Advanced search
1 file | 1.12 MB

Non-negative matrix factorization with mixture of Itakura-Saito divergence for sar images

Chi Liu (UGent) , Wenzhi Liao (UGent) , Hengchao Li and Wilfried Philips (UGent)
Author
Organization
Keywords
Non-negative matrix factorization (NMF), synthetic aperture radar (SAR), dimension reduction, Itakura-Saito divergence, mixture model

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.12 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Liu, Chi, Wenzhi Liao, Hengchao Li, and Wilfried Philips. 2017. “Non-negative Matrix Factorization with Mixture of Itakura-Saito Divergence for Sar Images.” In 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) , 779–782. IEEE: IEEE Geoscience and Remote Sensing Society.
APA
Liu, Chi, Liao, W., Li, H., & Philips, W. (2017). Non-negative matrix factorization with mixture of Itakura-Saito divergence for sar images. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) (pp. 779–782). Presented at the IEEE International Geoscience & Remote Sensing Symposium , IEEE: IEEE Geoscience and Remote Sensing Society.
Vancouver
1.
Liu C, Liao W, Li H, Philips W. Non-negative matrix factorization with mixture of Itakura-Saito divergence for sar images. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) . IEEE: IEEE Geoscience and Remote Sensing Society; 2017. p. 779–82.
MLA
Liu, Chi, Wenzhi Liao, Hengchao Li, et al. “Non-negative Matrix Factorization with Mixture of Itakura-Saito Divergence for Sar Images.” 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) . IEEE: IEEE Geoscience and Remote Sensing Society, 2017. 779–782. Print.
@inproceedings{8523657,
  author       = {Liu, Chi and Liao, Wenzhi and Li, Hengchao and Philips, Wilfried},
  booktitle    = {2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) },
  isbn         = {9781509049516},
  issn         = {2153-6996},
  keyword      = {Non-negative matrix factorization (NMF),synthetic aperture radar (SAR),dimension reduction,Itakura-Saito divergence,mixture model},
  language     = {eng},
  location     = {Fort Worth, Texas, USA},
  pages        = {779--782},
  publisher    = {IEEE Geoscience and Remote Sensing Society},
  title        = {Non-negative matrix factorization with mixture of Itakura-Saito divergence for sar images},
  year         = {2017},
}

Web of Science
Times cited: