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Abstract—A novel method to simulate scattering and radia-
tion from arbitrary materials, including good conductors, in a
boundary integral equation (BIE) framework, is described in this
contribution. The utilized technique relies on the differential sur-
face admittance operator, which introduces an equivalent surface
current density, effectively changing the antenna’s material to
that of the background medium. Constructed out of the volume’s
eigenmodes, the operator is employed to assess the radiation
properties of a lossy Yagi-Uda antenna.

I. INTRODUCTION

The impact of the finite conductivity on scattering and
antennas has been a research topic for over half a century.
Initially, approximate current distributions were utilized to
include the imperfect conductors’ effect for thin-wire anten-
nas [1]. This method has since been replaced by employing
a surface impedance boundary condition, such as the Leon-
tovich boundary condition, to couple the exterior electric and
magnetic field without solving the interior problem [2]. This
technique is, however, not applicable in all situations due to
fundamental limitations and assumptions [3]. The differential
surface admittance operator can circumvent these shortcom-
ings [4]. This operator defines a fictitious surface current
density that replaces the material by the background medium.
Subsequently applying adequate numerical techniques such as
the method of moments (MoM), yields the surface current
density. This approach has been applied to 2-D scattering
problems [5] and was recently proposed in 3-D for scattering
at relatively simple geometries in [6]. In this contribution,
the Dirichlet-to-Neumann operator [4] is applied in 3-D to
assess the impact of conductivity on the characteristics of a
realistic antenna structure. In Section II, the differential surface
admittance operator concept is introduced for 3-D problems
and an expression composed of the eigenvectors of the volume
is presented. Section III features the validation of the novel
method by means of a lossy Yagi-Uda antenna’s analysis.

II. THEORY

We study the geometries in Fig. 1 assuming time-harmonic
(ejωt dependence) electromagnetic fields. In Fig. 1(a) a ho-
mogeneous, non-magnetic material with wavenumber k is
confined to the volume V with boundary surface S while the
remaining, surrounding space is denoted V0 and defined by the
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Fig. 1. (a) A homogeneous volume V with boundary S is embedded in
another homogeneous volume V0. In (b), the inner material is replaced by
the background medium and a surface current density Js is introduced on S.

wavenumber k0. This outside region is governed by the fields
(E0,H0) while the inner region’s fields are (E1,H1). On S,
these quantities are related through the Dirichlet-to-Neumann
(DtN) operator Dk as follows:

un ×H1 = DkE
t
1, (1)

with un the outward pointing normal to S and the superscript t
indicating the tangential component of a field. In the different,
but similar case of Fig. 1(b), the inner material is replaced by
the background material. The field quantities inside V are now
given by (E,H). As before, a DtN operator on the boundary
surface links these fields:

un ×H = Dk0
Et. (2)

In order to retain the same field distribution in V0, a surface
current density Js is introduced. Given the boundary condition

un × (H1 −H) = un × (H0 −H) = Js (3)

and (1)–(2), we introduce the differential surface admittance
operator Y in the following expression for the surface current
density:

Js = YEt
1 = (Dk −Dk0

)Et
1, (4)

where the tangential continuity of the electric field at S is
exploited. An expression based on the eigenfunctions of the
volume V is derived in [6] and is given by

Js = YEt
1 = η

∑
l

[ |kl|2∫S (un×Et
1)·h∗l dS

(k2l − k2)(k2l − k20)N 2
l

]
(un×hl) . (5)
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Fig. 2. Yagi-Uda wire antenna with dipole feed, one reflector and three
directors. Dimensions for operation at 110MHz can be found in Table I.

TABLE I
DIMENSIONS (IN m) OF THE ANTENNA IN FIG. 2.

Parameter Value Parameter Value

lf 1.332 r 0.001

lr 1.348 dr 0.8

ld 1.12 dd 0.637

The contrast parameter η is defined as
(
k2 − k20

)
/jωµ0, kl

is the wavenumber of the l-th eigenmode hl, the solenoidal
magnetic eigenmodes of the volume V with normalization
constant N 2

l . These eigenvectors satisfy equations (10.13) and
(10.14) in [7]. For general shapes, the eigenmodes have to
be calculated numerically but for some simple, omnipresent
shapes such as the cuboid or the circular cylinder, closed
expressions can readily be found in literature. In order to
solve for Js, the exterior problem has to be solved as well.
A boundary integral equation method (BIE) such as MoM is
ideally suited for this type of situation. Employing a standard
discretization scheme to both the selected BIE and (5) results
in a set of matrix equations that can be solved using regular
techniques. A more detailed description of this procedure can
be found in [6].

III. EXAMPLE

Consider the Yagi-Uda antenna displayed in Fig. 2. The
driving component of this structure is a dipole antenna with
length lf . The remaining elements are of parasitic nature:
one reflector with length lr at a distance dr behind the
central dipole and three directors with length ld which are
placed in front with a spacing of dd. All wires have the
same radius r. Values for these parameters can be found
in Table I for the Yagi-Uda operating at 110MHz, i.e., the
center frequency of the localizer in an instrument landing
system (ILS). The gain of this configuration is calculated
numerically by means of the differential surface admittance
operator for circular cylinders for varying inclination angles θ
in the vertical plane (xz-plane). This gain pattern is plotted in
Fig. 3 for decreasing values of the skin depth δ =

√
2/ (ωµσ),

i.e., for increasing conductivity σ. A reference solution for a
perfectly electrically conducting (PEC) Yagi-Uda is obtained
through 4nec2 [8], a free NEC based antenna modeler. Due to
the inherent symmetry of the structure under study, only half
the range of θ is shown. It is apparent that the antenna response
evolves towards that of the PEC solution for decreasing skin
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Fig. 3. Gain of the Yagi-Uda antenna at 110MHz for various values of the
skin depth. The reference PEC solution is obtained through 4nec2 [8].

depths. Moreover, it is shown that an insufficient conductivity
detrimentally affects the antenna’s characteristics. The remain-
ing discrepancy between the solution for δ/r = 0.01 and
the PEC reference can be attributed to both the fundamental
approximations of the reference solution, viz., thin-wire MoM,
and the finite mesh of the employed method.

IV. CONCLUSION

In this paper, we have presented a 3-D differential surface
admittance operator for the analysis of a realistic antenna
configuration, i.e., a Yagi-Uda antenna used in ILS systems.
Through incorporation into a BIE-MoM structure, the 3-D op-
erator’s appositeness to the assessment of material properties
on antenna performance is demonstrated.
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