Ghent University Academic Bibliography

Advanced

Anisotropy in cosmic-ray arrival directions in the Southern hemisphere based on six years of data from the IceCube detector

M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, T. Anderson, I. Ansseau, et al. (2016) ASTROPHYSICAL JOURNAL. 826(2).
abstract
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10(-3) up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (l <= 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10 degrees, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large-and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
Please use this url to cite or link to this publication:
author
organization
year
type
journalArticle (original)
publication status
published
subject
keyword
astroparticle physics, cosmic rays, AIR-SHOWER ARRAY, LARGE-SCALE ANISOTROPY, UNUSUAL SOLAR MINIMUM, MAGNETIC RECONNECTION, SIDEREAL ANISOTROPY, ANGULAR SCALES, TEV, HELIOSPHERE, DIFFUSION, TRANSPORT
journal title
ASTROPHYSICAL JOURNAL
Astrophys. J.
volume
826
issue
2
article number
220
pages
17 pages
Web of Science type
Article
Web of Science id
000381977900120
JCR category
ASTRONOMY & ASTROPHYSICS
JCR impact factor
5.533 (2016)
JCR rank
7/63 (2016)
JCR quartile
1 (2016)
ISSN
0004-637X
1538-4357
DOI
10.3847/0004-637x/826/2/220
language
English
UGent publication?
yes
classification
A1
copyright statement
I have transferred the copyright for this publication to the publisher
id
8522111
handle
http://hdl.handle.net/1854/LU-8522111
date created
2017-06-02 08:27:26
date last changed
2017-06-26 13:16:28
@article{8522111,
  abstract     = {The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10(-3) up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (l {\textlangle}= 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10 degrees, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large-and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.},
  articleno    = {220},
  author       = {Aartsen, M. G. and Abraham, K. and Ackermann, M. and Adams, J. and Aguilar, J. A. and Ahlers, M. and Ahrens, M. and Altmann, D. and Anderson, T. and Ansseau, I. and Anton, G. and Archinger, M. and Arguelles, C. and Arlen, T. C. and Auffenberg, J. and Bai, X. and Barwick, S. W. and Baum, V. and Bay, R. and Beatty, J. J. and Becker Tjus, J. and Becker, K.-H. and Beiser, E. and BenZvi, S. and Berghaus, P. and Berley, D. and Bernardini, E. and Bernhard, A. and Besson, D. Z. and Binder, G. and Bindig, D. and Bissok, M. and Blaufuss, E. and Blumenthal, J. and Boersma, D. J. and Bohm, C. and B{\"o}rner, M. and Bos, F. and Bose, D. and B{\"o}ser, S. and Botner, O. and Braun, J. and Brayeur, L. and Bretz, H.-P. and Buzinsky, N. and Casey, J. and Casier, M. and Cheung, E. and Chirkin, D. and Christov, A. and Clark, K. and Classen, L. and Coenders, S. and Collin, G. H. and Conrad, J. M. and Cowen, D. F. and Cruz Silva, A. H. and Daughhetee, J. and Davis, J. C. and Day, M. and de Andr{\'e}, J. P. A. M. and De Clercq, C. and del Pino Rosendo, E. and Dembinski, H. and De Ridder, Sam and Desiati, P. and de Vries, K. D. and de Wasseige, G. and de With, M. and DeYoung, T. and D{\'i}az-V{\'e}lez, J. C. and Lorenzo, V. di and Dujmovic, H. and Dumm, J. P. and Dunkman, M. and Eberhardt, B. and Ehrhardt, T. and Eichmann, B. and Euler, S. and Evenson, P. A. and Fahey, S. and Fazely, A. R. and Feintzeig, J. and Felde, J. and Filimonov, K. and Finley, C. and Flis, S. and F{\"o}sig, C.-C. and Fuchs, T. and Gaisser, T. K. and Gaior, R. and Gallagher, J. and Gerhardt, L. and Ghorbani, K. and Gier, D. and Gladstone, L. and Glagla, M. and Gl{\"u}senkamp, T. and Goldschmidt, A. and Golup, G. and Gonzalez, J. G. and G{\'o}ra, D. and Grant, D. and Griffith, Z. and Ha, C. and Haack, C. and Haj Ismail, A. and Hallgren, A. and Halzen, F. and Hansen, E. and Hansmann, B. and Hansmann, T. and Hanson, K. and Hebecker, D. and Heereman, D. and Helbing, K. and Hellauer, R. and Hickford, S. and Hignight, J. and Hill, G. C. and Hoffman, K. D. and Hoffmann, R. and Holzapfel, K. and Homeier, A. and Hoshina, K. and Huang, F. and Huber, M. and Huelsnitz, W. and Hulth, P. O. and Hultqvist, K. and In, S. and Ishihara, A. and Jacobi, E. and Japaridze, G. S. and Jeong, M. and Jero, K. and Jones, B. J. P. and Jurkovic, M. and Kappes, A. and Karg, T. and Karle, A. and Katz, U. and Kauer, M. and Keivani, A. and Kelley, J. L. and Kemp, J. and Kheirandish, A. and Kim, M. and Kintscher, T. and Kiryluk, J. and Klein, S. R. and Kohnen, G. and Koirala, R. and Kolanoski, H. and Konietz, R. and K{\"o}pke, L. and Kopper, C. and Kopper, S. and Koskinen, D. J. and Kowalski, M. and Krings, K. and Kroll, G. and Kroll, M. and Kr{\"u}ckl, G. and Kunnen, J. and Kunwar, S. and Kurahashi, N. and Kuwabara, T. and Labare, Mathieu and Lanfranchi, J. L. and Larson, M. J. and Lennarz, D. and Lesiak-Bzdak, M. and Leuermann, M. and Leuner, J. and Lu, L. and L{\"u}nemann, J. and Madsen, J. and Maggi, G. and Mahn, K. B. M. and Mandelartz, M. and Maruyama, R. and Mase, K. and Matis, H. S. and Maunu, R. and McNally, F. and Meagher, K. and Medici, M. and Meier, M. and Meli, A. and Menne, T. and Merino, G. and Meures, T. and Miarecki, S. and Middell, E. and Mohrmann, L. and Montaruli, T. and Morse, R. and Nahnhauer, R. and Naumann, U. and Neer, G. and Niederhausen, H. and Nowicki, S. C. and Nygren, D. R. and Obertacke Pollmann, A. and Olivas, A. and Omairat, A. and O{\textquoteright}Murchadha, A. and Palczewski, T. and Pandya, H. and Pankova, D. V. and Paul, L. and Pepper, J. A. and P{\'e}rez de los Heros, C. and Pfendner, C. and Pieloth, D. and Pinat, E. and Posselt, J. and Price, P. B. and Przybylski, G. T. and Quinnan, M. and Raab, C. and R{\"a}del, L. and Rameez, M. and Rawlins, K. and Reimann, R. and Relich, M. and Resconi, E. and Rhode, W. and Richman, M. and Richter, S. and Riedel, B. and Robertson, S. and Rongen, M. and Rott, C. and Ruhe, T. and Ryckbosch, Dirk and Sabbatini, L. and Sander, H.-G. and Sandrock, A. and Sandroos, J. and Sarkar, S. and Schatto, K. and Schimp, M. and Schlunder, P. and Schmidt, T. and Schoenen, S. and Sch{\"o}neberg, S. and Sch{\"o}nwald, A. and Schumacher, L. and Seckel, D. and Seunarine, S. and Soldin, D. and Song, M. and Spiczak, G. M. and Spiering, C. and Stahlberg, M. and Stamatikos, M. and Stanev, T. and Stasik, A. and Steuer, A. and Stezelberger, T. and Stokstad, R. G. and St{\"o}ssl, A. and Str{\"o}m, R. and Strotjohann, N. L. and Sullivan, G. W. and Sutherland, M. and Taavola, H. and Taboada, I. and Tatar, J. and Ter-Antonyan, S. and Terliuk, A. and Te\v{s}i\'{c}, G. and Tilav, S. and Toale, P. A. and Tobin, M. N. and Toscano, S. and Tosi, D. and Tselengidou, M. and Turcati, A. and Unger, E. and Usner, M. and Vallecorsa, S. and Vandenbroucke, J. and van Eijndhoven, N. and Vanheule, Sander and van Santen, J. and Veenkamp, J. and Vehring, M. and Voge, M. and Vraeghe, Matthias and Walck, C. and Wallace, A. and Wallraff, M. and Wandkowsky, N. and Weaver, Ch. and Wendt, C. and Westerhoff, S. and Whelan, B. J. and Wiebe, K. and Wiebusch, C. H. and Wille, L. and Williams, D. R. and Wills, L. and Wissing, H. and Wolf, M. and Wood, T. R. and Woschnagg, K. and Xu, D. L. and Xu, X. W. and Xu, Y. and Yanez, J. P. and Yodh, G. and Yoshida, S. and Zoll, M.},
  issn         = {0004-637X},
  journal      = {ASTROPHYSICAL JOURNAL},
  keyword      = {astroparticle physics,cosmic rays,AIR-SHOWER ARRAY,LARGE-SCALE ANISOTROPY,UNUSUAL SOLAR MINIMUM,MAGNETIC RECONNECTION,SIDEREAL ANISOTROPY,ANGULAR SCALES,TEV,HELIOSPHERE,DIFFUSION,TRANSPORT},
  language     = {eng},
  number       = {2},
  pages        = {17},
  title        = {Anisotropy in cosmic-ray arrival directions in the Southern hemisphere based on six years of data from the IceCube detector},
  url          = {http://dx.doi.org/10.3847/0004-637x/826/2/220},
  volume       = {826},
  year         = {2016},
}

Chicago
Aartsen, M. G., K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, et al. 2016. “Anisotropy in Cosmic-ray Arrival Directions in the Southern Hemisphere Based on Six Years of Data from the IceCube Detector.” Astrophysical Journal 826 (2).
APA
Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., et al. (2016). Anisotropy in cosmic-ray arrival directions in the Southern hemisphere based on six years of data from the IceCube detector. ASTROPHYSICAL JOURNAL, 826(2).
Vancouver
1.
Aartsen MG, Abraham K, Ackermann M, Adams J, Aguilar JA, Ahlers M, et al. Anisotropy in cosmic-ray arrival directions in the Southern hemisphere based on six years of data from the IceCube detector. ASTROPHYSICAL JOURNAL. 2016;826(2).
MLA
Aartsen, M. G., K. Abraham, M. Ackermann, et al. “Anisotropy in Cosmic-ray Arrival Directions in the Southern Hemisphere Based on Six Years of Data from the IceCube Detector.” ASTROPHYSICAL JOURNAL 826.2 (2016): n. pag. Print.