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Abstract

The knowledge of genomic DNA variations in patient samples has a high and increasing

value for human diagnostics in its broadest sense. Although many methods and sensors to

detect or quantify these variations are available or under development, the number of under-

lying physico-chemical detection principles is limited. One of these principles is the hybrid-

ization of sample target DNA versus nucleic acid probes. We introduce a novel

thermodynamics approach and develop a framework to exploit the specific detection capa-

bilities of nucleic acid hybridization, using generic principles applicable to any platform. As a

case study, we detect point mutations in the KRAS oncogene on a microarray platform. For

the given platform and hybridization conditions, we demonstrate the multiplex detection

capability of hybridization and assess the detection limit using thermodynamic consider-

ations; DNA containing point mutations in a background of wild type sequences can be iden-

tified down to at least 1% relative concentration. In order to show the clinical relevance, the

detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clini-

cal tumor samples. This enzyme-free detection framework contains the accuracy and effi-

ciency to screen for hundreds of mutations in a single run with many potential applications in

molecular diagnostics and the field of personalised medicine.

Introduction

The advent of whole-genome-sequencing has led to a tremendous increase in genetic loci that

can be employed for molecular diagnostic tests. In particular, the detection of high-resolution

genomic alterations, such as single-nucleotide variants (SNVs), are becoming progressively

important in human diagnostics. For example, several known DNA mutations have been asso-

ciated with clinical syndromes, disease prognosis or can be utilized to predict the response to

therapy. Especially modern cancer therapies have a varying efficacy across a patient
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population, which in turn can be associated to the genomic variation. A case in point are muta-

tions in the RAS oncogene family that predict patient response to EGFR-inhibiting drugs such

as panitumumab (Vectibix) and cetuximab (Erbitux) [1]. Confident and swift detection of

these single nucleotide substitutions are performed by different techniques [2–4], often non-

sequencing molecular technologies as they can be miniaturized and easily adjusted for clinical

practice. For this purpose, qPCR seems the most widely used technology in clinical laborato-

ries (see also www.fda.gov/companiondiagnostics). The idea to use hybridization based tech-

nologies, e.g. microarrays, for mutation detection is not new [5], but it is rather uncommon.

This observation seems somewhat surprising given the fact that hybridization technology is

nowadays mature, affordable, widely used and versatile towards type and number of nucleic

acid sequences to target for diagnostic tests. Moreover, hybridization as a system for SNV

detection can be seen as a simple reversible and enzyme-free process. However, for a clear

quantitative interpretation of microarray data, insight and use of the physico-chemical founda-

tions of the hybridization process turn out to be crucial, especially because diagnostic applica-

tions impose specific constraints.

Competitive hybridization of different target sequences with the probe is the culprit that

complicates the quantitative analysis. As proposed in previous work [6–8], hybridization of

nucleic acid strands is a process that can be quantitatively modelled by the theory of thermody-

namics. Physico-chemical modeling of nucleic acid hybridization enables the computation of

free energies in pairs of single stranded target DNA and probe DNA after thermodynamic

equilibrium has been reached. These free energies can in turn be used to differentiate between

standard and non-standard Watson-Crick pairings for a particular probe-target interaction.

This latter finding is especially powerful in human diagnostics where target DNA sequences

will compete for hybridization at the set of probes.

In this work, we apply the theoretical concepts of DNA thermodynamics to present a quan-

titative hybridization-based technology to account for competitive hybridization, enabling a

direct identification of SNV, and a framework to determine the detection limit. The data of

this manuscript is produced on a microarray platform but the principles are platform-free and

apply to any hybridization based sensor. To proof the concept of this new diagnostic tool, we

apply our model to the measurement of point mutations in the KRAS oncogene, an important

genetic marker for colorectal and lung cancer diagnostics and treatment stratification [9–11].

The technical challenges associated with this measurement are complicated because the set of

relevant and approved biomarkers is changing over time and comprises a panel of markers

instead of one specific mutation. Furthermore, the heterogeneity of the tissue material in the

tumor is an unknown parameter (the ratio of cancer versus non-cancer cells in a clinical sam-

ple is variable and the DNA mutations can be heterozygous or homozygous origin) and

requires a rigorous assessment of the detection limits. In addition, the tumor DNA is often of

lower quality, since it is derived from formalin-fixed paraffin-embedded (FFPE) tissue. In

order to illustrate that the hybridization-based technology is flexible and robust, and allows

multiplexing of several mutations with a desired detection limit, we have designed three con-

trolled sets of experiments:

Firstly, a typical clinical tumor sample has cancer cells (that contain the DNA mutation)

present in minority. It is usually possible to take samples with more than 10% cancer cells but

the ratio cancer/normal tissue is unknown prior the experimentation. The first aim of our

study is the development of a method based on hybridization thermodynamics to assess the

limit of detection with respect to the relative concentration of mutant DNA. For this purpose

Experiment set 1 described in Materials and Methods is generated.

Secondly, in clinical DNA diagnostics, it is often needed to check for more than one possi-

ble mutation. In our case we focus on the twelve (mutually exclusive) possible point mutations

DNA mutation hybridization framework
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in exon 2 of the KRAS gene and aim to assess each of them a single experiment. Hence we test

the parallelization capability of the method as described in Experiment set 2.

Thirdly, clinical tumor tissue are often conserved as FFPE samples. As a consequence, DNA

extracted from this FFPE material is of low quality due to cross-linking between nucleic acids

and proteins and nucleic acid fragmentation. Therefore the third and obvious goal is to test

real clinical FFPE tumor samples as described in Experiment set 3.

Materials and methods

Experimental setup

In the present study we define three sets of experiments, corresponding to the three goals men-

tioned in the introduction. The first two experimental sets consist of samples in which we use

synthetic DNA (PCR amplified gBlocks, see sample preparation) and control the ratio of

mutant over wild type. The third experimental set consists of DNA extracted from clinical

tumor samples (see sample preparation).

1. Experiment set 1 contains a dilution series of one mutation type, see Table 1, while keeping

a constant total concentration of single stranded (ss) DNA.

2. Experiment set 2 covers the 12 most commonly reported KRAS mutations, see Table 2, each

at a relative mutant concentration of 5%. A wild type sample is used as negative control.

3. Experiment set 3 consists of 7 clinical tumor samples, for which the mutant % is unknown.

FFPE colon carcinoma samples from the Center of Medical Genetics Ghent, were analyzed

in a blinded manner and compared with available sanger sequencing data. As a wild type

reference the genomic DNA of a blood sample of a healthy individual was used.

Probeset design

A microarray contains a number of predefined spots, which are local spaces on the array sur-

face that contain many physically associated ssDNA copies of a given sequence (called probe

sequence). An experiment begins with the hybridization of all the independent spots with a

provided sample, i.e. an amount of the fluorescently labeled target ssDNA in solution. After

hybridization and washing, the measurement consists of a determination of the fluorescent

intensity I of each spot, which is proportional to the amount of target that hybridized to the

corresponding probes. A probeset is the whole set of different probes which are designed and

immobilized for a particular microarray experiment.

For our microarray experiments, we constructed a custom designed probeset as follows.

Our study focuses on the region around codon 12 and 13 of exon 2 of the KRAS gene. From

this sequence, the optimal probe length is derived: based on previous experimental experience

[6] we estimated that a suited probe-target affinity would be achieved for probes of length 23

nucleotides. This results in the wild type target sequence of interest: 5’-GTTGGAGCTGGTGG
CGTAGGCAA-3’. From this sequence, a probeset was designed (see Table 3). This probeset

Table 1. Dilution series for one mutation type.

relative DNA concentration of mutant 10C!G

cmut/ctotal 0.10% 0.26% 0.64% 1.6% 4.0% 10%

Six synthetic samples in experiment set 1, containing mutation G12A (10C!G) with relative concentration

as listed, dilution factor 2.5, total concentration of 5nM.

https://doi.org/10.1371/journal.pone.0177384.t001
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Table 2. Wild type and mutants sequences.

Wild type sequence

wild type 50 � . . .CCTACGCC|ffl{zffl}
13

ACC|ffl{zffl}
12

AGCTCC. . . � 30

Mutant sequences

Nucleotide notation Amino acid notation

9C!A G12C . . .GCCACA. . .

9C!T G12S . . .GCCACT. . .

9C!G G12R . . .GCCACG. . .

10C!T G12D . . .GCCATC. . .

10C!G G12A . . .GCCAGC. . .

10C!A G12V . . .GCCAAC. . .

12C!A G13C . . .GCAACC. . .

12C!T G13S . . .GCTACC. . .

12C!G G13R . . .GCGACC. . .

13C!T G13D . . .GTCACC. . .

13C!G G13A . . .GGCACC. . .

13C!A G13V . . .GACACC. . .

This table shows the 12 most commonly reported mutation types in exon 2 of the KRAS oncogene. All 12 are

enclosed in experiment set 2 as gBlocks samples with a relative mutation amount of 5%. The first column

shows the mutation types in nucleotide notation. The numbers 9 to 13 are merely nucleotide position

counters of the probe region, they were introduced by us and are used in the Results section. The second

column shows the amino acid notation: e.g. G12C is a mutation on codon 12 changing the wild type gly-G

amino acid into cys-C. The third column shows the corresponding nucleotide sequence with the nucleotide

mutation shown in bold.

https://doi.org/10.1371/journal.pone.0177384.t002

Table 3. Wild type and mutants sequences.

target

wild type 5’-TTGCCTACGCCACCAGCTCCAAC-3’

probe

probe 3’-AACGGATGCGGTGGTCGAGGTTG-5’

1 MM 3’-AACGAATGCGGTGGTCGAGGTTG-5’

3’-AACGTATGCGGTGGTCGAGGTTG-5’

3’-AACGCATGCGGTGGTCGAGGTTG-5’

3’-AACGGTTGCGGTGGTCGAGGTTG-5’

3’-AACGGCTGCGGTGGTCGAGGTTG-5’

3’-AACGGGTGCGGTGGTCGAGGTTG-5’

. . .

2 MM 3’-AACGAATGCAGTGGTCGAGGTTG-5’

3’-AACGAATGCTGTGGTCGAGGTTG-5’

3’-AACGAATGCCGTGGTCGAGGTTG-5’

3’-AACGAATGCGATGGTCGAGGTTG-5’

3’-AACGAATGCGTTGGTCGAGGTTG-5’

3’-AACGAATGCGCTGGTCGAGGTTG-5’

. . .

This table sketches the probeset design. Probes contain zero, one or two mismatches against the wild type

target. We did not introduce mismatches that are either too close to each other or near the boundaries to

avoid extra penalty on the free energy (affinity) [7]. PM = perfect match, MM = mismatch

https://doi.org/10.1371/journal.pone.0177384.t003
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contains one perfectly matching (PM) probe against the target wild type. The rest of the

probes contain all possible single or double mismatches (1MM or 2MM) against the wild

type target, avoiding the free energy penalty coming from interaction between two mis-

matches and a mismatch located close to the edge of the helix structure [7]. From an

experimental point of view: for each probe eight identical spots are present on the microar-

ray and the median of the eight technical replicates is used as the hybridization signal I of

the probe. The hybridization signal will be the highest for spots with a perfect matching

sequencing, while the intensity will decrease depending on the number and kind of mis-

match mutations.

Sample preparation and microarray experiments

To obtain synthetic ssDNA mixtures, a PCR reaction was performed on the double-stranded

sequence-verified gBlocks Gene Fragments (IDT, Leuven, Belgium) which we will refer to as

gBlocks. The PCR reaction comprised of 0.4 μM forward (5’-GTCCTGCACCAGTAATATGC-3’),

0.4 μM reverse (5’-CTGGCGTCATAGCTGTTTCCTGTGTGAGTATTAACCTTATGTGTGACA-3’)

primers (Eurogentec, Seraing, Belgium), 2 mM MgSO4, 0.2 mM of each dNTP, 2 U Platinum

Taq DNA High-Fidelity Polymerase (Life Technologies, Ghent, Belgium), and 0.5 ng gBlocks

DNA in a final volume of 50 μl. The reverse primer has a phosphate modification at the 5’ end.

The DNA was amplified through 35 cyles (95˚C, 30 s; 55˚C, 30 s; 72˚C, 30s) with a Veriti ther-

mal cyler (Life Technologies). Amplicons were purified using Qiagen PCR purification kit

(Qiagen, Hilden, Germany), according to manufacturer’s protocol. A lambda exonuclease

treatment (Fermentas, St.Leon-Rot, Germany) was performed on the purified PCR product

according to manufacturer’s protocol. Lambda exonuclease selectively digests the 5’-phosphor-

ylated strand of double-stranded DNA. The obtained ssDNA was analysed on a FlashGel DNA

system (Lonza, Slough, UK), and concentration was measured on a NanoDrop

spectrophotometer.

For the clinical samples, the DNA was extracted using the Gentra Puregene Tissue Kit (Qia-

gen) according to manufacturer’s protocol. 100 ng DNA was used in the PCR reaction. Sam-

ples were also sequenced by Sanger sequencing for KRAS status in an ISO15189 accredited lab.

No ethical approval was asked specifically for this study since the samples were send in for

diagnostic purposes. The samples come from a biobank that are kept at the Center for Medical

Genetics, Ghent. No URL is available since this is not a public biobank. All samples were

obtained before the beginning of the study. No one of the authors were treating physicians nor

had they any interaction with the subjects.

The microarray experiments of the first experiment set used a total ssDNA concentration

of 5 nM, the second and third experimental set used 10 nM. The microarray experiments

were performed using the commercially available Agilent G2565BA scanner system. A Cya-

nine-3 (Cy-3) labeled Barcode sequence was added to the hybridization mixture (Cy3-5’-

AAAAACTGGCGTCATAGCTGTTTCCTGTGTGA-3’) to avoid direct labelling of the tar-

get sequences. The barcode was diluted in nuclease-free water to a final concentration of

0.05 μM together with ssDNA (the concentration depends on the experiment), 5 μl 10×
blocking agent and 25 μl 2× GEx hybridization buffer HI-RPM. The hybridization mixture

was centrifuged at 13000 rpm for 1 minute and each microarray of the 8×15K custom Agilent

slides was loaded with 40 μl of the mixture. The hybridization occurred in an Agilent oven at

65˚C for 17h with rotor setting 10 and the washing was performed according to the instruc-

tions of the manufacturer. Samples were analyzed using the Agilent Feature Extraction soft-

ware (GE1 v5 95 Feb07), combining dynamic auto-focus intensity measurements with

automatic background signal subtraction to improve the signal-to-noise ratio.

DNA mutation hybridization framework
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Results

Modelling of DNA thermodynamics

The clinical goal of this work is to differentiate samples containing only wild type (wt) DNA

from samples consisting of a mixture of wild type with a minority of one of the mutant (mut)
sequences, see Table 2. In the former case of a pure wild type sample, the microarray intensity

I for each probe (microarray spot) can be modeled by the theory of the Langmuir isotherm

[12–14]:

Iwt ¼ Acwte
� DG=RT ð1Þ

where A is a device dependent optical proportionality factor, R the ideal gas constant, T the

experimental temperature and most importantly ΔG the probe-target affinity. For a sample

with a mix of wild type and mutant DNA, competitive hybridization to each probe occurs and

leads to

Imix ¼ Iwt þ Imut

¼ Aðcwte� DGwt=RT þ cmute� DGmut=RTÞ
ð2Þ

where the free energies ΔGwt and ΔGmut are both with respect to the same probe under

consideration.

We apply this theory to extract sequence information from the intensity data since ΔG is

sequence dependent. Hereto we perform one reference measurement with a known wild type

sample and use this reference data in a scatter plot for each test sample. In these plots each

point corresponds to one probe from the probeset (Table 3). When the test sample is also

purely wild type, the resulting data points will lie on the diagonal identity line; when the sam-

ple is a wild type—mutant mix, the result will typically look like those presented in Fig 1. Since

the mutant is present in minority, the contribution of the second term in Eq (2) will nearly

always be negligible. This leads to a vast amount of data points on the identity diagonal (black

circles in Fig 1). However, some of the probes will have a nucleotide variation that matches the

mutant both in base position and type (Watson-Crick), which results in an increased affinity

towards the mutant DNA, i.e. −ΔGmut > −ΔGwt. These probes (red squares in Fig 1) will have

an increased intensity. Finally there are probes with a nucleotide variation that matches the

mutant in position but not in type (blue triangles in Fig 1). We name these three types of data

points respectively the reference branch, the mutant branch and the side branch. More details

on this branched structure can be found in Hadiwikarta et al. [15].

The information in this plot type leads to two practical consequences. Firstly, it provides

quantitative information on the detection limit of a mutant in minority, secondly it can be

used to perform hypothesis testing for presence of a mutant. The following two sections elabo-

rate on this.

Statistical testing for the presence of a mutant

To detect a mutation in a tumor sample, we need a statistical test to accept or reject each of the

hypotheses on the presence of a specific mutation. By design we know the sequences of all

microarray probes, each of the hypotheses can be associated with a subset of those probes

which contain a specific mutation type and position. (Note that in our case the subsets will

always contain more than one probe since the probeset of Table 3 includes probes with two

mutations.) If the data points of a subset all fall in the reference branch, the hypothesis is falsi-

fied, i.e. this mutation is not present in the sample. Else, if the data points have an increased

intensity over the reference branch and form the most deviating branch like the squares in

DNA mutation hybridization framework
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Fig 1, this specific mutation type and position is present in the sample. Otherwise, if the data

points are increased in intensity but are not the most deviating ones, like the triangles in Fig 1,

the mutations position is confirmed but its base type hypothesis is falsified. For a practical

implementation we perform locally weighted scatterplot smoothing (LOWESS) of the refer-

ence branch and calculate the vertical distance of all subset points to the reference line followed

by a Wilcoxon rank-sum test. (In Fig 1 the LOWESS of the reference branch is indicated as a

solid line called the reference line.) The Wilcoxon rank-sum is a conservative test, making very

Fig 1. Representative scatter plot: The intensity values from a mixture sample containing a mutant in minority (Imix,

y-axis) are plotted versus the intensity of a reference sample containing only wild type DNA (Iwt, x-axis). A curve is

drawn through the reference branch (black circles) using LOWESS smoothing and is called the reference line. The most

deviating branch (mutation branch, red squares) contains information about the mismatching nucleotide of the mutant. Probes

that do not match the nucleotide of the mutant but have nucleotide variations at the same position can be found in between

(side branches). The distance ρ is the difference between the mutation and reference branch and is a visual representation of

the change in free energy when a nucleotide mismatch mutation is introduced.

https://doi.org/10.1371/journal.pone.0177384.g001
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few assumptions about the data. There is room for statistical fine tuning, but the resulting p-

values suffice for the present needs. In practice the p-values can be extremely small, therefore

we present them in a logarithmic format throughout the manuscript and define p0 � −ln(p),

thus a high p0-value indicates a highly significant result.

Analysis framework for detection limit

In order to screen for the presence of a mutant, the mutation branch needs to be detectable

above the reference branch. Therefore a firm understanding of this relation is key to derive the

detection limit of a mutant in minority. Hereto, we denote the logarithm of this distance as ρ,

hence

r ¼ ln
Imix

Iwt

� �

ð3Þ

From Eqs (1) and (2) one can derive the theoretical expression

r ¼ ln 1þ
cmut

cwt
e� DDG=RT

� �

ð4Þ

where ΔΔG = ΔGmut − ΔGwt. To first order, according to the nearest neighbor model for free

energy of DNA, ΔΔG is equal for all probes of the mutation branch and corresponds to the spe-

cific affinity penalty of the mismatching nucleotide of the mutant [7]. Moreover, in Eq (4) the

device dependent factor A canceled out making ρ a purely physico-chemical parameter.

Finally, one can rewrite the equation as

er � 1 ¼
cmut

cwt
e� DDG=RT ð5Þ

In this expression we find a linear relation with the relative mutant abundance cmut/cwt,

with intercept zero and a simple proportionality factor which is the physico-chemical impact

of the nucleotide mutation e−ΔΔG/RT. We will next show the validity of this relation experimen-

tally and use it to derive a limit of detection for the KRAS mutations of Table 2. Note that

although the theory predicts that the distance ρ is equal for all probes of the mutation branch,

the experimental results will show some deviations between the data points. This is due to

experimental conditions (not fully equilibrated system) and due to interaction effects of nucle-

otide mismatches [7]. In practice we are interested in ρ as a distance measure for the mutation

branch as a whole, therefore in the rest of this paper we use the median value of all data points

of the mutant branch and call this the distance ρ of the branch.

Assessing the limit of detection for relative concentrations of mutant

DNA

We next present experimental evidence that the vertical distance ρ between the mutation

branch and the reference line is quantitatively related to the relative abundance of the

mutant, indicated in %. In our hybridization model, this distance determines the detectabil-

ity of a mutation, and the corresponding relative concentration cmut/cwt is mutation depen-

dent. In order to get an estimate of the detection limit for each mutation, we start by

analyzing experiment set 1: the dilutions series of mutation 10C!G (or G12A in amino acid

notation) presented in Table 1. The results of these six experiments are presented in Fig 2,

which clearly show a deviating mutation branch in each subplot. We expect that the muta-

tion branch distance relates to the relative concentration cmut/cwt following Eq 5. The dilu-

tions series experiment shows the validity of this relation as can be seen in Fig 3. The

DNA mutation hybridization framework
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Fig 2. Scatter plot intensities of the 10C!G KRAS mutant using multiple relative concentrations: The intensity values from the mixed samples

(wild type with 10C!G mutant; G12A in amino acid notation) are shown on the y-axis, while the intensity values of the wild type reference are

shown on the x-axis. Data points below background intensity are removed. The plots show a decreasing relative mutant concentration, dilution factor 2.5.

The relative concentration, cmut/ctotal, is indicated as a percentage on top of each graph.

https://doi.org/10.1371/journal.pone.0177384.g002
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Figure confirms that the profile passes through the origin and is linear to a degree sufficient

for our further analysis. Hence the profile is determined when a single measurement point is

available.

Next we apply the statistical test, described previously, on experiment set 1. For each sam-

ple, 12 mutations are possible: 3 on nucleotide position 9, 10, 12 and 13 (see Table 2). For

each possible mutation the hypothesis is tested whether its corresponding mutation branch

is deviating significantly from the reference branch, resulting in a p-value. The results are

shown visually in Fig 4 and also a summary is provided in S1 Table for reference. For each

sample a high statistical significance for a mutant hypothesis on position 10 is found. The

associated point mutation leads to the correct identification of mutant 10C!G for each sam-

ple. Note that, at position 10, the mutation branch distance ρ is decreasing with decreasing

mutant content as expected, but the statistical significance is untouched and remains invari-

ant over the whole concentration range. Therefore, the statistical results do not deviate from

Fig 3. A concentration profile of 10C!G (G12A amino acid mutation) based on Eq 5. The dashed line is a linear

fit with offset zero and a slope which corresponds to exp(−ΔΔG/RT).

https://doi.org/10.1371/journal.pone.0177384.g003

DNA mutation hybridization framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0177384 May 25, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0177384.g003
https://doi.org/10.1371/journal.pone.0177384


the physical observations that we performed previously and this provides strong confidence

in the method.

The concentration range results lead to two important conclusions. Firstly, the mutation

10C!G is still detectable at a relative concentration cmut/ctotal = 0.1% (as confirmed by the statis-

tical test). Secondly, the data in the 0.1% plot give a value of ρ� 0.5, which we can subsequently

use as the threshold ρt for detection. Hence, we can infer detection limits for other mutations by

a measurement of ρ at a single concentration, which we do in the following section.

Assessing the limit of detection for multiple mutations

To check for more than one mutation in a hybridization experiment, we tested the 12 most

commonly reported KRAS mutations at a relative concentration of 5% (see Table 2) and used

a wild type sample as negative control. The result is shown in Fig 5, which clearly shows that

the concentration profile that corresponds to the weakest ΔΔG (which is the smallest slope)

still intersects with the threshold at the point cmut/cwt� 0.008< 1%. This important result

means that the detection limit of the weakest mutation is well below 1%.

We next confirm this result using statistical analysis, using the same approach we applied

on experimental set 1 previously (Fig 4). As illustrated in Fig 6, each sample shows exactly one

high statistical significance and for each sample the correct mutant is retrieved. The statistical

results of the most significant nucleotide positions are also summarized in S2 Table.

Fig 4. Pie diagrams of the statistical results of experiment set 1: Concentration range experiment with gBlocks samples. Each diagram

corresponds to a relative concentration of the 10C!G mutant (G12A in amino acid notation) in the samples. The size of each pie is proportional to the

vertical distance between the mutation branch and reference branch (ρ). The colour of each pie diagram represents the statistical significance: p-values

below 0.01 are shown in blue while p-values above 0.01 are shown in orange. All values can be found in S1 Table for reference.

https://doi.org/10.1371/journal.pone.0177384.g004
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Application to clinical samples

We analyzed seven blind coded clinical FFPE tumor samples for which sanger sequencing data

of the KRAS status was available. The samples were treated as described in Materials and

Methods and statistically analyzed leading to the results in S3 Table and Fig 7. For each of the

seven samples the p0-values indicated one clear mutation. After decoding of the samples, the

results of the last column of the table appeared in full agreement with sequencing data.

Summary of statistical tests

As a summary of the statistical tests we first note that in each sample the correct mutant was

retrieved as the most statistically significant hypothesis. As a further analysis we combine all

experimental results and present them in Fig 8. Here, for each sample, the p0-value of the most

Fig 5. Plot of concentration profile similar to Fig 3 for all 12 KRAS mutations, based on experiment set 2.

The profile is known to be linear, hence a single experiment per mutation type suffices. A higher slope corresponds

to a stronger mutation. The bold dotted line is 10C!G (G12A in amino acid notation), the same mutation we used in

Fig 3. The horizontal dashed line corresponds to the threshold value ρt� 0.5 from which we can derive the

concentration threshold for each mutation.

https://doi.org/10.1371/journal.pone.0177384.g005
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Fig 6. Pie diagrams of the statistical results of experiment set 2: 12 KRAS samples with each mutant present

at 5% concentration. The size of each pie is proportional to the vertical distance between the mutation branch and

reference branch (ρ). The colour of each pie diagram represents the statistical significance: p-values below 0.01 are

shown in blue while p-values above 0.01 are shown in orange. All values can be found in S2 Table for reference.

https://doi.org/10.1371/journal.pone.0177384.g006
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significant hypothesis (the true mutation) is indicated and compared with the p0-values of the

other hypotheses (the other three nucleotides). This figure shows a clear gap between the cor-

rect and false hypotheses indicating that it is not difficult to set a significance threshold to dis-

tinguish true from false positives. As an extra test, the p0-values of the WT experiments (nr. 19

and 27) are also well below those of the mutant hypotheses in mutant-containing samples.

Discussion

In this paper we developed a framework to assess the capability of hybridization to detect

point mutations present in a small percentage in mixed samples. We use a solid support

Fig 7. Pie diagrams of the statistical results of experiment set 3: Blinded clinical samples. The size of each pie is proportional to the vertical distance

between the mutation branch and reference branch (ρ). The colour of each pie diagram represents the statistical significance: p-values below 0.01 are shown

in blue while p-values above 0.01 are shown in orange. All values can be found in S3 Table for reference.

https://doi.org/10.1371/journal.pone.0177384.g007
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nucleic acid platform and consider 12 clinically highly relevant hotspot point mutations in

exon 2 of the KRAS oncogene. Clinical samples for which this test could be used always contain

a mixture of cancer and non-cancer cells, the former is in minority and is a potential carrier of

a point mutation. Using a dilution series with a decreasing amount of mutant DNA we first

show a quantitative agreement between measured values and a suited thermodynamics theory.

Using this agreement we next determine the detection limit of mutant DNA without the need

to perform dilution series for each mutation. The results show that each mutation can be

detected at levels at least as low as 1% of mutant, which makes it clinically highly relevant.

The current manuscript builds on previous work on DNA hybridization [6–8, 12, 15, 16],

the novelty of the presented work is in the use of DNA thermodynamics in the design of an

assay capable to detect multiple and specific mutations with a well-defined limit of detection

derived from physical principles and capable to perform this on clinical FFPE samples. The

example of the FFPE samples illustrates that our method can deal with the limited quality and

heterogeneity of the tissue material. Due to the intrinsic parallel character of the microarray

technology, this approach makes it possible to screen for hundreds of different point muta-

tions in a single run.

This work shows that enzyme-free detection of point mutations via DNA hybridization is a

highly quantitative technique with an accuracy, robustness and parallelization suited for clini-

cal applications. The results also support and complement the research efforts in hybridiza-

tion-based methods [17–27]. By using the concepts of DNA thermodynamics upon

hybridization, the current technique has the advantage that mutations with low relative abun-

dance can be detected in a higher parallelization level than PCR-based methods. In compari-

son to sequencing techniques, we can state that the process of hybridization is a very

elementary reaction in which no enzymes are involved, which opens doors for further low-

tech detection assays at physiological conditions [28]. Last but not least, the framework

Fig 8. A summary of the statistical results of all three experiment sets. The p0-value of the most significant hypothesis (the true mutation) is indicated by

a square. The p0-values of all the hypotheses at the other three nucleotides are indicated with a dot. Raw data can be found in S1, S2 and S3 Tables.

https://doi.org/10.1371/journal.pone.0177384.g008
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presented in this paper is platform-free and shows the advantage of a good description of the

underlying physico-chemical principles.
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