaba homologs from A. thaliana show different domain 

architectures consisting of a Nictaba domain alone, a combination of a Nictaba domain with 

an N-terminal Toll/Interleukin-1 receptor (TIR) domain or an N-terminal avirulence induced 

gene 1 (AIG1)-type G domain or an N-terminal F-box domain (Figure 1.7). 
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Figure 1.7 Schematic overview of the different domain architectures of Nictaba homologs in 
different plant species (Updated from Delporte et al., 2015). TIR: Toll/Interleukin-1 receptor, AIG1: 
avirulence induced gene 1. 

Six Nictaba homologs from A. thaliana contain the Nictaba domain alone. Three of these six 

homologs are the subject of this PhD thesis. Four Nictaba homologs are identified with an 

N-terminal TIR domain (Eggermont et al., 2017; Chapter 2). TIR domains are frequently 

found in insects, mammals and plants as part of R proteins of the plant innate immune 

system. These R proteins contain, next to the TIR domain, a nucleotide binding and LRR 

domain at the C-terminus and as such are part of the NLR receptors important in initiating 

ETI (Burch-Smith and Dinesh-Kumar, 2007). Only one Nictaba homolog with an N-terminal 

AIG1-type G domain was found in A. thaliana (Eggermont et al., 2017; Chapter 2). AIG1 

domains are also involved in plant defence against pathogens, the name of the domain 

refers to the AvrRpt2-induced gene 1. This R gene is acting to induce ETI upon infection with 

Pseudomonas syringae carrying the Avr Rpt2 gene, encoding a type III effector protein 

(Reuber and Ausubel, 1996; Cui et al., 2013). The Nictaba homologs which contain an 

N-terminal F-box domain are with 19 members the largest group within the Nictaba 

homolog family of A. thaliana (Eggermont et al., 2017; Chapter 2). Proteins containing F-box 

domains are generally known to play a crucial role in protein degradation using the selective 

ubiquitin-26S proteasome system (Skaar et al., 2013). More details regarding all these 

Nictaba homologs and their involvement in plant stress can be found in section 2.4.2.8 of 

chapter 2 and supplementary table 3. 
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Scope 

Plants are capable to sense changing environmental conditions including drought, extreme 

temperatures, pathogen infection or insect infestation. In contrast to animals, plants are 

sessile organisms and as such are not able to escape from these different abiotic and biotic 

stresses they are confronted with. The only option they have is to fight the adverse 

environmental conditions by a sophisticated defence system, if successful, leading to 

adaptation to the stress and survival of the plant. The bad side of this complicated defence 

system is the energy the plant needs to activate it, energy which cannot be used for growth 

of the plant. In agriculture plant growth, especially of the vegetative tissues, is important, 

thus these declines in energy cause tremendous crop yield losses. These huge crop yield 

losses have to be prevented, certainly with the continuing world population and 

consumption growth. By 2050, the world population will reach about 9 billion people and 

recent studies predicted that the world will need 70 to 100 % more food by then. 

Additionally, climate change will give rise to more plant stress which was not taken into 

account yet in this prediction. Furthermore in recent decades, due to industrialization, 

urbanization, desertification and salinization agricultural land that was formerly productive 

has been lost. At present the land area suitable for agriculture is still decreasing. To cope 

with this demand of food and to fight additional problems, interest in stress-tolerant crops 

providing higher crop yields is growing. In order to produce stress-tolerant crops, detailed 

knowledge of the genetic and biochemical mechanisms underlying plant defence, is 

necessary. Arabidopsis thaliana, the most widely-used model plant, is a valuable system to 

study these plant defence mechanisms; results can possibly be extrapolated to crops and 

used to develop modified crops with an improved tolerance to unfavourable environmental 

conditions. 

Plant lectins constitute an important part of this sophisticated defence system, also called 

the plant innate immune system. Both cell surface localized lectins and intracellular plant 

lectins play a role in this plant innate immune system. The Nictaba family represents one 

group of nucleocytoplasmic lectins that contribute to the intracellular signalling that is part 

of the innate immune system. Nictaba, the Nicotiana tabacum agglutinin, was first 

discovered in 2002, but since then many homologous sequences have been identified in the 

plant kingdom. Nictaba expression is enhanced after jasmonate treatment and herbivory in 

the nucleus and the cytoplasm of the plant cell. Inside the nucleus, Nictaba can bind to 

O-GlcNAc modified histones and is as such believed to remodel the chromatin in order to 

enhance the transcription of several defence related genes. This PhD work focuses on 

several Nictaba homologs from Arabidopsis thaliana (further referred to as ArathNictabas). 

The major aim of this PhD thesis is to investigate the biological importance of the 

ArathNictabas in the stress responses of A. thaliana (see schematic overview below). 
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The first objective of this PhD thesis is to screen the Arabidopsis genome for the presence of 

lectin genes from all known plant lectin families, to analyse the protein domains in these 

lectin sequences and to investigate the phylogenetic relationships (Chapter 2). 

The second goal of this PhD work is to unravel part of the physiological function of some 

non-chimeric ArathNictabas by determining the subcellular localization, expression pattern 

during plant development and different (a)biotic stress conditions, and tolerance of different 

ArathNictaba overexpression lines towards different stresses (Chapters 3 and 4). 

The third aim of this PhD work is to produce recombinant ArathNictaba protein to determine 

its lectin activity and carbohydrate specificity, and identify the possible interaction partners 

for the ArathNictaba proteins (Chapter 5). 
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Genome-wide screening for lectin motifs 
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2.1 Abstract 

For more than three decades Arabidopsis thaliana served as a model for plant biology 

research. At present only a few protein families have been studied in detail in Arabidopsis. 

This study focused on all sequences with lectin motifs in the genome of Arabidopsis. 

Based on amino acid sequence similarity, 217 putative lectin genes were retrieved belonging 

to nine out of twelve different lectin families. The domain organization and genomic 

distribution for each lectin family was analysed. Domain architecture analysis revealed that 

most of these lectin gene sequences are linked to other domains, often belonging to protein 

families with catalytic activity. Many protein domains identified are known to play a role in 

stress signalling and defence, suggesting a major contribution of the putative lectins in 

development and plant defence. 

This genome wide screen for different lectin motifs will help to unravel the functional 

characteristics of lectins. In addition, phylogenetic trees and WebLogos were created and 

showed that most lectin sequences that share the same domain architecture evolved 

together. Furthermore, the amino acids responsible for carbohydrate binding are largely 

conserved. Our results provide information about the evolutionary relationships and 

functional divergence of the lectin motifs in A. thaliana. 

2.2 Introduction 

Proteins are key molecules that fulfil a whole range of biological roles in a cell. Protein 

domains are distinct parts in the protein sequence that can fold and function separately 

(Nasir et al., 2014). A protein domain can be defined from different perspectives. The 

structural viewpoint defines a protein domain as an independent protein fold. From an 

evolutionary point of view, protein domains are defined as conserved parts of the sequence. 

Moreover with respect to their function, these domains typically have a particular 

reoccurring function. All together a protein domain represents a conserved part of the 

sequence with a specific fold and function (Moore et al., 2008; Kelley and Sternberg, 2015). 

The domain architecture of a protein contains all the information of the domains that build 

the protein and can be determined by scanning the protein sequence through a domain 

database, such as for example Pfam. Several domains are found at the root of the species 

tree, indicating that these are common to most species and are used to create a lot of 

domain architectures by modular rearrangements (Moore et al., 2008). Between 5.6 % and 

12.4 % of all currently found domain architectures have been generated more than once 

throughout evolutionary history. The only reason that this could have happened is because 

the same domain architectures were formed in different branches of the tree of life as a 

consequence of selection (Forslund et al., 2008). 
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Most proteins consist of multiple domains (Rentzsch and Orengo, 2013). Single-domain 

architectures are common for the major groups of organisms (prokaryotes, eukaryotes and 

viruses) while multi-domain architectures are usually unique for a species and explain the 

diversification thereof (Levitt, 2009). Indeed, during the evolution of proteins both domain 

gains and losses have occurred (Nasir et al., 2014). 

Lectins are proteins of which the domain architecture contains at least one lectin domain. A 

lectin domain can bind reversibly to specific carbohydrate structures either free 

carbohydrates or glycans from glycoproteins and glycolipids (Peumans and Van Damme, 

1995). According to their carbohydrate binding domain, plant lectins can be divided in 

twelve families: the Agaricus bisporus agglutinin family, the amaranthins, the CRA family, the 

cyanovirin family, the EUL family, the GNA family, the hevein family, the JRL family, the 

legume lectin family, the LysM domain family, the Nictaba family and the ricin B lectin family 

(Van Damme et al., 2008). Most lectins contain in addition to their carbohydrate binding 

domain at least one other functional protein domain (Van Damme, 2014). In principle this 

protein domain can have a catalytic function. It should be noted that the definition of lectins 

was established in the early 1980s, and probably needs to be revised in order to take into 

account the recent developments and novel information with respect to domain 

organization in chimeric lectins. 

For more than three decades Arabidopsis thaliana served as a model for plant biology 

research. At present several reports are accessible on individual proteins containing a lectin 

domain, but only a few families of proteins have been studied in detail in Arabidopsis. This 

study aimed to make an inventory of all sequences with lectin motifs in the genome of 

Arabidopsis. All the lectin sequences from A. thaliana were identified and their domain 

architectures determined. Known functions from literature for several members of each 

family were discussed. Phylogenetic trees and WebLogos for three lectin families including 

the JRL family, the LysM domain family and the Nictaba domain family yielded new insights 

into the phylogenetic relationships of these lectins in plants. All together our study provides 

information about the evolutionary relationships and functional divergence of the lectin 

motifs in A. thaliana. 

2.3 Materials and methods 

2.3.1 Identification of the putative lectin genes in A. thaliana 

Sequences encoding the putative lectin genes were searched for in the A. thaliana genome 

on the Phytozome v10.3 website (https://phytozome.jgi.doe.gov/pz/portal.html) (Altschul et 

al., 1990; Goodstein et al., 2012). Protein sequences encoding model proteins from each 

lectin family were used as a query for BLASTp searches (Basic Local Alignment Search Tool; 

comparison matrix BLOSUM62 and word length 3). Each model sequence represents the first 

lectin sequence described for a particular lectin family, as mentioned in supplementary 

https://phytozome.jgi.doe.gov/pz/portal.html
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table 1. Subsequently, the top hits resulting from these BLASTp searches were again used as 

a query. All sequences (E-value < 10) were downloaded with the BioMart application from 

Phytozome v10.3 (Smedley et al., 2015). This high E-value was used to make sure that all 

putative lectins were retrieved. In case non-lectin domains are selected, they will be deleted 

in the downstream analysis when the protein domains are annotated (section 2.3.2). 

Alternatively, sequences of putative lectin genes in A. thaliana were retrieved by using Pfam 

identification numbers for each lectin domain (Supplementary table 1). However, Pfam 

identification numbers are not available for the lectin domain of the EUL and CRA family. 

Finally, Pfam domain names (Supplementary table 1) were also used to search for potential 

lectins with the Simple Modular Architecture Research Tool (SMART) database 

(http://smart.embl-heidelberg.de/) (Letunic et al., 2009). Since the SMART database is not 

using Arabidopsis Gene Initiative (AGI) codes, the AGI codes of the resulting protein 

sequences were found in the UniProtKB database (http://www.uniprot.org/uniprot/). 

Identical protein sequences retrieved from the three methods described above were 

deduplicated. 

2.3.2 Annotating the protein domains of putative lectins 

All sequences for the putative lectin genes from A. thaliana were checked for the presence 

of a lectin domain with InterProScan5 (http://www.ebi.ac.uk/interpro). InterProScan5 scans 

protein sequences on conserved protein domains and combines data from multiple 

databases: HAMAP, PANTHER, PfamA, PIRSF, ProDom, PRINTS, Prosite-Profiles, SMART, 

TIGRFAM, Prosite-Patterns, Gene3d and SUPERFAMILY (Jones et al., 2014). 

InterProScan5.7-48.0 was installed and ran on the local server. Proteins with at least one 

lectin domain were considered as a putative lectin. Also protein domains other than lectin 

domains were identified. The start and end position of each protein domain was determined 

and used to draw the domain architecture for each putative lectin on scale using the 

DomainDraw software (http://domaindraw.imb.uq.edu.au./) (Fink and Hamilton, 2007). 

Since the lectin domains of the EUL and CRA family have no Pfam identification number, the 

lectin domain sequences for the model sequences (Supplementary table 1) were aligned 

with the protein sequences encoding the putative lectins from the EUL and CRA family with 

Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al., 2011). 

InterProScan5 was used to identify the domains other than lectin domains in these EUL and 

CRA family lectins. 

2.3.3 Determining signal sequences and/or transmembrane domains 

Each potential lectin sequence was checked for the presence of a signal sequence and/or a 

transmembrane domain with Phobius (http://phobius.sbc.su.se/index.html). Phobius 

combines the models from the SignalP and TMHMM server in a slightly modified way (Käll et 

http://smart.embl-heidelberg.de/
http://www.uniprot.org/uniprot/
http://www.ebi.ac.uk/interpro/search/sequence-search
http://domaindraw.imb.uq.edu.au./
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://phobius.sbc.su.se/index.html
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al., 2004). The start and end positions for the signal sequences and/or transmembrane 

domains were determined and used to draw the schematic domain architectures. 

2.3.4 Mapping the putative lectin genes on the chromosomes of Arabidopsis and 

analysis of tandem duplications 

Using the BioMart application of Phytozome v10.3 the transcription start position (base 

pairs) of each putative lectin was retrieved and used to map the lectin genes on the 

chromosomes of Arabidopsis (Voorrips, 2002). Only primary transcripts were mapped on the 

chromosomes. The positions of the centromeres are according to Feraru et al. (2012). The 

chromosomes were drawn to scale using their golden path lengths (TAIR, 

https://www.arabidopsis.org/index.jsp). Tandem duplicated genes were defined as two 

lectin genes from the same family located on the same chromosome separated by maximum 

10 other (not lectin) genes. 

2.3.5 Phylogenetic analysis 

Phylogenetic trees were created using the lectin domain sequences identified for each 

family. For putative lectin sequences that contain more than one lectin domain, each lectin 

domain was used as a separate entry. Protein alignment of these sequences was performed 

with Multiple Alignment using Fast Fourier Transform (MAFFT, 

http://www.ebi.ac.uk/Tools/msa/mafft/) using the default parameters (Katoh and Standley, 

2013). The alignments were trimmed using the automated1 option of trimAl which was 

installed locally (Capella-Gutiérrez et al., 2009). Unrooted phylogenetic trees were created 

with RAxML v8.2.4 using the GAMMA model for rate heterogeneity and automatic 

determination of the best amino acid substitution model (i.e. the model with the highest 

likelihood score on the starting tree) (Stamatakis, 2014). Bootstrap analysis was performed 

using the rapid bootstrap algorithm of RAxML (Stamatakis et al., 2008). The number of 

bootstraps was determined using the frequency criterion up to a maximum number of 1000. 

Visualization of the phylogenetic tree was done with the FigTree v1.4.3 software 

(http://tree.bio.ed.ac.uk/software/figtree/). 

2.3.6 Analysis of amino acids responsible for carbohydrate binding 

The untrimmed sequence alignments used to generate the phylogenetic trees were used in 

WebLogo3 to make a graphical representation of the amino acid conservation at each 

position of the sequence (http://weblogo.berkeley.edu/logo.cgi) (Crooks et al., 2004). A 

comparative analysis with model sequences and the amino acids known to be important for 

carbohydrate binding activity allowed to check if amino acids essential for interaction with 

carbohydrate structures are conserved. 

  

https://www.arabidopsis.org/index.jsp
http://www.ebi.ac.uk/Tools/msa/mafft/


Genome-wide screening for lectin motifs in Arabidopsis thaliana 

31 

2.4 Results and discussion 

2.4.1 Identification and distribution of the genes with a lectin domain in A. thaliana 

BLASTp searches against the A. thaliana genome retrieved 217 putative lectin sequences 

that could be classified in nine of the twelve plant lectin families as defined in Van Damme et 

al. (2008) (Supplementary table 2). Sequences with lectin domains homologous to the 

Agaricus bisporus agglutinin, amaranthin and cyanovirin families were not found (Table 2.1). 

The legume lectins represent the most abundant lectin family in A. thaliana with 54 putative 

lectin genes (24.9 %), followed by the JRL family (50 genes; 23.0 %) and the GNA lectin family 

(49 genes; 22.6 %). 

Table 2.1 Predicted lectin sequences and their localization on the chromosomes of A. thaliana. 

Lectin domain 
Putative lectin 

genes 
Percentage 

Chromosome 
location 

Agaricus bisporus 
agglutinin domain 

0 0.0 / 

Amaranthin domain 0 0.0 / 

CRA domain 9 4.1 4 

Cyanovirin domain 0 0.0 / 

EUL domain 1 0.5 2 

GNA domain 49 22.6 1, 2, 3, 4, 5 

Hevein domain 10 4.6 1, 2, 3 

Jacalin domain 50 23.0 1, 2, 3, 5 

Legume lectin 
domain 

54 24.9 1, 2, 3, 4, 5 

LysM domain 12 5.5 1, 2, 3, 4, 5 

Nictaba domain 30 13.8 1, 2, 3, 4, 5 

Ricin B domain 2 1.0 1, 3 

 

Mapping of the transcript start positions on the five chromosomes revealed that putative 

lectin genes are present throughout the whole A. thaliana genome (Table 2.1, Figure 2.1). 

Genes for some lectin families (e.g. LysM domain family) are present on each chromosome 

whereas genes from other lectin families (e.g. hevein family) are only present on one or a 

few chromosomes. The nine putative lectin genes from the CRA lectin family are present in 

one tandem duplication cluster on chromosome four. Chromosome four is the smallest 

chromosome and shows also the lowest lectin gene density (1.3 gene/Mbp). Chromosome 

one is the largest chromosome and has the highest lectin density (2.4 gene/Mbp). 
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Figure 2.1 Distribution of putative lectin genes on the chromosomes of A. thaliana. The 
chromosomes were drawn to scale. Each lectin family is shown in a specific color. The black bands 
represent the positions of the centromeres on the chromosomes. Asterisks indicate tandem 
duplications. 

Tandem duplications of lectin sequences are spread throughout the genome and are found 

for putative lectin genes from six families (Figure 2.1). Chromosome one has the highest 

amount of tandem duplication clusters (10) whereas chromosome three has the lowest 

number (4). The legume lectin homologs are the only family with tandem duplication 

clusters on each chromosome. The GNA family has four tandem duplication clusters on 

chromosome one, this represents the highest number of tandem duplication clusters on one 

chromosome. 

2.4.2 Domain architecture and importance of the putative lectins in A. thaliana 

All sequences with a putative lectin domain were also searched for the presence of other 

protein domains with a known function. Different (combinations of) protein domains can 

give information on the possible functions of the protein. Different domain architectures for 

the putative lectins from each family are shown in Figures 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8. 

All sequences were checked for the presence of a signal peptide and/or a transmembrane 

domain in order to give information about the localization of the putative lectins in the plant 

cell (Table 2.2). If available, literature reporting on the importance of the lectin sequences 

for Arabidopsis growth and development is briefly discussed. Supplementary table 3 gives an 
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overview of the publications discussing the biological role(s) of the putative lectins in 

A. thaliana. 

Table 2.2 Putative lectin sequences with a signal peptide and transmembrane region. 

Lectin family Signal peptide 
Transmembrane 

domain 

CRA 2/9 1/9 

EUL 0/1 0/1 

GNA 47/49 37/49 

Hevein 10/10 0/10 

Jacalin 3/50 0/50 

Legume lectin 52/54 46/54 

LysM 10/12 7/12 

Nictaba 0/30 0/30 

Ricin B 1/2 0/2 

 

2.4.2.1 CRA homologs 

Nine proteins with a CRA domain were found in the A. thaliana genome (Table 2.1). All these 

putative lectin genes are located in one tandem duplication cluster on chromosome four 

(Figure 2.1). The size of the chitinase-related domain of these sequences varies between 210 

and 349 aa with sequence identities to the CRA domain of the model sequence 

(Supplementary table 1) varying between 41.29 and 55.06 %. Next to their CRA domain, 

seven out of nine proteins also contain a chitinase insertion domain (CID) (Figure 2.2) (Li and 

Greene, 2010), a domain typical for chitinases that belong to the glycosyl hydrolase (GH) 

family 18 (CAZy database). Therefore all nine proteins are classified in the GH family 18 

according to this CAZy database. Two out of nine sequences with a CRA domain encode a 

signal peptide and one of the two proteins contains a transmembrane domain (Table 2.2, 

Figure 2.2). Transcript levels for one homolog AtChiC (AT4G19810, containing a signal 

peptide) were slightly upregulated after ABA, JA and salt treatment (Ohnuma et al., 2011). 

The recombinant AtChiC showed enzymatic activity, in particular it hydrolyzes 

N-acetylglucosamine oligomers (chitinase activity). Taking into account the definition of 

lectins stating that a lectin domain should not exert any catalytic activity, this protein cannot 

be referred to as a lectin. 



Chapter 2 

34 

 

Figure 2.2 Domain architectures of CRA and EUL homologs. Signal peptides and transmembrane 
regions are drawn in yellow. The numbers in brackets indicate the total number of sequences with 
this domain architecture, followed by the number of sequences that contain a signal peptide and a 
transmembrane region, respectively. In case only one number is given, none of the sequences with 
this domain architecture have a signal peptide or a transmembrane region. 

2.4.2.2 EUL homologs 

Only one EUL homolog was retrieved from the A. thaliana genome, referred to as 

ArathEULS3 (AT2G39050) (Fouquaert et al., 2009). The EUL domain of 154 aa is preceded by 

an N-terminal domain of 163 aa with unknown function (Figure 2.2). The sequence does not 

contain a signal peptide nor a transmembrane domain (Table 2.2, Figure 2.2). Microscopic 

analysis of an enhanced green fluorescent protein (EGFP)-fusion protein revealed that 

ArathEULS3 is located in the cytoplasm and the nucleus (Van Hove et al., 2011). More recent 

experiments showed an elevated expression of ArathEULS3 after treatments of Arabidopsis 

seedlings with glutathione, ABA, MeJA and salt (Hacham et al., 2014; Van Hove et al., 2014). 

Furthermore Van Hove et al. (2015) revealed increased levels of the lectin transcripts after 

infection of wild type (WT) Arabidopsis plants with Pseudomonas syringae. It was suggested 

that ArathEULS3 plays a role in the ABA-induced stomatal closure (Van Hove et al., 2015). 

2.4.2.3 GNA homologs 

The GNA homologs represent one of the three largest lectin families in A. thaliana (Figure 

2.3). Only six out of 49 GNA homologs contain only a GNA domain, all other protein 

sequences have a chimeric domain architecture. The GNA domain is combined with an 

S-locus glycoprotein domain and/or a Pan/Apple domain and/or a protein kinase domain. In 

addition, some GNA homologs also possess an S-locus receptor kinase (SRK) domain (Figure 

2.3). The domain architecture of one GNA homolog (AT1G11300) contains a tandem repeat 

of a GNA, S-locus glycoprotein, Pan/Apple and protein kinase domain (not shown in Figure 

2.3). Almost all GNA homologs are synthesized with a signal peptide and the majority of 

them also contain a transmembrane domain (Table 2.2, Figure 2.3). 
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Figure 2.3 Domain architectures of GNA homologs. Signal peptides and transmembrane regions are 
drawn in black when they are present in all sequences with this domain architecture. They are drawn 
in yellow when only part of the sequences contains a signal peptide and/or a transmembrane region.  
The numbers in brackets indicate the total number of sequences with this domain architecture, 
followed by the number of sequences that contain a signal peptide and a transmembrane region, 
respectively. 

RNA sequencing data suggest the inducible expression for some GNA homologs (AT1G65790, 

AT5G60900) after inoculation of Arabidopsis with the fungal pathogen Fusarium oxysporum 

(Zhu et al., 2013). The expression of some homologs (AT5G60900, AT5G18470), is 

upregulated in plants exposed to lipopolysaccharides, PAMPs (Sanabria et al., 2008). 

Lipopolysaccharides are essential components of the bacterial cell wall of gram negative 

bacteria suggesting that these GNA homologs play a role in the defence against bacterial 

infections. All but one (AT5G18470) of the GNA homologs that show elevated expression 

levels after Fusarium infection as well as these upregulated by the lipopolysaccharide 

treatment encode RLKs. Lectin RLKs play a role in plant development, stress and hormonal 

responses (Vaid et al., 2013). Another RLK (AT4G21390) is more than 200 fold upregulated 

after ozone (O3) treatment (Xu et al., 2015). Blaum et al. (2014) reported a GNA homolog 

(AT1G61360) that is co-expressed with BAK1-interacting RLK2, a protein of the LRR-RLKs, 

which play a role in development and innate immunity. A GNA homolog called calmodulin-

binding receptor-like protein kinase 1 (CBRLK1, AT1G11350) harbours a Ca2+-dependent CaM 

binding domain in its C-terminus. This protein possesses autophosphorylation sites, as 

determined with mass spectrometry (MS) (Kim et al., 2009). All these results suggest that 

GNA homologs can play a role in different stress related responses. 
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2.4.2.4 Hevein homologs 

Ten hevein homologs were found in the A. thaliana genome (Table 2.1). All sequences 

contain a signal peptide but lack a transmembrane domain (Table 2.2, Figure 2.4) suggesting 

that all hevein homologs are synthesized following the secretory pathway. All hevein 

homologs represent chimeric lectin sequences (Figure 2.4), the hevein domain is linked to a 

chitinase IV domain of the GH family 19 in nine sequences. 

 

Figure 2.4 Domain architectures of hevein homologs. Signal peptides are drawn in black. The 
numbers in brackets indicate the total number of sequences with this domain architecture, followed 
by the number of sequences that contain a signal peptide and a transmembrane region, respectively. 

In PR-4 (AT3G04720), the hevein domain is fused to the Barwin domain of 120 aa, named 

after the Barwin protein of barley which plays a role in the defence against fungal attacks 

(Ludvigsen and Poulsen, 1992). Genes that encode the PR proteins are rapidly induced after 

pathogen attacks and treatment with certain hormones. Recent studies revealed that the 

expression of PR genes is also regulated by environmental factors like light and abiotic 

stresses. For example, transcript levels for PR-3 (AT3G12500), a hevein homolog without 

Barwin domain, and PR-4 are significantly higher after high salt treatment and respond in an 

ABA-dependent manner (Seo et al., 2008). These genes are also responsive to sulfur dioxide 

exposure and are involved in the defence mechanism against the fungal pathogen Alternaria 

brassicicola (Thomma et al., 1999; Mukherjee et al., 2010; Li and Yi, 2012). Price et al. (2015) 

studied the hevein domain of some class IV chitinases from Arabidopsis by MALDI-TOF MS 

analysis and revealed the presence of three conserved disulfide bridges in the hevein 

domain as reported for the model lectin hevein. A whole genome microarray revealed that 

the expression of another hevein homolog (AT3G54420), called AtEP3, is upregulated after 

treatment of Arabidopsis with NO (Parani et al., 2004). AtEP3 plays a role in programmed 

cell death (Passarinho et al., 2001). 
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2.4.2.5 Jacalin homologs 

The jacalin homologs represent a large group of putative lectins in A. thaliana. In contrast to 

many other lectin families in Arabidopsis, most of the jacalin homologs are composed of one 

or more jacalin domains only (Figure 2.5). Only 6 of the 50 jacalin homologs are chimeric 

lectins. Four of them contain two to four Kelch motives, a 44–56 amino acid motif that first 

was discovered in Drosophila and forms a single four-stranded antiparallel β-sheet. Proteins 

containing kelch repeats play a role in many aspects of cell function (Adams et al., 2000). The 

remaining two chimeric jacalin homologs contain an F-box associated domain (type 1) 

and/or an F-box domain. The F-box motif consists of approximately 60 aa and links the F-box 

protein to the SCF complex involved in protein degradation (Kipreos and Pagano, 2000). Only 

three of the JRLs contain a signal peptide and none of them has a transmembrane domain, 

suggesting that most of the jacalin homologs are cytoplasmic proteins (Table 2.2, Figure 2.5). 

 

Figure 2.5 Domain architectures of jacalin homologs. Signal peptides are drawn in yellow. The 
numbers in brackets indicate the total number of sequences with this domain architecture, followed 
by the number of sequences that contain a signal peptide and a transmembrane region, respectively. 
In case only one number is given, none of the sequences with this domain architecture have a signal 
peptide or a transmembrane region. 

Since pbp1 (PYK10 binding protein 1, AT3G16420) mutants show yellow phenotypes 

de Luna-Valdez et al. (2014) suggested that the jacalin homolog PBP1 is involved in the 

development of chloroplasts. PBP1 may also act as a molecular chaperone that helps the 
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correct polymerization of PYK10 in response to tissue damage and destruction of subcellular 

structures. PYK10 is a β-glucosidase of the myrosinase family (Nagano et al., 2005). 

β-glucosidases hydrolyse glucosinolates, a group of secondary plant metabolites that play a 

key role in the myrosinase-glucosinolates plant defence system. This hydrolysis only takes 

place upon tissue damage as the myrosinases and glucosinolates have a different subcellular 

localization. The product of the hydrolysis is an aglucone that can spontaneously rearrange 

into an isothiocyanate. Isothiocyanates are particularly toxic for microorganisms, nematodes 

and insects (Nagano et al., 2005; Wittstock and Burow, 2010). Two jacalin homologs are 

myrosinase binding proteins (MBPs) referred to as MBP1 (AT1G52040) and MBP2 

(AT1G52030) (Capella et al., 2001). These MBPs interact with myrosinases in order to form 

large complexes (Nagano et al., 2005). Four other jacalin homologs are known as A. thaliana 

nitril specifier proteins (AtNSP1-4, respectively AT3G16400, AT2G33070, AT3G16390, 

AT3G16410). They catalyze the formation of nitriles from the aglucone (Kong et al., 2012). 

The jacalin homolog AtJAC1 (AT3G16470) plays a role in controlling the flowering time of 

A. thaliana. AtJAC1 regulates the expression of the repressor gene flowering locus C (FLC) 

through interaction with glycine-rich RNA-binding protein 7 (GRP7) and as such influences 

the flowering time (Xiao et al., 2015). The jacalin homolog restricted tobacco etch potyvirus 

(TEV) movement 1 (RTM1, AT1G05760) restricts the long-distance movement of TEV in the 

phloem by acting together with the non lectin proteins RTM2 and RTM3. As such the plant 

can prevent systemic infection (Chisholm et al., 2001). The RTM system can also act towards 

the plum pox virus (PPV) and the lettuce mosaic virus (Revers et al., 2003; Decroocq et al., 

2006). The expression of the jacalin homolog encoded by AT1G52000 is upregulated after 

the inoculation of Arabidopsis with the fungal pathogen Fusarium oxysporum (Zhu et al., 

2013). 

2.4.2.6 Legume lectin homologs 

The legume lectin homologs represent the largest group of putative lectins in A. thaliana 

(Table 2.1). Although 54 homologs are found, their domain architecture is relatively simple 

(Figure 2.6). Only 13 of the 54 homologs contain the legume lectin domain alone, 41 legume 

lectin homologs contain a protein kinase domain C-terminally linked to the legume lectin 

domain. Except for two legume lectin homologs all putative legume lectins contain a signal 

peptide, 46 of them also contain a transmembrane domain (Table 2.2). All homologs that 

contain a protein kinase domain are synthesized with a signal peptide and contain a 

transmembrane domain. 



Genome-wide screening for lectin motifs in Arabidopsis thaliana 

39 

 

Figure 2.6 Domain architectures of legume lectin homologs. Signal peptides and transmembrane 
regions are drawn in black when they are present in all sequences with this domain architecture. 
They are drawn in yellow when only part of the sequences has a signal peptide and/or a 
transmembrane region. The numbers in brackets indicate the total number of sequences with this 
domain architecture, followed by the number of sequences that contain a signal peptide and a 
transmembrane region, respectively. 

Mutation of the SGC Lectin RLK (AT3G53810), a legume lectin homolog with a protein kinase 

domain, resulted in Arabidopsis plants with male sterility as a result of a defect in pollen 

development (Wan et al., 2008). Several legume lectin homologs (all with a protein kinase 

domain) are stress related proteins. The expression of the legume lectin homolog LecRK-b2 

(AT1G70130), for example, was upregulated by ABA, salt and osmotic stress (Deng et al., 

2009). He et al. (2004) demonstrated that the expression of AtLecRK2 (AT3G45410) is 

elevated upon salt stress and this response is regulated by the ET signalling pathway. The 

expression of legume lectin homolog AtLPK1 (AT4G02410) is highly upregulated after ABA, 

MeJA and SA treatments. Overexpression of this legume lectin homolog in A. thaliana 

showed a better seed germination under high salt conditions (Huang et al., 2013). The 

legume lectin homolog named LecRK-VI.2 or LecRKA4.1 (AT5G01540) plays a role in the ABA 

stress response and the disease resistance of Arabidopsis against Pseudomonas syringae and 

Pectobacterium carotovorum (Xin et al., 2009; Singh et al., 2012). Also legume lectin 

homologs, LecRKA4.2 (AT5G01550) and LecRKA4.3 (AT5G01560) have a role in the ABA 

stress response. These legume lectin homologs are located next to each other on 

chromosome five (Xin et al., 2009). The expression of some of these legume lectin homologs 

is also influenced by A. brassicicola, F. oxysporum and ozone (Mukherjee et al., 2010; Zhu et 

al., 2013; Xu et al., 2015). LecRK-I.9 (AT5G60300) plays a role in the cell wall - plasma 

membrane adhesions. The destabilization of these adhesions is one of the ways used by 

Phytophthora brassicae to infect Arabidopsis. Overexpression of LecRK-I.9 in A. thaliana 

resulted in enhanced resistance to P. brassicae suggesting that LecRK-I.9 contributes to 

strengthening of cell wall - plasma membrane adhesions (Bouwmeester et al., 2011). 

2.4.2.7 LysM homologs 

The LysM homologs represent a small group in A. thaliana with diverse domain architectures 

(Figure 2.7). In five out of twelve sequences the LysM domain is linked to a protein kinase 

domain. One of these sequences contains two LysM domains. According to InterProscan one 

homolog with a protein kinase domain possesses a syndecan/neurexin domain. Although 
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this homolog is well described in literature, the syndecan/neurexin domain has never been 

reported. One of the twelve LysM homologs contains an N-terminal F-box domain. Half of 

the sequences encoding LysM homologs consist of one or two LysM domains. No other 

protein domains were identified in these coding sequences. Ten LysM homologs are 

synthesized with a signal peptide and seven of them contain a transmembrane domain, 

indicating that most of the LysM homologs follow the secretory pathway (Table 2.2). 

 

Figure 2.7 Domain architectures of LysM homologs. Signal peptides and transmembrane regions are 
drawn in black when they are present in all sequences with this domain architecture. They are drawn 
in yellow when only part of the sequences has a signal peptide and/or a transmembrane region. The 
numbers in brackets indicate the total number of sequences with this domain architecture, followed 
by the number of sequences that contain a signal peptide and a transmembrane region, respectively. 
In case only one number is given, none of the sequences with this domain architecture have a signal 
peptide or a transmembrane region. 

Zhang et al. (2007) described five of the LysM homologs that contain a protein kinase 

domain. One of these homologs, referred to as AtCERK1, AtLYK1 or LysM RLK1 (AT3G21630) 

is important in the response of Arabidopsis to fungi. Mutation of RLK1 created more 

susceptible Arabidopsis plants to fungal pathogens (Wan et al., 2008). More recent research 

revealed that the expression of AtLYK4 (AT2G23770) and AtLYK5 (AT2G33580) is upregulated 

by chitin. Pull-down analysis also proved that these LysM homologs can interact with chitin. 

Only mutants of AtLYK4 showed a reduced expression of chitin-responsive genes (like atlyk1 

mutants) and a higher susceptibility to Alternaria brassicicola and Pseudomonas syringae. 

Since AtLYK4 does not possess an active protein kinase domain, it is hypothesized that 

AtLYK1 and AtLYK4 may form a chitin-receptor complex with a single active kinase domain 

(AtLYK1) that starts the downstream chitin signalling (Wan et al., 2012). Furthermore, 
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AtLYK3 (AT1G51940) may be important for the cross talk between the ABA and pathogen 

stress response (Paparella et al., 2014). 

2.4.2.8 Nictaba homologs 

Among the 30 Nictaba homologs retrieved from the Arabidopsis genome, 19 sequences 

contain an F-box domain (Figure 2.8). Four Nictaba homologs contain an N-terminal TIR 

domain, a domain with a role in pathogen detection and defence responses (Burch-Smith 

and Dinesh-Kumar, 2007). Only one putative Nictaba lectin contains an AIG1-type G domain, 

a domain which is also found in GTPases that play a role in the defence against pathogens 

(Reuber and Ausubel, 1996). The absence of signal peptides or transmembrane domains 

suggests a cytoplasmic localization for the Nictaba homologs. 

 

Figure 2.8 Domain architectures of Nictaba and ricin B homologs. Signal peptides are drawn in 
yellow. The numbers in brackets indicate the total number of sequences with this domain 
architecture, followed by the number of sequences that contain a signal peptide and a 
transmembrane region, respectively. In case only one number is given, none of the sequences with 
this domain architecture have a signal peptide or a transmembrane region. 

Phloem protein 2 (PP2)-A1 (AT4G19840), a Nictaba homolog that contains only a Nictaba 

domain, is part of the phloem protein bodies in the sieve elements. Recombinant protein 

production and glycan array analysis demonstrated binding of PP2-A1 to 

N-acetylglucosamine oligomers, high-mannose N-glycans and 9-acyl-N-acetylneuraminic 

sialic acid. Although PP2-A1 did not show insecticidal properties against Acyrthosiphon pisum 

and Myzus persicae, the weight gain of the nymphs was reduced by adding the recombinant 
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PP2-A1 protein to the aphid diet (Beneteau et al., 2010). According to Lee et al. (2014) 

PP2-A1 showed molecular chaperone as well as antifungal activity. Since the expression of 

PP2-A1 is upregulated after pathogen attack and ET treatment, the molecular chaperone can 

play a crucial role in the stress response (Lee et al., 2014). More than half of the F-box 

containing Nictaba homologs were shown to interact with at least one Arabidopsis Skp1-like 

protein (Gagne et al., 2002; Risseeuw et al., 2003; Takahashi et al., 2004; Dezfulian et al., 

2012; Kuroda et al., 2012). A lot of F-box containing Nictaba homologs are proven to be 

stress-inducible, mostly by abiotic stresses but to a lesser extent also by biotic stresses 

(Takahashi et al., 2004; Dezfulian et al., 2012; Kuroda et al., 2012). Transcript levels for the 

VIP1 binding F-box protein (VBF, AT1G56250) are upregulated by Agrobacterium 

tumefaciens and help to bring the T-DNA inside the plant by degrading VirE2 and VIP1 

proteins that coat the T-DNA (Zaltsman et al., 2010). The expression of PP2-B11 

(AT1G80110) is elevated by salt stress and overexpression lines of this gene are more 

tolerant to high salinity conditions (Jia et al., 2015). Lee et al. (2014) showed that 

overexpression lines of PP2-B11 are more sensitive to drought stress suggesting that 

PP2-B11 is a negative regulator in the response to drought stress. Carbohydrate binding 

activity was reported for the recombinant PP2-B10 or F-box Nictaba (AT2G02360) protein 

expressed in Pichia pastoris (Stefanowicz et al., 2012). Glycan array analysis demonstrated 

that F-box Nictaba recognizes N-acetyllactosamine, Lewis A, Lewis X, Lewis Y and blood 

type B motifs. It is hypothesized that F-box Nictaba plays a role in nucleocytoplasmic protein 

degradation (Lannoo et al., 2008). Recently Stefanowicz et al. (2016) showed that 

overexpression of this F-box Nictaba resulted in a reduction of leaf damage upon infection 

with Pseudomonas syringae. Another Nictaba homolog (AT3G61060) with an F-box domain is 

downregulated during callus initiation (Xu et al., 2012). 

2.4.2.9 Ricin B homologs 

Only two ricin B homologs exist in A. thaliana (Table 2.1). They both have the same domain 

architecture consisting of an N-terminal GH family 5 domain and a C-terminal ricin B domain 

(Figure 2.8). Only one homolog is synthesized with a signal peptide and none of the 

sequences has the characteristics of a transmembrane domain (Table 2.2). The expression of 

one of the ricin B homologs (AT3G26140) is upregulated after infection of the plants with 

PPV (Babu et al., 2008). 

2.4.3 Phylogenetic analysis and analysis of the carbohydrate binding site. 

Screening of the Arabidopsis genome for lectin sequences and analysis of the protein 

domains yielded a lot of different protein domain combinations composed of a lectin domain 

linked to the AIG1-type G, Barwin, CID, F-box, F-box associated domain type 1, GH family 5, 

GH family 19, Kelch1, Pan/Apple, protein kinase, S-locus glycoprotein, SRK or TIR domain. 

Strikingly the protein kinase and the F-box domains are found in combination with different 

lectin domains. All the putative lectins with a protein kinase domain are synthesized with a 

signal peptide and almost all of them have a predicted transmembrane region, suggesting 
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that these chimeric proteins will follow the secretory pathway and will probably reside in the 

plasma membrane or in the apoplast. All putative lectin sequences with an F-box domain do 

not possess a signal peptide nor a transmembrane region, and presumably encode 

nucleocytoplasmic proteins. Although the role of the F-box domain is known, research on 

genes containing this F-box domain fused to a lectin domain (either a JRL, a LysM or a 

Nictaba domain) is far from being fully implemented. No information is available with 

respect to the physiological importance of the F-box JRLs and the F-box LysM, but several 

F-box Nictaba proteins were shown to be stress related proteins and as such may play a role 

in plant defence. To check for evolutionary relationships between F-box-lectin domain 

combinations, phylogenetic trees were created for each of these lectin families. In case a 

sequence contains multiple lectin domains they were separated. For instance the first jacalin 

domain of AT1G19715.1 is designated AT1G19715.1_1. In addition, the carbohydrate binding 

site of all the lectin domains was analysed to check the conservation of the amino acids 

responsible for interaction with the carbohydrate. 

2.4.3.1 Evolutionary relationships of the jacalin homologs from A. thaliana 

The family of JRLs represents a large group of putative lectins in A. thaliana. Most sequences 

consist of one or more jacalin domains, only 12 % of the sequences encode chimeric 

proteins. The dendrogram constructed with the individual jacalin domain sequences from all 

putative JRLs yielded a very complex tree. As shown in Figure 2.9 both sequences containing 

the F-box associated domain type 1 (AT3G59590.1 and AT3G59610.1) are very closely 

related. All JRL domains associated with two or more Kelch1 domains are grouped together 

except for the N-terminal jacalin domain of the only Kelch1 JRL sequence containing two 

jacalin domains (AT3G16410.1_1). The bootstrap value of the branch is quite high (93 %) 

suggesting that the jacalin domain sequences that occur in combination with Kelch1 

domains evolved together whereas the first jacalin domain of AT3G16410.1 is more similar 

to the jacalin domains of the non-chimeric JRLs. 

Most JRLs composed of a single jacalin domain are separated in two small clusters (Figure 

2.9). The majority of the lectin sequences contain multiple jacalin domains. Overall, two big 

clades of jacalin domains belonging to sequences with multiple JRL domains can be 

distinguished (Figure 2.9). Clade A (blue) contains all the first jacalin domains from most 

non-chimeric JRLs and all second jacalin domains except from one sequence belonging to the 

JRLs containing four jacalin domains. Clade B (purple) contains all the other jacalin domains 

of the non-chimeric JRLs and the jacalin domains of the F-box associated domain type 1 and 

the Kelch1 containing sequences. Interestingly jacalin domains from JRLs containing multiple 

lectin domains usually do not cluster together in the tree, except for the three jacalin 

domains of AT1G19715.1. These data suggest that tandemly arrayed jacalin domains within 

one JRL are not formed by a duplication event. Three JRLs composed of two tandem jacalin 

domains are synthesized with a signal peptide. The first and second jacalin domain of these 

three sequences also group together (Figure 2.9). Multiple small tandem duplication clusters 
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are found throughout the tree, grouping closely related jacalin domain sequences (Figure 

2.1, Figure 2.9). 

 

Figure 2.9 Maximum likelihood phylogenetic tree of jacalin domains. The blue and the purple frame 
mark the first as well as the second jacalin domains of the three sequences with a signal peptide, 
respectively. Small tandem duplication clusters are highlighted in grey. The coloured branches 
represent clade A (blue) and clade B (purple). The scale bar represents the mean of the number of 
substitutions per site according to a maximum likelihood estimation. 
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2.4.3.2 Conserved amino acids in the carbohydrate binding site of jacalin homologs 

from Arabidopsis 

The first JRL, referred to as jacalin, was identified from the seeds of jackfruit Artocarpus 

integrifolia (Bunn-Moreno and Campos-Neto, 1981). Jacalin is composed of four subunits, 

two α-chains (133 aa) and two β-chains (20 aa), and exhibits specificity towards galactose 

(Sankaranarayanan et al., 1996; Houlès Astoul et al., 2002). Since the discovery of jacalin, 

many jacalin homologs with specificity towards galactose and mannose have been identified 

throughout the plant kingdom. In contrast to the galactose specific jacalins that are confined 

to the Moraceae, the mannose specific jacalins are widespread in higher plants (Houlès 

Astoul et al., 2002). Next to the difference in carbohydrate binding specificity, galactose and 

mannose specific jacalins differ in the maturation of the lectin polypeptide and their 

localization in the cell. The post-translational cleavage of the lectin precursor into the α- and 

β-chain does not take place in the mannose specific jacalins. Whereas galactose specific JRLs 

reside in the vacuole, mannose specific JRLs are cytoplasmic proteins (Peumans et al., 2000). 

Houlès Astoul et al. (2002) re-investigated the carbohydrate binding specificity of jacalin and 

concluded that the specificity of jacalin is not restricted to galactose and 

N-acetylgalactosamine, but extends to mannose and glucose. They reported that the 

carbohydrate binding site of jacalin consists of an N-terminal glycine and three C-terminal 

amino acids namely Tyr, Trp and Asp. However, only the N-terminal glycine and the 

C-terminal aspartic acid were found in the WebLogo resulting from the protein alignment of 

127 jacalin domain sequences from Arabidopsis (Figure 2.10). 

 

Figure 2.10 WebLogo of amino acids responsible for carbohydrate binding in the JRL domains. Each 
column of the alignment is represented by a stack of letters. The height of each letter indicates the 
frequency of this letter at that position of the sequence. The height of the overall stack is 
proportional to the sequence conservation. The conserved amino acids important for carbohydrate 
binding activity are highlighted in yellow. Note that the leucine residue is largely conserved, but was 
not shown to be important for carbohydrate binding activity. Only the regions around the conserved 
amino acids are shown. The complete WebLogo can be found in supplementary data 
(Supplementary figure 1). 

Judging from the height of the residue, it can be concluded that the N-terminal glycine is 

conserved for most of the sequences encoding jacalin homologs from Arabidopsis whereas 
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the C-terminal aspartic acid is not well conserved. The complete WebLogo shows a lot of 

gaps in the alignment, making it difficult to interpret the data (Supplementary figure 1). 

Bourne et al., (2004) reported the residues important for carbohydrate binding in the 

Calystegia sepium agglutinin, a mannose specific JRL. The carbohydrate binding site consists 

of an N-terminal glycine (Gly17), Asn96, Tyr141, Tyr142 and Asp144. Also these residues 

were not conserved in the JRLs from Arabidopsis. The jacalin domains from Arabidopsis have 

a well conserved leucine residue preceding the C-terminal aspartic acid needed for 

carbohydrate binding (Figure 2.10). Although this residue was not shown to be important for 

carbohydrate binding Raval et al., (2004) also noticed that this leucine is largely conserved in 

58 sequences of individual jacalin domains from JRLs belonging to 16 different plant species. 

2.4.3.3 Phylogenetic analysis of the LysM domain family in A. thaliana 

The LysM family represents a small group of putative lectins in Arabidopsis. In addition to 

the LysM domain, only two protein domains have been identified, namely an F-box domain 

and a protein kinase domain. In the phylogenetic tree constructed with the sequences of the 

LysM domains only, the LysM domain that is associated with the F-box domain forms a 

separate group with the LysM domain from AT5G23130.1 (Figure 2.11), representing the 

only LysM sequence that is synthesized without a signal peptide (similar to F-box-LysM 

sequence). This LysM domain is linked to a C-terminal sequence with unknown function. The 

LysM domains that are associated with the protein kinase domains are found in different 

branches of the tree. The N-terminal LysM domains of the three sequences with a tandem 

array of LysM motifs cluster together in one branch of the tree (Figure 2.11). 
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Figure 2.11 Maximum likelihood phylogenetic tree of LysM domains. The domain architecture of every putative lectin is represented using the same color 
code as in Figure 2.7. The purple frame marks the N-terminal LysM domains of the three sequences with two LysM motifs. The bootstrap values are given at 
the corresponding branches. The scale bar represents the mean of the number of substitutions per site according to a maximum likelihood estimation. 
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2.4.3.4 Conservation of the carbohydrate binding site in the LysM homologs from 

Arabidopsis 

LysM domains are very short lectin motifs of approximately 40 aa. The first LysM domain 

was discovered in the lysozyme from Bacillus phage ɸ29 (Garvey et al., 1986). In plants, 

most LysM proteins for which carbohydrate binding activity is known, belong to the group of 

LysM receptor kinases. These LysM modules can bind peptidoglycans from bacterial 

pathogens and chitin fragments from fungal pathogens (Lannoo and Van Damme, 2014). 

Plant LysM modules recognize chitin fragments (GlcNAc)n when the degree of polymerization 

is higher than five (n ≥ 5) (Petutschnig et al., 2010). Kitaoku et al. (2016) investigated the 

(GlcNAc)n binding site of a LysM domain containing protein from the green algae Volvox 

carteri composed of two N-terminal LysM domains (96 % sequence homology) and a 

C-terminal catalytic domain. The binding of chitin fragments to the second LysM domain 

involved a hydrophobic interaction between Trp96 of the LysM domain and the pyranose 

ring of (GlcNAc)n. NMR-based titration experiments revealed that other amino acid residues 

were also important to form the carbohydrate binding site: Gly92, Asp93, Thr94, Phe95, 

Ala97, Ile98, Ala99, Gln100, Ala119, Arg120, Leu121, Gln122 and Gly124 (Kitaoku et al., 

2016). The corresponding residues Asp9, Thr10, Ile14 and Ala15 were conserved in the LysM 

domains from A. thaliana (Figure 2.12). Malkov et al. (2016) described the chitin fragment 

binding site of the LySM homolog LYR3 from legumes as a hydrophobic tunnel consisting of 

Pro, Phe, Tyr, Leu and Trp residues. Similarly, the hydrophobic amino acids Tyr3, Leu11, 

Leu47 and Pro50 are highly conserved in the LysM domains from A. thaliana. Buist et al. 

(2008) created a WebLogo using all existing LysM containing proteins from the Pfam 

database. It can be concluded that the conserved residues reported by these authors are 

highly similar to the conserved amino acids from the LysM motifs in A. thaliana, as shown in 

the WebLogo resulting from the protein alignment of 16 LysM domain sequences (Figure 

2.12). 

 

Figure 2.12 WebLogo of amino acids responsible for carbohydrate binding in the LysM domains. 
Each column of the alignment is represented by a stack of letters. The height of each letter indicates 
the frequency of this letter at that position of the sequence. The height of the overall stack is 
proportional to the sequence conservation. The conserved amino acids important for carbohydrate 
binding activity are highlighted in yellow. 
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2.4.3.5 Phylogenetic analysis of the Nictaba family in A. thaliana 

The Nictaba family groups 13.8 % of all putative lectins from A. thaliana. Most Nictaba 

related sequences contain an N-terminal F-box domain linked to a Nictaba domain, a domain 

architecture that is also abundant in several crop species (Delporte et al., 2015; Van Holle et 

al., 2017a). The phylogenetic tree built from the Nictaba sequences can be divided in two big 

clades (A and B) (Figure 2.13). Clade B mainly contains F-box Nictaba sequences. Only 

AT2g02280.1 does not possess an F-box domain, but has an N-terminal region consisting of 

less than 10 aa preceding the Nictaba domain. Maybe At2g02280.1 lost its F-box domain 

during evolution. Clade A clusters all Nictaba sequences that occur in combination with the 

TIR domain or the AIG1-type G domain, the Nictaba sequences composed only of a Nictaba 

domain and a small group of F-box Nictaba homologs. This clustering suggests that the 

Nictaba domains of the non-chimeric sequences are more closely related to the TIR and 

AIG1-type G Nictaba sequences. Three out of four TIR Nictaba sequences occur in a tandem 

duplication on chromosome five and group together in the dendrogram (Figure 2.13). The 

subgroup of F-box Nictaba sequences in clade A differs from most F-box Nictaba sequences 

in clade B in that the latter sequences belong to two tandem duplication clusters on 

chromosomes 1 and 2 (Figure 2.13). 



Chapter 2 

50 

 

Figure 2.13 Maximum likelihood phylogenetic tree of Nictaba domains. The domain architecture of every putative lectin is represented using the same 
color code as in Figure 2.8. Tandem duplication clusters are highlighted in grey. The bootstrap values are given at the corresponding branches. The scale bar 
represents the mean of the number of substitutions per site according to a maximum likelihood estimation. 
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2.4.3.6 Conserved amino acids in the carbohydrate binding site of Nictaba homologs 

from Arabidopsis 

Three-dimensional modelling of the Nictaba sequence from Nicotiana tabacum suggested 

that the amino acids Trp15, Trp22, Glu138 and Glu145 of Nictaba are important for 

interaction with the carbohydrate. Mutational analysis indicated that only the tryptophan 

residues play an important role in the carbohydrate binding site of Nictaba (Schouppe et al., 

2010). The WebLogo made for 31 Nictaba domain sequences from Arabidopsis revealed that 

the four residues identified for the lectin from tobacco are quite conserved (Figure 2.14). 

However, as can be observed in the complete WebLogo (Supplementary figure 2) there are a 

lot of gaps in the protein alignment. It should also be noted that the conserved residues in 

the Nictaba sequences from Arabidopsis are similar to the ones reported for the Nictaba 

domains from soybean (Van Holle et al., 2017a). The fact that several amino acids in the 

binding site are conserved does not allow to draw conclusions with respect to the 

carbohydrate-binding activity of these proteins. Stefanowicz et al. (2012) reported that the 

specificity of F-box Nictaba (At2G02360) and Nictaba are different, despite the fact that the 

amino acids responsible for carbohydrate binding are conserved. These results suggest that 

other amino acids in the vicinity of the binding site also play a role in the conformation of 

the binding site and its interaction with glycans. 

 

Figure 2.14 WebLogo of amino acids responsible for carbohydrate binding in the Nictaba domains. 
Each column of the alignment is represented by a stack of letters. The height of each letter indicates 
the frequency of this letter at that position of the sequence. The height of the overall stack is 
proportional to the sequence conservation. The conserved amino acids important for carbohydrate 
binding activity are highlighted in yellow. Only the regions around the conserved amino acids are 
shown. The complete WebLogo can be found in supplementary data (Supplementary figure 2). 
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2.5 Conclusions 

A total of 217 putative lectin sequences were identified in the genome of A. thaliana. 

Analysis of the domain architectures for each sequence revealed that most sequences 

contain multiple protein domains. Most of the known protein domains associated with lectin 

motifs have been reported to be involved in stress signalling, development and defence. 

Although some domain architectures are unique for a specific lectin domain (AIG1-type G, 

Barwin, CID, F-box associated domain type 1, GH family 5, GH family 19, Kelch1, Pan/Apple, 

S-locus glycoprotein, SRK and TIR domain), we also retrieved some protein domains that are 

associated with multiple lectin motifs, in particular the F-box and protein kinase domain. 

Judging from the absence or the presence of signal peptides and/or transmembrane regions 

in the lectin sequences it is obvious that the putative lectins will end up in different locations 

in the cell. Taken into account the ambiguity in lectin specificity for many carbohydrate 

binding recognition domains, our data do not allow drawing conclusions with respect to the 

activity of the carbohydrate binding site. However, literature data confirm that at least some 

lectin motifs exert carbohydrate binding activity and are involved in protein-carbohydrate 

interactions. 

Taken together all information it is clear that A. thaliana plants have at their disposal a 

whole range of proteins with lectin motifs. These putative lectins are located in different 

locations in the cell and in different plant tissues, and can exert complementary activities. It 

can be envisaged that these lectins play an important role in plant development and survival 

under stress conditions. 
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3.1 Abstract 

Nictaba is a nucleocytoplasmic lectin originally identified in tobacco leaves. Expression of 

Nictaba is upregulated after jasmonate treatment and insect herbivory. Within the genome 

of A. thaliana, six non-chimeric Nictaba homologs were identified, consisting of an 

N-terminal sequence and a Nictaba domain. In this chapter, a thorough expression analysis is 

presented of three non-chimeric Nictaba homologs from A. thaliana to elucidate whether 

these Nictaba homologs have biological properties similar to the lectin from tobacco. This 

includes the subcellular localization and the expression of the Nictaba homologs in different 

tissues during plant development. Furthermore, the stress responsiveness of three genes 

encoding non-chimeric Nictaba homologs was investigated. Two Nictaba homologs show a 

nucleocytoplasmic localization while the third homolog is only localized to the cytoplasm. 

qRT-PCR analysis revealed expression of all three Nictaba homologs in different tissues 

throughout the development. All three Nictaba homologs show a different expression 

pattern upon different stresses. Taken together, our data suggest that the Nictaba homologs 

represent stress regulated proteins and possibly play a role in plant stress responses. 

3.2 Introduction 

Plant lectins can be divided in two main classes. The first class groups the vacuolar lectins, 

these proteins are present in high amounts in seeds and vegetative storage tissues. Next to 

their function in nitrogen storage, these vacuolar lectins have an important role in plant 

defence (Van Damme et al., 1998). The second class contains the nucleocytoplasmic lectins 

which are usually present in low concentrations in normal growth conditions but their 

expression is induced upon plant stress. Evidence has been presented that these lectins play 

a role in the signal transduction as part of plant defence pathways (Lannoo and Van Damme, 

2010, 2014). 

Six out of the twelve plant lectin families (Chapter 2) contain inducible, nucleocytoplasmic 

lectins (Lannoo and Van Damme, 2010). One of these six families is the Nictaba family which 

is known to be widespread in the plant kingdom (Delporte et al., 2015; Van Holle et al., 

2017a). Nictaba, the Nicotiana tabacum agglutinin, was the first discovered lectin in this 

family (Chen et al., 2002). Part of the research in our group focussed on Nictaba from 

N. tabacum, an F-box Nictaba homolog from A. thaliana and some Nictaba homologs from 

Glycine max and revealed more information about the role of Nictaba homologs in the plant 

stress response. 

Nictaba, the tobacco lectin, consists of two identical non-covalently linked subunits of 

19 kDa (Chen et al., 2002). Glycan array screening revealed the specificity of Nictaba towards 

GlcNAc oligomers, high-mannose and complex N-glycans (Lannoo et al., 2006). Based on 

molecular modelling and protein sequence alignment Schouppe et al. (2010) deduced that 

Trp15, Trp22, Glu138 and Glu145 are conserved amino acid residues in the Nictaba binding 
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site, suggesting that these residues play a role in sugar binding. Mutational analysis of these 

four residues showed that the tryptophan residues play an important role in the 

carbohydrate binding site of Nictaba (Schouppe et al., 2010). Nictaba expression was not 

detectable under normal conditions but increased several fold after plant exposure to stress 

situations such as insect herbivory and jasmonate treatment (Chen et al., 2002; Vandenborre 

et al., 2009). Nictaba is located in the nucleus and the cytoplasm of the plant cell (Chen et 

al., 2002). Delporte (2013) and Lannoo et al. (2006) verified the nucleocytoplasmic 

localization of Nictaba using EGFP fusion constructs transiently and stably transformed in 

different plant systems. Using A. thaliana plants stably expressing a 

Nictaba promoter-β-glucuronidase fusion construct, Delporte et al. (2011) showed promoter 

activity in very young tissues including the apical and root meristems, the cotyledons and the 

first true leaves. Expression of Nictaba in the roots after MeJA and cold stress treatment of 

tobacco was confirmed using ELISA and Western blot analysis (Delporte et al., 2011). The 

identification of core histones as interacting partners for Nictaba and the carbohydrate 

dependence of this interaction suggest that Nictaba might fulfil a signalling role in response 

to stress by interacting with O-GlcNAcylated histones in the plant cell nucleus (Schouppe et 

al., 2011; Delporte et al., 2014).  

The genome of A. thaliana contains 30 Nictaba homolog sequences, identified in chapter 2. 

A large number of these Nictaba homologs (19/30) have an N-terminal F-box domain, next to 

their carbohydrate binding domain (Eggermont et al., 2017; Chapter 2). In this study our aim 

is to focus on the non-chimeric Nictaba homologs from A. thaliana and to investigate 

whether these Nictaba homologs have similar biological properties as the lectin from 

tobacco. 

A first step to elucidate the biological relevance of these A. thaliana Nictaba homologs is a 

thorough expression analysis. This includes the localization in the plant cell and the 

expression of the Nictaba homologs in different tissues during plant development. 

Furthermore, the stress responsiveness of the expression of these non-chimeric Nictaba 

homologs was investigated. 

3.3 Materials and methods 

3.3.1 Plant material and growth conditions 

WT A. thaliana seeds, ecotype Col-0, were purchased from Lehle Seeds (Round Rock, Texas, 

USA). Arabidopsis seeds were grown in pots containing commercial soil or individually grown 

in artificial soil (Jiffy-7, 44 mm Ø, distributed by InterGrow, Aalter) in a controlled growth 

chamber at 21 °C with a 16/8 h light/dark photoperiod after a 3 days stratification period at 

4 °C in the dark. The light intensity in the controlled growth chamber was approximately 100 

µmol/m2.s (Radium Spectralux plus white (58W) lamps). Alternatively, seeds were grown in 

vitro, therefore seeds were surface sterilized in 70 % ethanol for two minutes followed by 
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5 % bleach for 10 minutes. Afterwards, the seeds were rinsed four to eight times with sterile 

distilled water until the pH of the water was approximately neutral. The sterilized 

Arabidopsis seeds were sown in vitro on solid Murashige and Skoog (MS) medium (4.3 g/L 

MS salts with vitamins and nutrients (Duchefa), 30 g/L sucrose (Applichem), pH 5.7-5.8 

(adjusted with 0.5 M NaOH) and 8 g/L plant agar (Duchefa)) with a selective antibiotic if 

necessary. After a 3 days stratification period at 4 °C in the dark to eliminate any residual 

dormancy of the seeds, the plates were transferred to a growth chamber at 21 °C with a 

16/8 h light/dark photoperiod. 

WT N. benthamiana seeds were supplied by dr. Verne A. Sisson (Oxford Tobacco Research 

Station, Oxford, NC, USA). For transient transformation, the tobacco seeds were sown in 

pots containing commercial soil and cultivated in a controlled growth chamber at 25 °C with 

a 16/8 h light/dark photoperiod. All plants in soil were watered regularly. 

3.3.2 In silico tools 

Multiple protein sequence alignments were performed with Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) and pairwise protein sequence alignments were 

obtained using EMBOSS Water (http://www.ebi.ac.uk/Tools/psa/emboss_water/). 

Prediction of the presence of a signal peptide was conducted using Phobius and SignalP 4.1 

(Käll et al., 2004; Petersen et al., 2011) whereas the presence of a nuclear localization signal 

(NLS) was predicted by NucPred (Brameier et al., 2007). Using SUBA3, protein subcellular 

localization was predicted (Hooper et al., 2014). Nucleotide BLAST (BLASTn) and translated 

nucleotide BLAST (tBLASTn) searches against the expressed sequence tag (EST) database 

were performed using the NCBI website (https://blast.ncbi.nlm.nih.gov). 

Promoter sequences were downloaded from the Phytozome database 

(https://phytozome.jgi.doe.gov) and cis-acting regulatory promoter elements were 

predicted using PlantCARE (Lescot et al., 2002) and AGRIS (Yilmaz et al., 2011). Using the eFP 

browser (Winter et al., 2007) and Genevestigator (Hruz et al., 2008), microarray expression 

data were analyzed to study the developmental expression as well as the expression under 

different stress conditions. Microarray data from the eFP browser representing transcript 

levels under different stress conditions (Winter et al., 2007) were visualized in a heat map 

using the BAR HeatMapper Plus Tool (http://bar.utoronto.ca/ntools/cgi-

bin/ntools_heatmapper_plus.cgi). 

3.3.3 Expression in normal growth conditions during plant development 

For the gene expression analysis experiments under normal growth conditions, different 

tissues were sampled during plant development. 

For the aerial plant tissues, WT Arabidopsis seeds were sown in vitro on MS medium (until 

22 days) or in Jiffy's. The Arabidopsis seeds were stratified and transferred to a growth 
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chamber as described in section 3.3.1. The Arabidopsis plants grown in Jiffy's were watered 

regularly and fertilizer was added once after 25 days. Whole plantlets were collected at 6, 15 

and 22 days after sowing the seeds. Rosette leaves from at least five plants were harvested 

and pooled after 31 days. After 39 and 54 days, rosette leaves, cauline leaves, stems and 

flowers from at least five plants were sampled and pooled. 

For the root samples, WT Arabidopsis seeds were sown in expanded clay granules 

(Ø < 4 mm). The Arabidopsis seeds were stratified and transferred to a growth chamber as 

described in section 3.3.1. The Arabidopsis plants were watered regularly and fertilizer was 

added once per week. Root samples from at least 20 plants were collected and pooled after 

34, 46 and 59 days. 

All samples were immediately frozen in liquid nitrogen and stored at -80 °C prior to RNA 

extraction and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) 

analysis. Two biological replicates were performed and analyzed, each with two technical 

replicates. 

3.3.4 Hormone and abiotic stress treatments 

Sixteen-day-old Arabidopsis seedlings grown in vitro on filter paper on top of MS medium 

were used to treat with the following solutions: 100 µM MeJA, 100 µM ABA, 300 µM SA and 

150 mM NaCl. For each treatment, the filter papers with the germinated seedlings were 

transferred to Petri dishes filled with liquid MS medium containing either the hormone or 

the salt solution and incubated at 21 °C. Prior to use, stock solutions of the hormones (MeJA, 

ABA and SA) were made in 100 % ethanol and water was used in case of the salt stock 

solution. Control plants were kept on liquid MS medium containing an equal concentration 

of the corresponding solvent (ethanol or water). Heat stress was applied by incubating the 

plates with seedlings in the dark at 37 °C, controls were incubated at 21 °C in the dark. For 

every treatment, fifty seedlings were collected at several time points (1, 3, 5, 10 and 24 h) 

after stress initiation. Samples were immediately frozen in liquid nitrogen and stored at 

-80 °C prior to RNA extraction and qRT-PCR analysis. Four independent biological replicates 

were performed for MeJA, SA and NaCl stress, two biological replicates were performed for 

ABA and heat stress, all with two technical replicates. 

3.3.5 Biotic stress treatments 

For the Pseudomonas syringae and Botrytis cinerea experiment, individually grown 

5-week-old WT Arabidopsis plants of the Col-0 ecotype sown in Jiffy’s were used. These 

plants were maintained in a controlled growth chamber (Conviron) at 21 °C and 12/12 h 

light/dark photoperiod. The Pseudomonas syringae pv. tomato DC3000 strain and the 

Botrytis cinerea B05.10 strain were supplied by the Phytopathology lab of Prof. dr. M. Höfte 

(Ghent University, Belgium). Infection assays were performed according to Pieterse et al. 

(1996), Audenaert et al. (2002) and Katagiri et al. (2002), with some minor modifications. 
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P. syringae pv. tomato DC3000 was grown in liquid King's B medium (20 g/L peptone, 1 % 

glycerol, 1.5 g/L KH2PO4, 1.5 g/L MgSO4∙7H2O, pH 7.2) at 28 °C on a rotary shaker (200 rpm) 

until the culture reached the mid to late log growth phase (OD600 = 0.6-1.0). After 

centrifugation of the culture (10 min, 2500 g), bacterial cells were resuspended in 10 mM 

MgSO4 to obtain a solution of bacteria with an OD600 of 0.05 (corresponding to 

2.5 x 107 cfu/mL). Prior to use 0.05 % Silwet-77 (GE Specialty Materials, Switzerland) was 

added to the infection solution. The mock solution consisted of 10 mM MgSO4 containing 

0.05 % Silwet-77, without bacteria. The rosette leaves of the Arabidopsis plants were 

sprayed until run-off with either the infection or the mock solution. To increase the 

efficiency of the infection, the plants were maintained at 100 % relative humidity one day 

before the treatment until two days after the start of the bacterial infection. 

The Botrytis strain was kept on regular potato dextrose agar plates at 21 °C. Sporulation was 

stimulated by incubation for 10 days at 21 °C under a 12/12 h UV/dark light regime (UV-A: 

365 nm; combination normal TL and TL black light blue lamp). After 10 days, Botrytis spores 

were harvested by washing the plates with distilled water containing 0.01 % Tween-20 

(VWR). This suspension was filtered through a nylon membrane (20 µm Ø) and the conidia 

were counted using a Bürker counting chamber. The inoculation suspension (5 x 105 

conidia/mL) was prepared in 1/2 strength potato dextrose broth medium. The mock solution 

consisted of the same medium without spores. The droplet technique was used for the 

infection: a 10 µL droplet of either the infection suspension or the mock solution was added 

on the upper side of three rosette leaves from each plant. 100 % relative humidity was 

maintained during the entire experiment. 

During both infection assays, plants were kept in a controlled Conviron growth chamber at 

21 °C with a 12/12 h light/dark photoperiod. Control plants were kept separately from 

infected plants. Rosette leaves of 8-10 randomly chosen plants were sampled in liquid 

nitrogen at different time points post-infection and samples were stored at -80 °C prior to 

RNA extraction. In case of the P. syringae infection experiment, three biological replicates 

were performed and analyzed, for the B. cinerea infection experiment, two biological 

replicates were performed and analyzed, all with two technical replicates. 

Myzus persicae was kindly provided by the Agrozoology lab of Prof. dr. Guy Smagghe 

(University Ghent, Belgium) and kept on sweet pepper plants under lab conditions 

(Shahidi-Noghabi et al., 2009). Aphid infestation was performed on 5-week-old Arabidopsis 

plants sown in round plastic pots (φ 11 cm) with soil on which a transparent ventilated cage 

(Novolab) was placed. About 60 aphids (adults) were placed on the rosette leaves of each 

plant. After putting the aphids, the cages around the separate plants were closed. Control 

plants were grown in a cage without aphids. During the assay, plants were kept in a 

controlled Conviron growth chamber at 21 °C with a 12/12 h light/dark photoperiod. At 

indicated time points, aphids from two leaves of nine randomly chosen plants were removed 

and leaves were sampled and frozen in liquid nitrogen. Samples were stored at -80 °C prior 
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to RNA extraction and qRT-PCR analysis. Four biological replicates were performed and 

analyzed, each with two technical replicates. 

3.3.6 RNA extraction, cDNA synthesis and RT-PCR analysis 

All plant samples were first homogenized using a mortar and a pestle, and total RNA was 

extracted using TRI Reagent® according to the instructions of the manufacturer 

(Sigma-Aldrich). The RNA samples were treated with DNase I (Life Technologies) to remove 

the residual genomic DNA. Shortly, 12 µL RNA was incubated for 30 minutes at 37 °C with 

2 µL of RNase-free DNase I, 2 µL DNase I buffer (10x) and 4 µL of distilled water. After 

addition of 2 µL 25 mM EDTA, the reaction was inactivated for 10 minutes at 65 °C. The RNA 

concentration was measured with a Nanodrop 2000 spectrophotometer (Thermo Scientific). 

cDNA was synthesized from the RNA using the moloney murine leukemia virus (M-MLV) 

transcriptase kit (Life Technologies). Briefly, 1 µg of DNase treated RNA was incubated for 5 

min at 65 °C with 1 µL 2 µM oligo(dT)25 primer, 1 µL 10 mM dNTPs and distilled water to a 

total volume of 12 µL. Then, 4 µL of M-MLV buffer and 2 µL of dithiothreitol (0.1 M) were 

added and this mixture was incubated for 2 min at 37 °C. Finally 1 µL M-MLV RT was added 

and an incubation of 50 min at 37 °C and 15 min at 75 °C was executed. 

The full length cDNA sequences of AN3, AN4 and AN5 were retrieved by RT-PCR reactions 

with gene specific primers (Supplementary table 4). The PCR reaction mixture was as 

follows: 2 µL cDNA, 2 µL 10 mM dNTPs (Thermo Fisher Scientific), 2.5 µL 10 x RxN buffer 

(VWR), 1 µL 5 µM forward and 1 µL 5 µM reverse primer (Life Technologies), 0.75 µL 50 mM 

MgCl2, 0.125 µL Platinum® Pfx DNA Polymerase (Life Technologies) and water up to the 

volume of 25 µL. The PCR conditions used were: 2' 95 °C - 30-35 x (15'' 94 °C - 30'' 47-50 °C - 

1' 72 °C) - 5' 72 °C. After cloning these sequences in the pJET2.1 vector with the CloneJET 

PCR Cloning kit (Life Technologies), the constructs were checked by agarose gel 

electrophoresis and sequenced (LGC Genomics, Berlin, Germany) to confirm the correct 

cDNA sequence of the Nictaba homologs from A. thaliana. 

Before performing RT-PCR, cDNA quality was checked by RT-PCR using primers specific for 

the protein phosphatase 2A (PP2A) gene (Supplementary table 5). The PCR reaction mixture 

is the same as previously mentioned except for the buffer (10 x EXTRA buffer, VWR) and the 

enzyme (Taq DNA polymerase, VWR). The PCR conditions are as follows: 5' 95 °C – 45 x (45'' 

94 °C - 45'' 55 °C - 30'' 72 °C) - 5' 72 °C. PCR amplification products were checked by agarose 

gel electrophoresis (2.5 % agarose gel in 0.5 x Tris-acetate-EDTA (TAE) buffer). 

3.3.7 Construction of EGFP fusion constructs 

Coding sequences for the Nictaba homologs from A. thaliana were N- and C-terminally fused 

to EGFP using the Gateway® Cloning Technology (Life Technologies, Carlsbad, CA, USA). The 

cloned full length cDNA sequences (in the pJET1.2 vector) were used as a template to 

amplify the open reading frames with primers to attach attB sites. In the first PCR, the first 

part of the attB site is attached by amplifying the open reading frame using Platinum® Pfx 
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DNA Polymerase (Life Technologies) and primers with a gene specific part (with or without 

stop codon) and the first part of the attB site (Supplementary table 6). In the second PCR, a 

1:5 dilution of the first PCR product was used as a template in combination with primers to 

complete the attB sites (Supplementary table 6). The PCR conditions for the first PCR were as 

follows: 2' 94 °C – 30 x (15'' 94 °C - 30'' 50 °C - 1' 72 °C) - 5' 72 °C. The conditions for the 

second PCR were: 2' 94 °C – 5 x (15'' 94 °C - 30'' 48 °C - 1' 72 °C) – 25 x (15'' 94 °C - 30'' 55 °C - 

1' 72 °C) - 5' 72 °C. After checking the PCR products by agarose gel electrophoresis, the PCR 

fragments were used in a BP recombination reaction with the pDONR221 vector. The attB 

PCR products and the pDONR221 vector were incubated overnight in equimolar amounts 

with the BP Clonase® II enzyme mix. The next day, the resulting entry clones (with and 

without stop codon) were transformed into heat-shock competent E. coli cells (strain 

TOP 10) and transformants were selected on LB agar plates with 50 µg/mL kanamycin. 

Subsequently, transformants were checked with colony PCR and agarose gel electrophoresis. 

The transformants containing an entry clone from the expected size were grown and the 

entry clones were extracted using the GeneJET Plasmid Miniprep kit (Thermo Fisher 

Scientific) according to the manufacturer's instructions. The sequences of the entry clones 

were checked by LGC Genomics (Berlin, Germany) and the correct sequences were used in a 

LR recombination reaction with the desired destination vectors (containing a CaMV 35S 

promoter and the EGFP gene). Entry clones of the Nictaba homolog open reading frame with 

stop codon were used to make the N-terminal EGFP fusions with the pK7WGF2,0 destination 

vector (Karimi et al., 2002). Entry clones of the Nictaba homolog open reading frame without 

stop codon were used to make the C-terminal EGFP fusions with the pK7FWG2,0 destination 

vector (Karimi et al., 2002). Similarly, this recombination reaction was incubated overnight 

according to the Gateway® manual and expression clones were transformed via heat shock 

into E. coli TOP10 cells. Transformants were selected on LB agar plates with 75 µg/mL 

spectinomycin and screened with colony PCR using gene specific and EGFP primers 

(Supplementary table 6). 

3.3.8 Transient transformation of N. benthamiana leaves 

The expression vectors containing the different EGFP fusion constructs were introduced into 

A. tumefaciens C58C1 pMP90 cells using triparental mating. Briefly, a donor strain (E. coli 

containing the expression vectors), a helper strain and the Agrobacterium are mixed 

together on solid YEB medium (5 g/L beef extract, 5 g/L peptone, 1 g/L yeast extract, 5 g/L 

sucrose and 15 g/L bacterial agar) containing 2 mM MgSO4. The strains have to interact with 

each other to introduce the expression vectors in Agrobacterium. After incubation, a dilution 

series was made and transformants were selected on solid YEB medium containing 75 µg/mL 

spectinomycin and 20 µg/mL gentamycin. Screening of the colonies was done by PCR with 

the same primers used for the LR colony PCR (Supplementary table 6) after purification of 

the expression clones out of the Agrobacterium. 
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Transient expression of the EGFP fusion constructs was obtained by infiltration of the 

transformed Agrobacterium in leaves of 4- to 6-week-old N. benthamiana plants as 

described by Sparkes et al. (2006). First, the Agrobacterium strains were grown in liquid YEB 

medium containing 75 µg/mL spectinomycin and 20 µg/mL gentamycin for two days at 25 °C 

on a rotary shaker (200 rpm). Agrobacterium cells were harvested by centrifugation and 

resuspended in infiltration medium (50 mM MES, 2 mM Na2HPO4, 0.5 % glucose, pH 5.6). 

Centrifugation and resuspension was repeated twice, the second time using infiltration 

medium with 100 µM acetosyringone. After washing, the cells were diluted to a final optical 

density at 600 nm of 0.01, 0.05, 0.1 and 0.2 and infiltrated in the leaf epidermal cells. The 

spot of infiltration was labelled and plants were further grown in the growth chamber. Two 

or three days post-infiltration, microscopic analysis and Western blot analysis were 

performed. 

3.3.9 Stable transformation of A. thaliana plants 

Stably transformed Arabidopsis plants were created using the floral dip transformation 

method (Clough and Bent, 1998). The inflorescences of approximately 7-week-old plants 

grown in pots with commercial soil were cut. After one week, new and more shoots were 

formed and these plants were used for transformation. Transformed seeds were selected on 

MS medium containing 75 µg/mL kanamycin (Duchefa) using the fast selection protocol 

according to Harrison et al. (2006). Green plantlets were transferred to new selective MS 

medium and afterwards to Jiffy's. Integration of the T-DNA was checked by PCR on gDNA 

using gene specific and EGFP primers (Supplementary table 6). T2 generation Arabidopsis 

plants were used for all analyses. 

3.3.10 Confocal microscopy and image analysis 

Microscopic analysis was performed using the confocal laser scanning microscope Nikon A1R 

(Nikon Belux). The lower epidermis of the leaf discs (spots that are infiltrated) were 

visualized using the 40 x S Plan Fluor ELWD air objective lens (NA of 0.6). All images are a 

combination of different fluorescent images acquired along the z-axis, as such the complete 

epidermis cell could be visualized. EGFP was excited with a 488 nm argon ion laser, 

fluorescent emission filters were 525 nm for EGFP (with band width of 50 nm) and 700 nm 

for autofluorescence of chlorophyll (with band width of 75 nm). All images were created by 

the software package NIS-Elements (Nikon) and image analysis was performed using Fiji 

(Schindelin et al., 2012). 

3.3.11 qRT-PCR analysis 

Before doing qRT-PCR, cDNA quality was checked by RT-PCR using primers specific for the 

PP2A gene (Supplementary table 5) as described in section 3.3.6. Real time qRT-PCR analyses 

of the gene expression during development and after P. syringae infection, were performed 

using the Rotor-Gene 3000 (Corbet Life Science) and the Rotor Discs (Qiagen, Hilden, 

Germany). The program was as follows: 10' 95 °C – 45 x (25'' 95 °C - 25'' 60 °C - 20'' 72 °C) - 
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5' 72 °C followed by generation of a melting curve (gradual increase from 72 °C to 95 °C with 

1 °C/step). The Rotor Gene 6 software generated the raw output data (Cq values), these 

were statistically analyzed using the REST-384 software (Corbett Research). REST-384 uses a 

pair wise fixed reallocation randomization test as a statistical model (Pfaffl et al., 2002). 

Three independent biological replicates of the infection experiment with P. syringae were 

performed, two biological replicates of the gene expression analysis experiment during 

development of the plant, each with two technical replicates. 

qRT-PCR analyses of the other stress experiments were performed using the 96-well CFX 

ConnectTM Real-Time PCR Detection System (Bio-Rad). The program was as follows: 10' 95 °C 

- 45 x (15'' 95 °C - 25'' 60 °C - 20'' 72 °C) followed by generation of a melting curve (gradual 

increase from 65 °C to 95 °C with 0.5 °C/step). The CFX Manager 3.1 software (Bio-Rad) 

generated the raw output data which were statistically analyzed using the REST-384 

software. Two or four independent biological replicates were performed with each two 

technical replicates and analyzed together using the sample maximization approach 

(Hellemans et al., 2007). 

All reactions were conducted in a total volume of 20 µL containing 1 x SensiMixTM SYBR® 

No-ROX One-Step mix, 2 µL undiluted cDNA template, 500 nM gene specific forward and 

reverse primers (Supplementary table 5). All gene specific qPCR primers were designed using 

Primer3 (http://biotools.umassmed.edu/bioapps/primer3_www.cgi). Specificity of the 

primers was tested in silico by BLAST search and amplicons were cloned and verified using 

agarose gel electrophoresis and sequencing (LGC Genomics, Berlin). Amplification efficiency 

of all primer pairs was determined in the CFX Manager 3.1 (Bio-Rad) and qBASEPLUS software 

(Hellemans et al., 2007). All expression data were normalized using three reference genes: 

PP2A, TIP41 and UBC9 (Czechowski et al., 2005). All melting curves were checked and 

reference gene stability and quality control of the samples were validated in the qBASEPLUS 

software (Hellemans et al., 2007). 

3.4 Results 

3.4.1 Nictaba homologs in A. thaliana 

The genome of A. thaliana contains 30 sequences encoding ArathNictabas, identified in 

chapter 2. A large group of these Nictaba homologs (19/30) have an N-terminal F-box 

domain, next to their carbohydrate binding domain. Furthermore, four Nictaba homologs 

were identified with an N-terminal TIR domain and one with an N-terminal AIG1-type G 

domain (Eggermont et al., 2017; Chapter 2). This study focuses on the non-chimeric Nictaba 

homologs from A. thaliana and we want to investigate whether these Nictaba homologs 

have similar biological properties as the lectin from tobacco. 

  

http://biotools.umassmed.edu/bioapps/primer3_www.cgi
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Based on protein sequence alignments with Nictaba, the length of the N-terminal unknown 

domains and identified ESTs, five cDNA sequences of non-chimeric Nictaba homologs were 

initially selected for further research (Table 3.1). Coding sequences for each 

ArathNicaba (AN) were amplified from leaf cDNA, cloned and used to make different 

expression constructs. The subcellular localization of EGFP fusion constructs for the 

ArathNictabas was investigated in transiently transformed N. benthamiana leaves and stably 

transformed A. thaliana plants. Three out of five ArathNictabas were selected to unravel 

their biological relevance since the EGFP fusion constructs of AN1 and AN2 did not show any 

fluorescence. These three ArathNictabas are further specified as ArathNictaba3 (AN3; 

AT4G19850.2), ArathNictaba4 (AN4; AT1G31200) and ArathNictaba5 (AN5; AT4G19840). 

Table 3.1 Five selected non-chimeric Nictaba homologs. 

Non-chimerci Nictaba 
homologs AGI code 

AN1 AT1g33920 
AN2 AT4G19850.1 
AN3 AT4G19850.2 
AN4 AT1G31200 
AN5 AT4G19840 

 

The ArathNictabas contain next to their Nictaba domain, an N-terminal sequence of different 

lengths (Figure 3.1). In AN3, AN4 and AN5, the Nictaba domain is preceded by an N-terminal 

sequence of 61, 28 and 91 aa, respectively. Protein BLAST with these N-terminal parts 

concedes no homology to any other plant protein domain. The length of the Nictaba domain 

is similar in all three ArathNictabas, in particular 135, 145 and 154 aa for AN3, AN4 and AN5, 

respectively. The total molecular weight and the pI of each ArathNictaba are indicated in 

Figure 3.1. A search for signal peptides and transmembrane regions using the Phobius and 

SignalP 4.1 server (Käll et al., 2004; Petersen et al., 2011) revealed no signal peptides or 

transmembrane regions in the sequences of the ArathNictabas. Judging from the absence of 

signal peptides, AN3, AN4 and AN5 are probably synthesized on free ribosomes in the 

cytoplasm. Moreover, no evidence was found for a nuclear localization of these proteins 

using the NucPred server (Brameier et al., 2007). The cytosol is also the predicted 

localization for these three ArathNictabas according to the SUBA3 server (Hooper et al., 

2014). 
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Figure 3.1 Domain architectures of the ArathNictabas. The domain architectures are drawn to scale. 
The scale bar represents 100 aa. 

3.4.2 Sequence similarity between the Nictaba homologs from A. thaliana and 

Nictaba 

Protein sequence alignment of the Nictaba domains for the ArathNictabas and Nictaba 

allowed to calculate the sequence identities and similarities (Figure 3.2). The percentages of 

sequence identity and sequence similarity between Nictaba and the ArathNictabas are 

indicated in Table 3.2 and Table 3.3. The highest percentage of sequence identity is found 

between AN3 and AN5. Moreover, their sequence identity with Nictaba is very similar, 

31.8 % and 31.5 % respectively. The lowest percentage of sequence identity with Nictaba is 

observed for AN4 (22.9 %). The putative NLS reported for the Nictaba sequence from 

tobacco (K102-K105) is not conserved in the ArathNictaba sequences. The tryptophan 

residues important for carbohydrate binding in Nictaba are conserved in all ArathNictaba 

sequences (Figure 3.2). The glutamic acid residues that are conserved in a lot of sequences 

encoding Nictaba homologs, are partly conserved in the ArathNictaba sequences. Although 

these glutamic acid residues are less conserved, nearby glutamic acid residues probably 

retain the electronegative character of the presumed carbohydrate binding site (Figure 3.2). 

Table 3.2 Protein sequence identity between Nictaba and ArathNictaba domain sequences. 

% Nictaba AN3 AN4 AN5 

Nictaba 100 31.8 22.9 31.5 
AN3 31.8 100 26.0 48.4 
AN4 22.9 26.0 100 28.7 
AN5 31.5 48.4 28.7 100 

 

Table 3.3 Protein sequence similarity between Nictaba and ArathNictaba domain sequences. 

% Nictaba AN3 AN4 AN5 

Nictaba 100 45.7 39.4 46.1 
AN3 45.7 100 43.5 67.5 

AN4 39.4 43.5 100 38.9 
AN5 46.1 67.5 38.9 100 
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AN4          --------SGLNFVWGGD--SRYWVIPKEP--------RMPAELKMVSWLEVTGSFD--K 

Nictaba      MQGQWIAARDLSITWVDN--PQYWTWKTV------DPNIEVAELRRVAWLDIYGKIETKN 

AN3          KNCFMLYARDLSITWAESQTNKYWSWFSDLDQTSSDVRTEVAKMERVAWLEVVGKFETEK 

AN5          SNCFMLFAKNLSITWSDD--VNYWTWFTEKESPNEN--VEAVGLKNVCWLDITGKFDTRN 

                      .*.:.*  .   .**   .             . :. *.**:: *.::  : 

 

AN4          IEPGKTYRIGFKISFKPDATGWDKAPVFMSAK------IGKKGKTVWKRIKSVSQNFGIL 

Nictaba      LIRKTSYAVYLVFKLTDNPRELERATASLRFVNEVAEGAGIEGTTVFISKKK-------- 

AN3          LTPNSLYEVVFVVKLIDSAKGWDFRVN-FKLV--------------LPTGET-------- 

AN5          LTPGIVYEVVFKVKLEDPAYGWDTPVN-LKLV--------------LPNGKE-------- 

             :     * : : ..:       :     :                     :          

 

AN4          KGGSEPVNIP-DESDGLFEILVSP---TALNQDTKLQFGLYEVWTGRWKTGLLIH----- 

Nictaba      KLPGELGRFPHLRSDGWLEIKLGEFFNNLGE-DGEVEMRLMEINDKTWKSGIIVKGFDIR 

AN3          KERRENV--NLLERNKWVEIPAGEFMISPEHLSGKIEIRK-------------------- 

AN5          KPQEKKVSLRELPRYKWVDVRVGEFVPEKSA-AGEITFSMYEHAAGVWKKGLSLKGVAIR 

             *   :            .::  .           :: :                       

 

AN4          -- 

Nictaba      PN 

AN3          -- 

AN5          PK 

Figure 3.2 Protein sequence alignment of the Nictaba sequence and the Nictaba domains of AN3, 
AN4 and AN5 from A. thaliana using Clustal Omega. The tryptophan residues important for 
carbohydrate binding in Nictaba are marked in bold (Trp15, Trp22). The glutamic acid residues 
(Glu138 and Glu145) are marked in bold and underlined. The NLS of Nictaba is underlined. 

3.4.3 The Nictaba homologs from Arabidopsis show a nucleocytoplasmic localization 

To validate the in silico results (section 3.4.1), N- and C-terminal EGFP fusion constructs 

under a 35S promoter were created using the Gateway cloning system. Leaves from 

N. benthamiana were transiently transformed with the N- and C-terminal EGFP fusion 

constructs for each ArathNictaba sequence. Figure 3.3A shows a nucleocytoplasmic 

localization for AN4 and AN5 whereas AN3 only resides in the cytoplasm. The localization of 

AN4 and AN5 into the cytoplasm and the nucleus is confirmed for both N- and C-terminal 

EGFP fusion constructs. The N-terminal EGFP fusion construct of AN3 never showed a 

fluorescence signal. The highly fluorescent dots observed for the C-terminal EGFP fusion 

construct of AN3 were not observed in all pictures, and therefore can probably be 

considered as an artifact. Figure 3.3B confirms the fluorescence within the nucleus for all 

ArathNictaba EGFP fusion constructs except for AN3-EGFP where the fluorescence in the 

nucleus is almost negligible. The fluorescence of EGFP-AN4 is high in the nucleus compared 

to the surrounding cell compartments whereas the fluorescence of AN4-EGFP is almost the 

same in the nucleus as in the surrounding cell compartments, suggesting that the transport 

of AN4-EGFP to the nucleus is much less efficient than the transport of EGFP-AN4 into the 

nucleus. The fluorescence of both EGFP-AN5 and AN5-EGFP is comparable and the signal in 

the nucleus is high compared to the surrounding cell compartments. 

Microscopic analysis of the T2 generation of Arabidopsis plants stably transformed with the 

EGFP fusion constructs confirmed the results obtained with N. benthamiana (Figure 3.4). In 

both experiments, free EGFP was used as a positive control and is observed in the nucleus 
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and the cytoplasm (data not shown). EGFP has a molecular weight of 26.9 kDa and as such 

can freely diffuse from the cytoplasm into the nucleus. 

 

Figure 3.3 Localization of N- and C-terminal EGFP fusion constructs of ArathNictabas expressed in 
transiently transformed N. benthamiana leaves. Localization is shown in the lower epidermis cells of 
the leaves. (A) Confocal microscopy images of all EGFP fusion constructs of the ArathNictabas. All 
images are a compilation of different fluorescent images acquired along the z-axis. (B) Plot profiles 
showing the fluorescence intensity within the nucleus (yellow line in panel A). 
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Figure 3.4 Localization of N- and C-terminal EGFP fusion constructs of ArathNictabas expressed in 
stably transformed A. thaliana plants. Localization is shown in the lower epidermis cells of the 
leaves. All images are a compilation of different fluorescent images acquired along the z-axis. 

3.4.4 In silico expression analysis of the Nictaba homologs from A. thaliana 

An in silico analysis of the 1500 bp predicted promoter region of AN3, AN4 and AN5 was 

performed. PlantCARE (Lescot et al., 2002) and AGRIS (Yilmaz et al., 2011) were used to 

search for experimentally validated and predicted cis-regulatory elements and TF binding 

sites in the different promoter regions of the ArathNictaba sequences. The CAAT and TATA 

box, the core promoter elements, were found in each promoter sequence, indicating that 

the sequences encode a functional promoter (data not shown). Next to these core promoter 

elements, several protein binding sites, tissue-specific and stress responsive elements were 

found in the promoters of AN3, AN4 and AN5 (Figure 3.5). Light-responsive elements 

constitute the largest group in the three promoter sequences, these elements are not 

indicated in Figure 3.5. The promoter of AN3 is the only one not containing MeJA responsive 

elements. All promoters contain SA responsive elements. Interestingly, the promoter of AN4 

contains a root meristem specific element and the promoter of AN5 a general meristem 

specific element, next to a few shoot specific elements. The promoter of AN3 contains a heat 

responsive element whereas the promoter of AN4 contains several osmotic stress 

responsive and ET responsive elements. The promoter of AN5 contains a drought responsive 

element. The presence of all these stress responsive cis-regulatory elements suggests that 

ArathNictabas may play a role in the stress response of the plant. 
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Figure 3.5 Schematic representation of the 1500 bp promoter sequences for AN3, AN4 and AN5. 
Protein binding sites, tissue-specific and stress responsive cis-regulatory elements are shown in 
different colors. CAAT, TATA boxes and light responsive elements were not included. Cis-regulatory 
elements present in the sense and antisense strand are shown on top or below the promoter 
sequences, respectively. 

In a second approach to obtain information about the expression of the ArathNictabas, 

BLASTn and tBLASTn searches were performed against the EST database of NCBI. This 

analysis revealed evidence for expression of AN3, AN4 and AN5 in the aerial tissues of 

8-day-old A. thaliana plants grown in continuous light (Weber et al., 2007) and in pooled 

cDNA of Arabidopsis roots, inflorescence, callus, young seedlings and Arabidopsis treated 

with cold, heat, salt, hydrogen peroxide, UV, auxin, Xanthomonas and Pseudomonas. 

Furthermore, ESTs for AN3 were identified in the green siliques and aboveground organs of 

two- to six-week-old plants (Asamizu et al., 2000). ESTs for AN4 and AN5 revealed evidence 

for expression of AN4 and AN5 in the roots of A. thaliana (Asamizu et al., 2000). Moreover, 

AN5 ESTs were also identified in plants one week after bolting (Feilner et al., 2005), in plants 

at various developmental stages subjected to dehydration and cold stress, in the 

aboveground organs of two- to six-week-old plants (Asamizu et al., 2000), floral buds 

(Alexandrov et al., 2006), green siliques (Asamizu et al., 2000) and in adult vegetative tissues. 

As illustrated in this EST analysis, stress-related ESTs were identified for all ArathNictabas, 

suggesting a possible role in the plant stress response. 
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The eFP browser contains gene expression data from the ATH1 GeneChip from Affymetrix 

and the AtGenExpress initiative (Winter et al., 2007). Genevestigator is structuring data from 

Affymetrix expression microarrays (Hruz et al., 2008). Screening of this data revealed more 

information on the tissue specific expression and expression upon different stress 

treatments for the three ArathNictabas. According to these data, the overall expression level 

of AN3 is low and AN3 is mostly expressed in the seeds, stems, flowers and pollen. The 

overall expression level of AN4 is also low and is significantly higher in the roots, stems, 

leaves and pollen. The expression of AN5 is relatively higher than the expression of AN3 and 

AN4, and AN5 is mostly expressed in the rosette and cauline leaves, hypocotyl, stems and 

flowers. 

The expression upon different stresses is illustrated in a heat map (Figure 3.6). The 

expression level of AN3 is highly influenced (up- and dowregulation) by different stress 

factors, while the changes in expression level for AN4 are only minor after different stress 

treatments. The changes in expression level for AN5 after different stress treatments are 

almost negligible. 

 

Figure 3.6 Relative expression levels of ArathNictabas after several stress treatments inferred from 
microarray data. Log2 transformed microarray data (Winter et al., 2007) visualized in a heat map 
created by the BAR HeatMapper Plus Tool (http://bar.utoronto.ca/ntools/cgi-
bin/ntools_heatmapper_plus.cgi). ACC: 1-aminocyclopropane-1-carboxylic acid, IAA: indole-3-acetic 
acid, GA: gibberellic acid. 
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3.4.5 Expression of the ArathNictaba genes during development of WT A. thaliana 

plants 

Using qRT-PCR, the expression level of the ArathNictabas was investigated in different 

tissues from Arabidopsis during development. Arabidopsis plants were grown under 

standard conditions and plant material was collected at different developmental stages 

starting from 6-day-old plantlets to different tissues of 54-day-old plants. Figure 3.8 shows 

the normalized relative expression for the three ArathNictabas throughout the development 

of the plant relative to the expression of these ArathNictabas in 6-day-old plantlets (first 

developmental stage). The three ArathNictaba genes are expressed in every tissue during all 

developmental stages tested. The expression level of AN3 is significantly higher in the stems 

and the flowers compared to the expression in 6-day-old plantlets. The expression level of 

AN4 is significantly higher in the roots and significantly lower in the flowers of the plant 

compared to its expression in 6-day-old plantlets. The expression level of AN5 is significantly 

higher in the rosette- and cauline leaves at all developmental stages tested. Moreover, the 

expression level of AN5 is significantly lower in the flowers compared to its expression in 6-

day-old plantlets. 

The normalized expression of AN3 and AN4 compared to the expression of one of the three 

reference genes (PP2A, TIP41 or UBC9) is much lower than the normalized expression of AN5 

compared to the expression of the same reference gene, indicating that the expression level 

of AN5 is higher than the expression levels of AN3 and AN4 in all tissues throughout the 

development of the plant (Figure 3.7). 

 

Figure 3.7 Normalized expression of the three ArathNictaba genes relative to the expression of 
TIP41 during the development of A. thaliana. The normalized transcript levels (to three reference 
genes: PP2A, TIP41 and UBC9) are the result of two independent biological replicates (N = 2) with 
similar results. 



Chapter 3 

72 

 

Figure 3.8 Normalized expression of the three ArathNictaba genes relative to the ArathNictaba 
expression level in 6-day-old (D6) plantlets during the development of A. thaliana. The normalized 
transcript levels (to three reference genes: PP2A, TIP41 and UBC9) are the result of two independent 
biological replicates (N = 2) with similar results. Bars represent the mean ± SE normalized relative 
expression and asterisks indicate statistically significant differences to the expression level of 
ArathNictaba in 6-day-old plantlets (* p≤0.05, ** p≤0.01, ***p≤0.001; REST analysis). 
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3.4.6 ArathNictaba expression is stress-inducible 

Judging from the in silico expression analysis, several hormones, abiotic and biotic stresses 

can influence the expression of the ArathNictabas. Based on the data from eFP browser, 

Genevestigator and recent research on other Nictaba homologs in our research group, 

several stress conditions were selected in order to get a profound insight in the stress 

inducibility of the ArathNictaba expression. 

3.4.6.1 AN3, AN4 and AN5 are differentially expressed in response to hormone 

treatments 

Sixteen-day-old Arabidopsis seedlings were subjected to different hormone treatments in 

particular 100 µM MeJA, 100 µM ABA and 300 µM SA. Mock/hormone treated samples were 

collected 1, 3, 5, 10 and 24 hours after treatment and transcript levels for AN3, AN4 and AN5 

were determined by qPCR analysis (Figure 3.9). Control genes known to be responsive to 

MeJA (JMT), ABA (Cor15A) and SA (WRKY70) treatments are significantly upregulated 

indicating that the plants sensed the different stress treatments. 

The expression of AN3 is significantly upregulated after treatment with different hormones 

with a fourfold upregulation after 5, 10 and 24 hours of MeJA treatment. After ABA and SA 

treatment, the upregulation of the expression of AN3 is less pronounced. ABA treatment 

resulted in a twofold upregulation after 5 and 10 hours, SA treatment in a 1.6 - 3.6 fold 

upregulation after 1, 3, 5, 10 and 24 hours. 

In contrast with the expression of AN3, the expression of AN4 is mostly downregulated after 

treatment with different hormones with a 2 - 2.5 fold downregulation after 5, 10 and 

24 hours of MeJA treatment. Whereas there was a twofold upregulation of the expression of 

AN3 after 5 and 10 hours of ABA treatment, the expression of AN4 is approximately two 

times downregulated. After SA treatment, the expression of AN4 is not changed except for a 

small significant downregulation after 10 hours. 

The expression of AN5 is only weakly influenced by the MeJA treatment. Similar to the 

expression of AN3, there is a two times upregulation of the expression of AN5 after 5 and 

10 hours of ABA treatment. After SA treatment, the expression of AN5 is not changed except 

for a small significant upregulation after 10 hours. 
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Figure 3.9 Normalized relative expression of the three ArathNictaba genes after MeJA, ABA and SA 
hormone treatment. The normalized transcript levels (to three reference genes: PP2A, TIP41 and 
UBC9) are the result of two or four independent biological replicates (N = 2 for ABA, N = 4 for MeJA 
and SA) with similar results. They are presented relatively to the ArathNictaba expression level 
determined in the mock treated plantlets. Bars represent the mean ± SE normalized relative 
expression and asterisks indicate statistically significant differences to the expression level of 
ArathNictaba in mock treated plantlets (* p≤0.05, ** p≤0.01, ***p≤0.001; REST analysis). The 
normalized relative expression levels for the positive control genes for each stress are presented in 
the left panels. 
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3.4.6.2 The expression of the ArathNictabas showed dissimilar patterns after abiotic 

stress treatments 

Sixteen-day-old Arabidopsis seedlings were subjected to salinity (150 mM NaCl) and heat 

stress. Mock/abiotic stress treated samples were collected 1, 3, 5, 10 and 24 hours after 

treatment and transcript levels for AN3, AN4 and AN5 were determined by qPCR analysis 

(Figure 3.10). Control genes known to be responsive to salt (RD29A) and heat (Hsp70b) stress 

are significantly upregulated indicating that the plants sensed the different abiotic stress 

treatments. The expression level of AN3 is not affected by salt stress but is 4 - 6 times 

significantly upregulated by heat stress after 3, 5, 10 and 24 hours. Overall, the expression of 

AN4 is two times downregulated after salt as well as heat stress. The expression of AN5 is 

only slightly influenced by salt stress and showed a threefold significant downregulation 

after 10 and 24 hours of heat stress. 

 

Figure 3.10 Normalized relative expression for the three ArathNictaba genes after salt and heat 
stress. The normalized transcript levels (to three reference genes: PP2A, TIP41 and UBC9) are the 
result of two or four independent biological replicates (N = 2 for heat stress, N = 4 for salt stress) with 
similar results. They are presented relatively to the ArathNictaba expression level determined in the 
mock treated plantlets. Bars represent the mean ± SE normalized relative expression and asterisks 
indicate statistically significant differences to the expression level of ArathNictaba in mock treated 
plantlets (* p≤0.05, ** p≤0.01, ***p≤0.001; REST analysis). The normalized relative expression levels 
of the positive control genes for each stress are presented in the left panels. 
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3.4.6.3 Expression of the ArathNictabas after different biotic stresses 

Five-week-old Arabidopsis plants were subjected to P. syringae, B. cinerea infection and 

M. persicae infestation. Mock/biotic stress treated samples were collected 0 - 7 days post 

infection/infestation (dpi) and transcript levels of AN3, AN4 and AN5 were determined by 

qPCR analysis (Figure 3.11). This analysis revealed an early 2 - 2.5 fold upregulation (1 - 3 dpi) 

of the expression of AN3 after P. syringae infection and a late twofold upregulation 

(5 - 7 dpi) of the expression of AN4. The expression of AN5 is not changed by P. syringae 

infection. Fungal infection with B. cinerea affected ArathNictaba expression levels very 

weakly. Only a small significant downregulation 2 and 3 dpi for AN5 was observed whereas 

infestation with M. persicae revealed an almost twofold upregulation after 3 days. The 

expression of AN4 is not affected by infestation of the plants with M. persicae and the 

expression of AN3 shows a twofold downregulation after 3 days. Control genes known to be 

responsive to P. syringae (PR1), B. cinerea (PDF1.2) and M. persicae (PR1) are significantly 

upregulated, indicating that the plants sensed the different biotic stress treatments. 
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Figure 3.11 Normalized relative expression for the three ArathNictaba genes after P. syringae and 
B. cinerea infection and M. persicae infestation. The normalized transcript levels (to three reference 
genes: PP2A, TIP41 and UBC9) are the result of two, three or four independent biological replicates 
(N = 2 for B. cinerea, N = 3 for P. syringae, N = 4 for M. persicae) with similar results. They are 
presented relatively to the ArathNictaba expression level determined in the mock treated plants. 
Bars represent the mean ± SE normalized relative expression and asterisks indicate statistically 
significant differences to the expression level of ArathNictaba in mock treated plants (* p≤0.05, ** 
p≤0.01, ***p≤0.001; REST analysis). Numbers on the x axis represent the number of days after 
infection/infestation. The normalized relative expression levels of the positive control genes for each 
stress are presented in the left panels. 
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3.5 Discussion 

The sequence alignment of Nictaba from tobacco and the Nictaba domains of the 

ArathNictaba sequences showed that the tryptophan residues important for carbohydrate 

binding in Nictaba are conserved in all ArathNictabas. Based on this observation, no 

conclusions can be drawn about the sugar specificity of the ArathNictabas. Stefanowicz et al. 

(2012) determined the sugar specificity of an F-box Nictaba (AT2G02360) protein from 

A. thaliana. The F-box Nictaba sequence contains the tryptophan residues important for 

sugar binding but glycan array analyses yielded results that were very different compared to 

the GlcNAc binding Nictaba. F-box Nictaba was shown to specifically bind to 

N-acetyllactosamine, Lewis A, Lewis X, Lewis Y and blood type B motifs (Stefanowicz et al., 

2012). Unfortunately, we did not succeed in determining the sugar specificity with a glycan 

array assay due to the low amount of recombinant ArathNictaba protein that could be 

purified (Chapter 5). 

The localization pattern for all ArathNictabas was determined using EGFP fusion proteins. 

The results obtained by transient transformation of N. benthamiana were confirmed by 

stable transformation of A. thaliana (Figure 3.3, Figure 3.4). AN4 and AN5 showed a 

nucleocytoplasmic localization whereas AN3 only resided in the cytoplasm. The 

nucleocytoplasmic localization is similar to the localization pattern of Nictaba (Chen et al., 

2002; Lannoo et al., 2006; Delporte et al., 2014) and the localization pattern of two soybean 

Nictaba-like lectins (Van Holle et al., 2016). The expression of EGFP fusion constructs in 

protein extracts from leaf tissue was analysed using sodium dodecyl sulphate (SDS) 

polyacrylamide gel electrophoresis (PAGE) and Western blot analysis. In case of the transient 

transformation of N. benthamiana, no protein was detected with the anti-EGFP antibody, 

probably due to the low expression after transient transformation. In case of the stable 

transformation of A. thaliana, free EGFP was detected in some of the transgenic lines but no 

detectable levels of the intact fusion protein were observed with the anti-EGFP antibody. 

Possibly the extraction procedure was not suitable for the EGFP fusion proteins. The 

cytoplasmic localization of AN3-EGFP argues against the degradation of the fusion protein 

since free EGFP would localize in the nucleus. 

No classical NLS is found in the ArathNictaba sequences suggesting that alternative 

mechanisms have to be used to enter the nucleus. In principle, all ArathNictaba EGFP fusion 

constructs are too big (> 40 kDa) to passively diffuse through nuclear pore complexes (Lange 

et al., 2007). Apparently AN3-EGFP is not transported to the nucleus. Unfortunately, no 

fluorescence was ever detected for EGFP-AN3 which can have different possible causes 

going from transcriptional silencing to problems with protein folding. 

Interestingly, the localization pattern of AN4 showed different results for N- and C-terminally 

tagged EGFP constructs in the transient transformation of N. benthamiana. EGFP-AN4 was 

clearly localized to the cytoplasm and the nucleus whereas AN4-EGFP was localized to the 

cytoplasm and only low fluorescence was observed in the nucleus. Apparently the efficiency 
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of nuclear import is much lower in the case of the C-terminal EGFP fusion construct of AN4. 

Differences in the localization pattern were also reported for one of the soybean Nictaba-like 

lectins (NLL3) (Van Holle, 2016). Strikingly in the case of AN4, this difference is not observed 

in the stable transformation of A. thaliana with the same EGFP constructs. 

The SUBA3 server predicts the localization of a protein but also provides experimentally 

proven data of localization (Hooper et al., 2014). Only for AN5, experiments with EGFP 

fusion constructs are mentioned and resulted in a nucleocytoplasmic localization (Cayla et 

al., 2015). For AN3 and AN4, localization into the cytoplasm is predicted which does not 

totally agree with our experimental data. 

Using qRT-PCR, the expression level of the ArathNictabas was investigated in different 

tissues from A. thaliana during development. The three ArathNictaba genes are expressed in 

every tissue during all developmental stages tested which is similar to the expression of 

F-box Nictaba and three soybean Nictaba-like lectins (Stefanowicz et al., 2016; Van Holle, 

2016; Van Holle et al., 2016). However, these results are different from the expression data 

of Nictaba from tobacco which is not expressed under normal growth conditions (Chen et 

al., 2002) suggesting that the function of the Nictaba homologs is more complex. The 

expression level of AN3 is higher in the stems and flowers compared to the other tissues 

which is comparable with the microarray data from eFP browser en Genevestigator (Winter 

et al., 2007; Hruz et al., 2008). Expression of AN3 was also determined in the seeds and 

pollen but these tissues were not sampled in our experiment. Expression of AN3 in the stems 

and the flowers is also in agreement with the AN3 ESTs identified in the green siliques and 

aboveground organs of two to six-week-old plants (Asamizu et al., 2000). The expression of 

AN4 is higher in the roots and lower in the flowers compared to the other tissues according 

to the qPCR analysis. The expression in the roots is in agreement with the available 

microarray data which also show expression of AN4 in the stems, leaves and pollen but from 

the qPCR analysis, no significant differences for these tissues were demonstrated. Not 

coincidentally, the promoter analysis revealed the presence of some root meristem specific 

elements in the promoter of AN4. Moreover also AN4 ESTs confirm the expression of AN4 in 

the roots of A. thaliana (Asamizu et al., 2000). The expression level of AN5 is higher in the 

rosette- and cauline leaves and slightly lower in the flowers compared to the other tissues. 

The expression of AN5 in the rosette- and cauline leaves is in agreement with the microarray 

data and the shoot specific elements present in the promoter sequence of AN5. 

Furthermore, ESTs for AN5 were identified in aboveground organs of two- to six-week-old 

plants (Asamizu et al., 2000) and in vegetative tissues from adult plants. The qRT-PCR 

analysis revealed that the expression level of AN5 is higher than the expression of AN3 and 

AN4 which is in agreement with the microarray data (Supplementary figure 3). Furthermore 

qRT-PCR was performed with non-diluted cDNA for all executed qRT-PCRs for all genes. The 

raw Cq values with diluted cDNA for AN3 and AN4 were too high when the plants were not 

stressed meaning these ArathNictabas are expressed at very low levels. 
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In silico analyses suggested that the expression of all ArathNictabas is regulated by stress 

conditions. Data from eFP browser and Genevestigator revealed a highly fluctuating 

expression of AN3 after different hormones, abiotic and biotic stress treatments (Winter et 

al., 2007; Hruz et al., 2008). Our qRT-PCR data revealed an overall upregulation after MeJA, 

ABA and SA treatment which is in agreement with the microarray data except for SA. Salt 

stress and B. cinerea infection had no influence on the expression level of AN3. In agreement 

with the microarray data, heat stress and P. syringae infection revealed an upregulated 

expression of AN3. M. persicae infestation resulted in downregulation of the expression of 

AN3 while in the other tested stress conditions the expression of AN3 is either upregulated 

or not influenced. The expression of AN4 shows an overall downregulation after hormone 

and abiotic stress treatment which is not in agreement with the microarray data except for 

MeJA. Only P. syringae infection gave an upregulated expression of AN4 which is again in 

contrast with the downregulated expression seen in the microarray data. The expression 

level of AN5 is only slightly influenced by different hormones, abiotic and biotic stress 

treatments. The significant up- or downregulations are always less than twofold which is in 

agreement with the overall yellow coloured heat map for this ArathNictaba (Figure 3.6). 

Probably some of the discrepancies between the different datasets can be explained by 

differences in the experimental setup such as different time points, tissues and way of 

treatment. 

The 2 - 2.5 fold upregulated expression of AN3 and AN4 after P. syringae infection is 

comparable with the expression of F-box Nictaba after P. syringae infection (Stefanowicz et 

al., 2016). Next to that, F-box Nictaba also showed an upregulated expression after SA and 

heat stress treatment but only the expression of AN3 is upregulated after these stresses. The 

expression of AN4 is not influenced by SA treatment and downregulated by heat stress. Also, 

the expression pattern of AN3 after salt stress is similar to the expression of F-box Nictaba 

after salt stress (Stefanowicz, 2015). The expression of both genes is not influenced by salt 

stress which is similar to the expression of Nictaba (Lannoo et al., 2007a) but different from 

the expression of one of the soybean Nictaba-like lectins (NLL1) (Van Holle et al., 2016). This 

comparison suggests that AN3, but not AN4 might be involved in similar plant defence 

pathways as F-box Nictaba. In addition, AN3 seems to play a role in MeJA and ABA stress. 

The expression of AN3 is upregulated after treatments with these hormones while the 

expression of F-box Nictaba is not influenced by these hormones (Stefanowicz, 2015). 

The expression level of AN5 is upregulated three days after M. persicae infestation. 

Furthermore Beneteau et al. (2010) showed that recombinant AN5 at mid-range 

concentrations, affects weight gain in M. persicae nymphs. The role of AN5 in plant defence 

to M. persicae, particularly at the phloem-feeding stage, is further confirmed by M. persicae 

infestation experiments with transgenic lines overexpressing AN5 (Zhang et al., 2011). 

Promoter analysis revealed a large amount of different cis-regulatory elements in the 

ArathNictaba promoter sequences. Although this analysis can give indications on the 
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regulation of gene expression, these data need to be confirmed experimentally. The 

promoter of AN3 is the only promoter that contains a heat responsive element and 

microarray data suggest an upregulated expression of AN3 after heat stress (Figure 3.5, 

Figure 3.6). In our data, AN3 is indeed the only ArathNictaba for which the expression is 

upregulated after heat stress (Figure 3.10). In contrast, ArathNictaba promoters for AN4 and 

AN5 have MeJA responsive elements in their promoter sequence contrary to the promoter 

of AN3 while microarray data revealed an overall upregulation of the expression of AN3 after 

MeJA treatment (Figure 3.5, Figure 3.6). In agreement with the microarray data, this is the 

only ArathNictaba for which the expression is strongly upregulated after MeJA treatment 

(Figure 3.9). Next, AN3 is the only Nictaba homolog for which the expression is upregulated 

by MeJA treatment, the expression of F-box Nictaba and Nictaba-like soybean lectin genes is 

not influenced by MeJA stress (Stefanowicz, 2015; Van Holle, 2016). The downregulated 

expression of AN4 after 3 hours MeJA treatment seen in the microarray data can also be 

confirmed by our expression data which show an overall downregulation of AN4 after MeJA 

treatment (Figure 3.6, Figure 3.9). All ArathNictaba promoters contain SA responsive 

elements whereas microarray data revealed only a small downregulation of AN3 after SA 

treatment (Figure 3.5, Figure 3.6). This downregulation is in contrast with our data which 

revealed an overall upregulation of the expression of AN3 after SA stress (Figure 3.9). 

As illustrated in this chapter, the different ArathNictabas show different expression patterns 

under normal growth conditions and after different stress treatments. The differential 

expression of these ArathNictabas suggests that different homologs can have a 

complementary role in the plant response to stress conditions. The comparison of the 

ArathNictaba expression patterns with the expression patterns previously reported for 

F-box Nictaba from A. thaliana and the soybean Nictaba-like lectins indicates that all Nictaba 

homologs are involved in different stress related pathways. Considering the role of the 

Nictaba domain in the plant stress response, the performance of transgenic lines 

overexpressing the ArathNicaba genes in stress conditions will be investigated in the next 

chapter.
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4.1 Abstract 

Plant lectins constitute an important part of the different plant immune receptors located 

either at the cell-surface or in the cytoplasmic compartment. Nictaba was shown to play a 

role in plant stress responses and the expression of ArathNictabas is stress-inducible 

indicating these Nictaba homologs also play a role in plant stress responses. In this chapter 

ArathNictaba overexpression lines were generated and subjected to salt stress and 

P. syringae infection in order to elucidate whether the ArathNictaba genes give rise to more 

tolerant plants in these stress situations. Germination experiments with ArathNictaba 

overexpression lines under salt stress conditions revealed no better tolerance of the 

transgenic plants towards mild and high salt stress compared to WT plants. Judging from the 

P. syringae infection experiments with the ArathNictaba overexpression lines, several 

transgenic lines for AN4 and AN5 showed a significantly lower level of leaf damage, 

percentage of cell death and Pseudomonas biomass. It can be concluded that two of the 

three Nictaba homologs possibly play a role in the defence of the plant against P. syringae. 

4.2 Introduction 

Plants are constantly exposed to different abiotic and biotic stresses. The innate immune 

system protects and defends plants by using different immune receptors located either at 

the cell-surface or in the cytoplasmic compartment. Plant lectins constitute an important 

part of these receptors. The cell-surface immune receptors with a lectin domain are part of 

the GNA, legume and LysM lectin families. The intracellular immune receptors with a lectin 

domain are nucleocytoplasmic lectins (Lannoo and Van Damme, 2014; Eggermont et al., 

2017 (Chapter 2)). At present, members of the amaranthin, EUL, GNA, JRL, Nictaba and ricin 

B lectin families have been studied and shown to play a role in plant stress responses (Van 

Damme et al., 2001, 2004; Wu et al., 2006; Vandenborre et al., 2010; Xin et al., 2011; Al 

Atalah et al., 2014; Song et al., 2014; Van Hove et al., 2015). 

The Nictaba lectin family was named after the Nicotiana tabacum agglutinin, abbreviated as 

Nictaba, originally discovered in tobacco leaves (Chen et al., 2002). The level of Nictaba 

expression was investigated after several hormone, abiotic and biotic stress treatments. 

Only jasmonate, MeJA, 12-oxo-phytodienoix acid (jasmonate precursor), chewing caterpillars 

and cell-content-feeding spider mites enhanced Nictaba synthesis and expression in tobacco 

leaves (Lannoo et al., 2007a; Vandenborre et al., 2009). Furthermore, feeding experiments 

with tobacco lines in which Nictaba was overexpressed or silenced, demonstrated the 

insecticidal activity of Nictaba. It was suggested that the interaction of Nictaba with 

glycoconjugates present in the digestive tract of the insects caused the entomotoxic activity 

(Vandenborre et al., 2010, 2011). Upon insect herbivory, the expression of Nictaba within 

the plant cell is enhanced and the protein is localized to the cytoplasm and the nucleus. It is 

believed that Nictaba binding to O-GlcNAc modified core histones results in chromatin 

remodelling and as such in enhanced transcription of defence related genes (Schouppe et 
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al., 2011; Delporte et al., 2014). Research on one of the ArathNictabas also showed its 

critical role in the Arabidopsis defence system. Beneteau et al. (2010) showed that 

recombinant AN5 at mid-range concentrations, affects weight gain in M. persicae nymphs 

and Zhang et al. (2011) revealed a repression in phloem-feeding of M. persicae on AN5 

overexpression lines. Furthermore, growth of various strains of filamentous fungi was 

inhibited by recombinant AN5 protein (Lee et al., 2014). 

In order to refine the function of an unknown gene/protein, BLAST analyses can reveal 

sequence similarity with other proteins of which the function is known. Similarly, protein 

domain identification will give indications about possible functions. Furthermore, ESTs can 

give additional information and support the information obtained with the BLAST analyses 

and protein domain searches (Swarbreck et al., 2008). When and where a gene is expressed 

in the cell or in the whole organism can be determined experimentally via different 

techniques and can give important clues about the function of a gene. The most direct way 

to find out the function of a gene, is studying mutant and overexpression lines (Alberts et al., 

2002). Loss-of-function mutants are usually created by random mutations by chemicals or by 

a T-DNA insertion. However, characterization of many single-gene mutants is challenging in 

plants because of genetic redundancy. Gain-of-function mutants can be created by random 

insertions of transcriptional enhancers or expression of transgenes under the control of a 

strong constitutive promoter. In contrast to single-mutants, overexpression of a gene can 

characterize functionally redundant genes (Çiftçi, 2012). 

As shown in chapter 3, the expression of the ArathNictabas is stress-inducible. In order to 

refine our understanding of the role of these Nictaba homologs in the plant, ArathNictaba 

overexpression lines were generated and tested under normal growth conditions, upon salt 

treatment and after P. syringae infections. These experiments allowed us to investigate if 

overexpression of the ArathNictaba genes leads to a better tolerance towards salt stress and 

reduced susceptibility towards Pseudomonas infection compared to WT plants. 

4.3 Materials and methods 

4.3.1 Plant material and growth conditions 

WT A. thaliana seeds, ecotype Col-0, were purchased from Lehle Seeds (Round Rock, Texas, 

USA). Arabidopsis seeds were grown in vitro, in pots containing commercial soil or 

individually grown in Jiffy's. After a 3 days stratification period at 4 °C in the dark, plants 

were grown at 21 °C in a controlled growth chamber with a 16/8 h photoperiod. All plant 

materials and growth conditions were previously described in chapter 3, section 3.3.1. 
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4.3.2 Construction of ArathNictaba overexpression constructs 

The entry clones containing the AN3, AN4 and AN5 coding sequences with stop codon 

(Chapter 3, section 3.3.7) were used in an LR reaction to generate the overexpression 

constructs. The destination vector pK7WG2,0 (Karimi et al., 2002) containing the 35S 

promoter was combined with the entry clones and the Gateway LR Clonase II to get the 

desired expression clones (35S::AN3, 35S::AN4 and 35S::AN5). These expression clones were 

heat shock transformed in TOP10 E. coli cells and transformants were selected on LB agar 

plates containing 75 µg/mL spectinomycin. Transformants were screened with colony PCR 

using a forward primer in the 35S promoter and a reverse primer in the 35S terminator 

sequence (Supplementary table 7). Electrocompetent A. tumefaciens GV3101 were 

transformed with these expression clones (300 ng) via electroporation with the following 

parameters: 2.0 kV, 25 µF and 200 Ω. Immediately after the pulse, YEB medium was added 

to the cells and they were grown on a shaker (200 rpm) at 28 °C for two hours. 

Transformants were selected on YEB agar plates with 75 µg/mL spectinomycin and screened 

with colony PCR using primers located in the 35S promoter and terminator sequences 

(Supplementary table 7). 

4.3.3 Stable transformation of A. thaliana plants 

Stably transformed Arabidopsis plants were created using the floral dip transformation 

method (Clough and Bent, 1998). Transformed seeds were selected using the fast selection 

protocol according to Harrison et al. (2006). Selection was done until the transformed plants 

were homozygous for the T-DNA integration (T3 and T4). Integration of the T-DNA was 

checked by PCR on gDNA using primers in the kanamycin resistance gene (Supplementary 

table 7) using the following PCR program: 10' 94 °C – 45 x (30'' 94 °C - 30'' 48 °C - 1' 72 °C) - 

5' 72 °C. Simultaneously, the quality of the gDNA was checked with actin primers 

(Supplementary table 7) using the same PCR program. Overexpression levels of the 

ArathNictaba genes in 15-day-old seedlings were quantified by qRT-PCR. Three independent 

homozygous single insertion lines of each construct (35S::AN3, 35S::AN4 and 35S::AN5) were 

selected and used in all experiments. 

4.3.4 RNA extraction, cDNA synthesis, RT-PCR and qRT-PCR analysis 

Arabidopsis seedlings for the different overexpression lines were ground in liquid nitrogen 

for total RNA isolation, followed by cDNA synthesis and RT-PCR analysis as previously 

described (Chapter 3, section 3.3.6). qRT-PCR analyses were performed using the 96-well 

CFX ConnectTM Real-Time PCR Detection System (Bio-Rad) as previously described 

(Chapter 3, section 3.3.11). 

4.3.5 Checking T-DNA insertion lines for AN4 and AN5 

Two mutant lines were available from the Nottingham Arabidopsis Stock Centre (NASC), one 

with a T-DNA insertion in the promoter of AN4, the other one with a T-DNA insertion in the 
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promoter of AN5. T-DNA insertion lines for AN3 were not available. The mutant line for AN4 

is a SALK line created by the Ecker lab at the Salk Institute 

(http://signal.salk.edu/cgi-bin/tdnaexpress). The mutant line for AN5 is a SAIL line created by 

Syngenta (North Carolina, USA). Plants grown in soil were tested for the T-DNA insertion by 

PCR on total gDNA. Total gDNA was extracted using the slightly adapted Edwards protocol 

(Edwards et al., 1991). After extraction, gDNA concentrations were measured with the 

Nanodrop 2000 spectrophotometer (Thermo Scientific) and diluted to 100 ng/µL. For each 

T-DNA insertion line, three primers were used, including a left border primer on the T-DNA 

insertion as well as two primers surrounding the T-DNA insertion (left primer (LP) and right 

primer (RP)) (Supplementary table 7). Two PCR reactions were performed with the following 

combinations of primers for each T-DNA insertion line: LP + RP and left border primer (LB) + 

RP. These PCR reactions were also performed on gDNA extracted from WT A. thaliana 

plants. Simultaneously, the quality of the gDNA was checked by PCR using ACT2 primers 

(Supplementary table 7). PCR reactions included 200 ng gDNA, 2 µL 10 mM dNTPs (Thermo 

Fisher Scientific), 1 µL of each primer (5 µM, Life Technologies), 2.5 µL 10 x Extra buffer 

(VWR), 0.125 Taq DNA polymerase (VWR) and water up to the volume of 25 µL. The PCR 

conditions are as follows: 2' 94 °C – 30 x (15'' 94 °C - 30'' 47 or 52 °C - 1'30'' 72 °C) - 5' 72 °C, 

with the annealing temperature 47 or 52 °C depending on the primers used. 

4.3.6 Germination assays and salt stress tolerance 

Arabidopsis seeds of WT plants and three independent homozygous transgenic lines with 

overexpression of AN4 and AN5 (35S::AN4 and 35S::AN5) were grown on 1/2 MS medium 

containing 0, 50 or 150 mM NaCl. Fifty seeds per transgenic line per treatment were sown. 

After stratification (3 days, 4 °C in the dark) the plates were placed in a controlled plant 

growth room at 21 °C and a 16/8 h light/dark photoperiod. Germination was followed for 

seven days and seeds were counted as germinated when the radicle emerged through the 

seed coat. Two independent biological replicates were performed. Results were statistically 

analysed with SPSS Statistics 22 (IBM) using the Pearson chi-square test for binomial 

distributed data and data were considered significant for p ≤ 0.05. 

4.3.7 Biotic stress susceptibility experiment 

The Pseudomonas syringae pv. tomato DC3000 strain was supplied by the Phytopathology 

lab of Prof. dr. M. Höfte (Ghent University, Belgium). Infection assays were performed 

according to Pieterse et al. (1996), Audenaert et al. (2002) and Katagiri et al. (2002), with 

some minor modifications as described in chapter 3, section 3.3.5. Four-week-old 

Arabidopsis WT plants and three independent homozygous transgenic lines for each 

construct (35S::AN3, 35S::AN4 and 35S::AN5) were inoculated with the infection or mock 

solutions. Rosette leaves of three individual randomly chosen plants were sampled at 

different time points post infection. Two independent biological replicates were performed 

and in each replicate, samples were used to measure leaf damage (section 4.3.7.1), visualize 

cell death (section 4.3.7.2) and determine Pseudomonas biomass (section 4.3.7.3). Samples 
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to determine Pseudomonas biomass were stored at -80 °C prior to DNA extraction and 

qRT-PCR analysis. 

4.3.7.1 Quantification of leaf damage 

To measure leaf damage, six leaves per line per time point were scanned with a flatbed 

scanner at the highest resolution. The percentage of leaf damage (relative to the total leaf 

area) was determined in the Image Analysis Software for Plant Disease Quantification Assess 

2.0 (APS, St. Paul, USA) using a self-written macro adjusted to our sampled leaves. The data 

were tested for normal distribution with the Shapiro-Wilkinson test. The Mann-Whitney U 

test was used for not normal distributed data, supplemented with a non-parametric 

equivalent of the Levene's test to check homogeneity of variances. The Bonferroni-Holm 

correction was used for multiple testing. 

4.3.7.2 Visualisation and quantification of cell death 

Using trypan blue staining (Sigma-Aldrich, Diegem, Belgium), plant cell death was visualized 

on infected and mock treated leaves from the P. syringae infection experiment. One leaf of 

three randomly chosen plants per line for each time point was submerged with the trypan 

blue solution (0.02 %) and boiled for two minutes. Then, the boiled leaves in trypan blue 

solution were incubated overnight at room temperature on a rotary shaker (50-100 rpm). 

Next day, the trypan blue solution was replaced by a chloral hydrate solution (100 g / 40 mL 

water) to destain the leaves. The destained leaves were placed on a microscopy slide in 50 % 

glycerol and pictures were taken with a Leica S8APO microscope (DFC400 camera) and Leica 

Plan APO 1.6 x objective. 

The trypan blue staining was quantified by a scoring system. Each picture was scored by 

estimating the percentage of blue staining or cell death. Leaves without trypan blue staining 

(0 %) were assigned a score 1. Score 2 was assigned to leaves for which the percentage of 

cell death was 1 - 30 %. Leaves with 31 - 60 % of cell death were assigned a sore 3. Score 4 

was the highest score and was assigned to leaves for which the percentage of cell death was 

61 - 100 %. Each transgenic line was statistically compared with the WT using a 

Mann-Whitney U test supplemented with a non-parametric equivalent of the Levene's test 

to check homogeneity of variances. The Bonferroni-Holm correction was used for multiple 

testing. 

4.3.7.3 Determination of P. syringae biomass 

To determine the P. syringae biomass, gDNA was first extracted from the infected and mock 

treated leaves using hexadecyltrimethylammonium bromide (CTAB). The CTAB buffer (2 % 

CTAB, 0.1 M Tris-HCl pH 7.5, 1.4 M NaCl, 20 mM EDTA) was added to 100 mg of plant 

material and this mixture was incubated for 90 minutes at 65 °C in a shaking heat block. 

Next, the extraction was followed by a chloroform:isoamylalcohol (24:1) precipitation. 

Finally, the gDNA was precipitated with 100 % isopropanol, washed with 76 % ethanol/0.2 M 
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NaOAc and 76 % ethanol/10 mM NH4OAc and dissolved in water. Quantification of 

P. syringae biomass was performed with qRT-PCR using oprf primers targeting the outer 

membrane porin protein F gene of P. syringae (Brouwer et al., 2003) (Supplementary 

table 5). ACT2 and PEX4 primers were used as reference genes from A. thaliana 

(Supplementary table 5). The REST-384 software was used to calculate the ratio of 

P. syringae gDNA to A. thaliana gDNA (Pfaffl et al., 2002). 

4.4 Results 

4.4.1 Selection of T-DNA insertion and overexpression lines 

4.4.1.1 Available AN4 and AN5 T-DNA insertion lines contain no T-DNA insertion 

The SALK T-DNA insertion lines were generated by Dr. Joseph Ecker (Salk Insitute, California, 

USA) via A. tumefaciens vacuum infiltration of A. thaliana ecotype Col-0 (Alonso et al., 2003). 

The SAIL T-DNA insertion lines were generated by Syngenta (North Carolina, USA), also via 

A. tumefaciens vacuum infiltration of A. thaliana ecotype Col-0 (McElver et al., 2001). Two 

available T-DNA insertion lines, one for AN4 (SALK_019483), one for AN5 (SAIL_835_C05), 

were obtained from NASC and the T-DNA insertion was analyzed. For both lines, the T-DNA 

insertion is situated in the promoter of the gene. PCR was performed on total gDNA using 

the LB on the T-DNA insertion as well as the LP and RP spanning the insertion site (Figure 

4.1) (Supplementary table 7). As shown in Figure 4.2 in the lanes with the ACT2 primers, the 

quality of the gDNA for each sample (WT, SALK and SAIL line) was approved, the expected 

band of 390 bp is present in all gDNA samples. By using LP and RP, the primers spanning the 

T-DNA insertion site, bands of 1069 bp and 1508 bp were amplified for SALK_019483 (AN4) 

and SAIL_835_C05 (AN5) respectively, but the same bands were amplified using LP and RP 

on the gDNA from WT plants. This result suggests that the T-DNA insertion lines contain no 

T-DNA insertion. This result is confirmed in the PCR with primer combination LB + RP as 

there is no PCR product amplified. These data indicate that the left border primer is not able 

to bind on the T-DNA insertion which confirms the T-DNA insertion is absent in both T-DNA 

insertion lines. As such these lines cannot be used in further experiments. 

 

Figure 4.1 Positions of primers to analyse T-DNA insertion lines for AN4 and AN5. Left primer (LP), 
right primer (RP) and left border primer (LB). 
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Figure 4.2 Analysis of T-DNA insertion lines for AN4 and AN5. PCR on gDNA extracted from WT 
plants (1), AN4 T-DNA insertion line SALK_019483 (2), AN5 T-DNA insertion line SAIL_835_C05 (3) 
compared to water, negative control (NC). Primer combinations used are indicated with left primer 
(LP), right primer (RP) and left border primer (LB). ACT2 refers to a forward and reverse primer on the 
ACT2 gene. M: DNA marker. 

4.4.1.2 Overexpression lines for AN3, AN4 and AN5 

A. thaliana ecotype Col-0 was transformed with the overexpression constructs 35S::AN3, 

35S::AN4 and 35S::AN5 and transgenic lines were selected. The resulting homozygous AN3, 

AN4 and AN5 overexpression lines carrying a single copy of the T-DNA insertion were tested 

on transcript level with qRT-PCR using cDNA from 15-day-old Arabidopsis seedlings. Based 

on their expression level relative to the ArathNictaba expression in WT plants, three 

independent overexpression lines exhibiting different overexpression levels were selected 

(Figure 4.3). Taking into account the higher expression levels of AN5 in WT plants compared 

to the expression levels of AN3 and AN4 (Chapter 3, section 3.4.5), it is not surprising to 

observe a lower overexpression level for the 35S::AN5 transgenic lines (Figure 4.3). The 

expression level of AN3 in the overexpression lines is more than 400 times higher than in WT 

plants for all three selected overexpression lines. In contrast with that, two of the three 

overexpression lines for AN4 have an expression level of AN4 which is only 50 and 300 times 

higher than in WT plants. All overexpression lines were also checked on protein level by 

SDS-PAGE and Western blot analysis with an anti-Nictaba antibody. The coomassie stained 

protein gels revealed no obvious differences in protein patterns between the protein 

extracts of WT plants and overexpression lines (data not shown). 
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Figure 4.3 Expression analysis of ArathNictaba overexpression level in 2-week-old 35S::AN3, 
35S::AN4 and 35S::AN5 transgenic lines. Normalized relative expression of AN3, AN4 and AN5 
compared to their expression in WT plants (N = 1). Error bars represent standard deviations. 

4.4.2 Germination assay of different transgenic lines compared to WT A. thaliana 

under normal growth and salt stress conditions 

To check whether the ArathNictaba genes play a role in the tolerance of the plant against 

salt stress, the germination of the 35S::AN4 and 35S::AN5 transgenic lines was tested on 1/2 

MS medium supplemented with different salt concentrations. 

The germination of all overexpression lines except AN4_L4 on day seven after a stratification 

period of 3 days is significantly lower than the germination of the WT seeds on MS medium 

without salt (Figure 4.4). On MS medium supplemented with 50 mM NaCl, the germination 

of AN4_J4 and AN4_L4 is not significantly different from the germination of the WT seeds. 

Taking into account the significantly lower germination of AN4_J4 on MS medium without 

salt, this suggests AN4_J4 may have a better tolerance against mild salt stress (50 mM NaCl). 

On MS medium with 150 mM NaCl, the germination percentage of all overexpression lines is 

significantly lower than the germination percentage of the WT seeds. None of the 

overexpression lines is performing better on MS medium with 150 mM NaCl than the WT 

plants. As such it can be concluded that all the overexpression lines are more sensitive to 

high salt stress (150 mM NaCl). 
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Figure 4.4 Percentage germination of WT and transgenic overexpression lines on 1/2 MS medium 
supplemented with different NaCl concentrations on day 7 after a stratification period of 3 days. 
Bars represent the mean ± SE of two independent biological replicates (N = 2) with fifty seeds per line 
per replicate. Asterisks represent statistically significant differences within one line between the 
different salt concentrations (* p≤0.05, ** p≤0.01, ***p≤0.001; Pearson chi-square test). Different 
letters represent statistically significant differences within one salt concentration between the 
different lines (* p≤0.05, Pearson chi-square test). 

4.4.3 ArathNictaba overexpression lines show less disease symptoms and bacterial 

growth after P. syringae infection 

WT and transgenic 35S::AN3, 35S::AN4 and 35S::AN5 A. thaliana plants were infected with 

the virulent hemibiotrophic P. syringae to investigate the role of the ArathNictaba genes in 

the defence against this pathogen. Infection of A. thaliana plants with P. syringae results in 

yellow lesion areas on the rosette leaves of the plant. This leaf damage was measured daily 

on scanned leaves and the percentage of the lesion area relative to the total leaf area was 

calculated. First bacterial lesions started to appear at three dpi, but only at four dpi 

differences in leaf damage were observed for the overexpression lines compared to WT 

plants (Figure 4.5). Statistically significant differences in leaf damage compared to the leaf 

damage in WT plants are observed especially for lines AN4_B1, AN4_L4, AN5_D5 and 

AN5_G3. These four overexpression lines reveal a significantly lower percentage of leaf 

damage compared to WT plants suggesting they are more tolerant to P. syringae infection. 

The leaf damage in mock treated plants was also determined but was never higher than 

6.5 % (data not shown). Furthermore, the leaf damage of the 35S::AN5 lines is significantly 

(p ≤ 0.05) negatively correlated with the expression level of the different overexpression 

lines (Pearson correlation, SPSS23). No correlation was observed between the leaf damage 

and the expression level of AN3 and AN4 in the different overexpression lines for AN3 and 

AN4. 
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Figure 4.5 Percentage of leaf damage in WT and transgenic overexpression A. thaliana plants 
infected with P. syringae at 4 dpi. Percentage of leaf damage calculated with Assess 2.0 at 4 dpi as 
percent ratio of yellow lesion area relative to the total leaf area. Bars represent the mean ± SE of two 
independent biological replicates with six individual leaves per line per replicate. Asterisks indicate 
statistically significant differences to the percentage of leaf damage in WT plants (* p≤0.05, ** 
p≤0.01, ***p≤0.001; Mann-Whitney U test). 

To strengthen these results, bacterial growth on the A. thaliana WT and transgenic plants 

was compared in a qPCR analysis to quantify the relative P. syringae biomass. P. syringae 

and A. thaliana specific primers were used in this qPCR analysis on gDNA extracted from leaf 

material collected at three and four dpi. AN4_B1, AN5_D5 and AN5_G3, which had a 

significantly lower percentage of leaf damage compared with WT plants, also have a 

significantly lower P. syringae biomass (Figure 4.6). These data confirm that these 

overexpression lines are more tolerant than WT plants to infection with P. syringae. Even 

AN5_A2, which had less (though not significant) leaf damage compared to WT, revealed a 

significantly lower P. syringae biomass. AN4_L4 has a lower (but not significant) P. syringae 

biomass compared to WT plants. All AN3 overexpression lines show a higher P. syringae 

biomass compared to WT plants, which is in contrast with the lower (but not significant) leaf 

damage compared to WT plants. It cannot be concluded that AN3 overexpression lines are 

more tolerant to infection with P. syringae. 
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Figure 4.6 Normalized relative P. syringae biomass in the overexpression lines compared to WT 
plants at 4 dpi. Bars represent the mean ± SE relative P. syringae biomass in overexpression lines to 
biomass in WT plants at 4 dpi from two independent biological replicates normalized with two 
A. thaliana reference genes (ACT2 and PEX4) in REST-384. Asterisks indicate statistically significant 
differences to the biomass in WT plants (* p≤0.05, ** p≤0.01, ***p≤0.001; pair wise fixed 
reallocation randomization test REST-384). 

A third analysis includes the visualization and quantification of cell death in the leaves using 

trypan blue staining (Figure 4.7, Figure 4.8). No significant differences were obtained for the 

percentage of cell death of 35S::AN3 lines compared to WT plants, this result confirms the 

result obtained by leaf damage analysis but is also in contrast with the higher P. syringae 

biomass of the AN3 overexpression lines compared to WT plants. AN4_B1 showed a 

significantly lower leaf damage and P. syringae biomass compared to WT plants (Figure 4.5, 

Figure 4.6) which is in agreement with the difference (not significant) in percentages of cell 

death (Figure 4.7) concluding AN4_B1 is more tolerant to P. syringae infection than WT 

plants. Surprisingly AN4_J4 shows a significantly reduced amount of cell death compared to 

WT plants (Figure 4.7) as the percentage of leaf damage was almost equal to the WT plants 

and the P. syringae biomass was significantly higher (Figure 4.5, Figure 4.6). AN4_L4 shows 

comparable results to WT plants in all analyses except for the leaf damage analysis which 

revealed a significantly lower leaf damage (Figure 4.5). As such it cannot be concluded that 

AN4_J4 and AN4_L4 are more tolerant to P. syringae infection. P. syringae biomass for 

AN5_A2 is significantly lower than for the WT plants (Figure 4.6) which is in agreement with 

the lower trend obtained by leaf damage quantification and amount of cell death suggesting 

AN5_A2 is more tolerant to P. syringae infection than WT plants. AN5_D5 and AN5_G3 show 

a significantly lower leaf damage and P. syringae biomass but the amount of cell death is not 

significantly lower although a lower trend can be observed. AN5_D5 and AN5_G3 are most 

probably also more tolerant to P. syringae infection than WT plants. The trypan blue staining 

in mock treated plants was not quantified as there was no cell death at all in the mock 

treated plants (Figure 4.8). 
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Figure 4.7 Scoring of trypan blue stained leaves from overexpression lines compared to WT plants 
at 4 dpi. Bars represent the scores in percentage from two independent biological replicates (N = 2) 
with each time three (35S::AN4 and 35S::AN5) or six leaves (35S::AN3) stained per line. Score 1: 0 %, 
score 2: 1 – 30 %, score 3: 31 – 60 % and score 4: 61 – 100 % trypan blue staining or cell death. 
Asterisks indicate statistically significant differences to the trypan blue staining in WT plants 
(* p≤0.05, ** p≤0.01, ***p≤0.001; Mann-Whitney U test). 

 

Figure 4.8 Trypan blue stained leaves from WT and overexpression lines at 4 dpi. Representative 
pictures are shown for each line. Only one picture of a mock treated leaf is shown (black square). 
Two WT leaves are shown representing different experiments. 
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4.5 Discussion 

A. thaliana ecotype Col-0 was transformed with the overexpression constructs 35S::AN3, 

35S::AN4 and 35S::AN5 and transgenic lines were selected. The resulting homozygous AN3, 

AN4 and AN5 overexpression lines carrying a single copy of the T-DNA insertion were tested 

on transcript level with qRT-PCR using cDNA from 15-day-old Arabidopsis seedlings. The 

overexpression level of the different lines was determined. The validation of the 

overexpression lines on protein level never showed overexpressed ArathNictaba protein 

although the lanes of the protein gels were overloaded with a total protein amount of 

200 µg. Western blot analysis with the anti-Nictaba antibody revealed no indication for 

overexpression of ArathNictaba protein. Since there is no specific antibody for the 

ArathNictaba proteins available, it was worth trying to detect the ArathNictaba proteins with 

the polyclonal anti-Nictaba antibody (raised against Nictaba from tobacco). Western blot 

analysis with a specific antibody could give decisive answers on the presence of 

ArathNictaba proteins in the overexpression lines. 

The expression analysis in chapter 3 revealed an overall downregulation of the expression of 

AN4 after salt stress. In contrast, the expression of AN5 showed a small but significant 

upregulation after 10 and 24 hours of salt stress. To check whether these ArathNictaba 

genes play a role in the tolerance of the plant against salt stress, the germination of the 

35S::AN4 and 35S::AN5 transgenic lines was tested on 1/2 MS medium supplemented with 

different salt concentrations. Whereas two soybean Nictaba-like lectins confer tolerance to 

high salt stress (150 mM) (Van Holle et al., 2016), the ArathNictaba overexpression lines are 

more sensitive to salt stress than WT plants. It has to be mentioned that the germination 

data for the WT plants are different from Van Holle et al. (2016). Whereas the WT seeds 

ecotype Col-0 from Van Holle et al. (2016) germinated only 64-74 % on 1/2 MS medium 

supplemented with 150 mM NaCl, a germination of almost 95 % was reached in our 

experiment. Because of the high percentage of germination for the WT plants, it was 

expected that none of the overexpression lines would germinate better. Literature searches 

for comparable experiments revealed only 35 % seed germination on 1/2 MS medium with 

150 mM NaCl on day six (Salas-Muñoz et al., 2012). However, Salas-Muñoz et al. (2016), a 

more recent publication of the same research group, reported a germination of 80 % on day 

four. It can be concluded that not every WT seed batch, even though it concerns the same 

ecotype tested under similar growth conditions, shows the same germination percentage. 

Using A. thaliana plants stably expressing an F-box Nictaba promoter-β-glucuronidase fusion 

construct, Stefanowicz et al. (2016) showed preferential F-box Nictaba promoter activity in 

trichomes present on young rosette leaves. qRT-PCR analyses verified high expression of 

F-box Nictaba in leaf trichomes. Moreover, overexpression of F-box Nictaba resulted in a 

reduction of leaf damage upon infection with P. syringae (Stefanowicz et al., 2016) 

suggesting a possible function of F-box Nictaba and trichomes in plant responses to 

pathogen attack. Overexpression of the ArathNictaba genes revealed a reduced 
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susceptibility of one of the AN4 overexpression lines (AN4_B1) upon infection with 

P. syringae than WT plants. This result was expected because the expression level of AN4 

showed a late twofold upregulation (5 - 7 dpi) after P. syringae infection of WT plants 

(Chapter 3). Furthermore, transcriptional profiling of mature Arabidopsis trichomes revealed 

expression of AN4 in Arabidopsis trichomes (Jakoby et al., 2008). It would be interesting to 

investigate this tissue specific expression more in detail to determine if there is a link 

between trichome specific expression and a reduced susceptibility to P. syringae infections. 

Judging from the P. syringae infections of the AN3 overexpression lines, these lines are not 

more tolerant to P. syringae infections than WT A. thaliana plants. This result was 

unexpected because of the 2 - 2.5 fold upregulation of AN3 expression after P. syringae 

infections of WT plants 1 - 3 dpi (Chapter 3). Infection experiments with the AN3 

overexpression lines were performed separately from infection experiments with AN4 and 

AN5 overexpression lines. In all experiments, WT plants were included. Between these 

experiments, important differences can be observed in the percentage of leaf damage and 

cell death. These percentages are overall much lower in the infection experiments with the 

AN3 overexpression lines. Possibly the season in which the infection experiments were 

performed, is influencing the degree of infection. The infection experiments with AN4 and 

AN5 overexpression lines were performed in spring while the infection experiments with 

AN3 overexpression lines were performed in summer. No research showed the direct effect 

of the season on the degree of Pseudomonas infection but Kus et al. (2002) revealed the 

effect of plant age on the degree of P. syringae infection. Several times it was observed that 

Arabidopsis plants grown in growth chambers with strict control of temperature and light 

regime still sense the season and grow differently in different times of the year (Roden and 

Ingle, 2009; Bhardwaj et al., 2011; Zhang et al., 2013; Lu et al., 2017). As such, no definitive 

conclusions concerning the susceptibility of AN3 overexpression lines compared to WT 

Arabidopsis plants can be drawn. To draw conclusions, infection experiments have to be 

repeated with all overexpression lines in the same season. 

In contrast with the more or less stable expression of AN5 after P. syringae infection of WT 

plants of A. thaliana (Chapter 3), all AN5 overexpression lines are most probably more 

tolerant to P. syringae infection than WT plants. Similarly, overexpression of two soybean 

Nictaba-like lectins in A. thaliana resulted in less disease symptoms compared to the WT 

plants (Van Holle et al., 2016). All together, these data showed that the Nictaba lectin family 

might play an important role in the plant defence against P. syringae infection. 
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5.1 Abstract 

The expression levels of the ArathNictabas in normal and stressed Arabidopsis plants are too 

low to allow purification of sufficient amounts of protein starting from plant material. 

Therefore, Escherichia coli was chosen as a heterologous expression system to express the 

recombinant ArathNictabas and to obtain sufficient amounts of protein. In this chapter, the 

recombinantly produced AN4 protein was used to determine lectin activity and 

carbohydrate specificity. Moreover, possible interaction partners for AN4 were searched to 

improve understanding of the functions and biological importance of the ArathNictabas. In 

the agglutination assay, no lectin activity could be proven for the purified AN4. MS analysis 

of the proteins retrieved from the pull-down analysis identified two possible interaction 

partners, namely TGG1 or myrosinase 1 and BGLU23/PYK10 or β-glucosidase 23. Similar to 

AN4, these two interaction partners play a role in the plant defence. 

5.2 Introduction 

The first plant lectins discovered were mainly vacuolar lectins and were present in high 

concentrations especially in seeds and vegetative storage tissues (Peumans and Van Damme, 

1995). Their high abundance made it possible to purify these lectins directly from the plant 

tissues. The ArathNictabas belong to the Nictaba lectin family, which is one of the six families 

containing nucleocytoplasmic, inducible lectins (Lannoo and Van Damme, 2010). The 

expression levels of the ArathNictabas in normal and stressed Arabidopsis plants are too low 

to allow the purification of sufficient amounts of protein starting from plant material 

(Chapter 3), similarly to Nictaba from tobacco (Lannoo et al., 2007a,b). Therefore, 

heterologous recombinant expression of these proteins is the only option to obtain sufficient 

amounts of protein. 

Several microorganisms are used as a host to produce recombinant proteins including 

bacteria, yeast, filamentous fungi and unicellular algae. Also mammalian, plant or insect cell 

cultures, transgenic plants and animals are possible host systems for recombinant protein 

production (Demain and Vaishnav, 2009; Rosano and Ceccarelli, 2014). All systems have 

their strengths and weaknesses, and therefore the choice is dependent on the protein of 

interest (Demain and Vaishnav, 2009). For example, prokaryotic expression systems may not 

be suitable if eukaryotic post-translational modifications are necessary (Sahdev et al., 2008). 

Still, E. coli is the least expensive, easiest and fastest expression system to produce 

recombinant proteins (Demain and Vaishnav, 2009) and possesses several advantages: fast 

growth kinetics, easy production of high-cell density cultures, inexpensive carbon source, 

easy transformation and simple to scale up (Sahdev et al., 2008; Rosano and Ceccarelli, 

2014). 
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The development of MS and large-scale proteome analyses created an increasing number of 

identified proteins (Fukao, 2012). Hardly any protein operates alone while performing its 

function in vivo. Indeed, over 80 % of the proteins have a function in protein complexes (Rao 

et al., 2014). Protein-protein interactions are crucial for all biological processes ranging from 

the formation of cellular structures and enzymatic complexes to the regulation of signalling 

pathways (Lalonde et al., 2008). Studying protein-protein interactions provides fundamental 

insights into gene function and complex cellular networks (Zhang et al., 2010a; Fukao, 2012). 

To date, various methodologies to determine protein-protein interactions are available 

including the yeast two-hybrid system, affinity purification and MS analyses, surface 

plasmon resonance spectroscopy, nuclear magnetic resonance, fluorescence imaging, 

in silico prediction and protein microarrays. All these techniques have their advantages and 

limitations (Lalonde et al., 2008; Zhang et al., 2010a; Fukao, 2012; Rao et al., 2014). 

The Arabidopsis proteome can be compared with an iceberg. The physiological function of 

90 % of the Arabidopsis genes (the hidden part of the iceberg) is unknown, although for two 

third of these genes, ideas for molecular function can be deduced from sequence similarity. 

Only a tiny fraction of the genes (the tip of the iceberg) are experimentally and functionally 

characterized in detail. Protein-protein interactions between proteins of the tip and the 

hidden part of the iceberg will gain insights into the functions of unknown proteins (Braun et 

al., 2013). 

Glycan array analysis revealed specificity of Nictaba from tobacco for GlcNAc oligomers, high 

mannose and complex N-glycans (Lannoo et al., 2006). Moreover, recombinant Nictaba 

expressed in the yeast Pichia pastoris demonstrated lectin activity in an agglutination assay 

(Lannoo et al., 2007b). Interaction of Nictaba with several core histones via O-GlcNAc was 

revealed using lectin affinity chromatography and pull-down assays (Schouppe et al., 2011). 

In this chapter, recombinant AN4 protein was produced in E. coli and used to determine 

lectin activity and carbohydrate specificity. Moreover, interaction partners were searched 

for AN4 to improve our understanding of the functions and biological importance of Nictaba 

homologs from A. thaliana. Recombinant protein production was attempted for AN3, AN4 

and AN5 in two eukarytoic expression systems namely Pichia pastoris, a yeast, and bright 

yellow-2 (BY-2) cells, a tobacco cell culture. With both expression systems, no recombinant 

protein could be detected and purified for either of the ArathNictabas. Recombinant protein 

production in E. coli resulted in a small amount of AN4 protein, while no protein for AN3 and 

AN5 could be detected in the soluble fraction. 
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5.3 Materials and methods 

5.3.1 Plant material and growth conditions 

WT A. thaliana seeds, ecotype Col-0, were purchased from Lehle Seeds (Round Rock, Texas, 

USA). After a 3 days stratification period at 4 °C in the dark, Arabidopsis seeds were grown 

in vitro at 21 °C in a controlled growth chamber with a 16/8 h photoperiod. All plant 

materials and growth conditions were previously described in chapter 3, section 3.3.1. 

5.3.2 Construction of ArathNictaba His6-tagged constructs 

Gibson assembly was used to assemble the N- and C-terminally His6-tagged ArathNictaba 

sequences with the pET-21a(+) vector (Figure 5.1) (Novagen) (Gibson et al., 2009). Gibson 

assembly can assemble multiple overlapping DNA molecules using a combination of 

5' exonuclease, DNA polymerase and DNA ligase (Figure 5.2) (Gibson et al., 2009). 

 

Figure 5.1 Vector map of pET-21a(+) vector (Novagen). The most important parts within the black 
arrow are the T7 promoter, lac operator, multiple cloning site and T7 terminator. Ap: gene encoding 
ampicillin resistance; ori: origin of replication in E. coli. 
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Figure 5.2 Gibson assembly mechanism (Gibson et al., 2009). First, T5 exonuclease removes 
nucleotides from the 5' ends of two adjacent doublestranded DNA molecules (magenta and green). 
Second, complementary single-stranded DNA overhangs anneal and T5 exonuclease is inactivated 
during the 50 °C incubation. Third, Phusion DNA polymerase fills the gaps and Taq DNA ligase seals 
the nicks (Gibson et al., 2009). 

The overlapping parts between the DNA molecules, needed to be assembled, are called the 

Gibson assembly sites. Both N- and C-terminal His6-tagged ArathNictabas were provided 

with Gibson assembly sites using PCR. For the N-terminal His6-tagged ArathNictabas, the 

open reading frame was used as a template for the first PCR with a forward primer to add 

the N-terminal His6-tag and Gly3-linker, and a reverse primer to add the Gibson assembly 

site (Supplementary table 8). The second PCR was performed on the product of the first PCR, 

using a forward primer to add the Gibson assembly site and the same reverse primer as in 

the first PCR (Supplementary table 8). For the C-terminal His6-tagged ArathNictabas, the 

open reading frame followed by a Gly3-linker and a His6-tag was used as a template for PCR. 

Forward and reverse primers were used to add Gibson assembly sites (Supplementary 

table 8). The vector backbone of the pET21a vector was amplified in a PCR reaction with the 

following components: 5 x Q5 reaction buffer, 2 mM dNTP mix, 0.1 - 1 ng pET21a, Q5 high 

fidelity DNA polymerase, water, forward and reverse primer (10 µM) (Supplementary 

table 8). Linearization of the vector backbone was performed by DpnI restriction (1 hour at 

37 °C). 

Once the constructs and the vector backbone both contain the Gibson assembly sites, the 

PCR products were purified with the InnuPREP PCR pure kit (Analytik Jena, Germany). For 

the Gibson assembly reaction, equimolar amounts of linear vector backbone and 

ArathNictaba expression construct were mixed together with 15 µL of Gibson master mix 

(Table 5.1 and Table 5.2) and incubated for one hour at 50 °C. 
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Table 5.1 Gibson master mix (25 Gibson assembly reactions). 

Component µL Manufacturer 

5 x ISO buffer 100 / 
T5 exonuclease (10000 U/mL) 0.2 NEB 

Q5 high fidelity polymerase (10000 U/mL) 6.25 NEB 
Taq DNA ligase (40000 U/mL) 50 NEB 

MilliQ water 218.55 / 
 

Table 5.2 Components of 5 x ISO buffer. 

Component µL Manufacturer 

1 M Tris-HCl pH 7.5 3000 Sigma Aldrich 
2 M MgCl2 150 VWR 

100 mM dNTP mix 240 Thermo Fisher 
1 M DTT 300 Sigma-Aldrich 

100 mM NAD 300 Sigma Aldrich 
PEG-8000 1.5 g Sigma-Aldrich 

MilliQ water until 6000 / 
 

5.3.3 Transformation of E. coli and expression analysis 

Half of the Gibson assembly mixture was transformed into heat shock competent E. coli 

strain Rosetta(DE3) cells (Novagen). The strain background is E. coli B and Rosetta(DE3) is 

derived from BL21 lacZY (TunerTM). The strain contains rare codon tRNAs which provide 

tRNAs for mammalian codons that rarely occur in E. coli. After heat shock, transformants 

were grown on LB agar plates supplemented with 100 µg/mL ampicillin and 25 µg/mL 

chloramphenicol. Transformants were subsequently screened by colony PCR with primers 

that contain the Gibson assembly sites (Supplementary table 8). The pET21a plasmids 

containing the His6-tagged ArathNictabas were purified using the GeneJET Plasmid Miniprep 

kit (Life Technologies) and sequenced by LGC Genomics (Berlin, Germany) with a forward 

sequencing primer on pET21a (Supplementary table 8). 

Recombinant E. coli Rosetta(DE3) cells were grown overnight in 5 mL LB supplemented with 

20 µg/mL ampicillin and 25 µg/mL chloramphenicol at 37 °C on a rotary shaker (185 rpm). 

The next morning, the E. coli cells were diluted in 50 mL LB supplemented with 200 µg/mL 

carbenicillin and 25 µg/mL chloramphenicol, and grown at 30 °C on a rotary shaker 

(185 rpm). After the cells reached an OD600nm of 0.5 - 0.6, the expression of recombinant 

protein was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG). The concentration 

of IPTG was optimized, IPTG concentrations ranging from 0.1 to 1 mM were checked. After 

application of IPTG, the E. coli cells were grown overnight at 25 °C on a rotary shaker 

(185 rpm). 
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The next day, the E. coli cell cultures were harvested by centrifugation at 8000 rpm for 

15 min. The cell pellets were kept overnight at -20 °C and afterwards solubilised in 10 mL of 

1 x phosphate buffer (PB; 0.02 M NaH2PO4∙2H2O, 0.23 M Na2HPO4) with 500 mM NaCl and 

1 mg/mL lysosyme at pH 8. Cell lysis will already occur by freezing the cells and incubation in 

the presence of lysozyme which causes enzymatic lysis. Additionally, the cells were sonicated 

three times for 2.5 min. After sonication, the solutions were centrifuged at 4 °C for 45 min 

(9000 rpm) to separate the soluble from the insoluble fractions. The insoluble fractions were 

resuspended in 8 M ureum. Both fractions were checked for the presence of recombinant 

protein by SDS-PAGE and Western blot analysis (section 5.3.6). 

5.3.4 Optimization of recombinant protein expression in E. coli 

To optimize the expression of recombinant protein in the soluble fraction, different culture 

conditions were tested. The IPTG concentration can be decreased, several IPTG 

concentrations were tested in the range of 0.1 to 1 mM. 0.2 mM proved to be the best IPTG 

concentration for optimal protein expression and was used in further experiments. The 

growth temperature after induction with IPTG can also be diminished, temperatures 

between 14 and 25 °C were tested. Growth after induction at 14 °C proved to be the best 

option. When growing bacterial cultures in large volumes (300 mL), the time of induction 

was also prolonged to three days to obtain more recombinant protein. 

5.3.5 Protein purification using column chromatography 

E. coli cell extracts containing the recombinant ArathNictaba were obtained as described in 

section 5.3.4 and used for further purification. 10 mM imidazole (IZ) was added to the 

soluble protein solution to diminish aspecific protein binding and the pH was adjusted to 

pH 8. This protein solution was loaded on a Ni-NTA agarose column (MCLAB, South San 

Francisco, California) equilibrated with 1 x PB, 1 M NaCl at pH 8. Histidine tags have a high 

affinity for nickel ions, as a result the His6-tagged recombinant protein will be retained on 

the column. The column was washed with 1 x PB, 1 M NaCl, 50 mM IZ, pH 8 and 1 x PB, 1 M 

NaCl, 75 mM IZ, pH 8 to remove aspecific proteins. Elution of the column was performed 

with 1 x PB, 1 M NaCl, pH 8 with increasing concentrations of IZ ranging from 100 to 500 mM 

IZ. Several elution fractions of 500 µL were collected for each elution buffer. The OD280nm of 

each fraction was measured with the Nanodrop 2000 spectrophotometer (Thermo 

Scientific). The purity of the protein samples was verified by SDS-PAGE and Western blot 

analysis (section 5.3.6). 

5.3.6 SDS-PAGE and Western blot 

Protein samples were analyzed by SDS-PAGE on 15 % acrylamide gels as described by 

Laemmli (1970). After separation, proteins were visualised by gel staining with Coomassie 

Brilliant Blue R-250 or blotted onto polyvinylidene fluoride transfer membranes 

(FluoroTrans® PVDF, Pall Laboratory, USA). Membranes were blocked with Tris-buffered 

saline (TBS; 10 mM Tris, 150 mM NaCl, 0.1 % (v/v) Triton X-100, pH 7.6) containing 5 % (w/v) 
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non-fat milk powder. Subsequently, membranes were incubated for 1 hour with a mouse 

monoclonal anti-His6 antibody (Thermo Fisher Scientific) diluted 1/3000 in TBS. After 

washing three times with TBS, membranes were incubated for 1 hour with the 1/1000 

diluted rabbit anti-mouse IgG secondary antibody labelled with horseradish peroxidase 

(Dako, Glostrup, Denmark). After washing two times with TBS and one time with 0.1 M 

Tris-HCl buffer (pH 7.6), immunodetection was achieved using a colorimetric assay with 

0.1 M Tris-HCl buffer (pH 7.6) containing 700 µM 3,3'-diaminobenzidine tetrahydrochloride 

(Sigma-Aldrich, St Louis, USA) and 0.03 % (v/v) hydrogen peroxide. The detection reaction 

was stopped after 2 - 10 minutes by washing the membrane with distilled water. All washes 

and incubations were performed on a gently shaking platform at room temperature. 

5.3.7 Agglutination assay 

To check for lectin activity in purified recombinant protein fractions, agglutination assays 

were performed as described by Al Atalah et al. (2011). Lectins can agglutinate rabbit 

erythrocytes by binding to the carbohydrate structures on the lipids and proteins in the 

plasma membrane of the erythrocytes, as such cross-linking the rabbit erythrocytes which 

results in the formation of a precipitate of the lectin-erythrocyte complexes. Purified protein 

fractions (10 µL) were mixed with 10 µL 1 M ammonium sulfate and 30 µL of a 20 % solution 

(1 x PB) of trypsin-treated rabbit red blood cells (Bio-Mérieux, Marcy l'Etoile, France). At 

different timepoints, agglutination was checked and samples that yielded no visible 

agglutination activity after 1 hour were noted as lectin negative. 

5.3.8 Affinity chromatography with carbohydrates and glycoproteins 

Affinity matrices with immobilized fetuin, GlcNAc, D-galactose, D-mannose and ovomucoid 

were tested for binding with the purified recombinant protein. Approximately 100 µL of 

each matrix was used and equilibrated with 1 x PB, 0.5 M NaCl at pH 8 in an Eppendorf tube. 

The matrix was centrifuged for 1 minute at 4000 g and the equilibration buffer was removed. 

Afterwards, 200 µL of the elution fractions containing purified recombinant protein (from 

the Ni column chromatography) was incubated with each matrix for 2 hours on a turning 

wheel. After centrifugation and removal of the protein sample, the matrix was washed with 

1 x PB, 0.5 M NaCl at pH 8. Finally, after removing the wash solution, all matrices were 

eluted with 20 mM 1,3-diaminopropane. Run through, wash and elution fractions were 

evaluated with Western blot analysis (section 5.3.6). 

5.3.9 Pull-down analysis 

The pull-down analysis was performed directly on the AN4 protein bound to the Ni matrix. It 

was not possible to work with purified and eluted recombinant AN4 because the IZ could not 

be removed from the purified protein fractions. Attempts to remove IZ through dialysis 

resulted in precipitation of the protein and as such loss of the recombinant AN4 protein. 

Moreover, ZebaTM desalting spin columns (molecular weight cut-off: 7 kDa, Thermo 

Scientific) to remove salt and IZ resulted in loss of two thirds of the purified protein. 
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In the pull-down assays, fractions from induced and non-induced E. coli Rosetta(DE3) 

cultures containing the C-terminally His6-tagged AN4 (AN4-HIS) pET expression vector were 

compared. The induced cultures contain the recombinant protein, the non-induced cultures 

only contain leaky recombinant protein. Furthermore, two different plant lysates were used, 

plant extracts from 16-day-old Arabidopsis plants subjected or not subjected to 

150 mM NaCl for 5 hours. The salt stress was applied as described in chapter 3, section 3.3.4. 

For the pull-down assays, four small columns containing 100 µL Ni matrix were used. The 

soluble fractions of the two different E. coli cultures, incubated with the Ni matrix, were 

each combined with the different plant lysates, resulting in four different pull-down analyses 

(Figure 5.3). Three replicates for each pull-down experiment were performed and analysed 

with MS. 

 

Figure 5.3 Schematic overview of the pull-down experiment. For the pull-down assays, four small 
columns containing 100 µL Ni matrix were used. In a first step, the soluble fractions of the two 
different E. coli cultures were incubated with the Ni matrix. Two columns were treated with soluble 
fraction of an E.coli culture that was induced with IPTG to allow AN4-HIS expression, the two 
remaining columns were treated with a non-induced E. coli culture. After washing, the plant lysates 
from NaCl-treated or control plants were loaded on the columns. Finally, the Ni matrix was washed 
again and samples were used for trypsin treatment preceding MS analysis. 

The preparation of the Ni matrix and the soluble protein solution is described in 

section 5.3.5. First, the soluble fraction (50 mL) of the E. coli culture producing recombinant 

AN4-HIS was incubated overnight with the equilibrated Ni matrix (100 µL). The soluble 

fraction originated from a 300 mL E. coli culture induced or non-induced with IPTG to 
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produce the recombinant AN4 (bait) (section 5.3.3 and 5.3.4). After an overnight incubation, 

the mixture of Ni-agarose beads and soluble protein solution was transferred in a Poly-Prep 

purification column (Bio-Rad) and the run through solution was captured. Two wash steps 

were performed, each until the OD280nm of the captured wash solution was less than 0.05. 

The first wash buffer consisted of 1 x PB, 1 M NaCl and 50 mM IZ at pH 8, the second wash 

buffer contained the same components, but with 75 mM IZ. The pH was always fixed to 8 

after adding the IZ. After the second wash, the Ni-agarose beads were transferred to an 

Eppendorf tube with the second wash solution and centrifuged for 2 minutes at 2900 g. 

After removing the wash solution, 1 mL plant lysate (prey) was added to the beads and this 

mixture was incubated for 30 - 35 minutes on a turning wheel. The plant lysate was 

extracted from normal or salt-stressed Arabidopsis plant material (0.5 mL) with 1 mL 

extraction buffer (1 x PB, 1 M NaCl, 25 mM IZ, 10 % glycerol, 0.1 % Tween-20, 1 % 

β-mercaptoethanol and complete™, Mini, EDTA-free Protease Inhibitor Cocktail at pH 8). 

After centrifugation and removal of the plant lysate, the beads were washed with the first 

wash buffer containing 50 mM IZ. Finally, the beads were washed three times with 20 mM 

Tris-HCl, 2 mM CaCl2 at pH 8 and resuspended in 150 µL of the same buffer to store at -20 °C 

prior to MS analysis. All steps described above were performed in a cold room at 4 °C. 

Before MS, the samples were treated with trypsin (1 µg) for 4 hours at 37 °C to cleave all 

proteins from the Ni beads. After removal of the Ni beads, a second trypsin treatment was 

performed overnight at 37 °C. Trifluoroacetic acid (1 %) was added to deactivate the trypsin 

and the samples were subsequently desalted. Next, the samples were dried completely and 

re-dissolved in 2 % acetonitrile and 0.1 % trifluoroacetic acid. Afterwards, the MS analysis 

was performed with the Q ExactiveTM HF Hybrid Quadrupole-OrbitrapTM Mass Spectrometer 

at the VIB’s Proteomics Expertise Center (Center for Medical Biotechnology, VIB, UGhent). 

Database searches were achieved with the MaxQuant software and statistical analysis with 

the Perseus software. Both analyses were outsourced to the VIB’s Proteomics Expertise 

Center. 

5.3.10 Molecular modelling 

The molecular modelling studies were performed by Prof. Pierre Rougé (University of 

Toulouse, France). Homology modelling of Nictaba from tobacco and one ArathNictaba 

(AN4) was performed with the YASARA Structure program (Krieger et al., 2002). Different 

models of Nictaba and AN4 were built from the X-ray coordinates of the 

carbohydrate-binding module (CBM) of the GH family 10 protein from Prevotella bryantii 

B14 (PDB code 4MGQ) and Bacteroides intestinalis (PDB code 4QPW) (Zhang et al., 2014), 

and the CBM4-2 of the xylanase from Rhodothermus marinus (PDB code 1K42) (Simpson et 

al., 2002), used as templates. Finally, a hybrid model of the proteins was built using the 

different previous models. PROCHECK was used to assess the geometric quality of the 

three-dimensional models (Laskowski et al., 1993). In this respect, all residues of the Nictaba 

model were correctly assigned in the allowed regions of the Ramachandran plot except for 
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three residues (Glu2, Pro71 and Arg112), which occur in the non-allowed region of the plot. 

Similarly, Arg165 of AN4 was found to occur in the non-allowed region of the Ramachandran 

plot. Using ANOLEA to evaluate the models, only one residue of Nictaba over 165 aa and 

eleven residues of AN4 over 180 aa exhibited an energy higher than the threshold value 

(Melo and Feytmans, 1998). The residues were mainly located in the loop regions connecting 

the β-sheets in the models. The calculated QMEAN6 score of Nictaba and AN4 is 0.36 and 

0.38, respectively (Arnold et al., 2006; Benkert et al., 2011). Docking of chitotriose to Nictaba 

and AN4 was performed with SwissDock (Grosdidier et al., 2011). Molecular cartoons were 

drawn with the UCSF Chimera package (Pettersen et al., 2004). 

5.4 Results 

At the start of this PhD the idea was to obtain recombinant protein for AN3, AN4 and AN5. 

Since AN3, AN4 and AN5 originate from the plant A. thaliana, an eukaryotic expression 

system is the best choice. Two eukaryotic expression systems namely Pichia pastoris, a yeast, 

and bright yellow-2 (BY-2) cells, a tobacco cell culture, were attempted. However, with both 

expression systems, no recombinant protein for either of the ArathNictabas could be 

detected or purified. Eventually production of recombinant protein was tested in E. coli. 

However, all efforts to get recombinant protein for the full sequence of AN3 and AN5, and 

the Nictaba domain of AN3 with a C-terminal His6-tag did not yield any recombinant protein 

in the soluble fraction of the transformed E. coli cultures. Despite many different 

experiments and culture conditions, the C-terminal His6-tagged protein for AN3, AN5 and 

the Nictaba domain of AN3 was always detected in the insoluble fraction of the transformed 

E. coli Rosetta(DE3) cultures. 

In the case of N-terminally His6-tagged AN4 (HIS-AN4) and AN4-HIS, most recombinant 

protein was present in the insoluble fraction of the transformed E. coli Rosetta(DE3) cells. 

Fortunately, a small amount of AN4-HIS protein was also present in the soluble fraction. 

First, it was tried to re-solubilise and refold the AN4-HIS protein out of the insoluble fraction 

of the transformed E. coli Rosetta(DE3) cells. All these attempts resulted in aggregation and 

precipitation of most of the protein resulting in too low protein yield. Because of these 

problems, the AN4-HIS protein was purified from the soluble E. coli fraction. The results part 

of this chapter only describes the purification and analyses of recombinant AN4 from the 

soluble fraction of E. coli Rosetta(DE3) cells. 

5.4.1 Recombinant expression and purification of AN4 in E. coli 

To analyze the carbohydrate binding specificity and to identify possible interaction partners, 

recombinant AN4 was produced in E. coli Rosetta(DE3) cells. HIS-AN4 and AN4-HIS 

constructs were created and transformed in E. coli Rosetta(DE3) cells. The expression of the 

recombinant proteins was induced with 0.2 mM IPTG for 24 hours at 14 °C. The protein 

samples (10 µL) analysed with SDS-PAGE and Western blot analysis (Figure 5.4) are derived 
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from 50 mL E. coli Rosetta(DE3) cultures. The calculated size of HIS-AN4 and AN4-HIS is 

21.3 kDa. Only a very small amount of HIS-AN4 protein was detected in the insoluble fraction 

from the induced E. coli culture using the anti-His antibody in the Western blot analysis 

(Figure 5.4C lane 3). On the coomassie stained gel, this protein is not clearly visible (Figure 

5.4A lane 3). In contrast, AN4-HIS is clearly visible in the insoluble fraction of the induced 

E. coli culture (Figure 5.4A lane 6). Western blot analysis confirmed that AN4-HIS is mostly 

present in the insoluble fraction of the induced E. coli culture (Figure 5.4C lane 6). However, 

AN4-HIS is also present, though in lesser amount, in the soluble fraction of the induced E. 

coli culture (Figure 5.4B lane 2, Figure 5.4C lane 7). Furthermore, the soluble and insoluble 

fractions of the non-induced E. coli culture reveal leaky expression of AN4-HIS in the absence 

of IPTG treatment (Figure 5.4C lane 8, 9). No leaky expression was detected in the case of 

HIS-AN4 in the absence of IPTG treatment (Figure 5.4C lane 1,2). 

 

Figure 5.4 SDS-PAGE (A,B) and Western blot (C) analysis of recombinant AN4 produced in E. coli. 
Crude extracts (10 µL) of the soluble and insoluble fractions of a 50 mL Rosetta(DE3) E.coli culture. 
P: pellet (insoluble fraction), S: supernatans (soluble fraction), I: induced with IPTG, NI: non-induced. 
The arrows indicate the position of recombinant AN4. (A) Lanes 1 - 4: HIS-AN4; lane 5: protein 
marker (Thermo Fisher Scientific); lane 6 - 7: AN4-HIS; lane 8: prestained protein marker (Thermo 
Fisher Scientific). (B) Lane 1: protein marker; lanes 2 - 3: AN4-HIS; lane 4: prestained protein marker. 
(C) Lanes 1 - 4: HIS-AN4; lane 5: prestained protein marker; lanes 6 - 9: AN4-HIS; lane 10: positive 
control (Oryza sativa EULS2). 
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Next, the expression of the AN4-HIS protein was optimized to get as much protein as 

possible in the soluble fraction of the E. coli Rosetta(DE3) cells. Induction of the 300 mL 

bacterial cultures with 0.2 mM IPTG for three days at 14 °C proved to be the best condition. 

Purification starting from the soluble fraction was performed with Ni-NTA agarose beads. To 

enhance extraction and binding of AN4-HIS to the matrix, experiments were performed in 

the presence of different concentrations of salt, either 1 x PB buffer containing 0.5 M NaCl or 

the same buffer containing 1 M NaCl, both buffers fixed at pH 8. Protein fractions obtained 

after nickel affinity chromatography were analysed with SDS-PAGE and Western blot analysis 

(Figure 5.5). AN4-HIS is present in all tested elution fractions, although the amount of 

protein and the purity differs depending on the salt concentration used during purification. A 

comparison between the elution fractions obtained with 250 mM IZ for the purifications 

performed in the presence of 0.5 and 1 M NaCl revealed that the ratio between AN4-HIS and 

contaminants is much better when the purification is done with 1 M NaCl (Figure 5.5A and B 

coomassie stained gels). For the purification in the presence of 1 M NaCl, an extra wash step 

with 75 mM IZ and two extra elution steps with varying IZ concentrations were included 

(Figure 5.5B). 

 

Figure 5.5 SDS-PAGE and Western blot analyses of purified AN4 protein. Purifications were started 
from a 300 mL E. coli Rosetta(DE3) culture expressing AN4-HIS after treatment with 0.2 mM IPTG for 
three days at 14 °C. The arrows indicate the position of recombinant AN4. (A) 1 x PB, 0.5 M NaCl pH 8 
was used as extraction, wash and elution buffer. (B) 1 x PB, 1 M NaCl pH 8 was used as extraction, 
wash and elution buffer. IZ concentrations in each buffer are indicated at the top of the gel. Samples 
(15 µL) were analyzed on gel. R: run through, W: wash solution, E: elution fractions, PC: positive 
control (Oryza sativa EULS2). 
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Elution fraction number five (E5; OD280nm = 0.068; concentration = 0.030 mg/mL), eluted with 

250 mM IZ, from the purification in the presence of 0.5 M NaCl (Figure 5.5A lane 4) was used 

for agglutination assays. The protein was incubated with trypsin-treated rabbit erythrocytes 

and incubated at room temperature. Agglutination was checked at different time points, but 

no visible agglutination activity was observed, not even after 1 hour. In these assays, purified 

Nictaba from tobacco was used as a positive control and agglutinated the rabbit 

erythrocytes. The 250 mM IZ elution fractions from the purification in the presence of 0.5 M 

NaCl (Figure 5.5A lanes 4, 5 and 6) were used to test the binding of recombinant AN4 to 

different affinity matrices with immobilized carbohydrates and glycoproteins. Fetuin, 

GlcNAc, D-galactose, D-mannose and ovomucoid matrices were tested and the run through, 

wash and elution fractions were analysed with Western blot analysis (Figure 5.6). 

 

Figure 5.6 Western blot analyses of purified recombinant AN4 protein after affinity 
chromatography with carbohydrates and glycoproteins. The 250 mM IZ elution fractions from the 
purification in the presence of 0.5 M NaCl (Figure 5.5A lanes 4, 5 and 6) were used to test the binding 
of recombinant AN4 to different affinity matrices with immobilized carbohydrates and glycoproteins. 
Samples (15 µL) were analyzed on gel. R: run through, W: wash solution, E: elution, PC positive 
control (Oryza sativa EULS2). 

The AN4-HIS protein was detected in the run through and/or wash fraction for all matrices, 

except for the D-galactose matrix. Strangely, for the D-galactose matrix no protein could be 

detected in any fraction. Clearly, the data show that AN4-HIS could not bind to the fetuin, 

GlcNAc, D-mannose and ovomucoid matrices. The very faint band in the elution fraction of 

the fetuin matrix is most probably due to overflow between the lanes. 
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5.4.2 Pull-down analysis to search for interacting partners of AN4 

Purification of recombinant AN4-HIS yielded protein fractions containing AN4 in the 

presence of 100, 170, 250 and 500 mM IZ. During dialysis to remove IZ, recombinant 

AN4-HIS showed tendency to precipitate, resulting in loss of the protein. Therefore, the 

pull-down analysis was performed directly on the AN4 protein bound to the Ni matrix. 

A first experiment was performed to test the pull-down assay with induced and non-induced 

E. coli cultures, and plant lysate from non-treated Arabidopsis seedlings. The pull-down 

assay with the soluble fraction of an induced E. coli culture showed a relative abundance of 

13.4 % for AN4 whereas the pull-down assay with the soluble fraction of a non-induced 

E. coli culture only showed a relative abundance of 1.2 % (leaky expression). 

In the second experiment, the pull-down analysis was also performed with induced and 

non-induced E. coli cultures, but two different Arabidopsis plant lysates were used. One 

assay was performed with the extract from Arabidopsis seedlings treated for 5 hours with 

150 mM NaCl, the other assay used an extract originating from non-treated Arabidopsis 

seedlings. Furthermore, three replicates of each pull-down were implemented. 

In both experiments, the recombinant AN4-HIS from induced and non-induced E. coli 

cultures was first bound to the Ni matrix. Next, a total Arabidopsis plant lysate (extract from 

non-treated or salt-treated Arabidopsis seedlings) was mixed with the AN4-HIS bound to the 

Ni beads and as such interaction partners of AN4 could bind (Figure 5.3). After washing, all 

bound proteins were analysed with MS. 
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Following pull-down and MS, all E. coli and A. thaliana proteins were identified according to 

different databases. The results from the pull-down assays performed with the induced 

E. coli culture were compared to these of the non-induced E. coli culture. This comparison 

excluded the E. coli proteins that bind aspecifically to the Ni matrix and the Arabidopsis 

proteins that bind aspecific to these E. coli proteins or to the Ni matrix. Results from the 

pull-down assays performed with the two different plant lysates, were also compared with 

each other. The transcript levels of AN4 in Arabidopsis are downregulated after salt stress 

(Chapter 3, section 3.4.6.2) which can also be the case for the possible interaction partners. 

Possible interaction partners for which the expression is downregulated by salt stress are 

expected to be absent in the analysis using the plant lysate from the stressed plants 

compared with the analysis using the plant lysate from the non-treated Arabidopsis 

seedlings. 

Figure 5.7 shows the volcano plots of the MS analysis of the experiment with three replicates 

of each pull-down. A volcano plot is a type of scatter plot used to quickly identify significant 

differences in large datasets and shows significance (p value) versus fold change. Each 

volcano plot shows a comparison between two datasets, each resulting from three 

replicates. 

The first volcano plot shows the comparison between three pull-down assays performed 

with the induced E. coli culture and three pull-down experiments with the non-induced 

E. coli culture, each using a plant lysate of Arabidopsis seedlings grown under normal 

conditions (Figure 5.7A). Since all significant hits are E. coli proteins and AN4 is not one of 

the significant hits, the results of this comparison are not useful. AN4 is expected to be a 

significant hit because it should be present in higher levels in the pull-down assays with the 

soluble fraction of an induced E. coli culture. Analysis of the results for the six individual 

pull-down experiments revealed that one of the pull-down assays with the soluble fraction 

of a non-induced E. coli culture showed aberrant results from the two other replicates. After 

MS analysis each individual pull-down experiment resulted in more than 1300 identified 

proteins, except for this aberrant replicate where only 566 proteins were identified. Since 

the MS analysis was performed in parallel for all samples, something probably went wrong 

during the pull-down of this sample or preparation of the sample before MS. 

Figure 5.7C shows the results of the same comparison shown in Figure 5.7A but the aberrant 

replicate was excluded from the results. As expected, AN4 is significantly more present in 

the pull-down experiments with the induced E. coli culture. Next to AN4, three A. thaliana 

proteins originating from the plant lysate are significantly more present in the pull-down 

experiments with the induced E. coli culture. These three proteins, TGG1, ESM1 and PTAC16 

are possible interaction partners for AN4. This result has to be interpreted with caution since 

it relies on two rather than three replicates of the pull-down experiments with the 

non-induced E. coli culture. 
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Figure 5.7 Volcano plots MS analysis. (A,C) Plant lysates from non-treated Arabidopsis seedlings. 
(B) Plant lysate from Arabidopsis seedlings treated with 150 mM NaCl for 5 hours. (D) Plant lysates 
from non-treated and treated Arabidopsis seedlings with 150 mM NaCl. AN4 is indicated in blue, 
possible interaction partners in orange, E. coli proteins which are significantly more present in the 
pull-down assays performed with the induced E. coli culture (I) in green and E. coli proteins which are 
significantly less present in these pull-down assays in red. In plots A, B and D two datasets were 
compared (T-test, p ≤ 0.01), each originating from three replicates. In plot C, one replicate of the 
soluble fraction of a non-induced E. coli culture (NI) was excluded and p ≤ 0.05 was used in the T-test 
performed on the datasets. 
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Figure 5.7D compares three pull-down assays with the induced E. coli culture using a plant 

lysate from non-treated Arabidopsis seedlings and three pull-down assays with the induced 

E. coli culture using a plant lysate from salt-treated Arabidopsis seedlings. As expected, AN4 

is situated almost in the middle of the volcano plot because AN4 levels should be the same 

in all soluble fractions of the induced E. coli cultures. AN4 levels originating from A. thaliana 

in the plant lysate are probably negligible relative to the recombinantly produced AN4. Since 

no significant hits are found in this comparison, it can be concluded that the pull-down 

results with the plant lysate of the non-treated Arabidopsis seedlings are not significantly 

different from the pull-down results with the plant lysate of the salt stress treated 

Arabidopsis seedlings. 

The volcano plot in Figure 5.7B shows the comparison between three pull-down assays 

performed with the induced E. coli culture and three pull-down assays with the non-induced 

E. coli culture, each using a plant lysate of salt-treated Arabidopsis seedlings. This volcano 

plot should actually be similar as the volcano plot in Figure 5.7A, but this is not the case 

because of the aberrant replicate in Figure 5.7A. In Figure 5.7B, AN4 and two A. thaliana 

proteins are significantly more present in the pull-down experiments with the induced E. coli 

culture, concluding these two proteins TGG1 and BGLU23 are possible interaction partners 

for AN4. TGG1 was also found in Figure 5.7C making it more conclusive to be an interaction 

partner for AN4. However, BGLU23 has a much lower p value than TGG1 in Figure 5.7B. All 

significant hits from Figure 5.7A, Figure 5.7B and Figure 5.7C can be found in supplementary 

tables 9, 10 and 11, respectively. 

5.4.3 Molecular modelling of AN4 

Three-dimensional models of lectins allow researchers to get new insights in the overall 

structure of the lectin and in the amino acids that are important in the carbohydrate binding 

site. The three-dimensional models built for Nictaba and AN4 exhibit both the canonical 

β-sandwich core structure of the CBM of GH family 10 enzymes (Figure 5.8). The β-sandwich 

core structures for Nictaba and AN4 superpose nicely (data not shown). However, the size 

and shape of the loops connecting the strands of the β-sheets are different. Both 

Trp-residues important for carbohydrate binding of Nictaba are conserved in AN4 and 

indicated in Figure 5.8. 
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Figure 5.8 Molecular models of Nictaba and AN4. Front (A, C) and side (B, D) view of the ribbon 
diagrams of the three-dimensional models built for Nictaba and AN4, respectively. The molecular 
surfaces are coloured pale yellow and the conserved Trp-residues important for the carbohydrate 
binding of Nictaba are indicated in blue. α-helices, β-sheets and loops/turns are coloured orange, 
purple and green, respectively. Molecular modelling was performed by Prof. Pierre Rougé. 

Docking experiments performed with chitotriose as a ligand, resulted in different 

carbohydrate binding schemes for Nictaba and AN4. Surface plasmon resonance analyses 

indicated that chitotriose has the strongest interaction with Nictaba from tobacco (Chen et 

al., 2002). Three different putative chitotriose-binding sites were identified on the molecular 

surface of Nictaba and AN4 (Figure 5.9A,C). However, the localization of these putative 

chitotriose-binding sites is different for Nictaba and AN4. In Nictaba, these binding sites are 

localized on a single face of the β-sandwich core structure. In AN4, both faces of the β-

sandwich structure contribute to the binding of chitotriose. According to the degree of 

occupancy of the sites by the chitotriose molecules, one of the three chitotriose-binding 

sites appears as being more crowded than the two others, in both Nictaba and AN4. The 

more crowded binding site occurs at the convex face of the β-sandwich core structure in 

Nictaba (Figure 5.9A), whereas it occupies the concave face of the β-sandwich core structure 

in AN4 (Figure 5.9C). Surprisingly the position of the Trp-residues is not really linked to the 

localization of the chitotriose-binding sites except for Trp35 in AN4 (Figure 5.9). Although 
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speculative, these docking results suggest some discrepancies in the carbohydrate binding 

properties between Nictaba and AN4. 

 

Figure 5.9 Docking of chitotriose to Nictaba and AN4. Ribbon diagrams of the three-dimensional 
models built for Nictaba (A) and AN4 (C) docked with chitotriose. The arrows indicate the localization 
of the chitotriose-binding sites. The size of the arrows depends on the degree of occupancy of the 
putative binding sites by the chitotriose molecules. The conserved Trp-residues important for the 
carbohydrate binding of Nictaba are indicated in blue for Nictaba (B) and AN4 (D). Docking analyses 
were performed by Prof. Pierre Rougé. 
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5.5 Discussion 

Since our goal was to express a protein that originates from the plant A. thaliana, the choice 

for an eukaryotic expression system was most obvious. Two eukaryotic expression systems 

namely Pichia pastoris, a yeast, and BY-2 cells, a tobacco cell culture, were tried. No 

recombinant protein for either of the ArathNictabas could be detected or purified. 

Eventually, the production of recombinant AN4, both with an N-terminal and C-terminal 

His6-tag, was tested in E. coli. Since AN4 contains no cysteins which can form disulphide 

bridges and no possible N-glycosylation sites, the switch to this prokaryotic expression 

system should in theory not give too many problems. 

Our analyses focused on the expression constructs for AN4 containing a His6-tag at the N- or 

C-terminal end. Only a very small amount of HIS-AN4 protein in the insoluble fraction of the 

E. coli culture and no HIS-AN4 protein in the soluble fraction was detected (Figure 5.4C). AN4 

contains no signal peptide at the N-terminal side, as such interference of the His6-tag with a 

signal peptide could not be the cause. A buried His6-tag in the fold of AN4 is another 

possibility (Rosano and Ceccarelli, 2014), but very unlikely because the analysis was 

performed in denaturing conditions (SDS-PAGE). Another possibility is that HIS-AN4 is not or 

low expressed, this can be due to a harmful effect of the heterologous protein on the E. coli 

cells (Dumon-Seignovert et al., 2004). The problem of toxicity seems also unlikely since no 

indication of toxicity related to the expression of AN4-HIS on E. coli cell growth was 

observed. Gustafsson et al. (2004) reported codon bias which occurs when the frequency of 

synonymous codons in the protein that you want to express differs significantly from that of 

the host. Hereby, certain low abundant tRNAs can be depleted and thus affect heterologous 

protein expression levels. For example, the AGG codon is a rare codon in E. coli (used at 

frequency of 0.2 %) while in plant mRNA it can reach frequencies of 1.5 % or more (Kane, 

1995). The used strain in this thesis is the Rosetta(DE3) strain which contains a plasmid that 

supplies a lot of tRNAs for rare codons in E. coli. Apparently, for HIS-AN4, the usage of this 

Rosetta(DE3) strain is not resulting in high expression levels. No further optimizations were 

tried to obtain a higher expression of HIS-AN4 since the E. coli cells transformed with the 

expression construct for AN4-HIS showed a high expression of the protein in the insoluble 

fraction of the transformed E. coli cells. Furthermore, low levels of AN4-HIS protein could 

also be detected in the soluble fraction of the transformed E. coli cells (Figure 5.4C). 

In first instance, several trials were performed to re-solubilise and refold the AN4-HIS protein 

from the insoluble fraction of the E. coli cells. Inclusion bodies are formed from misfolded 

proteins that start to aggregate. For sure when there is a high expression level, hydrophobic 

stretches in the polypeptides are highly concentrated and thus available for interactions with 

other hydrophobic stretches (Carrió and Villaverde, 2002). All the attempts to re-solubilise 

and refold AN4-HIS from the inclusion bodies resulted in aggregation and precipitation of 

most of the protein. As a result the protein yield was too low for further analyses. 

Furthermore, re-solubilisation and refolding of proteins from the insoluble fraction is very 
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labour intensive and error prone without guarantee that the protein will be properly folded 

and functionally active. 

During purification starting from the soluble fraction of the E. coli Rosetta(DE3) cells, 

problems with contaminants were experienced. The use of higher salt concentrations 

resulted in protein fractions with a higher purity of AN4-HIS and less contaminants. Removal 

of the IZ and NaCl after purification by dialysis, resulted in precipitation of the protein. 

Because of this problem, pull-down analysis was performed directly on the Ni matrix. 

Agglutination assays with an elution fraction containing AN4-HIS showed no agglutination 

activity towards rabbit erythrocytes. Lectins generally occur as multimers and as such 

contain more than one carbohydrate binding site which makes it possible to agglutinate red 

blood cells (Adamová et al., 2014). One reason to explain the negative agglutination activity 

of AN4 is because this protein is occurring as a monomer. Another possibility can be that the 

production of recombinant AN4-HIS protein in E. coli didn't yield a functional protein or the 

protein concentration tested in the agglutination assay was too low. Therefore, binding of 

AN4-HIS to several carbohydrates and glycoproteins (fetuin, GlcNAc, D-galactose, 

D-mannose and ovomucoid) was evaluated with elution fractions containing AN4-HIS. For all 

matrices except D-galactose, AN4-HIS was detected in the run-through fraction indicating 

that AN4-HIS did not bind to these carbohydrates and glycoproteins. Hence, it is possible 

that the recombinant AN4-HIS produced in E. coli was not a functional protein. However, it 

cannot be excluded that the IZ and NaCl in the elution fractions interfered with the 

agglutination activity and the binding to the sugar and glycoprotein matrices. Furthermore it 

is possible that AN4 preferentially recognizes carbohydrate structures that were not 

included in our analysis. More experiments are necessary to conclude whether AN4 is a 

functional lectin and if so, to unravel its carbohydrate specificity. 

The purified recombinant AN4 was used to look for binding partners of the protein. 

Pull-down experiments followed by MS analysis revealed several possible interaction 

partners for AN4. TGG1 (AT5G26000) or myrosinase 1 is a thioglucoside glucohydrolase 

localized in the vacuole. BGLU23 (AT3G09260) or PYK10 is a β-O-glucosidase localized in the 

ER bodies. Next to these two interaction partners that were identified in the pull-down 

assays with the plant lysate originating from the salt stressed Arabidopsis seedlings, three 

possible interaction partners were found from the analysis with the plant lysate originating 

from non-treated Arabidopsis seedlings. It should be mentioned that in this analysis, one 

replicate of the soluble fraction of the non-induced E. coli cultures was missing. One of these 

interaction partners is TGG1 which was also a significant hit in the first comparison. GDSL 

esterase/lipase ESM1 (AT3G14210) and protein plastid transcriptionally active 16 (PTAC16; 

AT3G46780) are the other two possible interaction partners (Supplementary table 11). ESM1 

is a secreted protein with a role in glucosinolate hydrolysis as a myrosinase-associated 

protein. PTAC16 is a chloroplast protein which regulates the membrane-anchoring functions 

of the nucleoid (Zhang et al., 2006; Burow et al., 2008; Ingelsson and Vener, 2012). Nothing 
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decisive can be concluded about the interaction of AN4 with ESM1 and PTAC16 because of 

the replicate that was missing in this analysis. 

TGG1 or BGLU38 

Myrosinase 1 belongs to the GH1 family and is a β-thioglucoside glucosidase (Andersson et 

al., 2009). GHs hydrolyse the glycosidic bond between carbohydrates or a carbohydrate and 

non-carbohydrate moiety (Ahn et al., 2010). The myrosinases from A. thaliana, namely 

TGG1 - TGG6 are all grouped in the myrosinase gene family (Barth and Jander, 2006). All 

myrosinases are β-glucosidases and as such TGG1 is also called BGLU38. TGG1 and TGG2 are 

the most studied of the family and are expressed in leaves, stems and floral organs (Xue et 

al., 1995). TGG3 is a frame-shifted pseudogene specifically expressed in stamens and petals. 

TGG4 and TGG5 are root-specific myrosinases and TGG6 is only expressed in flowers (Barth 

and Jander, 2006; Andersson et al., 2009). 

Myrosinases catalyse the hydrolysis of glucosinolates and thereby initiate the formation of 

isothiocyanates, nitriles, thiocyanates, epithionitriles and other reactive products (Thangstad 

et al., 2004; Andersson et al., 2009). Glucosinolates or thioglucosides consist of a glucose 

residue linked to an amino acid derived R-group of aliphatic, aromatic or indole types by a 

thioglucoside bond (Thangstad et al., 2004). In A. thaliana, different glucosinolates with side 

chains derived from methionine, tryptophan, Phe and isoleucine were found (Barth and 

Jander, 2006). Myrosinases and glucosinolates are localized in separate plant cells and as 

such only come in contact with each other upon tissue disruption. Myrosinases are present 

in the myrosin phloem idioblasts in phoem parenchyma while glucosinolates are present in 

the S-cells adjacent to the phloem (Thangstad et al., 2004; Barth and Jander, 2006; 

Andersson et al., 2009). Only upon pathogen invasion or insect herbivory, the myrosinases 

can degrade glucosinolates and as such produce toxic products to protect the plant against 

these invaders. Thus, myrosinases play a role in plant defence against microbes and 

herbivores (Barth and Jander, 2006). TGG1 is also localized in the guard cells, next to the 

myrosin phloem idioblasts (Thangstad et al., 2004). Islam et al. (2009) showed that double 

Arabidopsis mutants for TGG1 and TGG2 are not able to induce stomatal closure upon ABA, 

MeJA or ROS production. Single mutants of TGG1 and TGG2 are able to induce stomatal 

closure, as such it can be concluded that TGG1 and TGG2 redundantly function in stomatal 

closure (Islam et al., 2009). The redundancy of TGG1 and TGG2 was already shown by Barth 

and Jander (2006) by investigating glucosinolate breakdown in single and double mutants. 

BGLU23 or PYK10 

BGLU23 or PYK10 is a β-O-glucosidase that, like myrosinase 1, belongs to the GH1 family 

(Nagano et al., 2008). In total 47 β-glucosidases have been identified in A. thaliana, called 

BGLU1 - BGLU47, BGLU23 or PYK10 and TGG1 or BGLU38, the two identified interaction 

partners for AN4, are two of these β-glucosidases. BGLU23 is a root and hypocotyl specific 

β-glucosidase which has an endoplasmic reticulum (ER) retention signal at its C-terminus 
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(Nitz et al., 2001; Xu et al., 2004). The BGLU23 gene contains 12 exons and 11 introns, four 

of these 12 exons are identical in size to the myrosinases TGG1 and TGG2. With the 

exception of two exons, the others differ only slightly with TGG1 and TGG2, demonstrating 

that the gene structures of BGLU23, TGG1 and TGG2 are closely related and these genes may 

be derived from a common ancestor (Nitz et al., 2001). Ahn et al. (2010) showed that 

BGLU23 possesses β-O-glucosidase activity, but no β-S-glucosidase or myrosinase activity. 

BGLU23 is known to hydrolyze the natural substrate scopolin and other coumarin glucosides 

similar in structure to scopolin. Scopolin is one of the most abundant secondary metabolites 

in the Arabidopsis roots (Ahn et al., 2010). The resulting scopoletin is a fungitoxic compound 

and can be polymerized by peroxidase in the presence of H2O2 (Reigh et al., 1973). This can 

protect plant cells from the oxidative damage caused by pathogens. BGLU23 is, as predicted 

by its ER retention signal, localized to ER bodies in the roots, which are not present in rosette 

leaves under normal growth conditions, but can be induced there by MeJA and wounding 

(Nagano et al., 2005; Ahn et al., 2010). Moreover, BGLU23 is thought to restrict root 

colonization by Piriformospora indica, an endophytic fungus, resulting in repression of 

defence responses and upregulation of responses leading to a mutualistic interaction 

(Sherameti et al., 2008). These data show that BGLU23 is induced by both abiotic and biotic 

stresses. However, also suppression of BGLU23 expression by NaCl and mannitol was shown. 

Upon disruption of cells, BGLU23 forms large complexes with its binding proteins. One of 

these binding proteins is PBP1, which is a jacalin homolog from A. thaliana (Chapter 2) (Ahn 

et al., 2010). BGLU23 is glycosylated with three high-mannose oligosaccharides which are 

possibly recognized by PBP1, the jacalin homolog. It is possible that PBP1 participates in the 

BGLU23 and ER body-mediated defence systems against herbivores and pathogens 

(Matsushima et al., 2004). However, PBP1 does not bind to active BGLU23, but acts as a 

molecular chaperone that helps the correct polymerization of BGLU23 when tissues are 

damaged. This polymerization of BGLU23 is necessary for its activity (Nagano et al., 2005, 

2008). 

Unfortunately, the protein interaction data cannot be compared to in silico data because no 

interaction partners for AN4 were found in silico. In silico interaction data for myrosinase 1 

and BGLU23 are available (see discussion BGLU23 above), but AN4 is not known as one of 

the interaction partners. Of course the binding partners for AN4 retrieved from this 

pull-down analysis as well as their interaction in vivo have to be studied in more detail in the 

future (Chapter 6). 

The three-dimensional models built for Nictaba and AN4 show several resemblances and 

discrepancies. The canonical β-sandwich core structure of the CBM of GH family 10 enzymes 

is conserved in both Nictaba and AN4 (Figure 5.8) (Schouppe et al., 2010). Van Holle et al. 

(2017) revealed the three-dimensional model for one of the soybean Nictaba-like lectins and 

showed that this model also exhibits the canonical β-sandwich core structure. Similar to 

AN4, the size and shape of the loops connecting the strands of the β-sheet are different from 
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Nictaba. Furthermore, both Trp-residues important for carbohydrate binding in Nictaba are 

conserved in the Nictaba-like lectin from soybean (Schouppe et al., 2010; Van Holle et al., 

2017a). Considering the sequences of all Nictaba homologs in A. thaliana or soybean, both 

Trp-residues are well conserved, as illustrated with the WebLogos created from all Nictaba 

domains in A. thaliana or soybean. In the WebLogo of the ArathNictabas as well as in the 

WebLogo of the soybean Nictaba-like lectins, the second Trp-residue is conserved in a higher 

number of Nictaba homolog sequences than the first one (Eggermont et al., 2017 

(Chapter 2); Van Holle et al., 2017a). All these Nictaba homologs with conserved Trp-

residues are most likely functional lectins, but their carbohydrate binding specificities are 

not necessarily conserved as illustrated by the differences in carbohydrate binding specificity 

between Nictaba from tobacco and an F-box Nictaba homolog from A. thaliana (Lannoo et 

al., 2006; Stefanowicz et al., 2012). Docking experiments performed with chitotriose as a 

ligand, showed a different localization of the three putative chitotriose-binding sites in 

Nictaba and AN4. In Nictaba, these three binding sites are localized on a single face of the 

β-sandwich core structure, while in AN4, both sides of the β-sandwich core structure contain 

chitotriose-binding sites. Unpublished data from Van Holle S. showed that a Nictaba-like 

lectin from soybean also contains chitotriose-binding sites at both sides of the β-sandwich 

core structure, similar to AN4. In Nictaba and AN4, one of these three binding sites showed a 

higher degree of occupancy, but is situated at the opposite side of the β-sandwich core 

structure in Nictaba and AN4. Strikingly the chitotriose-binding site with the highest degree 

of occupancy in a Nictaba-like lectin from soybean is localized at the same side of the 

β-sandwich core structure as in AN4, namely the concave face (unpublished data 

Van Holle S.). This is in contrast with Nictaba which contains the chitoriose-binding site with 

the highest degree of occupancy at the convex face of the β-sandwich core structure. Based 

on the differences with Nictaba and the similarities with the soybean Nictaba-like lectin, 

discrepancies in the carbohydrate binding properties between Nictaba and AN4 are 

hypothesized, while similarities in the carbohydrate binding properties between AN4 and the 

soybean Nictaba-like lectin are suggested. 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 6  
General discussion and future 

perspectives 

 

 

 

 





General discussion and future perspectives 

127 

Plants are constantly exposed to a plethora of different environmental stresses. Being 

sessile, they cannot avoid these abiotic and biotic stresses. Therefore plants evolved 

complicated adaptive and defence mechanisms which allow them to survive in unfavourable 

conditions (Osakabe et al., 2013). In agriculture, these stresses lead to substantial crop yield 

losses, but also plants important for the ecosystem are affected by many threats (Gassmann 

et al., 2016). Because of a rapidly expanding world population, the need for food rises. It is 

predicted that this global food demand will increase for at least another 40 years because of 

the continuing population and consumption growth. Furthermore, global warming is an 

additional threat to food security (Godfray et al., 2010). For all these reasons the elucidation 

of the underlying defence mechanisms of plants became increasingly important in order to 

implement this knowledge in the development of more resistant crops. 

In the past years, several nucleocytoplasmic lectins from the amaranthin, EUL, GNA, JRL, 

Nictaba and ricin B lectin families were shown to play a role in signal transduction during 

plant defence responses to both abiotic and biotic stress (Van Damme et al., 2001, 2004; Wu 

et al., 2006; Vandenborre et al., 2010; Xin et al., 2011; Al Atalah et al., 2014; Song et al., 

2014; Van Hove et al., 2015). Nictaba from tobacco, the first nucleocytoplasmic lectin 

discovered within the Nictaba lectin family, is believed to bind O-GlcNAc modified core 

histones upon stress and as such enhances transcription of defence related genes by 

chromatin remodelling (Schouppe et al., 2011; Delporte et al., 2014). 

The major objective of this work was to obtain knowledge about the biological importance 

of the Nictaba homologs from Arabidopsis thaliana (further referred to as ArathNictabas) in 

the stress responses of A. thaliana. Therefore the subcellular localization, the detailed 

expression pattern under normal growth conditions during plant development as well as 

after exposure to different stresses, the tolerance of overexpression lines towards stresses 

and the interaction partners, were investigated. This chapter discusses the most important 

findings of this PhD thesis and suggests future research experiments necessary to 

complement this work and reveal the biological importance of the ArathNictabas. 

6.1 ArathNictabas are part of the large family of plant lectins and are 

widespread in angiosperms 

A total of 217 putative lectin sequences were defined in the genome of A. thaliana. Out of 

the 217 putative lectins belonging to nine different lectin families, 30 lectin sequences 

encode homologs of Nictaba from tobacco and thus belong to the Nictaba lectin family 

(Chapter 2). Very recently a comparative study between four different angiosperms, namely 

A. thaliana, Glycine max, Cucumis sativus and Oryza sativa, was published. This study shows 

that most plant lectin families, including the Nictaba family, are present in all studied 

genomes (Van Holle et al., 2017b). Moreover, studies on the Nictaba family revealed the 

presence of this type of putative lectins in many more angiosperms and even in two mosses, 

indicating this protein family is widespread throughout the plant kingdom (Delporte et al., 
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2015; Van Holle et al., 2017a). The widespread distribution of most plant lectin families 

throughout the whole plant kingdom, indicates the importance of lectins for plants (Van 

Holle et al., 2017b). In addition, literature data confirm that at least some lectin motifs are 

active carbohydrate-binding proteins and contribute to plant growth and development 

(Dang and Van Damme, 2016; Eggermont et al., 2017 (Chapter 2); Van Holle et al., 2017b). 

Analysis of the domain architectures for each putative lectin sequence in A. thaliana 

revealed that most sequences contain multiple protein domains. Most of the known protein 

domains associated with lectin motifs have been reported to be involved in stress signalling, 

development and defence (Chapter 2). The recent comparative study of Van Holle et al. 

(2017b) also reported a wide range of lectin domain architectures and associations between 

a lectin motif and one or more domains involved in plant defence, signalling and/or 

development. This agrees with the experimental data that prove the importance of lectins 

for plant growth and defence. Although some domain architectures are widespread, others 

are species-specific. Phylogenetic analyses indicate that domain fusions in a common 

ancestor are maintained during evolution and give rise to domain architectures that are 

widespread. In contrast, species-specific retention of a domain architecture or recent events 

of protein domain fusion or loss in a particular species, most probably accounts for the 

species-specific domain architectures (Van Holle et al., 2017b). In the genomes studied, 

non-chimeric Nictabas and F-box Nictabas are widespread, while Nictaba homologs 

containing a TIR, AIG1-type G, protein kinase or a double Nictaba domain are more 

species-specific (Delporte et al., 2015; Van Holle et al., 2017a,b). 

From the information described in chapter 2 it can be concluded that Arabidopsis plants 

have a whole range of proteins with lectin motifs at their disposal. The same can be 

concluded from the comparative study of Van Holle et al. (2017b). All these putative lectins 

are present in different locations in the cell and reside in different plant tissues. Therefore, 

these putative lectins will most probably exert complementary activities during plant 

development and survival of the plants under stress conditions (Eggermont et al., 2017 

(Chapter 2); Van Holle et al., 2017b). 

In the future, it would be interesting to study additional genomes for the presence of lectin 

motifs from different families, especially from the Nictaba family. Dang (2017) studied 84 

plant genomes in their study on distribution of amaranthin-like proteins. The study of 

additional genomes for the presence of Nictaba homologs would yield more insights into the 

distribution of this family e.g. among several monocot species (wheat, maize, ...). Moreover, 

it will be important to prosecute the phylogenetic studies of lectin families across species. 

These analyses will improve our understanding of the evolutionary history of plant lectins 

and will continue to discover new protein domain combinations. In principle, each identified 

putative lectin should be characterized, its interaction with carbohydrate structures should 

be investigated and the physiological role has to be studied to decipher the importance of all 

lectins in plants. 
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6.2 ArathNictabas are low expressed in the nucleus and the cytoplasm 

The localization pattern for three non-chimeric ArathNictabas was determined using EGFP 

fusion proteins (Chapter 3). The results obtained by transient transformation of 

N. benthamiana leaves were confirmed by stable transformation of A. thaliana plants (Figure 

3.3, Figure 3.4). AN4 and AN5 showed a nucleocytoplasmic localization whereas AN3 only 

resided in the cytoplasm (Figure 6.1). Cayla et al. (2015) also reported a nucleocytoplasmic 

localization for AN5 using EGFP fusion constructs, which is confirmed by our microscopic 

analysis. Concerning the subcellular localization of AN3 and AN4, no other experimental data 

are available, but a cytoplasmic localization is also predicted by the SUBA3 server (Hooper et 

al., 2014). 

The results from the microscopic analyses are in agreement with the absence of a signal 

peptide in the three ArathNictaba sequences and suggest that translation of these 

ArathNictabas takes place on free ribosomes in the cytoplasm. Besides the cytoplasm AN4 

and AN5 also locate to the nucleus though no classical NLS is found in these ArathNictaba 

sequences. Lange et al. (2007) reported that proteins larger than 40 kDa are too big to 

diffuse passively into the nuclear compartment, as already shown in 1975 (Paine et al., 

1975). In 1998, Görlich (1998) reported that the nuclear pore complex allows passive 

diffusion from proteins up to 60 kDa. Wang and Brattain (2007) extended this limit, stating 

that the size of the proteins that diffuse passively can be even larger than 60 kDa. The 

calculated molecular mass of the EGFP fusion proteins for AN4 and AN5 is 48.5 and 56.3 kDa, 

respectively. Considering the most recent information about the passive diffusion limit, both 

proteins could enter the nucleus by passive diffusion through nuclear pore complexes (Wang 

and Brattain, 2007). Alternatively, AN4 and AN5 possibly contain a non-classical NLS 

sequence recognized by importin α (Kosugi et al., 2009). Furthermore, additional nuclear 

import pathways, independent on importin α, have been characterized (Suh and Gumbiner, 

2003; Ziemienowicz et al., 2003; Pemberton and Paschal, 2005). Until now, it is not known 

how the nuclear import of these ArathNictabas works. Similarly, the mechanisms for the 

nuclear import of Nictaba from tobacco, the two Nictaba-like lectins from soybean and many 

other nucleocytoplasmic lectins have not yet been unravelled (Al Atalah et al., 2011; Van 

Hove et al., 2011; Delporte, 2013; Van Holle et al., 2016). 
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Figure 6.1 Hypothetical model representing the biological importance of the ArathNictabas in A. thaliana cells. The cell and organelles are not drawn to 
scale. Data available from eFP browser suggest that BGLU23 is upregulated and TGG1 is downregulated after Pseudomonas infection. 

Cell wall Plasma membrane 

------ -- ---
P. syringae 

SA? JA? 

7 
• ~ Salt, heat 

• stress response 

-- ? • ..... Salt stress response -
? 

• • • ~~~~~~ Hsps ---::;. 
Cytoplasm 

ABA? SA? 
Downregulation Salt P. syringae -1 M . persicae Salt P. syringae Heat lnhibition 

..... U pregu lation 

- AN3 - AN4 - ANS - TGG1 - BGLU23 
Activatien 



General discussion and future perspectives 

131 

Future experiments are necessary to determine whether AN4 and AN5 are actively 

transported or can passively diffuse from the cytoplasm into the nucleus. The use of 

compounds inhibiting the active nuclear import would allow to differentiate between active 

transport and passive diffusion (Soderholm et al., 2011; Liashkovich et al., 2012). Although 

analysis of the sequences of AN3, AN4 and AN5 revealed no signal peptide or 

transmembrane region (Chapter 2), a future experiment to exclude localization of AN3, AN4 

and AN5 to the plasma membrane and cell wall is advisable since our microscopic analysis 

does not allow to distinguish between the cytoplasm, the plasma membrane and the cell 

wall. Analysis of the EGFP fluorescence in protoplasts from the stably transformed 

A. thaliana ArathNictaba EGFP lines and treatment of these protoplasts with high 

concentrations of mannitol or salt can confirm the localization of the three ArathNictabas to 

the cytoplasm. A similar experiment with stably transformed BY-2 cells allowed to confirm 

the cytoplasmic localization of Nictaba from tobacco (Delporte, 2013). 

Using qRT-PCR, the expression level of the ArathNictabas was investigated in different 

tissues from A. thaliana during development. The three ArathNictaba genes are expressed in 

every tissue during all developmental stages tested. It should be mentioned that lectin 

expression during the development of the plant is generally low, especially for AN3 and AN4 

(Chapter 3). Overall the expression level of AN5 is higher than the expression levels of AN3 

and AN4 throughout plant development (Figure 3.7). However, specific stress factors can 

enhance the transcript levels for each lectin. The low expression observed for the 

Arathnictabas is unlike the expression patterns observed for Nictaba from tobacco. The 

tobacco lectin could not be detected at all in plants grown under non-stress conditions (Chen 

et al., 2002; Lannoo et al., 2007a). Similar to AN3, AN4 and AN5, F-box Nictaba from A. 

thaliana and the Nictaba-like lectins from soybean were present in plant cells at low levels 

when grown under optimal growth conditions (no stress) (Stefanowicz et al., 2016; Van 

Holle, 2016; Van Holle et al., 2016). 

Future experiments should investigate different phenotypic traits of Arabidopsis using 

ArathNictaba mutants. The available mutants form NASC have been tested in this PhD 

thesis, but did not contain a T-DNA insertion in the ArathNictaba genes. Therefore mutants 

have to be generated through mutation of specific amino acid residues. Alternatively 

transgenic lines with reduced lectin expression can be generated using e.g. the RNAi 

technology (Younis et al., 2014). A new, now commonly used technique, to make knock out 

mutants is the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-

associated protein 9 (Cas9) system (Bortesi and Fischer, 2015). Furthermore the classical 

promoter-GUS experiments could confirm the expression of the ArathNictabas in different 

tissues during the development of the plant, but could also yield additional information 

related to lectin expression in specific cell types (Jefferson et al., 1987). 
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6.3 The expression of ArathNictabas is stress-inducible 

Plant stress is generally classified into abiotic and biotic stresses. Each stress, abiotic or 

biotic, evokes a complex cellular and molecular response in the plant to prevent damage and 

ensure survival of the plant. Hormones act as signalling molecules in these plant stress 

responses (Atkinson and Urwin, 2012; Huber and Bauerle, 2016). In chapter 3 WT 

Arabidopsis plants were subjected to different hormone, abiotic or biotic stress treatments 

and the expression level of three non-chimeric ArathNictabas was quantified by qRT-PCR. 

When the stress-inducible expression pattern for the different Nictaba homologs is 

compared, it can be concluded that expression patterns for the ArathNictabas are specific 

and vary for the different abiotic or biotic stress treatments performed (Chapter 3) (Figure 

6.1). 

6.3.1 Abiotic stress 

In chapter 3 Arabidopsis seedlings were subjected to salt and heat stress, two major abiotic 

stresses. High salinity stress appears primarily as osmotic stress and as such results in the 

disruption of homeostasis and ion distribution in the cell (Wang et al., 2003). Heat stress 

results in the global inhibition of translation and secondly plants have to cope with osmotic 

and oxidative stress (Wang et al., 2003; Qu et al., 2013; Echevarría-Zomeño et al., 2016). The 

phytohormone ABA is a key regulator in the plant stress response to osmotic stress (Golldack 

et al., 2014). Moreover, ABA also plays an important role in heat stress (Vishwakarma et al., 

2017). 

The expression level of AN3 is generally highly upregulated after heat stress, up to six fold, 

whereas ABA treatment yields a twofold upregulation of the expression level of AN3 after 5 

and 10 hours (Chapter 3). Taking into account that the expression level of AN3 after salt 

treatment is not changed, AN3 most probably does not play an essential role in the 

ABA-dependent salt stress response. Not surprisingly the promoter of AN3 contains one HSE 

(Chapter 3). Heat responsive genes with HSEs are controlled by Hsf TFs. These heat 

responsive genes are mostly protein kinases, TFs, Hsps or catalases (Wang et al., 2003; Qu et 

al., 2013; Echevarría-Zomeño et al., 2016). Taking into account that AN3 has a lectin domain 

but does not contain any other known protein domain, it is unlikely that AN3 is a protein 

kinase, TF, Hsp or catalase. It is more likely that AN3 has a similar function as Hsps, 

chaperones which play a role in preventing protein unfolding and misfolding during heat 

stress or that AN3 assists the Hsps in recognizing their targets. Alternatively, AN3 can also 

play a role downstream of the main heat responsive genes: protein kinases, TFs, Hsps and 

catalases (Figure 6.1). 

Future experiments will be necessary to unravel the role of AN3 in the heat stress response. 

It would be interesting to analyse the expression pattern of AN3 after heat stress in an ABA 

deficient mutant e.g. the aba2 mutant, where the ABA2 enzyme, one of the enzymes 
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necessary for ABA biosynthesis, is mutated (Léon-Kloosterziel et al., 1996). This experiment 

will give more information on the role of ABA and AN3 as part of heat stress signalling. Since 

three independent overexpression lines for AN3 are available (Chapter 4), it could be 

envisaged to test the thermotolerance of these overexpression lines. Additionally 

Arabidopsis mutants for AN3, if first generated, can be part of this experiment. Of course the 

survival rate is one of the factors that has to be studied in these thermotolerance 

experiments, but next to that root length, ROS levels, proline and chlorophyl content can be 

measured (Krčková et al., 2015; Wu et al., 2015; Suzuki et al., 2016). 

Overall the expression level of AN4 is downregulated after ABA treatment, salt and heat 

stress (Chapter 3). Downregulation of transcript levels during stress responses is more 

difficult to interpret, but possibly AN4 has a negative effect on the salt and heat stress 

response of the plant (Figure 6.1). This negative effect can be due to the repression of 

specific steps in the stress signalling pathway. If this is really the case, overexpression of AN4 

could negatively influence the tolerance of these overexpression lines towards salt stress. In 

chapter 4, the stress tolerance of transgenic lines was tested in a germination assay, and 

indeed revealed a better germination of the WT plants compared to the overexpression lines 

for AN4. However, this result has to be interpreted with care because seeds from all 

overexpression lines for AN5 also showed a significantly lower germination than the WT. 

Nevertheless the expression level of AN5 is upregulated after salt stress, as discussed below. 

Future experiments will have to unravel if AN4 really has a negative impact on the stress 

responses provoked by salt and heat stress. More experiments with the overexpression lines 

could give more insight in these signalling processes. To avoid problems with differences in 

germination between different seed batches, seedlings could first be germinated on medium 

without salt. After germination, the seedlings could then be transferred to a medium 

containing salt and the performance of the overexpression lines and the WT plants could be 

compared. Furthermore, it would be interesting to include AN4 mutants in these stress 

tolerance experiments, similar to what has been discussed above for AN3. 

The expression level of AN5 shows a 1.7 fold significant upregulation after salt treatment for 

10 hours and thus not surprisingly a 2.3 fold upregulation was observed after treatment with 

ABA for 10 hours (Chapter 3). This can be an indication that AN5 plays a role in the 

ABA-dependent pathway of the salt stress response (Figure 6.1). The promoter sequence of 

AN5 also contains a drought responsive MYB binding site, several TFs of the MYB family can 

induce ABA-responsive genes (Chapter 3) (Wang et al., 2003; Bhargava and Sawant, 2013; 

Roychoudhury et al., 2013). As already mentioned above, the tolerance of three 

independent AN5 overexpression lines was tested in a germination assay in the presence of 

salt and revealed a lower germination compared to the WT seeds. This is not what is 

expected if AN5 would play a role in the ABA-dependent response upon salt stress. 

In future experiments it would be interesting to quantify the expression levels of AN5 in 

aba2 mutants after salt stress (Léon-Kloosterziel et al., 1996). If these expression levels are 
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still upregulated, the role of AN5 in the salt response is not purely ABA-dependent. In 

addition, more experiments are needed to study the role of AN5 in the salt stress response. 

Surely mutants for AN5 would be an added value for the salt tolerance experiments. 

6.3.2 Biotic stress 

Five-week-old Arabidopsis plants were subjected to P. syringae, B. cinerea infection and 

M. persicae infestation (Chapter 3). P. syringae is a hemibiotroph that belongs to the 

gram-negative plant-pathogenic bacteria (Surico, 2013; Büttner, 2016). B. cinerea is a 

necrotrophic fungus and produces diverse phytotoxic compounds and cell-wall degrading 

enzymes to induce cell necrosis and as such leakage of nutrients (Mengiste, 2012). 

M. persicae is an insect belonging to the class of pierce-sucking insects and uses its stylet to 

feed from the phloem of the plant. It is a generalist which means it can feed on large variety 

of plants belonging to different families (Louis and Shah, 2013). Two phytohormones play a 

major role in the defence against biotic stresses. P. syringae infection is activating the 

SA-dependent plant defence pathway while B. cinerea infection and M. persicae infestation 

are activating the JA-dependent plant defence pathway (Katagiri et al., 2002; Howe and 

Jander, 2008; Mengiste, 2012; Pieterse et al., 2012). 

The expression level of AN3 shows an early 2 - 2.5 fold upregulation after P. syringae 

infection (after 3 days) and a twofold downregulation after 3 days of M. persicae infestation. 

The upregulation upon P. syringae infection correlates with the 1.5 - 3.5 fold upregulation of 

AN3 after SA treatment for 1 - 24 hours, but does not correlate with the 2 - 4 fold 

upregulation of the expression of AN3 after 1 - 24 hours MeJA treatment (Chapter 3) (Figure 

6.1). For both hormones the expression is overall significantly upregulated, which is 

confusing because the SA- and JA-dependent defence pathways normally work 

antagonistically (Smith et al., 2009; Vos et al., 2013). That is why P. syringae even produces 

coronatine, a compound which is structurally similar to JA, and was shown to suppress the 

SA-mediated defence of the plant (Katagiri et al., 2002; Jones and Dangl, 2006). Hormone 

cross-talk is very complex which is illustrated by the fact that also neutral and synergistic 

interactions between SA and JA have been reported. Timing, sequence of initiation and the 

relative concentration of each hormone play a role in the outcome of the SA-JA cross-talk 

(Vos et al., 2013). The overexpression lines of AN3 did not reveal a reduced susceptibility to 

P. syringae infections compared to the WT plants. In the two biological replicates performed 

with 35S::AN3 plants, the Arabidopsis leaves of the WT plants showed less disease 

symptoms after infection with P. syringae compared to the WT plants in the infection 

experiments with the overexpression lines for AN4 and AN5 (Chapter 4). Probably a stronger 

bacterial infection is needed to show whether the overexpression of AN3 can yield a reduced 

susceptibility of the plants towards P. syringae infections. 
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In the future, the role of AN3 in the SA- and JA-dependent defence pathways has to be 

investigated in more detail. First of all the involvement of AN3 in these defence pathways 

has to be confirmed by studying the expression of AN3 in mutants of the SA and JA pathway. 

Furthermore, the role of AN3 in the defence against P. syringae has to be resolved. This can 

be achieved by using SA deficient mutants in the P. syringae infection experiments and 

determining the AN3 expression level after P. syringae infection. 

The expression level of AN4 is upregulated two times at 5 and 7 days after P. syringae 

infection, but in general the expression level of AN4 is not changed after SA treatment, 

indicating that AN4 might play a role in the plant response to P. syringae, independent of SA 

(Chapter 3) (Figure 6.1). It is unclear whether AN4 can act in the defence of Arabidopsis 

against P. syringae, independent of SA, since only one of the three overexpression lines for 

AN4 shows a reduced susceptibility than WT plants towards P. syringae infection (Chapter 

4). The better performance of transgenic line AN4_B1 can also be an off-target effect e.g. 

related to the place where the T-DNA insertion in the genome took place. The significant 

downregulation of AN4 in the MeJA treated Arabidopsis seedlings is small and does not 

correlate with the expression of AN4 upon M. persicae infestation (Chapter 3). 

Further research is necessary to unravel the effect of P. syringae infection on the expression 

of AN4. It will have to be investigated if the expression level of AN4 is still upregulated after 

P. syringae infection in SA deficient mutants. If so, it can be concluded that this response is 

really SA-independent. Furthermore, P. syringae infection experiments with AN4 mutants 

would be interesting to see whether these mutants are more susceptible to P. syringae 

infection than WT plants. 

The expression level of AN5 shows an almost twofold upregulation after 3 days of 

M. persicae infestation. This in agreement with the small upregulation of AN5 expression 

observed after MeJA treatment (Chapter 3). Possibly AN5 plays a role in the JA-dependent 

defence against aphids (Figure 6.1) (Louis and Shah, 2013). This role is in agreement with the 

repression in phloem-feeding activities of M. persicae as a result of overexpression of AN5 in 

Arabidopsis (Zhang et al., 2011). Moreover Beneteau et al. (2010) showed that recombinant 

AN5 at mid-range concentrations, affects weight gain of M. persicae nymphs. The SA 

signaling pathway is also known to be activated during aphid infestation, but this pathway 

facilitates aphid infestation (Louis and Shah, 2013). Transcriptome analysis of Arabidopsis 

subjected to another phloem-feeding insect namely Bemisia tabaci, the silverleaf whitefly, 

revealed differences in the plant responses after silverleaf whitefly and M. persicae 

infestation. Indeed, also for AN5 the response is different (opposite), since the expression of 

AN5 showed a twofold downregulation after B. tabaci infestation (Kempema et al., 2006). All 

overexpression lines for AN5 are more tolerant (not always significant) to P. syringae 

infections compared to WT plants. Since all three independent AN5 overexpression lines 

show similar results and are more tolerant, this result is probably related to the 
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overexpression of AN5 (Chapter 4). This result is surprising because the expression level of 

AN5 is not changed after P. syringae infection. 

In order to elucidate the role of AN5 in the plant defence against M. persicae in the future, 

the survival, offspring and development of the aphids have to be investigated on AN5 

overexpression lines and mutants. Moreover JA deficient mutants can be infested with 

M. persicae to test AN5 expression levels and unravel the role of AN5 in the aphid stress 

response. 

6.3.3 Cross-talk between abiotic and biotic stress 

The phytohormones known to be important in abiotic and biotic stress responses often 

interact with each other. Moreover these hormones can play a role in both abiotic and biotic 

stress. JA, SA and ET play a role in abiotic stresses (Miura and Tada, 2014; Dar et al., 2015; 

Kazan, 2015; Valenzuela et al., 2016), but ABA is also important in the defence against biotic 

stresses (Tsuda and Katagiri, 2010; Pieterse et al., 2012; Vos et al., 2013). In addition, several 

growth hormones were also reported to play a role in abiotic and biotic stress, making the 

hormone signalling in plants subjected to stress even more complex (Tsuda and Katagiri, 

2010; Bhargava and Sawant, 2013; Kazan, 2015; Couto and Zipfel, 2016). Next to these 

phytohormones, two other signals play a role in the cross-talk between abiotic and biotic 

stresses namely Ca2+ and ROS (Sakamoto et al., 2008; Tsuda and Katagiri, 2010; Bhargava 

and Sawant, 2013; Muthamilarasan and Prasad, 2013; Couto and Zipfel, 2016; Vishwakarma 

et al., 2017). 

In nature, plants are often simultaneously exposed to multiple stresses, abiotic as well as 

biotic stresses often occur together. Until now most studies focused on the effect(s) of 

separate stresses, but our understanding of the stress signalling pathways under 

combinations of abiotic and biotic stresses is still rather poor. The presence of an abiotic 

stress can have a positive or a negative effect on the susceptibility to a biotic agent, and vice 

versa. Moreover the response of the plant to a combination of stresses can be totally 

different from the response to each of the individual stresses. Therefore it will be important 

to study the expression of ArathNictabas in plants subjected to a combination of stresses. 

The study of these combination(s) of stresses is fundamental to develop broad-spectrum 

stress tolerant crop plants (Atkinson and Urwin, 2012; Rasmussen et al., 2013). 

6.4 AN4 interacts with two plant defence-involved enzymes 

The genome of A. thaliana is fully sequenced and annotated. For many proteins, interaction 

partners are predicted and/or experimentally proven, revealing part of the interactome of 

A. thaliana. Until now, no interaction partners are reported for AN4. Pull-down experiments 

using AN4-HIS coupled to Ni agarose beads as a bait protein and an Arabidopsis plant extract 

as prey proteins, followed by MS analysis revealed two possible interaction partners for AN4, 

namely TGG1 and BGLU23 (Figure 6.1). At first sight, there is no obvious link between AN4 
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and the two plant defence-involved enzymes TGG1 and BGLU23. However, interesting 

observations were made when the localization, expression pattern and levels were 

compared in detail. 

Protein localization and expression under normal growth conditions can be compared at 

three levels, in particular at subcellular level, according to cell type and at tissue level. AN4 

resides in the nucleus and the cytoplasm of the cell and its expression under normal growth 

conditions is significantly higher in the roots compared to 6-day-old seedlings (Chapter 3). 

Jakoby et al. (2008) identified AN4 as one of the 5 % most highly expressed genes in mature 

Arabidopsis trichomes. Moreover, they reported a strong enrichment of genes involved in 

root atrichoblast differentiation in the trichome transcriptome (Jakoby et al., 2008). The 

sequence encoding TGG1 contains a signal peptide and the protein localizes to the vacuole 

(Thangstad et al., 2004). Xue et al. (1995) reported the expression of TGG1 in the leaves, 

stems and floral organs. At cell type level, TGG1 was especially found in the guard cells and 

in phloem myrosin cells. Myrosin cells or idioblasts are individual, specific cells that differ 

greatly from their neighbours in size, structure and content. The morphology of these 

specific cells can be different in different organs, tissues and developmental stages 

(Thangstad et al., 2004). BGLU23, like TGG1, is synthesized with a signal peptide, but also 

contains an ER-retention signal (KDEL sequence). This β-O-glucosidase, also called PYK10 is 

specifically localized in ER bodies and is root specific (Nitz et al., 2001; Matsushima et al., 

2003; Ahn et al., 2010). BGLU23 was also found in the Arabidopsis plasmodesmal proteome, 

but probably represents a cytoplasmic contaminant in this fraction (Fernandez-Calvino et al., 

2011). 

A striking similarity between AN4 and BGLU23 at tissue level is their expression in the roots 

of Arabidopsis. However, according to microarray data (eFP browser) the expression level of 

BGLU23 in the roots is much higher than the expression level of AN4 under normal growth 

conditions (Winter et al., 2007). Furthermore, it is interesting to note that BGLU23 was also 

identified as one of the 5 % most highly expressed genes in mature Arabidopsis trichomes 

(Jakoby et al., 2008). Although trichomes are present on the leaves, it is shown that trichome 

development in leaves and atrichoblast development in roots share a network of TFs (Pesch 

and Hülskamp, 2004; Schellmann et al., 2007). However, it is not known if trichomes and 

atrichoblasts really share common patterns of gene expression (Jakoby et al., 2008). Jakoby 

et al. (2008) reported high activities of genes involved in the glucosinolate pathways in 

trichomes, indicating the role of trichomes in plant defence. Possibly AN4 and BGLU23 can 

interact in the roots or trichomes when the plant is subjected to stress. To do so, at least one 

of the two proteins will have to change its subcellular localization as a result of the stress. 

Changing subcellular localization upon stress was reported before (García et al., 2010; 

Moore et al., 2011; Sabol et al., 2017). Alternatively AN4 and BGLU23 can interact as a result 

of the cell damage provoked by e.g. pathogens. 
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Another similarity at tissue level is seen between TGG1 and AN4. TGG1 was especially 

abundant in the phloem myrosin cells whereas AN4 was reported as a PP2 of Arabidopsis 

(Dinant et al., 2003; Thangstad et al., 2004). PP2 proteins are most abundant in the phloem 

sap. Though the sequence of AN4 shows high similarity to the PP2 domain, a protein domain 

that is conserved among many species in the plant kingdom, there is no evidence for the 

presence of AN4 in the phloem, except for the microarray data from eFP browser (Dinant et 

al., 2003; Winter et al., 2007). 

As already mentioned in chapter 3, the expression level of AN4 is low under normal growth 

conditions and the expression of AN4 stays low or is even downregulated in all stress 

treatments investigated, except for the P. syringae infection. P. syringae infection of 

5-week-old rosette leaves resulted in approximately two times upregulation of AN4 

transcript levels at the latest timepoints (after 5 and 7 days). According to the microarray 

data of the eFP browser, BGLU23 shows a sixfold upregulation 24 hours after P. syringae 

infection, but TGG1 shows a small downregulation (Winter et al., 2007). It has to be 

mentioned that in our data AN4 also first shows a twofold significant downregulation 

24 hours after P. syringae infection. Although TGG1 and AN4 show a similar regulation after 

24 hours P. syringae infection, their absolute expression levels are very different, TGG1 is 

present in much higher amounts in infected Arabidopsis leaves than AN4 (Figure 6.1). 

Furthermore, it remains unclear if the expression of BGLU23 and AN4, and their interaction 

in the trichomes is part of the defence response against Pseudomonas. 

Since the pull-down analysis is an in vitro analysis and the plant extract is a mixture of 

proteins derived from different cell compartments, it is not certain that the interaction 

partners retrieved from the pull down assay represent true in vivo interaction partners for 

AN4. Additionally, TGG1 and BGLU23 are two proteins that are quite abundant in 

Arabidopsis seedlings, whereas AN4 is expressed at a much lower level. Future experiments 

are thus necessary to confirm interaction in vivo. One technique to confirm interactions 

in vivo is bimolecular fluorescence complementation (BiFC) (Kerppola, 2008). Since the 

localization of AN4, TGG1 and BGLU23 is experimentally confirmed and they all have a 

different subcellular localization, BiFC experiments under normal growth conditions will be 

probably yield a negative result. It will be important to subject the plants to the right stress 

condition in order to check whether AN4 can interact with TGG1 and/or BGLU23 under these 

stress conditions. 

Once the interaction of AN4 with TGG1 and/or BGLU23 is confirmed in vivo, it would be 

interesting to study mutants of TGG1 and/or BGLU23. The expression levels of AN4 could be 

compared between WT plants and these mutant lines. Once it is known in which stress 

response the interaction of AN4 with TGG1 and/or BGLU23 is involved, the tolerance of 

these mutants and of double mutants of AN4 and TGG1 or AN4 and BGLU23 can be 

investigated. The enzyme activities of TGG1 and BGLU23 could also be tested in AN4 
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mutants in order to investigate whether AN4 possibly plays a role as a co-factor e.g. in the 

recognition of glucosinolates. 

Until now, no carbohydrate-binding activity could be demonstrated for AN4, but the 

molecular modelling of the AN4 sequence and docking with chitotriose indicated three 

different putative chitotriose-binding sites on the molecular surface of AN4 (Chapter 5). The 

interaction of AN4 with carbohydrate structures has to be confirmed experimentally. 

In the future, it is worthwhile to optimize the conditions to produce more recombinant AN4. 

The recombinant protein can be used for a glycan array analysis. Knowledge of the 

carbohydrate binding specificity is important in order to unravel the biological importance of 

AN4. Indeed, the identified interaction partners TGG1 and BGLU23 are synthesized following 

the secretory pathway and thus can be glycosylated. Sequence analysis for TGG1 and 

BGLU23 identified eight and three putative N-glycosylation sites in the sequences of TGG1 

and BGLU23, respectively. Whether TGG1 and BGLU23 are glycosylated in vivo is not known. 

TGG1 and BGLU23 proteins overexpressed in Arabidopsis could be analyzed with MS in the 

future in order to identify if these proteins are glycosylated and if so, which glycan structures 

are present. PNGase F could be used to cleave off the carbohydrates of TGG1 and BGLU23. 

Subsequently, it can be tested if deglycosylated TGG1 and BGLU23 are still retained on a 

column with immobilized AN4. This result will allow to determine whether the interaction 

between AN4 and TGG1/BGLU23 is a protein-protein interaction or relies on a 

protein-carbohydrate recognition. 

Nictaba from tobacco is believed to interact with O-GlcNAc modified core histones. It is 

hypothesized that this interaction allows Nictaba to remodel the chromatin and alter the 

transcription of certain stress-responsive genes. It remains to be investigated which genes 

are regulated by this Nictaba-histone interaction. The original goal of this PhD thesis was to 

study if the ArathNictabas display a similar role in the plant stress response as Nictaba from 

tobacco. However, this PhD research revealed that the genome of A. thaliana contains a 

much larger set of Nictaba homologues than the tobacco genome. Furthermore the study of 

the non-chimeric ArathNictabas also revealed important differences in the regulation of 

gene expression and the protein characteristics for the Nictaba homologs in both species. 
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Plants are constantly exposed to a wide range of environmental stresses, but evolved 

complicated adaptive and defence mechanisms which allow them to survive in unfavourable 

conditions. Of course the plant needs energy to activate this complicated defence system 

and loses energy that would have been used for plant growth. Reduced plant growth, 

especially of the vegetative tissues, causes crop yield losses in agriculture which can be 

prevented by using stress-tolerant crops. Arabidopsis thaliana, the most widely-used model 

plant, is a valuable system to study the underlying mechanisms of the complicated plant 

defence system. Afterwards this knowledge can be extrapolated to crops and used to 

develop modified crops with an improved tolerance to unfavourable environmental 

conditions. Lectins or carbohydrate-binding proteins constitute an important part of this 

plant defence system. Lectins are widespread in the plant kingdom and can be grouped into 

vacuolar lectins with a constitutive expression and nucleocytoplasmic lectins with a 

stress-inducible expression. In the past years, lectin research has focused on the 

stress-inducible nucleocytoplasmic lectins. The Nicotiana tabacum agglutinin, abbreviated as 

Nictaba, served as a model for one family of stress related lectins. This PhD work focused on 

several Nictaba homologs from Arabidopsis thaliana, further referred to as the 

ArathNictabas. The localization, expression pattern and interaction partners for these 

ArathNictabas have been investigated to get insight into the biological importance of these 

proteins for the stress responses of A. thaliana. 

Chapter 1 presents a literature overview of the most important plant stresses and the 

responses which allow plants to survive in unfavourable circumstances. In addition, plant 

lectins are shortly described with the focus on the lectins belonging to the Nictaba family. 

The genome of Arabidopsis is fully sequenced and annotated. In chapter 2 a genome wide 

screening for lectin motifs was performed to identify all putative lectin sequences in the 

Arabidopsis genome. In total 217 putative lectin genes were retrieved belonging to nine out 

of twelve plant lectin families identified today. The domain architectures of all putative 

lectins were determined and discussed together with available information from literature 

concerning their biological functions. Domain architecture analysis revealed that most of 

these lectin gene sequences are linked to other domains and many of these domains are 

known to play a role in stress signalling and defence. Phylogenetic analysis of the 

Nictaba-related lectins, the jacalin-related lectins and the LysM-related lectins showed that 

lectin sequences that share the same domain architecture often evolved together. 

Furthermore, sequence analysis of these putative lectin sequences revealed that the amino 

acids responsible for carbohydrate binding activity are largely conserved. 

In chapter 3 a thorough expression analysis was performed for three non-chimeric 

ArathNictabas, further referred to as AN3, AN4 and AN5, in order to determine their 

subcellular localization and the expression pattern under normal growth conditions as well 

as after different (a)biotic stress treatments. To study the subcellular localization EGFP 

fusion constructs for the ArathNictaba sequences were created and transiently transformed 
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in Nicotiana benthamiana leaves or stably transformed in A. thaliana plants. Confocal 

microscopy revealed fluorescence for AN4 and AN5 in the nucleus and the cytoplasm while 

fluorescence for AN3 was only detected in the cytoplasm. Transcript levels for the 

ArathNictabas were determined in different tissues during normal development and in 

plants subjected to various abiotic and biotic stress treatments. qRT-PCR analysis revealed a 

low expression for all three ArathNictabas in different tissues throughout plant 

development. Stress application altered the expression levels for the ArathNictabas, but all 

three ArathNictabas showed a different expression pattern. Taken together, our data 

suggest that the ArathNictabas represent stress regulated proteins with a possible role in 

plant stress responses. 

In chapter 4 ArathNictaba overexpression lines were generated in Arabidopsis and subjected 

to salt stress and bacterial infection in order to elucidate whether the ArathNictaba genes 

can help the plant to cope with these stress situations. Germination experiments with 

ArathNictaba overexpression lines under salt stress conditions revealed no better tolerance 

of the transgenic plants towards mild and high salt stress compared to wildtype plants. 

P. syringae infection experiments with the ArathNictaba overexpression lines revealed that 

several transgenic lines for AN4 and AN5 showed a significantly lower level of leaf damage, a 

lower percentage of cell death and reduced levels of Pseudomonas biomass. From these 

results it can be concluded that two of the three ArathNictabas possibly play a role in the 

defence of the plant against P. syringae. 

Chapter 5 presents the recombinant production of the ArathNictaba proteins. The 

recombinant AN4 protein produced in Escherichia coli was used to investigate lectin activity. 

It was not possible to show agglutination activity for the purified AN4 in assays with rabbit 

erythrocytes. In addition, no carbohydrate binding activity was detected with immobilized 

carbohydrates and glycoproteins. A pull-down assay followed by MS analysis was performed 

to identify interaction partners for AN4. MS analysis of the proteins retrieved from the 

pull-down analysis identified two possible interaction partners, namely myrosinase 1 (TGG1) 

and β-glucosidase 23 (BGLU23/PYK10). Similar to AN4, these two interaction partners play a 

role in the plant defence. 

Chapter 6 discusses the most important findings of this PhD thesis and suggests future 

research experiments necessary to complement this work and reveal the biological 

importance of the ArathNictabas. To conclude, the data in this PhD thesis show that 

ArathNictabas are involved in the plant defence response directed towards different abiotic 

and biotic stresses. This research contributed to the elucidation of underlying mechanisms in 

plant stress responses and on long term can contribute to the development of more 

stress-resistant plants. 
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Planten worden voortdurend blootgesteld aan verschillende stresssituaties in hun omgeving, 

maar hebben defensiemechanismen ontwikkeld die ervoor zorgen dat ze kunnen overleven. 

Planten hebben energie nodig om deze defensiemechanismen te activeren en verliezen 

hierbij energie die normaal gebruikt wordt voor de groei van de plant. Deze verminderde 

groei van de vegetatieve plant maar ook van de vruchten kan leiden tot opbrengstverliezen 

in de landbouw. Een mogelijke oplossing hiervoor is het gebruik van stresstolerante 

gewassen. Arabidopsis thaliana is wereldwijd het meest bestudeerde modelorganisme 

binnen de planten en is zeer waardevol om de onderliggende mechanismen van het plant 

defensiesysteem te bestuderen. Deze kennis kan vervolgens geëxtrapoleerd worden naar 

landbouwgewassen en zo gebruikt worden om gemodificeerde gewassen te ontwikkelen 

met een verhoogde tolerantie tegen stress. Lectines of suikerbindende eiwitten maken een 

belangrijk deel uit van het plant defensiesysteem. Lectines zijn wijdverspreid in het 

plantenrijk en kunnen gegroepeerd worden in vacuolaire lectines met een constitutieve 

expressie en nucleocytoplasmatische lectines met een stress-induceerbare expressie. 

Afgelopen jaren focuste het onderzoek naar lectines zich op de stress-induceerbare 

nucleocytoplasmatische lectines. Het Nicotiana tabacum agglutinine, afgekort als Nictaba, is 

het model binnen één familie van deze stress-gerelateerde lectines. Deze doctoraatsthesis 

onderzoekt een aantal Nictaba homologen uit Arabidopsis thaliana, verder vernoemd als 

ArathNictaba's. De lokalisatie, het expressiepatroon en de interactiepartners voor deze 

ArathNictaba's werden onderzocht om inzicht te krijgen in hun rol in de reactie van 

A. thaliana op stresssituaties. 

Hoofdstuk 1 bevat een literatuuroverzicht van de belangrijkste soorten stress bij planten en 

de mechanismen die ervoor zorgen dat planten kunnen overleven in deze stresssituaties. 

Daarenboven worden plantenlectines kort beschreven, waarbij de nadruk gelegd wordt op 

lectines van de Nictaba familie. 

Het genoom van Arabidopsis is volledig gesequeneerd en geannoteerd. In hoofdstuk 2 werd 

een screening uitgevoerd van het volledige Arabidopsis genoom om alle lectinesequenties te 

identificeren. In het totaal werden 217 mogelijke lectinegenen gevonden welke tot negen 

van de twaalf op heden gekende planten lectinefamilies behoren. De domeinarchitecturen 

van deze lectinesequenties werden bepaald en de beschikbare literatuurgegevens met 

betrekking tot hun biologische functie werd besproken. De analyse van de 

domeinarchitecturen toonde aan dat de meeste van deze lectinesequenties, naast het 

lectinedomein ook één of meerdere andere domeinen bevatten. Vele van deze domeinen 

spelen een rol in stresssignalering en defensiemechanismen. Een fylogenetische analyse van 

de Nictaba-gerelateerde lectines, de jacaline-gerelateerde lectines en de LysM-gerelateerde 

lectines toonde aan dat lectinesequenties met dezelfde domeinarchitectuur vaak samen 

geëvolueerd zijn. Bovendien toonde een sequentie-analyse van deze lectinesequenties aan 

dat de aminozuren die verantwoordelijk zijn voor de suikerbindende activiteit sterk 

geconserveerd zijn. 
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In hoofdstuk 3 werd een expressie-analyse uitgevoerd voor drie niet-chimere ArathNictaba's 

die verder vernoemd worden als AN3, AN4 en AN5. De subcellulaire lokalisatie en het 

expressiepatroon onder normale groei-omstandigheden, alsook na verschillende (a)biotische 

stressbehandelingen werd onderzocht. EGFP fusieconstructen voor de ArathNictaba 

sequenties werden gemaakt en transiënt getransformeerd in de bladeren van Nicotiana 

benthamiana of stabiel getransformeerd in A. thaliana planten. Met behulp van confocale 

microscopie kon er fluorescentie voor AN4 en AN5 aangetoond worden in de nucleus en het 

cytoplasma van de plantencel terwijl de fluorescentie voor AN3 enkel in het cytoplasma 

aanwezig was. De expressie van de ArathNictaba's werd bepaald in verschillende weefsels 

gedurende de normale ontwikkeling van de plant, alsook in planten die verschillende 

abiotische en biotische stressbehandelingen ondergingen. qRT-PCR analyses toonden een 

lage expressie voor de drie ArathNictaba's in de verschillende weefsels gedurende de 

ontwikkeling van de plant. De stressbehandelingen beïnvloedden de expressie van de 

ArathNictaba's, maar deze veranderingen in expressie waren verschillend voor de drie 

ArathNictaba's. Onze data geven dus aan dat ArathNictaba's stress-gereguleerde eiwitten 

zijn met een mogelijke rol in de reacties van planten op stress. 

In hoofdstuk 4 werden ArathNictaba overexpressielijnen gemaakt in Arabidopsis. Deze 

planten werden blootgesteld aan zoutstress en bacteriële infectie om na te gaan of de 

ArathNictaba genen de plant kunnen helpen om beter met deze stresssituaties om te gaan. 

De kieming van de ArathNictaba overexpressielijnen werd bestudeerd tijdens zoutstress en 

toonde geen betere tolerantie dan wildtype planten tijdens milde en hoge zoutstress. In 

infectie-experimenten met Pseudomonas syringae werd er wel een significant verlaagde 

vergeling van de bladeren, een lager celdood percentage en een lagere Pseudomonas 

biomassa aangetoond voor verschillende overexpressielijnen van AN4 en AN5. Uit deze 

resultaten kan geconcludeerd worden dat twee van de drie ArathNictaba's mogelijk een rol 

spelen in de verdediging van de plant tegen P. syringae. 

De productie van recombinante ArathNictaba eiwitten wordt beschreven in hoofdstuk 5. Het 

recombinant aangemaakt AN4 eiwit werd geproduceerd in Escherichia coli en gebruikt om 

lectine-activiteit na te gaan. Er kon geen agglutinatie-activiteit aangetoond worden voor het 

opgezuiverde AN4 eiwit in de agglutinatietesten met rode bloedcellen van konijnen. 

Daarnaast kon er ook geen suikerbinding vastgesteld worden aan geïmmobiliseerde suikers 

en glycoproteïnen. Interactiepartners voor AN4 werden geïdentificeerd in een pull-down 

experiment gevolgd door een MS analyse. In deze MS analyse werden twee mogelijke 

interactiepartners voor AN4 geïdentificeerd, namelijk myrosinase 1 (TGG1) en 

β-glucosidase 23 (BGLU23/PYK10). Deze interactiepartners spelen, net zoals AN4, een rol in 

het plant defensiemechanisme. 

In hoofdstuk 6 worden de belangrijkste resultaten van deze doctoraatsthesis beschreven en 

worden experimenten voorgesteld die in de toekomst nodig zullen zijn om de biologische 

functie van de ArathNictaba's volledig te ontrafelen. We kunnen besluiten dat de resultaten 
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van deze doctoraatsthesis aantonen dat Nictaba homologen uit Arabidopsis een rol spelen in 

defensiemechanismen van de plant tijdens verschillende abiotische en biotische 

stresssituaties. Ons onderzoek heeft bijgedragen aan de opheldering van de onderliggende 

mechanismen in de plant als reactie op stresssituaties. Op lange termijn zal dit onderzoek 

ook kunnen bijdragen aan de ontwikkeling van meer stress-resistente planten. 
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Supplementary tables 

Supplementary table 1 Identification numbers, databases, Pfam ID numbers and Pfam names of 
the model sequences for each lectin family. 

Lectin family 
ID model 
sequence 

Database 
Pfam ID 
domain 

Pfam domain 
name 

ABA Q00022.3 UniProtKB PF07367 FB_lectin 

Amaranthin AAL05954.1 Genbank PF07468 Agglutinin 

CRA ABL98074.1 Genbank - - 

Cyanovirin P81180.2 UniProtKB PF08881 CVNH 

EUL ABW73993.1 Genbank - - 

GNA P30617 UniProtKB PF01453 B_lectin 

Hevein ABW34946.1 Genbank PF00187 Chitin_bind_1 

Jacalin AAA32680.1 Genbank PF01419 Jacalin 

Legume lectin P05046 UniProtKB PF00139 Lectin_legB 

LysM BAN83772.1 Genbank PF01476 LysM 

Nictaba AAK84134.1 Genbank PF14299 PP2 

Ricin B PDB: 2AAI_B Genbank PF00652 Ricin_B_lectin 

 

Supplementary table 2 Overview of all putative lectins from Arabidopsis thaliana and their protein 

domains. 

AGI code Protein domains 

CRA homologs 
 

AT4G19720.1 CRA 

AT4G19730.1 CRA/CID 

AT4G19740.1 CRA 

AT4G19750.1 CRA/CID 

AT4G19760.1 CRA/CID 

AT4G19770.1 CRA/CID 

AT4G19800.1 CRA/CID 

AT4G19810.1 CRA/CID 

AT4G19820.1 CRA/CID 

EUL homologs 
 

AT2G39050.1 EUL 

GNA homologs 
 

AT1G11280.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT1G11300.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT1G11330.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT1G11340.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT1G11350.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT1G11410.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

http://smart.embl-heidelberg.de/smart/do_annotation.pl?DOMAIN=B_lectin&BLAST=DUMMY
http://smart.embl-heidelberg.de/smart/do_annotation.pl?DOMAIN=Jacalin&BLAST=DUMMY
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AT1G16905.1 GNA 

AT1G34300.1 GNA/S-locus glycoprotein/Protein kinase 

AT1G61360.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT1G61370.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61380.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61390.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61400.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61420.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61430.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61440.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61460.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61480.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61490.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61500.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61550.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G61610.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT1G65790.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G65800.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT1G67520.1 GNA/PAN/Protein kinase 

AT1G78820.1 GNA/PAN 

AT1G78830.1 GNA/PAN 

AT1G78850.1 GNA 

AT1G78860.1 GNA 

AT2G01780.1 GNA 

AT2G19130.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT2G41890.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT3G12000.1 GNA/S-locus glycoprotein/PAN 

AT3G16030.1 GNA/PAN/Protein kinase 

AT3G51710.1 GNA/PAN 

AT4G00340.1 GNA/S-locus glycoprotein/Protein kinase 

AT4G03230.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT4G11900.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT4G21380.1 GNA/S-locus glycoprotein/PAN/Protein kinase/SRK 

AT4G21390.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT4G27290.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT4G27300.1 GNA/S-locus glycoprotein/PAN/Protein kinase 

AT4G32300.1 GNA/Protein kinase 

AT5G03700.1 GNA/S-locus glycoprotein/PAN 

AT5G18470.1 GNA 

AT5G24080.1 GNA/S-locus glycoprotein/Protein kinase 

AT5G35370.1 GNA/Protein kinase 

AT5G39370.1 GNA 

AT5G60900.1 
GNA/Protein kinase 
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Hevein homologs  

AT1G56680.1 Hevein/GH19 

AT2G43570.1 Hevein/GH19 

AT2G43580.1 Hevein/GH19 

AT2G43590.1 Hevein/GH19 

AT2G43600.1 Hevein/GH19 

AT2G43610.1 Hevein/GH19 

AT2G43620.1 Hevein/GH19 

AT3G04720.1 Hevein/Barwin 

AT3G12500.1 Hevein/GH19 

AT3G54420.1 Hevein/GH19 

JRL homologs  

AT1G05760.1 Jacalin 

AT1G05770.1 Jacalin 

AT1G19715.1 Jacalin 

AT1G33790.1 Jacalin 

AT1G52000.1 Jacalin 

AT1G52030.1 Jacalin 

AT1G52040.1 Jacalin 

AT1G52050.1 Jacalin 

AT1G52060.1 Jacalin 

AT1G52070.1 Jacalin 

AT1G52100.1 Jacalin 

AT1G52110.1 Jacalin 

AT1G52120.1 Jacalin 

AT1G52130.1 Jacalin 

AT1G57570.1 Jacalin 

AT1G58160.1 Jacalin 

AT1G60095.1 Jacalin 

AT1G60110.1 Jacalin 

AT1G60130.1 Jacalin 

AT1G61230.1 Jacalin 

AT1G73040.1 Jacalin 

AT2G25980.1 Jacalin 

AT2G33070.1 Jacalin/Kelch1 

AT2G39310.1 Jacalin 

AT2G39330.1 Jacalin 

AT2G43730.1 Jacalin 

AT2G43740.1 Jacalin 

AT2G43745.1 Jacalin 

AT3G16390.1 Jacalin/Kelch1 

AT3G16400.1 Jacalin/Kelch1 

AT3G16410.1 Jacalin/Kelch1 

AT3G16420.1 Jacalin 
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AT3G16430.1 Jacalin 

AT3G16440.1 Jacalin 

AT3G16450.1 Jacalin 

AT3G16460.1 Jacalin 

AT3G16470.1 Jacalin 

AT3G21380.1 Jacalin 

AT3G59590.1 Jacalin/F-box associated domain type 1 

AT3G59610.1 Jacalin/F-box associated domain type 1/F-box 

AT3G59620.1 Jacalin 

AT5G28520.1 Jacalin 

AT5G35940.1 Jacalin 

AT5G35950.1 Jacalin 

AT5G38540.1 Jacalin 

AT5G38550.1 Jacalin 

AT5G46000.1 Jacalin 

AT5G49850.1 Jacalin 

AT5G49860.1 Jacalin 

AT5G49870.1 Jacalin 

Legume lectin homologs  

AT5G42120.1 Legume/Protein kinase 

AT2G29220.1 Legume/Protein kinase 

AT2G29250.1 Legume/Protein kinase 

AT2G43700.1 Legume 

AT3G15356.1 Legume 

AT4G29050.1 Legume/Protein kinase 

AT4G02410.1 Legume/Protein kinase 

AT3G09190.1 Legume 

AT5G01090.1 Legume 

AT5G60270.1 Legume/Protein kinase 

AT3G45420.1 Legume/Protein kinase 

AT5G01540.1 Legume/Protein kinase 

AT5G10530.1 Legume/Protein kinase 

AT4G02420.1 Legume/Protein kinase 

AT3G59700.1 Legume/Protein kinase 

AT3G45330.1 Legume/Protein kinase 

AT3G53380.1 Legume/Protein kinase 

AT5G59270.1 Legume/Protein kinase 

AT1G53080.1 Legume 

AT1G53070.1 Legume 

AT1G15530.1 Legume/Protein kinase 

AT4G28350.1 Legume/Protein kinase 

AT1G53060.1 Legume 

AT5G03140.1 Legume/Protein kinase 

AT5G06740.1 Legume/Protein kinase 
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AT3G08870.1 Legume/Protein kinase 

AT4G04960.1 Legume/Protein kinase 

AT3G09035.1 Legume 

AT3G55550.1 Legume/Protein kinase 

AT5G60280.1 Legume/Protein kinase 

AT5G60300.1 Legume/Protein kinase 

AT3G45440.1 Legume/Protein kinase 

AT2G37710.1 Legume/Protein kinase 

AT3G53810.1 Legume/Protein kinase 

AT3G59750.1 Legume/Protein kinase 

AT5G01550.1 Legume/Protein kinase 

AT3G59740.1 Legume/Protein kinase 

AT2G43690.1 Legume 

AT5G55830.1 Legume/Protein kinase 

AT3G54080.1 Legume 

AT1G70130.1 Legume/Protein kinase 

AT3G16530.1 Legume 

AT1G70110.1 Legume/Protein kinase 

AT5G03350.1 Legume 

AT3G59730.1 Legume/Protein kinase 

AT3G45390.1 Legume/Protein kinase 

AT3G45410.1 Legume/Protein kinase 

AT5G60310.1 Legume/Protein kinase 

AT5G60320.1 Legume/Protein kinase 

AT5G59260.1 Legume/Protein kinase 

AT3G45430.1 Legume/Protein kinase 

AT1G07460.1 Legume 

AT5G65600.1 Legume/Protein kinase 

AT5G01560.1 Legume/Protein kinase 

LysM homologs  

AT1G21880.1 LysM 

AT1G51940.1 LysM/Protein kinase 

AT1G55000.1 LysM/F-box 

AT1G77630.1 LysM 

AT2G17120.1 LysM 

AT2G23770.1 LysM/Protein kinase 

AT2G33580.1 LysM/Protein kinase 

AT3G01840.1 LysM/Protein kinase 

AT3G21630.1 LysM/Protein kinase 

AT3G52790.1 LysM 

AT4G25433.1 LysM 

AT5G23130.1 LysM 

Nictaba homologs  

AT1G09155.1 Nictaba/F-box 
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AT1G10155.1 Nictaba 

AT1G12710.1 Nictaba/F-box 

AT1G31200.1 Nictaba 

AT1G33920.1 Nictaba 

AT1G56240.1 Nictaba/F-box 

AT1G56250.1 Nictaba/F-box 

AT1G63090.1 Nictaba/F-box 

AT1G65390.1 Nictaba/TIR 

AT1G80110.1 Nictaba/F-box 

AT2G02230.1 Nictaba/F-box 

AT2G02240.1 Nictaba/F-box 

AT2G02250.1 Nictaba/F-box 

AT2G02280.1 Nictaba 

AT2G02300.1 Nictaba/F-box 

AT2G02310.1 Nictaba/F-box 

AT2G02320.1 Nictaba/F-box 

AT2G02340.1 Nictaba/F-box 

AT2G02350.1 Nictaba/F-box 

AT2G02360.1 Nictaba/F-box 

AT2G26820.1 Nictaba/AIG1-type G 

AT3G53000.1 Nictaba/F-box 

AT3G61060.2 Nictaba/F-box 

AT4G19840.1 Nictaba 

AT4G19850.1 Nictaba 

AT5G24560.1 Nictaba/F-box 

AT5G45070.1 Nictaba/TIR 

AT5G45080.1 Nictaba/TIR 

AT5G45090.1 Nictaba/TIR 

AT5G52120.1 Nictaba/F-box 

Ricin B homologs  

AT1G13130.1 Ricin B/GH5 

AT3G26140.1 Ricin B/GH5 
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Supplementary table 3 Literature related to putative lectins from Arabidopsis thaliana. 

Lectin name AGI code Function Reference 

CRA homologs 

AtChiC AT4G19810 Upregulated expression after ABA, JA and 
salt treatment. 

Ohnuma et al., 2011 

EUL homologs 

ArathEULS3 AT2G39050 Upregulated expression after glutathione 
treatment. 

Hacham et al., 2014 

  Upregulated expression after MeJA, ABA 
and salt treatment. 

Van Hove et al., 2014 

  Role in ABA-induced stomatal closure, 
upregulated expression after P. syringae 
 infection and overexpression of 
ArathEULS3 makes plants more tolerant 
to P. syringae. 

 Van Hove et al., 2015 

GNA homologs 

CBRLK1 AT1G11350 Ca2+-dependent CaM binding. Kim et al., 2009 

- AT1G61360 Co expression with BAK1-interacting 
RLK2. 

Blaum et al., 2014 

- AT1G65790 Upregulated expression after infection 
with F. oxysporum. 

Zhu et al., 2013 

- AT4G21390 Upregulated expression after ozone 
treatment. 
 

Xu et al., 2015 

- AT5G18470 Upregulated in plants exposed to 
lipopolysaccharides. 

Sanabria et al., 2008 

- AT5G60900 Upregulated expression after infection 
with F. oxysporum. 

Zhu et al., 2013 

  Upregulated in plants exposed to 
lipopolysaccharides. 

Sanabria et al., 2008 

Hevein homologs 

PR-4 AT3G04720 Upregulated expression after MeJA and 
ET treatment. 

Thomma et al., 1999 

  Significantly induced by high salt stress 
and plays as such a role in germination 
when there is salt stress. 

Seo et al., 2008 

  Involved in defence mechanism against 
A. brassicicola. 

Mukherjee et al., 2010 

  Upregulated expression after sulfur 
dioxide exposure. 

Li and Yi, 2012 

PR-3 AT3G12500 Upregulated expression after MeJA and 
ET treatment. 

Thomma et al., 1999 

  Significantly induced by high salt stress. Seo et al., 2008 

  Involved in defence mechanism against 
A. brassicicola. 

Mukherjee et al., 2010 

 Upregulated expression after sulfur 
dioxide exposure. 
 

Li and Yi, 2012 
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AtEP3 
AtchitIV 

AT3G54420 Induced expression after NO treatment. Parani et al., 2004 

  Plays a role in programmed cell death. Passarinho et al., 2001 

JRL homologs 

RTM1 AT1G05760 Restricts the long-distance movement of 
TEV in the phloem. 

Chisholm et al., 2001 

- AT1G52000 Upregulated expression after infection 
with F. oxysporum. 

Zhu et al., 2013 

MBP2 AT1G52030 Myrosinase binding proteins. Capella et al., 2001 

MBP1 AT1G52040 Myrosinase binding proteins. Capella et al., 2001 

AtNSP2 AT2G33070 Nitril specifier proteins. Kong et al., 2012 

AtNSP3 AT3G16390 Nitril specifier proteins. Kong et al., 2012 

AtNSP1 AT3G16400 Nitril specifier proteins. Kong et al., 2012 

AtNSP4 AT3G16410 Nitril specifier proteins. Kong et al., 2012 

PBP1 AT3G16420 Induced expression after infection with 
O. ramosa (jasmonate dependent). 

Dos Santos et al., 2003 

  Involved in development of chloroplasts. de Luna-Valdez et al., 2014 

  Plays a role in response to tissue damage.  Nagano et al., 2005 

AtJAC1 AT3G16470 Plays a role in controlling the flowering 
time. 

Xiao et al., 2015 

Legume lectin homologs 

LecRK-b2 
 

AT1G70130 Induced expression after ABA, salt and 
osmotic stress treatment. 

Deng et al., 2009 

- AT3G15350 Upregulated expression after ozone 
treatment. 

Xu et al., 2015 

  Induced expression after infection with 
A. brassicicola. 

Mukherjee et al., 2010 

- AT3G16530 Upregulated expression after ozone 
treatment. 

Xu et al., 2015 

AtLecRK2 AT3G45410 Upregulated expression after salt 
treatment (ET dependent). 

He et al., 2004 

SGC Lectin 
RLK 

AT3G53810 Plays a role in pollen development. Wan et al., 2008 

- AT3G59700 Upregulated expression after infection 
with F. oxysporum. 

Zhu et al., 2013 

AtLPK1 AT4G02410 Highly upregulated expression after ABA, 
MeJA and SA treatments. 

Huang et al., 2013 

  Contributes to resistence against 
B. cinerea. 

Huang et al., 2013 

LecRK-VI.2/ 
LecRKA4.1 

AT5G01540 Plays a role in the ABA stress response 
during seed germination. 

Xin et al., 2009 

  Upregulated expression after infection 
with F. oxysporum. 

Zhu et al., 2013 

  Contributes to resistence against 
P. syringae en P. carotovorum. 

Singh et al., 2012 

LecRKA4.2 AT5G01550 Plays a role in the ABA stress response 
during seed germination. 

Xin et al., 2009 

LecRKA4.3 AT5G01560 Plays a role in the ABA stress response 
during seed germination. 

Xin et al., 2009 
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LecRK-I.9 AT5G60300 Contributes to resistance against 
P. brassicae. 

Bouwmeester et al., 2011 

  Binds proteins that contain RGD motifs. Gouget et al., 2006 

LysM homologs 

AtCERK1/ 
AtLYK1/ 
LysM RLK1 

AT3G21630 Important in the response of Arabidopsis 
to fungi. 

Wan et al., 2008 

AtLYK3 AT1G51940 Cross talk between ABA and pathogen 
stress response. 

Paparella et al., 2014 

AtLYK4 AT2G23770 Involved in chitin signal transduction and 
plant innate immunity. 

Wan et al., 2012 

AtLYK5 AT2G33580 Potential involvement in chitin signaling, 
chitin binding. 

Wan et al., 2012 

Nictaba homologs 

VBF AT1G56250 Makes Arabidopsis more tolerant to 
Agrobacterium tumefaciens infection. 

Zaltsman et al., 2010 

- AT3G61060 Downregulated expression during callus 
initiation. 

Xu et al., 2012 

PP2-A1 AT4G19840 Binds to N-acetylglucosamine oligomers, 
high-mannose N-glycans and 
9-acyl-N-acetylneuraminic sialic acid. 

Beneteau et al., 2010 

  Expression induced after pathogen attack 
and ET treatment. 

Lee et al., 2014 

  Shows molecular chaperone as well as 
antifungal activity. 
 

Lee et al., 2014 

PP2-B11 AT1G80110 Overexpression lines are more tolerant to 
high salinity conditions. 

Jia et al., 2015 

  Overexpression lines are more sensitive 
to drought stress. 

Lee et al., 2014 

PP2-B10/ 
F-box  

AT2G02360 Specific for N-acetyllactosamine, Lewis A, 
Lewis X, Lewis Y and blood type B motifs. 

Stefanowicz et al., 2012 

Nictaba  Overexpression lines are more tolerant to 
infection with P. syringae. 

Stefanowicz et al., 2016 

Ricine B homologs 

- AT3G26140 Upregulated expression after infection 
with the PPV. 

Babu et al., 2008 

 

Supplementary table 4 Gene specific primers for cloning. 

Target gene Forward primer (5'-3') Reverse primer (5'-3') 

AN3 
(AT4G19850.2) 

evd721 evd722 

ATGGGAATAATATGGTCTATC TCATGCCTCGTGTACATAAATC 

AN4 
(AT1G31200) 

evd723 evd724 

ATGTCTTCACAAAAGAGTTCGC TTACACTTCTTGAACAAAGGC 

AN5 
(AT4G19840) 

evd725 evd726 

ATGAGCAAGAAACATTGCTCAG TTACTGTTTGGGACGAATTGC 
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Supplementary table 5 qPCR primers. 

Target gene Info Forward primer (5'-3') Reverse primer (5'-3') 

AN3 
(AT4G19850.2) 

/ 
evd844 evd845 

TCTTCTCAAAGACAAAGCCACA GCTTCAAGGAAAAGTCATCGTC 

AN4 
(AT1G31200) 

/ 
evd846 evd847 

TTCACAAAAGAGTTCGCATCA GAGTCACCTCCCCAAACAAA 

AN5 
(AT4G19840) 

/ 
evd848 evd849 

GCCACCGGTGACAACTTTAC GAGGAGAGAGAGATCGGAGGA 

PP2A 
(AT1G13320) 

Reference 
gene for data 
normalization 

evd727 evd728 

TCCGAGATCACATGTTCCAAACTC CCGTATCATGTTCTCCACAACCG 

TIP41 
(AT4G34270) 

Reference 
gene for data 
normalization 

evd729 evd730 

TGAACTGGCTGACAATGGAGTG CATGAGCTTGGCATGACTCTCAC 

UBC9 
(AT4G27960) 

Reference 
gene for data 
normalization 

evd731 evd732 

TCCTACTTCATGTAGCGCAGGAC TCCTCCAGAATAAGGGCTATCCG 

JMT 
(AT1G19640) 

Positive 
control for 

MeJA 
treatment 

evd745 evd746 

TATGTAAGCTCGCCACGATACGCT AACACGATCAACCGGCTCTAACGA 

Cor15A 
(AT2G42540) 

Positive 
control for 

ABA 
treatment 

evd781 evd782 

CAGTGAAACCGCAGATACATTGG
G 

GGCTTCTTTTCCTTTCTCCTCC 

WRKY70 
(AT3G56400) 

Positive 
control for SA 

treatment 

evd811 evd812 

CATGGATTCCGAAGATCACA CTGGCCACACCAATGACAA 

RD29A 
(AT5G52310) 

Positive 
control for 

NaCl 
treatment 

evd749 evd750 

ATCACTTGGCTCCACTGTTGTTC ACAAAACACACATAAACATCCAAA
GT 

Hsp70b 
(AT1G16030) 

Positive 
control for 

heat 
treatment 

evd735 evd736 

ATGTATCAGGGTGGTGCTGCT ACCTCTTCGATCTTGGGACCT 

PR1 
(AT2G14610) 

Positive 
control for P. 
syringae and 
M. persicae 

stress 

evd1019 evd1020 

GCTACGCAGAACAACTAAGAGG GCCTTCTCGCTAACCCACAT 

PDF1.2 
(AT5G44420) 

Positive 
control for 
B. cinerea 
infection 

 
 
 

evd788 evd789 

AAGTTGTGCGAGAAGCCAAG CCATGTTTGGCTCCTTCAAG 
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ACT2 
(AT3G18780) 

Reference 
gene for P. 

syringae 
biomass 

P112 P113 

GATGAGGCAGGTCCAGGAATC GTTTGTCACACACAAGTGCATC 

PEX4 
(AT5G25760) 

Reference 
gene for P. 

syringae 
biomass 

P116 P117 

TGCAACCTCCTCAAGTTCG CACAGACTGAAGCGTCCAAG 

oprf 
(PSPTO_2299) 

Pseudomonas 
gene for P. 

syringae 
biomass 

P508 P509 

AACTGAAAAACACCTTGGGC CCTGGGTTGTTGAAGTGGTA 

 

Supplementary table 6 EGFP fusion construct primers. 

Target gene Construct Forward primer (5'-3')a Reverse primer (5'-3')b 

AN3 
(AT4G19850.2) 

EGFP-AN3 
evd850 evd851 

AAAAAGCAGGCTTCATGGGAATAA
TATGGTCTATCTTC 

AGAAAGCTGGGTGTCATGCCTCGTGT
ACATAAATC 

AN3 
(AT4G19850.2) 

AN3-EGFP 
evd852 evd853 
AAAAAGCAGGCTTCACCATGGGAA
TAATATGGTCTATC 

AGAAAGCTGGGTGTGCCTCGTGTACA
TAAATC 

AN4 
(AT1G31200) 

EGFP-AN4 
evd769 evd770 

AAAAAGCAGGCTTCATGTCTTCAC
AAAAGAGTTCGC 

AGAAAGCTGGGTGTTACACTTCTTGA
ACAAAGGCTTC 

AN4 
(AT1G31200) 

AN4-EGFP 

evd771 evd772 
AAAAAGCAGGCTTCACCATGTCTT
CACAAAAGAGTTC 
 

AGAAAGCTGGGTGCACTTCTTGAACA
AAGGCTTCG 

AN5 
(AT4G19840) 

EGFP-AN5 
evd773 evd774 
AAAAAGCAGGCTTCATGAGCAAG
AAACATTGCTCAG 

AGAAAGCTGGGTGTTACTGTTTGGGA
CGAATTGC 

AN5 
(AT4G19840) 

AN5-EGFP 
evd775 evd776 

AAAAAGCAGGCTTCACCATGAGCA
AGAAACATTGCTC 

AGAAAGCTGGGTGCTGTTTGGGACGA
ATTGC 

attB1-ArathNictaba-attB2 
evd2 evd4 

GGGGACAAGTTTGTACAAAAAAG
CAGGCT 

GGGGACAAGTTTGTACAAAAAAGCAG
GCT 

a Underlined nucleotides are the first part of the attB1 gateway cloning site. 
b Underlined nucleotides are the reverse complementary of the first part of the attB2 gateway 

cloning site. 
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Supplementary table 7 Primers for transgenic T-DNA insertion and overexpression lines. 

Target (gene) Info Forward primer (5'-3') Reverse primer (5'-3') 

ACT2 
(AT3G18780) 

Check for 
gDNA quality 

evd280 evd281 

GGCTGGATTTGCTGGAGATGAT
GC 

GTACGACCACTGGCATACAGGGA 

NptII 
(pO86A1_p160) 

Kanamycin 
resistance 

gene 

evd463 evd261 

GAACAAGATGGATTGCACGCAG
G 

TCAGAAGAACTCGTCAAGAAGGCG 

T-DNA insertion 
(SALK line) 

Left border 
primer on T-

DNA insertion 
of SALK line 

 P99 

/ CCTGGGTTGTTGAAGTGGTA 

T-DNA insertion 
(SAIL line) 

Left border 
primer on T-

DNA insertion 
of SAIL line 

 P538 

/ TAGCATCTGAATTTCATAACCAATC
TCGATACAC 

T-DNA insertion 
line AN4 
(SALK_019483) 

Primers 
spanning the 

T-DNA 
insertion site 

P537 (RP) P536 (LP) 

GCTCAAAACAGAGCAACGATC ACCGATTCGATATGTTTTCCC 

T-DNA insertion 
line AN5 
(SAIL_835_C05) 

Primers 
spanning the 

T-DNA 
insertion site 

P540 (RP) P539 (LP) 

TGGGATTACGATAGTTGCTGC GGAAGTTCCCTCAAACTCACC 

ArathNictaba 
overexpression 
constructs 

35S promoter 
until 35S 

terminator 

evd472 P1 

GAAACCTCCTCGGATTCCAT AGGTCACTGGATTTTGGTTT 

 

  



Supplementary data 

165 

Supplementary table 8 Protein expression construct primers. 

Target Construct Forward primer (5'-3')a Reverse primer (5'-3')a 

AN3 
(AT4G19850.2) 

Gibson-
His6-Gly3-

AN3-
Gibson 

P266 P267 
ATGCACCATCACCATCACCATGGT
GGTGGTGGAATAATATGGTCTATC
TTCTCAA 

GCTTTGTTAGCAGCCGGATCTCATGCC
TCGTGTACATAAATC 

P213 P267 
TTAAGAAGGAGATATACGGGATG
CACCATCACCATCACCATG 

 

AN3-Gly3-His6 
(AT4G19850.2) 

Gibson-
AN3-Gly3-

His6-
Gibson 

P268 P216 
TTAAGAAGGAGATATACGGGATG
GGAATAATATGGTCTATCTTCTC 

GCTTTGTTAGCAGCCGGATCTCAATG
ATGATGATGATGATGTCC 

AN4 
(AT1G31200) 

Gibson-
His6-Gly3-

AN4-
Gibson 

P239 P240 
ATGCACCATCACCATCACCATGGT
GGTGGTTCTTCACAAAAGAGTTCG
CATC 

GCTTTGTTAGCAGCCGGATCTTACACT
TCTTGAACAAAGGCTTC 

P213 P240 
TTAAGAAGGAGATATACGGGATG
CACCATCACCATCACCATG 

 

AN4-Gly3-His6 
(AT1G31200) 

Gibson-
AN4-Gly3-

His6-
Gibson 

P241 P216 
TTAAGAAGGAGATATACGGGATG
TCTTCACAAAAGAGTTCGC 

GCTTTGTTAGCAGCCGGATCTCAATG
ATGATGATGATGATGTCC 

AN5 
(AT4G19840) 

Gibson-
His6-Gly3-

AN5-
Gibson 

P263 P264 
ATGCACCATCACCATCACCATGGT
GGTGGTAGCAAGAAACATTGCTCA
GAATTAT 

GCTTTGTTAGCAGCCGGATCTTACTGT
TTGGGACGAATTGC 

P213 P264 
TTAAGAAGGAGATATACGGGATG
CACCATCACCATCACCATG 

 

AN5-Gly3-His6 
(AT4G19840) 

Gibson-
AN5-Gly3-

His6-
Gibson 

P265 P216 

TTAAGAAGGAGATATACGGGATG
AGCAAGAAACATTGCTC 

GCTTTGTTAGCAGCCGGATCTCAATG
ATGATGATGATGATGTCC 

pET21a(+) vector 
P242 P243 

GATCCGGCTGCTAACAAAG CCCGTATATCTCCTTCTTAAAG 

pET21a(+) vector 
(sequencing) 

P258 P259 

TAATACGACTCACTATAGGG AAAGGGAATAAGGGCGACAC 
a Underlined nucleotides are the Gibson assembly sites. 



Supplementary data 

166 

Supplementary table 9 Significant (p ≤ 0.01) MS hits comparing the pull-down assays using induced (three replicates) and non-induced (three replicates) 

soluble E. coli fractions (I/NI), and the plant lysate from non-treated Arabidopsis plants (Figure 5.7A). 

 

  

Gene name Protein name Protein ID Origin -Log p Log2(I/NI) 

hisB 
Histidine biosynthesis bifunctional 

protein HisB 
A0A140NAY3 E. coli 2,75 5,84 

ibpA Small Hsp IbpA A0A140N1Q5 E. coli 2,40 5,54 

rpsK 30S ribosomal protein S11 A0A140N7L9 E. coli 1,76 5,50 

ECBD_0490 
Acetyl-CoA carboxylase, biotin 

carboxyl carrier protein 
A0A140N752 E. coli 2,25 4,86 

ibpB Small Hsp IbpB A0A140N3G6 E. coli 3,15 4,75 

ileS Isoleucine--tRNA ligase A0A140ND98 E. coli 2,26 4,68 

ECBD_2906 DNA-directed RNA polymerase A0A140NCE7 E. coli 3,73 4,42 

lacZ Beta-galactosidase A0A140NDI2 E. coli 2,95 3,86 

valS Valine--tRNA ligase A0A140NGV6 E. coli 3,04 3,24 

topA DNA topoisomerase 1 A0A140NCX5 E. coli 2,70 2,87 

ECBD_1336 Beta-ketoacyl synthase A0A140N9G9 E. coli 3,39 2,77 

ECBD_1047 Uncharacterized protein A0A140N7A6 E. coli 1,93 -3,85 

ECBD_3882 Entericidin EcnAB A0A140NGM2 E. coli 2,51 -7,45 
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Supplementary table 10 Significant (p ≤ 0.01) MS hits comparing the pull-down assays using induced (three replicates) and non-induced (three replicates) 

soluble E. coli fractions (I/NI), and the plant lysate from NaCl-treated Arabidopsis plants (Figure 5.7B). 

Gene name Protein name Protein ID Origin -Log p Log2(I/NI) 

IbpA Small Hsp A0A140N1Q5 E. coli 3,63 6,78 

rpsK 30S ribosomal protein S11 A0A140N7L9 E. coli 3,10 5,86 

ibpB Small Hsp IbpB A0A140N3G6 E. coli 3,42 5,15 

ECBD_2906 DNA-directed RNA polymerase A0A140NCE7 E. coli 4,62 4,69 

ECBD_0490 
Acetyl-CoA carboxylase, biotin 

carboxyl carrier protein 
A0A140N752 E. coli 3,24 4,56 

hisB 
Histidine biosynthesis bifunctional 

protein HisB 
A0A140NAY3 E. coli 3,44 4,39 

hisD Histidinol dehydrogenase A0A140N5W6 E. coli 3,72 3,95 

lacZ Beta-galactosidase A0A140NDI2 E. coli 3,48 3,91 

fabZ 
3-hydroxyacyl-[acyl-carrier-protein] 

dehydratase FabZ 
A0A140NFC7 E. coli 1,94 3,76 

hslO 33 kDa chaperonin A0A140N2J1 E. coli 2,11 3,67 

hisC 
Histidinol-phosphate 

aminotransferase 
A0A140N8D8 E. coli 2,53 3,61 

ileS Isoleucine--tRNA ligase A0A140ND98 E. coli 1,66 3,60 

hslV 
ATP-dependent protease subunit 

HslV 
A0A140NHQ8 E. coli 3,87 3,39 

ECBD_0180 
Cold-shock DNA-binding domain 

protein 
A0A140N4F2 E. coli 1,44 3,15 

ECBD_3970 
Transcriptional regulator, AraC 

family 
A0A140NHD9 E. coli 2,47 3,15 

dnaJ Chaperone protein DnaJ A0A140NFZ9 E. coli 3,97 2,99 

ygiQ UPF0313 protein YgiQ A0A140N6D4 E. coli 3,91 2,85 

PP2-A9 Protein PP2-LIKE A9 Q9SA16 Recombinant protein 3,81 2,82 
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Gene name Protein name Protein ID Origin -Log p Log2(I/NI) 

ECBD_1042 
Glycine betaine/L-proline ABC 
transporter, ATPase subunit 

A0A140N655 E. coli 1,93 2,82 

valS Valine--tRNA ligase A0A140NGV6 E. coli 1,91 2,77 

BGLU23 Beta-glucosidase 23 Q9SR37 A. thaliana 4,17 2,76 

topA DNA topoisomerase 1 A0A140NCX5 E. coli 2,51 2,70 

rfaH 
Transcription antitermination 

protein RfaH 
A0A140NI00 E. coli 2,46 2,67 

TGG1 Myrosinase 1 P37702 A. thaliana 1,67 2,64 

ECBD_1336 Beta-ketoacyl synthase A0A140N9G9 E. coli 2,14 2,63 

yqgE UPF0301 protein YqgE A0A140N8C3 E. coli 2,13 2,60 

ECBD_4231 Uncharacterized protein A0A140NDV6 E. coli 2,54 2,60 

ECBD_1155 
Iron-sulfur cluster assembly scaffold 

protein IscU 
A0A140N923 E. coli 2,97 2,50 

tolB Protein TolB A0A140NEI9 E. coli 2,31 2,50 

hisH 
Imidazole glycerol phosphate 

synthase subunit HisH 
A0A140N8L8 E. coli 2,07 2,33 

mutM 
Formamidopyrimidine-DNA 

glycosylase 
A0A140N6H0 E. coli 2,76 2,22 

ybaB Nucleoid-associated protein YbaB A0A140NF80 E. coli 3,02 2,20 

ECBD_2317 Aldehyde Dehydrogenase A0A140NAG2 E. coli 4,95 -1,88 

ECBD_2279 Amidohydrolase A0A140N7L1 E. coli 3,56 -1,92 

ECBD_1392 Uncharacterized protein A0A140NAA6 E. coli 2,54 -2,05 

ECBD_0225 
Transcriptional regulator, AraC 

family 
A0A140N6E1 E. coli 2,66 -2,12 

ECBD_2590 NAD(P)H dehydrogenase (quinone) A0A140N993 E. coli 4,48 -2,15 

ECBD_3998 Maltose operon periplasmic A0A140NFH4 E. coli 3,86 -2,19 

nanA N-acetylneuraminate lyase A0A140N3N8 E. coli 2,16 -2,21 

ECBD_2540 Uncharacterized protein A0A140N946 E. coli 2,10 -2,31 
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Gene name Protein name Protein ID Origin -Log p Log2(I/NI) 

ECBD_0129 
PTS system, mannitol-specific IIC 

subunit 
A0A140N201 E. coli 2,40 -2,34 

ECBD_1920 Fructosamine kinase A0A140N6M2 E. coli 4,35 -2,37 

rssB Regulator of RpoS A0A140NAZ4 E. coli 4,07 -2,42 

aceK 
Isocitrate dehydrogenase 

kinase/phosphatase 
A0A140NHI6 E. coli 3,45 -2,48 

ECBD_1096 GCN5-related N-acetyltransferase A0A140N551 E. coli 2,93 -2,52 

ECBD_3227 
Cytochrome o ubiquinol oxidase, 

subunit I 
A0A140NA88 E. coli 3,38 -2,59 

ECBD_0868 
PAS modulated sigma54 specific 

transcriptional regulator, Fis family 
A0A140N695 E. coli 1,77 -2,66 

ECBD_1962 SufBD protein A0A140N985 E. coli 1,83 -2,68 

ECBD_1047 Uncharacterized protein A0A140N7A6 E. coli 3,38 -2,84 

ECBD_2951 
GTP cyclohydrolase 1 type 2 

homolog 
A0A140NC19 E. coli 2,76 -2,88 

ECBD_3372 
Molybdopterin dehydrogenase FAD-

binding 
A0A140NBF3 E. coli 3,19 -3,06 

ECBD_3893 
Anaerobic C4-dicarboxylate 

transporter 
A0A140SS54 E. coli 1,90 -3,10 

acpP Acyl carrier protein A0A140NCR5 E. coli 2,50 -3,10 

ECBD_1822 
PTS system, 

mannose/fructose/sorbose family, 
IID subunit 

A0A140N9E9 E. coli 2,45 -3,10 

ECBD_3373 
Aldehyde oxidase and xanthine 
dehydrogenase molybdopterin 

binding 

A0A140NDP2 E. coli 2,79 -3,12 

ECBD_0227 
Efflux transporter, RND family, MFP 

subunit 
A0A140N515 E. coli 1,62 -3,19 

ECBD_2171 Nitrate reductase, beta subunit A0A140N9U4 E. coli 2,38 -3,43 
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Gene name Protein name Protein ID Origin -Log p Log2(I/NI) 

ECBD_2574 Protein PhoH A0A140NAZ5 E. coli 3,57 -3,46 

ECBD_0229 
Transcriptional regulator, LuxR 

family 
A0A140N6Z5 E. coli 2,59 -3,53 

ECBD_3370 Uncharacterized protein A0A140NFC3 E. coli 1,64 -3,72 

ECBD_2922 Protein TolR A0A140N9F2 E. coli 1,83 -3,74 

ECBD_3148 
2-hydroxy-3-oxopropionate 

reductase 
A0A140NC12 E. coli 2,68 -4,74 

ECBD_3882 Entericidin EcnAB A0A140NGM2 E. coli 3,67 -7,00 
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Supplementary table 11 Significant (p ≤ 0.05) MS hits comparing the pull-down assays using induced (three replicates) and non-induced (two replicates) 

soluble E. coli fractions (I/NI), and the plant lysate from non-treated Arabidopsis plants (Figure 5.7C). 

Gene name Protein name Protein ID Origin -Log p Log2(I/NI) 

rpsK 30S ribosomal protein S11 A0A140N7L9 E. coli 3,19 6,86 

TGG1 Myrosinase 1 P37702 A. thaliana 2,25 6,78 

ibpA Small Hsp IbpA A0A140N1Q5 E. coli 2,12 6,11 

ECBD_0490 
Acetyl-CoA carboxylase, biotin 

carboxyl carrier protein 
A0A140N752 E. coli 1,81 5,24 

hisB 
Histidine biosynthesis bifunctional 

protein HisB 
A0A140NAY3 E. coli 2,64 5,17 

hslO 33 kDa chaperonin A0A140N2J1 E. coli 1,75 5,16 

ESM1 GDSL esterase/lipase ESM1 Q9LJG3 A. thaliana 1,73 5,03 

ibpB Small Hsp IbpB A0A140N3G6 E. coli 2,27 4,69 

ileS Isoleucine--tRNA ligase A0A140ND98 E. coli 1,61 4,64 

ECBD_2906 DNA-directed RNA polymerase A0A140NCE7 E. coli 2,73 4,47 

hslV 
ATP-dependent protease subunit 

HslV 
A0A140NHQ8 E. coli 2,40 4,32 

lacZ Beta-galactosidase A0A140NDI2 E. coli 2,61 4,17 

dnaJ Chaperone protein DnaJ A0A140NFZ9 E. coli 1,78 3,99 

rraB Regulator of ribonuclease activity B A0A140NDQ0 E. coli 1,28 3,53 

valS Valine--tRNA ligase A0A140NGV6 E. coli 2,60 3,47 

PP2-A9 Protein PP2-LIKE A9 Q9SA16 Recombinant protein 1,67 3,28 

ECBD_0346 Hsp15 A0A140N4B4 E. coli 2,44 3,23 

gpmA 
2,3-bisphosphoglycerate-dependent 

phosphoglycerate mutase 
A0A140N9D9 E. coli 1,98 3,17 

yqgE UPF0301 protein YqgE A0A140N8C3 E. coli 1,52 3,08 

hisD Histidinol dehydrogenase A0A140N5W6 E. coli 2,06 3,08 

ppa Inorganic pyrophosphatase A0A140NEF6 E. coli 1,95 3,04 
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Gene name Protein name Protein ID Origin -Log p Log2(I/NI) 

ybaB Nucleoid-associated protein YbaB A0A140NF80 E. coli 1,43 2,87 

topA DNA topoisomerase 1 A0A140NCX5 E. coli 1,97 2,72 

ECBD_1336 Beta-ketoacyl synthase A0A140N9G9 E. coli 2,46 2,71 

lexA LexA repressor A0A140NHF7 E. coli 1,51 2,70 

PTAC16 
Protein plastid transcriptionally 

active 16, chloroplastic 
Q9STF2 A. thaliana 1,74 2,66 

hisC 
Histidinol-phosphate 

aminotransferase 
A0A140N8D8 E. coli 2,05 2,58 

ygiQ UPF0313 protein YgiQ A0A140N6D4 E. coli 1,84 2,57 

nsrR 
HTH-type transcriptional repressor 

NsrR 
A0A140NF33 E. coli 2,03 2,42 

mutM 
Formamidopyrimidine-DNA 

glycosylase 
A0A140N6H0 E. coli 1,98 2,32 

ECBD_2666 Porin Gram-negative type A0A140NAN5 E. coli 3,95 2,12 

ECBD_2991 PhoH family protein A0A140NAC4 E. coli 2,83 2,00 

ECBD_0243 Oligopeptidase A A0A140N6F6 E. coli 2,83 1,80 

ECBD_1563 
Putative PTS IIA-like nitrogen-

regulatory protein PtsN 
A0A140N8Q5 E. coli 2,46 -1,79 

ECBD_2279 Amidohydrolase A0A140N7L1 E. coli 3,13 -1,93 

ECBD_1922 Phosphofructokinase A0A140NB59 E. coli 2,14 -1,98 

ECBD_0661 
NADH:flavin oxidoreductase/NADH 

oxidase 
A0A140N7Z9 E. coli 2,06 -2,02 

ECBD_2590 NAD(P)H dehydrogenase (quinone) A0A140N993 E. coli 2,73 -2,04 

ECBD_2317 Aldehyde Dehydrogenase A0A140NAG2 E. coli 2,77 -2,08 

ECBD_2784 Beta-lactamase A0A140NE46 E. coli 3,37 -2,22 

ECBD_3373 
Aldehyde oxidase and xanthine 
dehydrogenase molybdopterin 

binding 

A0A140NDP2 E. coli 2,02 -2,26 
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Gene name Protein name Protein ID Origin -Log p Log2(I/NI) 

rssB Regulator of RpoS A0A140NAZ4 E. coli 2,43 -2,26 

ECBD_0641 Uncharacterized protein A0A140N7Y1 E. coli 2,29 -2,27 

ECBD_1055 
Transcriptional regulator, GntR 

family 
A0A140N8Q4 E. coli 2,33 -2,38 

aceK 
Isocitrate dehydrogenase 

kinase/phosphatase 
A0A140NHI6 E. coli 2,06 -2,60 

ECBD_1744 Trehalose-6-phosphate synthase A0A140NB73 E. coli 1,58 -2,64 

ECBD_0868 
PAS modulated sigma54 specific 

transcriptional regulator, Fis family 
A0A140N695 E. coli 1,32 -2,72 

ECBD_0229 
Transcriptional regulator, LuxR 

family 
A0A140N6Z5 E. coli 1,55 -2,85 

ECBD_1096 GCN5-related N-acetyltransferase A0A140N551 E. coli 1,25 -2,86 

ECBD_1054 Peptidoglycan-binding LysM A0A140N935 E. coli 2,02 -2,90 

ECBD_1920 Fructosamine kinase A0A140N6M2 E. coli 2,43 -2,91 

ECBD_2922 Protein TolR A0A140N9F2 E. coli 1,79 -3,03 

ECBD_1532 
Transcriptional regulator, MerR 

family 
A0A140N6B8 E. coli 1,50 -3,11 

ECBD_3372 
Molybdopterin dehydrogenase FAD-

binding 
A0A140NBF3 E. coli 1,67 -3,11 

ECBD_0227 
Efflux transporter, RND family, MFP 

subunit 
A0A140N515 E. coli 2,21 -3,13 

ECBD_3148 
2-hydroxy-3-oxopropionate 

reductase 
A0A140NC12 E. coli 2,18 -3,14 

ECBD_1047 Uncharacterized protein A0A140N7A6 E. coli 1,53 -3,25 

ECBD_0225 
Transcriptional regulator, AraC 

family 
A0A140N6E1 E. coli 1,82 -3,30 

ECBD_2574 Protein PhoH A0A140NAZ5 E. coli 3,81 -3,49 

ECBD_3223 BolA family protein A0A140NDA3 E. coli 2,16 -3,50 

ECBD_3882 Entericidin EcnAB A0A140NGM2 E. coli 2,24 -6,52 
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Supplementary figure 3 Expression levels of ArathNictabas during development generated with the 

Genevestigator tool. 
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