
RESEARCH ARTICLE

Halvade-RNA: Parallel variant calling from

transcriptomic data using MapReduce

Dries Decap1,5, Joke Reumers2,5, Charlotte Herzeel3,5, Pascal Costanza4,5, Jan Fostier1,5*

1 Department of Information Technology, IDLab, Ghent University - imec, Ghent, Belgium, 2 Janssen

Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium, 3 Imec, Leuven,

Belgium, 4 Intel Corporation Belgium, Leuven, Belgium, 5 ExaScience Life Lab, Leuven, Belgium

* jan.fostier@ugent.be

Abstract

Given the current cost-effectiveness of next-generation sequencing, the amount of DNA-

seq and RNA-seq data generated is ever increasing. One of the primary objectives of NGS

experiments is calling genetic variants. While highly accurate, most variant calling pipelines

are not optimized to run efficiently on large data sets. However, as variant calling in genomic

data has become common practice, several methods have been proposed to reduce run-

time for DNA-seq analysis through the use of parallel computing. Determining the effectively

expressed variants from transcriptomics (RNA-seq) data has only recently become possi-

ble, and as such does not yet benefit from efficiently parallelized workflows. We introduce

Halvade-RNA, a parallel, multi-node RNA-seq variant calling pipeline based on the GATK

Best Practices recommendations. Halvade-RNA makes use of the MapReduce program-

ming model to create and manage parallel data streams on which multiple instances of

existing tools such as STAR and GATK operate concurrently. Whereas the single-threaded

processing of a typical RNA-seq sample requires *28h, Halvade-RNA reduces this runtime

to *2h using a small cluster with two 20-core machines. Even on a single, multi-core work-

station, Halvade-RNA can significantly reduce runtime compared to using multi-threading,

thus providing for a more cost-effective processing of RNA-seq data. Halvade-RNA is writ-

ten in Java and uses the Hadoop MapReduce 2.0 API. It supports a wide range of distribu-

tions of Hadoop, including Cloudera and Amazon EMR.

Introduction

Recently, a number of methods have been introduced to accelerate read mapping and variant

calling through the use of parallel and distributed computing techniques: HugeSeq [1], Mega-

Seq [2], Churchill [3] and Halvade [4] implement a DNA-seq variant calling pipeline accord-

ing to the Best Practices recommendations [5] for use with the GATK [6, 7] variant caller.

These tools exploit the fact that read mapping is parallel by read, i.e., aligning one read is inde-

pendent of the alignment of other reads, while variant calling is parallel by genomic region,

i.e., variant calling in a certain genomic region is independent of variant calling in other

regions. As such, the runtime to process whole genome or whole exome sequencing data sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Decap D, Reumers J, Herzeel C, Costanza

P, Fostier J (2017) Halvade-RNA: Parallel variant

calling from transcriptomic data using MapReduce.

PLoS ONE 12(3): e0174575. https://doi.org/

10.1371/journal.pone.0174575

Editor: Quan Zou, Tianjin University, CHINA

Received: September 12, 2016

Accepted: March 10, 2017

Published: March 30, 2017

Copyright: © 2017 Decap et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work is funded by Intel, Janssen

Pharmaceutica, and by the Institute for the

Promotion of Innovation through Science and

Technology in Flanders (IWT): IWT O&O Projects

130405 and 130406. Dries Decap, Charlotte

Herzeel and Jan Fostier are employees of imec vzw,

Belgium; Pascal Costanza is an employee of Intel

Corporation NV/SA, Belgium; Joke Reumers is an

employee of Janssen Pharmaceutica NV/SA,

Belgium. All authors were also affiliated with

ExaScience Life Lab which is a consortium of

https://doi.org/10.1371/journal.pone.0174575
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174575&domain=pdf&date_stamp=2017-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174575&domain=pdf&date_stamp=2017-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174575&domain=pdf&date_stamp=2017-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174575&domain=pdf&date_stamp=2017-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174575&domain=pdf&date_stamp=2017-03-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174575&domain=pdf&date_stamp=2017-03-30
https://doi.org/10.1371/journal.pone.0174575
https://doi.org/10.1371/journal.pone.0174575
http://creativecommons.org/licenses/by/4.0/


is strongly reduced. Other parallel DNA-seq variant calling pipelines that do not rely on

GATK include SpeedSeq [8] and ADAM [9].

Nowadays, RNA-seq datasets are becoming increasingly available. Even though primarily

intended to identify transcripts and quantify expression, RNA-seq data can equally be used to

call single nucleotide variants [10]. There are two main conceptual differences with DNA-seq

based variant calling. First, the mapping step needs to be modified to avoid false positive vari-

ant calling at exon-exon junctions, by using a sample-specific genome index containing junc-

tion information. Second, as the assumptions on coverage depth and allelic balance used in

DNA-seq based variant calling do not hold in RNA-seq, where coverage depth is dependent

on transcript expression, and allele-specific expression can influence allelic balance, the variant

caller should be adjusted accordingly. For that purpose, the GATK Best Practices recommen-

dations have been adapted to involve two passes of STAR [11] for spliced read alignment,

Picard (http://picard.sourceforge.net/) for data preprocessing and GATK for variant calling.

Processing a typical RNA-seq sample using this pipeline on a single CPU core takes *28

hours. Enabling multi-threading on a 20-core machine reduces runtime only by a factor of

two, which indicates considerable loss of performance during execution.

Here we present Halvade-RNA, a parallel framework for variant calling from RNA-seq data

that relies on the MapReduce programming model [12]. MapReduce has previously been used

in bioinformatics for different applications [13–15]. Rather than relying on multi-threading,

Halvade-RNA runs several instances of the different tools involved (STAR, Picard, GATK) in

parallel on subsets of the data, resulting in more efficient use of resources and thus lower cost

of computing. In addition to reducing the runtime of a single RNA-seq sample, Halvade-RNA

accelerates batch processing of multiple RNA-seq samples on any compute infrastructure on

which Hadoop/MapReduce is installed, including public cloud platforms such as Amazon

Web Services. To the best of our knowledge, this is the first framework to accelerate variant

calling pipelines for RNA-seq data. The source is available at http://bioinformatics.intec.ugent.

be/halvade under GPL license.

Materials and methods

RNA-seq variant calling pipeline

In this work, we adopt the GATK RNA-seq variant calling pipeline as described in https://

software.broadinstitute.org/gatk/guide/article?id=3891. Table 1 lists the different steps

involved.

In order to obtain accurate spliced read alignment, a two-step approach using the STAR

aligner is used as first described in [16]. During the first pass, spliced alignment is performed

Table 1. RNA-seq variant calling pipeline used in this work.

Step Tool Input Output

Read mapping (1st pass) STAR FASTQ + index SAM + splice junctions

Rebuild genome index STAR ref. genome + splice junctions new index

Read mapping (2nd pass) STAR FASTQ + new index SAM

Add readgroups and sort Picard SAM BAM

Mark duplicates Picard BAM BAM

Split ‘N’ Trim GATK BAM BAM

Indel realignment GATK BAM BAM

Base quality score recalibration GATK BAM BAM

Variant calling GATK BAM VCF

https://doi.org/10.1371/journal.pone.0174575.t001

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 2 / 11

companies and universities. These companies

provided support in the form of salaries for these

authors but did not have any additional role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. The

specific role of each author is articulated in the

“author contributions” section.

Competing interests: The authors have the

following interests: This work is funded in part by

Intel and Janssen Pharmaceutica. Dries Decap,

Charlotte Herzeel and Jan Fostier are employees of

imec vzw, Belgium; Pascal Costanza is an

employee of Intel Corporation NV/SA, Belgium;

Joke Reumers is an employee of Janssen

Pharmaceutica NV/SA, Belgium. All authors were

also affiliated with ExaScience Life Lab which is a

consortium of companies and universities. There

are no patents, products in development or

marketed products to declare. This does not alter

the authors’ adherence to all the PLOS ONE

policies on sharing data and materials.

http://picard.sourceforge.net/
http://bioinformatics.intec.ugent.be/halvade
http://bioinformatics.intec.ugent.be/halvade
https://software.broadinstitute.org/gatk/guide/article?id=3891
https://software.broadinstitute.org/gatk/guide/article?id=3891
https://doi.org/10.1371/journal.pone.0174575.t001
https://doi.org/10.1371/journal.pone.0174575


without prior knowledge of splice sites. Identified splice junctions are then incorporated in a

new genome index file which is subsequently used to guide the final alignments during the sec-

ond pass. Next, Picard is used to add readgroup information, sort the aligned records accord-

ing to genomic position, mark read duplicates and convert the SAM file to binary BAM

format. The GATK Split‘N’Trim module is used to split reads into different exon segments

and trim reads that overlap with intronic regions. Reads that contain short insertions or dele-

tions (indels) are realigned to avoid false positive variant calls in later steps. Additionally, the

per-base quality scores are recalibrated to accommodate certain batch artifacts. Finally, vari-

ants are called using the HaplotypeCaller and written to VCF file.

The RNA pipeline in MapReduce

Because the RNA-seq variant calling pipeline involves two passes of the STAR aligner, it can-

not be readily expressed in the Halvade MapReduce framework as implemented for DNA-seq

variant calling [4]. Whereas the DNA-seq variant calling pipeline could be implemented using

a single MapReduce job, two MapReduce jobs are required for Halvade-RNA. Fig 1 provides

an overview of the framework.

First, the input FASTQ files are interleaved (such that paired-end reads are adjacent to each

other) and split into smaller file chunks. During the map phase of the first MapReduce job,

these input chunks are processed in parallel by multiple instances of the STAR aligner. To

avoid loading the reference genome index from disk by each STAR instance individually, the

genome index is first loaded in shared memory, after which all the STAR instances on this

node can access this genome index from RAM. During this first alignment pass, the actual

read alignments (i.e., the SAM records) are ignored and only splice junction information is

retained. For each read that spans multiple exons, STAR produces a record containing junc-

tion information, such as genomic location and strand. The Map tasks emit this information

as intermediate <key, value> pairs, with the key holding tuples of integers containing the con-

tig index and the position of the splice junction, and the value containing the STAR-generated

string with splice junction information. When all Map tasks are finished, all intermediate

<key, value> pairs are sent to a single reducer and written to file. In the reduce task, this file is

subsequently used by STAR to build a new genome index that incorporates this slice junction

information. This is a purely sequential step, which should be kept as short as possible. We

therefore configure STAR to build a sparse index, where only a fraction of the genomic loca-

tions are indexed. While using a sparse index results in a slightly higher runtime during the

second alignment phase, the reduced runtime during index construction (5 min for a typical

RNA-seq sample, as opposed to approximately 30 min for a dense index) ensures the lowest

overall runtime.

The second MapReduce job is similar to the DNA-seq variant calling MapReduce imple-

mentation and we refer to [4] for more details. RNA-seq reads are again aligned in parallel

during the Map phase, using the newly constructed genome index. The Map tasks emit <key,

value> pairs where the value represents an actual SAM record and the key a composite struc-

ture that contains the genomic location to which the read aligns. In between Map and Reduce

phases, the intermediate <key, value> pairs are sorted in parallel according to genomic loca-

tion by the MapReduce framework in a highly efficient manner. This step replaces the sorting

functionality otherwise achieved by Picard. The sorted SAM records are converted to BAM

format using Hadoop-BAM [17] and partitioned according to a user-specified number of

genomic regions.

During the Reduce phase, remaining data preprocessing and variant calling steps are per-

formed in parallel through the concurrent processing of multiple genomic regions. To achieve

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 3 / 11

https://doi.org/10.1371/journal.pone.0174575


this, multiple instances of Picard and GATK are run in parallel, each instance operating on a

distinct genomic region. These steps are similar for the DNA-seq variant calling pipeline. The

only notable difference is the addition of the Split‘N’Trim module. Called variants are written

to VCF files, one VCF file per reduce task. Optionally, these partial VCF files can be merged

into a single VCF file in a third, lightweight MapReduce job. It should be noted that Halvade-

RNA can also be executed on existing BAM files. In that scenario, the first MapReduce job is

skipped and the Map phase of the second job is modified in order to partition the provided

BAM file.

As RNA-seq analysis often involves the quantification of gene expression, Halvade-RNA

provides the option to count the number of reads per exon. This is done by the FeatureCounts

tool [18] and is run per Reduce task, and thus in parallel per genomic region. Again, option-

ally, the counts per genomic region can be merged into a single file using an additional light-

weight MapReduce job.

Fig 1. Overview of the RNA-seq pipeline in Halvade-RNA. In the first job, reads are aligned in parallel in order to identify splice junctions and the reference

genome index is rebuilt using this information. In the second job, final alignments are produced and after sorting and grouping the aligned reads by genomic

region, the different Picard and GATK steps are executed in parallel.

https://doi.org/10.1371/journal.pone.0174575.g001

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 4 / 11

https://doi.org/10.1371/journal.pone.0174575.g001
https://doi.org/10.1371/journal.pone.0174575


Finally we remark that the used tools are still often improved and features are added, so it is

important to note that Halvade-RNA allows replacing the binaries of the tools with newer ver-

sions, assuming that the command line arguments remain the same. Similarly, new tools could

easily be added by updating the source code and calling the new tools appropriately.

Benchmark setup

Halvade-RNA was benchmarked on 9 RNA-seq samples (SNU-1033, SNU-1041, SNU-1214,

SNU-213, SNU-216, SNU-308, SNU-489, SNU-601, SNU-668) from the Cancer Cell Line

Encyclopedia [19], each sample containing approximately 175 million 101 bp paired-end reads

originating from a poly(A) selection experiment. The benchmarks were run using Halvade-

RNA version 1.2.0, implemented using STAR version 2.4.0h1, Picard version 1.112, GATK

version 3.4 (nightly-2015-05-12-gcdf54f8) and Java version 1.7.0, run on a Cloudera distribu-

tion based on Apache Hadoop (CDH) 5.0.0 with Hadoop version 2.3.0. Note that Halvade-

RNA has been validated for compatibility with the more recent Hadoop version 2.6.0 (CDH

version 5.10.0), Java version 1.8.0 and GATK version 3.7. We used a two-node cluster, each

node containing 20 CPU cores (dual-socket Intel Xeon E5-2660 v3 @ 2.60GHz) and 128 GByte

of RAM. The nodes were interconnected by an FDR Infiniband network. Halvade-RNA was

configured to run 10 parallel instances of STAR per node (2 threads per instance) and 20 paral-

lel instances (single-threaded) of Picard and GATK per node. This way, all available CPU

cores are used.

Additionally, Halvade-RNA was compared with GNU parallel [20] for multi-sample pro-

cessing of all 9 samples. Halvade-RNA was run with identical configuration as described

above. GNU parallel was configured to run per node a single instance of STAR using all avail-

able CPU cores for multi-threading, as STAR has very good multi-threading capabilities but

uses up to 40 GByte of RAM per instance. Because the BAM processing and variant calling

steps achieve poor speedups with multi-threading, GNU parallel was configured to run multi-

ple parallel instances of GATK and Picard, each instance processing a different sample and

using two threads (only for GATK).

Results & discussion

Parallel performance

Four cases were set up to assess the performance of Halvade-RNA: i) the original RNA-seq var-

iant calling pipeline on a single CPU core, ii) the original RNA-seq variant calling pipeline on

20 CPU cores, with multi-threading enabled in both STAR and GATK, iii) the Halvade-RNA

pipeline on the same 20-core machine, and iv) the Halvade-RNA pipeline on two 20-core

machines (Table 2). For the original pipeline, the obtained speedup using multi-threading is

only 2.16 on average (min: 2.03, max: 2.54). In contrast, Halvade-RNA shows a speedup of

9.18 on average (min: 7.65, max: 9.95) on the same node, indicating that Halvade-RNA is on

average 4.25 times faster when identical compute resources are used. Halvade-RNA relies pri-

marily on multi-tasking rather than multi-threading, and measuring the average runtimes and

speedups per phase of the pipeline (Table 3) shows that especially for the variant calling steps

this proves to be more efficient. As such, Halvade-RNA not only reduces analysis time but also

substantially reduces the financial cost for computing. Using two nodes, the average parallel

speedup increases to 13.72 (min: 9.56, max: 16.26).

Note that similar results were obtained on a public cloud platform (Amazon EMR). Using a

single node of the type r3.8xlarge, we obtain an average execution time of 3h 29 min per sam-

ple (min: 3h 4 min, max: 4h 28 min). Using two nodes, the average runtime decreases to 2h 32

min per sample (min: 2h 1 min, max: 3h 46 min). The Amazon nodes have only 16 CPU cores

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 5 / 11

https://doi.org/10.1371/journal.pone.0174575


and an additional data transfer from central S3 storage to the local worker nodes storage is

required which explains the slightly higher runtimes. The average financial cost per sample

was 14.15 US dollar when using a single node and 20.48 US dollar when using two nodes (pric-

ing of December 2016).

Multi-sample throughput

Given the large variability in gene expression within one RNA-seq sample, certain genomic

chunks can have significantly more aligned reads. For example, in our experiment, coverage

depth between genomic chunks could vary as much as thousand fold. As a consequence,

there is large variability in execution time during the reduce phases, making it more difficult

to balance load than in the Halvade-DNA framework, as coverage depth is more uniform in

DNA-seq data. Fig 2 shows the distribution of the runtimes of the MapReduce tasks for sam-

ple SNU-668, other samples have similar distributions. The map phases of both MapReduce

jobs show a clear peak, with the slight shift for the second map phase resulting from the use

of a sparse genome index. The variant calling reduce tasks show a very wide range of run-

times, ranging from about a minute for the fastest task up to one hour for the slowest task.

Furthermore, rebuilding the STAR genome (a sequential step) is a second source of losing

computing resources. In a realistic scenario, the available compute infrastructure will be

used to process multiple samples. In that case, MapReduce jobs can be overlapped by using

idle slots to start processing the next sample, even though the current sample is not yet fully

completed. This way of working minimizes idle time and thus increases throughput. Table 4

lists the total runtimes for processing all 9 samples. As a reference to calculate the overall

speedup, we use the sum of all runtimes on a single-threaded pipeline, which is *251 hours.

Table 2. Benchmarks of the RNA-seq variant calling pipeline per sample.

Runtime for sample (speedup)

Classical pipeline Halvade-RNA pipeline

Sample 1 node × single core 1 node × 20 cores 1 node × 20 cores 2 nodes × 20 cores

SNU-1033 26h 6min (n/a) 12h 53min (2.03×) 3h 25min (7.65×) 2h 44min (9.56×)

SNU-1041 27h 48min (n/a) 12h 51min (2.16×) 3h 3min (9.09×) 1h 48min (15.46×)

SNU-1214 34h 40min (n/a) 13h 38min (2.54×) 3h 33min (9.77×) 2h 23min (14.56×)

SNU-213 27h 11min (n/a) 12h 59min (2.09×) 2h 50min (9.61×) 1h 44min (15.66×)

SNU-216 27h 21min (n/a) 13h 1min (2.10×) 2h 46min (9.87×) 1h 44min (15.81×)

SNU-308 27h 48min (n/a) 13h 25min (2.07×) 2h 48min (9.95×) 1h 43min (16.26×)

SNU-489 27h 10min (n/a) 12h 30min (2.17×) 3h 8min (8.69×) 2h 16min (11.98×)

SNU-601 26h 48min (n/a) 12h 59min (2.07×) 2h 59min (9.01×) 2h 5min (12.91×)

SNU-668 25h 59min (n/a) 12h 7min (2.14×) 2h 49min (9.24×) 1h 52min (13.97×)

average 27h 52min (n/a) 12h 56min (2.16×) 3h 2min (9.18×) 2h 2min (13.72×)

https://doi.org/10.1371/journal.pone.0174575.t002

Table 3. Average runtimes per phase of the RNA-seq pipeline.

Runtime and speedup per phase

Pipeline No. of nodes and cores Pass 1 map Rebuild genome Pass 2 map Variant calling steps

Classical pipeline 1 node × single core 1h 19min (n/a) 4min (n/a) 3h 29min (n/a) 23h 1min (n/a)

1 node × 20 cores 6min (14.24×) 2min (2.18×) 22min (9.69×) 12h 27min (1.85×)

Halvade-RNA 1 nodes × 20 cores 14min (5.69×) 4min (1.02×) 39min (5.29×) 2h 3min (11.21×)

2 nodes × 20 cores 8min (9.29×) 4min (1.01×) 22min (9.49×) 1h 26min (16.04×)

https://doi.org/10.1371/journal.pone.0174575.t003

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 6 / 11

https://doi.org/10.1371/journal.pone.0174575.t002
https://doi.org/10.1371/journal.pone.0174575.t003
https://doi.org/10.1371/journal.pone.0174575


The multi-sample batch processing script (GNU parallel) for the original pipeline processes

the 9 samples in 40h 7min with 20 CPU cores on a single node. Using two nodes, we distrib-

ute the samples over the two nodes and run the sequential pipeline and the batch script for 4

and 5 samples per node (adjusted to run with 24GB and 4 cores per sample in the GNU par-

allel steps), resulting in a total runtime of 21h 3min. Using Halvade-RNA in batch mode, a

total runtime of 22h 17min is obtained using a single node and a total runtime of 11h 48min

Fig 2. Runtime distribution of Map and Reduce tasks of both jobs. Note that the average runtime of the pass 2 map phase increases slightly due to the

sparse index. Also note that the Reduce phase of the first job is not displayed as this comprises only a single job.

https://doi.org/10.1371/journal.pone.0174575.g002

Table 4. Runtime for the batch processing of all 9 RNA-seq samples.

Pipeline No. of nodes and cores Sum of per-sample runtime (speedup) Batch processing runtime (speedup)

Classical pipeline 1 node × single core 250h 52min (n/a) 250h 52min (n/a)

1 node × 20 cores 116h 24min (2.16×) 40h 7min (6.25×)

2 node × 20 cores 63h 21m (3.96×) 21h 3min (11.92×)

Halvade-RNA 1 nodes × 20 cores 27h 20min (9.18×) 22h 17min (11.26×)

2 nodes × 20 cores 18h 17min (13.72×) 11h48min(21.26×)

https://doi.org/10.1371/journal.pone.0174575.t004

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 7 / 11

https://doi.org/10.1371/journal.pone.0174575.g002
https://doi.org/10.1371/journal.pone.0174575.t004
https://doi.org/10.1371/journal.pone.0174575


on two nodes. This is respectively *4h and *6.5h faster compared to the sum of the per-

sample runtimes. Clearly, the ability to avoid idle time again significantly increases the effi-

cient use of compute resources.

Quality assessment

Finally, we show the per-sample concordance in the variants called by the original sequential

pipeline and Halvade-RNA (Table 5). On average, 93.8% of the variants found by the sequen-

tial pipeline are also called by Halvade-RNA. Variants that are called in either only the sequen-

tial pipeline or only the Halvade-RNA pipeline are supported by fewer reads and have a

*8-fold lower average quality score compared with the overlapping variants, and are thus

more likely to be filtered from a high-quality variant list. The normalized distribution of the

variant quality for each of the three subsets, matching variants and variants unique to either

Halvade or the original pipeline, is shown in Fig 3. The origin of these discordant variants lies

in the variability during the read mapping step. Typically these variants are located in regions

that are part of repeating patterns, causing the reads to align to multiple locations. Either in

the parallelized or in the original sequential pipeline, variants residing in these regions have a

high probability of being false positive calls.

Conclusion

We have implemented a parallelized variant calling pipeline for RNA-seq data using a MapRe-

duce approach, and compared the efficiency and accuracy of the pipeline to the original

sequential implementation. Running the original pipeline using a single core requires on aver-

age 27.9 hours per sample. When enabling multi-threading on 20 CPU cores in STAR and

GATK, the average runtime per sample decreases to 12.9 hours, largely due to the poor scaling

behavior of GATK. In contrast, on the same node, when using Halvade-RNA configured to

run 10 parallel instances of STAR (2 threads per instance) and 20 parallel instances (single

threaded) of Picard and GATK, average runtime decreases to *3 hours, corresponding to a

parallel speedup of 9.18 over sequential execution of the pipeline. Clearly, the use of Halvade

Table 5. Per sample overlap and average quality score.

Sample Overlapping variants

(%)

Avg. qual score overlapping

variants

Avg. qual score Halvade-unique

variants

Avg. qual score reference-unique

variants

SNU-

1033

93.9 651.6 80.3 92.4

SNU-

1041

93.4 803.2 85.6 92.7

SNU-

1214

93.4 741.3 82.6 92.7

SNU-213 94.3 612.7 74.0 87.2

SNU-216 94.2 660.8 83.7 94.1

SNU-308 93.4 522.7 71.5 71.8

SNU-489 94.4 773.4 81.9 98.3

SNU-601 93.3 742.1 94.4 116.4

SNU-668 93.9 671.0 73.9 88.0

Average per-sample variant quality score (QUAL) for i) variants called by both the single-threaded pipeline and Halvade-RNA on 2 nodes × 20 cores, ii)

variants called only by Halvade-RNA (‘Halvade-unique’), iii) variants called only by the single-threaded pipeline (‘reference-unique’).

https://doi.org/10.1371/journal.pone.0174575.t005

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 8 / 11

https://doi.org/10.1371/journal.pone.0174575.t005
https://doi.org/10.1371/journal.pone.0174575


on a single node strongly reduces average runtime and results in a more cost-effective use of

the compute resources. On two nodes, the average runtime further decreases to *2 hours.

Obtaining a good load balance across parallel tasks is challenging for RNA-seq data, given

the large variability in gene expression –and thus coverage depth–across genomic regions. To

minimize idle time introduced by slower jobs, Halvade-RNA can be operated in batch mode.

In that case, idle slots can be used to start processing the next sample even though the current

sample is not yet fully completed. Processing all of the 9 samples in batch mode on the two-

node cluster yields a total runtime of 11.8 hours. In comparison, running the pipeline in

batch mode gives a runtime of 21h on a two-node cluster. Even though batch mode does not

decrease the per-sample processing time below 2 hours, it considerably increases the overall

throughput through a more efficient use of compute infrastructure.

On average, variants identified by Halvade-RNA and the sequential pipeline have a 93.8%

overlap. The variability is almost exclusively caused by variability during read mapping. Vari-

ants called by either only Halvade-RNA or the sequential pipeline have a much lower number

of supporting reads and hence correspond to low-confidence variants.

Fig 3. Comparison of variant Quality between Halvade and the reference pipeline. Shows the quality distribution of all variants taken from all 9 samples.

https://doi.org/10.1371/journal.pone.0174575.g003

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 9 / 11

https://doi.org/10.1371/journal.pone.0174575.g003
https://doi.org/10.1371/journal.pone.0174575


Acknowledgments

The computational resources (Stevin Supercomputer Infrastructure) and services used in this

work were provided by the VSC (Flemish Supercomputer Center), funded by Ghent Univer-

sity, the Hercules Foundation and the Flemish Government—department EWI. We acknowl-

edge the support of Ghent University (Multidisciplinary Research Partnership ‘Bioinformatics:

From Nucleotides to Networks’).

Author Contributions

Conceptualization: DD JF CH PC.

Software: DD.

Supervision: JF.

Validation: DD JR.

Visualization: DD.

Writing – original draft: DD JF.

Writing – review & editing: JR CH PC.

References
1. Lam HYK, Pan C, Clark MJ, Lacroute P, Chen R, Haraksingh R, et al. Detecting and annotating genetic

variations using the HugeSeq pipeline. Nature Biotechnology. 2012 Mar; 30(3):226–229. Available

from: http://dx.doi.org/10.1038/nbt.2134. PMID: 22398614

2. Puckelwartz MJ, Pesce LL, Nelakuditi V, Dellefave-Castillo L, Golbus JR, Day SM, et al. Supercomput-

ing for the parallelization of whole genome analysis. Bioinformatics. 2014 Jun; 30(11):1508–1513. Avail-

able from: http://dx.doi.org/10.1093/bioinformatics/btu071. PMID: 24526712

3. Kelly BJ, Fitch JR, Hu Y, Corsmeier DJ, Zhong H, Wetzel AN, et al. Churchill: an ultra-fast, deterministic,

highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clin-

ical and population-scale genomics. Genome biology. 2015 Jan; 16(1). Available from: http://view.ncbi.

nlm.nih.gov/pubmed/25600152. https://doi.org/10.1186/s13059-014-0577-x

4. Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade: scalable sequence analysis with

MapReduce. Bioinformatics. 2015 Mar; 31(15):2482–2488. Available from: http://dx.doi.org/10.1093/

bioinformatics/btv179. PMID: 25819078

5. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From

FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline.

Current protocols in bioinformatics. 2013 Oct; 11 (1110). Available from: http://dx.doi.org/10.1002/

0471250953.bi1110s43.

6. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis

Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome

research. 2010 Sep; 20(9):1297–1303. Available from: http://dx.doi.org/10.1101/gr.107524.110. PMID:

20644199

7. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation dis-

covery and genotyping using next-generation DNA sequencing data. Nature genetics. 2011 May; 43

(5):491–498. Available from: http://dx.doi.org/10.1038/ng.806. PMID: 21478889

8. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. SpeedSeq: ultra-fast per-

sonal genome analysis and interpretation. Nature Methods. 2015 Aug; 12(10):966–968. Available from:

http://dx.doi.org/10.1038/nmeth.3505. PMID: 26258291

9. Nothaft F. Scalable Genome Resequencing with ADAM and avocado. UC Berkeley; 2015. UCB/

EECS-20IS-6S.

10. Piskol R, Ramaswami G, Li JBB. Reliable identification of genomic variants from RNA-seq data. Ameri-

can journal of human genetics. 2013 Oct; 93(4):641–651. Available from: http://dx.doi.org/10.1016/j.

ajhg.2013.08.008. PMID: 24075185

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 10 / 11

http://dx.doi.org/10.1038/nbt.2134
http://www.ncbi.nlm.nih.gov/pubmed/22398614
http://dx.doi.org/10.1093/bioinformatics/btu071
http://www.ncbi.nlm.nih.gov/pubmed/24526712
http://view.ncbi.nlm.nih.gov/pubmed/25600152
http://view.ncbi.nlm.nih.gov/pubmed/25600152
https://doi.org/10.1186/s13059-014-0577-x
http://dx.doi.org/10.1093/bioinformatics/btv179
http://dx.doi.org/10.1093/bioinformatics/btv179
http://www.ncbi.nlm.nih.gov/pubmed/25819078
http://dx.doi.org/10.1002/0471250953.bi1110s43
http://dx.doi.org/10.1002/0471250953.bi1110s43
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://dx.doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
http://dx.doi.org/10.1038/nmeth.3505
http://www.ncbi.nlm.nih.gov/pubmed/26258291
http://dx.doi.org/10.1016/j.ajhg.2013.08.008
http://dx.doi.org/10.1016/j.ajhg.2013.08.008
http://www.ncbi.nlm.nih.gov/pubmed/24075185
https://doi.org/10.1371/journal.pone.0174575


11. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-

seq aligner. Bioinformatics. 2012 Oct; 29(1):15–21. Available from: http://dx.doi.org/10.1093/

bioinformatics/bts635. PMID: 23104886

12. Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. Commun ACM.

2008 Jan; 51(1):107–113. Available from: http://dx.doi.org/10.1145/1327452.1327492.

13. Schatz MC. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics. 2009 Jun; 25

(11):1363–1369. Available from: http://dx.doi.org/10.1093/bioinformatics/btp236. PMID: 19357099

14. Zou Q, Li XB, Jiang WR, Lin ZY, Li GL, Chen K. Survey of MapReduce frame operation in bioinformat-

ics. Briefings in Bioinformatics. 2013 Feb; 15(4):637–647. Available from: http://dx.doi.org/10.1093/bib/

bbs088. PMID: 23396756

15. Zou Q, Hu Q, Guo M, Wang G. HAlign: Fast multiple similar DNA/RNA sequence alignment based on

the centre star strategy. Bioinformatics. 2015; 31(15):2475–2481. Available from: http://dblp.uni-trier.

de/db/journals/bioinformatics/bioinformatics31.html#ZouHGW15. https://doi.org/10.1093/

bioinformatics/btv177 PMID: 25812743

16. Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, Alioto T, et al. Systematic evaluation of spliced

alignment programs for RNA-seq data. Nature Methods. 2013 Nov; 10(12):1185–1191. Available from:

http://dx.doi.org/10.1038/nmeth.2722. PMID: 24185836

17. Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Heljanko K. Hadoop-BAM: Directly

manipulating next generation sequencing data in the cloud. Bioinformatics. 2012 Feb; 28(6):876–877.

Available from: http://dx.doi.org/10.1093/bioinformatics/bts054. PMID: 22302568

18. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence

reads to genomic features. Bioinformatics (Oxford, England). 2014 Apr; 30(7):923–930. Available from:

http://dx.doi.org/10.1093/bioinformatics/btt656.

19. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin Aa, Kim S, et al. The Cancer Cell Line

Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012 mar; 483

(7391):603–307. Available from: http://www.nature.com/doifinder/10.1038/nature11003. PMID:

22460905

20. Tange O. GNU Parallel—The Command-Line Power Tool. ;login: The USENIX Magazine. 2011 Feb;

36(1):42–47. Available from: http://www.gnu.org/s/parallel.

Halvade-RNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0174575 March 30, 2017 11 / 11

http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1093/bioinformatics/btp236
http://www.ncbi.nlm.nih.gov/pubmed/19357099
http://dx.doi.org/10.1093/bib/bbs088
http://dx.doi.org/10.1093/bib/bbs088
http://www.ncbi.nlm.nih.gov/pubmed/23396756
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics31.html#ZouHGW15
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics31.html#ZouHGW15
https://doi.org/10.1093/bioinformatics/btv177
https://doi.org/10.1093/bioinformatics/btv177
http://www.ncbi.nlm.nih.gov/pubmed/25812743
http://dx.doi.org/10.1038/nmeth.2722
http://www.ncbi.nlm.nih.gov/pubmed/24185836
http://dx.doi.org/10.1093/bioinformatics/bts054
http://www.ncbi.nlm.nih.gov/pubmed/22302568
http://dx.doi.org/10.1093/bioinformatics/btt656
http://www.nature.com/doifinder/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/pubmed/22460905
http://www.gnu.org/s/parallel
https://doi.org/10.1371/journal.pone.0174575

