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General Introduction 

In the last century, our globe has experienced many changes. Since the 1970s, the human 

population size has doubled to over 7.3 billion, and is growing at a rate of approximately 

200,000 per day. Population growth will add an estimated 2.4 billion people to the planet by 

the year 2050 (Ehrlich and Harte 2015). Most of the growth will occur in developing 

countries that are already struggling to feed their populations and where the added population 

pressure will push the poor even further onto marginalized land and into urban areas (Alam et 

al. 2016; Wahlqvist 2016). Today close to one billion people in developing countries suffer 

from chronic undernutrition, mainly trying to survive on inadequate starch-based diets. A 

further two billion in emerging countries aspire to eat more diverse and nutritious diets- with 

more meat, milk and eggs, at the top of their wish-lists. As well as being rich sources of high 

quality protein, meat and milk also supply a range of essential micro-nutrients (Reynolds et al. 

2015), many of which are scarce or absent in plant-based diets. Consumption of adequate 

amounts of these nutrients is essential if children are to be healthy and grow and develop 

normally, going on to fulfill their potential as healthy and productive members of the society. 

People in the developed world can enjoy fresh food at a cost of approximately 12-15% of 

their income (Chattopadhyay et al. 217; Plumer 2015). Unfortunately, due to poverty and lack 

of technical innovation, people in less-developed countries pay as much as 80% of their 

income for food (Chattopadhyay et al. 217; Plumer 2015). It is no wonder that the cycle of 

poverty continues (Alam 2017; Jalal et al. 2015).  Besides the problem to feed its inhabitants, 

our planet currently faces other challenges like for example pollution of the environment and 

the concomitant climate change, the emergence of antibiotic resistance, and the daily decrease 

of the amount of arable land.  Each year, approximately 5-10 million hectares of arable land 

become unusable due to severe soil degradation caused predominantly by deforestation, 

overgrazing, and bad agricultural practices (Islam el al. 2015; Motesharezadeh et al. 2017). 

Another 0.3-1.5 million hectares become unproductive due to salinization and water logging: 

not surprisingly, two-thirds of degraded land is located in South Asia and Africa, where the 

majority of the world‘s food insecure live (Smith et al. 2016). Serious attention needs to be 

addressed to restoring these ecosystems, creating/enforcing appropriate policies, and 

educating farmers on proper integrated farming techniques (Eisler et al. 2014). The health and 

safety of our ecosystem (plants, livestock, wildlife, and marine life) are closely associated 

with human health. The areas of One Health, Food Safety, and Food Security are all 

imbedded within this generally accepted concept (Reynolds et al. 2015). 
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The global food system could be defined as the activities involved in producing, processing 

and distributing food to feed the world (Wahlqvist 2016). It links national and local food 

systems on a global scale through trade, technology, knowledge sharing, labor and capital 

exchange (BeVier 2012). For over thousand years, food production has evolved from the 

primitive utilization of vegetative plants and livestock domestication to the precision farming 

operations of industrialized agriculture we currently know. Despite increasing yields, the 

global food system has failed to make the world food secure. According to the FAO, to meet 

the food demand to feed a global population forecasted to be 9.7 billion by the year 2050, a 

60% increase in global agricultural production is necessary relative to 2005 (FAO 2007). And 

this challenge has to be met in the context of increasing resource scarcities while minimizing 

food safety risks and adapting to/mitigating climate change. It will be crucial to develop win-

win solutions that bring together the primary sector and the food industry, considering 

nutrition, health, water and energy efficiency, zero waste and environmental sustainability in a 

holistic way. Besides the increased implementation of innovative tools and technologies, 

especially in third world countries the principal focus should be to optimally make use of 

basic strategies that already have proven their added value. Genetics, reproduction and other 

basic health technologies are highly leveraged interventions. Scientific advancements in these 

areas should also be open for poor farmers in the less developed world since they will 

certainly contribute in the decrease of the human suffering we face today.  

 1.1 Human Population and Nutrition in Bangladesh 

Bangladesh is one of the world's most densely populated countries with 161 million people 

(BBS 2016) in an area of only 147 thousands km
2
. It has also the highest rates of population 

growth in the world. Early marriage and short birth interval are the important causes of this 

high population growth (Streatfield and Karar 2008). One important indicator of early 

marriage is the proportion of teenage women (aged 15-19 years) currently married. 

Bangladesh has maintained one of the highest proportions - close to half - of teenage marriage 

in the world, matched only with a few West African countries (Streatfield and Karar 2008). 

Currently, the average age at the first birth 18.1 years in Bangladesh (Khan et al. 2016), where 

this is 28.5 years in Belgium and 29.2 years in Germany (CIA 2017). Moreover, majority of 

women practice short birth interval that further aggravate the situation of population growth. 

The high population growth is creating unemployment, poverty, food insecurity and 

undernutrition of people in Bangladesh. 
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Adequate nutrition is a precondition for attaining good health, maintaining quality life and 

accelerating national productivity. But undernutrition remains a severe problem in Bangladesh 

(Alam 2017; Fiedler 2014; Yosef et al. 2015). A variety of factors cause this undernutrition, 

the two most prominent being poverty and food insecurity. These two problems limit one‘s 

ability to live on a diet that provides all the nutrients necessary for healthy living. The 

prevalence of undernutrition is relatively higher among rural, illiterate and early married 

women and among those with a low standard of living (Hossain et al. 2012). Undernutrition 

can result in adverse pregnancy outcomes and underweight mothers are more likely to give 

births to babies with relatively lower weight (Ehrenberg et al. 2003). Such babies achieve 

poor psychological health and possess higher risks of mortality, and in the case of survival, 

higher risks of having metabolic diseases (Rayhan and Hayat 2006). 

Importantly, although often overlooked, milk and meat including other animal products play 

an important role in achieving food security for several reasons. First, animal products are an 

important source of high quality, balanced, and highly bioavailable protein and numerous 

critical micronutrients, including iron, zinc, and vitamins B-12 and A, many of which are 

deficient in a large portion of the world‘s population (Randolph et al. 2007). Thus, moderate 

consumption of animal-sourced foods plays an important role in achieving a nutritionally 

balanced diet, especially in the developing world (Na et al. 2016; Randolph et al. 2007). 

Second, because they are recognized as high-quality foods, demand for animal products is 

almost certain to continue to increase dramatically (Herrero et al. 2010; Na et al. 2016). The 

drivers of the increased demand for animal products include not only population growth but 

also increased affluence, especially in the developing world, where most of the increase in 

population will occur. Third, farm animals are critical to a sustainable agricultural system and 

especially for smallholders who comprise most of the world‘s farmers (Herrero et al. 2010; 

Randolph et al. 2007). Farm animals contribute not only a source of high-quality food that 

improves nutritional status but also additional resources such as manure for fertilizer, on-farm 

power, and other by-products, and, in addition, provide economic diversification and risk 

distribution (Leroy and Frongillo 2007; Smith et al. 2013). Moreover, increased efficiencies in 

the past several decades through genetic selection and improved management technologies 

has saved a large amount of resources, including water and land, and have substantially 

reduced the carbon footprint of animal production (Herrero et al. 2010; Smith et al. 2013). 

Currently, two-thirds of the labor force in the less-developed world is focused on farming and 

livestock, which is in great contrast to the <1% of the population in the developed world 
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working in agriculture (Eisler et al. 2014; Tedeschi et al. 2015). In agriculture, milk 

production is a livestock enterprise in which smallholder farmers in Bangladesh can 

successfully engage in order to improve their livelihoods (Shamsuddin et al. 2006). Regular 

milk sales also allow them to move from subsistence to a market based income (Rabby et al. 

2013). Therefore, livestock improvement can represent an important pathway out of poverty 

in Bangadesh, since most of the poorest people rearing animals (Shamsuddin et al. 2006). At 

the currently low levels of daily income, traditional products and services for livestock are 

simply not available or are too costly. Indigenous dairy cows in Bangladesh produce 2.5 

litre/day of milk (Hall et al. 2012), yet in the developed world, cows can produce more than 

tenfold this amount. The productivity enhancement of livestock will most certainly advance 

people out of poverty, as well as to provide a source of nutrition to feed a growing population. 

Biotechnology will provide the mechanism to effectuate the changes required for the less 

developed world.   

1.2 Introduction to Dairy in Bangladesh 

The economy of Bangladesh is based on agriculture: about two-thirds of the labour force 

engaged in it (Fiedler 2014; Lazar et al. 2015; Yosef et al. 2015). The dairy sector is an 

integral part of agriculture and in Bangladesh is characterized by small-scale, widely 

dispersed and unorganized dairy cattle keepers, low productivity, an inadequate production 

inputs and services, and a lack of professional management (Quddus 2012; Uddin et al. 2010). 

Lower genetic merit, poor nutrition and high prevalence of infectious diseases are the 

important caused of the low productivity of the cattle in Bangladesh (Hall et al. 2012; Quddus 

2012). In addition, the almost total lack of understanding of the nutritional needs of dairy 

animals, both among farmers and support staff, means that dairy cattle have highly 

insufficient sources of nourishment, which has a direct and detrimental impact on animal 

welfare, milk production, fertility and, notably, profitability. There is a long tradition of 

dairying, with demand driven by a very strong cultural (for example sacrifice of animals 

during religious festivals and circumcision of children) background in Bangladesh (Sultana et 

al. 2016). The other key drivers of demand are increasing nutritional awareness, population 

growth, increases in income and changes in feeding habits (Fiedler 2014). Appropriate 

research and dairy development interventions are needed to improve dairy productivity and 

ultimately to improve rural livelihoods. 
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The South Asian countries including Bangladesh share common milk production systems, 

consumption patterns, milk collection and marketing (FAO 2007; Saadullah 2001). The dairy 

farming systems in these countries are part of a crop-livestock mixed agricultural system. 

There are four major models for dairy production in Bangladesh, based on farm input and 

output levels (Table 1). The dairy models are based on the needs of smallholders (1-30 cattle) 

because they play a key role in both the formal and informal dairy markets in Bangladesh 

(Haque 2009). About 95% of the dairy farmers are smallholders in Bangladesh (Uddin et al. 

2011). They supply 100% of the milk for the informal market and 75% for the formal or 

organized market (Haque 2009). Farms having more than 30 cattle are considered as 

commercial producer in Bangladesh, and they mostly house cross-bred with Holstein-

Friesian, Jersey and Sahiwal. The major characteristics of the smallholder dairy systems can 

be summarized as follows. 

Table 1.  Different dairy production systems based on input-output (Uddin et al. 2011). 

Description of 

farming systems 

Traditional 

subsistence 

Extensive Intensive Bathan* 

System boundary Rural subsistence Rural to peri-urban Peri-urban Peri-urban 

(cooperatives) 

Breed Local, non-

descript, 

indigenous 

Superior local, few 

a cross-breed with 

Jersey, Sahiwal 

Superior local, 

mostly cross-bred 

with HF, Jersey, 

Sahiwal 

Mostly cross-bred 

with HF and 

Jersey, very few 

Pabna milking 

cows (local) 

Herd size 1–6 1–6 2–10 2–30 

Milk yield 

(litres/cow/ 

lactation) 

600–700 600–800 1,000–1,400 1,200–1,800 

Feeding system Cut and carry; 

tethering 

Periodic grazing on 

public land 

Stall feeding 

supplemented   by 

concentrate and 

green fodder 

Six-month stall 

feeding followed 

by six-month 

bathan feeding 

Market access Limited Access to spot 

market only 

Good Good 

Access to service 

(veterinary and 

AI) 

Limited access Access with high 

costs 

Good access Good access with 

low cost 

*Bathan is a common pasture land where the animals are kept for a major period of a year. 

There are two types of marketing models for milk in Bangladesh (Figure 1). First, the 

traditional model is characterized by high variability in milk price, low milk quality, poor 

market access, and poor access to veterinary services and extension as well as to artificial 
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insemination services. In the traditional model, smallholder milk producers sell their milk 

directly to spot markets, Ghosh (middlemen), sweetmeat shops, tea stalls, consumers or 

neighbours without written contracts. Usually, in this kind of market, a very small volume of 

milk (less than 100 litres per day) is traded, and the farmers don‘t have the burgaining power 

to sell their milk. Middlemen may provide loans to smallholders in some areas, at interest 

rates of up to 20% per month (Haque 2009), and in some cases middlemen will pay the 

smallholders in advance, though in return the farmers are obliged to sell their milk at a 

discounted price. Therefore, the milk price varies more than the national and global market 

situation. 

 

Figure 1. Traditional and Cooperative milk marketing model (Adapted from Haque, 2009). 

Second milk marketing process is the Cooperative model. In this model, milk is collected by 

members of a cooperative society (organized in a village), then pasteurized, processed and 

distributed to all major cities in the country (Haque 2009; MilkVita 2008). This market model 

differs from traditional models in that it has only a very small or no price gap throughout the 

country and it provides milk quality and market assurance. It also provides services such as 

animal health care, artificial insemination and extension free of charge or at minimal cost. The 

cooperative dairy model has played a significant role in the country‘s overall dairy 

development (Haque 2009; MilkVita 2008). The scenario shows that the dairy sector is 
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dominated by smallholder dairy farmers and traditional marketing, where the import of milk 

powder plays a significant role in meeting domestic demand. Cooperative dairying is 

dominant in India, whereas contract farming is dominant in Pakistan.  

1.3 Dairy Production and Consumption in Bangladesh 

Bangladesh has achieved a vigorous growth in dairy with a tripling of milk production during 

the last decade (DLS 2016). This high growth of the milk production is due to the increasing 

number of crossbred dairy cows and the implementation of different dairy development 

programmes. The productivity of local cows, however, has not increased. Currently, there are 

10 million dairy cattle, including 4 million cross-breeds, produce 7.27 million tons of milk 

(DLS 2016). In terms of the regional share, the northern part of Bangladesh (one third of the 

total area) produces nearly half of the country‘s milk, as a result of the availability of fodder 

and the establishment of several dairy development programmes (Hemme et al. 2004). 

Although milk production is increasing in Bangladesh, the gap between milk production and 

consumption is still high. This is only due to very high population growth. The per capita 

availability of milk in Bangladesh is 125ml/day (DLS 2016), against the requirement of 

250ml/day. Table 2 summarizes the current milk and meat production and consumption status 

in Bangladesh. 

Table 2.  Milk and meat production and consumption status in Bangladesh. 

Products 
In million metric tons 

Remarks 
Demand Production Deficiency 

Milk 14.69 7.27 7.42 Demand = population × 250ml/day/head 

Meat 7.05 6.15 0.90 Demand = population × 120gm/day/head 

 

The consumption of milk in many South Asian countries, including Bangladesh, is 

substantially increasing because of the growing economies of most of the Asian countries and 

changing dietary patterns in favour of more dairy products (Owais et al. 2017; Randolph et al. 

2007). The rise in purchasing power of certain classes of consumers, leads to increasing 

demands for high-quality milk and milk products, which offer enormous scope for dairy 

farmers to provide processed products (Rao and Odermatt 2006). Based on the consideration 

that 161 million people in Bangladesh should consume at least 250ml milk per day, the annual 

milk demand is about 14.69 million tons. Therefore, meeting potential milk demand is a huge 

national task and the question arises how well-positioned Bangladesh is to meet this demand. 
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School milk programmes have proven to be an effective means to reduce undernutrition 

(Owais et al. 2017). Combining the strengths of dairying as a powerful means of enhancing 

rural livelihoods and of rural school milk programmes in reducing undernutrition, this 

programme aims at developing and demonstrating innovative models to improve poor 

peoples‘ livelihoods and child nutrition, especially in rural areas (Owais el al. 2017). 

1.4 Why Metabolic Programming? 

In humans, there has been an explosion of data showing that in utero undernutrition is 

associated with increased risk for insulin resistance, obesity, and cardiovascular disease 

during adult life. The process by which early undernutrition at critical stages of development 

leads to permanent changes in tissue structure and function is known as intrauterine 

programming (Fowden et al. 2006). The global prevalence of metabolic diseases in adult life 

is increasing rapidly and their associated complications bring high morbidity and mortality 

(Lozano et al. 2013). Bangladesh is also undergoing demographic transition with a rapidly 

rising type 2 diabetes prevalence, increasing from 4% in 1990 to 10% in 2010 and projected 

to have over 10 million people with type 2 diabetes by 2030 (Finer et al. 2016), the concept of 

metabolic programming is considered a potential contributor to this rising prevalence 

(Thurner et al. 2013). Moreover, the tradition of early (teenage) marriage and short birth 

interval in human population of Bangladesh is being associated with metabolic diseases in 

later life (Khan et al. 2016; Streatfield and Karar 2008). However, the phenomenon of the 

adverse pregnancy oucomes in terms of later life is not clear. Therefore, there is immense 

importance how the intrauterine nutritional situation related to dam growth (early marriage) 

and lactation (short birth interval) during pregnancy causing metabolic alterations in neonatal 

period. Furthermore, intrauterine programming is also a potential phenomenon in dairy cattle, 

which evolved from low to high milk production per year over a period of last decades. The 

condition of cattle in Bangladesh is further aggravated by the poor quality and lower 

availability of animal nutrition. 

1.5 Implications for Human Health/Dairy Production 

Metabolic programming is an emerging area of science dealing with the origins of non-

communicable diseases. Impaired development due to suboptimal intrauterine conditions may 

cause short term as well as long term effects on the function of the organisms subsequently 

determining the health and disease in later life (Kiani and Nielsen 2011). Epigenetics - a 

change in phenotype without a change in genotype - set as relatively innovative sciences in 
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the field is thought to bring significant extra value in animal production. So far, the 

knowledge about developmental programming and its application in the dairy industry are to 

the best of our knowledge rather scarce. Therefore, the present thesis describes the effect of 

metabolic programming in terms of gestation during dam growth and lactation in dairy cattle. 

Reading this thesis is recommended to all physicians, epidemiologists, nutritionists, animal 

scientist, endocrinologists and health policy makers. 
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Metabolic Programming in Dairy Cattle: A Review 

The area of metabolic programming is of great interest to animal production. Metabolic 

programming in the context of livestock production refers to events specific to the embryo or 

fetus, independent of postnatal maternal or other confounding influences, which result in 

permanent alterations to efficiency and outputs within the animal‘s productive life (Wu et al. 

2006). Therefore, studies are increasingly focusing on implications of maternal nutrition 

during early- to mid-pregnancy when organogenesis of tissues occurs, including those of 

commercial importance to livestock producers (Gonzalez-Recio et al. 2012; Long et al. 2009; 

Zhu et al. 2007). Clearly, during development, there are critical periods during which a 

system or organ has to mature. These periods are brief, they occur at different times for 

different systems and they occur in utero for most systems. Developmental plasticity is the 

term used to describe the process by which the foetus experiences its environment in utero 

and makes developmental adjustments to generate a phenotype that improves immediate 

survival. For example, in a situation of suboptimal nutrient availability, the foetus may 

prioritize nutrient partitioning for the most critical organs at that moment such as the brain, at 

the expense of other organs like the kidney and the lungs which are not functionally active in 

the womb. The low-priority for development of some organs may, however, have serious 

consequences for their functionality in later life and hence for lifelong health of the individual 

(Barker 1995).  

In animals, it has been shown to be surprisingly easy to produce lifelong changes in the 

physiology and metabolism of the offspring by minor modifications to the diet of the mother 

before and during pregnancy (Banos et al. 2007; Funston et al. 2010). Experiments have 

shown that alterations in maternal diet around the time of conception and during gestation can 

change the fetal growth trajectory. The sensitivity of the embryo to its environment is being 

increasingly recognized with the development of assisted reproductive techniques. 

Malnutrition (both under- as well as overnutrition) and other adverse influences like reduced 

maternal oxygen availability (Gulick et al. 2016; Higgins et al. 2016), reduced uterine blood 

flow (Vonnahme et al. 2012), heat stress (Guo et al. 2016) or metabolic and infectious 

diseases (Wathes 2012) affecting the dam during development, permanently alter gene 

expression in the fetus leading to a specifically designed phenotype (Berry et al. 2008; 

Gutierrez et al. 2012). Efficiency of the production of meat, wool and milk and the 

susceptibility to disease of domestic livestock continues to vary widely among and within 

similarly managed herds and flocks of relatively uniform genetic background. At least some 
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of this hitherto unexplained variation may be ascribed to carryover effects of metabolic 

perturbations during different phases of embryonic and fetal development. The best described 

effects are those on early muscle and adipose tissue development, with putative consequences 

for the capacity for lean tissue growth, propensity for fattening and therefore feed efficiency 

in meat animals (Du et al. 2010).  

Animal models have identified common mechanisms by which events very early in life could 

have programmed effects on health in later life. Mechanisms conserved between different 

models and between species are likely to represent fundamental biological processes (Tarry-

Adkins and Ozanne 2011). One mechanism by which effects of the early environment could 

have a permanent effect on tissue function is through alterations in organ structure. For 

example, it is known that the endocrine pancreas is particularly susceptible to changes in 

nutrition during fetal life that permanently alters the structure of this tissue. A variety of 

animal models, including the maternal protein-restriction, maternal-caloric-restriction, and 

intrauterine placental-ligation models, have shown a reduction in β-cell mass and islet 

vascularization (Garofano et al. 1999; Simmons et al. 2001). Secondly, conclusive evidence is 

now emerging that demonstrates that epigenetic alterations can form integral underlying 

mechanisms in early life programming. Epigenetics can be defined as any change in 

phenotype or gene expression caused by modifications independent of changes in genotype. 

These modifications include methylation of DNA and modifications of histones, including 

acetylation. Epigenetic regulation of transcription factors is now emerging as a common 

mechanism of early life programming, including the peroxisome proliferator-activated 

receptor-α (Lillycrop et al. 2005) and Pdx1 (Park et al. 2008), including effects on both DNA 

methylation and histone marks. Transcription factors represent attractive targets of nutritional 

programming as alterations in transcription factor expression can affect a wide range of other 

downstream target genes. Third underlying mechanism could be accelerated aging at the 

cellular level through accelerated telomere shortening. This is accompanied by increased 

pancreatic islet gene expression of p21 and p16
INK4a

 (Tarry-Adkins et al. 2009), indicative of 

accelerated cellular aging. Increased reactive oxidative species and oxidative stress in 

pancreatic islets have been reported in intrauterine artery ligation IUGR, which has been 

suggested to be related to mitochondrial dysfunction (Simmons et al. 2005). 
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2.1 Unique Features of Dairy Cattle Management 

Dairy cows exhibit a mammalian tendency to nurture the neonate from tissue stores by 

lipolysis and muscle catabolism (Roche et al. 2008), losing body condition for approximately 

40 to 100 days after calving before replenishing lost tissue reserves (Pryce and Harris 2006; 

Roche et al. 2007; Sumner and McNamara 2007). In dairy cattle, the body condition is most 

commonly quantified by body condition scores (BCS) that describe the relative fatness of a 

cow (Edmonson et al. 1989). However, what makes dairy cows unique among all other 

mammalian species has been the intense trans-generational genetic selection for early 

lactation and total milk production during the last 50 years (Compton et al. 2017). Such 

selection pressures have resulted in many physiological changes that facilitate greater 

mobilization of energetically important tissues in dairy cows than other mammals (Chagas et 

al. 2009; Lucy et al. 2009). Genetic selection programs based solely on increased milk 

production have resulted in cows that are genetically predisposed to a greater degree of 

negative energy balance (NEB) in early lactation (Patton et al. 2007). The increased genetic 

merit for milk yield is thus associated with a greater degree of BCS loss in early lactation and 

less BCS throughout lactation, reflecting a greater degree of NEB (Pryce et al. 2001). The 

calving and nadir (i.e., the lowest point) BCS are nonlinearly associated with the height of the 

lactation curve and the slope of the post-peak decline i.e., lactation persistency (Berry et al. 

2007; Roche et al. 2007b), with lactation milk yield increasing with BCS loss postcalving and 

decreasing with further BCS loss (Figure 2). 

To maximize milk production during herd life, currently farmers are stimulated to breed their 

young stock at young age in order to have their first calf at 24 months (Wathes et al. 2014), 

and subsequently have their cows calved with intervals no longer than 385 to 400 days 

(Inchaisri et al. 2010). The latter implies dairy cows to be rather atypical since they have to 

manage the compatibility of optimal reproductive performance and (early) gestation with 

continued growth or the production of large quantities of milk. Rather than being an absolute 

shortage of energy substrates per se, this metabolic priority for growth and lactation (after 

calving) is known to generate adverse conditions hampering optimal ovarian functioning, 

follicular growth, oocyte maturation and early embryonic development (Leroy et al. 2008). 

On the other hand, suckling beef cows are typical in the sence that they produce only a small 

amount of milk during their gestation. A pregnant cow‘s capacity to care for her embryo is 

however largely determined by the way she partitions nutrients to support embryonic, placental 

and fetal development together with her own growth, maintenance and milk production.  
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Figure 2. Dry matter intake, lactation cycle and live weight changes in a cow during her 

lactation cycle (Adapted from Hoffman et al. 2000). 

2.2 Characteristics of Bovine Reproduction 

Cattle are a year round breeder. Among cattle, a heifer is a young cow that has not yet given 

birth to a calf. To assure a high level of milk production Holstein heifers should be raised to 

weigh 350-375 kg at 15 months of age, the age they should be inseminated to allow calving at 

24 months (Wathes et al. 2014). However, generally the accepted target weight for yearling 

replacement heifers at breeding was 65% of their mature weight. Heifer calves are born with 

oocytes in the diplotene stage of meiosis and ovarian activity is characterized by a follicular 

wave pattern (usually 2 or 3 follicular waves per cycle) leading to estrus and ovulation of a 

mature oocyte every three weeks. Typically, the growth of follicles destined to ovulate in the 

cow, takes place over 3-4 months (Webb et al. 2004) and involves several critical stages that 

can be disrupted during environmental or physiological insults leading to development of 

defective follicles, oocytes, and subsequent poor embryo quality. For example, the negative 

energy status during the early postpartum period might impair oocyte and embryo quality 

results in subfertility in lactating dairy cows (Leroy et al. 2008). Fertilization of the oocyte 

occurs in the oviduct and is dependent on multiple factors like AI technique, quality of 

spermatozoa, timing of AI, the presence or absence of pro-inflammatory substances in the 

uterine lumen, to be successful. The oviduct is named to contribute to the optimal early 

embryo development (Wiltbank et al. 2016). The bovine embryo enters the uterus 4 days after 
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ovulation. Prior to embryo attachment to the uterine caruncles, the embryo is free floating and 

is dependent upon uterine secretions into the uterine lumen, termed histotroph, both for 

energy and proteins. Thus deficiencies or excess of energy or specific amino acids may have 

an impact on further embryo development. This is to be mention here that the gestation length 

in cattle averages 280±10 days, and modern dairy cattle have an average lifespan between 5 to 

6 years. 

The term ‗nutrient partitioning‘ refers to the processes by which available nutrients are 

channelled, in varying proportions, to different metabolic functions. A narrower definition 

commonly applied in dairy nutrition refers specifically to the partition of nutrients between 

milk outputs and body reserves (Friggens and Newbold 2007). The nutrient partition changes 

with stage of lactation (Kirkland and Gordon 2001) and at different stages of the reproductive 

cycle (Chilliard et al. 2000; Theilgaard et al. 2002) due to a change in the endocrine profiles 

(Bauman 2000). The net result of such changes is that nutrients are channelled to differing 

extents to different organs, life functions and end-products. This occurs not as a function of 

changing nutritional environment but rather as a function of (physiological) time. The onset of 

lactation provides the classic example of this with the uncoupling of GH and IGF and the 

resulting channelling of nutrients to the mammary gland (Bauman 2000). ‗Negative‘ energy 

balance, insulin ‗resistance‘ and reproductive ‗failure‘ are all expressions that imply that the 

machine, i.e. the cow is being on the very thin line between top production and health. There 

are clear differences between breeds in their partition of energy between milk and body 

reserves that change with stage of lactation and also with parity (Dillon et al. 2003; Yan et al. 

2006). For example, Holstein-Friesian cows can produce more milk energy than Norwegian 

cows, mainly as a result of higher metabolizable energy intake and because of a greater ability 

to partition more energy into milk and less into body tissue (Yan et al. 2006).Combining the 

genetically derived teleophoretic aspects and the environmentally affected homeostatic 

aspects is the crucial step for the next significant advance in models of nutrient partitioning, 

and this requires consideration of genotype environment interactions (Friggens and Newbold 

2007). The key underlying process is called plasticity or environmental sensitivity. An animal 

with low plasticity for milk production is an animal that maintains milk production at the 

expense of other life functions. Although dairy cows currently show a substantial ability to 

cope by reducing body fat levels or by reducing disease resistance (Collier et al. 2005), they 

do so at the expense of other life functions such as reproduction (Royal et al. 2002) and health 

(Windig et al. 2005). 
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2.3 Embryonic Growth and Development in Ruminants 

In cattle, the critical period of maternal recognition of pregnancy occurs between days 15-18 

after ovulation, followed by the initial stages of early placentation (Haeger et al. 2016). The 

early ruminant embryo secretes copious quantities of a protein called interferon tau. Exposure 

of the endometrium to this hormone dampens the secretion of PGF2α, thereby blocking the 

signal for luteolysis (Haeger et al. 2016). As a result, the corpus luteum survives and 

progesterone levels are maintained for the recognition of pregnancy. The placenta attaches at 

5 weeks to discrete sites of the uterine wall called caruncles. These caruncles are arranged in 

two dorsal and two ventral rows throughout the length of the uterine horns. The placental 

membranes attach at these sites via chorionic villi in specific areas called cotyledons. The 

caruncular-cotlydonary unit is called a placentome and is the functional area of physiological 

exchanges between cow and calf. Cattle have been shown to have the synepitheliochorial type 

of placentation (Wooding and Burton 2008). In association with the formation of the 

placentome, the caruncular area is progressively vascularized to meet the increasing demands 

of the conceptus. Fetal survival is dependent upon proper placental growth and vascularity 

early in pregnancy, while also further intrauterine growth is mainly dependent on the 

placental supply of maternal nutrients and oxygen to the fetus (Reynolds and Redmer 2001). 

Therefore, establishment of a functional fetal/placental vascular system is one of the earliest 

requirements during conceptus development (Vonnahme 2008). Transport efficiency is 

related to uteroplacental blood flow (Reynolds and Redmer 1995). Although placental growth 

slows during the last half of gestation, blood flow to the placenta increases three to fourfold 

from mid to late gestation to support the exponential rate of fetal growth (Reynolds and 

Redmer 1995). However, during pregnancy, the placenta is exposed to a variety of 

environmental insults which can alter fetal organogenesis and growth, leading to improper 

pre- and postnatal growth and eventually lower life performance (Schlafer et al. 2000). In 

placental mammals, post-embryonic growth becomes quantitatively significant only after 

mid-gestation. However, this is preceded by rapid hyperplastic growth of the placenta which 

attains all or most of its mass of dry tissue, protein, and DNA by mid-gestation (Ehrhardt and 

Bell 1995). Foetal growth then follows its familiar, flattened sigmoid pattern during the latter 

half of gestation as it proceeds from an early exponential phase through a rapid, linear phase, 

and then, as term approaches, begins to diminish in rate. In most species, there is little or no 

increase in placental weight during this period; the ovine placenta actually diminishes in 

weight, mostly due to loss of extracellular water (Ehrhardt and Bell 1995). However, the 
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placenta undergoes extensive tissue remodelling after mid-estation, including major 

proliferative growth of the umbilical vasculature, which is associated with a progressive 

increase in its functional capacity (Haeger et al. 2016). Patterns of foetal and placental growth 

in the normal and growth-retarded sheep conceptus are illustrated in Figure 3. 

 

Figure 3. Patterns of foetal and placental growth in the normal (—) and growth-retarded (---) 

sheep conceptus. Adapted from Ehrhardt and Bell (1995) and Greenwood et al. (2000). The 

growth-retardation can be imposed by maternal nutrient restriction, carunculectomy, uterine 

artery ligation, hypoxia, heat stress, overfeeding etc. 

The placenta is pivotal in the competition between mother and fetus for resource allocation.  

Maternal nutrition influences growth of the foetus and size of the newborn either directly as a 

result of the adequacy of nutrient intake and circulating substrate concentrations, or indirectly 

due to effects on the capacity of the placenta to transport nutrients to the foetus. Because 

placental growth precedes foetal growth on a weight specific basis (Ehrhardt and Bell 1995), 

residual effects of nutrition during early and mid pregnancy on subsequent foetal growth may 

be mediated, at least in part, by effects on placental size. This has stimulated interest in 

understanding how nutrition may be used during early to mid pregnancy to increase placental 

capacity for nutrient transport in sheep (Heasman et al. 1998; Wallace et al. 1999) and cattle 

(Cooper et al. 1998; Perry et al. 1999) prior to the period of maximal foetal growth potential 

during late pregnancy. However, effects of nutrition on placental growth during early to mid 

pregnancy are highly variable, and may be influenced by a range of factors that uncouple the 
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normally tight association between placental and foetal weights, including nutritional status of 

the dam prior to mating (Kelly 1992).  

2.4 Distinctive Factors Affecting Embryonic Development 

2.4.1 Growth in Adolescent Animals 

Generally, reproductive capacity of nulliparous heifers is higher when compared to 

multiparous animals. This finding can be attributed to the fact that oocytes and embryos of the 

nulliparous heifers have not been challenged by the metabolic stress of milk production 

(Gonzalez-Recio et al. 2012), but one should also not forget the decisive role of the uterus in 

terms of pregnancy success. Uteri of nulliparous heifers have not been confronted yet with a 

parturition event which is in the vast majority of the cases associated with bacterial infection. 

Besides the better reproductive performance of nulliparous heifers, significant differences in 

terms of production, reproductive capacity, longevity, and resilience against metabolic 

challenges, between offspring of first versus higher parity animals are reported (Banos et al. 

2007; Gonzalez-Recio et al. 2012). In most cases, the offspring of first parity animals is in a 

favorable condition (Swali and Wathes 2007). The latter results are a clear indication of the 

deleterious effect of lactation during gestation (Swali and Wathes 2006; Gonzalez-Recio et al. 

2012). 

All too often however, researchers have used first parity heifers as non-lactating and hence 

‗negative‘ controls when examining the effect of lactation and its concomitant metabolic 

consequences on the animal‘s reproductive capacity and more particularly embryonic growth. 

However, when reproduction has to coincide with continued growth of the first parity dam, 

both the gametes as well as the embryo/fetus may face intense competition for nutrients from 

its mother‘s own metabolic needs while she is still growing. Hence, the normal hierarchy of 

nutrient partitioning between maternal body growth and fetal growth may be altered (Wallace 

et al. 2006). In sheep for example, there is a general consensus nowadays that overnutrition 

during gestation in adolescent ewes gives rise to a lighter progeny, while the dam generally 

experiences a significant increase in BCS. In this paradigm, rapid maternal growth results in 

placental growth restriction and often premature delivery of low birth weight lambs when 

compared with moderately nourished ewes of equivalent age (Wallace et al. 2006).   

Since farmers are currently stimulated to maximize daily growth in their growing young stock 

in order to maximize milk production in the first and subsequent lactations, they accentuate 
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the mismatch between the milieu the offspring is prepared for and the milieu the neonates 

actually arrive in, which may lead to even more deleterious effects. Examples hereof are well 

known in human medicine, where it has been shown that babies that had experienced 

intrauterine growth retardation and thereafter experience a catch-up growth, are more prone to 

reproductive disorders such as polycystic ovarian syndrome (Ibanez et al. 2007). 

Epidemiological studies both in beef (Funston et al. 2010) as well as in dairy cattle (Brickell 

et al. 2009; Swali et al. 2008) have indeed shown that heifers growing fast in the first months 

of life, have a significantly earlier pubarche but need more inseminations to become pregnant, 

ending up with a similar age at first calving in comparison with their slower growing peers.        

2.4.2 High Milk Yield and the Concomitant Metabolic Stress in Lactating Animals 

The genetic drive to produce large quantities of milk makes modern dairy cows more 

vulnerable for factors generally known to impair overall health and fertility. Hence, since 

dairy cows are challenged by such a variety of environmental factors during the period they 

should also reproduce, they represent a ‗natural‘ model to describe the effects of 

periconceptional environmental challenges on their reproductive capacity. Typically 

furthermore, modern dairy cows‘ reproductive capacity is under serious pressure especially 

because of very high rates of (early) embryonic mortality (Wiltbank et al. 2016). The latter 

might be a reflection of the high number of insults the gametes and early embryos are 

confronted with in the periconceptional period (Leroy et al. 2008; Ribeiro et al. 2013).    

Modern dairy cows have been predominantly selected for high milk yield in early lactation 

which is associated with a very high capacity to mobilize body reserves during this period. 

Calculations showed that cows can produce as much as between 120 and 550 kg of milk from 

body reserves on the basis of energy (average 324 kg). Maximum mobilization in 8 weeks 

amounted up to 41.6 kg empty body weight, 30.9 kg fat and 4.6 kg protein (Tamminga et al. 

1997). Most cows can cope with this metabolic load which is defined as: 'the total energy 

burden imposed by the synthesis and secretion of milk, which is met by mobilization of body 

reserves'. Metabolic load has however been opposed to metabolic stress which is defined as 

'the amount of metabolic load that cannot be sustained by body mobilization, leading to the 

down-regulation of some energetic processes, including those that maintain general health' 

(Knight et al. 1999). Hence, the 'over' mobilization of body reserves during the period of 

negative energy balance (NEB) is a key factor for disease susceptibility in modern dairy 

cattle. The genetically and hormonally driven body mobilization is further significantly 
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aggravated by the mismatch between the energy need and the cow's capacity to take in 

energy. Maximal feed intake in dairy cows occurs commonly at 6 to 8 weeks in lactation, 

which is much later than peak production, causing cows typically to be in negative energy 

balance for 5-7 weeks postpartum (Tamminga et al. 1997).  

Typically, the negative energy balance and concomitant body fat mobilization is characterised 

by specific alterations in peripheral plasma metabolite concentrations such as high non-

esterified fatty acids (NEFAs), low glucose and insulin and high levels of ketobodies. These 

alterations are not only occurring in the peripheral circulation but are also reflected in the 

follicular fluid at the ovaries (Leroy et al. 2004). The effect of the elevated/lowered 

concentrations of metabolites being associated with high milk yield on follicular cells 

(Vanholder et al. 2005b; Vanholder et al. 2006) and oocytes (Leroy et al. 2005; Leroy et al. 

2006) are associated with lower fertilization and blastocyst rates in vivo (Leroy et al. 2005) 

and in vitro (Leroy et al. 2008). 

Whether these changes can also induce pertinent changes in the offspring‘s metabolism and 

body functions and hence has an effect on its health later in life, is still a matter of debate. It is 

however demonstrated that the altered microenvironment give rise to altered patterns of gene 

expression (Lillycrop and Burdge 2012).  

2.5 Birth Size in Metabolic Programming 

Size at birth is important for calving ease of the dams and neonatal survival of the calves. 

Offspring born at an above average weight have an increased chance of survival compared 

with those born at a below average weight in all domestic livestock species, including the 

cow, ewe, and sow. Complications of low birth weight reported in livestock include increased 

neonatal morbidities and mortalities (Hammer et al. 2011), intestinal and respiratory 

dysfunctions, slow postnatal growth, increased fat deposition, differing muscle fiber diameters 

and reduced meat quality (Wu et al. 2006). Epidemiological evidence suggests that small size 

(small for gestational age) at birth both in humans and animals is associated with increased 

predisposition to metabolic diseases during adult life (Symonds et al. 2010; Vuguin 2007). It 

should be noted that birth size is a complex trait influenced by the interaction between genetic 

and non-genetic intrauterine factors (Kocak et al. 2007). However, the intrauterine 

environment has been stated to be a more important regulator of birth size than the parental 

genome (Sharma et al. 2012; Swali and Wathes 2006). The use and interpretation of birth size 

in relation to fetal programming assumes that birth size indeed reflects specific fetal responses 
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to particular variations in the nutritional status of the dam. Since epigenetic adaptations in the 

embryo may influence future health and fertility (Van Soom et al. 2013; Wu et al. 2006), the 

intrauterine environment is currently being assessed with regard to health and welfare of the 

offspring (Rutherford et al. 2012). The association of young age in heifers and high milk 

production during gestation in cows with reduced longevity and productivity of their offspring 

(Banos et al. 2007; Berry et al. 2008; Gonzalez-Recio et al. 2012) furthermore emphasizes 

their potential impact on birth size of the calves.  

Livestock producers are interested in utilizing nutrients in the most efficient way to optimize 

growth of their animals. While growth is often thought to take place after birth, the majority 

of mammalian livestock (i.e. swine, sheep, and cattle) spend 35-40% of their life within the 

uterus, being nourished solely by the placenta. Therefore it is especially relevant to 

understand the impacts of the maternal environment on placental growth and development as 

this directly impacts fetal growth. The trajectory of prenatal growth is sensitive to direct and 

indirect effects of maternal environment, particularly during early stages of embryonic life 

(Robinson et al. 1995), the time when placental growth is exponential. Moreover, it is 

recognized that the maternal system can be influenced by many different extrinsic factors, 

including nutritional status and level of activity, which ultimately can program nutrient 

partitioning and ultimately growth ad development of the fetus (Godfrey and Barker 2000; 

Wu et al. 2006). Therefore, the continual desire to enhance management methods to produce 

healthy livestock has led to increased research in the area of developmental programming of 

our livestock species.  

2.6 Placental Mechanisms in Metabolic Programming 

The placenta characteristics in mammals are presented in Table 3. Despite some differences in 

placental structure and function, the placenta in all mammals has a large surface area for 

nutrient and gas exchange with complex associations of maternal blood vessels on the uterine 

side that develop through both angiogenesis and vasodilation to increase blood flow to the 

placenta and a dense network of capillaries on the fetal side. The details of comparative 

placental structure have been well described earlier (Wooding and Flint 1994). Trophoblast 

cells of the placenta regulate fetal growth by affecting the development and function of 

maternal arteries that bring blood into the placenta (Cross 2015). In sheep and cattle, in which 

there is no trophoblast invasion directly into maternal arteries, the effect on maternal arterial 

blood flow may be developmental and physiological because trophoblast cells express 



40  Chapter 2 

 

vascular endothelial growth factor (VEGF) and vasodilators (Cross 2015). The surface area 

and density of nutrient transporters at the exchange surface of the placenta also regulate fetal 

growth. Several types of nutrient transporters are expressed by trophoblast cells on the surface 

of the villi and their levels are altered in some cases of IUGR (Burton and Fowden 2012). 

After development of the branched trophoblast villous tree, a dense network of fetal blood 

vessels develops. Similar to other organs, this is regulated by local VEGF that can be 

produced by the trophoblast cells (Pfarrer et al. 2006).  

Table 3.  Pregnancy and placenta characteristics in mammals (Cross 2015) 

Species Cow Sheep Human Mouse 

Gestation length (days) 285 145 270 19 

Number of young 1 1-3 1 5-12 

Placenta type     

    Gross Cotyledon Cotyledon Discoid Discoid 

    Cell layers Synepithelio-

chorial 

Synepithelio-

chorial 

Haemochorial Haemochorial 

 

A drawing of bovine placentome and fetal membrane attached to the endometrium is 

presented in Figure 4. Different types of experimental manipulation of the placenta or the 

intrauterine environment have shown that different types of early responses can be initiated 

that would be interpreted as being adaptive attempts to mitigate the effects on fetal growth 

(Sferruzzi-Perri and Camm 2016). Trophoblast proliferation and activation of angiogenic 

responses are reported in the sheep placenta in response to altered maternal nutrition (Cross 

and Mickelson 2006; Redmer et al. 2009). There is evidence of adaptation in fetal vascular 

density in the placenta as an attempt to compensate for a less developed trophoblast villous 

tree (Bainbridge et al. 2012). We know, the placenta transports the substrates (oxygen, 

glucose, amino acids and fatty acids) to the fetus by passive diffusion, transporter mediated 

processes and endocytosis-exocytosis (Duttaroy 2009; Sibley et al. 1997). In addition to 

morphological characteristics of the placenta, transporter-mediated processes are influenced 

by the expression, localization, affinity and activity of specific transporters in the placental 

plasma membranes as well as the materno-fetal concentration gradient across the placenta 

(Jansson and Powell 2006). Changes in any of these placental parameters can, therefore, 

affect fetal fuel acquisition and growth with consequences for adult health and disease 

(Fowden et al. 2008).  
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Figure 4. Drawing of two bovine placentome and fetal membranes attached to the 

endometrium (Schlafer et al. 2000). 

Due to the importance of placental development on fetal nutrient transfer, studies have been 

conducted in cattle to determine how maternal nutrition can influence placental development, 

or placental programming. It is reported that nutrient restriction of beef cows from day 30 to 

125 of gestation resulted in reduced caruncular and cotyledonary weights from nutrient 

restricted cows compared to control cows, and fetal weights from nutrient restricted cows 

tended to be reduced compared to control cows (Zhu et al. 2007). Following realimentation 

during day 125 to 250 of gestation, caruncular and cotyledonary weights were still reduced for 

nutrient restricted cows; however, fetal weight was not different. Using the same cows, it is 

evidenced that there is increased placental angiogenesis as well as angiogenic factor mRNA 

abundance in the caruncular and cotyledonary tissues at the end of the nutrient restriction 

period (Vonnahme et al. 2007). Therefore, the lack of significant fetal weight differences in 

regard to maternal nutrient restriction may have resulted from the increase in cotyledonary 

arteriolar density allowing for adequate nutrient transfer (Vonnahme et al. 2007; Zhu et al. 

2007). 

Placental development responds to both fetal signals of nutrient demand and maternal signals 

of nutrient availability and, by adapting its phenotype, regulates the distribution of available 

resources (Fowden and Moore 2012; Fowden et al. 2006). Placental adaptation may occur by 
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changing its surface area for nutrient transfer, the thickness of its interhaemal barrier 

separating the maternal and fetal circulations, its abundance of nutrient transporters, metabolic 

rate and blood flow as well as its synthesis and metabolism of specific hormones (Fowden and 

Moore 2012; Vaughan et al. 2012). Fetal intrauterine growth retardation due to nutritional 

constraints is closely linked to placental development and function (Cetin and Alvino 2009; 

Fowden et al. 2008). Basically, under conditions of impaired nutrient supply that may limit 

normal fetal growth, the placenta has shown to adapt so as to increase its transport capacity 

(Burton and Fowden 2012). Earlier studies in beef cattle and sheep have demonstrated that 

placentas may adapt their phenotype to be able to accommodate fetal nutrient demand and 

that this process may include either morphological or functional mechanisms acting during 

different stages of feto-placental development (Fowden et al. 2010; Long et al. 2009; Sullivan 

et al. 2009). 

2.7 Critical Windows for Embryonic Development 

In the uterus, the embryo may experience challenges by a variety of environmental insults and 

that at different time points. In the early stages, most investments by the dam should go to the 

development of the placenta (Redmer et al. 2009). Hence, environmental challenges like 

undernutrition or hypoxia when occurring during early pregnancy may affect placental 

development and therefore indirectly embryonic growth and development. Due to the minimal 

nutrient requirement during early gestation, inadequate nutrition during this time was thought 

to have little significance. However, during the early phase (from day 25) of fetal 

development critical events for normal conceptus development occur in a sequential manner 

for different organs including the pancreas, liver, testicle, ovaries, adrenal glands, lungs, 

thyroid, spleen, brain, thymus, and kidneys (Funston et al. 2010; Hubbert et al. 1972; Nilsson 

and Skinner 2009). Review have made earlier that lists examples of fetal programming in 

livestock models in individual organs including heart (Han et al. 2004), lung (Gnanalingham 

et al. 2005), pancreas (Limesand et al. 2005; Limesand et al. 2006), kidney (Gilbert et al. 

2007), placenta (Reynolds et al. 2006), and small intestine (Greenwood and Bell 2003). 

Hence, deleterious insults taking place at the specific time during pregnancy might be 

associated with impaired function and a lowered ability to ensure homeostasis in later life. 

During the second trimester of pregnancy, the fetus continues to develop and grow and reach 

to about 25% of its birth size at the end of this stage. Muscle and adipose tissue formation 

occurs primarily during mid to late gestation (Du et al. 2010). Because the dam in most cases 
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won back positive energy balance at that time, the risk of major metabolic challenges is lower 

during that stage. On the other hand, the development of major organ systems is still going on, 

so that major insults might still have pronounced effects on later health and productivity. The 

largest increase in fetal tissue size of about 75% of fetal growth generally takes place during 

the final trimester of pregnancy, insults taking place at that time being mostly reflected in a 

significantly lowered birth weight (Sharma et al. 2012; Zhu et al. 2004). For that reason, many 

people believed that cow nutrition could only affect calf growth during the last trimester of 

gestation. However, depending on when the nutrient restriction happens during gestation, the 

outcome of this insult might have different consequences to calf performance. 

An impaired nutrient supply during intrauterine development leads to metabolic adaptations to 

enhance survival in the short term but may become detrimental in postnatal life (Fleming et 

al. 2012). The unique metabolic adaptations to reduced nutrient supply in utero are well 

coordinated in an attempt to maximize the uptake and use of nutrients by the most vital organs 

like the brain (Fleming et al. 2012). As a consequence, these adaptations often occur at the 

expense of those organs that are less critical for survival (e.g. the pancreas) (Gutierrez et al. 

2012; Limesand et al. 2013; Long et al. 2010a). Hence, suboptimal intrauterine nutrition may 

end up in birth of growth restricted newborns with an impaired β-cell mass, visualized by a 

lowered insulin secretion when challenged with a standard glucose bolus (Limesand et al. 

2013; Owens et al. 2007; Rozance et al. 2006). The environmental sensitivity is viewed as an 

adaptive mechanism by which the developing organism adjusts its metabolic and homeostatic 

systems to suit the anticipated postnatal environment. The long-term effects of these 

adaptations predispose the offspring to adiposity and metabolic diseases in later life if 

nutrition in postnatal life does not match that foreseen by the fetus on the basis of its 

intrauterine environment (De Rooij et al. 2006; Micke et al. 2011). 

2.8 Vulnerability of Conceptus in Different Trimesters 

A summary of feto-placental development during different trimesters of gestation including 

long-term effects in the offspring after maternal nutrient restriction is presented in Figure 5. 

Early Gestation (0 to 3 months of gestation): Cows must conceive within 80 days postpartum 

if a yearly calving interval is desired. Cows‘ milk production and nutrient requirements peak 

at 60 days postpartum; however, intake lags behind. This results in negative energy balance 

during early lactation, especially if cows are managed to calf during the dry or winter seasons 

when poor quality and less forage mass is available. Thus, nutrition inadequacy often occurs 
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in cattle production systems (Caton and Hess 2010). Unfortunately, a limited amount of 

published results exists regarding the effects of cow nutrient restriction during early gestation 

on calf performance. Growth performance and organ development of calves born to cows 

experiencing nutrient restriction during early gestation has been studied in depth (Long et al. 

2010b). Cows were separated into two groups that were fed at 55 or 100% of their nutrient 

requirements for the first 83 days of gestation. Following 83 days, both groups were provided 

100% of their nutrient requirements until calving. No differences were observed on calf birth 

weight, weaning weights, and average daily gain from birth to weaning or during the feedlot 

finishing phase. However, lung and trachea weights of steers born to heifers provided 55% of 

their nutrient requirements were significantly less than steers born to heifers fed 100% of their 

nutrient requirements. Although growth performance was not affected, it would be misleading 

to interpret these results as if nutrient restriction during early gestation does not impact calf 

performance.  

 

Figure 5. Summary of feto-placental development during gestation including long-term 

effects in the offspring after maternal nutrient restriction in sheep (Symonds et al. 2010). 

Mid Gestation (3 to 6 months of gestation): Production-oriented tissues, such as muscle, 

appear to be responsive to fetal programming effects in utero (Caton and Hess 2010). Muscle 

formation is divided into two waves of muscle fiber synthesis. The first wave begins at mid 

gestation, whereas the second wave occurs from six to nine months of gestation (Du et al. 

2010). Thus, nutrient restriction during mid gestation is expected to decrease muscle fiber 

formation, leading to lower birth and weaning weights. At the University of Wyoming, 

researchers evaluated the growth performance of steers born to cows grazed on low-quality, 
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native pastures (6% crude protein) or high-quality, fertilized and irrigated pastures (11% 

crude protein) for 60 days from 120 to 150 days through 180 to 210 days of gestation 

(Underwood et al. 2010). In that study, cows that grazed on improved pastures during mid 

gestation produced calves that were heavier at weaning and harvesting, and that had greater 

meat tenderness at slaughter. Nutrient restriction during mid gestation also may have 

consequences on organ development. Angus × Gelbvieh cows were randomly allotted into 

groups and fed at 70 or 100% of their nutrient requirements from day 45 to 185 of gestation. 

They were then commingled and fed at 100% of their nutrient requirements from day 185 of 

gestation until calving (Long et al. 2012). Although body weight at birth and at weaning did 

not differ between treatments, heifers born to cows fed at 70% of their nutrient requirements 

had smaller ovaries and luteal tissue. Luteal tissue is crucial for progesterone synthesis and 

pregnancy maintenance. Therefore, smaller ovary and luteal tissue could affect cows‘ 

reproductive performance during their first breeding season. 

Late Gestation (6 to 9 months of gestation): Late gestation is probably the most important 

gestation period in terms of potential impact on production-oriented tissues such as muscle 

and adipose tissue. As mentioned before, major portions of cattle muscle and adipose tissue 

form during late gestation (Du et al. 2010). Muscle fiber number is set at birth, meaning that 

after the calf is born, there is no net increase in the number of existing muscle fibers. Thus, if 

nutrient restriction during late gestation reduces muscle fiber number (Zhu et al. 2004), calf 

growth performance following birth might be compromised. In addition, maternal nutrient 

restriction may also compromise adipocyte populations, resulting in carcasses with lower 

quality and marbling scores. In addition, heifers born to cows that were supplemented 

achieved puberty at younger ages (Funston et al. 2010) and had greater pregnancy rates 

(Martin et al. 2007) than heifers born to cows that did not receive protein supplementation.  

2.9 Pancreatic Islets and Insulin in Metabolic Programming 

The functional role of the pancreatic islets has been well demonstrated as one of the key 

targets of metabolic programming (de Oliveira et al. 2011; Rodriguez-Trejo et al. 2012), 

which might predispose the endocrine pancreas to exhaustion, resulting in a diabetic 

condition. Both overnutrition and undernutrition have been linked to pancreatic β-cell 

dysfunction induced by epigenetic changes, which appears to induce the onset of type 2 

diabetes (Berends and Ozanne 2012; Pinney and Simmons 2010). During the embryonic stage 

of pancreatic organogenesis and β-cell development, several transcription factors are 
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indispensable to appropriate pancreatic cell formation, maturation, and future function 

(Rodriguez-Trejo et al. 2012). Among other alterations in the transcription factors that 

promote pancreatic β-cell development and function, it is primarily associated with lower 

expression of the Pdx-1 gene (Park et al. 2008). Dietary management schemes, such as low-

protein or food-restriction diets, which are used to induce IUGR, can alter the epigenetic 

markers that regulate gene expression through DNA methylation and/or histone modifications 

which showed decreased Pdx-1 mRNA expression associated with the development of type 2 

diabetes mellitus in adulthood (Stoffers et al. 2003). Pancreatic β-cell development and 

maintenance of function are pivotally dependent on the control of these factors (Bernardo et 

al. 2008), which make these observations importantly suggestive of the malprogramming of 

pancreatic β cells early in development and the possibility of inducing metabolic disease onset 

in adulthood. Moreover, early environmental influences also appear to induce morphologic, 

rather than epigenetic, development, resulting in permanent changes in organ structure and 

adult metabolism (i.e., not all developmental plasticity can be explained by epigenetics) 

(Waterland and Michels 2007). Nevertheless, epigenetic mechanisms might underlie several 

examples of metabolic imprinting, as shown in the review (Barella et al. 2014). 

Another factor affecting fetal growth, and one that is much less studied than the others, is a 

change in maternal metabolism that affects nutrient partitioning between the mother and 

conceptus. Although the fetal IGF system is well described, human genetic studies indicate 

that maternal genes account for threefold more variation in birth weight than fetal genes 

(Cross 2015). The mother undergoes major physiological changes during pregnancy and 

utrient delivery to the fetus is increased because of development of insulin resistance in the 

mother during pregnancy, in which her tissues require more insulin to take up glucose, 

leading to elevated post-meal blood levels, enhancing glucose nutrient delivery to the fetus 

(Torgersen and Curran 2006). The pregnant female adapts to insulin resistance by increasing 

insulin synthesis, and reducing the threshold for glucose-stimulated insulin secretion (Brelje 

et al. 1994; Weinhaus et al. 1996). Failure of these adaptations leads to gestational diabetes 

(Devlieger et al. 2008; Zhang et al. 2010), a higher risk for Type 2 diabetes later in life (Shaat 

and Groop 2007) and babies that are more likely to develop heart disease and diabetes as 

adults (Frías et al. 2007). Therefore, insufficient maternal β-cell adaptation affects both 

maternal and fetal health. Summary of effects of ewe nutrition on the body fatness and 

glucose tolerance of progeny during postnatal life  is presented in Table 4. 
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Table 4. Summary of effects of ewe nutrition before and during pregnancy, and of placental 

insufficiency on the body fatness and glucose tolerance of progeny during postnatal life (Bell 

and Greenwood 2016) 

Treatment Birthweight Relative fatness Glucose tolerance 

  Maternal undernutrition  

Periconceptional ↔ ↑
A
 n.m. 

 ↔ n.m ↓ 

Early-mid pregnancy ↔ ↑ ↓ 

Late pregnancy ↔ ↑ ↓ 

 ↓ ↑ ↓ 

Throughout pregnancy ↔ ↔ ↓ 

  Maternal overnutrition  

Periconceptual ↔ ↔ n.m. 

Late pregnancy ↔ ↑ n.m. 

Throughout pregnancy ↔ ↑ ↓ 

  Placental insufficiency  

Overfed adolescent ewe ↓ ↔ ↓ 

Carunculectomy ↓ n.m. ↓
A
 

Large litter size ↓ ↑ n.m 

n.m., not measured; ↑, increase; ↓, decrease; ↔, no change; 
A
Male offspring only 

During periods of metabolic challenges such as NEB or overfeeding, insulin concentrations 

deviate from normal concentrations (around 0.2-0.6 ng/mL) and circulating levels are either 

decreased or elevated (Butler 2003; Graugnard et al. 2012). Insulin acts as a crucial metabolic 

signal in coupling the growth hormone, insulin-like growth factor (IGF) axis (Butler et al. 

2003), which stimulates cell growth and proliferation. As the existence of insulin receptors 

has been confirmed in oocytes, cumulus cells (Purcell et al. 2012), and in embryos from the 

zygote to the blastocyst stage (Schultz et al. 1992), an influence of insulin on all these cell 

types and embryos can be expected. Extreme insulin levels could be detrimental for the 

developmental potential of the oocyte and the cause of poor pregnancy outcome (Leroy et al. 

2008). This leads not only to economic losses for the farmer but may also impair the health 

status of live offspring later in life due to an unfavorable environment during early embryonic 

development. Interestingly, children born during a period of food deprivation (Roseboom et 

al. 2006) suffer later in life from the same diseases and metabolic disorders as children from 

obese mothers (Catalano and Ehrenberg 2006). Part of the numerous health defects reported 

may be due to the dysregulation of energy metabolism during oocyte maturation and early 

development. The metabolic programming induced by epigenetic changes due to an 
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environment with energy excess or deprivation during the periconception period can affect the 

offspring's health and body condition during their whole life (Patel and Srinivasan 2002). An 

interesting fact to mention is the so-called ‗large offspring syndrome‘ (LOS), epigenetic 

effects causing deregulated overexpression of genes in the H19/IGF2 region has been 

implicated in LOS (Gong et al. 2002). IGF2 is among the most important known embryonic 

growth factors, and its overexpression leads to overgrowth phenotypes, whereas lower than 

normal expression leads to suppressed growth and in the extreme case (Davies et al. 2002). 

2.10 Nutrition in Reproduction 

The effect of nutrition as a potential insult for the periconceptional environment of the gamete 

and young embryo, should be evaluated at three different levels: undernutrition, overnutrition 

and on the level of diet composition, meaning that the diet could be inadequate (excess or 

deficit) in terms of specific compounds like for example amino acids, sugars or even vitamins 

and/or minerals. Nutrient restriction is broadly defined as any series of events that reduce fetal 

and/or perinatal nutrient supply during critical windows of development. Basically, nutrient 

restriction can result from altered maternal nutrient supply, placental insufficiency, deranged 

metabolism and regulation, physiological extremes and environmental conditions. From a 

practical standpoint, maternal nutrient supply and environmental conditions leading to stress 

responses are the most likely observed causes of nutrient restriction in ruminant livestock. 

2.10.1 Undernutrition 

Schematic outline of some important factors linking maternal undernutrition and placental 

insufficiency to intrauterine growth retardation is presented in Figure 6. In modern dairy 

farming, undernutrition should be considered as a very rare phenomenon in developed 

countries, since animals that are to be inseminated (both nulliparous heifers as well as 

lactating multiparous cows), are generally fed according to their requirements. However, the 

cattle in developing countries suffer from undernutrition due to supply of less amount and 

lower quality feed. In extensive beef farms, undernutrition may still occur especially in 

specific seasons when animals are outdoors and the development of crops and grass is far 

below what should be expected. Therefore, in lactating dairy cows, undernutrition is mainly 

regarded as the incompetence to cope with the NEB during the immediate postpartum period. 

As mentioned earlier, the main challenge for the cows at that time is to optimize their dry 

matter intake in order to let the NEB not to become too deep nor to last exceptionally long. As 

outlined in earlier studies (LeBlanc 2010; Mulligan et al. 2006), mostly an inadequate 
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management is the main underlying reason why cows fail to handle the NEB and finally 

experience severe metabolic stress. All too often, the latter leads to subclinical metabolic 

disease like subclinical ketosis, or eventually even clinical ketosis and fatty liver. 

 

Figure 6. Schematic outline of some important factors linking maternal undernutrition and 

placental insufficiency to intrauterine growth retardation (Bell et al. 2003). 

Undernutrition in the postpartum dairy cow should therefore be seen as insufficient dry matter 

intake leading to inabilities for the cows to cope with NEB. In terms of reproduction, the latter 

will first of all be accompanied by a retardation of resumption of normal ovarian cyclicity. 

Modern high yielding dairy cows that do experience NEB have been shown to resume ovarian 

activity significantly later in comparison to earlier studies in which the NEB challenge for the 

cows was lower. Furthermore, significantly more ovarian disturbances have been 

demonstrated in modern high yielding dairy cows (Opsomer et al. 1998; Opsomer et al. 2000). 

Besides, also the expression of heat symptoms has been shown to be significantly lower in 

those cows which necessitates farmers often to inseminate cows based on secondary heat 

symptoms which is known to be associated with lower pregnancy results.  

Most dairy cows develop the first dominant follicle postpartum within approximately 2 weeks 

after calving, but only about 40% of these follicles produce sufficient estradiol to stimulate 

ovulation despite having normal ultrasound appearance and growth (Cheong et al. 2015). The 
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mechanism leading to a correctly timed ovulation of a fertile oocyte is based on a well-

orchestrated crosstalk within the hypothalamic-pituitary-ovarian axis (Cheong et al. 2015). 

Nutritional and metabolic effects on the central nervous system are well researched and 

reasonably clarified. In dairy cows selected for a high level of milk production, peripheral 

levels of glucose, insulin and IGF-1 are known to be substantially reduced. Lower peripheral 

insulin levels have been associated with non-ovulation of the dominant follicle, finally giving 

rise to cystic ovarian disease (Vanholder et al. 2005a). Underlying reason has shown to be a 

compromised theca cell function, finally leading to estradiol levels inadequate to provoke an 

ovulatory LH-peak and hence ovulation. The reason for the  compromised theca cell function 

has been suggested to be related to the elevated levels of non-esterified fatty acids 

concomitant with overall fat mobilization (Vanholder et al. 2005b; Vanholder et al. 2006), 

although not all authors sustain this hypothesis. Overall, it is recently concluded that cows 

that fail to ovulate the first postpartum dominant follicle are characterized by lower 

periparturient energy balance, increased insulin resistance, lower LH pulsatility and lower 

intrafollicular concentrations of androstenedione and estradiol (Cheong et al. 2015). 

Undernutrition or more particularly for the dairy cow, insufficient dry matter intake and thus a 

more extensive NEB may cause adverse changes of metabolites in the ovarian follicular fluid 

giving rise to concomitantly lower oocyte quality and hence lower fertilization and blastocyst 

rates as outlined higher. The latter are generally recognized as being major causes for the high 

range of (early) embryonic mortality in dairy cattle. Undernutrition of the recently 

inseminated cow may appear to be unimportant because of the limited nutrient requirements 

of the early embryo and fetus for growth and development and this during the complete first 

half of gestation. However, it is during the early phase of fetal development that maximal 

placental development and growth, differentiation and vascularization occurs, as well as fetal 

organogenesis, all of which being critical events for normal conceptus development. 

2.10.2 Overnutrition 

Excessive energy intake particularly from high carbohydrate diets can reduce fertilization and 

embryo quality in some but not all circumstances. The latter has been shown to be related 

with increased circulating insulin levels during the final week of follicle growth, although the 

underlying mechanisms are still not clear (Wiltbank et al. 2014). High protein diets have been 

found to reduce embryo quality by day 7 after breeding, possibly due to elevated levels of 

circulating urea although the latter has not been sustained by all authors. Adamiak et al. 
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(2005) demonstrated that high feeding levels were beneficial to nulliparous heifers in low 

body condition, but detrimental to oocytes from animals of moderately high body condition. 

Also here, elevated levels of insulin were probably the underlying cause for this negative 

influence. Later, these findings were confirmed by feeding heifers diets high in starch, 

although they were able to avoid the adverse effects on oocyte quality when leucine intake 

was increased (Rooke et al. 2009). Increasing dietary leucine increases plasma glucagon 

rather than insulin concentration and thus the positive effect of dietary leucine on embryo 

development observed when high starch diets were fed appears to be related to reductions in 

the insulin to glucagon ratio (Rooke et al. 2009). 

2.10.3 Composition of the Diet 

A number of reviews have highlighted the importance of nutrition in regulating bovine 

reproductive efficiency (Cardoso et al. 2013; Grummer et al. 2010; Santos et al. 2010) with 

focus on the effects of energy and protein nutrition in the dam on bovine preimplantation 

embryo development (Wiltbank et al. 2014). First, effects during the early postpartum period 

have been postulated to alter the oocyte and subsequent embryo development after 

fertilization of a perturbed oocyte (Britt 1992). Second, changes in circulating factors such as 

insulin, glucose, urea, or amino acids during the final stages of oocyte development, prior to 

ovulation, can profoundly impact fertilization or embryo development (Adamiak et al. 2005; 

Adamiak et al. 2006; Bender et al. 2014). A third obvious target of nutrition on the embryo is, 

during the first week of embryo development when changes in oviductal and uterine 

environment could alter development of the embryo to the blastocyst stage (Steeves and 

Gardner 1999, 1999b; Steeves et al. 1999). Finally, changes in circulating energy sources, 

such as glucose and propionate, and building blocks for cells, such as amino acids, could alter 

the uterine lumen and subsequently alter hatching and embryo elongation. The elongating 

embryo secretes the protein interferon-tau that is essential for recognition of pregnancy and 

rescue of the corpus luteum and can alter expression of specific proteins, such as amino acid 

transporters in endometrial epithelial cells, and thus alter the concentrations of many 

substances in the uterine lumen (Gao et al. 2009; Groebner et al. 2011; Hugentobler et al. 

2010). Complete characterization of all of these nutritional effects on reproduction is likely to 

be impossible; however some of these aspects have been recently reviewed (Leroy et al. 2014; 

Santos et al. 2008; Velazquez 2011).  Furthermore, application of diets specifically designed 

to improve fertility by counteracting mechanisms related to the NEB or by supporting a 
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specific pathway that is necessary for successful fertility, has always been a very attractive 

way to circumvent the impairment of reproduction during early lactation.  

Glucogenic Diets. Although the reproductive system is known to be influenced by multiple 

hormones that are also involved in the adaptation towards high milk production (like GH, 

IGF-1 and leptin), only insulin is known to be relatively sensitive to the composition of the 

ration. Ovarian follicles have been shown to bear insulin receptors (Bossaert et al. 2010)  and 

cows with lower peripheral insulin levels in the immediate postpartum period have been 

demonstrated to suffer from retarded postpartal ovarian resumption and normal cyclicity 

among others by a higher risk to suffer from cystic ovarian disease (Vanholder et al. 2005a). 

Therefore, glucogenic diets have been advocated in the immediate postpartum period aiming 

to enhance the peripheral insulin concentrations and advance normal ovarian resumption 

(Gong et al. 2002). However, insulin has been shown to have detrimental effects on oocyte 

and embryo competence (Fouladi-Nashta et al. 2005) and has been shown to stimulate 

enzymatic catabolism of progesterone in the liver (Lemley et al. 2008). The latter suggests 

glucogenic diets only being of advantage when offered in the immediate postpartum period, 

while to be avoided when cows are inseminated.        

Proteins. Rations leading to high peripheral urea levels are generally mentioned to be 

associated with lower pregnancy rates due to its detrimental effects on the embryo. However, 

the mechanistic pathways by which this detrimental effect may be caused and the threshold 

peripheral urea level, are both still matters of debate. Special attention in this respect should 

furthermore been given to the supplementation of soybean meal as the main protein source in 

the ration. In a recent study (Cools et al. 2014), it is demonstrated that commercially available 

soybean meal contains isoflavones in concentrations that are able to induce increases in the 

blood concentration of estrogenically active isoflavone metabolites (equol, O-

desmethylangolensin, dihydrodaidzein) in high yielding dairy cows postpartum, even when 

supplemented in relatively low amounts (1.72 kg per day on average). When compared with 

rapeseed meal, soy supplementation was furthermore associated with a decreased angio- and 

steroidogenesis at the level of the corpus luteum based on biopsy sampling at day 9 of the 

estrous cycle (Cools et al. 2014). Therefore, although the results of that study suggest negative 

effects of soy feeding on CL function in recently calved dairy cows, the contribution of this 

effect on the peripheral progesterone concentration and consequently on overall fertility of 

supplemented cows warrants further research.  
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Fats. Addition of fats in feeds has been another strategy that has been extensively tested to 

reduce the impaired reproductive capacity of dairy cows. However, limiting energy output via 

milk by supplementing the ration with exogenous fats are not successful since cows simply 

produced more milk when reducing the NEB (Hostens et al. 2011). Omega-6 fatty acids are 

believed to have pro-inflammatory and thus PGF2α-stimulating properties rendering them of 

extra value early postpartum, while omega-3 fatty acids can weaken this inflammatory 

potency, leading to a higher chance of survival of the embryo when supplemented during the 

periconceptional period. Unfortunately, research results rarely provide a consensus in this 

perspective (Jahanian et al. 2013; Otto et al. 2014). Fat feeding may alter the micro-

environment of the growing and maturing oocyte of the early and older embryo and thus may 

affect reproductive outcome. Research has shown that dietary-induced hyperlipidaemic 

conditions can be harmful for embryo development and metabolism. However, to date, 

research results remain somewhat conflicting most probably due to differences in fat sources 

used, in diet and duration of supplementation and in experimental set-up in general. 

Furthermore, peripheral blood in lactating dairy cows would contain a mixture of fatty acids 

of dietary origin and from body-tissue breakdown, the latter being largely abundant in the 

immediate postpartum period and containing a high proportion of saturated fatty acids. 

Especially the latter have been shown to have a significantly detrimental effect on both the 

oocyte as well as embryo quality (Leroy et al. 2005).  

A relatively new approach is to implement relatively short-term changes in the quantity or 

composition of the diet at key stages in the reproductive process. Therefore, the term focus-

feeding, which refers to implementing short periods of nutritional supplements that are 

precisely timed and specifically designed to ameliorate the reproductive process including 

embryonic and fetal growth and development, has been introduced (Martin and Kadokawa 

2006). In this context, possibilities to supplement rumen protected fats (sometimes called C16 

fatty acids or rumen-bypass fats) in the ration of dairy cows were recently discussed 

(Wiltbank et al. 2014). These fats passes through the rumen without affecting fermentation, 

but can still be digested in the cow‘s intestine. Of special interest herein is the 

supplementation of methionine since this is a rate limiting amino acid for milk production and 

is known to be a methyl donor which may potentially affect the DNA-methylation and hence 

the expression level of genes. Apparently methionine supplementation did not affect embryo 

development and quality, but it did affect gene expression levels. More research is however 

warranted to further decipher the effect of supplementation of amino acids both during oocyte 
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maturation as well as during early embryo development on gene expression level and hence 

potential effects on health in later life.     

Vitamins and minerals. Supplementation of extra vitamins and minerals to the diet has often 

been suggested by concentrate companies as a golden bullet solution to reduce the fertility 

decline. Usually farmers are highly sensitive to this kind of advice since it doesn't involve 

extra labor which is their paramount constraint nowadays. Evaluating whether the amount of 

these compounds is sufficient in the ration is often very difficult for the practitioner since it is 

usually impossible to even estimate the content of these substances present in the basic ration. 

In herds in which cows are given a high amount of concentrates to sustain peak yield in the 

immediate postpartum period, the risk of suffering from such deficiencies may be lower due 

to the fact that concentrates are usually highly supplemented with vitamins and minerals. 

Special attention should be given to Vitamin E and Selenium in terms of their effect on 

immune response and embryo quality (Bayril et al. 2015; Pontes et al. 2015).  

2.11 Heat Stress in Reproduction and Programming 

Heat stress is known to affect many components of the reproductive system including 

gonadotrophin profiles, follicular growth, granulosa cell function, steroidogenesis and oocyte 

and embryo quality (Roth 2008). As a result, seasonal infertility is prevalent in cattle herd in 

tropical and subtropical regions. Embryo development is sensitive to the transient increases in 

body temperature arising as a consequence of elevated environmental temperature. Especially 

in dairy cows, increasing milk yields are known to challenge the cows even more to regulate 

their body temperature during warm weather further exacerbating the deleterious effects on 

fertility. Internal heat production increases at higher feed intakes and milk production, which 

is why high-producing cows are more sensitive to heat stress than lower-producing cows. 

Interestingly, observations of impaired fertility of dairy cattle in the autumn subsequent to a 

hot summer have been reported (Kadzere et al. 2002; Sonmez et al. 2005; Wakay et al. 2015). 

It seems that heat stress not only affects antral follicles emerging in the follicular wave, but 

probably also affects the ovarian pool of small antral follicles resulting in a carry-over effect 

on follicular function and oocyte developmental competence. 

Maternal heat stress during the dry period affects metabolism of the offspring. Calves born to 

heat-stressed dry cows have lower insulin concentration compared to those from cooled cows 

(Guo et al. 2016). Such metabolic alteration in calves persists until the preweaning period 

(Tao et al. 2014; Monteiro et al. 2016) and has been reduced heifer milk production during the 
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first lactation (Monteiro et al. 2013). Similar effects are also observed in sheep where 

intrauterine growth restriction caused by maternal heat stress during early to mid-gestation 

resulted in compromised insulin synthesis and secretion in the lambs compared with those that 

develop under thermoneutrality (Limesand et al. 2006). In contrast, heifers born to dry period 

heat-stressed cows have similar basal plasma insulin concentration and pancreatic insulin 

sensitivity to glucose, but lower peripheral tissue insulin sensitivity during the preweaning 

period compared with those from cooled cows (Monteiro et al. 2016). Moreover, it is 

observed that the calves born to heat-stressed dry cows had a lower plasma concentration of 

cortisol immediately after birth compared with calves born to cooled cows, indicating that 

maternal heat stress alters the fetal development of hypothalamus-pituitary-adrenal axis and 

related stress responses during the postnatal period (Tao et al. 2012). The metabolism of an 

animal is of importance in growth and body composition, which in turn alters her future 

productive and reproductive performance. Therefore, it is important to examine metabolic 

adaptation of heat-stressed calves during the transition from intra- to extrauterine life, 

postnatal metabolic responses to stress, and the effect on the calf‘s future performance. 

2.12 Health Problems and Inflammatory Reactions 

Despite the very orchestrated homeostatic controls and homeorhetic adjustments to adapt to 

the changes in the intermediary metabolism associated with the establishment of milk 

production, 40 to 70% of dairy cows across different levels of milk production, breeds, and 

management systems, develop metabolic or infectious diseases in the immediate postpartum 

period (Dobson et al. 2007; Ribeiro et al. 2013). These health problems not only cause 

reductions in milk production and animal well-being, but are furthermore seen as an important 

contributor to the general complaint of the lowered reproductive capacity of modern dairy 

cows.  Indeed, there is evidence that the calving-to-pregnancy interval is extended for at least 

7, 8, 26 and 31 days in cows treated for mastitis, retained fetal membranes, hypocalcaemia or 

endometritis, respectively, compared with healthy herd-mates. Lameness is associated with 

even worse reproduction performance, as up to 40 days can be lost to get lame cows in-calf 

again even though the lameness has been treated (Dobson et al. 2007). In part, these poor 

fertility data may be related to delayed resumption of ovarian cyclicity after calving and on a 

lowered expression of heat symptoms. On the other hand, some events seem to have more 

long-lasting effects. Signs of dystocia, or immediate postpartum hypocalcaemia, endometritis 

or mastitis can be ‗cured‘ within days by clinical treatment but the cows are subfertile many 

weeks later during the breeding period. Obviously, inflammatory diseases taking place in the 
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first weeks of lactation are associated with a reduced fertilization of cows inseminated 

between 50 and 60 days postpartum. 

In a recent study (Ribeiro et al. 2013), it is shown that the carryover effects of disease on 

reproduction of dairy cows cannot be explained simply by the nutritional status and its 

consequences to body condition score and oestrous cyclicity at the onset of breeding 

postpartum. The inflammatory mediators produced by the injured or infected tissues can also 

reach the reproductive tract including ovaries and uterus, but also the brain, which ultimately 

affects the physiological processes that control normal reproductive cyclicity. For example, 

cows that suffered from uterine disease postpartum had delayed growth of the first dominant 

follicle postpartum and reduced concentrations of estradiol (Sheldon et al. 2002). Presence of 

lipopolysaccharides in the follicular fluid of cows with uterine diseases has been postulated as 

a potential reason for compromised steroidogenesis, follicle growth and impaired oocyte 

developmental competence (Bromfield et al. 2015).  

References 

Adamiak SJ, Mackie K, Watt RG, Webb R and Sinclair KD. 2005. Impact of nutrition on 

oocyte quality: cumulative effects of body composition and diet leading to 

hyperinsulinemia in cattle. Biology of Reproduction 73 918-926. 

Adamiak SJ, Powell K, Rooke JA, Webb R and Sinclair KD. 2006. Body composition, dietary 

carbohydrates and fatty acids determine post-fertilisation development of bovine 

oocytes in vitro. Reproduction 131 247-258. 

Bainbridge SA, Minhas A, Whiteley KJ, Qu D, Sled JG, Kingdom JC and Adamson SL. 

2012. Effects of reduced Gcm1 expression on trophoblast morphology, fetoplacental 

vascularity, and pregnancy outcomes in mice. Hypertension 59 732-739. 

Banos G, Brotherstone S and Coffey MP. 2007. Prenatal maternal effects on body condition 

score, female fertility, and milk yield of dairy cows. Journal of Dairy Science 90 3490-

3499. 

Barella LF, de Oliveira JC and Mathias PC. 2014. Pancreatic islets and their roles in 

metabolic programming. Nutrition 30 373-379. 

Barker DJP. 1995. The Wellcome Foundation Lecture, 1994 - the Fetal Origins of Adult 

Disease. Proceedings of the Royal Society of London Series B-Biological Sciences 262 

37-43. 



Chapter 2: General Review  57 

 

Battaglia FC and Regnault TRH. 2001. Placental transport and metabolism of amino acids. 

Placenta 22 145-161. 

Bauman DE 2000 Regulation of nutrient partitioning during lactation: homeostasis and 

homeorhesis revisitied. In Ruminant physiology: Digestion, Metabolism, Growth and 

Reproduction, pp 311-328. Ed PB Cronje. Wallingford, UK: CAB International. 

Bayril T, Yildiz AS, Akdemir F, Yalcin C, Köse M and Yilmaz O. 2015. The technical and 

financial effects of parenteral supplementation with selenium and vitamin E during late 

pregnancy and the early lactation period on the productivity of dairy cattle. Asian-

Australas Journal of Animal Science 281133-1139. 

Bell AW, Kennaugh JM, Battaglia FC and Meschia G. 1989. Uptake of amino acids and 

ammonia at mid-gestation by the foetal lamb. Quarterly Journal of Experimental 

Physiology 74 635-643. 

Bell AW and Ehrhardt RA. 2002. Regulation of placental nutrient transport and implications 

for fetal growth. Nutrition Research Reviews 15 211-230. 

Bell AW, Greenwood PL and Ehrhardt RA. 2003. Regulation of metabolism and growth 

during prenatal life. In: Biology of Metabolism in Growing Animals (eds. DG Burrin 

and HJ Mersmann). Elsevier, Amsterdam. 

Bell AW and Greenwood PL. 2016. Prenatal origins of postnatal variation in growth, 

development and productivity of ruminants. Animal Production Science 56 1217-1232. 

Bender RW, Hackbart KS, Dresch AR, Carvalho PD, Vieira LM, Crump PM, Guenther JN, 

Fricke PM, Shaver RD, Combs DK et al. 2014. Effects of acute feed restriction 

combined with targeted use of increasing luteinizing hormone content of follicle-

stimulating hormone preparations on ovarian superstimulation, fertilization, and embryo 

quality in lactating dairy cows. Journal of Dairy Science 97 764-778. 

Berends LM and Ozanne SE. 2012. Early determinants of type-2 diabetes. Best Practice and 

Research: Clinical Endocrinology and Metabolism 26 569-580. 

Bernardo AS, Hay CW and Docherty K. 2008. Pancreatic transcription factors and their role 

in the birth, life and survival of the pancreatic beta cell. Molecular and Cellular 

Endocrinology 294 1-9. 

  



58  Chapter 2 

 

Berry DP, Lonergan P, Butler ST, Cromie AR, Fair T, Mossa F and Evans ACO. 2008. 

Negative influence of high maternal milk production before and after conception on 

offspring survival and milk production in dairy cattle. Journal of Dairy Science 91 329-

337. 

Berry DR, Buckley F and Dillon R. 2007. Body condition score and live-weight effects on 

milk production in Irish Holstein-Friesian dairy cows. Animal 1 1351-1359. 

Bossaert P, De Cock H, Leroy JL, De Campeneere S, Bols PE, Filliers M and Opsomer G. 

2010. Immunohistochemical visualization of insulin receptors in formalin-fixed bovine 

ovaries post mortem and in granulosa cells collected in vivo. Theriogenology 73 1210-1219. 

Brelje TC, Parsons JA and Sorenson RL. 1994. Regulation of islet beta-cell proliferation by 

prolactin in rat islets. Diabetes 43 263-273. 

Brickell JS, Bourne N, McGowan MM and Wathes DC. 2009. Effect of growth and 

development during the rearing period on the subsequent fertility of nulliparous 

Holstein-Friesian heifers. Theriogenology 72 408-416. 

Britt JH. 1992. Impacts of early postpartum metabolism on follicular development and 

fertility. Proceedings of the American Association of Bovine Practitioners 24 39-43. 

Bromfield JJ, Santos JE, Block J, Williams RS and Sheldon IM. 2015. Uterine infection: 

linking infection and innate immunity with infertility in the high-producing dairy cow. 

Journal of Animal Science 93 2021-2033. 

Burton GJ and Fowden AL. 2012. The placenta and developmental programming: balancing 

fetal nutrient demands with maternal resource allocation. Placenta 33 S23-S27. 

Butler WR. 2003. Energy balance relationships with follicular development, ovulation and 

fertility in postpartum dairy cows. Livestock Production Science 83 211-218. 

Butler ST, Marr AL, Pelton SH, Radcliff RP, Lucy MC and Butler WR. 2003. Insulin restores 

GH responsiveness during lactation-induced negative energy balance in dairy cattle: 

effects on expression of IGF-I and GH receptor 1A. Journal of Endocrinology 176 205-

217. 

Cardoso FC, LeBlanc SJ, Murphy MR and Drackley JK. 2013. Prepartum nutritional strategy 

affects reproductive performance in dairy cows. Journal of Dairy Science 96 5859-5871. 

  



Chapter 2: General Review  59 

 

Caton JS, Grazul-Bilska AT, Vonnahme KA, Luther JS, Lardy GP, Hammer CJ, Redmer DA 

and Reynolds LP 2007 Nutritional management during gestation: impacts on lifelong 

performance. In Proceedings of the 18th Annual Florida Ruminant Nutrition 

Symposium, pp 1-20. 

Catalano PM and Ehrenberg HM. 2006. The short- and long-term implications of maternal 

obesity on the mother and her offspring. BJOG 113 1126-1133.  

Caton JS and Hess BW 2010 Maternal plane of nutrition: impacts on fetal outcomes and 

postnatal offspring responses. In Proc. Graz. Lives. Nut. Conf., pp 104-119. Casper, WY. 

Cetin I and Alvino G. 2009. Intrauterine growth restriction: implications for placental 

metabolism and transport. A review. Placenta 30 S77-S82. 

Chagas LM, Lucy MC, Back PJ, Blache D, Lee JM, Gore PJS, Sheahan AJ and Roche JR. 

2009. Insulin resistance in divergent strains of Holstein-Friesian dairy cows offered 

fresh pasture and increasing amounts of concentrate in early lactation. Journal of Dairy 

Science 92 216-222. 

Cheong SH, Sa Filho OG, Absalon-Medina VA, Pelton SH, Butler WR and Gilbert RO. 2015. 

Metabolic and endocrine differences between dairy cows that do or do not ovulate first 

postpartum dominant follicles. Biology of Reproduction 94 18. 

Chilliard Y, Ferlay A, Faulconnier Y, Bonnet M, Rouel J and Bocquier F. 2000. Adipose 

tissue metabolism and its role in adaptations to undernutrition in ruminants. Proceedings 

of the Nutrition Society 59 127-134. 

Collier RJ, Baumgard LH, Lock AL and Bauman DE 2005 Physiological limitations, nutrient 

partitioning. In Yields of farmed species. Constraints and opportunities in the 21st 

century, pp 351-377. Eds R Sylvester-Bradley & J Wiseman. Nottingham: Nottingham 

University Press. 

Compton CW, Heuer C, Thomsen PT, Carpenter TE, Phyn CV and McDougall S. 2017. 

Invited review: A systematic literature review and meta-analysis of mortality and culling 

in dairy cattle. Journal of Dairy Science 100 1-16.  

Cools S, Van den Broeck W, Vanhaecke L, Heyerick A, Bossaert P, Hostens M and Opsomer 

G. 2014. Feeding soybean meal increases the blood level of isoflavones and reduces the 

steroidogenic capacity in bovine corpora lutea, without affecting peripheral progesterone 

concentrations. Animal Reproduction Science 144 79-89. 



60  Chapter 2 

 

Cross JC. 2015. Adaptability and potential for treatment of placental functions to improve 

embryonic development and postnatal health. Reproduction, Fertility and Development 

28 75-82. 

Cross JC and Mickelson L. 2006. Nutritional influences on implantation and placental 

development. Nutrition Reviews 64 S12-18. 

Davies K, Bowden L, Smith P, Dean W, Hill D, Furuumi H, Sasaki H, Cattanach B and Reik 

W. 2002. Disruption of mesodermal enhancers for Igf2 in the minute mutant. 

Development 129 1657-1668. 

de Oliveira JC, Scomparin DX, Andreazzi AE, Branco RC, Martins AG, Gravena C, 

Grassiolli S, Rinaldi W, Barbosa FB and Mathias PC. 2011. Metabolic imprinting by 

maternal protein malnourishment impairs vagal activity in adult rats. Journal of 

Neuroendocrinology 23 148-157. 

De Rooij SR, Painter RC, Phillips DIW, Osmond C, Michels RPJ, Godsland IF, Bossuyt 

PMM, Bleker OP and Rojeboom TJ. 2006. Impaired insulin secretion after prenatal 

exposure to the Dutch famine. Diabetes Care 29 1897-1901. 

Devlieger R, Casteels K and Van Assche FA. 2008. Reduced adaptation of the pancreatic B 

cells during pregnancy is the major causal factor for gestational diabetes: current 

knowledge and metabolic effects on the offspring. Acta Obstetricia et Gynecologica 

Scandinavica 87 1266-1270. 

Dillon P, Buckley F, O'Connor P, Hegarty D and Rath M. 2003. A comparison of different 

dairy cow breeds on a seasonal grass-based system of milk production 1. Milk 

production, live weight, body condition score and DM intake. Livestock Production 

Science 83 21-33. 

Dobson H, Smith R, Royal M, Knight C and Sheldon I. 2007. The high-producing dairy cow 

and its reproductive performance. Reproduction in Domestic Animals 42 17-23. 

Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP and Nathanielsz PW. 2010. Fetal 

programming of skeletal muscle development in ruminant animals. Journal of Animal 

Science 88 E51-60. 

Duttaroy AK. 2009. Transport of fatty acids across the human placenta: a review. Progress in 

Lipid Research 48 52-61. 



Chapter 2: General Review  61 

 

Ehrhardt RA and Bell AW. 1995. Growth and metabolism of the ovine placenta during mid 

gestation. Placenta 16 727-741. 

Ehrlich PR and Harte J. 2015. Opinion: To feed the world in 2050 will require a global 

revolution. Proceedings of the National Academy of Sciences of the USA 112, 14743-

14744. 

Faichney GJ and White GA. 1987. Effects of maternal nutritional status on foetal and 

placental growth and on foetal urea synthesis in sheep. Australian Journal of Biological 

Sciences 40 365-377. 

Fleming TP, Lucas ES, Watkins AJ and Eckert JJ. 2012. Adaptive responses of the embryo to 

maternal diet and consequences for post-implantation development. Reproduction, 

Fertility and Development 24 35-44. 

Fouladi-Nashta AA, Gutierrez CG, Garnsworthy PC and Webb R. 2005. Effect of dietary 

carbohydrate source on oocyte/embryo quality and development in high-yielding, 

lactating dairy cattle. Biology of Reproduction Special Issue 135-136. 

Fowden AL, Forhead AJ, Coan PM and Burton GJ. 2008. The placenta and intrauterine 

programming. Journal of Neuroendocrinology 20 439-450. 

Fowden AL and Moore T. 2012. Maternal-fetal resource allocation: co-operation and conflict. 

Placenta 33 e11-e15. 

Fowden AL, Ward J, Wooding FBP and Forhead AJ. 2010. Developmental programming of 

the ovine placenta. Society of Reproduction and Fertility 67 41-57. 

Fowden AL, Ward JW, Wooding FPB, Forhead AJ and Constancia M. 2006. Programming 

placental nutrient transport capacity. Journal of Physiology 572 5-15. 

Frias JL, Frias JP, Frias PA and Martinez-Frias ML. 2007. Infrequently studied congenital 

anomalies as clues to the diagnosis of maternal diabetes mellitus. American Journal of 

Medical Genetics Part A 143A 2904-2909. 

Friggens NC and Newbold JR. 2007. Towards a biological basis for predicting nutrient 

partitioning: the dairy cow as an example. Animal 1 87-97. 

Funston RN, Larson DM and Vonnahme KA. 2010. Effects of maternal nutrition on 

conceptus growth and offspring performance: Implications for beef cattle production. 

Journal of Animal Science 88 E205-E215. 



62  Chapter 2 

 

Funston RN and Summers AF. 2013. Effect of prenatal programming on heifer development. 

Veterinary Clinics of North America: Food Animal Practice 29 517-536. 

Gao H, Wu G, Spencer TE, Johnson GA, Li X and Bazer FW. 2009. Select nutrients in the 

ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of 

cyclic and pregnant ewes. Biology of Reproduction 80 86-93. 

Garofano A, Czernichow P and Breant B. 1999. Effect of ageing on beta-cell mass and 

function in rats malnourished during the perinatal period. Diabetologia 42 711-718. 

Gilbert JS, Ford SP, Lang AL, Pahl LR, Drumhiller MC, Babcock SA, Nathanielsz PW and 

Nijland MJ. 2007. Nutrient restriction impairs nephrogenesis in a gender-specific 

manner in the ovine fetus. Pediatric Research 61 42-47. 

Gnanalingham MG, Mostyn A, Dandrea J, Yakubu DP, Symonds ME and Stephenson T. 

2005. Ontogeny and nutritional programming of uncoupling protein-2 and 

glucocorticoid receptor mRNA in the ovine lung. Journal of Physiology 565 159-169. 

Godfrey KM and Barker DJ. 2000. Fetal nutrition and adult disease. American Journal of 

Clinical Nutrition 71 1344S-1352S. 

Gong JG, Lee WJ, Garnsworthy PC and Webb R. 2002. Effect of dietary-induced increases in 

circulating insulin concentrations during the early postpartum period on reproductive 

function in dairy cows. Reproduction 123 419-427. 

Gonzalez-Recio O, Ugarte E and Bach A. 2012. Trans-generational effect of maternal 

lactation during pregnancy: a Holstein cow model. Plos One 7 e51816. 

Graugnard DE, Bionaz M, Trevisi E, Moyes KM, Salak-Johnson JL, Wallace RL, Drackley 

JK, Bertoni G and Loor JJ. 2012. Blood immunometabolic indices and 

polymorphonuclear neutrophil function in peripartum dairy cows are altered by level of 

dietary energy prepartum. Journal of Dairy Science 95 1749-1758. 

Greenwood PL, Slepetis RM and Bell AW. 2000. Influences on fetal and placental weights 

during mid to late gestation in prolific ewes well nourished throughout pregnancy. 

Reproduction, Fertility and Development 12 149-156. 

Greenwood PL and Bell AW. 2003. Consequences of intrauterine growth retardation for 

postnatal growth, metabolism and pathophysiology. Reprod Suppl 61 195-206. 



Chapter 2: General Review  63 

 

Groebner AE, Rubio-Aliaga I, Schulke K, Reichenbach HD, Daniel H, Wolf E, Meyer HH 

and Ulbrich SE. 2011. Increase of essential amino acids in the bovine uterine lumen 

during preimplantation development. Reproduction 141 685-695. 

Grummer RR, Wiltbank MC, Fricke PM, Watters RD and Silva-Del-Rio N. 2010. 

Management of dry and transition cows to improve energy balance and reproduction. 

Journal of Reproduction and Development 56 S22-28. 

Gulick AK, Garry FB, Holt TN, Retallick-Trennepohl K, Enns RM, Thomas MG and Neary 

JM. 2016. Angus calves born and raised at high altitude adapt to hypobaric hypoxia by 

increasing alveolar ventilation rate but not hematocrit. Journal of Animal Science 94 

4167-4171. 

Guo JR, Monteiro AP, Weng XS, Ahmed BM, Laporta J, Hayen MJ, Dahl GE, Bernard JK 

and Tao S. 2016. Effect of maternal heat stress in late gestation on blood hormones and 

metabolites of newborn calves. Journal of Dairy Science 99 6804-6807. 

Gutierrez V, Espasandin AC, Astessiano AL, Casal A, Lopez-Mazz C and Carriquiry M. 

2012. Calf foetal and early life nutrition on grazing conditions: metabolic and endocrine 

profiles and body composition during the growing phase. Journal of Animal Physiology 

and Animal Nutrition 97 720-731. 

Haeger JD, Hambruch N and Pfarrer C. 2016. The bovine placenta in vivo and in vitro. 

Theriogenology 86 306-312. 

Hammer CJ, Thorson JF, Meyer AM, Redmer DA, Luther JS, Neville TL, Reed JJ, Reynolds 

LP, Caton JS and Vonnahme KA. 2011. Effects of maternal selenium supply and plane 

of nutrition during gestation on passive transfer of immunity and health in neonatal 

lambs. Journal of Animal Science 89 3690-3698. 

Han HC, Austin KJ, Nathanielsz PW, Ford SP, Nijland MJ and Hansen TR. 2004. Maternal 

nutrient restriction alters gene expression in the ovine fetal heart. Journal of Physiology 

558 111-121. 

Heasman L, Clarke L, Firth K, Stephenson T and Symonds ME. 1998. Influence of restricted 

maternal nutrition in early to mid gestation on placental and fetal development at term in 

sheep. Pediatric Research 44 546-551. 



64  Chapter 2 

 

Higgins JS, Vaughan OR, Fernandez de Liger E, Fowden AL and Sferruzzi-Perri AN. 2016. 

Placental phenotype and resource allocation to fetal growth are modified by the timing 

and degree of hypoxia during mouse pregnancy. Journal of Physiology 594 1341-1356. 

Hoffman K, DeClue R and Emmick D. 2000. Prescribed grazing and feeding management of 

lactating dairy cows. NYS Grazing Lands Conservation Initiative/USDA-NRCS. 

Available online at: http://articles.extension.org/pages/68574/ (verified 2017 May 20) 

Hostens M, Fievez V, Vlaeminck B, Buyse J, Leroy J, Piepers S, De Vliegher S and Opsomer 

G. 2011. The effect of marine algae in the ration of high-yielding dairy cows during 

transition on metabolic parameters in serum and follicular fluid around parturition. 

Journal of Dairy Science 94 4603-4615. 

Hubbert WT, Stalheim OH and Booth GD. 1972. Changes in organ weights and fluid volumes 

during growth of the bovine fetus. Growth 36 217-233. 

Hugentobler SA, Sreenan JM, Humpherson PG, Leese HJ, Diskin MG and Morris DG. 2010. 

Effects of changes in the concentration of systemic progesterone on ions, amino acids 

and energy substrates in cattle oviduct and uterine fluid and blood. Reproduction, 

Fertility and Development 22 684-694. 

Ibanez L, Jaramillo A, Enriquez G, Miro E, Lopez-Bermejo A, Dunger D and de Zegher F. 

2007. Polycystic ovaries after precocious pubarche: relation to prenatal growth. Human 

Reproduction Update 22 395-400. 

Inchaisri C, Jorritsma R, Vos PL, van der Weijden GC and Hogeveen H. 2010. Economic 

consequences of reproductive performance in dairy cattle. Theriogenology 74 835-846. 

Jahanian E, Nanaei HA and Kor NM. 2013. The dietary fatty acids and their effects on 

reproductive performance of ruminants. European Journal of Experimental Biology 3 

95-97. 

Jansson T and Powell TL. 2006. IFPA 2005 Award in Placentology Lecture. Human placental 

transport in altered fetal growth: does the placenta function as a nutrient sensor? -- a 

review. Placenta 27 Suppl A, S91-97. 

Kadzere CT, Murphy MR, Silanikove N and Maltz E. 2002. Heat stress in lactating dairy 

cows: a review. Livestock Production Science 77 59-91. 

Kelly RW. 1992. Nutrition and placental development. Proceedings of the Nutrition Society of 

Australia 17 203-211. 



Chapter 2: General Review  65 

 

Kennaugh JM, Bell AW, Teng C, Meschia G and Battaglia FC. 1987. Ontogenetic changes in 

the rates of protein synthesis and leucine oxidation during fetal life. Pediatric Research 

22 688-692. 

Kim J, Burghardt RC, Wu G, Johnson GA, Spencer TE and Bazer FW. 2011. Select nutrients 

in the ovine uterine lumen. IX. Differential effects of arginine, leucine, glutamine, and 

glucose on interferon tau, ornithine decarboxylase, and nitric oxide synthase in the ovine 

conceptus. Biology of Reproduction 84 1139-1147. 

Kirkland RM and Gordon FJ. 2001. The effects of milk yield and stage of lactation on the 

partitioning of nutrients in lactating dairy cows. Journal of Dairy Science 84 233-240. 

Knight CH, Beever DE and Sorensen A. 1999. Metabolic loads to be expected from different 

genotypes under different systems. Metabolic stress in dairy cows. British Society of 

Animal Science Occasional Publication 24 37-36. 

Kocak S, Tekerli M, Ozbeyaz C and Yuceer B. 2007. Environmental and genetic effects on 

birth weight and survival rate in Holstein calves. Turkish Journal of Veterinary and 

Animal Sciences 31 241-246. 

LeBlanc S. 2010. Monitoring metabolic health of dairy cattle in the transition period. Journal 

of Reproduction and Development 56 S29-35. 

Lemley CO, Butler ST, Butler WR and Wilson ME. 2008. Short communication: insulin 

alters hepatic progesterone catabolic enzymes cytochrome P450 2C and 3A in dairy 

cows. Journal of Dairy Science 91 641-645. 

Leroy JLMR, Van Soom A, Opsomer G and Bols REJ. 2008. The consequences of metabolic 

changes in high-yielding dairy cows on oocyte and embryo quality. Animal 2 1120-

1127. 

Leroy JL, Sturmey RG, Van Hoeck V, De Bie J, McKeegan PJ and Bols PE. 2014. Dietary fat 

supplementation and the consequences for oocyte and embryo quality: hype or 

significant benefit for dairy cow reproduction? Reproduction in Domestic Animals 49 

353-361. 

Leroy JL, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PE, Dewulf J and de 

Kruif A. 2004. Metabolic changes in follicular fluid of the dominant follicle in high-

yielding dairy cows early post partum. Theriogenology 62 1131-1143. 



66  Chapter 2 

 

Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G and 

Van Soom A. 2005. Non-esterified fatty acids in follicular fluid of dairy cows and their 

effect on developmental capacity of bovine oocytes in vitro. Reproduction 130 485-495. 

Leroy JLMR, Vanholder T, Opsomer G, Van Soom A and de Kruif A. 2006. The In vitro 

development of bovine oocytes after maturation in glucose and beta-hydroxybutyrate 

concentrations associated with negative energy balance in dairy cows. Reproduction in 

Domestic Animals 41 119-123. 

Lillycrop KA, Phillips ES, Jackson AA, Hanson MA and Burdge GC. 2005. Dietary protein 

restriction of pregnant rats induces and folic acid supplementation prevents epigenetic 

modification of hepatic gene expression in the offspring. Journal of Nutrition 135 1382-

1386. 

Lillycrop KA and Burdge GC. 2012. Epigenetic mechanisms linking early nutrition to long 

term health. Best Practice and Research in Clinical Endocrinology and Metabolism 26 

667-676. 

Limesand SW, Jensen J, Hutton JC and Hay WW, Jr. 2005. Diminished beta-cell replication 

contributes to reduced beta-cell mass in fetal sheep with intrauterine growth restriction. 

American Journal of Physiology- Regulatory, Integrative and Comparative Physiology 

288 R1297-1305. 

Limesand SW, Rozance PJ, Macko AR, Anderson MJ, Kelly AC and Hay WWJ. 2013. 

Reductions in insulin concentrations and β-cell mass precede growth restriction in sheep 

fetuses with placental insufficiency. American Journal of Physiology, Endocrinology 

and Metabolism 304 E516-E523. 

Limesand SW, Rozance PJ, Zerbe GO, Hutton JC and Hay WW, Jr. 2006. Attenuated insulin 

release and storage in fetal sheep pancreatic islets with intrauterine growth restriction. 

Endocrinology 147 1488-1497. 

Long NM, Prado-Cooper MJ, Krehbiel CR, DeSilva U and Wettemann RP. 2010b. Effects of 

nutrient restriction of bovine dams during early gestation on postnatal growth, carcass 

and organ characteristics, and gene expression in adipose tissue and muscle. Journal of 

Animal Science 88 3251-3261. 

Long NM, Prado-Cooper MJ, Krehbiel CR and Wettemann RP. 2010a. Effects of nutrient 

restriction of bovine dams during early gestation on postnatal growth and regulation of 

plasma glucose. Journal of Animal Science 88 3262-3268. 



Chapter 2: General Review  67 

 

Long NM, Tousley CB, Underwood KR, Paisley SI, Means WJ, Hess BW, Du M and Ford 

SP. 2012. Effects of early- to mid-gestational undernutrition with or without protein 

supplementation on offspring growth, carcass characteristics, and adipocyte size in beef 

cattle. Journal of Animal Science 90 197-206. 

Long NM, Vonnahme KA, Hess BW, Nathanielsz PW and Ford SP. 2009. Effects of early 

gestational undernutrition on fetal growth, organ development, and placentomal 

composition in the bovine. Journal of Animal Science 87 1950-1959. 

Lucy MC, Verkerk GA, Whyte BE, Macdonald KA, Burton L, Cursons RT, Roche JR and 

Holmes CW. 2009. Somatotropic axis components and nutrient partitioning in 

genetically diverse dairy cows managed under different feed allowances in a pasture 

system. Journal of Dairy Science 92 526-539. 

Martin GB and Kadokawa H. 2006. "Clean, green and ethical" animal production. Case study: 

reproductive efficiency in small ruminants. Journal of Reproduction and Development 

52 145-152. 

Martin JL, Vonnahme KA, Adams DC, Lardy GP and Funston RN. 2007. Effects of dam 

nutrition on growth and reproductive performance of heifer calves. Journal of Animal 

Science 85 841-847. 

McCarthy S, Berry DP, Dillon P, Rath M and Horan B. 2007. Influence of Holstein-Friesian 

strain and feed system on body weight and body condition score lactation profiles. 

Journal of Dairy Science 90 1859-1869. 

Mcnamara JP and Hillers JK. 1986. Regulation of Bovine Adipose-Tissue Metabolism during 

Lactation .1. Lipid-Synthesis in Response to Increased Milk-Production and Decreased 

Energy-Intake. Journal of Dairy Science 69 3032-3041. 

Mcnamara JP and Hillers JK. 1986b. Regulation of Bovine Adipose-Tissue Metabolism 

during Lactation .2. Lipolysis Response to Milk-Production and Energy-Intake. Journal 

of Dairy Science 69 3042-3050. 

Micke GC, Sullivan TM, McMillen IC, Gentili S and Perry VE. 2011. Heifer nutrient intake 

during early- and mid-gestation programs adult offspring adiposity and mRNA 

expression of growth-related genes in adipose depots. Reproduction 141 697-706. 



68  Chapter 2 

 

Monteiro AP, Guo JR, Weng XS, Ahmed BM, Hayen MJ, Dahl GE, Bernard JK and Tao S. 

2016. Effect of maternal heat stress during the dry period on growth and metabolism of 

calves. Journal of Dairy Science 99 3896-3907. 

Monteiro APA, Tao S, Thompson IM and Dahl GE. 2013. Effect of heat stress in utero on 

calf performance and health through the first lactation. Journal of Animal Science 

91(Suppl.2) 184. 

Mulligan FJ, O'Grady L, Rice DA and Doherty ML. 2006. A herd health approach to dairy 

cow nutrition and production diseases of the transition cow. Animal Reproduction 

Science 96 331-353. 

Nilsson EE and Skinner MK. 2009. Progesterone regulation of primordial follicle assembly in 

bovine fetal ovaries. Molecular and Cellular Endocrinology 313 9-16. 

Opsomer G, Coryn M, Deluyker H and de Kruif A. 1998. An analysis of ovarian dysfunction 

in high yielding dairy cows after calving based on progesterone profiles. Reproduction 

in Domestic Animals 33 193-204. 

Opsomer G, Grohn YT, Hertl J, Coryn M, Deluyker H and de Kruif A. 2000. Risk factors for 

postpartum ovarian dysfunction in high producing dairy cows in Belgium: a field study. 

Theriogenology 53 841-857. 

Otto JR, Freeman MJ, Malau-Aduli BS, Nichols PD, Lane PA and Malau-Aduli AEO. 2014. 

Reproduction and fertility parameters of dairy cows supplemented with omega-3 fatty 

acid-rich canola oil. Annual Research and Review in Biology 4 1611-1636.  

Owens JA, Gatford KL, De Blasio MJ, Edwards LJ, McMillen IC and Fowden AL. 2007. 

Restriction of placental growth in sheep impairs insulin secretion but not sensitivity 

before birth. Journal of Physiology 584 935-949. 

Park JH, Stoffers DA, Nicholls RD and Simmons RA. 2008. Development of type 2 diabetes 

following intrauterine growth retardation in rats is associated with progressive 

epigenetic silencing of Pdx1. Journal of Clinical Investigation 118 2316-2324. 

Patel MS and Srinivasan M. 2002. Metabolic programming: causes and consequences. 

Journal of Biological Chemistry 277 1629-1632. 

Patton J, Kenny DA, McNamara S, Mee JF, O'Mara FP, Diskin MG and Murphy JJ. 2007. 

Relationships among milk production, energy balance, plasma analytes, and 

reproduction in Holstein-Friesian cows. Journal of Dairy Science 90 649-658. 



Chapter 2: General Review  69 

 

Perry VEA, Norman ST, Owen JA, Daniel RCW and Phillips N. 1999. Low dietary protein 

during early pregnancy alters bovine placental development. Animal Reproduction 

Science 55 13-21. 

Pfarrer CD, Ruziwa SD, Winther H, Callesen H, Leiser R, Schams D and Dantzer V. 2006. 

Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 

and VEGFR-2 in bovine placentomes from implantation until term. Placenta 27 889-

898. 

Pinney SE and Simmons RA. 2010. Epigenetic mechanisms in the development of type 2 

diabetes. Trends in Endocrinology and Metabolism 21 223-229. 

Pontes GC, Monteiro PL, Jr., Prata AB, Guardieiro MM, Pinto DA, Fernandes GO, Wiltbank 

MC, Santos JE and Sartori R. 2015. Effect of injectable vitamin E on incidence of 

retained fetal membranes and reproductive performance of dairy cows. Journal of Dairy 

Science 98 2437-2449. 

Pryce JE, Coffey MP and Simm G. 2001. The relationship between body condition score and 

reproductive performance. Journal of Dairy Science 84 1508-1515. 

Pryce JE and Harris BL. 2006. Genetics of body condition score in New Zealand dairy cows. 

Journal of Dairy Science 89 4424-4432. 

Purcell SH, Chi MM, Lanzendorf S and Moley KH. 2012. Insulin-stimulated glucose uptake 

occurs in specialized cells within the cumulus oocyte complex. Endocrinology 153 

2444-2454. 

Redmer DA, Luther JS, Milne JS, Aitken RP, Johnson ML, Borowicz PP, Borowicz MA, 

Reynolds LP and Wallace JM. 2009. Fetoplacental growth and vascular development in 

overnourished adolescent sheep at day 50, 90 and 130 of gestation. Reproduction 137 

749-757. 

Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, 

Luther JS, Wallace JM, Wu G and Spencer TE. 2006. Evidence for altered placental 

blood flow and vascularity in compromised pregnancies. Journal of Physiology 572 51-

58. 

Reynolds LP and Redmer DA. 1995. Utero-placental vascular development and placental 

function. Journal of Animal Science 73 1839-1851. 



70  Chapter 2 

 

Reynolds LP and Redmer DA. 2001. Angiogenesis in the placenta. Biology of Reproduction 

64 1033-1040. 

Ribeiro ES, Lima FS, Greco LF, Bisinotto RS, Monteiro AP, Favoreto M, Ayres H, Marsola 

RS, Martinez N, Thatcher WW et al. 2013. Prevalence of periparturient diseases and 

effects on fertility of seasonally calving grazing dairy cows supplemented with 

concentrates. Journal of Dairy Science 96 5682-5697. 

Robinson J, Chidzanja S, Kind K, Lok F, Owens P and Owens J. 1995. Placental control of 

fetal growth. Reproduction, Fertility and Development 7 333-344. 

Roche JR, Berry DP and Kolver ES. 2006. Holstein-Friesian strain and feed effects on milk 

production, body weight, and body condition score profiles in grazing dairy cows. 

Journal of Dairy Science 89 3532-3543. 

Roche JR, Berry DP, Lee JM, Macdonald KA and Boston RC. 2007. Describing the body 

condition score change between successive calvings: A novel strategy generalizable to 

diverse cohorts. Journal of Dairy Science 90 4378-4396. 

Roche JR, Blache D, Kay JK, Miller DR, Sheahan AJ and Miller DW. 2008. Neuroendocrine 

and physiological regulation of intake with particular reference to domesticated 

ruminant animals. Nutrition Research Reviews 21 207-234. 

Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ and Berry DP. 2009. Invited 

review: Body condition score and its association with dairy cow productivity, health, 

and welfare. Journal of Dairy Science 92 5769-5801. 

Roche JR, Lee JM, Macdonald KA and Berry DP. 2007b. Relationships among body 

condition score, body weight, and milk production variables in pasture-based dairy 

cows. Journal of Dairy Science 90 3802-3815. 

Rodriguez-Trejo A, Ortiz-Lopez MG, Zambrano E, Granados-Silvestre Mde L, Mendez C, 

Blondeau B, Breant B, Nathanielsz PW and Menjivar M. 2012. Developmental 

programming of neonatal pancreatic beta-cells by a maternal low-protein diet in rats 

involves a switch from proliferation to differentiation. American Journal of Physiology, 

Endocrinology and Metabolism 302 E1431-1439. 

Rooke JA, Ainslie A, Watt RG, Alink FM, McEvoy TG, Sinclair KD, Garnsworthy PC and 

Webb R. 2009. Dietary carbohydrates and amino acids influence oocyte quality in dairy 

heifers. Reproduction, Fertility and Development 21 419-427. 



Chapter 2: General Review  71 

 

Roseboom T, de Rooij S and Painter R. 2006. The Dutch famine and its long-term 

consequences for adult health. Early Human Development 82 485-491. 

Roth Z. 2008. Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential 

strategies to improve fertility in dairy cows. Reproduction in Domestic Animals 43 238-

244. 

Rozance PJ, Limesand SW and Hay WW, Jr. 2006. Decreased nutrient-stimulated insulin 

secretion in chronically hypoglycemic late-gestation fetal sheep is due to an intrinsic 

islet defect. American Journal of Physiology, Endocrinology and Metabolism 291 E404-

411. 

Royal MD, Pryce JE, Woolliams JA and Flint APF. 2002. The genetic relationship between 

commencement of luteal activity and calving interval, body condition score, production, 

and linear type traits in Holstein-Friesian dairy cattle. Journal of Dairy Science 85 3071-

3080. 

Rutherford KMD, Donald RD, Arnottt G, Rooke JA, Dixon L, Mehers JJM, Turnbull J and 

Lawrence AB. 2012. Farm animal welfare: assessing risks attributable to the prenatal 

environment. Animal Welfare 21 419-429. 

Santos JE, Cerri RL and Sartori R. 2008. Nutritional management of the donor cow. 

Theriogenology 69 88-97. 

Santos JE, Bisinotto RS, Ribeiro ES, Lima FS, Greco LF, Staples CR and Thatcher WW. 

2010. Applying nutrition and physiology to improve reproduction in dairy cattle. Society 

for Reproduction and Fertility Supplement 67 387-403. 

Schlafer DH, Fisher PJ and Davies CJ. 2000. The bovine placenta before and after birth: 

placental development and function in health and disease. Animal Reproduction Science 

60 145-160. 

Schultz GA, Hogan A, Watson AJ, Smith RM and Heyner S. 1992. Insulin, insulin-like 

growth factors and glucose transporters: temporal patterns of gene expression in early 

murine and bovine embryos. Reproduction, Fertility and Development 4 361-371. 

Sferruzzi-Perri AN and Camm EJ. 2016. The Programming Power of the Placenta. Frontiers 

in Physiology 7 Article 33. 

Shaat N and Groop L. 2007. Genetics of gestational diabetes mellitus. Current Medicinal 

Chemistry 14 569-583. 



72  Chapter 2 

 

Sharma RK, Blair HT, Jenkinson CMC, Kenyon PR, Cockrem JF and Parkinson TJ. 2012. 

Uterine environment as a regulator of birth weight and body dimensions of newborn 

lambs. Journal of Animal Science 90 1338-1342. 

Sheldon IM, Noakes DE, Rycroft AN, Pfeiffer DU and Dobson H. 2002. Influence of uterine 

bacterial contamination after parturition on ovarian dominant follicle selection and 

follicle growth and function in cattle. Reproduction 123 837-845. 

Sibley C, Glazier J and D'Souza S. 1997. Placental transporter activity and expression in 

relation to fetal growth. Experimental Physiology 82 389-402. 

Simmons RA, Suponitsky-Kroyter I and Selak MA. 2005. Progressive accumulation of 

mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell 

failure. Journal of Biological Chemistry 280 28785-28791. 

Simmons RA, Templeton LJ and Gertz SJ. 2001. Intrauterine growth retardation leads to the 

development of type 2 diabetes in the rat. Diabetes 50 2279-2286. 

Smith TR and Mcnamara JP. 1990. Regulation of bovine adipose-tissue metabolism during 

lactation: cellularity and hormone-sensitive lipase activity as affected by genetic merit 

and energy-intake. Journal of Dairy Science 73 772-783. 

Sonmez M, demirci E, Turk G, Gur S. 2005. Effect of season on some fertility parameters of 

dairy and beef cows in Elazig province. Turkish Journal of Veterinary and Animal 

Sciences 29 821-828. 

Steeves TE and Gardner DK. 1999. Metabolism of glucose, pyruvate, and glutamine during 

the maturation of oocytes derived from pre-pubertal and adult cows. Molecular 

Reproduction and Development 54 92-101. 

Steeves TE and Gardner DK. 1999b. Temporal and differential effects of amino acids on 

bovine embryo development in culture. Biology of Reproduction 61 731-740. 

Steeves TE, Gardner DK, Zuelke KA, Squires TS and Fry RC. 1999. In vitro development 

and nutrient uptake by embryos derived from oocytes of pre-pubertal and adult cows. 

Molecular Reproduction and Development 54 49-56. 

Stoffers DA, Desai BM, DeLeon DD and Simmons RA. 2003. Neonatal exendin-4 prevents 

the development of diabetes in the intrauterine growth retarded rat. Diabetes 52 734-

740. 



Chapter 2: General Review  73 

 

Sullivan TM, Micke GC, Magalhaes RS, Phillips NJ and Perry VE. 2009. Dietary protein 

during gestation affects placental development in heifers. Theriogenology 72 427-438. 

Sumner JM and McNamara JP. 2007. Expression of lipolytic genes in the adipose tissue of 

pregnant and lactating holstein dairy cattle. Journal of Dairy Science 90 5237-5246. 

Swali A, Cheng Z, Bourne N and Wathes DC. 2008. Metabolic traits affecting growth rates of 

pre-pubertal calves and their relationship with subsequent survival. Domestic Animal 

Endocrinology 35 300-313. 

Swali A and Wathes DC. 2007. Influence of primiparity on size at birth, growth, the 

somatotrophic axis and fertility in dairy heifers. Animal Reproduction Science 102: 122-

136. 

Swali A and Wathes DC. 2006. Influence of the dam and sire on size at birth and subsequent 

growth, milk production and fertility in dairy heifers. Theriogenology 66 1173-1184. 

Symonds ME, Sebert SP and Budge H. 2010. Nutritional regulation of fetal growth and 

implications for productive life in ruminants. Animal 4 1075-1083. 

Tamminga S, Luteijn PA and Meijer RGM. 1997. Changes in composition and energy content 

of liveweight loss in dairy cows with time after parturition. Livestock Production 

Science 52 31-38. 

Tao S, Monteiro AP, Thompson IM, Hayen MJ and Dahl GE. 2012. Effect of late-gestation 

maternal heat stress on growth and immune function of dairy calves. Journal of Dairy 

Science 95 7128-7136. 

Tao S, Monteiro APA, Hayen MJ and Dahl GE. 2014. Maternal heat stress during the dry 

period alters postnatal whole-body insulin response of calves. Journal of Dairy Science 

97 897-901. 

Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H and Ozanne SE. 2009. Poor 

maternal nutrition followed by accelerated postnatal growth leads to telomere shortening 

and increased markers of cell senescence in rat islets. Faseb Journal 23 1521-1528. 

Tarry-Adkins JL and Ozanne SE. 2011. Mechanisms of early life programming: current 

knowledge and future directions. American Journal of Clinical Nutrition. 

Theilgaard P, Sloth KH, Ingvartsen KL and Friggens NC. 2002. The effect of breed, parity 

and body fatness on the lipolytic response of dairy cows. Animal Science 75 209-219. 



74  Chapter 2 

 

Torgersen KL and Curran CA. 2006. A systematic approach to the physiologic adaptations of 

pregnancy. Critical Care Nursing Quarterly 29 2-19. 

Underwood KR, Tong JF, Price PL, Roberts AJ, Grings EE, Hess BW, Means WJ and Du M. 

2010. Nutrition during mid to late gestation affects growth, adipose tissue deposition, 

and tenderness in cross-bred beef steers. Meat Science 86 588-593. 

Van Soom A, Vandaele L, Goossens K, Heras S, Wydooghe E, Rahman MB, Kamal MM, 

Van Eetvelde M, Opsomer G and Peelman L. 2013. Epigenetics and the periconception 

environment in ruminants. Proceedings of the Belgian Royal Academies of Medicine 2 

1-23. 

Vanholder T, Leroy JL, Dewulf J, Duchateau L, Coryn M, de Kruif A and Opsomer G. 2005a. 

Hormonal and metabolic profiles of high-yielding dairy cows prior to ovarian cyst 

formation or first ovulation post partum. Reproduction in Domestic Animals 40 460-467. 

Vanholder T, Leroy JL, Soom AV, Opsomer G, Maes D, Coryn M and de Kruif A. 2005b. 

Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and 

proliferation in vitro. Animal Reproduction Science 87 33-44. 

Vanholder T, Lmr Leroy J, Van Soom A, Maes D, Coryn M, Fiers T, de Kruif A and 

Opsomer G. 2006. Effect of non-esterified fatty acids on bovine theca cell 

steroidogenesis and proliferation in vitro. Animal Reproduction Science 92 51-63. 

Vaughan OR, Sferruzzi-Perri AN, Coan PM and Fowden AL. 2012. Environmental regulation 

of placental phenotype: implications for fetal growth. Reproduction, Fertility and 

Development 24 80-96. 

Velazquez MA. 2011. The role of nutritional supplementation on the outcome of 

superovulation in cattle. Animal Reproduction Science 126 1-10. 

Vonnahme K. 2008. How the maternal environment impacts fetal and placental development: 

implications for livestock production. Animal Reproduction Science 9 789-797. 

Vonnahme KA, Zhu MJ, Borowicz PP, Geary TW, Hess BW, Reynolds LP, Caton JS, Means 

WJ and Ford SP. 2007. Effect of early gestational undernutrition on angiogenic factor 

expression and vascularity in the bovine placentome. Journal of Animal Science 85 

2464-2472. 

  



Chapter 2: General Review  75 

 

Vonnahme KA and Lemley CO. 2012. Programming the offspring through altered 

uteroplacental hemodynamics: how maternal environment impacts uterine and umbilical 

blood flow in cattle, sheep and pigs. Reproduction, Fertility and Development 24 97-

104. 

Vuguin PM. 2007. Animal models for small for gestational age and fetal programing of adult 

disease. Hormone Research 68 113-123. 

Wakay BU, Brar PS and Prabhakar S. 2015. Review on mechanisms of dairy summer 

infertility and implications for hormonal intervention. Open Veterinary Journal 5 6-10. 

Wallace JM, Luther JS, Milne JS, Aitken RP, Redmer DA, Reynolds LP and Hay WW, Jr. 

2006. Nutritional modulation of adolescent pregnancy outcome - a review. Placenta 27 

S61-68. 

Wallace JM, Bourke DA Aitken RP and Cruikshank MA. 1999. Switching maternal dietary 

intake at the end of the first trimester has profound effects on placental development and 

fetal growth in adolescent ewes carrying single fetuses. Biology of Reproduction 61 101-

110. 

Waterland RA and Michels KB. 2007. Epigenetic epidemiology of the developmental origins 

hypothesis. Annual Review of Nutrition 27. 363-388. 

Wathes DC. 2012. Mechanisms linking metabolic status and disease with reproductive 

outcome in the dairy cow. Reproduction in Domestic Animals 47 304-312. 

Webb R, Garnsworthy PC, Gong JG and Armstrong DG. 2004. Control of follicular growth: 

local interactions and nutritional influences. Journal of Animal Science 82 E63-74. 

Weinhaus AJ, Stout LE and Sorenson RL. 1996. Glucokinase, hexokinase, glucose transporter 

2, and glucose metabolism in islets during pregnancy and prolactin-treated islets in 

vitro: mechanisms for long term up-regulation of islets. Endocrinology 137 1640-1649. 

Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PL, Melo LF, Ochoa JC, 

Santos JE and Sartori R. 2016. Pivotal periods for pregnancy loss during the first 

trimester of gestation in lactating dairy cows. Theriogenology 86 239-253. 

Wiltbank MC, Garcia-Guerra A, Carvalho PD, Hackbart KS, Bender RW, Souza AH, Toledo 

MZ, Baez GM, Surjus RS and Sartori R. 2014. Effects of energy and protein nutrition in 

the dam on embryonic development. Animal Reproduction Science 11 168-182. 



76  Chapter 2 

 

Windig JJ, Calus MPL and Veerkamp RF. 2005. Influence of herd environment on health and 

fertility and their relationship with milk . Journal of Dairy Science 88 335-347. 

Wooding P and Burton G. 2008. Comparative placentation. Wooding Peter and Graham 

Burton (Eds): Springer-Verlag, Berlin, Heidelberg. 

Wooding FBP and Flint APF. 1994. Placentation. In: ‗Marshall‘s Physiology of 

Reproduction‘, 4th edn. Ed. G. E. Lamming. Chapman and Hall: New York. pp. 233-

460. 

Wu G, Bazer FW, Wallace JM and Spencer TE. 2006. Intrauterine growth retardation: 

Implications for the animal sciences. Journal of Animal Science 84 2316-2337. 

Yan T, Mayne CS, Keady TWJ and Agnew RE. 2006. Effects of dairy cow genotype with two 

planes of nutrition on energy partitioning between milk and body tissue. Journal of 

Dairy Science 89 1031-1042. 

Zhang H, Zhang J, Pope CF, Crawford LA, Vasavada RC, Jagasia SM and Gannon M. 2010. 

Gestational diabetes mellitus resulting from impaired beta-cell compensation in the 

absence of FoxM1, a novel downstream effector of placental lactogen. Diabetes 59 143-

152. 

Zhu MJ, Du M, Hess BW, Means WJ, Nathanielsz PW and Ford SP. 2007. Maternal nutrient 

restriction upregulates growth signaling pathways in the cotyledonary artery of cow 

placentomes. Placenta 28 361-368. 

Zhu MJ, Ford SP, Nathanielsz PW and Du M. 2004. Effect of maternal nutrient restriction in 

sheep on the development of fetal skeletal muscle. Biology of Reproduction 71 1968-

1973. 

 



 

 

CHAPTER 3 
 

 

 

 

AIMS OF THE STUDY 

 

 

 

 

  



78  Chapter 2 

 

  

 



 

 

Aims of the Study 

Optimal animal health is the first step towards high milk production and profitability of a 

dairy herd. Several studies have indicated that the health of an individual is not only 

determined by the actual environment at a certain moment in life but also a reflection of the 

environment to which that individual has been exposed in the past (Finer et al. 2016; 

Sferruzzi-Perri et al. 2017; Smits et al. 2012). Therefore, farmers need to be aware that the 

basis for a healthy, productive and fertile life of a dairy cow is initiated very early, even 

before its birth. This process in which prenatal and early postnatal events are affecting later 

health and longevity, is called ―early life programming‖ (Eriksson JG. 2016; Marciniak et al. 

2017) and was proposed for the first time in 1989 by the British professor Dr. Barker and has 

since then been defined as the ―Barker hypothesis‖ (Barker 2001; Hales and Barker 2001). 

This hypothesis also postulates that the achievements of an individual (such as the level of 

milk production) are not only the result of genetic selection and the present environment, but 

are also determined by the environment to which the individual has been exposed to as a 

fetus, including the nutritional factors that have been experienced by its mother during 

pregnancy. 

The conflict in nutrient allocation between mother and offspring during pregnancy is 

especially intriguing in modern dairy cattle. The gestation in heifers takes place when they are 

still growing. The cows in early lactation are confronted with a substantial negative energy 

balance in response to the rapidly increasing milk production. During this metabolically 

challenging period, the farmer wants his cows to become pregnant again, which means that 

the oocyte and the young fetus are ‗victims‘ of this suboptimal physiological status while 

being in utero. For our research, we hypothesized that young age in heifers and high milk 

production during gestation in cows affect the intrauterine feto-placental development and 

subsequent organ function of the calf. 

Knowledge about the effect of these environmental factors in the uterus during conception 

and pregnancy on the health and production on the long term can lead to practical advice for 

dairy cattle farmers. Therefore, the aims of this PhD thesis were to investigate the effects of 

young age in pregnant heifers and of high milk production during gestation in cows on the 

feto-placental development and subsequent organ function of the calf.  
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In order to obtain these specific aims, this PhD thesis investigated the following research 

objectives: 

1. To evaluate environmental and dam factors, including age at calving in heifers and level 

of milk production during gestation in cows that might be associated with birth size in 

Holstein calves. 

2. To study the impact of maternal factors like age at conception and level of milk 

production during gestation on gross placental morphology at parturition in dairy cattle. 

3. To evaluate potential associations between environmental factors and dam 

characteristics and major insulin traits in newborn Holstein calves. 
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Abstract 

The objective of the present study was to evaluate environmental and dam factors associated 

with birth size of Holstein calves. Data of 1,594 births from dairy herds in Belgium and 

Germany were analyzed in a retrospective cross-sectional study. Immediately after birth, the 

birth weight (BW) of the calves was measured. On the next day, the heart girth (HG), wither 

height and diagonal length of the dams and calves were measured. Parity, body condition 

score, gestation length (GL) and age at calving were recorded for all dams. For the cows, days 

open, lactation length, length of the dry period (DP) and calving interval were also calculated. 

The magnitude and shape of the lactation that took place during gestation was quantified 

using the MilkBot model based on monthly milk weights. Using the same procedure, 

cumulative milk production from conception to drying off (MGEST) was calculated. After 

descriptive analyses, mixed models were used to identify factors that are significantly 

associated with the BW (most consistent measure of size at birth) of the calves born to both 

heifers and cows. Of the variables offered to the offspring BW model in heifers (n = 540), calf 

gender, season of calving, GL, HG, wither height, diagonal length and age at calving were 

significant. The mean BW of the calves born to heifers was estimated to be 41.3 ± 1.01 kg. In 

comparison to calves born to old (25.5 to 37.3 mo; n = 99) heifers, the BW was estimated to 

be respectively 2.75, 3.29 and 2.35 kg heavier when the calves were born to very young (20.3 

to < 22 mo; n = 98), young (22 to < 23.5 mo; n = 145) and standard aged (23.5 to < 25.5 mo; 

n = 198) heifers. Of the variables offered to the offspring BW model in cows (n = 1,054), calf 

gender, season of calving, GL, parity, DP and MGEST were significant. The mean BW of the 

calves born to cows was estimated to be 44.1 ± 0.99 kg. For cows having an identical HG, the 

BW of the calves was estimated to be respectively 0.97 and 1.11 kg higher in cows with low 

(1,400 to < 5,400 kg) and high (6,500 to < 7,200) MGEST in comparison to cows with very 

high (7,200 to 11,600 kg) MGEST. The decisive effects of age at calving in heifers and of 

high milk production levels during gestation in cows, on the BW of their calves, may provide 

a basis for developing managerial interventions to improve long-term health and productivity 

of the offspring. 

Key words: birth size, risk factors, heifer age, milk production 
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4.1 Introduction 

Size at birth is important for calving ease of the dams and neonatal survival of the calves. 

Large calves are associated with calving difficulties (Johanson and Berger 2003), whereas 

small calves are more susceptible to neonatal mortality (McCorquodale et al. 2013). 

Epidemiological evidence suggests that small size at birth both in humans and animals is 

associated with increased predisposition to metabolic diseases during adult life (Symonds et 

al. 2010; Vuguin 2007). It should be noted that birth size is a complex trait influenced by the 

interaction between genetic and non-genetic intrauterine factors (Kocak et al. 2007). 

However, the intrauterine environment has been stated to be a more important regulator of 

birth size than the parental genome (Sharma et al. 2012; Swali and Wathes 2006). In the 

current dairy industry, most heifers are bred whilst still growing and likely most subsequent 

gestations are carried during lactation. The heifers‘ age and cows‘ level of milk production 

during gestation have both been suggested to be important contributors to the nutritional 

environment for the developing embryo and fetus (Berry et al. 2008; Brickell et al. 2009; 

Funston and Summers 2013), since available nutrients need to be partitioned between the 

growth (in heifers) and milk production (in cows) of the dam and the intrauterine growth of 

the offspring. We hypothesize that young age in heifers and high milk production during 

gestation in cows affect the intrauterine fetal development and subsequent birth size of the 

calf. 

The use and interpretation of birth size in relation to fetal programming assumes that birth 

size indeed reflects specific fetal responses to particular variations in the nutritional status of 

the dam. Since epigenetic adaptations in the embryo may influence future health and fertility 

(Van Soom et al. 2013; Wu et al. 2006), the intrauterine environment is currently being 

assessed with regard to health and welfare of the offspring (Rutherford et al. 2012). The 

association of young age in heifers and high milk production during gestation in cows with 

reduced longevity and productivity of their offspring (Banos et al. 2007; Berry et al. 2008; 

Gonzalez-Recio et al. 2012) furthermore emphasizes their potential impact on birth size of the 

calves. Moreover, recent publications indicate that the prevalence of perinatal mortality has 

increased in some dairy industries whereas an increased proportion of this loss is not 

associated with the long-established risk factors for perinatal mortality (Mee et al. 2008). 

Hence, there is some evidence to suggest that an increasing proportion of perinatal mortality 

occurs at unassisted calvings (idiopathic stillbirth or weak calf syndrome) where placental 

dysfunction and low birth weight may be causative factors (Berglund et al. 2003; 
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Kornmatitsuk et al. 2004). Although the underlying causes of this rather new phenomenon are 

not yet fully elucidated, managerial factors typically associated with modern dairy husbandry 

like young age at first calving and a high level of milk production during gestation, are often 

referred to as potential candidates. 

Numerous studies report on the effect of environment and nutrition (Kocak et al. 2007; 

Symonds et al. 2010; Zhang et al. 2002) and multiple dam morphometrics (Kertz et al. 1997; 

Lundborg et al. 2003; Swali and Wathes 2006) on the birth size of their calves, but 

information on factors inherent to the dam, such as age at calving in heifers and milk 

production during gestation in cows has, to the best of our knowledge yet to be adequately 

documented. In studies examining the effect of the level of milk production on size and well-

being of the neonatal calf, authors used the amount of milk produced during the whole 

lactation or during the 305 d of lactation (Berry et al. 2008; Swali and Wathes 2006) and not 

the amount produced during gestation or during specific moments in gestation when the 

overall growth of the fetal calf is of major importance. Furthermore, despite the multifactorial 

nature of fetal growth in Holsteins, the current literature is lacking in research where a 

multifactorial approach has been used to identify the key risk factors associated with birth 

size. The objective of the present study was to evaluate environmental and dam factors, 

including age at calving in heifers and level of milk production during gestation in cows that 

might be associated with birth size in Holstein calves. 

4.2 Materials and Methods 

4.2.1 Farms, Animals and Management 

Data were collected from four small dairy herds (on average 70 lactating cows) in Flanders 

(Belgium) and one large herd (> 2000 lactating cows) in Rostock (Germany). Herds were 

selected based on their long history of successful collaboration with the Ghent University 

Ambulatory Clinic. All herds participated in an official milk recording system and artificial 

insemination program and in a veterinary herd health program to closely monitor both health 

and productivity. In all herds, only Holstein cows were milked and average 305 d milk 

production was > 9,400 kg. The heifers and cows were housed in free-stall barns. They were 

fed according to their requirements for maintenance and growth (heifers) and production 

(cows) based on the results of the monthly production tests. Generally, the rations included 

high quality roughages (maize silage, grass silage, sugar beet pulp and fodder beets) and 

sometines supplemented with concentrates. The cows were generally milked twice a day; 
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whereas in Germany some high producing cows were milked 3 times. Heat detection was 

performed by the herdsmen and their employees at least three times daily at regular time 

intervals. In some herds aids were used to optimize heat detection. Observed heats, as well as 

all other observations concerning health and fertility were carefully noted on a herd health 

chart or were put in a herd health computer software program. Heifers were generally 

inseminated at an age of 15 mo whereas the cows were generally inseminated at the first 

estrus occurring after 50 d postpartum. Heifers and cows approaching parturition were 

separated in a maternity pen and were closely monitored by the farm employees. After 

calving, the calves were immediately removed from the maternity pen into an individual calf 

pen. Calves were fed 4 L of colostrum within the first 10 h after birth by esophageal tube. 

4.2.2 Measurements and Data Collection 

A retrospective cross-sectional study design was used. The outline of the measurements and 

data collection is shown in Figure 7. Heifers and cows were enrolled upon calving between 

August 2011 and April 2013. During the study period, some of the cows calved a second time 

and were therefore enrolled twice. Calves born following inseminations with semen from non-

Holstein bulls (n = 84), born dead or failed to survive during the first 24 h (n = 22), born 

following an abnormally short (< 265 d, n = 5) or long (> 295 d, n = 2) gestation length as 

well as twin calves (n = 66), were all excluded from further analyses. Calving ease was scored 

on a categorical scale: 0 = non-assisted, 1 = easy farmer assistance, 2 = difficult farmer 

assistance and 3 = veterinary assistance including caesareans. Body condition score (BCS) of 

the dams was determined on a 1 to 5 scale (1 = emaciated, 5 = obese) with 0.25 increments 

(Edmonson et al. 1989). The birth date of the dam and the date of calving were recorded. The 

gender of the calves and the identification of their sires were also carefully recorded. 

Immediately after birth, the birth weight (BW) of the calves was measured in kilograms. On 

the next day, the heart girth (HG), wither height (WH) and diagonal length (DL) of both 

dams and calves were measured in centimeters. The HG was measured with a plastic-coated 

fiber tape as the minimal circumference around the body immediately behind the elbows. The 

WH and DL were measured with specially designed metal calipers on the left side while 

animals were in a standing position. The WH was defined as the distance from the floor to the 

top of the withers directly above the center of the shoulder, whereas the DL was defined as 

the distance from the leading edge of the tuberculum majus humeri to the medial border of the 

tuber ischiadicum. The previous calving dates, the dates of conception, the monthly milk 

weights of the lactation that started at the calving preceding the one that was included in the 
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study, and the dry off dates were extracted from the herd databases. Since the sire breeding 

value in terms of offspring BW was not available for all bulls, the breeding value for calving 

ease was collected and used to estimate the sire effect. 

 

Figure 7. Outline of the measurements and data collection. BCS, body condition score; BW, 

birth weight; HG, heart girth; WH, wither height; DL, diagonal length. 

4.2.3 Calculations and Estimations 

The body condition index (BCI) of the calves was calculated as BW/(WH*DL). In humans a 

similar measure (body mass index (BMI), weight/height
2
) incorporates standing height, i.e. 

the length of the spine and long bones, whereas in quadrupeds the length of the spine is not 

included in height. There were 540 heifer calving records in which the average age was 24.0 ± 

2.18 mo. Based on the distribution, age at calving was divided into 4 classes: 20.3 to < 22 mo 

(very young), 22 to < 23.5 mo (young), 23.5 to < 25.5 mo (standard) and 25.5 to 37.3 mo 

(old). The gestation length (GL) was derived both in heifers and cows from the last recorded 

insemination and calving date and restricted to 265 to 295 d as mentioned above. Days open, 

lactation length, dry period (DP) and calving interval in the cows were calculated. The season 

of calving was grouped into two: Summer and Fall (21 June to 20 December) and Winter and 

Spring (21 December to 20 June). Monthly milk weights were fitted to the MilkBot model 

(Ehrlich 2011), which can be functionally expressed as 

         
 
   
 

 
     . This approach was used to summarize the magnitude and shape of 

each lactation curve, where Y(t) is total daily milk production on day t of the lactation, and 

parameters a, b, c, and d control the shape of the curve. Specifically, lactation scale is 

measured by the a parameter in the MilkBot function. It is a simple linear scale with equal 
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influence at all stages of lactation. The parameter b, called the ramp parameter, measures the 

steepness of the postparturient increase in production, so it is most influenced by changes in 

early lactation. Higher ramp values correspond to a slower increase in production. The offset 

parameter, c, is the theoretical offset between parturition and the physiological start of 

lactation. Normal variability in the offset parameter is expected to be small and practically 

undetectable without daily milk weights in the first days of lactation, thus the offset value was 

fixed to 0 in the present study. Finally, the decay parameter, d, relates to senescence and loss 

of productive capacity and is influenced by cumulative changes in productive capacity 

occurring throughout the lactation. As a first-order rate constant, decay can be expressed as 

half-life, called persistence, corresponding approximately to the time in days for production to 

decrease by half in late lactation (Ehrlich 2011). This methodology allows scale, ramp, and 

persistence of individual lactations to be treated as independent variables in statistical models, 

along with the derived variables cumulative 305 d milk production (M305), cumulative milk 

production during gestation from conception to drying off (MGEST), milk production at 

lactation peak (MPEAK), cumulative milk production from 15 d before to 15 d after 

conception (MPCONC), time to peak milk, time to half of the peak milk, which were all 

easily calculated directly from MilkBot parameter values (Ehrlich, 2011). The MGEST was 

further divided into 4 classes: 1,400 to < 5,400 kg (low), 5,400 to < 6,500 kg (intermediate), 

6,500 to < 7,200 kg (high) and 7,200 to 11,600 kg (very high). 

4.2.4 Statistical Analyses 

All statistical analyses were performed using the SAS Enterprise Guide (version 5.1; SAS 

Institute Inc, Cary, NC). In the descriptions given, including Table 5, original data are 

displayed as means ± standard deviation, whereas model-based estimates are listed as ± 

standard error. Pearson correlation coefficients (r) were estimated to describe relationships 

between variables using the PROC CORR procedure. After descriptive analysis, the data were 

analyzed using a linear mixed model in PROC MIXED. Separate models for heifers and cows 

were built to identify the significant factors of BW of the calves. The model equation was y = 

Xβ + Zγ + ε; where y represents univariate data, β is an unknown vector of fixed effects with 

known model matrix X, γ is an unknown vector of random effects with known model matrix 

Z, and ε is an unknown random error vector. The ‗variance explained‘ (R
2
) by the models was 

expressed as the ratio between the residual variance of the model of interest and the residual 

variance of the null model. 



Chapter 4: Factors Influencing Birth Size of Holstein Calves 89 

 

The heifer model included fixed effects of calf gender, season of calving, GL, HG, WH, DL, 

BCS and age at calving. The herds were specified as random effect term. For cows, the model 

included fixed effects of calf gender, season of calving, GL, HG, WH, DL, BCS, parity/age at 

calving, days open, lactation length, calving interval, Ramp, Persistence, time to peak milk, 

time to half of the peak milk, MGEST and DP. In the model for cows, herds were included as 

random effect, and second-time measurements on the same cows were accounted for by the 

repeated statement. All fixed effects and their two-way interactions were included in the 

initial model, but removed if found non-significant (P > 0.05), after which the model was 

refitted. The Scale, M305, MPEAK and MPCONC were not included in the initial model 

because of their high correlation (> 60%) with MGEST. Separate similar models were built 

with these variables by replacing MGEST (data not shown). Both in heifers and cows, the 

inclusion of sire breeding values for calving ease did not significantly improve the model and 

therefore were excluded. Data of the final models are reported as model least squares means 

unless indicated otherwise. 

4.3 RESULTS 

4.3.1 Descriptions 

The characteristics of the dams and calves are presented in Table 5. The overall average BW 

of the calves was 43.6 ± 5.78 kg, the calves born to heifers (n = 540) being 4.6 kg lighter in 

comparison to the ones delivered by the cows (n = 1,054) (40.6 ± 4.90 kg versus 45.2 ± 5.58 

kg, respectively). The calves born to the heifers were significantly smaller in HG, WH, DL 

and BCI in comparison to the ones born to the cows (P < 0.001). The BW had the greatest 

correlation with HG (r = 0.75, P < 0.001) and BCI (r = 0.71, P < 0.001) of the calves. The BW 

of both male and female calves increased with parity of the dams, and experienced a decrease 

from the fourth parity (Figure 8). The level of calving assistance increased with increased BW 

of both male and female calves (P < 0.001). The sire breeding value for calving ease was 

negatively correlated (r = - 0.22, P < 0.001) with BW of the calves. The heifers had a 1.9 d 

shorter (278.1 ± 4.36 versus 280.0 ± 4.66) GL than the cows (P < 0.001). The male calves 

were carried on average 1.3 d longer (280.0 ± 4.69 versus 278.7 ± 4.51) than the female 

calves (P < 0.001). 
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Table 5. The characteristics of the dams and their calves (mean ± SD) 

 Outcomes Heifers (n = 540) Cows (n = 1,054) 

Dams   

 Heart girth (cm) 201.1 ± 6.82
a
 214.0 ± 9.52

b
 

 Wither height (cm) 140.0 ± 4.39
a
 144.5 ± 5.45

b
 

 Diagonal length (cm) 159.4 ± 6.33
a
 170.3 ± 7.15

b
 

 Age at calving (mo) 24.0 ± 2.18
a
 51.6 ± 16.87

b
 

 Gestation length (d) 278.1 ± 4.36
a
 280.0 ± 4.66

b
 

 Scale (kg) - - - 45.7 ± 10.43 

 Ramp (d) - - - 24.4 ± 7.85 

 Persistence (d) - - - 375.3 ± 241.91 

 M305 (kg) - - - 9,409.1 ± 1,639.15 

 MGEST (kg) - - - 6,193.1 ± 1,352.79 

 MPEAK (kg) - - - 38.6 ± 8.32 

 MPCONC (kg) - - - 1,045.1 ± 222.65 

 Days open (d) - - - 108.7 ± 55.53 

 Lactation length (d) - - - 332.4 ± 51.25 

 Dry period (d) - - - 56.2 ± 21.12 

Calves   

 Birth weight (kg) 40.6 ± 4.90
a
 45.2 ± 5.58

b
 

 Heart girth (cm) 79.2 ± 3.63
a
 81.9 ± 3.60

b
 

 Wither height (cm) 74.6 ± 3.70
a
 76.2 ± 3.66

b
 

 Diagonal length (cm) 68.6 ± 3.99
a
 70.9 ± 3.92

b
 

 Body condition index 79.3 ± 7.60
a
 83.5 ± 8.63

b
 

a-b
Values in the same row with different superscripts are significantly different (all at P < 

0.001). M305, cumulative 305 d milk production; MGEST, cumulative milk production 

during gestation from conception to drying off; MPEAK, milk production at lactation peak; 

MPCONC, cumulative milk production from 15 d before to 15 d after conception; body 

condition index: birth weight/(wither height*diagonal length). 
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Figure 8. Birth weight of the calves in relation to their gender and parity of their dam. 

4.3.2 Factors Influencing Offspring BW in Heifers 

Of the variables offered to the offspring BW model in heifers, calf gender, season of calving, 

GL, HG, WH, DL and age at calving were significant (Table 6). The proposed model explains 

29.5% of the variation in BW of the calves born to heifers. The mean BW of the calves born 

to heifers was estimated to be 41.3 ± 1.01 kg. Male calves were estimated to have a 2.57 kg 

higher BW than female calves, and the calves born in Summer and Fall were estimated to be 

2.23 kg lighter than the calves born in Winter and Spring (P < 0.001). Calves born following a 

short (265 - 275 d) and medium (276 - 285 d) GL were estimated to be 5.01 and 2.18 kg 

lighter, respectively, in comparison to the calves born following a long (286 - 295 d) GL (P < 

0.001). The BW of the calves was estimated to increase by 0.52, 0.54 and 0.73 kg with each 

centimeter increase in HG, WH and DL of the heifers at calving, respectively (P < 0.01). The 

BW was estimated to be significantly lower in the heifers that calved at an old age (25.5 to 

37.3 mo) (P < 0.001). The calves born to very young (20.3 to < 22 mo) and standard aged 

(23.5 to < 25.5 mo) heifers were estimated to be lighter in comparison to calves born to young 

(22 to < 23.5 mo) heifers (Table 6). 
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Table 6. Significant predictors of birth weight (kg) of calves born to heifers 

Predictors Comparison No. Estimate (kg) P-value 

Intercept  540 41.3 < 0.001 

Calf gender Male 264 2.57 < 0.001 

Female 276 Referent  

Season of calving Summer and Fall 325 - 2.23 < 0.001 

Winter and Spring 215 Referent  

Gestation length (d) Short (265 to 275) 136 - 5.01 < 0.001 

Medium (276 to 285) 379 - 2.18 0.011 

Long (286 to 295) 25 Referent  

Heart girth (cm) Linear 540 0.52 0.016 

Wither height (cm) Linear 540 0.54 0.007 

Diagonal length (cm) Linear 540 0.73 < 0.001 

Age at calving (mo) Very young (20.3 to < 22) 98 2.75 < 0.001 

Young (22 to < 23.5) 145 3.29 < 0.001 

Standard (23.5 to < 25.5) 198 2.35 < 0.001 

Old (25.5 to 37.3) 99 Referent  

 

4.3.3 Factors Influencing Offspring BW in Cows 

Of the variables offered to the offspring BW model in cows, calf gender, season of calving, 

GL, parity, DP and MGEST were significant (Table 7). The present model explains 26.2% of 

the variation in BW of the calves delivered by the cows. The mean BW of the calves born to 

cows was estimated to be 44.1 ± 0.99 kg. Male calves were estimated to be 3.51 kg heavier 

than the female calves, and the calves born in Summer and Fall were estimated to be 1.12 kg 

lighter than the calves born in Winter and Spring (P < 0.001). Calves born after a short (265 - 

275 d) and medium (276 - 285 d) GL, were estimated to be 4.96 and 2.52 kg lighter, 

respectively, in comparison to those born after a long (286 - 295) GL (P < 0.001). Cows in 

their second and third parity gave birth to calves that were estimated to be 1.02 kg heavier in 

comparison to calves born to older cows (P = 0.005). For cows having an identical HG, the 

BW of the calves was estimated to be 0.97 and 1.11 kg higher in cows with low (1,400 to < 

5,400 kg) and high (6,500 to < 7,200) MGEST, respectively, in comparison to cows with very 

high (7,200 to 11,600 kg) MGEST (P < 0.05). The BW of the calves was estimated to be 1.14 

and 1.60 kg higher in cows that had passed a long (55 to 275 d) and medium (45 to 54 d) DP 
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respectively, in comparison to cows having passed a short (< 45 d) DP (P = 0.002) (Table 7). 

There was a weak negative correlation between cow‘s heart girth and MGEST (r = -0.10, P < 

0.001) 

Table 7. Significant predictors of birth weight (kg) of calves born to cows 

Predictors Comparison No. Estimate (kg) P-value 

Intercept  1,054 44.1 < 0.001 

Calf gender Male 520 3.51 < 0.001 

Female 534 Referent  

Season of calving Summer and Fall 570 - 1.12 < 0.001 

Winter and Spring 484 Referent  

Gestation length (d) Short (265 to 275) 173 - 4.96 < 0.001 

Medium (276 to 285) 765 - 2.52 < 0.001 

Long (286 to 295) 116 Referent  

Parity of the cows 2 and 3 762 1.02 0.005 

4 to 9 292 Referent  

Heart girth (cm) Linear 1,054 0.19 0.633 

MGEST
1
 (kg) Low (1,400 to < 5,400) 270 - 1.16 0.021 

Intermediate (5,400 to < 

6,500) 

334 - 0.74 0.083 

High (6,500 to < 7,200) 222 - 0.43 0.337 

Very high (7,200 to < 

11,600) 

228 Referent  

Heart girth*MGEST Low (1,400 to < 5,400) 270 0.97 0.039 

Intermediate (5,400 to < 

6,500) 

334 0.10 0.826 

High (6,500 to < 7,200) 222 1.11 0.034 

Very high (7,200 to 

11,600) 

228 Referent  

Dry period (d) Long (55 to 275) 336 1.14 0.021 

Standard (45 to 54) 469 1.60 < 0.001 

Short (3 to 44) 249 Referent  

1
MGEST = Cumulative milk production during gestation from conception to drying off. 
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4.4 Discussion 

The present study provides new insight about some factors that are significantly associated 

with birth size of Holstein calves. Several studies have been published on the impact of 

specific environmental factors in relation to birth size (Kocak et al. 2007; Swali and Wathes 

2006; Zhang et al. 2002). However, what is lacking is an evaluation of the combined effect of 

all of these variables including the age at calving in heifers and the amount of milk produced 

during specific moments in gestation in cows. Age at calving and milk production during 

gestation are identified as important determinants of calf birth size in heifers and cows, 

respectively. Moreover, calf gender, season of calving, GL, parity and morphometrics (HG, 

WH, DL) of the dam and DP are reaffirmed as factors being significantly associated with calf 

birth size. In addition, we found a weak correlation between sire breeding value for calving 

ease and BW of the calves. This result support previous investigation (Swali and Wathes 

2006) in suggesting that the uterine environment has a greater influence on size at birth than 

the paternal genotype. 

As in previous studies (Kocak et al. 2007; Swali et al. 2008), BW was retained as the most 

consistent and objective measure to describe the size of the calves at birth. The HG and BCI 

are highly positively correlated with BW and have been used as important descriptors of birth 

size in comparison with other measures (Lundborg et al. 2003; Swali and Wathes 2006). This 

means that the calves with lower BW have smaller HG and BCI, and are proportionately 

thinner (Swali and Wathes 2006). Logically, the factors that influence BW of the calves are 

expected to influence their HG and BCI. Therefore, the remaining of the discussion is focused 

on the factors related to BW, the most important descriptor of birth size in calves. As in other 

studies (Gutierrez et al. 2012; Sharma et al. 2012; Swali et al. 2008), BW estimates mentioned 

in the present study are based on the applied statistical models and are therefore conditional 

taking into account the included fixed and random effects, and somewhat different from the 

originally measured BW. Furthermore, in some other species including humans, it has been 

shown that detrimental environmental factors experienced by the dam during gestation (e.g. 

starvation or illness) do have a negative effect on the embryonic or fetal development which 

became clear by a lower weight of the offspring at birth (Sharma et al. 2012; Stein et al. 2004; 

Tao et al. 2012). 
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4.4.1 Calf Gender and Dam Parity 

Calf gender is significantly associated with BW, male calves are heavier than female ones as 

previously reported (Dhakal et al. 2013; Gutierrez et al. 2012; Kertz et al. 1997). The male 

calves are carried 1.3 d longer than the female ones, which may partially explain their higher 

BW (Dhakal et al. 2013). Moreover, gender-specific genes affecting insulin sensitivity such as 

mutations in glucokinase gene may be responsible for the gender difference in BW. The 

genetically more insulin resistant female fetus is less responsive to the trophic effects of 

insulin and is therefore lighter (Wilkin and Murphy 2006). Calves born to heifers are 4.6 kg 

lighter than the calves delivered by cows, which is in line with results of previous studies 

(Dhakal et al. 2013; Johanson and Berger 2003). As a fetal calf has an average daily weight 

gain of 0.5 kg in the last week of gestation (Dhakal et al. 2013; Norman et al. 2009), the 1.9 d 

shorter GL in heifers in comparison to the cows in the current study, accounts for 

approximately 1 kg of the BW difference. Another plausible reason why heifers give birth to 

lighter calves is that heifers usually are still growing during their first gestation and 

preferentially use nutrients for their own growth rather than for the growth and development 

of their fetus (Funston and Summers 2013). The latter is furthermore visualized by a reduced 

development of the placenta (Funston and Summers 2013; Symonds et al. 2010). Moreover, 

the differences in nutrient partitioning in heifers versus cows are probably controlled by 

developmental changes in the somatotrophic axis of the dam (Brickell et al. 2009). Mature 

cows also become more resistant to the anabolic effects of growth hormone and placental 

lactogen (Weber et al. 2007), resulting in a degree of insulin resistance, which allows more 

glucose to be transferred to the fetus in gestating cows (Bell et al. 1995). Therefore, when 

compared to heifers, mature cows give birth to heavier calves (Dhakal et al. 2013; Johanson 

and Berger 2003). The pattern of increased BW from first to third parity followed by a 

decrease in subsequent parities is consistent with previous investigations (Kertz et al. 1997; 

Linden et al. 2009). Both IGF-I and insulin concentrations remarkably decrease as cows get 

older (Taylor et al. 2004). Reductions in these endocrine signals likely contribute to the lower 

BW of the calves delivered by older cows (Swali and Wathes 2006). 

4.4.2 Season of Calving and GL 

The later part of gestation is known to be critical for fetal growth. Suboptimal growth during 

this period predisposes to a lower BW of the calves (Symonds et al. 2010; Zhang et al. 2002). 

Cows calving in Summer and Fall have completed their last part of gestation during the hotter 
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seasons Spring and Summer, respectively. The negative effect of higher temperature on fetal 

growth and BW of calves born to both heifers and cows has been reported earlier (Linden et 

al. 2009; Tao et al. 2012). Several factors may contribute to the lower BW of the calves born 

in the Summer and Fall seasons. One possible factor is reduced dry matter intake (DMI) of the 

dam during the last part of gestation due to heat stress (Umphrey et al. 2001), contributing to 

decreased nutrient availability and consequently a lower BW (Linden et al. 2009; Norman et 

al. 2009). Similarly, a longer photoperiod during the second part of gestation leads to 

increased plasma prolactin concentrations, supporting higher milk production and thereby 

limiting nutrient availability for intrauterine calf growth (Garcia-Ispierto et al. 2009). Heat 

stress during late gestation is furthermore associated with decreased uterine blood flow and 

reduced placental function giving rise to an impaired dam-to-fetal exchange of glucose and 

amino acids (Reynolds et al. 1985). Another plausible factor is the shorter GL of the 

pregnancies during the hotter seasons (Tao et al. 2012), which has been shown to be 

associated with the large variation in temperature and humidity at that time (Dhakal et al. 

2013; Norman et al. 2009). However, the threshold of seasonal conditions that affect BW of 

calves are largely attributed to the thermoneutral threshold of cow comfort being associated 

with geographical locations throughout the globe. 

4.4.3 Morphometrics and Age at Calving in Heifers 

Young age has been shown to affect neonatal BW in humans where growth of teenage 

mothers during gestation is associated with increased risks for low BW babies (Chen et al. 

2007). Gestation at a young age necessitates not only partition of energy towards the 

developing fetus, but also towards the dam‘s own growth. In the current dairy industry, 

gestation in heifers usually occurs while animals are physically immature and still growing 

(Kertz et al. 1997). However, the impact of age at calving in heifers on BW of their calves 

has, to the best of our knowledge not been extensively documented earlier. We hypothesized 

that heifers that become pregnant while still growing, would give birth to significantly lighter 

calves. We found in the present study that heifers that are larger in HG, WH and DL at 

calving deliver significantly heavier calves, which is in concordance with previous studies 

(Linden et al. 2009; Swali and Wathes 2006). However, in the present study, the calf BW is 

curvilinear with the age of the heifers at calving. Calves born to very young (20.3 to < 22 mo) 

heifers have a comparatively lower BW in comparison to calves born to young (22 to < 23.5 

mo) heifers suggesting that the intrauterine environment may limit fetal calf growth due to 

competition for nutrients with dam growth (Wathes et al. 2008). A suboptimal growth 
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associated with low IGF-I concentrations results in heifers that conceive at an older age 

(Brickell et al. 2009; Wathes et al. 2008). As the IGF system can modulate the delivery of 

substrates to the fetus, we speculate that the lower IGF-I in older heifers during gestation, may 

be responsible for the lighter BW of their calves (Brickell et al. 2009; Gutierrez et al. 2012; 

Wathes et al. 2008). Moreover, the GL in heifers is curvilinear, giving rise to a shorter GL in 

both young and old animals in comparison to the intermediate aged group, which further 

contributes to the lower BW of calves born to relatively young and old first parity dams 

(Norman et al. 2009; Simerl et al. 1991). The incidence of dystocia is also illustrated to be 

affected by age in a curvilinear manner, the young and older heifers being more affected 

(Johanson and Berger 2003; Simerl et al. 1991). Higher calving difficulties in young and older 

heifers are, however, possibly due to immaturity of the dam and consequently relatively 

oversized calves in young heifers and excessive fat deposition in the pelvis of old heifers, 

respectively (Raboisson et al. 2013). 

4.4.4 Milk Production and Length of the DP 

Genetic selection in Holstein cattle has resulted in larger cows with a high milk production 

potential. We hypothesized that the fetal calf growth and thereby BW of the newborn calves, 

is compromised in cows with high milk production during gestation (MGEST). The rationale 

behind this hypothesis originates from studies done in a variety of other species including 

humans, in which it was found that fetal growth is significantly retarded in case of a lack of 

nutrients during gestation (Sharma et al. 2012; Symonds et al. 2010). This lack of nutrients 

can be either caused by a famine (Stein et al. 2004) or adverse environmental conditions (Tao 

et al. 2012). We found that among the cows with identical HG, very high MGEST (≥ 7,200 

liter) negatively affects BW of the newborn calves. The Scale, MPEAK and MPCONC are 

highly correlated (> 60%) with MGEST in the present study, which is consistent with 

previous investigations where the lactation curves were depicted by the Wilmink function 

(Yamazaki et al. 2011). Similar negative effects of the other production variables as 

calculated by the MilkBot model, on BW of the calves, are observed when they are replacing 

MGEST in the mixed model (data not shown). The depletion of energy reserves in lactation 

overlapping with gestation negatively affects the BW, as reported in humans (Sengul et al. 

2013). However, in contrast to the present study, milk production level has been shown to be 

indistinguishable among cows that had given birth to low-, average- and high-BW calves 

(Swali and Wathes 2006). This may be due to the fact that in the latter study, M305 was used 

as a proxy for milk production during fetal growth and to the relatively small (n = 65) sample 
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size. Typically, dairy cows conceive and are therefore pregnant at the time they still produce 

large quantities of milk. The latter implies they partition high amounts of glucose and amino 

acids towards their udder while there is an embryo or fetus growing in their uterus. Glucose, 

insulin and IGF-I concentrations in cows are negatively correlated with their level of milk 

production during the production phase of the lactation (Ingvartsen and Friggens 2005; Taylor 

et al. 2004). This is furthermore evidenced by a depletion of body reserves during lactation, as 

shown by a negative correlation between BCS and the level of milk production (Yamazaki et 

al. 2011). These adaptations associated with high milk production in turn affect glucose 

availability and concentrations of insulin and IGF-I for the embryo and thereby affect the 

growth of both the early embryo and the placenta (Green et al. 2012). Although the nutrient 

requirements for the embryo may be relatively low, metabolic activity is high and this 

represents a critical period for epigenetic control and organogenesis of subsequent fetal 

development (Van Soom et al. 2013; Wu et al. 2006). A poor intrauterine nutritional 

environment associated with lower glucose, insulin and IGF-I levels in the cows may even 

occur in later phases of lactation due to the high persistency of milk production as is typically 

noticed in modern high yielding dairy cows (Ingvartsen and Friggens 2005). These phases of 

lactation often coincide with the mid and late part of gestation which are known to be most 

crucial in terms of fetal growth. Therefore, the effects of variation in nutritional environment 

at that time may even have greater effects than in early gestation (Stein et al. 2004; Wu et al. 

2006). For example, significant reductions in BW have been shown to be caused by low 

plasma glucose concentrations during the mid and late gestation (Zhang et al. 2002). The 

close relationship between fetal glucose uptake and dam glucose levels would explain a large 

part of the mechanism whereby the nutritional level of the dam affects fetal growth (Bell et al. 

1995). Therefore, selection for greater milk production and high persistency in dairy cows 

may lead to reduced glucose availability for the developing embryo and fetus with subsequent 

deleterious repercussions for BW of the calves including their survival and life time 

performance (Banos et al. 2007; Berry et al. 2008; Gonzalez-Recio et al. 2012). 

In the current study, the calf BW was higher in cows with a medium (45 to 54 d) and long (55 

to 275 d) DP than in cows with a short DP (3 to 44 d). Similar findings have been reported 

earlier, the average offspring BW is lower in cows having passed a DP of 51 to 60 d in 

comparison to those having gone through a longer DP (Atashi et al. 2013). On the other hand, 

in the latter study calf BW did not differ for cows with DP of 0 to 35 d, 36 to 50 d, or 51 to 60 

d (Atashi et al. 2013). Longer DP is associated with heavier calves and subsequently with a 
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higher incidence of dystocia (Atashi et al. 2013). In our study, the cows with higher milk 

production tended to have a shorter subsequent DP, which is in line with previous reports 

(Atashi et al. 2013). In less productive cows, daily milk production often decreases to low 

levels before the planned drying off date; therefore, farmers no longer keep these cows in 

production, which results in longer DP in comparison with higher yielding cows (Atashi et al. 

2013). Although there is no difference in serum glucose, insulin and IGF-I levels in cows with 

short versus longer DP (Pezeshki et al. 2007), we speculate that cessation of partitioning 

nutrients towards milk for extended duration in case of a longer DP, provides higher amounts 

of energy and amino acids toward fetal growth giving rise to higher BW of the calves. 

The present study was undertaken to investigate the impact of environmental and dam factors 

on the BW of Holstein calves. Conclusively, results of the present study reaffirm calf gender, 

season of calving, GL, parity, morphometrics of the dam and length of the DP to be 

significantly associated with calf birth size. Furthermore, age at calving in heifers and level of 

milk production during gestation in cows, were indicated as decisive determinants of calf 

birth size. These novel findings may provide a basis for developing managerial interventions 

to improve long-term health and productivity of the offspring. 
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Abstract 

This paper reports on a study of gross placental morphology of 282 expelled placentas from 

89 primi- and 193 multiparous Holstein dams immediately after calving and examines 

associations with environmental factors such as typical herd features and season of calving, 

and maternal factors such as age at calving, level of milk yield at conception and cumulative 

amount of milk produced during gestation. The highest correlation between calf 

measurements and placental characteristics was found between the weight of the calf and the 

total cotyledonary surface (r = 0.643; P < 0.001), confirming the high importance of the 

cotyledonary surface available for nutrient transfer to the developing fetus. Younger age in 

adolescent and smaller heart girth in multiparous dams were associated with a higher 

cotyledon number, suggesting placental compensation in dams with lower capacities in terms 

of dry matter intake. No significant association between milk yield during gestation in 

multiparous animals and gross placental morphometrics could be detected, indicating that 

factors such as the amount of milk produced during gestation affect placental development 

less than fetal weight close to term. Therefore, placental growth may be sustained at the 

expense of other tissues in an attempt to maintain pregnancy and minimize the adverse 

consequences for the fetus. The present study offers evidence concerning factors affecting the 

placental surface size for nutrient transfer from dam to calf in dairy cattle based on gross 

morphometrics, but needs confirmation from studies in which this surface size is more 

profoundly assessed by measuring the branches present in the cotyledonary villi. 

5.1 Introduction 

In eutherian mammals, pregnancy is an apparently highly co-operative interaction between 

the mother and the fetus which, all being well, leads to delivery of viable offspring with little 

detriment to future health or fecundity of the mother (Fowden and Moore 2012). In these 

mammals, the organ through which respiratory gases, nutrients, and wastes are exchanged 

between the maternal and fetal systems is the placenta. This organ therefore plays an 

important role in the competition between mother and fetus for resource allocation. Placental 

development responds to both fetal signals of nutrient demand and maternal signals of 

nutrient availability and, by adapting its phenotype, regulates the distribution of available 

resources (Fowden and Moore 2012; Fowden et al. 2006). Placental adaptation may occur by 

a change in its surface area for nutrient transfer, the thickness of its interhaemal barrier 

separating maternal and fetal circulations, its density of nutrient transporters, metabolic rate 
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and blood flow as well as its synthesis and metabolism of specific hormones (Fowden and 

Moore 2012; Vaughan et al. 2012). 

The conflict in nutrient allocation between mother and offspring during pregnancy is 

especially intriguing in modern dairy cattle, in which it has been calculated that the aim 

should be for heifers to start calving at around 24 months of age and to calve thereafter at 

intervals of <385 days in order to optimize their lifetime productivity (Inchaisri et al. 2010). 

The former implies that gestation in primiparous animals should take place when dams are 

still growing, while the latter implies that in multiparous animals gestation should to a large 

extent coincide with lactation. Recently, we have demonstrated that young age at first 

gestation and a high level of milk yield during gestation in multiparous dams both reduce 

intrauterine fetal development, probably by diverting a significant proportion of nutrients to 

dam growth and milk production (Kamal et al. 2014). Subsequently, we have demonstrated 

that both growth and lactation during gestation have a significant impact on gross placental 

morphology in cattle (Van Eetvelde et al. 2016). 

Fetal intrauterine growth retardation due to nutritional constraints is closely linked to 

placental development and function (Cetin and Alvino 2009; Fowden et al. 2008). Basically, 

under conditions of impaired nutrient supply that may limit normal fetal growth, the placenta 

has shown to adapt so as to increase its transport capacity (Burton and Fowden 2012). Earlier 

studies in beef cattle and sheep have demonstrated that placentas may adapt their phenotype 

to be able to accommodate fetal nutrient demand and that this process may include either 

morphological or functional mechanisms acting during different stages of feto-placental 

development (Fowden et al. 2010; Long et al. 2009; Sullivan et al. 2009). To the best of our 

knowledge, there are currently no studies on the impact of maternal factors such as age at 

conception and level of milk yield during gestation on gross morphology of the placenta in 

dairy cattle.  

5.2 Materials and Methods 

All experimental procedures were approved by the Ethical Committees of ILVO (Institute of 

Agricultural and Fisheries Research, Melle, Belgium) and the Faculty of Veterinary Medicine, 

Ghent University, Belgium (Approval numbers 2011/166 and EC2012/189– ILVO ). 
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5.2.1. Farms, Animals, and Management 

The calves and their dams involved in the study reported here also used in a larger study 

reported in Chapter 4 of this thesis (Kamal et al. 2014). Briefly, two small dairy herds (on 

average 70 lactating cows) in Flanders (Belgium) and one large herd (>2000 lactating cows) 

in Rostock (Germany) were selected based on their long history of successful collaboration 

with the Ghent University. All three herds were subject to an official milk recording system 

and a veterinary herd health programme to closely monitor both productivity and health. In all 

herds, only Holstein cattle were raised and the average 305 d milk production of the cows was 

~9,200 kg. The heifers and cows were housed in free-stall barns. They were fed according to 

their requirements for maintenance and growth (heifers) and production (cows) as indicated 

by the results of the monthly production tests. The rations comprised high quality roughages 

(maize silage, grass silage, sugar beet pulp and fodder beets) supplemented with concentrates. 

The cows were generally milked twice a day but some high producing cows in the German 

herd were milked 3 times daily. Heat detection was performed by the herdsmen and their 

employees at least three times daily at regular time intervals. Observed heats, as well as all 

other observations concerning health and fertility were recorded in a herd-health computer 

software program. Heifers were generally inseminated at an age of 15 months, the cows at the 

first estrus occurring after 50 d postpartum. Semen from different bulls was used randomly. 

The heifers and cows approaching parturition were separated in a maternity pen and closely 

monitored by farm employees.  

5.2.2. Measurements and Data Collection 

A retrospective cohort study design was used. In Belgium, the study took place from August 

2011 through April 2013. In Germany, the measurements were taken only in January and 

February of 2012 and 2013. Fetal membranes were collected after spontaneous expulsion and 

immediately checked for completeness by careful visual inspection. Placental measurements 

were made within 24 hours after expulsion. Membranes expelled after 12 hours were 

classified as retained and excluded from further analysis, as they were damaged and 

incomplete. Also, excluded were both membranes and calves related to twin births, stillborn 

calves, births following insemination from non-Holstein bulls and births following an 

abnormally short (<265 d) or long (>295 d) gestation. Microcotyledons (less than 1.0 cm in 

diameter) were classed as accessory cotyledons and not included in cotyledon number and 

surface calculations (Facciotti et al. 2009; Miglino et al. 2007).  
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The entire fetal placenta was weighed using digital scales with an accuracy of 0.1 kg. 

Cotyledons were then manually removed one by one, after which the remaining membranes 

and the cotyledons were weighed separately. Each cotyledon was laid flat and the major and 

minor diameters were measured using calipers with an accuracy of 1 mm. The individual 

cotyledonary surface area was calculated using the formula to calculate the area of an ellipse: 

Area (ellipse) = ab; where a = half of the major diameter and b = half of the minor diameter. 

Total cotyledonary surface area was calculated as the sum of all individual cotyledonary 

surface areas. Placental efficiency was defined as calf weight/placental weight, while the 

surface efficiency was defined as calf weight/total cotyledonary surface. 

 

Immediately after birth, the gender of the calf was recorded and its birth weight was measured 

in kilograms on a digital weighing scale. On the 1
st
 day, the heart girth, wither height and 

diagonal length of both dams and calves were measured in centimeters following the 

procedure described in our earlier study (Kamal et al. 2014). Dams were given a body 

condition score on a 1 to 5 scale (1 = emaciated, 5 = obese) with 0.25 increments (Edmonson 

et al. 1989). For each dam, date of birth, previous calving date, date of conception, monthly 

milk weights of the previous lactation (i.e. that of the calving preceding the one included in 

the study) and the dry-off dates were extracted from the herd databases.  

5.2.3. Calculations and Estimations 

The gestation length of both heifers and cows was derived from the last recorded insemination 

of the dam to the date of calving and was restricted between 265 to 295 d as mentioned above. 

Days open, lactation length, length of the dry period and calving interval in the cows were 

calculated based on the data gathered from the herd database. The days open was calculated 

as the time from when a cow calves until when she conceives. Monthly milk weights were 

fitted to the MilkBot model (Ehrlich 2011) to summarize the magnitude and shape of each 

lactation curve. The cumulative 305 d milk production, cumulative milk production during 

gestation from conception to drying off, milk production at lactation peak, cumulative milk 

production from 15 d before to 15 d after conception, time to peak milk and time to half of the 

peak milk were calculated directly from MilkBot parameter values (Ehrlich 2011). 

5.2.4. Statistical Analysis 

All statistical analyses were performed using the SAS software (SAS Institute Inc., Cary, 

North Carolina, USA). Normality of the data and error terms of the models were checked 
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using the Kolmogorov-Smirnov test (P < 0.01). Descriptive data are expressed as mean ± SD 

or as median (min-max) if not normally distributed. Pearson correlation coefficients were 

calculated to assess relationships between variables using PROC CORR. Data were log 

transformed before performing statistical analysis when it was not normally distributed. 

Linear mixed models were built using PROC MIXED to identify variables associated with 

gross placental morphometrics (i.e. cotyledon number, total cotyledonary surface and 

placental efficiency). Since surface efficiency was lognormally distributed, PROC GLIMMIX 

was used to detect variables associated with this parameter. In all models, for cows that were 

measured twice, the repeated statement within cow was used. All fixed effects (country and 

dam characteristics) and their 2-way interactions were included in the initial models, after 

which nonsignificant variables (P > 0.05) were omitted using the backwards approach. 

Results are presented as model estimates, with the intercept presenting the overall estimated 

mean. For continuous variables, the parameter estimate refers to the estimated alteration in the 

outcome when the parameter is increased by one unit. For categorical variables, the estimate 

refers to the estimated alteration in outcome for a category when compared to the reference 

category (Ref.). For example in Table 10, the model-based estimated number of cotyledons in 

heifers is 112, while with per month increase in age of the dam, the number of cotyledons is 

estimated to decrease by 3.6. 

5.3 Results 

5.3.1 Descriptives 

Tables 8 and 9 represent the descriptive data distributed by parity, including basic statistical 

analyses. 

 

5.3.2 Correlations between placental characteristics and both calf and dam measurements 

The highest correlation between calf measurements and placental characteristics was found 

between the weight of the calf and the total cotyledonary surface (r = 0.643; P < 0.001). 

5.3.3 Model building to explain the variation in placental characteristics 

Separate multivariable regression models were built to detect factors significantly associated 

with gross placental characteristics of primi- and multiparous dams respectively (Tables 10 

and 11). Age at conception in heifers and heart girth in cows were negatively associated with 

the number of cotyledons. In cows, none of the data indicating level of milk yield during 

gestation were found to be significant contributors. 
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Table 8. Descriptive statistics (mean ± SD) of the dam characteristics by parity. 

Characteristics 
Primiparous 

(n = 89) 

Multiparous 

(n = 193) 

P-

value 

Wither height (cm) 139.5 ± 4.48 144.0 ± 4.94 <0.001 

Diagonal length (cm) 158.4 ± 6.27 170.7 ± 6.33 <0.001 

Heart girth (cm) 202.0 ± 7.63 214.2 ± 9.78 <0.001 

Age at calving (months) 24.1 ± 2.37 51.1 ± 18.03 <0.001 

Gestation length (days) 278 ± 4.4 280 ± 4.7 <0.001 

Days open - 115 ± 59 - 

Lactation length (days) - 338 ± 54.0 - 

Dry off period (days) - 57 ± 25.5 - 

Calving interval (days) - 395 ± 60.3 - 

Milk at conception (kg) - 34.4 ± 7.7.94 - 

Milk first trimester of gestation (kg) - 2868.6 ± 617.51 - 

Milk second trimester of gestation (kg) - 2315.4 ± 481.28 - 

Milk third trimester of gestation (kg) - 859.3 ± 488.04 - 

Milk during total gestation (kg) - 6043.2 ± 1438.71 - 

 

Table 9. Descriptive statistics (mean ± SD) of calf weight and fetal placenta by parity. 

Characteristics 
Primiparous 

(n = 89) 

Multiparous 

(n = 193) 
P-value 

Calf weight (kg) 41.3 ± 4.71 45.1 ± 5.35 <0.001 

Placental weight (kg) 5.2 ± 1.23
 

5.5 ± 1.26
 

0.060 

Membrane weight (kg) 2.8 ± 0.87
 

2.8 ± 0.82
 

0.540 

Total cotyledonary weight (kg) 2.5 ± 0.51 2.7 ± 0.62
 

0.003 

Cotyledon number 112 ± 29.5
 

108 ± 28.6
 

0.209 

Average cotyledonary weight (kg) 0.023 ± 0.008 0.027 ± 0.009 0.005 

Total cotyledonary surface (m²) 0.51 ± 0.084
 

0.61 ± 0.108
 

<0.001 

Placental efficiency  

(calf weight/placental weight) 

8.2 ± 1.57
 

8.5 ± 1.63
 

0.127 

Surface efficiency 

(calf weight/total cotyledonary surface) 

82.4 ± 13.99 74.8 ± 11.30 <0.001 
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Table 10. Factors associated with major morphometrics of the fetal part of placenta in 

primiparous dams (n = 89)*.    

 

Variable 

Cotyledon 

Number 

Total cotyledonary 

surface (m²) 

Placental  

efficiency  

Surface efficiency 

(kg/m²)  

Intercept 112 0.53 7.9 81.3 

Age at conception (m) -3.6 
p=0.006

   1.01 
p=0.045

 

Country     

    Belgium (n = 37)  -0.043
 p=0.005

 0.74 
p=0.027

  

    Germany (n = 52)  Ref. Ref.  

Cotyledon number  0.001 
p<0.001

  1.00 
p<0.001

 

Gestation length (d)  0.003 
p=0.08

   

Superscripts represent the actual p-values. 

*Average weight of calves in Belgium and Germany was 40.2 ± 4.85 kg and 42.0 ± 4.51 kg, 

respectively. Average weight of placenta in Belgium and Germany was 4.9 ± 1.32 kg and 5.4 

± 1.12 kg, respectively. 

Table 11. Factors associated with major morphometrics of the fetal part of placenta in 

multiparous dams (n = 193)*. 

 Cotyledon 

Number 

Total cotyledonary 

Surface (m²) 

Placental 

efficiency 

Surface efficiency 

(kg/m²) 

Intercept 108 0.64 8.4 74 

Heart girth (cm)  -0.5 
p=0.04

    

Days open (d) 

Country 

0.1 
p=0.04

    

   Belgium (n = 58)  -0.083 
p<0.001

 0.53 
p=0.038

  

   Germany (n = 135)  Ref. Ref.  

Cotyledon number  0.001 
p<0.001

  1.00 
p<0.001

 

Gestation length (d)  0.004 
p=0.034

   

Superscripts represent the actual p-values. 

*Average weight of calves in Belgium and Germany was 43.5 ± 5.54 kg and 45.8 ± 4.66 kg, 

respectively. Average weight of placenta in Belgium and Germany was 5.2 ± 1.15 kg and 5.6 

± 1.22 kg, respectively. 
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5.4 Discussion 

The aim of the study reported here was to examine typical environmental and maternal factors 

associated with gross placental morphology in dairy cattle. Since dairy cattle management is 

characterized by features such as pregnancy at a young age in primiparous animals and 

lactation during gestation in multiparous animals, we focused on these typical maternal 

factors. These features are particularly important since both growth and lactation have 

recently been shown to significantly affect gross placental traits when coinciding with 

gestation (Van Eetvelde et al. 2016). Since only the fetal portion of the placental tissue was 

available for examination, the potential impact of certain maternal factors on the maternal 

placental tissue could not be assessed. Our study was also restricted to the gross phenotypic 

morphology of the placenta (placental weight and the number and size of the cotyledons). 

A major feature of the chorioallantoic placenta is an enlargement of the surface area at the 

feto-maternal junction by the formation of chorionic villi within the cotyledonary plaques. 

These villi interdigitate with vascular folding of the uterine caruncular endometrium and 

eventually serve as the functional unit for feto-maternal exchange (Jainudeen and Hafez 

1993). Obviously, the villous surface area depends upon the length and branch pattern of each 

villus. The villous surface probably grows in parallel with the increased need for energy from 

fetus and placenta (Baur 1972). Therefore, a given volume of fetus and placenta tends to have 

an optimal size of villous surface for metabolic exchange at its disposal (Baur 1972). The 

assumption in our study is that the total base area of the cotyledons is proportional to the 

villous surface area available for nutrient transfer. Accordingly, it is expected that the 

placental exchange area may be related to the cotyledonary base area (Kannekens et al. 2006). 

Therefore, the highest correlation between calf measurements and placental characteristics 

was found between the weight of the calf and the total cotyledonary surface, confirming the 

high importance of the cotyledonary surface availability for nutrient transfer to fetal 

development (Sullivan et al. 2009).  

The study reported here estimated the cotyledonary surface area to be 0.53 m
2
 in primiparous 

and 0.64 m
2
 in multiparous dams. This extent is comparable with similar studies of the bovine 

(Bertolini et al. 2002; Sullivan et al. 2009) where the feto-maternal interface is measured at 

the base of the cotyledons upon manual separation from the caruncle. In the study by Baur 

(1972), on the other hand, the total cotyledonary area of the term bovine placenta was 

determined to possess a total nutrient exchange area of 120 m
2
; that is, about 190 times higher 
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than in our study. This gross discrepancy probably arises from the fact that Baur‘s study of the 

exchange surface included an assessment of the villous surface of the cotyledons. In 2006, 

Kannekens and collaborators introduced the surface amplification factor (SAF) based on a 

detailed stereological study (Kannekens et al. 2006). The SAF represents an accurate 

estimation of the degree of villous branching at a given time during gestation (Kannekens et 

al. 2006). At 135 days of gestation, the SAF estimate of 108.0 suggests that underneath every 

square millimeter of placentome surface there is 108.0 mm
2
 of feto-maternal interface 

(Kannekens et al. 2006). Therefore, the feto-maternal interface for any size of placentome can 

be estimated by measuring its total surface area and multiplying that by the SAF correction 

factor. In this context, the total villous surface area of the feto-maternal interface at day 135 of 

gestation is estimated to be 18.5 m
2
 (Kannekens et al. 2006). As the SAF increases over time 

(Kannekens et al. 2006), the villous surface area increases to 69.8 m
2
 at term (Ribeiro et al. 

2008). This last estimation is very similar to our findings.  

The number of uterine caruncles in the dam is determined prior to her birth (Atkinson et al. 

1984). Usually, there are 75 to 120 of them. A corresponding number of fetal cotyledons 

attach to the maternal caruncles to form approximately 70-120 placentomes that serve as the 

functional unit for feto-maternal exchange. Studies have noted the presence of spare caruncles 

not covered by or attached to a cotyledon throughout gestation (Long et al. 2009). Hence, the 

cotyledon number seems to be more dynamic in nature and probably dependent on specific 

modulating factors. In Bos Indicus cattle, a maximum of 20 cotyledons are initially present 

while from day 40 to 50 post-insemination, the number triples, and gradually increases 

further, averaging about 80 up to day 70 post-insemination (Assis Neto et al. 2010). Usually 

there is no change in the number of bovine cotyledons from day 90 of gestation, while the 

mean weight and surface of each placentome may continue to increase (Laven and Peters 

2001), resulting in their characteristic mushroom-like shape (Leiser et al. 1997). 

In the light of the above, we hypothesized for the present study, that factors occurring during 

early pregnancy, like growth during adolescent pregnancy in primiparous animals and a high 

level of milk production in multiparous animals, might affect the number of cotyledons, while 

factors mainly occurring later in gestation affect the size of the cotyledons and hence the total 

cotyledonary surface. It is difficult to compare studies of the size and characteristics of the 

bovine placenta due to the large variety of definitions and study designs used. For example in 

some studies it is not always clear how the weight of the placenta was measured (wet or after 

drying), making large variations between studies in results for placental efficiency inevitable. 
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Based on our models, the factors contributing the most to gross placental morphology are age 

at conception in heifers and heart girth (as a proxy for body weight) in multiparous animals. 

Both are significantly but negatively associated with the number of caruncles occupied by 

cotyledons. Caution should, however, be taken with the results of the present study. Although 

statistical analyses revealed significant associations, the actual numbers indicate only 

relatively small differences between the different subjects.     

The findings of the present study are in concordance with our hypothesis that the fetal part of 

the placenta compensates in times of nutrient restriction. Fetuses of both younger heifers and 

lighter multiparous animals, both presumably having a lower dry matter intake, compensate 

by occupying significantly more caruncles in order to guarantee survival and further 

development. Similar placental compensation in terms of number of cotyledons has also been 

reported in sheep (Wallace et al. 1999). Also in cattle, more cotyledons are expected in heifers 

which have been fed low dietary protein as their fetuses may have increased their caruncular 

occupancy to compensate and to meet their nutritional demands (Sullivan et al. 2009). 

Negative correlations between insulin-like growth factor binding protein (IGFBP) 

concentrations throughout gestation and cotyledon number at expulsion suggest that in the 

bovine, lower IGFBP concentrations in times of nutrient restriction may increase the 

bioavailability of IGF-I, resulting in the formation of more cotyledons occupying the available 

caruncles (Sullivan et al. 2009). 

In comparison to young growing animals in our study, multiparous and hence lactating dams 

gave birth to heavier calves, although with an even higher increase in total cotyledonary 

surface and hence less efficient placentas, which suggests lactation to be associated with a 

more pronounced placental compensation, effectuated by an increased size of the cotyledons. 

However, the study reported here was not able to detect direct effects of the level of milk 

yield, such as the number of liters at top production or the total amount of milk produced 

during gestation, on gross placental morphometrics. The lack of evidence for the the effect of 

the latter may be caused by several factors. For one thing it is well known that selection 

towards high milk yield gives rise to several other compensation mechanisms in order to first 

safeguard the dam and the newly born calf in preference to investing in a subsequent 

generation. Modern high-producing dairy cows, for example, unlike less selected and hence 

lower-producing animals, have been shown to significantly postpone ovarian activity and 

hence a subsequent pregnancy after calving (Opsomer et al. 2000).  
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At least some of the otherwise normal placentas in our study also presented microcotyledons 

(accessory cotyledons). These have a diameter of less than 1.0 cm and are usually found at the 

extremities of chorioallantois. Overall, they were very few in number and most often formed a 

cluster in association with a neighboring cotyledon. Most likely, the observations above are 

not affected by the relatively small role of these structures, which do not significantly 

contribute to overall placental function and conceptus development (Facciotti et al. 2009; 

Miglino et al. 2007). 

The results of the study reported here partly confirm the conclusion drawn by Vaughan and 

colleagues (Vaughan et al. 2012) that many environmental factors like the level of milk 

production affect placental development less severely than fetal weight close to term, 

suggesting that placental growth may be sustained at the expense of other tissues in an attempt 

to maintain pregnancy and minimize the adverse consequences for the fetus. Ultimately, the 

ability of the placenta to balance the competing interests of mother, milk production and fetus 

in terms of resource allocation may determine not only the success of pregnancy in producing 

viable neonates but also the health and productivity of the offspring in later life. 
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FACTORS ASSOCIATED WITH INSULIN TRAITS 

IN HOLSTEIN CALVES 
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Abstract 

The objective of the present retrospective cohort study was to evaluate potential associations 

between environmental factors and dam characteristics, including level of milk production 

during gestation, and insulin traits in newborn Holstein calves. Birth weight and gestational 

age of the calves at delivery were determined. On the next day, heart girth, wither height and 

diagonal length of both the calves and their dams were measured. Parity, body condition 

score and age at calving were recorded for all dams. For the cows, days open prior to last 

gestation, lactation length (LL), length of dry period (DP) and calving interval were also 

calculated. The magnitude and shape of the lactation curve both quantified using the MilkBot 

model based on monthly milk weights, were used to calculate the amount of milk produced 

during gestation. Using the same procedure, cumulative milk production from conception to 

drying off (MGEST) was calculated. A blood sample was collected from all calves (n = 481; 

169 born to heifers and 312 born to cows) at least five hours after a milk meal on day three of 

life to measure basal glucose and insulin levels. In addition, an intravenous glucose-

stimulated insulin secretion test was performed in a subset of the calves (n = 316). After 

descriptive analysis, generalized linear mixed models were used to identify factors that were 

significantly associated with the major insulin traits (Insb, basal insulin level; QUICKI, 

quantitative insulin sensitivity check index; AIR, acute insulin response; DI, disposition 

index) of the newborn calves. The overall average birth weight of the calves was 42.7 ± 5.92 

kg. The insulin traits were significantly associated with gender and season of birth when data 

of all calves were analyzed. In addition, the insulin traits in calves born to cows were 

significantly associated with MGEST, DP and LL. The Insb was estimated to be higher in 

calves born to the cows having passed a higher MGEST (P = 0.076) and longer DP (P = 

0.034). The QUICKI was estimated to be lower in calves born to the cows having passed a 

higher MGEST (P = 0.030) and longer DP (P = 0.058). Moreover, the AIR (P = 0.009) and 

DI (P = 0.049) were estimated to be lower in male compared to female calves. Furthermore, 

the AIR (P = 0.036) and DI (P = 0.039) were estimated to be lower in calves born to cows 

having passed a longer LL. The decisive effects of MGEST, DP and LL in cows on the 

insulin traits of their calves may provide a basis for developing managerial interventions to 

improve metabolic health of the offspring. 

Keywords: insulin traits, dairy calves, risk factors 
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6.1 Introduction 

Dam nutrition during gestation in mammals has been recognized as a key to metabolic 

programming in utero. An impaired nutrient supply during intrauterine development leads to 

metabolic adaptations to enhance survival in the short term but may become detrimental in 

postnatal life (Fleming et al. 2012). The unique metabolic adaptations to reduced nutrient 

supply in utero are well coordinated in an attempt to maximize the uptake and use of 

nutrients by the most vital organs like the brain (Fleming et al. 2012). As a consequence, 

these adaptations often occur at the expense of those organs that are less critical for survival 

(e.g. the pancreas) (Gutierrez et al. 2012; Limesand et al. 2013; Long et al. 2010). Hence, 

suboptimal intrauterine nutrition may end up in birth of growth restricted newborns with an 

impaired β-cell mass, visualized by a lowered insulin secretion when challenged with a 

standard glucose bolus (Limesand et al. 2013; Owens et al. 2007; Rozance et al. 2006). 

Epigenetic mechanisms such as DNA methylation and histone modification of the fetal 

genome are likely mediators of such postnatal expression of intrauterine events (Wu et al. 

2006). The environmental sensitivity of the epigenome is viewed as an adaptive mechanism 

by which the developing organism adjusts its metabolic and homeostatic systems to suit the 

anticipated postnatal environment. The long-term effects of these adaptations predispose the 

offspring to adiposity and metabolic diseases in later life if nutrition in postnatal life does not 

match that foreseen by the fetus on the basis of its intrauterine environment (De Rooij et al. 

2006; Micke et al. 2011). 

Relatively high incidence of metabolic disorders and reduced longevity in high-yielding cows 

present major challenges in today‘s dairy industry (Berry et al. 2008; Gutierrez et al. 2012; 

Wu et al. 2006). Decreases in insulin responsiveness and insulin secretion are considered to 

be etiologic key mechanisms in the association between high yield and transition metabolic 

disorders (De Koster and Opsomer 2013). Recently, we have described the adaptations that 

take place in the transition period both in terms of insulin responsiveness as well as of insulin 

secretion (De Koster and Opsomer 2013), while we also have demonstrated (epi)genetic 

backgrounds to be involved herein (Bossaert et al. 2009). However, very little is known about 

the epigenetic background of the insulin-dependent glucose metabolism in calves, although 

their dams may vary immensely in nutritional milieu both at conception and later during 

gestation. Moreover, the level of milk production during gestation in cows has been 

suggested to be an important contributor to the nutritional milieu for the developing embryo 

and fetus, since available nutrients need to be partitioned between milk production by the 
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dam and the intrauterine growth of the offspring (Berry et al. 2008; Funston and Summers 

2013). Earlier studies examining the effect of milk production at different stages of gestation 

revealed that higher production levels during embryonic and fetal development are associated 

with reduced performance and longevity of the offspring (Berry et al. 2008; Funston and 

Summers 2013; Gonzalez-Recio et al. 2012). The reduced performance and longevity of the 

offspring have been linked to an impaired endocrine profile during their postnatal life as a 

consequence of poor intrauterine environment (Gutierrez et al. 2012; Micke et al. 2011). 

Moreover, abundant postnatal nutrition can challenge the homeostatic mechanisms of the 

offspring adapted to a poor intrauterine environment and lead to the development of 

deleterious metabolic conditions. Hence, evidence exists to suggest that an increasing 

proportion of transition disorders occur in cows for which intrauterine programming of the 

endocrine pancreas may be a causative factor. Although the underlying causes of this rather 

new phenomenon are not yet fully elucidated, managerial factors typically associated with a 

high level of milk production during gestation are often referred to as potential candidates. 

Moreover, while several papers report on the effect of the maternal environment and nutrition 

on the metabolic and endocrine profiles of their calves (Gutierrez et al. 2012; Long et al. 

2010; Radunz et al. 2012), information on parameters such as milk production during 

gestation in cows and their effect on insulin traits in their newborn calves has, to the best of 

our knowledge not been documented yet. Furthermore, despite the multifactorial nature of 

intrauterine growth, the current literature is lacking studies in which a multifactorial approach 

has been used to identify factors associated with insulin traits in Holstein calves. 

The objective of the present study was to evaluate potential associations between 

environmental factors and dam characteristics and major insulin traits in newborn Holstein 

calves. Our main interest went to the hypothesis that the level of milk production during 

gestation in cows affects the intrauterine development of the fetal endocrine pancreas and 

hence programs the level of insulin secretion in newborn calves. 

6.2 Materials and Methods 

6.2.1 Farms, Animals, and Management 

Calves and their dams involved in the current study also participated in a larger study 

reported in Chapter 4 of this thesis (Kamal et al. 2014). Briefly, data were collected from four 

small dairy herds (on average 70 lactating cows) in Flanders (Belgium) and one large herd (> 

2000 lactating cows) in Rostock (Germany). Herds were selected based on their long history 
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of successful collaboration with the Ghent University Ambulatory Clinic. All herds 

participated in an official milk recording, artificial insemination, and veterinary herd health 

program to closely monitor both health and productivity. In all herds, only Holstein cows 

were milked and average 305 day milk production was ~9300 kg. The heifers and cows were 

housed in free-stall barns. They were fed according to their requirements for maintenance and 

growth (heifers) and production (cows) based on the results of the monthly production tests. 

Generally, the ration consisted of high quality roughages (maize silage, grass silage, sugar 

beet pulp and fodder beets) supplemented with concentrates. The cows were generally milked 

twice a day; whereas in Germany some high producing cows were milked 3 times. Heat 

detection was performed by the herdsmen at least three times daily at regular time intervals. 

In some herds aids were used to optimize heat detection. Observed heats, as well as all other 

observations concerning health and fertility were carefully recorded using a herd health 

software program. Heifers were generally inseminated at an age of 15 months whereas the 

cows were generally inseminated at the first estrus occurring after 50 days postpartum. 

Heifers and cows approaching parturition were separated in a maternity pen and were closely 

monitored by the herd employees. After calving, the calves were immediately removed from 

the maternity pen into individual calf pens. Calves were fed 4 L of colostrum within the first 

10 h after birth either by bottle feeding or by esophageal tube. For first 3 days, the calves 

were fed whole milk in equal amounts. 

6.2.2 Measurements and Data Collection 

A retrospective cohort study design was used. The outline of the measurements, data 

collection and blood sampling is shown in Figure 9. The calves were enrolled at birth 

between August 2011 and April 2013. Twin calves, calves born dead or that died during the 

first three days of life, born following inseminations with semen from non-Holstein bulls or 

born following an abnormally short (< 265 days) or long (> 295 days) gestation length were 

not enrolled. Immediately after birth, the gender of the calves was recorded and its birth 

weight (BW) was measured in kilograms. On the next day, the heart girth (HG), wither 

height (WH) and diagonal length (DL) of both dams and calves were measured in 

centimeters following the procedure described in our earlier study (Kamal et al. 2014). Body 

condition score of the dams was determined on a 1 to 5 scale (1 = emaciated, 5 = obese) with 

0.25 increments (Edmonson et al. 1989). The dam‘s date of birth, the previous calving date, 

the date of conception, together with the monthly milk weights of the lactation that started at 
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the calving preceding the one that was included in the study and the dry off date were 

extracted from the herd databases. 

 

Figure 9. Outline of the measurements, data collection and blood sampling. BCS, body 

condition score; DO, days open; GL, gestation length; GA, gestational age at delivery; LL, 

lactation length; DP, dry period; CI, calving interval; BW, birth weight; HG, heart girth; WH, 

wither height; DL, diagonal length; GSIS, glucose-stimulated insulin secretion 

 

6.2.3 Sampling and Laboratory Analyses 

All procedures were approved by the concerned Ethical Committee where appropriate. On 

day three of life at least five hours after a milk meal (in morning for the Belgian herds and in 

afternoon for the German herd to be compatible with herd management), a basal blood 

sample was collected from all calves (n = 481; 169 born to heifers and 312 born to cows). 

Briefly, after adequate fixation of the calf, a small surface of the skin at the height on the left 

jugular vein was disinfected with alcohol. A catheter with 18-gauge needle was inserted into 

the left jugular vein. Stress was avoided as much as possible. Blood samples (± 10 ml) were 

obtained from the catheter in evacuated gel-coated and fluorinized tubes (Vacutainer
®
, 

Terumo Europe NV, Leuven, Belgium) for isolation of serum and plasma, respectively. In 

addition to the basal blood sample, an intravenous glucose-stimulated insulin secretion 

(GSIS) test was performed in a subset of the calves (n = 316; 109 born to heifers and 207 

born to cows). In performing the GSIS test, a glucose solution (Glucose 30%
®
, Eurovet 

Animal Health, Heusden-Zolder, Belgium) at 150 mg/kg BW was infused immediately after 

the basal sampling (Bossaert et al. 2009). Exactly 10 minutes after the glucose bolus had been 
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administered, a second blood sample was taken from the right jugular vein in evacuated tubes 

as described above using a Venoject
®
 (Terumo Europe NV, Leuven, Belgium) needle. In a 

previous study, maximum levels of serum insulin were observed at 10 minutes after the 

glucose infusion (Bossaert et al. 2009). Therefore, blood samples were taken just prior and 

exactly 10 minutes after the calves had been given an intravenous glucose bolus to 

objectively measure the insulin secretion capacity of the newborn calves. All blood samples 

were centrifuged at 2460g for 20 minutes to isolate plasma and serum that were stored at -

20°C until analysis. Plasma glucose was measured using the hexokinase method (GLUC3 

Cobas
®
, Roche Diagnostics GmbH, D-68305 Mannheim, Germany). The intra- and inter-

assay coefficients of variation for glucose measurements were 0.8% and 1.3%, respectively. 

Insulin in serum was measured using the bovine insulin ELISA test kit (Mercodia
®
, Uppsala, 

Sweden), with intra- and inter-assay coefficients of variation 2.9% and 2.7%, respectively. 

6.2.4 Calculations and Estimations 

The gestational age at delivery of the calves was derived from the last recorded insemination 

of the dam to the birth date of the calves and was restricted to 265 to 295 days as mentioned 

above. The season of birth of the calves was grouped into four: Winter (21 December to 20 

March), Spring (21 March to 20 June), Summer (21 June to 20 September) and Fall (21 

September to 20 December). The body condition index (BCI) of the calves was calculated as 

BW/(WH*DL) (Kamal et al. 2014). The basal glucose (Glub) and insulin (Insb) levels, and 

the stimulated (10 minutes after the glucose infusion) glucose and insulin levels were used to 

calculate the indices of insulin sensitivity and insulin secretion. The Insb has been described 

as an important insulin trait in calves (Hammon et al. 2012). Mathematical handling of the 

basal levels of glucose and insulin concentration has been used for the calculation of the 

quantitative insulin sensitivity check index [QUICKI, 1/(log Glub + log Insb)] to measure 

insulin sensitivity in ruminants (Limesand et al. 2013) including newborn calves (Bossaert et 

al. 2009). The acute insulin response (AIR, increment of insulin above the baseline following 

the administration of a standard glucose bolus) was used as a measure of first-phase insulin 

secretion (Limesand et al. 2013; Radunz et al. 2012). We also calculated the disposition index 

(DI, the product of the QUICKI and AIR), an index of first-phase insulin secretion that takes 

insulin sensitivity into account (Bergman et al. 2002), and which has commonly been used in 

animal studies (De Blasio et al. 2007). Age at calving in heifers was calculated as the interval 

from the date of birth to the date of calving. Days open (DO), lactation length (LL), length of 

the dry period (DP) and calving interval (CI) of all cows were calculated. Monthly milk 
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weights were fitted to the MilkBot model (Ehrlich 2011) to summarize the magnitude and 

shape of each lactation curve. Using the model, cumulative 305 days milk (M305), 

cumulative milk production during gestation from conception to drying off (MGEST), milk 

production at lactation peak (MPEAK), cumulative milk production from 15 days before to 

15 days after conception (MPCONC), time to peak milk (TPEAK) and time to half of the 

peak milk (THALF) were calculated (Ehrlich 2011; Kamal et al. 2014). 

6.2.5 Statistical Analysis 

Statistical analyses were performed using the SAS Enterprise Guide program (version 6.1; 

SAS Institute Inc, Cary, NC). Data are presented as means ± standard deviation, unless 

otherwise specified. Differences were declared significant when P < 0.05 and tendencies 

when P ≤ 0.10. Student‘s t-test was used to examine differences between means. Pearson 

correlation coefficients (r) were estimated to describe relationships between variables using 

the PROC CORR procedure. Generalized linear mixed models were built in PROC 

GLIMMIX with Lognormal distributions and Identify link functions. Separate models were 

built for the Insb, QUICKI, AIR and DI. First, the model was fitted for each of the 

independent variables separately. In each model, herd was included as random effect. Dam 

parity, calf gender and season were considered as class variables. Table 13 lists the 

quantitative independent dam variables described above. The BW, HG, BCI and gestational 

age of the calves were quantitative independent calf variables. Those variables that had an 

effect on the insulin traits (P ≤ 0.2 in the Wald statistic for type 3 analysis) were selected for 

further multivariable analysis. The selected fixed effects and their 2-way interactions were 

included in the initial model, but removed if found non-significant, after which the model was 

refitted. Modeling was performed using a forward-backward stepwise algorithm with a 

selection criterion based on Bayesian Information Criterion. The DO and CI were not 

included in the initial models because of their very high correlation (94% each) with LL. 

MPCONC was also not included in the initial model because of its high correlation (86%) 

with MGEST. Separate similar models were built with these variables by replacing LL and 

MGEST, respectively (data not shown). 
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6.3 Results 

6.3.1 Subject Characteristics 

Calf characteristics. The characteristics of the calves are presented in Table 12. The overall 

average BW of the calves was 42.7 ± 5.92 kg. The calves born to the heifers (n = 169) were 

significantly smaller in BW, HG, WH, DL, and BCI compared with the ones born to the cows 

(n = 312) (P < 0.001). Male calves (n = 238) were on average 3.5 kg heavier than their female 

counterparts (n = 243; 44.5 ± 6.10 vs. 41.0 ± 5.21 kg; P < 0.001). The Glub and Insb were 

positively correlated (r = 0.37, P < 0.001) in the calves. There was a negative correlation 

between log QUICKI and log Insb (r = -0.97, P < 0.001) and between log QUICKI and log 

AIR (r = -0.25, P < 0.001) (Figure 10). The insulin traits were not correlated with BW of the 

calves and they were also not significantly different between the calves born to heifers versus 

the ones born to cows (P > 0.05). 
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Figure 10. Hyperbolic relationships between insulin sensitivity and insulin secretion are 

linearised by log transformation. QUICKI, quantitative insulin sensitivity check index; Insb, 

basal insulin; AIR, acute insulin response. 

0

10

20

30

40

50

0.3 0.5 0.7 0.9 1.1

0

1

1

2

2

3

3

4

4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

0

50

100

150

200

0.3 0.5 0.7 0.9 1.1

-2

-1

0

1

2

3

4

5

6

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4



Chapter 6: Factors Associated with Insulin Traits  131 

 

Table 12. Characteristics of the calves (mean ± SD) 

Characteristics All calves (n) Calves born to 

heifers (n) 

Calves born to 

cows (n) 

Birth weight (kg) 42.7 ± 5.92 (481) 40.0 ± 5.05
a
 (169) 44.2 ± 5.86

b
 (312) 

Heart girth (cm) 80.7 ± 4.05 (481) 79.0 ± 3.96
a
 (169) 81.6 ± 3.81

b
 (312) 

Wither height (cm) 76.2 ± 3.42 (481) 75.5 ± 3.41
a
 (169) 76.6 ± 3.36

b
 (312) 

Diagonal length (cm) 70.6 ± 4.08 (481) 69.3 ± 4.21
a
 (169) 71.2 ± 3.86

b
 (312) 

Body condition index 79.4 ± 8.46 (481) 76.5 ± 7.22
a
 (169) 81.0 ± 8.67

b
 (312) 

Gestational age at delivery 

(day) 

279.0 ± 4.74 (481) 277.8 ± 4.39
a
 (169) 279.6 ± 4.81

b
 (312) 

Basal glucose level (mM/L) 6.2 ± 0.88 (481) 6.3 ± 0.84 (169) 6.2 ± 0.91 (312) 

Basal insulin level (mU/L) 8.2 ± 5.21 (481) 8.2 ± 4.46 (169) 8.2 ± 5.59 (312) 

Quantitative insulin 

sensitivity check index 

0.6 ± 0.13 (481) 0.6 ± 0.12 (169) 0.6 ± 0.13 (312) 

Stimulated glucose level 

(mM/L) 

8.1 ± 0.92 (316) 8.2 ± 1.00 (109) 8.1 ± 0.87 (207) 

Stimulated insulin level (mU/L) 41.6 ± 24.07 (316) 42.6 ± 23.87 (109) 41.1 ± 24.21 (207) 

Acute insulin response (mU/L) 32.9 ± 22.15 (316) 34.4 ± 22.86 (109) 32.1 ± 21.78 (207) 

Disposition index 19.8 ± 13.03 (316) 20.8 ± 13.50 (109) 19.2 ± 12.77 (207) 

Body condition index = birth weight/(wither height*diagonal length). 

a,b
Values within a row with different superscript letters are significantly different (all at P < 

0.001). 

Dam characteristics. The characteristics of the dams are presented in Table 13. Heifers (n = 

169) calved at an average age of 24.9 ± 2.64 months. Cows (n = 312) completed 2.0 ± 1.30 

lactations and aged 52.1 ± 18.33 months when they were measured. The M305, MPEAK and 

MGEST in the cows were 9284.8 ± 1650.48, 37.3 ± 8.17 and 6034.6 ± 1351.13 kg, 

respectively. Among the morphometric measures of the dams, HG was the one that showed 

the highest correlation with their M305 (r = 0.29) and MPEAK (r = 0.40), respectively (P < 

0.001). The M305 was positively correlated with the MPEAK (r = 0.92, P < 0.001) and 

negatively correlated with TPEAK (r = -0.40, P < 0.001). The M305 tended to be positively 

correlated with LL (r = 0.09, P = 0.09). Moreover, the LL in cows was correlated with their 

TPEAK (r = 0.25, P < 0.001) and THALF (r = 0.17, P = 0.003), respectively. 



Chapter 6  132 

 

 

Table 13. Characteristics of the dams (mean ± SD) 

Characteristics All dams 

(n = 481) 

Heifers 

(n = 169) 

Cows 

(n = 312) 

Heart girth (cm) 209.0 ± 10.08 202.0 ± 7.13
a
 212.8 ± 9.40

b
 

Wither height (cm) 143.1 ± 5.35 140.3 ± 4.44
a
 144.6 ± 5.20

b
 

Diagonal length (cm) 166.5 ± 8.35 159.6 ± 6.32
a
 170.3 ± 6.74

b
 

Lactation number 1.3 ± 1.42 0.0 ± 0.00
a
 2.0 ± 1.30

b
 

Body condition score 3.0 ± 0.46 3.0 ± 0.44 3.0 ± 0.46 

Age at calving (m) 42.5 ± 19.70 24.9 ± 2.64
a
 52.1 ± 18.33

b
 

M305 (kg) ─ ─ 9284.8 ± 1650.48 

TPEAK (day) ─ ─ 59.9 ± 17.96 

THALF (day) ─ ─ 360.9 ± 198.60 

MPEAK (kg) ─ ─ 37.3 ± 8.17 

MPCONC (kg) ─ ─ 1010.6 ± 220.83 

MGEST (kg) ─ ─ 6034.6 ± 1351.13 

Days open (day) ─ ─ 120.2 ± 64.58 

Lactation length (day) ─ ─ 342.6 ± 60.53 

Length of dry period (day) ─ ─ 57.2 ± 22.11 

Calving interval (day) ─ ─ 399.8 ± 64.29 

M305, cumulative 305 days milk production; TPEAK, time to peak milk; THALF, time to 

half of the peak milk; MPEAK, milk production at lactation peak; MPCONC, cumulative 

milk production from 15 days before to 15 days after conception; MGEST, cumulative milk 

during gestation from conception to drying off. 

a,b
Values within a row with different superscript letters are significantly different (all at P < 

0.001). 

 

6.3.2 Factors Significantly Associated with Major Insulin Traits in Holstein Calves 

Calves Born to All Dams. When data of all calves were analyzed (Table 14), insulin traits 

were significantly associated with gender and season of birth. The Insb was estimated to be 

lower (P = 0.001) and the QUICKI was estimated to be higher (P < 0.001) in male versus 

female calves. The Insb was estimated to be lower in calves born in Spring (P < 0.001) and 

Summer (P = 0.016) compared with calves born in Winter. The QUICKI was estimated to be 

higher in calves born in Spring (P < 0.001) and Summer (P = 0.002) compared with the 
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calves born in Winter. Moreover, the AIR (P = 0.003) and DI (P = 0.031) were estimated to 

be lower in male compared to female calves. The insulin traits in calves born to heifers were 

not associated with any factor (P > 0.05), except the QUICKI which was estimated to be 

higher in calves born in Spring (P = 0.038) compared with those born in Winter (Table 15). 

Table 14. Factors significantly affecting insulin traits in calves born to all dams 

Insulin traits Predictors Comparison (n) Effect* P-value 

Basal insulin 

level 

Calf gender Male (238) - 0.001 

Female (243) Referent  

Season of birth Fall (148) + 0.755 

Spring (54) - <0.001 

Summer (56) - 0.016 

Winter (223) Referent  

Quantitative 

insulin sensitivity 

check index 

Calf gender Male (238) + <0.001 

Female (243) Referent  

Season of birth Fall (148) + 0.898 

Spring (54) + <0.001 

Summer (56) + 0.002 

Winter (223) Referent  

Acute insulin 

response 

Calf gender Male (157) - 0.003 

Female (159) Referent  

Disposition index Calf gender Male (157) - 0.031 

Female (159) Referent  

*Referent means all other level(s) of the variable are compared to it; ‗+‘ is positive influence; 

‗-‘ is negative influence 
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Table 15. Factors significantly affecting insulin traits in calves born to heifers 

Insulin traits Predictors Comparison (n) Effect* P-value 

Basal insulin 

level 

Calf gender Male (78) - 0.143 

Female (91) Referent  

Quantitative 

insulin 

sensitivity 

check index 

Calf gender Male (78) + 0.109 

Female (91) Referent  

Season of birth Fall (61) - 0.695 

Spring (15) + 0.038 

Summer (26) + 0.561 

Winter (67) Referent  

Acute insulin 

response 

Calf gender Male (48) - 0.199 

Female (61) Referent  

Disposition 

index 

Calf gender Male (48) - 0.162 

Female (61) Referent  

*Referent means all other level(s) of the variable are compared to it; ‗+‘ is positive influence; 

‗-‘ is negative influence 

 

Calves Born to the Cows. The insulin traits in calves born to cows were significantly 

associated with gender, season, MGEST, DP and LL (Table 16). The Insb was estimated to be 

lower (P = 0.008) and the QUICKI was estimated to be higher (P = 0.004) in male compared 

with female calves. The Insb was estimated to be lower in calves born in Spring (P < 0.001) 

and Summer (P = 0.003) compared with calves born in Winter. The QUICKI was estimated 

to be higher in calves born in Spring (P < 0.001) and Summer (P < 0.001) compared with 

calves born in Winter. The Insb was estimated to be higher in calves born to cows having 

passed a higher MGEST (P = 0.076) and longer DP (P = 0.034). QUICKI was estimated to be 

lower in calves born to cows having passed a higher MGEST (P = 0.030) and longer DP (P = 

0.058). Moreover, the AIR (P = 0.009) and DI (P = 0.049) were estimated to be lower in male 

compared with female calves. Furthermore, the AIR (P = 0.036) and DI (P = 0.039) were 

estimated to be lower in calves born to cows having passed a longer LL. 
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Table 16. Factors significantly affecting insulin traits in calves born to cows 

Insulin traits Predictors Comparison (n) Effect P-value 

Basal insulin 

level 

Calf gender Male (160) - 0.008 

Female (152) Referent  

Season of birth Fall (87) + 0.974 

Spring (39) - <0.001 

Summer (30) - 0.003 

Winter (156) Referent  

MGEST
1
 (kg) Linear (312) + 0.076 

Dry period (day) Linear (312) + 0.034 

Quantitative 

insulin 

sensitivity check 

index 

Calf gender Male (160) + 0.004 

Female (152) Referent  

Season of birth Fall (87) + 0.596 

Spring (39) + <0.001 

Summer (30) + <0.001 

Winter (156) Referent  

MGEST
1
 (kg) Linear (312) - 0.030 

Dry period (day) Linear (312) - 0.058 

Acute insulin 

response 

Calf gender Male (109) - 0.009 

Female (98) Referent  

Lactation length (day) Linear (207) - 0.036 

Disposition 

index 

Calf gender Male (109) - 0.049 

Female (98) Referent  

Lactation length (day) Linear (207) - 0.039 

1
MGEST = cumulative milk production during gestation from conception to drying off. 
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6.4 Discussion 

Milk production per cow is increasing annually on behalf of long-term genetic selection and 

improved management practices. High milk production in cows gives rise to reduced blood 

glucose, insulin and IGF-I levels and thereby favors a lower energy status (Albarrán-Portillo 

and Pollott 2013; Bossaert et al. 2014). We hypothesized that high milk production during 

gestation in cows affects the intrauterine development of the fetal endocrine pancreas and 

hence programs reduced insulin secretion in the newborn calves. The rationale behind this 

hypothesis originates from studies done in a variety of other species including humans (De 

Rooij et al. 2006), in which it is found that insulin secretion in newborns is significantly 

reduced in case of a lack of nutrients during intrauterine development (Limesand et al. 2013; 

Owens et al. 2007). This lack of nutrients can either be caused by a famine (De Rooij et al. 

2006), a specific physiologic status like lactation (Berry et al. 2008; Funston and Summers 

2013; Wu et al. 2006) or adverse environmental conditions (Tao et al. 2014). In a previous 

study (Bossaert et al. 2009), we have shown that in comparison to beef calves, dairy calves 

show signs of peripheral insulin resistance already early after birth. In that study, we used a 

limited number of calves in which we performed more extensive tests like the intravenous 

glucose tolerance test (IVGTT) and the intravenous insulin tolerance test (IVITT). However, 

the present epidemiological study was performed using a larger number of subjects. The latter 

however limits the use of sophisticated tests. Therefore, we used tests that are easier to 

perform under field conditions and which had been proven to be satisfying in comparable 

field studies performed in several other species including ruminants (Bergman et al. 2002; 

Limesand et al. 2013; Radunz et al. 2012). The present study is to the best of our knowledge 

one of the first to specifically address the direct effects of environment and dam 

characteristics including the level of milk production during gestation, on insulin traits in 

newborn Holstein calves. A diagrammatic representation of the relationship between insulin 

traits of the calves and the environmental factors associated with them is presented in Figure 

11. 
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Figure 11. Diagrammatic representation of the relationship between insulin traits of calves 

(illustrated in rectangles) and environmental and dam variables (in ovals). Signs on the 

arrows represents the direction of the influence of the variable. M305, cumulative 305 days 

milk production; TPEAK, time to peak milk; THALF, time to half of the peak milk; MGEST, 

cumulative milk production during gestation from conception to drying off; DP, length of the 

dry period; QUICKI, quantitative insulin sensitivity check index; , positive influence; , 

negative influence 

6.4.1 Calf Characteristics Including Insulin Traits 

The BW and other size parameters of the calves recorded in the present study are comparable 

with previous investigations (Bossaert et al. 2014; Muri et al. 2005). However, BW 

represents fetal growth only at one point in time (= at the end of gestation), and does not 

provide an insight into the pattern of fetal growth throughout gestation. Therefore it is not 

surprising that BW and other size parameters are not correlated with any insulin traits of the 

calves in the present study. This result is consistent with previous studies where the impact of 

poor fetal growth on insulin secretion was not related to birth weight (Jaquiery et al. 2012; 

Limesand et al. 2013). The Insb is positively correlated with Glub in the present study, which 

is consistent with a previous investigation (Muri et al. 2005). Furthermore, in the present 

study, a relatively narrow range of Glub is maintained in the calves with a wide range of Insb. 

This indicates that the calves are able to control glycaemia effectively at the expense of 

variable concentrations of insulin (De Blasio et al. 2007). Basal insulin concentrations may 

depend on the ontogenic development of the endocrine pancreas, the insulin sensitivity of the 

peripheral tissues, as well as on the amount, time point, and frequency of colostrum intake 

(Hammon et al. 2012). However, the calves in the present study had all been fed 4 L of 
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colostrum within the first few hours after birth by esophageal tube. They were also fed equal 

amount of milk during first days of life. Besides, insulin concentration may depend on the 

diurnal variation (Lee et al. 1992), however, we did not find a significant difference in insulin 

concentration between Belgian and German herds. Moreover, insulin sensitivity and insulin 

levels are mutually related in such a way that reduced insulin sensitivity is compensated for 

by an increased insulin production. The latter is illustrated by the fact that Insb is related to 

QUICKI in a hyperbolic fashion in the present study, with insulin production increasing as 

insulin sensitivity decreases, as occurs in young lambs (De Blasio et al. 2007) and human 

beings (Bergman et al. 2002). When QUICKI was plotted against AIR, the data points also 

approximated a hyperbolic curve, as occurs in young lambs (De Blasio et al. 2007). The 

hyperbolic relationship between log QUICKI and log Insb, and between log QUICKI and log 

AIR in the present study is confirmed by a significant inverse linear relationship. This implies 

that the product of insulin secretion and sensitivity which is represented by the DI (Bergman 

et al. 2002) is nearly constant implicating that DI may be a good surrogate measure of β-cell 

function in relation to the peripheral insulin sensitivity since DI reflects the ability of the 

endocrine pancreas to compensate for reduced insulin sensitivity. Therefore, this index has 

been increasingly used in metabolic studies in animals. In the present study, the insulin traits 

calculated for the calves born to heifers were not significantly different from the ones 

calculated for the calves born to cows. This finding implies that the calves born to heifers do 

not display altered intrauterine development of the endocrine pancreas compared with the 

calves born to lactating cows although significant differences exist in blood metabolite 

concentrations between heifers and cows during gestation (Bossaert et al. 2014). 

6.4.2 Factors Significantly Associated with Major Insulin Traits in Holstein Calves 

Calf Gender. We observed sexual dimorphism in insulin sensitivity and insulin secretion in 

the Holstein calves. Although both sexes showed similar fasting plasma glucose 

concentrations, serum insulin levels are higher in female than in male calves. In other words, 

female calves produce more insulin to maintain similar glycaemic levels than male calves. 

Insulin sensitivity correlates positively to the percentage of type I muscle fibers in calves 

(Sternbauer and Essen-Gustavsson 2002). The male calves in the present study are heavier 

than the female calves. We speculate that a higher amount of muscle fibers may partially 

explain higher QUICKI and thereby lower Insb in the male calves (Sternbauer and Essen-

Gustavsson 2002). The latter is furthermore confirmed by the results of our previous study in 

which we showed that calves of the double muscled Belgian Blue breed had significantly 
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lower Insb and QUICKI values in comparison to Holstein calves (Bossaert et al. 2009). 

Similarly, female babies have higher insulin concentrations at birth (Wilkin and Murphy 

2006) and they are less responsive to the trophic effects of insulin owing to mutations in the 

glucokinase gene (Wilkin and Murphy 2006). Furthermore, our data show a significantly 

lower insulin secretory response following a standard glucose bolus (as indicated by lower 

AIR and DI) in male calves in comparison to female calves. The gender-specific 

programming of insulin secretion and action identified in the present study is important in 

relation to earlier studies showing increased vulnerability of male calves, compared with 

females, to the later development of adiposity as a consequence of early growth restriction 

(Jaquiery et al. 2012). Also in human, men are generally known to have a higher risk to suffer 

from insulin resistance, diabetes mellitus type 2 and cardiovascular disease (Geer and Shen 

2009; Sattar 2013). The latter further illustrates the lower capacity of the endocrine pancreas 

of male individuals to compensate for peripheral insulin resistance in adult life (De Rooij et 

al. 2006; Fleming et al. 2012; Morrison 2008). In the bovine, a disease complex characterized 

by insulin resistance, hyperglycemia and glucosuria is well known in intensively fed veal 

calves (Hugi et al. 1997). While the origin of this metabolic disease complex is generally 

attributed to the specific nutritional characteristics of these calves, it is remarkable that the 

disease is only mentioned in bull calves and not in replacement heifer calves. This may be 

attributed by the level of nutrition offered to young calves (Bach et al. 2013) in addition to 

the insulin sensitivity and the ability of the endocrine pancreas to secrete insulin at that stage 

(Jaquiery et al. 2012; Sternbauer and Essen-Gustavsson 2002). 

Season of Birth. Our previous research has shown that heifers and cows completing their late 

gestation during the hotter seasons deliver smaller calves, which reflects a compromised fetal 

development in utero (Kamal et al. 2014). The latter is very similar to studies in sheep in 

which heat stress during gestation has been shown to be associated with the birth of smaller 

lambs (Morrison 2008). In addition, the Insb is lower and QUICKI is higher in the calves born 

in Spring and Summer in comparison to the calves born in Winter in the present study. Our 

result is consistent with a previous study where reduced insulin levels and enhanced insulin 

sensitivity have been observed in calves born following maternal heat stress during late 

gestation (Tao et al. 2014). This implies that calves born in Spring and Summer are more 

efficient in moving glucose from the circulation into insulin dependent tissues due to 

increased insulin sensitivity, leading to a lower pool of circulating glucose (Tao et al. 2014). 

We speculate that calves born to dams that were subjected to higher ambient temperatures 
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during late gestation have impaired pancreatic maturation in utero (Limesand et al. 2013). 

The late gestation heat stress compromises placental development, which results in fetal 

hypoxia, undernutrition, and eventually fetal growth retardation (Morrison 2008). However, 

the extent of stress among dairy cows in response to heat may vary according to geographical 

locations across the globe. Moreover, a decrease in dry matter intake is a hallmark of the heat 

stress response in animals and undernutrition is a factor in the reduced pancreatic growth (Wu 

et al. 2006). Furthermore, a longer photoperiod during hotter seasons leads to increased 

plasma prolactin concentrations in cows, supporting higher milk production and thereby 

limiting nutrient availability for intrauterine growth (Accorsi et al. 2005). Our data indicate 

that the basal metabolism of calves is affected by the seasonal stress imposed on the mother 

during late gestation. 

Lactation characteristics in cows. We have tested the hypothesis that intrauterine growth of 

fetal endocrine pancreas is compromised when the dam is targeting high levels of nutrients 

into milk production during gestation. However, the effect is opposite to our hypothesis with 

the view that the Insb is higher and QUICKI is lower in the calves born following a greater 

MGEST in cows in the present study. Such association between the insulin traits and MGEST 

is rather difficult to explain. However, the energy status during lactation in cows may be 

affected by cow factors irrespective of the level of MGEST (Piccardi et al. 2013; Sensosy et 

al. 2012). The cows having a higher MGEST had a shorter DO (r = -0.47, P < 0.001) and DP 

(r = -0.52, P < 0.001) in the present study, which is in line with previous reports (Atashi et al. 

2013). Perhaps cows having higher MGEST are in a better energy status and, therefore, also 

provided a better maternal environment for the intrauterine development of the endocrine 

pancreas giving rise to higher insulin levels and lower insulin sensitivity in the calves. In less 

productive cows, daily milk production often decreases to low levels before the planned 

drying off date; therefore, farmers no longer keep these cows in production, which results in 

longer DP compared with higher producing cows (Atashi et al. 2013). In our study, the Insb is 

higher and QUICKI is lower in the calves born to the cows having passed a longer DP. 

Although no difference exists in serum glucose, insulin, and IGF-I levels in cows with short 

versus longer DP (Pezeshki et al. 2007), we speculate that cessation of partitioning nutrients 

toward milk for extended duration in cows experiencing a longer DP, provides higher 

amounts of energy and amino acids toward growth and maturation of the pancreatic β-cell, 

giving rise to higher insulin levels in the calves (Long et al. 2010). However, the MGEST and 

DP are not significantly associated with the insulin secretion at the stimulated state in the 
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present study. This may be due to the fact that only a subset of the calves was employed for 

the GSIS test. 

A longer LL in cows leads to a longer partitioning of energy and nutrients towards the udder 

and less towards the uterus. The lower partitioning of nutrients to the gravid uterus in cows 

may lead to less glucose crossing the placenta and hence a retardation in the development of 

the embryo (Green et al. 2012; Sensosy et al. 2012). Although the energy requirements for 

the embryo may be relatively low, metabolic activity is high and this represents a critical 

period for epigenetic control and organogenesis during fetal development (Fleming et al. 

2012; Wu et al. 2006). Certainly, β-cells in pancreatic islets develop during the embryonic 

and early fetal period of the intrauterine development in cattle (Carlsson et al. 2010). 

Exposure of dams to reduced nutrient intake during early gestation is associated with 

reductions in insulin concentrations in sheep fetuses (Limesand et al. 2013) and in calves 

(Long et al. 2010). The adaptations to nutrient restriction that limit insulin concentrations are 

not fully known, but a morphological study demonstrated smaller pancreatic islets and a 

decrease in β-cell mass following early growth restriction in sheep (Limesand et al. 2013). 

Chronic hypoglycemia during later stages of fetal development leads to an intrinsic islet 

defect that is responsible for the decreased insulin secretion in sheep offspring without 

significantly decreasing their β-cell mass (Rozance et al. 2006). In the present study, the AIR 

is lower in calves born following longer LL in cows. The lower insulin secretion in the calves 

born to the cows with longer LL is even evident after adjusting for the sensitivity, as 

indicated by a lower DI. We speculate that chronic glucose partitioning towards the udder 

during the entire period of gestation is present in cows with longer LL which potentially 

contributes to a reduced β-cell mass due to slower proliferation rates and subsequently a 

reduced insulin secretion in the newborn calves (Limesand et al. 2013; Lucy et al. 2014; 

Rozance et al. 2006). Considerable evidence suggests that energy restriction before birth is 

associated with enhanced insulin sensitivity in early postnatal life. However, this dysfunction 

appears to emerge in case the nutrient restriction in earlier parts of gestation is followed by 

abundance of nutrients in late part of gestation (Long et al. 2010; Radunz et al. 2012). In our 

study, the QUICKI of the calves was not associated with the LL in cows. This observation is 

consistent with a study in sheep where nutritional restriction throughout gestation was 

imposed to the fetal lambs by removal of the majority of the endometrial caruncles from the 

uterus of the dams (Owens et al. 2007). The latter gave rise to an impaired insulin secretion 

without any enhancement of insulin sensitivity in the fetal lambs (Owens et al. 2007). These 
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findings invoke that elongation of LL in cows, or factors associated with the longer LL, 

impair β-cell responsiveness to glucose stimulation, hence insulin secretion in the newborn 

calves (Gutierrez et al. 2012; Owens et al. 2007; Rozance et al. 2006). 

Major finding of the present study is that major insulin traits in newborn Holstein calves are 

significantly associated with gender and season of birth. Subsequently, in calves born out of 

multiparous dams, insulin traits are significantly associated with the amount of milk produced 

during gestation, lactation length and length of the dry period (being related to the 

intrauterine nutritional environment) prior to their birth. Whether the changes in insulin traits 

early in life exert long-term effects on the metabolic function in later life is unknown. 

However, several reports have linked lactation during gestation in the dam with impaired 

future performance and longevity of the offspring (Berry et al. 2008; Gonzalez-Recio et al. 

2012). If the alterations in insulin traits of the calves persist in later life, as they do in 

newborns confronted with intrauterine growth restriction in other species, they may 

contribute to adverse metabolic outcomes in later life. 
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Dam nutrition during gestation in mammals has been recognized as a key to metabolic 

programming in utero. In humans, there has been an explosion of data showing that 

perturbations like undernutrition during prenatal life program fetal development in the sense 

that survival in the short term is maximised, but significantly increases the risk of suffering 

from a diverse range of health problems in later life (Eriksson 2016; Marciniak et al. 2017). 

Intrauterine programming of postnatal physiological function has been demonstrated 

experimentally in several species using a range of techniques to compromise the intrauterine 

environment and alter fetal development (Sferruzzi-Perri et al. 2017; Sferruzzi-Perri and 

Camm 2016; Smits et al. 2012). Such intrauterine programming is obvious in high-producing 

dairy cattle, which evolved from 2000 to 8000 kg milk production per year over a period of 50 

years. To maximise milk production, farmers breed their stock at young age in order to have a 

first calf at 24 months of age (Wathes et al. 2014), and subsequently have their cows calved at 

intervals no longer than 385-400 days (Inchaisri et al. 2010). The latter implies dairy cattle are 

rather atypical because they have to manage the compatibility of optimal reproductive 

performance and (early) gestation with continued growth or the production of large quantities 

of milk. Rather than being an absolute shortage of energy substrates per se, this metabolic 

priority for growth and lactation (after calving) is known to generate adverse conditions 

hampering optimal ovarian function, follicular growth, oocyte maturation and early 

embryonic development (Leroy et al. 2008). We speculate that the atypical fact that 

adolescent animals are still growing significantly while being pregnant and that adult cows 

have to partition large quantities of nutrients to the udder during gestation both affect the 

prenatal development of the calf and potentially the development of its metabolic features, 

jeopardising its health, fertility and productivity in later life. The association of young age in 

heifers and high milk production during gestation in cows with reduced longevity and 

productivity of their offspring (Banos et al. 2007; Berry et al. 2008; Gonzalez-Recio et al. 

2012), furthermore emphasizes the potential impact of these features on metabolic 

programming in utero. Therefore, we focused our study on the feto-placental development in 

relation to growth in heifers and level of milk production in cows, and we specifically 

addressed the direct effects of other environmental and dam characteristics on feto-placental 

development. In this study, growth and milk production during gestation have been identified 

as important determinants for the feto-placental development in heifers and cows, 

respectively. Additionally, calf gender, season of calving, gestation length, parity and 

morphometrics of the dam and length of the dry period are reaffirmed as factors being 

significantly associated with calf birth size and placental traits. Subsequently, insulin traits in 
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calves born to multiparous dams are significantly associated with the amount of milk 

produced during gestation, lactation length and length of the dry period prior to their birth. 

7.1 General Findings 

Birth weight: Birth weight of calves has been used as important descriptor of birth size in 

comparison with other measures (Graham et al. 2010; Lundborg et al. 2003; Swali and 

Wathes 2006). It is a complex trait influenced by the interaction between genetic and non-

genetic intrauterine factors (Kocak et al. 2007). Therefore, the use and interpretation of birth 

weight in relation to fetal programming assumes that it indeed reflects specific fetal responses 

to particular variations in the nutritional status of the dam. Several studies have been 

published on the impact of specific environmental factors in relation to birth weight of calves 

(Kocak et al. 2007; Swali and Wathes 2006; Zhang et al. 2002). In consistence with these 

studies, BW of calves is retained as the most consistent and objective measure to describe the 

size of the calves at birth (Kamal et al. 2014). In other species including humans, it has also 

been shown that detrimental environmental factors experienced by the dam during gestation 

(e.g. starvation or illness), do have a negative effect on embryonic or fetal development which 

became clear by a lower weight of the offspring at birth (Sharma et al. 2012; Stein et al. 2004; 

Tao et al. 2012). Conclusively, animal experiments and human epidemiological data show 

that a wide range of individual tissues and whole-organ systems can be programmed in utero 

with adverse consequences for their physiological function later in life. This programming 

occurs across the normal range of birth weights with the worst prognoses at the extremes 

(Fowden et al. 2006a). 

Birth weight is often used as a measure of fetal growth and development in pregnancy, but it 

is also understood to be an imprecise measure because it represents fetal growth at one point 

in time at the end of gestation and does not provide any insight into the pattern of fetal growth 

throughout full gestation (Wilcox 2001). For example, intrauterine growth restriction (IUGR) 

may result from poor placental development early in pregnancy, leading to reduced substrate 

supply for optimal fetal growth throughout full gestation. Alternatively, placental growth may 

have occurred normally in early pregnancy, but an insult in late gestation may result in a 

severe but short-lived reduction in placental substrate delivery to the fetus, leading to IUGR 

due to acute substrate restriction. Similarly, there may have been several short but severe 

reductions in substrate supply to the fetus over late gestation. Animal studies have 

demonstrated that the timing, duration and exact nature of the insult during pregnancy are all 
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important determinants of the pattern of intrauterine growth and the specific physiological 

outcomes. It is clear, for example, that the period of pregnancy during which nutrient 

restriction is experienced determines which of the cell types and hence also organs is most 

affected (Bertram and Hanson 2001; Fowden et al. 2006a). The effects of all these 

determinants have been confirmed by the fact that maternal and environmental insults with 

little if any effect on birth weight can alter subsequent cardiovascular and metabolic function.  

Placental Development: The placenta is pivotal in the competition between mother and fetus 

for resource allocation. In the bovine, the caruncular-cotyledonary unit is called a placentome 

and is the primary functional area of physiological exchange between the mother and her fetus 

(Jainudeen and Hafez 1993). Cotyledonary growth progressively increases throughout 

gestation, in combination with an increase in capillary area, villous surface and number (Baur 

1972; Funston et al. 2010; Vonnahme et al. 2007). Obviously, it is expected that the placental 

exchange area may be related to the cotyledonary base area (Kannekens et al. 2006). Indeed, 

the highest correlation between calf measurements and placental characteristics is found 

between the weight of the calf and the total cotyledonary surface (Kamal et al. 2017), 

confirming the high importance of the cotyledonary surface availability for nutrient transfer to 

fetal development (Sullivan et al. 2009). Basically, under conditions of impaired nutrient 

supply that may limit normal fetal growth, the placenta has shown to adapt so as to increase 

its transport capacity (Burton and Fowden 2012). Earlier studies in beef cattle and sheep 

demonstrated that placentas may adapt their phenotype to accommodate fetal nutrient demand 

and that this process may include either morphological or functional mechanisms acting 

during different stages of fetoplacental development (Fowden et al. 2010; Long et al. 2009; 

Sullivan et al. 2009). 

Placental development responds to both fetal signals of nutrient demand and maternal signals 

of nutrient availability and, by adapting its phenotype, regulates the distribution of available 

resources (Fowden et al. 2006b; Fowden and Moore 2012). Placental adaptation may occur as 

a result of changes to the placental surface area for nutrient transfer, the thickness of the 

interhaemal barrier separating the maternal and fetal circulations, the placental abundance of 

nutrient transporters, metabolic rate and blood flow, as well as placental synthesis and 

metabolism of specific hormones (Fowden and Moore 2012; Vaughan et al. 2012). Once 

placentation has begun, the programming effects of environmental signals may be mediated 

via changes in placental development, and therefore, fetal IUGR due to nutritional constraints 

is closely linked to placental development and function (Fowden et al. 2008; Cetin and Alvino 
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2009). Usually, there are 70-120 placentomes to serve as the functional unit for feto-maternal 

exchange. In Bos Indicus cattle, the number gradually increases averaging about 80 up to day 

70 post-insemination (Assis Neto et al. 2010). Usually there is no change in the number of 

bovine cotyledons from day 90 of gestation, while the mean weight and surface of each 

placentome may continue to increase (Laven and Peters 2001), resulting in their characteristic 

mushroom-like shape (Leiser et al. 1997). Obviously, nutritional effects on cotyledonary 

growth may occur earlier during gestation, but compensatory cotyledonary growth occurs in 

the third trimester to meet the rapid increase in nutritional demands by the fetus (Zhu et al. 

2007b). The birth weight of the calves is positively correlated with placental weight and 

cotyledonary size and weight (Kamal et al. 2017; Shah et al. 2007; Zhang et al. 1999). 

Moreover, calf gender has been reported to affect cotyledonary parameters in sheep (Dwyer et 

al. 2005) and cattle (Zhang et al. 1999). Therefore, the cotyledons are of great biological 

significance for the development and growth of the fetus. 

Insulin Traits: In dairy cattle, pregnancy and lactation are two physiological states very 

important for the survival of the species, both significantly increasing the demands for 

glucose. During peak milk production, it is impossible to meet glucose requirements by 

increasing dry matter intake and thus cows go into a period of negative energy and glucose 

balance. To support the partitioning of glucose towards the pregnant uterus and the lactating 

mammary gland, substantial metabolic adaptations have to occur at the level of the 

carbohydrate, protein and lipid metabolism. The latter is especially the case at the end of 

pregnancy and the beginning of lactation to fully support the challenging physiological 

environment at that specific time. The cow shifts her metabolism towards increased glucose 

production, decreased glucose use by non-mammary tissues and increased use of lipids to 

provide energy. These changes occur through increased hepatic glucose production, glucose 

sparing by non-mammary tissues, increased glucose uptake by the mammary gland, increased 

hepatic glycogen mobilisation, decreased lipogenesis, increased lipolysis, increased 

proteolysis, increased ketogenesis and increased use of ketone bodies (Bell 1995; De Koster 

and Opsomer 2013a).  

We have measured peripheral glucose and insulin concentrations in neonatal calves as a proxy 

for their glucose metabolism (Kamal et al. 2015). The calves are able to control glycaemia 

effectively at the expense of variable concentrations of insulin (De Blasio et al. 2007; Muri et 

al. 2005). Basal insulin concentrations may depend on the ontogenic development of the 

endocrine pancreas, the insulin sensitivity of the peripheral tissues, as well as on the amount, 
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time point, and frequency of colostrum intake (Hammon et al. 2012). Moreover, insulin 

sensitivity and insulin levels are mutually related in such a way that reduced insulin 

sensitivity is compensated for by an increased insulin secretion. The latter is illustrated by the 

fact that basal insulin level and the acute insulin response are related to the insulin sensitivity 

in a hyperbolic fashion, with insulin production increasing as insulin sensitivity decreases, as 

occurs in young lambs (De Blasio et al. 2007) and human beings (Bergman et al. 2002). 

Therefore, the product of insulin secretion and sensitivity which is represented by the 

disposition index (DI) (Bergman et al. 2002) is nearly constant, implicating that the DI may 

be a good surrogate measure of β-cell functions in relation to the peripheral insulin sensitivity. 

Whether the glucose and insulin traits early in life exert long-term effects on metabolic 

function in later life is not known. However, when the alterated glucose-insulin traits of the 

calves persist in later life, as they do in newborns confronted with IUGR in other species, they 

may contribute to adverse metabolic outcomes in later life. 

Parity of Dam: In general, the reproductive capacity of nulliparous heifers is higher than that 

of multiparous cows. This can likely be attributed to the fact that oocytes and embryos of 

nulliparous heifers have not been challenged by the metabolic stress of milk production. 

Furthermore, uteri of nulliparous heifers have not been confronted yet with the consequences 

of a calving event, which, in most cases, is associated with bacterial contamination. In 

addition to the better reproductive performance of nulliparous heifers, significant differences 

have been noted in terms of production, reproductive capacity, longevity and resilience 

against metabolic challenges between the offspring of first- versus higher-parity animals 

(Banos et al. 2007; González-Recio et al. 2012), with, in most cases, the offspring of first-

parity animals being in a more favourable condition. The latter may be interpreted as an 

indication of the deleterious effect of lactation during conception and early pregnancy 

because, in contrast with multiparous dairy cows, first-parity animals do not lactate. 

Therefore, all too often researchers use first-parity heifers as non-lactating and hence 

‗negative‘ controls when examining the effects of lactation and its concomitant metabolic 

consequences on the prenatal development of offspring. However, researchers should be 

aware that when pregnancy coincides with continued growth of the first parity dam, the fetus 

may face intense competition for nutrients for its mother‘s own metabolic needs while still 

growing (Kamal et al. 2014). 

In comparison to young growing animals, multiparous and hence lactating dams gave birth to 

heavier calves (Kamal et al. 2014), which is in line with results of previous studies (Dhakal et 
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al. 2013; Johanson and Berger 2003). The shorter gestation length in heifers in comparison to 

cows at least accounts for the birth weight difference (Dhakal et al. 2013; Norman et al. 

2009). Another plausible reason is that the heifers usually are still growing during their first 

gestation and preferentially use nutrients for their own growth rather than for the growth and 

development of their fetus (Funston and Summers 2013). The latter is furthermore visualized 

by a reduced development of the placenta in heifers (Funston and Summers 2013; Symonds et 

al. 2010) and a higher increase in total cotyledonary surface and hence less efficient placentas 

in cows (Kamal et al. 2017). The latter suggests lactation to be associated with a more 

pronounced placental compensation which is effectuated by an increased size of the 

cotyledons. Moreover, cows also become more resistant to the anabolic effects of growth 

hormone and placental lactogen (Weber et al. 2007), resulting in a degree of insulin 

resistance, which allows more glucose to be transferred to the fetus in gestating cows (Bell et 

al. 1995). Therefore, when compared to heifers, mature cows give birth to heavier calves 

(Dhakal et al. 2013; Johanson and Berger 2003). However, the insulin traits of the calves born 

to heifers are not different from the calves born to cows (Kamal et al. 2015). This implies that 

the calves born to heifers do not display an altered intrauterine development of the endocrine 

pancreas compared with the calves born to lactating cows although significant differences 

exist in blood metabolite concentrations between heifers and cows during gestation (Bossaert 

et al. 2014). Nevertheless, several reports have linked lactation during gestation in the dam 

with impaired future performance and longevity of the offspring (Berry et al. 2008; González-

Recio et al. 2012). 

Gender of the Calves: Male calves are generally heavier than female ones. Calf gender has 

been reported to affect cotyledonary parameters in sheep (Dwyer et al. 2005) and cattle 

(Zhang et al. 1999). Male calves are carried longer than the female ones, which may partially 

explain their higher birth weight (Dhakal et al. 2013). Moreover, gender-specific genes 

affecting insulin sensitivity such as mutations in the glucokinase gene may be responsible for 

the gender difference in birth weight. The genetically more insulin resistant female fetus is 

less responsive to the trophic effects of insulin owing to mutations in the glucokinase gene 

and is therefore lighter (Hattersley et al. 1998; Wilkin and Murphy 2006). The gender insulin 

hypothesis is also inspired by observations of the reduced effects of fetal insulin 

concentrations on placental growth in individuals affected by mutations in the glucokinase 

gene (Shields et al. 2008). Female calves produce more insulin to maintain similar glycaemic 

levels than male calves (Kamal et al. 2015). A higher amount of muscle fibers in the male 
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calves may partially explain higher insulin sensitivity and thereby lower basal insulin levels 

(Sternbauer and Essen-Gustavsson 2002). The latter is furthermore confirmed by the results of 

a study in which it is shown that calves of the double muscled Belgian Blue breed had 

significantly lower basal insulin and a higher sensitivity in comparison to Holstein calves 

(Bossaert et al. 2009). Similarly, female babies have higher insulin concentrations at birth 

(Wilkin and Murphy 2006). Furthermore, a significantly lower insulin secretory response 

following a standard glucose bolus is usual in male calves in comparison to female calves.  

The gender-specific programming of insulin secretion and action is important, showing an 

increased vulnerability of male calves, compared with females, to the later development of 

adiposity as a consequence of early growth restriction (Jaquiery et al. 2012). In humans, men 

are generally known to have a higher risk to suffer from insulin resistance, diabetes mellitus 

and cardiovascular disease (Geer and Shen 2009; Sattar 2013). The latter further illustrates the 

lower capacity of the endocrine pancreas of male individuals to compensate for peripheral 

insulin resistance in adult life (De Rooij et al. 2006; Fleming et al. 2012; Morrison 2008). In 

cattle, a disease complex characterized by insulin resistance, hyperglycemia and glucosuria is 

well known in intensively fed veal calves (Hugi et al. 1997). While the origin of this 

metabolic disease complex is generally attributed to the specific nutritional characteristics of 

these calves, it is remarkable that the disease is only mentioned in bull calves and not in 

replacement heifer calves. This may be attributed by the level of nutrition offered to young 

calves (Bach et al. 2013) in addition to the insulin sensitivity and the ability of the endocrine 

pancreas to secrete insulin at that stage in bull calves (Jaquiery et al. 2012; Sternbauer and 

Essen-Gustavsson 2002). 

Season: The later part of gestation is known to be critical for fetal growth. Heifers and cows 

completing the last trimester during a hot season give birth to smaller calves (Kamal et al. 

2014; Linden et al. 2009; Tao et al. 2012). This finding is also similar to a study in sheep in 

which heat stress during gestation has been shown to be associated with the birth of smaller 

lambs (Morrison 2008). One potential factor is reduced dry matter intake of the dam during 

the last part of gestation due to heat stress (Umphrey et al. 2001), contributing to decreased 

nutrient availability and consequently a lower birth weight of calves (Linden et al. 2009; 

Norman et al. 2009). Similarly, a longer photoperiod during the second part of gestation leads 

to increased plasma prolactin concentrations, supporting higher milk production and thereby 

limiting nutrient availability for intrauterine calf growth (Accorsi et al. 2005; Garcia-Ispierto 

et al. 2009). Another plausible factor is the shorter gestation length of the pregnancies during 
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the hotter seasons (Tao et al. 2012), which has been shown to be associated with the large 

variation in temperature and humidity at that time (Dhakal et al. 2013; Norman et al. 2009). 

Furthermore, heat stress during late gestation is associated with decreased uterine blood flow 

and reduced placental function giving rise to an impaired dam-to-fetal exchange of glucose 

and amino acids (Reynolds et al. 1985).  

The energy metabolism of calves is affected by the seasonal stress imposed on the mother 

during late gestation. Reduced insulin levels and enhanced insulin sensitivity have been 

observed in calves born following maternal heat stress during late gestation (Guo et al. 2016; 

Kamal et al. 2015; Tao et al. 2014). The calves are more efficient in moving glucose from the 

circulation into insulin dependent tissues due to increased insulin sensitivity, leading to a 

lower pool of circulating glucose (Tao et al. 2014). So, the calves born to dams that were 

subjected to higher ambient temperatures during late gestation, have impaired pancreatic 

maturation in utero (Limesand et al. 2013). The late gestation heat stress compromises 

placental development, which results in fetal hypoxia, undernutrition, and eventually fetal 

growth retardation (Morrison 2008). Moreover, a decrease in dry matter intake is a hallmark 

of the heat stress response in animals and undernutrition is a factor in the reduced pancreatic 

growth (Wu et al. 2006).  

Metabolic alteration in calves born to heat-stressed cows persists until the preweaning period 

(Tao et al. 2014; Monteiro et al. 2016) and has been associated with reduced milk production 

during the first lactation (Monteiro et al. 2013). Similar effects are also observed in sheep 

where intrauterine growth restriction caused by maternal heat stress during early to mid-

gestation resulted in compromised insulin synthesis and secretion in the lambs compared with 

those that develop under thermoneutrality (Limesand et al. 2006). Moreover, it is observed 

that the calves born to heat-stressed dry cows had a lower plasma concentration of cortisol 

immediately after birth compared with calves born to cooled cows, indicating that maternal 

heat stress alters the fetal development of hypothalamus-pituitary-adrenal axis and related 

stress responses during the postnatal period (Tao et al. 2012). The metabolism of an animal is 

of importance in growth and body composition, which in turn alters her future productive and 

reproductive performance. Therefore, metabolic adaptation of heat-stressed calves during the 

transition from intra- to extrauterine life might affect the future performance of the calves. 

However, since there are significant differences in climatological relative humidity and 

diurnal temperature range across the globe, metabolic programming of dairy cattle owing to 

heat stress varies not only seasonally, but also geographically. 
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7.2 Programming in Relation to Young Age in Dams 

The fetus may experience intense competition for nutrients for its mother‘s own metabolic 

needs in the case she is still growing, resulting in lower birth weight of calves (Kamal et al. 

2014). In adolescent animals, the ‗normal‘ hierarchy of nutrient partitioning between maternal 

body growth and fetal growth has been shown to be altered (Wallace et al. 2006). In sheep, 

rapid maternal growth seems to result in placental growth restriction and often premature 

delivery of low birth weight lambs compared with moderately nourished ewes of equivalent 

age (Wallace et al. 2006). Young age has also been shown to affect neonatal birth weight in 

humans where growth of teenage mothers during gestation is associated with increased risks 

for low birth weight babies (Chen et al. 2007). In the current dairy industry, gestation in 

heifers usually occurs while animals are physically immature and still growing (Kertz et al. 

1997). It is found that heifers that are larger in body frame at calving deliver significantly 

heavier calves, which is in accordance with previous studies (Linden et al. 2009; Swali and 

Wathes 2006). However, the calf birth weight is curvilinear with the age of the heifers at 

calving (Kamal et al. 2014). Calves born to very young (20.3 to < 22 mo) heifers have a 

comparatively lower birth weight in comparison to calves born to young (22 to < 23.5 mo) 

heifers suggesting that the intrauterine environment may limit fetal calf growth due to 

competition for nutrients with dam growth (Wathes et al. 2008). Moreover, a suboptimal 

growth associated with low IGF-I concentrations results in heifers that conceive at an older 

age (25.5 to 37.3 mo) (Brickell et al. 2009; Wathes et al. 2008). Because the IGF system can 

modulate the delivery of substrates to the fetus, we speculate that the lower IGF-I in older 

heifers during gestation, may be responsible for the lighter birth weight of their calves 

(Brickell et al. 2009; Gutierrez et al. 2012; Wathes et al. 2008). Moreover, the gestation 

length in heifers is curvilinear, giving rise to a shorter gestation length in both young and old 

animals in comparison to the intermediate aged group, which further contributes to the lower 

birth weight of calves born to relatively young and old first parity dams (Norman et al. 2009; 

Simerl et al. 1991).  

We aimed to detect maternal factors associated with placental development in cattle. The 

main finding of the study is that maternal growth during gestation significantly challenges 

placental development (Kamal et al. 2017). In our model, the factor contributing the most to 

gross placental morphology is age at conception in heifers. This is significantly but negatively 

associated with the number of caruncles occupied by cotyledons (Kamal et al. 2017). The 

latter indicates that the placenta compensates in times of nutrient restriction so that in 



Chapter 7  158 

 

 

younger, more extensively growing heifers, the placenta compensates by occupying 

significantly more caruncles in order to guarantee the development of the offspring. More 

cotyledons are expected in placentas of heifers fed low dietary protein as these may have 

increased their caruncular occupancy to compensate and to meet the nutritional demands of 

the fetus (Sullivan et al. 2009). Similar placental compensation in terms of number of 

cotyledons has also been reported in sheep (Wallace et al. 1999). Negative correlations 

between insulin-like growth factor binding protein (IGFBP) concentrations throughout 

gestation and cotyledon number at expulsion in cattle suggests that lower IGFBP 

concentrations in times of nutrient restriction may increase the bioavailability of IGF-I, 

resulting in the formation of more cotyledons over caruncular sites (Sullivan et al. 2009).  

Overall, our results suggest two potential compensatory mechanisms in the placenta. First, in 

early pregnancy, the placenta may cope by developing more cotyledons over the available 

caruncles, enabling pregnancy to survive. Second, at the end of pregnancy, an expansion of 

the cotyledonary surface is suggested to meet the increasing nutrient demands of the fetus. 

Although the placenta seems to compensate for nutritional challenges by adapting 

cotyledonary characteristics, it is suggested that placental efficiency remains lower in these 

pregnancies, with potential consequences for the developing fetus. However, the contribution 

of maternal tissue in this compensatory mechanism and the microscopic characteristics of the 

fetomaternal interface should be more deeply investigated. 

A summary of effects of the dam characteristics on the newborn calves is presented in Figure 

12. Conclusively, age at calving in heifers is indicated as decisive determinant of the calf‘s 

birth size and placental development. This novel finding may provide a basis for developing 

managerial interventions to improve long-term health and productivity of the offspring. 

 

Figure 12. Summary of effects of the dam characteristics on the newborn calves. 

Fetal Calf

PlacentaAge at conception 

in heifers

Level of milk production 

in cows

Programming

Pancreatic islets



Chapter 7: General Discussion  159 

 

 

7.3 Metabolic Programming in Relation to Lactation in Dam 

The genetic drive to produce large quantities of milk makes modern dairy cows more 

vulnerable to factors generally known to impair overall health and fertility. Besides, the 

reproductive capacity of modern dairy cows is under extreme pressure especially because of 

very high rates of (early) embryonic mortality (Wiltbank et al. 2016). The latter may be a 

reflection of the high number of insults the gametes and early embryos are confronted with 

during the periconceptual period (Leroy et al. 2015; Ribeiro et al. 2016). In these cows, 

lactation during gestation leads to a significant loss of nutrients (like proteins and glucose) for 

the fetus, because these are diverted towards the udder instead of to the gravid uterus. We 

have calculated that modern multiparous dairy cows, on average, produce 6193.1 kg milk 

during their 278-day gestation (Kamal et al. 2014). This implies that the calf developing in 

utero in the lactating cow ‗misses‘ in total 446 kg glucose (on average 72 g glucose per kg 

milk produced) and 217 kg proteins compared with a calf developing in a non-lactating dam. 

Consequently, for a cow with similar heart girth, the birth weight of calves born to cows 

producing more than 7200 kg milk during gestation was, on average, 1 kg lower than the 

weight of calves born to lower-producing cows (Kamal et al. 2014). The depletion of energy 

reserves in lactation overlapping with gestation negatively affects the birth weight in humans 

(Sengul et al. 2013). Glucose, insulin and IGF-I concentrations in cows are negatively 

correlated with their level of milk production during the production phase of lactation 

(Ingvartsen and Friggens 2005; Taylor et al. 2004), as shown by a negative correlation 

between BCS and the level of milk production (Yamazaki et al. 2011). These adaptations 

associated with high milk production in turn affect glucose availability and concentrations of 

insulin and IGF-I for the embryo and thereby affect the growth of both the early embryo and 

the placenta (Green et al. 2012). Though the nutrient requirements for the embryo may be 

relatively low, metabolic activity is high and this represents a critical period for epigenetic 

control and organogenesis of subsequent fetal development (Van Soom et al. 2013; Wu et al. 

2006).  

In modern high yielding dairy cows, a poor intrauterine nutritional environment associated 

with lower glucose, insulin and IGF-I levels in the cows may even occur in later phases of 

lactation due to the high persistency of milk production (Ingvartsen and Friggens 2005). 

These phases of lactation often coincide with the mid and late part of gestation which are 

known to be most crucial in terms of fetal growth. Therefore, the effects of variation in 

nutritional environment at that time may even have greater effects than in early gestation 
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(Stein et al. 2004; Wu et al. 2006). For example, significant reductions in birth weight have 

been shown to be caused by low plasma glucose concentrations during mid and late gestation 

(Bell et al. 1995; Zhang et al. 2002). The cows with higher milk production tended to have a 

shorter subsequent dry period (Atashi et al. 2013; Kamal et al. 2014). The shortening and 

omitting of the dry period shifts milk yield from the postcalving to the precalving period; 

resulting in an improvement in the body weight and energy balance in early lactation (van 

Hoeij et al. 2017; van Knegsel et al. 2014). In less productive cows, daily milk production 

often decreases to low levels before the planned drying off date; therefore, farmers no longer 

keep these cows in production, which results in a longer dry period in comparison with higher 

yielding cows (Atashi et al. 2013). Although there is no difference in serum glucose, insulin 

and IGF-I levels in cows with short versus longer dry period (Pezeshki et al. 2007), cessation 

of partitioning nutrients towards milk for extended duration in case of a longer dry period, 

provides higher amounts of energy and amino acids toward fetal growth giving rise to higher 

birth weight of the calves.  These results suggest that concomitant selection for greater milk 

yield and higher persistency (resulting in a shorter dry period) in dairy cows may lead to 

reduced glucose availability for the developing embryo and fetus, with subsequent deleterious 

repercussions for the birth weight of calves and potentially their survival and life time 

performance (Banos et al. 2007; Berry et al. 2008; González-Recio et al. 2012). 

We aimed to detect maternal factors associated with placental development in cows (Kamal et 

al. 2017). The main finding of that study was that maternal lactation during gestation 

significantly challenges placental development. In comparison to young growing animals, 

multiparous and hence lactating dams were associated with an even higher increase in total 

cotyledonary surface and hence less efficient placentas (Kamal et al. 2017). The latter 

suggests lactation to be associated with a more pronounced placental compensation which is 

effectuated by an increased size of the cotyledons. Based on the study however, we were not 

able to detect direct effects of the level of milk yield like the amount of liters at top 

production nor the total amount of milk produced during gestation on gross placental 

morphometrics. The latter may be caused by several factors. First of all it is well known that 

selection towards high milk yield gives rise to several other compensation mechanisms in 

order to first safeguard the dam and the newly born calf in preference of investing in a 

subsequent generation. Modern high producing dairy cows for example have been shown to 

significantly postpone ovarian activity and hence a subsequent pregnancy after calving in 

comparison to less selected and hence lower producing animals (Opsomer et al. 2000). 
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Therefore, environmental factors such as the level of milk production affect placental 

development less severely than fetal weight close to term, suggesting that placental growth 

may be sustained at the expense of other tissues in an attempt to maintain pregnancy and 

minimize the adverse consequences for the fetus (Vaughan et al. 2012). To further elucidate 

the mechanisms underlying placental compensation, more research on factors affecting 

placental development, with a special interest on milk production level and moment of drying 

off, is warranted. 

We have measured the lactation features in cows during pregnancy and peripheral glucose and 

insulin concentrations in neonatal calves as a proxy for their glucose metabolism (Kamal et al. 

2015). The major finding of that study was that major insulin traits in newborn Holstein 

calves are significantly associated with the amount of milk produced during gestation, 

lactation length and the length of the dry period before their birth (Kamal et al. 2015).  

However, the effect is oddsopposite to our hypothesis with the view that the basal insulin 

level is higher and insulin sensitivity is lower in the calves born following a greater 

cumulative milk production during gestation in cows. Such association between the insulin 

traits and milk production is rather difficult to explain. However, the energy status during 

lactation in cows may be affected by cow factors irrespective of the level of production 

(Piccardi et al. 2013; Sensosy et al. 2012). In less productive cows, daily milk production 

often decreases to low levels before the planned drying off date; therefore, farmers no longer 

keep these cows in production, which results in longer dry period compared with higher 

producing cows (Atashi et al. 2013). Interestingly, the basal insulin level is higher and insulin 

sensitivity is lower in the calves born to the cows having passed a longer dry period in our 

study (Kamal et al. 2015). Although no difference exists in serum glucose, insulin, and IGF-I 

levels in cows with short versus longer dry period (Pezeshki et al. 2007), cessation of 

partitioning nutrients toward milk for extended duration in cows experiencing a longer dry 

period, provides higher amounts of energy and amino acids toward growth and maturation of 

the pancreatic β-cell, giving rise to higher insulin levels in the calves (Long et al. 2010). 

Lower partitioning of nutrients to the gravid uterus in cows having a longer lactation length 

may lead to less glucose crossing the placenta and hence a delay in the development of the 

embryo (Green et al. 2012; Sensosy et al. 2012). Although the energy requirements for the 

embryo may be relatively low, metabolic activity is high and this represents a critical period 

for epigenetic control and organogenesis during fetal development (Fleming et al. 2012; Wu 

et al. 2006). Certainly, β-cells in pancreatic islets develop during the embryonic and early 
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fetal period of the intrauterine development in cattle (Carlsson et al. 2010). Exposure of dams 

to reduced nutrient intake during early gestation is associated with reductions in insulin 

concentrations in sheep fetuses (Limesand et al. 2013) and in calves (Long et al. 2010a). The 

adaptations to nutrient restriction that limit insulin concentrations are not fully known, but a 

morphological study demonstrated smaller pancreatic islets and a decrease in β-cell mass 

following early growth restriction in sheep (Limesand et al. 2013). Chronic hypoglycemia 

during later stages of fetal development leads to an intrinsic islet defect that is responsible for 

the decreased insulin secretion in sheep offspring without significantly decreasing their β-cell 

mass (Rozance et al. 2006). The acute insulin response is lower in calves born following 

longer lactation length in cows (Kamal et al. 2015). The lower insulin secretion in the calves 

born to the cows with longer lactation length is even evident after adjusting for the sensitivity, 

as indicated by a lower disposition index. The chronic glucose partitioning towards the udder 

during the entire period of gestation is present in cows with longer lactation length which 

potentially contributes to a reduced β-cell mass due to slower proliferation rates and 

subsequently a reduced insulin secretion in the newborn calves (Limesand et al. 2013; Lucy et 

al. 2014; Rozance et al. 2006). Substantial evidence suggests that energy restriction before 

birth is associated with enhanced insulin sensitivity in early postnatal life. However, this 

dysfunction appears to emerge in case the nutrient restriction in earlier parts of gestation is 

followed by abundance of nutrients in late part of gestation (Long et al. 2010a; Radunz et al. 

2012). Nevertheless, the insulin sensitivity of the calves is not associated with the lactation 

length in cows (Kamal et al. 2015). This observation is consistent with a study in sheep where 

nutritional restriction throughout gestation was imposed to the fetal lambs by removal of the 

majority of the endometrial caruncles from the uterus of the dams (Owens et al. 2007). The 

latter gave rise to an impaired insulin secretion without any enhancement of insulin sensitivity 

in the fetal lambs (Owens et al. 2007). These findings invoke that elongation of lactation 

length in cows, or factors associated with the longer lactation length, impair β-cell 

responsiveness to glucose stimulation, hence insulin secretion in the newborn calves 

(Gutierrez et al. 2012; Owens et al. 2007; Rozance et al. 2006). 

A summary of effects of the dam characteristics on the newborn calves is presented in Figure 

12. Conclusively, selection for greater milk production and high persistency in dairy cows 

may lead to reduced glucose availability for the developing embryo and fetus with subsequent 

deleterious repercussions for birth weight of the calves. Insulin traits in the calves are also 

significantly associated with the amount of milk produced during gestation, lactation length 
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and length of the dry period prior to their birth. Whether the changes in birth weight and 

insulin traits early in life exert long-term effects on the metabolic function in later life is 

unknown. However, several reports have linked lactation during gestation in the dam with 

impaired future performance and longevity of the offspring (Berry et al. 2008; Gonzalez-

Recio et al. 2012). When the alterations in insulin traits of the calves persist in later life, as 

they do in newborns confronted with intrauterine growth restriction in other species, they may 

contribute to adverse metabolic outcomes in later life. 

7.4 Metabolic Programming in Different Species 

Birth weight is the principal predictor associated with the growth of body in Holstein calves 

(Graham et al. 2010). Exposure of bovine dams to reduced nutrient intake during early 

gestation may not influence birth weight or postpartum growth but may cause alterations in 

muscle fiber development and synthesis of adipose tissue in offspring (Long et al. 2010b). 

Therefore, birth weight by itself is not sufficient to identify fetal growth pattern, in particular 

when birth weight is within the normal range for gestational age. Hence, no adverse effects 

for the lower birth weight calves have been mentioned in terms of their fertility or 

productivity in their first lactation, indeed, the trend for fertility was even in the opposite 

direction (Swali and Wathes 2006; Wathes et al. 2008). This may accord with the ‗thrifty 

phenotype‘ hypothesis that animals which are nutritionally growth retarded in utero become 

metabolically adapted to this situation and are thus better able to cope with a low energy 

environment postnatally (Gluckman and Hanson 2004). In addition to gestational age and 

gender, other pregnancy characteristics, such as maternal height and weight before pregnancy, 

parity, and ethnicity account for a large part of variation in fetal growth velocity and weight at 

birth (Mongelli and Gardosi 1995). It has been shown that customized fetal growth 

estimation, adjusting for maternal and fetal characteristics, allows a precise evaluation of fetal 

growth restriction by identifying newborns who have failed to reach their genetic potential of 

growth and who are at a high risk of adverse neonatal outcome (Clausson et al. 2001; de Jong 

et al. 1998). It is postulated that fetal growth pattern would induce changes in body dimension 

and metabolic parameters at birth irrespective of birth weight itself.  

Human studies provide substantial evidence for relationships between low birth weight and 

metabolic syndromes resulting from β-cell dysfunction (Green et al. 2010). In humans, the 

worst prognosis for adult health is when fetal nutrient restriction is followed by an excess 

food supply in childhood, so that the adults become proportionately more obese (Barker 
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2001). In sheep, experimental nutrient restriction in utero increases the neonatal growth rate 

of soft and skeletal tissues and eventually leads to visceral adiposity in the young lamb 

without altering the body mass index (De Blasio et al. 2007). The latter is, consistent with 

observations in IUGR infants (Ong et al. 2000), probably reflecting the decrease in muscle 

mass that occurred concomitant with increased adiposity (De Blasio et al. 2006). Furthermore, 

nutrient restriction in utero increases insulin sensitivity of the glucose and free fatty acid 

metabolism in the young lamb (De Blasio et al. 2007), rather than enhancing insulin 

production, which is also consistent with observations in IUGR infants (Bazaes et al. 2003; 

Mericq et al. 2005). This enhanced insulin action directly contributes to their visceral 

adiposity (De Blasio et al. 2007). The latter has been observed in IUGR children that are 

small at birth (Greenwood and Bell 2002; Ong et al. 2000). If this excessive accretion and 

storage of fat persists, as is evident in adult human beings who were IUGR (Ong et al. 2000), 

it may partly account for their adverse metabolic and cardiovascular outcomes at adult age 

(Eriksson et al. 1999; Rasmussen 2001). Catch-up growth, but not size at birth, independently 

predicted increased visceral adiposity in the juvenile lamb (De Blasio et al. 2007). This is 

consistent with observations in children and adults who were IUGR, and in whom small size 

at birth is predictive of reduced lean tissue mass, while catch-up growth is predictive of 

overall obesity in later life (Kensara et al. 2005; Rogers and Grp 2003). 

Insulin controls glucose homeostasis by both suppressing hepatic glucose production and 

stimulating glucose uptake into skeletal muscle and adipose tissues. Resistance to insulin is 

recognized as a common underlying feature of metabolic syndrome both in human and 

domestic animals. Maternal food restriction results in early developmental alteration in 

pancreatic β-cell in terms of both number and function (Garofano et al. 1998). This induces 

adaptive alterations in body composition and metabolism suggestive of higher insulin 

sensitivity independently from birth weight itself (Beltrand et al. 2008). IGF1 and 2, 

determinants for β-cell growth, are elevated in the pancreas of intrauterine growth restricted 

lambs, and these growth factors are postulated to be associated with neonatal catch-up growth 

(Gatford et al. 2008). The increased exposure to cortisol prenatally in the nutrient restricted 

lamb may increase the abundance of insulin targets and, hence, the response to insulin in late 

gestation, which might persist in early postnatal life (De Blasio et al. 2007). Later in life, the 

mismatch between postnatal and fetal environment would favor postnatal changes in body 

composition during catch-up growth and the development of insulin resistance (Leunissen et 

al. 2008) to reset the child‘s growth to follow his/her initial and genetic growth trajectory.  
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Exposure of bovine dams to reduced nutrient intake during early gestation exerts a modulating 

effect on regulation of postnatal plasma glucose and tissue development (Long et al. 2010a). 

It may not influence birth weight or postpartum growth but may cause alterations in muscle 

fiber development and synthesis of adipose tissue in offspring and have a negative effect on 

beef quality and efficiency of production (Long et al. 2010b). Placental restriction does not 

affect the fasting plasma insulin but reduces insulin secretion in response to a glucose load in 

the young lamb (De Blasio et al. 2007). This is consistent with observations in human IUGR 

infants (Bazaes et al. 2003) and suggests that increased insulin abundance in the fasting state 

at least was not contributing to increased insulin action and catch-up growth or increased 

adiposity. This finding implies that in the sheep, as shown in the rat and observed in human 

beings, prenatal restriction impairs β-cell responsiveness to glucose stimulation or secretory 

capacity and, hence, insulin secretion in the post-prandial state in early postnatal life (Bazaes 

et al. 2003; Simmons et al. 2001).  

Undernutrition during early to mid pregnancy has been stated to affect the early construction 

and development of a diverse range of foetal tissues and organs (Fowden et al. 2006b). In 

humans, the latter has been illustrated by an intra-uterinely programmed pancreas leading to 

an impaired insulin secretion and hence higher risk to suffer from diabetes mellitus 2. Hence, 

persisting effects of early malnutrition become translated into pathology, thereby determining 

chronic risk for developing glucose intolerance and diabetes (Aerts et al. 1990). Earlier 

studies have shown that insulin secretion is compromised in high yielding dairy cows 

suffering from fertility problems like cystic ovarian disease (Opsomer et al. 1999; Vanholder 

et al. 2005). Impaired insulin secretions seem to be at least partly caused by the elevated 

blood levels of non-esterified fatty acids (NEFAs) in cows during the periparturient period 

(Bossaert et al. 2008). At least in some cows, the (endocrine) pancreas seems to be highly 

sensitive for these elevated NEFAs, rendering those cows at a higher risk to suffer from lower 

peripheral insulin concentrations. Hence, as in humans where an impaired insulin secretion is 

a decisive factor in the development of diabetes type 2 (Kahn 2003), also in modern dairy 

cows an impaired insulin secretion seems to be associated with some of the so-called 

production diseases (De Koster and Opsomer 2013b), and may be related to the existence of a 

negative energy balance during early pregnancy while in utero. 
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7.5 Mismatch of Nutritional Environment 

Because farmers are motivated to maximise daily growth in their growing young stock in 

order to maximise milk production in the first and subsequent lactations, they accentuate the 

mismatch between the milieu the offspring is prepared for and the milieu the neonates 

actually arrive in, which may lead to even more deleterious effects. Examples of this are well 

known in human medicine, where it has been shown that babies who experienced IUGR and 

thereafter experienced catch-up growth are more prone to reproductive disorders, such as 

polycystic ovarian syndrome (Ibáñez et al. 2008). Indeed, epidemiological studies in both beef 

(Funston and Deutscher 2004; Funston et al. 2012) and dairy (Swali and Wathes 2007; 

Brickell et al. 2009) cattle have shown that heifers growing fast in the first months of life have 

a significantly earlier pubarche but need more inseminations to become pregnant, ending up 

with a similar age at first calving compared with their slower-growing peers. In this light, we 

may refer to the ‗thrifty phenotype hypothesis‘, which proposes that the epidemiological 

associations between poor fetal and infant growth and the subsequent development of Type 2 

diabetes and metabolic syndrome results from the effects of poor nutrition in early life, which 

produces permanent changes in glucose-insulin metabolism (Hales and Barker 2001). This 

hypothesis may also apply to high-producing dairy cattle and may contribute to the high 

occurrence of metabolic and fertility problems currently noted in high-yielding dairy cows. 

The focus of human biomedical research into prenatal programming has been on the 

predisposition to adult-onset diseases, such as hypertension and diabetes (Eriksson 2016; 

Marciniak et al. 2017). The latter may not seem relevant to the performance and well-being of 

productive livestock like dairy cattle. However, the efficiency of the production of meat, wool 

and milk, and the susceptibility to disease of domestic livestock continue to vary widely 

among and within similarly managed herds and flocks of relatively uniform genetic 

background. At least some of this hitherto unexplained variation is suggested to be attributed 

to carryover effects of metabolic perturbations during different phases of embryonic and fetal 

development. The best-described effects are those on early muscle and adipose tissue 

development, with putative consequences for the capacity for lean tissue growth, propensity 

for fattening and therefore feed efficiency in meat animals (Bell 2006). In livestock, there is 

increasing evidence that production characteristics are significantly affected by environmental 

factors like maternal diet during gestation. In addition, it seems likely that the growing body 

of evidence for nutritional modulation of immune function and susceptibility to infectious and 

parasitic diseases will eventually implicate prenatal predisposing factors. 
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7.6 General Conclusions 

Data from dairy heifers and cows confirm the results from other species in showing that 

young maternal age and lactation during pregnancy can affect feto-placental development. 

The nutritional environment experienced by the embryo during its development from a zygote 

to a blastocyst can for example also influence the expression of genes important for normal 

foetal growth and development. This knowledge attributes very interesting and innovative 

information for application to practical ruminant production. For example, genetic selection to 

enhance production in the form of early puberty, increased ovulation rates and higher milk 

yields may place more stringent demands on maternal nutrition during key periods of 

embryonic and foetal development than hitherto realized. Therefore, confronting animals that 

have been bred for high levels of production with extensive farming systems and lower feed 

inputs in developing countries may compromise foetal development, neonatal viability and 

adult health and production. Additionally, insulin is a key metabolic hormone that plays a 

crucial role in regulating energy homeostasis in the body. In addition, insulin-dependent 

signaling has important functions in reproduction and early embryo development. As 

metabolism and reproduction are closely linked, metabolic challenges may be the source of 

reproductive disorders and decreased fertility. This is known for the dairy cow and for other 

species including the human. Although metabolic disorders in the dairy cow often derive from 

a failure to adapt to a high milk production, the situation in the human is often linked to 

emerging conditions and associated diseases in our modern society such as obesity and 

diabetes, where an excessive energy intake causes decreased fertility in women. Moreover, in 

a population where malnutrition is prevalent, nutritional interventions during pregnancy may 

modify the metabolic phenotype in the young child that could have consequences for later 

chronic disease risks. 

Because of the incomplete knowledge about the mechanisms of intrauterine growth 

restriction, attempts to alleviate the detrimental effects of undernutrition on postnatal growth 

performance in livestock have so far achieved only limited success. The recognition of fetal 

programming suggests that strategies to promote postnatal growth and health of livestock 

should be initiated at the key stages of prenatal development (Finch et al. 2004). Thus, 

targeting an effective window of opportunity during a specific period of pregnancy would be 

most beneficial for preventing intrauterine growth restriction. Despite much failure, the 

largely trial-and-error approaches to treating pregnant dams have generated some promising 

results. These approaches include hormonal therapy (Costine et al. 2005; Wallace et al. 2004); 
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dietary supplementation of energy, protein concentrates, or both (Patterson et al. 2003; Zhang 

et al. 2002); adequate nutritional support for immature pregnant dams (Swali and Wathes 

2006; Wallace et al. 2005); extended lactation to avoid insemination at peak yield (Douhard et 

al. 2014; Lehmann et al. 2017); provision of antioxidant nutrients (Castillo et al. 2005; Fang 

et al. 2002); and manipulations of the arginine-nitric oxide/polyamine pathway (Mateo et al. 

2006). Although these methods are diverse in nature, they appear to directly or indirectly 

promote feto-placental growth and uteroplacental blood flow via increasing the availabilities 

of arginine, nitric oxide, or both. 

7.7 Limitations and Future Perspectives 

Limitations. There were several limitations in our study. 1) The study herds were not selected 

randomly. Data were collected from four small dairy herds (on average 70 lactating cows) in 

Flanders (Belgium) and one large herd (> 2000 lactating cows) in Rostock (Germany). They 

were selected based on their long history of successful collaboration with the Ghent 

University Ambulatory Clinic. 2) Measurements and data collection was not done year round 

for all herds. Especially in the German herd, the measurements and data collection were only 

done in the month January and February. 3) Blood sampling was not done at the same 

moment during the day for all herds under study. The blood sampling from the calves at the 

Belgian herds was done in the mornig after an overnight fasting. However, the blood 

sampling in the German herd was done in afternoon at least five hours after a milk meal to be 

compatible with the herd management practices. 4) Less extensive tests were used. The study 

was performed using a larger number of subjects which limits the use of sophisticated tests. 

Therefore, we used tests that are easier to perform under field conditions and which had been 

proven to be satisfying in comparable field studies performed in several other species 

including ruminants 

Future Perspectives. Animal scientists can learn much from modern studies in human 

medicine, especially those dealing with the related metabolic diseases. Clearly, however, 

much remains to be learned about the underlying molecular and physiological mechanisms of 

prenatal programming in dairy animals, as well as the quantitative importance of this 

phenomenon relative to the modulating effects of postnatal nutrition and other environmental 

factors. From a practical point of view, in terms of animal production, greater knowledge 

about the underlying mechanisms will allow the incorporation of concepts of prenatal 
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programming into management systems with the ultimate goal of improving food production 

and eventually farm profitability.  

 Epigenetics and its applications in developmental programming are relatively innovative 

sciences and it is thought that their application will bring about significant extra value in 

animal production. 

 A major challenge now is to capitalize and build on this knowledge to improve dairy 

animal and public health through appropriate recommendations to young growing and 

lactating individuals, and definition of suitable intervention strategies. 

 Arginine-derived signaling and regulatory molecules (nitric oxide and polyamines) are 

crucial for placental and fetal growth. New knowledge on the mechanisms regulating 

fetal growth and development will be beneficial for designing new, rational, and effective 

strategies to prevent and treat intrauterine growth retardation in livestock. 

 Because intrauterine growth retardation remains a major problem in mammalian 

pregnancies, innovative interdisciplinary research in the areas of nutrition, reproductive 

physiology, and vascular biology are critical to design the next generation of nutrient-

balanced gestational diets and develop new tools for livestock management, which will 

enhance the efficiency of animal production and improve the well being of animals. 

 In our study, the basal insulin level is higher and insulin sensitivity is lower in the calves 

born following a greater cumulative milk production during gestation in cows. Such 

association between the insulin traits and milk production is opposite to our hypothesis 

and therefore rather difficult to explain. Hence, further in-depth study is required to 

clarify this fact 

Further advances in this field have the potential to combat the burden of common metabolic 

diseases in dairy cattle as well as in human, which represent major health care issues of the 

21
st
 century. 
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Dam nutrition during gestation in mammals has been recognized as a key to metabolic 

programming in utero. The conflict in nutrient allocation between mother and offspring 

during pregnancy, is especially intriguing in modern dairy cattle. In these animals, age at first 

calving of 24 months and calving intervals of 365 to 385 days are strived for to ascertain the 

income of the farmer (Inchaisri et al. 2010). The latter however implies that gestation in 

primiparous animals should take place when dams are still growing, while in multiparous 

animals gestation should coincide with lactation. The heifers‘ age and cows‘ level of milk 

production during gestation have both been suggested to be important contributors to the 

nutritional environment for the developing embryo and fetus (Berry et al. 2008; Brickell et al. 

2009; Funston and Summers 2013), since available nutrients need to be partitioned between 

growth (in heifers) and milk production (in cows) of the dam and the intrauterine growth of 

the offspring. In Chapter 2 a general review was presented to provide the currently available 

knowledge about metabolic programming in dairy cattle. 

For our own research, we hypothesized that young age in heifers and high milk production 

during gestation in cows affect the intrauterine feto-placental development and subsequent 

development and organ function of the calf. As mentioned in Chapter 3, these hypotheses 

lead to the following scientific aims: 

1. To evaluate environmental and dam factors, including age at calving in heifers and 

level of milk production during gestation in cows, that might be associated with birth 

size in Holstein calves (Chapter 4). 

2. To study the impact of maternal factors like age at conception and level of milk 

production during gestation on gross morphology of the placenta in dairy cattle 

(Chapter 5). 

3. To evaluate potential associations between environmental factors and dam 

characteristics and major insulin traits in newborn Holstein calves (Chapter 6). 

The study presented in Chapter 4 was undertaken to investigate the impact of environmental 

and dam factors on the birth weight of Holstein calves, the latter being a proxy for intra-

uterine development. Results of the study reaffirmed calf gender, season of calving, gestation 

length, parity, morphometrics of the dam and length of the dry period to be significantly 

associated with calf birth size. Furthermore, age at calving in heifers and level of milk 

production during gestation in cows, were indicated as decisive determinants of calf birth size. 
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Results of the study presented in Chapter 5 partly confirm that many of the environmental 

insults such as the level of milk production affect placental development less severely than 

fetal weight close to term, suggesting that placental growth may be sustained at the expense of 

other tissues in an attempt to maintain pregnancy and minimize the adverse consequences for 

the fetus. Ultimately, the ability of the placenta to balance the competing interests of mother, 

milk production and fetus in terms of resource allocation may determine not only the success 

of pregnancy in producing viable neonates but also the health and productivity of the 

offspring in later life. 

Major finding of the study presented in Chapter 6 is that major insulin traits in newborn 

Holstein calves are significantly associated with gender and season of birth. Subsequently, in 

calves born out of multiparous dams, insulin traits are significantly associated with the 

amount of milk produced during gestation, lactation length and length of the dry period prior 

to their birth. Whether the changes in insulin traits early in life exert long-term effects on the 

metabolic function in later life is unknown. However, several reports have linked lactation 

during gestation in the dam with impaired future performance and longevity of the offspring 

(Berry et al. 2008; Gonzalez-Recio et al. 2012). When the alterations in insulin traits of the 

calves persist in later life, as they do in newborns confronted with intrauterine growth 

restriction in other species, they may contribute to adverse metabolic outcomes in later life. 

The general discussion on metabolic programming in dairy cattle in relation to birth size, 

placental development and insulin secretion is presented in Chapter 7. Based on the results 

and discussion presented in this thesis, the following conclusion can be drawn: data of the 

epidemiological studies provide clear indications for environmental events like young age in 

heifers and (heavy) lactation in multiparous cows taking place during gestation to have a 

significant impact on both the size as well as the metabolism of newborn dairy calves. The 

latter warrants for more fundamental studies to decipher the underlying mechanisms which at 

their turn may indicate preventive and curative strategies in order to increase life expectancy 

in dairy cattle. These novel findings may provide a basis for developing managerial 

interventions to improve long-term health and productivity of the offspring. 
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Bij zoogdieren zijn de voeding en de voedingstoestand van het moederdier erkend als 

belangrijke factoren voor wat betreft het intra-uterien metabool programmeren van de 

nakomeling. Het conflict inzake de voorziening van voedingsstoffen aan het moederdier 

enerzijds versus aan de nakomeling anderzijds, is vooral uitdagend bij moderne melkkoeien. 

In het kader van economische optimalisatie is het bij dit type dieren immers van groot belang 

dat de pinken afkalven op een leeftijd van 24 maanden waarna idealiter een tussenkalftijd van 

365 à 385 dagen moet worden nagestreefd (Inchaisri et al. 2010).  Dit laatste impliceert 

evenwel dat de dracht bij pinken plaatsheeft terwijl het moederdier zelf nog volop aan het 

groeien is, terwijl bij de multipare dieren  de intra-uteriene ontwikkeling van de vrucht 

samenvalt met de productie van grote hoeveelheden melk. In eerdere literatuur (Berry et al. 

2008; Brickell et al. 2009; Funston and Summers 2013) werd dan ook gesuggereerd dat bij de 

pinken leeftijd bij conceptie en bij de multipare koeien het niveau van de melkproductie 

tijdens de dracht mogelijks een sleutelrol spelen bij de intra-uteriene ontwikkeling van het 

kalf aangezien zij een duidelijke weerslag kunnen hebben op de verdeling van de voorhanden 

zijnde voedingsmiddelen. In hoofdstuk 2 werd alvast dieper ingegaan op de literatuur die 

hieromtrent momenteel voorhanden is.  

De belangrijkste hypothesen van ons onderzoek waren dat leeftijd bij pinken en het niveau 

van de melkproductie geproduceerd tijdens de dracht bij multipare koeien een significante 

weerslag hebben op de intra-uteriene ontwikkeling van de foetus en de placenta en op het 

intermediaire metabolisme van het pasgeboren kalf. In hoofdstuk 3 zijn dan ook de volgende 

3 wetenschappelijke hoofddoelstellingen van deze thesis verwoord: 

1.  Het identificeren en evalueren van omgevings- en maternale factoren, zoals de leeftijd 

bij de eerste kalving en het niveau van de melkproductie tijdens de dracht, die 

mogelijks geassocieerd zijn met de grootte van neonatale Holsteinkalveren (Hoofdstuk 

4).  

2. Het onderzoeken van de impact van maternale factoren zoals leeftijd bij eerste 

conceptie en het niveau van de melkproductie tijdens de dracht op de macroscopische 

kenmerken van de placenta van pas gekalfde koeien (Hoofdstuk 5).  

3. Het evalueren van de mogelijke associaties tussen omgevings- en maternale factoren 

enerzijds en de belangrijkste kenmerken van het insulinemetabolisme van neonatale 

Holsteinkalveren anderzijds (Hoofdstuk 6). 
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Uit de resultaten beschreven in hoofdstuk 4 blijkt dat de grootte van een pasgeboren 

Holsteinkalf, wat algemeen aanzien wordt als een indicator voor de intra-uteriene groei en 

ontwikkeling, geassocieerd is met het geslacht van het kalf, het seizoen van afkalven, de 

drachtduur, de pariteit en de lichaamsmaten van de moeder en de lengte van de droogstand 

voorafgaand aan de geboorte van het kalf. Bovendien bleek bij de pinken ook bij multipare 

koeien de leeftijd bij afkalven en de hoeveelheid tijdens de dracht geproduceerde melk een 

significante weerslag te hebben op de grootte van de kalveren.  

Het onderzoek uitgevoerd in hoofdstuk 5 toonde aan dat het niveau van de melkproductie en 

de meeste van de onderzochte omgevingsfactoren een minder sterke invloed uitoefenen op de 

ontwikkeling van de placenta dan het gewicht van het kalf. Desalniettemin werd aangetoond 

dat er zich compensatoire ontwikkelingsmechanismen ter hoogte van de placenta voordoen 

teneinde de dracht te handhaven en negatieve effecten op de ontwikkeling van de foetus te 

minimaliseren. Door placenta‘s van pas gekalfde Holsteinvaarzen en –koeien te vergelijken 

met deze van vaarzen en koeien van het Belgisch Witblauwe ras, kon worden aangetoond dat 

de runderplacenta tijdens de vroege dracht compenseert door de ontwikkeling van meer 

cotyledonen, terwijl compensaties op het einde van de dracht vooral bestaan uit een toename 

in ontwikkeling van de individuele cotyledonen. Finaal speelt de placenta immers een 

doorslaggevende rol in het evenwichtig verdelen van de voedingsmiddelen tussen de zich 

ontwikkelende vrucht enerzijds en het groeiende of melkproducerende moederdier anderzijds. 

In deze context is de placenta van groot belang voor het in stand houden van de dracht 

enerzijds maar is zij tevens ook van belang voor de gezondheid en de productiviteit van de 

nakomelingen op lange termijn. 

De meest in het oog springende conclusie van hoofdstuk 6 is dat de belangrijkste insuline 

karakteristieken bij een pasgeboren Holsteinkalf geassocieerd zijn met het geslacht van het 

kalf en het seizoen van geboorte. Bovendien zijn deze insuline-kenmerken bij kalveren 

geboren uit multipare koeien ook afhankelijk van de hoeveelheid melk geproduceerd tijdens 

de dracht, en de lengte van zowel de voorafgaande lactatie als de voorafgaande droogstand. 

Of deze typische neonatale insuline karakteristieken ook een invloed hebben op het 

metabolisme van het dier op latere leeftijd, is tot op heden nog niet volledig duidelijk. Eerder 

uitgevoerde onderzoeken hebben echter wel een verband gesuggereerd tussen lactatie tijdens 

de dracht en een verminderde productie en langleefbaarheid bij de nakomelingen (Berry et al. 

2008; Gonzalez-Recio et al. 2012). Indien deze typische specificaties van het insuline 

metabolisme bij pasgeboren kalveren wel degelijk aangehouden blijven op latere leeftijd, 
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zoals het geval is bij neonati van andere diersoorten die tijdens de dracht worden 

geconfronteerd met een beperking van de intra-uteriene groei, gaan we er van uit dat ze ook 

bij melkvee een rol kunnen spelen in het reguleren van het metabolisme op latere leeftijd.       

Finaal wordt in hoofdstuk 7 dieper ingegaan op de algemene discussie. Hierin wordt 

geconcludeerd dat we op basis van de epidemiologische studies die in deze thesis werden 

uitgevoerd, hebben aangetoond dat factoren als jonge leeftijd bij pinken en (doorgedreven) 

melkproductie bij multipare koeien welke beiden plaatshebben tijdens de dracht, een 

signifancte invloed uitoefenen op zowel de grootte als het meatbolisme van een pasgeboren 

Holsteinkalf. Dit laatste nodigt uit om meer fundamenteel onderzoek te doen naar de 

onderliggende mechanismen hiervan. Mogelijks kan dit vervolgens leiden tot het ontwikkelen 

van zowel preventieve als curatieve (managements) strategieën om zowel de gezondheid, de 

productie als ook de levensduur van onze melkkoeien in de toekomst verder te optimaliseren. 
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