Advanced search
1 file | 364.27 KB Add to list

Scaling out federated queries for life sciences data in production

Dieter De Witte (UGent) , Laurens De Vocht (UGent) , Filip Pattyn, Hans Constandt (UGent) , Erik Mannens (UGent) and Ruben Verborgh (UGent)
(2016) SWAT4LS. p.1-10
Author
Organization
Keywords
IBCN

Downloads

  • SwAT4LS.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 364.27 KB

Citation

Please use this url to cite or link to this publication:

MLA
De Witte, Dieter, Laurens De Vocht, Filip Pattyn, et al. “Scaling Out Federated Queries for Life Sciences Data in Production.” SWAT4LS. 2016. 1–10. Print.
APA
De Witte, D., De Vocht, L., Pattyn, F., Constandt, H., Mannens, E., & Verborgh, R. (2016). Scaling out federated queries for life sciences data in production. SWAT4LS (pp. 1–10). Presented at the SWAT4LS.
Chicago author-date
De Witte, Dieter, Laurens De Vocht, Filip Pattyn, Hans Constandt, Erik Mannens, and Ruben Verborgh. 2016. “Scaling Out Federated Queries for Life Sciences Data in Production.” In SWAT4LS, 1–10.
Chicago author-date (all authors)
De Witte, Dieter, Laurens De Vocht, Filip Pattyn, Hans Constandt, Erik Mannens, and Ruben Verborgh. 2016. “Scaling Out Federated Queries for Life Sciences Data in Production.” In SWAT4LS, 1–10.
Vancouver
1.
De Witte D, De Vocht L, Pattyn F, Constandt H, Mannens E, Verborgh R. Scaling out federated queries for life sciences data in production. SWAT4LS. 2016. p. 1–10.
IEEE
[1]
D. De Witte, L. De Vocht, F. Pattyn, H. Constandt, E. Mannens, and R. Verborgh, “Scaling out federated queries for life sciences data in production,” in SWAT4LS, Amsterdam, the Netherlands, 2016, pp. 1–10.
@inproceedings{8520988,
  author       = {De Witte, Dieter and De Vocht, Laurens and Pattyn, Filip and Constandt, Hans and Mannens, Erik and Verborgh, Ruben},
  booktitle    = {SWAT4LS},
  keywords     = {IBCN},
  language     = {eng},
  location     = {Amsterdam, the Netherlands},
  pages        = {1--10},
  title        = {Scaling out federated queries for life sciences data in production},
  year         = {2016},
}