Ghent University Academic Bibliography

Advanced

Observation and characterization of a cosmic muon neutrino flux from the Northern Hemisphere using six years of IceCube data

M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, K. Andeen, T. Anderson, et al. (2016) ASTROPHYSICAL JOURNAL. 833(1).
abstract
The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6 sigma significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90(-0.27)(+0.30)) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) and a hard spectral index of gamma = 2.13 +/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 +/- 1.2) PeV which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known gamma-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.
Please use this url to cite or link to this publication:
author
organization
year
type
journalArticle (original)
publication status
published
subject
keyword
astroparticle physics, methods: data analysis, neutrinos, GAMMA-RAY, TELESCOPE, ACCELERATION, ASTROPHYSICS, PERFORMANCE, ASTRONOMY, AMANDA, SYSTEM, LIGHT, RATIO
journal title
ASTROPHYSICAL JOURNAL
Astrophys. J.
volume
833
issue
1
article number
3
pages
18 pages
Web of Science type
Article
Web of Science id
000400503100003
JCR category
ASTRONOMY & ASTROPHYSICS
JCR impact factor
5.533 (2016)
JCR rank
7/63 (2016)
JCR quartile
1 (2016)
ISSN
0004-637X
1538-4357
DOI
10.3847/0004-637x/833/1/3
language
English
UGent publication?
yes
classification
A1
copyright statement
I have transferred the copyright for this publication to the publisher
id
8522089
handle
http://hdl.handle.net/1854/LU-8522089
date created
2017-06-02 07:46:34
date last changed
2017-06-26 13:24:52
@article{8522089,
  abstract     = {The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6 sigma significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90(-0.27)(+0.30)) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) and a hard spectral index of gamma = 2.13 +/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 +/- 1.2) PeV which implies a probability of less than 0.005\% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known gamma-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.},
  articleno    = {3},
  author       = {Aartsen, M. G. and Abraham, K. and Ackermann, M. and Adams, J. and Aguilar, J. A. and Ahlers, M. and Ahrens, M. and Altmann, D. and Andeen, K. and Anderson, T. and Ansseau, I. and Anton, G. and Archinger, M. and Arg{\"u}elles, C. and Auffenberg, J. and Axani, S. and Bai, X. and Barwick, S. W. and Baum, V. and Bay, R. and Beatty, J. J. and Tjus, J. Becker and Becker, K.-H. and BenZvi, S. and Berghaus, P. and Berley, D. and Bernardini, E. and Bernhard, A. and Besson, D. Z. and Binder, G. and Bindig, D. and Bissok, M. and Blaufuss, E. and Blot, S. and Bohm, C. and B{\"o}rner, M. and Bos, F. and Bose, D. and B{\"o}ser, S. and Botner, O. and Braun, J. and Brayeur, L. and Bretz, H.-P. and Burgman, A. and Carver, T. and Casier, M. and Cheung, E. and Chirkin, D. and Christov, A. and Clark, K. and Classen, L. and Coenders, S. and Collin, G. H. and Conrad, J. M. and Cowen, D. F. and Cross, R. and Day, M. and Andr{\'e}, J. P. A. M. de and Clercq, C. De and Rosendo, E. del Pino and Dembinski, H. and De Ridder, Sam and Desiati, P. and Vries, K. D. de and Wasseige, G. de and With, M. de and DeYoung, T. and D{\'i}az-V{\'e}lez, J. C. and Lorenzo, V. di and Dujmovic, H. and Dumm, J. P. and Dunkman, M. and Eberhardt, B. and Ehrhardt, T. and Eichmann, B. and Eller, P. and Euler, S. and Evenson, P. A. and Fahey, S. and Fazely, A. R. and Feintzeig, J. and Felde, J. and Filimonov, K. and Finley, C. and Flis, S. and F{\"o}sig, C.-C. and Franckowiak, A. and Friedman, E. and Fuchs, T. and Gaisser, T. K. and Gallagher, J. and Gerhardt, L. and Ghorbani, K. and Giang, W. and Gladstone, L. and Glagla, M. and Gl{\"u}senkamp, T. and Goldschmidt, A. and Golup, G. and Gonzalez, J. G. and Grant, D. and Griffith, Z. and Haack, C. and Ismail, A. Haj and Hallgren, A. and Halzen, F. and Hansen, E. and Hansmann, B. and Hansmann, T. and Hanson, K. and Hebecker, D. and Heereman, D. and Helbing, K. and Hellauer, R. and Hickford, S. and Hignight, J. and Hill, G. C. and Hoffman, K. D. and Hoffmann, R. and Holzapfel, K. and Hoshina, K. and Huang, F. and Huber, M. and Hultqvist, K. and In, S. and Ishihara, A. and Jacobi, E. and Japaridze, G. S. and Jeong, M. and Jero, K. and Jones, B. J. P. and Jurkovic, M. and Kappes, A. and Karg, T. and Karle, A. and Katz, U. and Kauer, M. and Keivani, A. and Kelley, J. L. and Kemp, J. and Kheirandish, A. and Kim, M. and Kintscher, T. and Kiryluk, J. and Kittler, T. and Klein, S. R. and Kohnen, G. and Koirala, R. and Kolanoski, H. and Konietz, R. and K{\"o}pke, L. and Kopper, C. and Kopper, S. and Koskinen, D. J. and Kowalski, M. and Krings, K. and Kroll, M. and Kr{\"u}ckl, G. and Kr{\"u}ger, C. and Kunnen, J. and Kunwar, S. and Kurahashi, N. and Kuwabara, T. and Labare, Mathieu and Lanfranchi, J. L. and Larson, M. J. and Lauber, F. and Lennarz, D. and Lesiak-Bzdak, M. and Leuermann, M. and Leuner, J. and Lu, L. and L{\"u}nemann, J. and Madsen, J. and Maggi, G. and Mahn, K. B. M. and Mancina, S. and Mandelartz, M. and Maruyama, R. and Mase, K. and Maunu, R. and McNally, F. and Meagher, K. and Medici, M. and Meier, M. and Meli, A. and Menne, T. and Merino, G. and Meures, T. and Miarecki, S. and Mohrmann, L. and Montaruli, T. and Moulai, M. and Nahnhauer, R. and Naumann, U. and Neer, G. and Niederhausen, H. and Nowicki, S. C. and Nygren, D. R. and Pollmann, A. Obertacke and Olivas, A. and O{\textquoteright}Murchadha, A. and Palczewski, T. and Pandya, H. and Pankova, D. V. and Peiffer, P. and Penek, {\"O}. and Pepper, J. A. and Heros, C. P{\'e}rez de los and Pieloth, D. and Pinat, E. and Price, P. B. and Przybylski, G. T. and Quinnan, M. and Raab, C. and R{\"a}del, L. and Rameez, M. and Rawlins, K. and Reimann, R. and Relethford, B. and Relich, M. and Resconi, E. and Rhode, W. and Richman, M. and Riedel, B. and Robertson, S. and Rongen, M. and Rott, C. and Ruhe, T. and Ryckbosch, Dirk and Rysewyk, D. and Sabbatini, L. and Herrera, S. E. Sanchez and Sandrock, A. and Sandroos, J. and Sarkar, S. and Satalecka, K. and Schimp, M. and Schlunder, P. and Schmidt, T. and Schoenen, S. and Sch{\"o}neberg, S. and Schumacher, L. and Seckel, D. and Seunarine, S. and Soldin, D. and Song, M. and Spiczak, G. M. and Spiering, C. and Stahlberg, M. and Stanev, T. and Stasik, A. and Steuer, A. and Stezelberger, T. and Stokstad, R. G. and St{\"o}{\ss}l, A. and Str{\"o}m, R. and Strotjohann, N. L. and Sullivan, G. W. and Sutherland, M. and Taavola, H. and Taboada, I. and Tatar, J. and Tenholt, F. and Ter-Antonyan, S. and Terliuk, A. and Te\v{s}i\'{c}, G. and Tilav, S. and Toale, P. A. and Tobin, M. N. and Toscano, S. and Tosi, D. and Tselengidou, M. and Turcati, A. and Unger, E. and Usner, M. and Vandenbroucke, J. and Eijndhoven, N. van and Vanheule, Sander and Rossem, M. van and Santen, J. van and Veenkamp, J. and Vehring, M. and Voge, M. and Vraeghe, Matthias and Walck, C. and Wallace, A. and Wallraff, M. and Wandkowsky, N. and Weaver, Ch. and Weiss, M. J. and Wendt, C. and Westerhoff, S. and Whelan, B. J. and Wickmann, S. and Wiebe, K. and Wiebusch, C. H. and Wille, L. and Williams, D. R. and Wills, L. and Wolf, M. and Wood, T. R. and Woolsey, E. and Woschnagg, K. and Xu, D. L. and Xu, X. W. and Xu, Y. and Yanez, J. P. and Yodh, G. and Yoshida, S. and Zoll, M.},
  issn         = {0004-637X},
  journal      = {ASTROPHYSICAL JOURNAL},
  keyword      = {astroparticle physics,methods: data analysis,neutrinos,GAMMA-RAY,TELESCOPE,ACCELERATION,ASTROPHYSICS,PERFORMANCE,ASTRONOMY,AMANDA,SYSTEM,LIGHT,RATIO},
  language     = {eng},
  number       = {1},
  pages        = {18},
  title        = {Observation and characterization of a cosmic muon neutrino flux from the Northern Hemisphere using six years of IceCube data},
  url          = {http://dx.doi.org/10.3847/0004-637x/833/1/3},
  volume       = {833},
  year         = {2016},
}

Chicago
Aartsen, M. G., K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, et al. 2016. “Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere Using Six Years of IceCube Data.” Astrophysical Journal 833 (1).
APA
Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., et al. (2016). Observation and characterization of a cosmic muon neutrino flux from the Northern Hemisphere using six years of IceCube data. ASTROPHYSICAL JOURNAL, 833(1).
Vancouver
1.
Aartsen MG, Abraham K, Ackermann M, Adams J, Aguilar JA, Ahlers M, et al. Observation and characterization of a cosmic muon neutrino flux from the Northern Hemisphere using six years of IceCube data. ASTROPHYSICAL JOURNAL. 2016;833(1).
MLA
Aartsen, M. G., K. Abraham, M. Ackermann, et al. “Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere Using Six Years of IceCube Data.” ASTROPHYSICAL JOURNAL 833.1 (2016): n. pag. Print.