Abstract 15800: Aging is Associated With an Earlier Arrival of Reflected Waves Without a Distal Shift in Reflection Sites.
Phan, Timothy S; Li, John K; Segers, Patrick; Koppula, Maheswara R; Akers, Scott R; Kuna, Samuel T; Gislason, Thorarinn; Pack, Allan I; Chirinos, Julio A
Circulation. 134(Suppl_1) Supplement 1:A15800, November 11, 2016.

Background: Despite pronounced increases in carotid-femoral pulse wave velocity (PWV) with aging, timing of the inflection point (TINF) in the central pressure waveform does not appreciably decrease. Because TINF has been interpreted as a marker of reflected wave transit time (RWTT), its dissociation from the changes in PWV led to the controversial proposition of a "distal shift" of arterial reflection sites with aging. However, TINF represents a poor surrogate of RWTT. We assessed whether aging is indeed associated with a distal shift in reflection sites when appropriate pressure-flow analyses are used.

Methods: We studied a sample of unselected adults without cardiovascular disease (n=48; median age 48 years) and a clinical population of older adults with suspected or established cardiovascular disease (n=164; 61 years). We measured central pressure and flow with carotid tonometry and phase-contrast MRI, respectively. We assessed RWTT using wave-separation analysis and partially-distributed tube-load arterial system modeling.

Results: Consistent with previous reports, TINF did not appreciably decrease with age despite pronounced increases in PWV in both populations, falsely suggesting a proximal shift in reflection sites. However, when pressure-flow analyses were applied, aging was clearly associated with pronounced decreases in RWTT by either wave separation analysis (general population:-15.0 msec/decade; P<0.001; clinical population:-9.07 msec/decade; P=0.003) or tube load modeling (general:-15.8 msec/decade; P<0.001; clinical:-11.8 msec/decade; P<0.001). There was no evidence of an increased effective reflecting distance by either method. TINF was shown to reliably represent RWTT only under highly unrealistic assumptions about human input impedance.

Conclusions: RWTT declines with age in parallel with increased PWV, with earlier arrival of wave reflections and without a distal shift in reflecting sites. Our findings disprove the proposition of a distal shift in reflection sites, which was advanced based on TINF, a poor surrogate of RWTT. These findings have important implications for our understanding of the role of the forward wave vs. reflections with aging and various disease states.

(C) 2016 by the American College of Cardiology Foundation and the American Heart Association, Inc.

Institution
(1)Medicine, Univ of Pennsylvania; Rutgers Univ, Philadelphia, PA, (2)Medicine, Univ of Pennsylvania, Philadelphia, PA, (3)Medicine, Ghent Univ, Belgium, Belgium, (4)Medicine, Univ of Pennsylvania; VA Med Cntr, Philadelphia, PA, (5)Dept of Respiratory Medicine and Sleep, Landspitali, The National Univ Hosp of Iceland. Reykjavik, Iceland, Reykjavik, Iceland, (6)Medicine, Univ of Pennsylvania; VA Med Cntr; Ghent Univ, Philadelphia, PA
Language
English.
Journal Subset
Clinical Medicine.
ISSN
0009-7322