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Abstract—The growing demand for flexibility and cost re-
duction in the telecommunication landscape directs the focus
of service development heavily to programmability and soft-
warization. In the domain of Network Function Virtualization
(NFYV), one of the goals is to replace dedicated hardware devices
(such as switches, routers, firewalls) with software-based network
functionalities, showing comparable performance when deployed
on common servers. In this paper, we discuss how current VNF
implementation and deployment strategies impact the efficient
monitoring of their resources. In a multi-tenant, NFV-based eco-
system, different Service Providers deploy VNFs on a shared
infrastructure, where the Infrastructure Provider exposes only
VNF specific metrics and little information about the physical
hosts where the VNFs are eventually orchestrated. Especially
in the situation where datacenters are overcommitted, detecting
the risk of e.g. CPU starvation is not straight-forward, when no
information from the physical host is available. A new monitoring
technique is introduced, based on the skewness of the measured
probability distribution of the VNF resource consumption. Our
measurements show that this metric is a good indicator for the
(un)availability of the required CPU resources in the datacenter.

Index Terms—Monitoring, NFYV, Profiling, Overcommit

I. INTRODUCTION AND MOTIVATION

The transformation to a 5G-enabled telecom environment
enforces major efforts regarding the softwarization of network
functions that were hardware-based in previous generations of
telecom networks. The economics behind this transformation
are driven by a more flexible and automated deployment
of telecom services on common/cheaper hardware, saving
both capex and opex related costs. It is changing the way
telecom services work, using consumption-based, pay-by-use
cost models, enabling businesses to scale resources up and
down as demand dictates. In a 5G eco-system, different
parties are involved in the service value-chain, each with a
different business model. From a Service Provider’s view,
the goal is to provide sufficient service quality, according to
the required Service Level Agreement (SLA), with the least
resources possible. From an Infrastructure Provider’s view,
the requested resources (compute, storage, network) need to
be provided as efficient as possible. This means limiting the
under-utilization of its servers as much as possible, as decom-
missioning unneeded server racks can save a lot of money. In
this context, it is a common practice for datacenter operators
to overcommit their infrastructure, meaning allocated compute
instances may get less resources than originally requested. For
example, OpenStack has a default CPU allocation ratio of
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Fig. 1. Overcommitted datacenter, resulting in an unpredictable resource
limitation for the service and performance issues.

16:1, meaning that the scheduler allocates up to 16 virtual
cores per physical core [1]. Also Openshift (an enterprise
version of the Kubernetes container orchestration platform)
supports overcommitment for services who need less strict
QoS guarantees [2]. This can lead to a situation where different
network function processes from multiple tenants are fighting
for the same CPU resources, not getting their required share of
CPU cycles from the physical host server (a process known as
CPU starvation). Similarly, the noisy neighbour effect occurs
when an application or virtual machine consumes the majority
of available resources and causes performance issues for others
on the shared infrastructure. This is illustrated in Fig. I, where
an overcommitted datacenter cannot provide all the resources
a service has requested. The service’s actual resource usage
is limited to an unpredictable percentage of the requested
total. This causes second-order effects such as packet loss
and processing delay, showing overloaded behaviour for the
monitored service.

For security and privacy reasons, the Infrastructure Provider
will typically not export any metrics that relate to the shared
infrastructure itself, e.g. the total overload of a physical
node. Therefore it is not straight-forward for the Service
Provider to assess if the deployed service is actually getting
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Fig. 2. VNF implementation and deployment on the infrastructure. Resources
are allocated to the packet transport and packet processing tasks.

the requested resources. In the next sections, we explain how
the implementation and deployment of a network service
affects the reservation of hardware resources such as CPU.
We introduce a technique that allows an assessment of the
service’s resource (un)availability, taking into account the
Infrastructure Provider’s monitoring limitations as explained
above.

A. General VNF implementation and deployment

Advances in the domain of Network Function Virtualization
(NFV) yield Virtualized Network Functions (VNFs) that are
high-performant, deployable on common servers and scalable
to the required performance. The implementation of a VNEF, is
commonly realized by a virtualization technique (e.g. Virtual
Machine or Container). In general, the main function of a
VNF process can be summarized as getting packets from
the physical network interface, process them and optionally
forward them again. This must be done as efficient as possible,
to maximize the throughput rate. As indicated in Fig. 2, this
implies that packets need to efficiently traverse the hypervisor
and/or kernel, before the actual VNF can process them. There
are two main tasks contributing to the VNF functionality:

1) Packet transport: Transport and buffer the network pack-
ets that go in/out the VNF processes. Optimized drivers
and libraries such as DPDK, Netmap or pf_ring exist for
this purpose. They bypass the kernel and place packets
directly into a ring buffer waiting to be processed. Other
techniques like SR-IOV allow direct access from the VNF
to the hardware queues. In general, this task consumes all
resources allocated to the hypervisor, kernel or vSwitch
where the VNF is connected to, the NIC hardware and the
underlying infrastructure network.

2) Packet processing: The VNF process itself, that takes
packets of the (ring) buffer, processes them and optionally
puts them again in the buffer to be transmitted. This
consumes all allocated resources dedicated to the packet
processing functionality of the VNF itself.

Resource reservation for VNFs is done according to the
two main tasks described above. For the packet transport task,
typically one or more CPU cores are exclusively assigned to
pushing and pulling network packets from the network device
to/from the ring buffer. This CPU reservation ensures that
a dedicated and deterministic packet rate is guaranteed for
getting packets of the physical interface and making them
available to the VNF. For the packet processing task, the CPU
resources available to the VNF processes determine how fast
packets from the ring buffer can be processed and are the main
factor determining the VNF’s packet processing rate.

In this paper we focus on the required CPU resources for
the packet processing task only. We assume that the packet
transport is guaranteed by the Infrastructure Provider. The
hypervisor or underlying network is then not the bottleneck,
but the CPU resources available to the VNFs are the limiting
factor. We further assume that all VNF packet processing tasks
are implemented in user-space, allowing distinguishable and
monitorable resource usages for all related VNF processes,
not ’hidden’ as part of the kernel. This resembles an efficient
real-world deployment of an NFV-based service. Additionally,
if resources in the datacenter are likely to be overcommitted,
the VNF performance can only be guaranteed if the overcom-
mitted situation is detected early enough and reacted upon
timely (e.g. to limit SLA breaches).

In the remainder of this paper we will elaborate on the
statistical techniques that can be used to detect a resource-
bounded VNF, by only monitoring the resource use of the
VNF itself, not of the hosting physical node. These techniques
are then validated by measuring the CPU usage of a VNF on
an overcommitted physical node.

II. RESOURCE MONITORING AND PROFILING

An important use-case for the correct estimation of resource
usage is VNF profiling. This is the procedure where a relation
is derived between the service’s processing demand and its
resource usage, similar to the lower graph in Fig. I. During
VNF profiling, several metrics related to performance and re-
source consumption are measured under load of varying input
traffic. When the VNF is under-provisioned, the measured
resource consumption is not representative any more and the
profile result for this input load needs to be rejected. This also
indicates that the performance limit is reached on this physical
node and the profiling run can stop.

A. General Monitoring and Profiling Statistics

For a useful profiling result, it is important that the moni-
tored metrics have a small confidence interval, meaning that
the measured value is reproducible within pre-defined toler-
ances. Existing tools often repeat the measurement a number
of times, and then calculate the interval in which the averages



of each test run are located [3] [4]. Following the Central
Limit Theorem, the distribution of the sum (or average) of a
large number of independent, identically distributed variables
will be approximately normal, regardless of the underlying
distribution. We can therefore assume that the monitored
means of each test run are following a normal distribution,
and the sample confidence interval can be easily calculated
with known formulas from statistic theory:
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where:

X = the sample mean

S = the sample variance

N = the number of samples

t* = ty_1,1-as2 This is the (1 — a/2) quantile of the
t-distribution for (N — 1) degrees of freedom, where « is the
confidence level.

Using these formulas, the test run can stop as soon as
the calculated confidence interval is reaches a pre-defined
boundary (e.g. 95% probability that the metric is located
+2.5% around the sample mean). From Eq. (1) it can be seen
that the estimate becomes more precise as the sample size N
increases. Since we do not know the variance S of the samples
up front, we cannot predict how many samples will be needed
for a given confidence interval width. We therefore need to
re-evaluate the calculation of the confidence interval as the
number of samples increases. To gather enough samples for
a representative confidence interval can therefore be a time-
consuming operation, especially in case of large variances.

In case of a non-normal distribution, Eq. 1 is not valid any
more to calculate the (asymetric) confidence interval. In this
case, other statistical techniques such as bootstrapping can be
used [5]. When the probability is skewed away from normality,
calculation of the skewness parameter [6] is a cheaper method
to specify the asymmetry of the distribution about its mean. In
the next section, we describe how this skewness can be used
in an NFV environment to indicate resource starvation.

B. Bounded CPU Resource Monitoring

For a steady ingress traffic flow, we can assume that the
VNF processes will consume a steady CPU share, proportional
to the traffic rate. This can be derived from Fig. 2, where the
VNF processes must be able to process packets from the buffer
at the same rate as they are arriving. The assignment of CPU
cycles to the VNF process is however not continuous. The
operating system’s scheduler will actively pre-empt running
VNF processes and resume them at a later time. This to allow
all processes on the node get a share of CPU cycles over
time. For default Linux operating systems this is arranged by
the Completely Fair Scheduler (CFS). The design goal of this
scheduler is to provide each process an equal average CPU
share over time. [7]. To characterize the CPU usage of a VNF,
we can periodically monitor the incremental CPU time the
scheduler has assigned to this VNF:

Atcpu

CPU usage = 2)

sample
where:
Atcopy = CPU time counter increase between two samples
Tsample = the sample period

Some representative measurements are given in Fig. 3 and
Table 1. The bin-size is the period during which samples were
taken. When observing the different results, we can derive
following trends:

o Large bin-size and Tsqmpie yield a quasi-normal distri-
bution with relatively lower variance, as seen in Fig. 3(a).
This can be explained as a larger T'sq,p1e Tesults in a more
averaged value of consecutive CPU time increments by the
scheduler. This tends to a normal distribution as stated by
the Central Limit Theorem.

e Small bin-size and Tsqpmpie yield a right-skewed distri-
bution in case of sufficiently available resources, as seen
in Fig. 3(b). The smaller T,y samples less averaged
increments of the CPU time counter, showing more variance.
The scheduler has much headroom to add larger CPU time
increments if needed, indicated by the right skew of the
distribution.

o A left-skewed distribution indicates resource starvation, as
seen in Fig. 3(c). This can be explained by the scheduler
not being able to assign more CPU time beyond a certain
limit (also indicated in Fig. I). The CPU time increments
show a very large variation bounded by a maximum value.
The large skew to the left indicates an increased probability
that the scheduler pre-empts the VNF process too soon.

This right-limit of the bounded CPU distribution is difficult
to predict, as it is depending on how the scheduler distributes
the available CPU time to all processes on the host who share
the same CPU (depending on the amount of processes and their
priority). The skewness however, seems to be an indication
of imminent CPU overcommitment. In order to measure this
skewness, a small T4 is needed. Because of the smaller
sample time, we can also use a smaller bin-size to gather
many samples, speeding up the detection time. The order
of skewness seems to be related to the availability of CPU
resources. In the next sections we will present some test results
to quantify this.

III. TEST RESULTS

We monitor a VNF implemented as a Docker container,
which runs a user-space OvS instance (a software switch).
By configuring the OvS instance as a user-space switch, we
ensure the packet processing tasks are monitorable as indicated
in Fig. 2 and Sect. I-A. This serves a our generic model of
a VNF whose packet processing capability is CPU-bounded.
This container is deployed on a virtual machine with two
vCPUs assigned (hence the CPU usage can reach max 2.0
and we assume the host is overloaded when its load average
> 2). The total CPU time (in nanoseconds) the scheduler has
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Fig. 3. CPU usage distribution for a VNF under low (b) and high load (c). Left-skewness indicates an overcommitted host.

TABLE I
DIFFERENT CPU USAGE SAMPLING METHODS UNDER LOW AND HIGH
LOAD

host N Tsample | total mean | 95% confidence | skew-
load sample | (u) interval (relative | ness
average time to 1)
(Imin) (bin-

size)
0.78 60 2s 120s 0.233| [-2.8%, +2.8%] 0.2
0.78 100 | 10ms Is 0.245| [-1.8%, +4.6%] 2.6
2.6 60 2s 120s 0.858 | [-0.7%, +0.7%] 0.3
2.6 100 | 10ms Is 0.825| [-7.6%, +1.0%] -1.7

assigned to this container’s processes can be monitored by
checking the total CPU time for this cgroup in the pseudo-file
located here:

/sys/fs/cgroup/cpuacct/docker/CONTAINER_ID/

cpuacct.usage

This pseudo-file is available on the host or from inside the
VNF (Docker container) itself. It exports the scheduled CPU
time counter from kernel to user-space. Alternatively, total
CPU time can also be queried using the Docker REST API.
The CPU usage is derived using Eq. 2, calculating the timer
delta every Tqympre during a certain period (bin-size). When
having access to all the load metrics from the host machine,
its overcommitment is more easily detectable. The host load
averages (e.g. as reported by top) typically show how much
the host node was (over)loaded for the last 1/5/15 mins. This
is however a slow changing metric, not fit for speedy detection
of resource shortages and not generally exported by datacenter
operators. Table I indicates that, regardless of the host load
average, long-running averages of the CPU usage always yield
a quasi-normal distribution. For these monitored values, Eq. 1
can be used to calculate the confidence interval. The downside
is that a long time is needed to collect a reasonable quantity
of samples. The amount of host overload does play a role
when taking short-timed samples of the CPU usage. The faster
sampling rate yields more samples which show a skewed
probability distribution. Then the asymmetric confidence in-
terval was calculated using the the scikits.bootstrap
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Fig. 4. When the CPU share allocated to the VNF does not increase
proportionally with the input load, the host becomes overcommitted. This
is indicated by increasing negative skewness.

Python library. Figure 4 shows more in detail that the skewness
parameter is shifting to a negative value, from the moment the
CPU usage stops to increase proportionally with the input load.
This shows that skewness < 0 can be a trigger to indicate
resource unavailability in the infrastructure, before second-
order effects such as delay and loss become significant.

IV. INTEGRATION INTO THE MANO FRAMEWORK

In a 5G-enabled environment, NFV-based services are likely
to be deployed under the umbrella of a Management and Or-
chestration (MANO) framework. A VNF will be instantiated
with a defined amount of virtual resources. However, NFV
allows for the MANO framework to dynamically modify the
amount of resources allocated to a VNEF, as well as instantiate
other VNFs (scaling), as the load requires. In this context,
detecting resource starvation is useful for:

o Overload prediction: If a resource-bounded VNF is de-
tected, the VNF can be triggered to scale up, or move to
another host node, so it can receive more resources.

« Automated VNF profiling: As indicated in [8] and [9],
the MANO framework can be used to test and quantify the
performance of a VNF under bounded resources. During
this VNF profiling, multiple performance and resource con-
sumption metrics are measured under varying input load.
When the resource limit of the physical host is reached, the
measured metrics are not representative any more and the



profile result for this input load needs to be rejected. This
also indicates that the performance limit is reached on this
node and the profiling run can stop.

The detection mechanism requires that the CPU time allocated
to the VNF, or the calculated skewness itself, is exported from
the infrastructure. That way, any monitoring entity can assess
the resource usage of a VNF.

V. RELATED WORK

Monitoring the distribution of the traffic rate has been
proposed in [10]. There is empirical evidence that for small
time-frames, the distribution of the ingress traffic rate is
always log-normal. Using the gathered packet rate samples,
the parameters of this distribution can be derived. This can
give a prediction of the risk that the line rate will be reached
for a physical interface. This approach is however less usable
for virtual network interfaces, where the maximum rate is in
fact CPU-bounded, and thus a variable limit that is depending
on the assigned CPU share, as described in Sect. II-B.

An anomaly detection function is proposed in [11]. This
approach recognizes a VNF anomaly as a significant statistical
deviation from a known set of metrics, gathered during normal
VNF operation. Our approach to detect anomalous CPU-
usages does not require a pre-defined steady or normal state
of the VNF metrics, to compare future samples with. The
skewness of the resource usage distribution is an absolute
indicator, without the need for a reference sample set.

Methods for pre-deployment testing and performance as-
sessment are described in a report from the ETSI NFV group
[8]. Here it is assumed that the VNFs do not compete for
the same resources, and have a fixed and guaranteed resource
allocation during the test process. This is important: the load
generating process (or other VNFs e.g. in a multi-tenant
situation) should not compete for the same resources as the
VNF under test. This will otherwise impact the performance of
the VNF under test, and the performance test results will not be
reliable. Detecting any resource competition would be a useful
added-value in the context of a real-world deployment, where
sufficient resource allocation cannot always be guaranteed.

A VNF profiling controller has been described in [3], [4]
to automate VNF profiling. This does not include however
a detection mechanism to automatically stop the profiling
test run, when the host reaches CPU saturation. A resource
starvation detection function would be useful in this context.

VI. FUTURE WORK

This paper only investigated the CPU resource usage. Fur-
ther work will validate also the assumption that other resources
such as memory or block I/O show the same usage probability.
Also the skewness calculation needs to be optimized, so it can
be exported from an infrastructure node with the least overhead
possible.

A VNF profiling platform has been described in [3]. An
emulation environment, based on Mininet and Docker, al-
lows to deploy and test actual container-based services. The
VNFs are orchestrated unto virtual datacenters, which can be

overcommitted. This environment was used in this paper and
is further developed as part of the H2020 SGPP SONATA
project L. It will be extended with the resource-limit detection
functionality described in this paper, and will be used to test
and profile additional VNFs on multiple platforms.

VII. CONCLUSION

In a typical NFV-based service deployment, the Infrastruc-
ture Provider will not expose any info on the overcommitment
of its servers. But especially in VNF implementations, the
allocation of insufficient CPU resources can have a major
effect on the instant packet processing rate. Our experi-
ments show that the skewness of the CPU usage distribution
seems a good canary indicator to timely detect this resource
overcommitment, before any other second-order effects such
as packet loss or processing delay become significant. The
proposed detection technique needs only a short sampling time
duration (in the order of seconds). By monitoring the proposed
skewness metric, the provider will get more confidence on the
availability of sufficient resources on the infrastructure nodes
where the network service is deployed. This metric can play
a role in the context of automated VNF profiling or overload
prediction.
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