Minimum shear stress range: a criterion for crack path determination

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 J. Phys.: Conf. Ser. 843 012053
(http://iopscience.iop.org/1742-6596/843/1/012053)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 157.193.10.35
This content was downloaded on 05/06/2017 at 14:06

Please note that terms and conditions apply.

You may also be interested in:

Critical plane analysis of multiaxial fatigue experiments leading to White Etching Crack formation
S Averbeck and E Kerscher

A photoelastic prediction of the crack propagation angle
E E Gdutous

Numerical determination of Paris law constants for carbon steel using a two-scale model
M Mlikota, S Staib, S Schmauder et al.

Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms
Rodríguez-Martínez R, Lugo-González E, Urriolagoitia-Calderón G et al.

Fracture criteria in cracked bimaterial elastic plates
P S Theocaris and J Prassianakis

Fatigue crack propagation behavior and debris formation in Ti-6Al-4V alloys with different grain size
H J Kim, J Nakahigashi, R Ebara et al.

Metallurgical and fatigue assessments of welds in cast welded hydraulic turbine runners
A Trudel and M Sabourin

The algorithm of crack and crack tip coordinates detection in optical images during fatigue test
S V Panin, V O Chemezov, P S Lyubutin et al.
Minimum shear stress range: a criterion for crack path determination

K. Pereira, M. Abdel Wahab
Department of Electrical energy, Systems and Automation, Ghent University, Belgium

E-mail: Magd.AbdelWahab@UGent.be

Abstract. For problems under proportional mixed-mode conditions, various criteria are used to predict fatigue crack growth directions, most achieving reasonable accuracy. The crack propagation angle is often obtained by maximizing a quantity (for instance, energy or stresses) as function of the stress intensity factors K_I and K_{II}. This maximization is generally performed at the instant of maximum fatigue loading and a stress analysis at this instant is sufficient to predict the crack propagation angle and thus the fatigue crack growth direction. However, under non-proportional loading, the maximum values of K_I and K_{II} may occur at different instants of the fatigue cycle and so a simple analysis at the maximum loading instant is not appropriate; it is necessary to consider the entire loading cycle history. One possible criterion to treat problems under these circumstances is the minimum shear stress range criterion (MSSR). This paper presents a brief discussion of the most common criteria used for determination of crack propagation direction, focusing on an implementation of MSSR. Its performance is assessed in different conditions and the results are compared to literature data.

1. Introduction
Fracture mechanics has been widely used to predict crack growth of problems under mode I loading conditions, implying that propagation is co-planar and perpendicular to the loading direction [1]. However, most engineering applications are subjected to a combination of normal and shear loading (mixed-mode I and II conditions) and a definition of a propagation criterion that takes into account this loading scheme is necessary. There are several crack propagation direction criteria available in the literature that are used for proportional mixed-mode fatigue. A summary on the subject can be found in Rozumek and Mancha [2]. Here, we focus on the most widely used criteria: the maximum tangential stress (MTS) criterion and the maximum energy release rate (MERR) criterion.

The MTS was originally proposed by Erdogan and Sih [3] in the early 60s. It states that crack growth is in the radial direction θ_p of greatest tension, i.e., in the direction along which the tangential stress $\sigma_{\theta\theta}$ is maximized and exceeds a critical value σ_c (a material property). Considering the analytical expressions for the stress field near the crack tip, the tangential stress can be written as function of the stress intensity factors K_I and K_{II} as

$$\sigma_{\theta\theta} = \frac{1}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(K_I \cos^2 \frac{\theta}{2} - \frac{3}{2} K_{II} \sin^2 \theta \right)$$

where r and θ are cylindrical coordinates as represented in Error! Reference source not found.. Imposing the conditions $\frac{\partial \sigma_{\theta\theta}}{\partial \theta} = 0$ and $\frac{\partial^2 \sigma_{\theta\theta}}{\partial \theta^2} = 0$, the direction of propagation θ_p can be obtained as function of K_I and K_{II} as:
\[\theta_p = \cos^{-1}\left(\frac{3K_{II}^2 + \sqrt{K_{I}^4 + 8K_{II}^2K_{I}^2}}{K_I^2 + 9K_{II}^2} \right) \]

The MERR was introduced independently by Hussain et al. [4] and Palaniswamy et al. [5]. It is based on the following hypotheses: crack will propagate at the crack tip in a radial direction \(\theta_p \) along which the energy release rate \(G(\theta) \) is maximized and exceeds the critical level \(G_c \) (a material property). For a co-planar crack growth under mixed mode, \(G(\theta) \) can be written as

\[G(\theta) = 1 + \kappa \frac{\mu}{8} \left(K_I^2(\theta) + K_{II}^2(\theta) \right) \]

where \(\kappa \) is a function of the Poisson’s ratio and the stress state (plane stress or plane strain), \(\mu \) is the shear modulus and \(K_I(\theta) \) and \(K_{II}(\theta) \) are the stress intensity factors associated to the new crack tip at a branched crack from the original crack.

Based on the hypothesis of this criterion, the propagation direction can be predicted by the solution:

\[\frac{\partial G(\theta)}{\partial \theta} \bigg|_{\theta = \theta_p} = 0 \]

\[\frac{\partial^2 G(\theta)}{\partial \theta^2} \bigg|_{\theta = \theta_p} \leq 0 \]

Both criteria have been widely used for prediction of propagation direction with reasonable accuracy [6-9]. However, they fail to predict correct paths under non-proportional loading [10-12]. This inconsistency is that, for the case of fatigue under constant amplitude proportional loading conditions, the size of Mohr’s circle for a two-dimensional stress state varies in time, as the amplitude of the applied stress also varies in time, but the principal stresses remain proportional to each other and, consequently, the angle of the principal axes remains constant throughout the fatigue cycle. This is not the case for non-proportional loading. Here, the directions of principal stresses rotate and, generally, the ratio between the principal stresses also vary within the cycle [13]. As a consequence, the maximum values of stress intensity factors \(K_I \) and \(K_{II} \) may occur at different points during the cycle [14], so it is not obvious a priori which points in a loading cycle will maximize the orientation criteria, increasing the difficulty to define crack propagation direction. This non-proportional loading causes extra complexity when modelling crack propagation phase as it invalidates the application of conventional linear elastic fracture mechanics orientation criteria.

The focus of this paper is to discuss one possibility to deal with problems under non-proportional loading: the minimum shear stress range criteria (MSSR) [11]. Its implementation and performance under different fatigue problems is the main goal of this paper. To this end, we first present a discussion...
on the minimum shear stress range criteria and its implementation in section Error! Bookmark not defined.. Then, the criterion performance is assessed in different applications and the results will be compared with literature data.

2. A minimum shear stress range criterion
The minimum shear stress range criterion was proposed by Giner et al. [11]. As discussed in the paper, it can be seen as a generalization, for non-proportional loading conditions, of the “criterion of local symmetry”, which states that crack will propagate in the direction that causes \(K_{II} \) to vanish. In general, for non-proportional conditions, \(K_{II} \) will not be zero at any direction and, therefore, it is logical to search for a direction that minimizes the range \(\Delta K_{II} \) over the loading cycle.

Giner et al. [11] also mention that, in some conditions, obtaining the stress intensity factor \(K_{II} \) can be computationally expensive and also not very accurate. In order to circumvent this problem, they propose to search for the direction that minimizes the shear stress range \(\Delta \tau_{r\theta} \) at the crack tip. From the two orthogonal planes on which \(\Delta \tau_{r\theta} \) is minimized, the propagation direction is chosen as the plane with the maximum variation of the range \(\Delta \sigma_{\theta\theta} \). This is justified by the fact that, under this plane, less frictional energy will be dissipated and more energy would be available for propagating the crack.

The authors further implemented the MSSRC in a XFEM framework. Here, we adapted their criterion for a conventional finite element (FE) analysis in the following way. Firstly, a local cylindrical coordinate system \((r, \theta)\) was defined at the crack tip and the stress results from the FE analysis were transformed from the Cartesian \((x, y)\) to this local coordinate system. Then, as showed in Error! Reference source not found., a circular path ahead of crack tip of radius \(R \) and centered at the crack tip was defined, with \(\theta \) varying between \(-90^\circ\) and \(+90^\circ\). The stresses at this fixed path were stored for each time increment in the loading cycle. These results were later used to obtain maximum and minimum envelopes and also the range of shear stress \(\tau_{r\theta} \) and normal stress \(\sigma_{\theta\theta} \) as function of \(\theta \). The propagation angle \(\theta_p \) was then defined as the direction with the minimum \(\Delta \tau_{r\theta} \) and with the highest value of \(\Delta \sigma_{\theta\theta} \).

A python script was created to post-process the results from the analysis and to define the propagation angle as discussed above. Figure 3 shows a flow chart summarizing the procedure adopted in this paper.
3. Results
The performance of the minimum shear stress range criterion was checked under different conditions: proportional and non-proportional mixed-mode fatigue. For each situation sensibility checks were performed to analyse how different parameters, such as the path radius R, mesh size at crack tip and propagation increment length \(a_{\text{inc}}\), influenced the propagation path.

The crack propagation was modelled using the conventional Finite Element Method (FEM) with remeshing technique. FEM has been widely used in the literature for many engineering applications that have been recently published [16-29]. The crack was simulated using a “seam” in ABAQUS®, a region in of the model that can open during analysis. The crack faces interaction may impact the results, especially in case under negative cyclic loading ratio. As the contact algorithm in ABAQUS® provides more accurate results with linear elements, all models were meshed using a 2D quadrilateral, 4-node (bilinear) elements and the general contact algorithm was used to define the contact interaction between the crack faces. Lagrange multiplier formulation was used to define the tangential behavior and a hard contact approach was used to define the normal behavior of the contact pair. In order to capture singularity, the crack tip was meshed using a ring of collapsed linear quadrilateral elements. A stepwise analysis was done and the whole model was remeshed after advancing the crack in each increment of crack propagation.

3.1. Proportional mixed-mode fatigue
A numerical prediction of a mixed-mode fatigue crack growth in a plane elastic plate was performed in ABAQUS®. The model consisted in a plate with a centre slant crack, as shown in Figure 4. The dimension and material properties are based on the model proposed by Yan [30] and are summarized in Table 1.

Each step of the propagation simulation consisted in the analysis of a full loading cycle, with stress \(\sigma\) applied in three loading steps varying from maximum, mean and minimum values (obtained from \(R_{\text{cycle}}\) and \(\sigma_m\) in Table 1). For the static analysis, each loading step was divided into 10 time increments and the solution for each of those increments was later used in the calculation of the propagation direction, as explained in section Error! Reference source not found.. The propagation path obtained using the minimum shear stress range criterion was compared with the predicted path using MTS criterion [30] and it is presented in Figure 5(a). Both criteria predict the same path, implying that MSSR criterion can also be a good choice under proportional mixed-mode conditions.
Figure 4: Slant centre crack model

Table 1: Model dimension and material properties (data from [30]).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack length, a</td>
<td>7mm</td>
</tr>
<tr>
<td>Plate half-height, H</td>
<td>17.5mm</td>
</tr>
<tr>
<td>Plate half-width, W</td>
<td>17.5mm</td>
</tr>
<tr>
<td>Slant crack angle, α</td>
<td>30°</td>
</tr>
<tr>
<td>Shear modulus, G</td>
<td>2744 kgf/mm²</td>
</tr>
<tr>
<td>Poisson’s ratio, ν</td>
<td>0.321</td>
</tr>
<tr>
<td>Mean stress, σ_m</td>
<td>15.33 kgf/mm²</td>
</tr>
<tr>
<td>Characteristic of cyclic loading ratio, R_{cycle}</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Figure 5: Results obtained using minimum shear stress range criterion: (a) Comparison of predicted crack propagation path with literature data from [30], (b) Sensitivity check: crack tip mesh size impact on predicted propagation paths, (c) Sensitivity check: impact of propagation increment length a_{inc} on predicted propagation paths
A sensibility check was also performed and the results are presented in Figure 5(b) and Figure 5(c). The mesh size has an influence on the results. However, as the size reduces, the analysis can capture more accurately the stress singularity at crack tip and the results converge to a unique path. In addition, the propagation increment length \(a_{inc} \) had insignificant influence on the prediction of path.

3.1.1. Non-proportional mixed-mode fatigue.

Fretting is a surface damage due to a very small relative slip between two surfaces and can lead to fretting wear [31-34] or fretting fatigue [35-39]. Under fretting conditions, the stress field near the contact region is non-proportional, even if the external loads are applied in a proportional way [40, 41]. This is caused by the non-linear characteristic of friction at contact interface between pad and specimen.

In order to study the performance of the MSSR criterion under non-proportional mixed-mode fatigue, the same elastic fretting model presented by Giner et al. [11] was analysed using conventional FE framework. The model details such as geometry, material properties, boundary conditions and loading history are presented in Figure 6. The model was composed of only two parts: a pad and a specimen, which represents a quarter of the experimental set-up, due to its symmetry. In this set-up, two flat pads are maintained in contact with a flat specimen through the application of a constant clamping or normal force \(F \). The specimen is fixed at one end and the other end is subjected to an oscillatory bulk stress \(\sigma_{axial} \). The master-slave algorithm in ABAQUS® was used to describe the contact and the Lagrange multiplier formulation was used to define the tangential behaviour of the contact interface between pad and specimen, with a coefficient of friction of 0.8. The surface to surface and finite sliding options were used to define the contact interaction. A 2D quadrilateral, 4-node (bilinear), plane strain, reduced integration element (CPE4R) was used to mesh the model with a ring of collapsed elements at crack tip.

![Fretting fatigue model details](image)

Figure 6: Fretting fatigue model details, based on the model from Giner et al. [11]: (a) Boundary conditions, (b) Cyclic loading steps of one full fretting cycle, (c) Model dimensions and (d) material properties

The initial crack was inserted at the contact edge in the same way as described by Giner et al. [11] (at an angle of -120° with horizontal x direction and with an initial length of 50μm). An analysis with 15 crack increments with fixed length \(a_{inc} \) equal to 50μm was performed. Each step of the propagation
simulation consisted in the analysis of a full fretting loading cycle. This fretting cycle was divided in five loading steps (see Figure 6(b)). In the first loading step, the top pad was pressed against the specimen surface by a normal load \(F = 100\text{N/mm} \) and this compressed condition was held constant until the end of the cycle. Then, an oscillatory axial stress \(\sigma_{\text{axial}} = \pm 110\text{MPa} \) was applied to the side of the specimen. The contact between the crack faces were also modelled using the general contact algorithm in ABAQUS® and a coefficient of friction of 0.8 was used at this interface.

Figure 7(a) shows experimental data from Giner et al. [11] that was then, in Figure 7(b), compared with the predicted path obtained when using MSSR and MTS criteria (in order to extract experimental data from the picture, the software Web Plot Digitizer [42] was used). One can conclude that the predicted path obtained by MSSR is in good agreement with the experimental observations, but that is not the case for MTS criterion. As also mentioned by Giner et al. [11], it is important to notice that the use of MTS criterion simplifies the problem because, for its computation, it is only necessary to consider the finite element results at the instant of maximum \(\sigma_{\text{axial}} \), while computing the MSSR the entire loading cycle is considered. Therefore, this criterion does not provide correct crack propagation as it neglects the effect that the rest of the fretting cycle may have on the crack propagation direction.

A sensibility check was performed in order to check the influence of the path radius \(R \), mesh size at crack tip and propagation increment length \(a_{\text{inc}} \) on the crack path prediction. The results are presented in Figure 8. It can be noticed that the path radius and the propagation increment length had no significant impact on the crack path prediction. However, as expected, the mesh size at crack tip elements can affect considerably the propagation path. As mentioned in section Error! Reference source not found., in order to accurately predict the stresses field ahead of the crack tip, it is required a very fine mesh size at this region. Therefore, only for very small mesh sizes, the criterion can correctly predict the crack propagation behaviour.

![Figure 7](image-url)
Figure 7: Fretting fatigue crack propagation path: (a) Experimental data from Giner et al. [11], (b) Comparison of predicted path using different criteria and experimental data.
4. Conclusions

This paper focused on the discussion of the minimum shear stress range criterion and its applicability to different fatigue problems. Under proportional loading conditions, the MSSR provided the same results as MTS and both of them seem to correlate well with experimental data. In addition, the MSSR seems to be a good and simple alternative to deal with fatigue problems, not only under proportional, but also under non-proportional conditions. The performance of MSSR was also verified for a non-proportional loading scenario, under fretting fatigue condition. As showed by our results, this type of problem invalidates the application of conventional orientation criteria, such as MTS, but the MSSR criterion is capable of capturing the main characteristics of the crack path, providing a prediction that correlates well with experimental data. As future work, we intend to apply the discussed methodology in fretting simulations for different pad geometries and validate the results with experimental data.

It is also important to mention that the final results depend on the mesh size at crack tip. It requires a very fine mesh in order to accurately predict paths using MSSR criteria and a mesh refinement study is therefore also recommended.

Acknowledgements: The authors would like to acknowledge the financial support of the Research Foundation-Flanders (FWO), The Luxembourg National Research Fund (FNR) and Slovenian Research Agency (ARRS) in the framework of the FWO Lead Agency project G018916N ‘Multi-analysis of fretting fatigue using physical and virtual experiments’.

References

Miranda ACO, Meggiolaro MA, Castro JTP, Martha LF and Bittencourt TN 2003 *Engineering Fracture Mechanics* **70**(10) 1259-1279

Giner EaSNaDFDaFFJ 2008 *International Journal of Solids and Structures* **45**(22) 5675--5687

Dahlin P. Growth of fatigue cracks subjected to non-proportional mode I and II: KTH; 2005.

Madge JJ. Numerical modelling of the effect of fretting wear on fretting fatigue: University of Nottingham; 2009.

Kuna M 2013 Finite elements in fracture mechanics ed editors. Dordrecht: Springer

Tran LV, Phung-Van P, Lee J, Wahab MA and Nguyen-Xuan H 2016 *Composite Structures* **140** 655-667

Thai C, Zenkour AM, Abdel Wahab M and Nguyen-Xuan H 2016 *Composite Structures* **139** 77-95

Junyan Ni and Wahab MA 2017 *Computers & Structures* **186** 35–49

Phung-Van P, Qui LX, Nguyen-Xuan H and Wahab MA 2017 *Composite Structures* **166** 120–135

Phung-Van P, Ferreira AJM, Nguyen-Xuan H and Abdel Wahab M 2017 *Composites Part B: Engineering* **118** 125-134

Yan X 2010 *Fatigue & fracture of engineering materials & structures* **33**(6) 365-377

Yue T and Abdel Wahab M 2017 *Tribology International* **107** 274-282

Pereira K, Yue T and Abdel Wahab M 2017 *Tribology International* **110** 222-231

Yue T and Abdel Wahab M 2016 *Materials* **9** 597; doi:510.3390/ma9070597

Yue T and Abdel Wahab M 2014 *Wear* **321** 53-63

Bhatti NA and Abdel Wahab M 2017 *Tribology International* **109** 552-562
[40] Nowell D, Dini D and Hills DA 2006 Engineering Fracture Mechanics 73(2) 207-222