Advanced search
1 file | 1.40 MB Add to list

Anyons and matrix product operator algebras

(2017) ANNALS OF PHYSICS. 378. p.183-233
Author
Organization
Keywords
Tensor networks, Matrix product operators, Entanglement, Topological order, Fusion category, Anyons, ENTANGLED PAIR STATES, QUANTUM, RENORMALIZATION, TRANSFORMATIONS, CLASSIFICATION, STATISTICS, SUBFACTORS, PARTICLES, PHASES

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.40 MB

Citation

Please use this url to cite or link to this publication:

MLA
Bultinck, Nick, et al. “Anyons and Matrix Product Operator Algebras.” ANNALS OF PHYSICS, vol. 378, 2017, pp. 183–233, doi:10.1016/j.aop.2017.01.004.
APA
Bultinck, N., Mariën, M., Williamson, D., Şahinoğlu, M., Haegeman, J., & Verstraete, F. (2017). Anyons and matrix product operator algebras. ANNALS OF PHYSICS, 378, 183–233. https://doi.org/10.1016/j.aop.2017.01.004
Chicago author-date
Bultinck, Nick, Michaël Mariën, DJ Williamson, MB Şahinoğlu, Jutho Haegeman, and Frank Verstraete. 2017. “Anyons and Matrix Product Operator Algebras.” ANNALS OF PHYSICS 378: 183–233. https://doi.org/10.1016/j.aop.2017.01.004.
Chicago author-date (all authors)
Bultinck, Nick, Michaël Mariën, DJ Williamson, MB Şahinoğlu, Jutho Haegeman, and Frank Verstraete. 2017. “Anyons and Matrix Product Operator Algebras.” ANNALS OF PHYSICS 378: 183–233. doi:10.1016/j.aop.2017.01.004.
Vancouver
1.
Bultinck N, Mariën M, Williamson D, Şahinoğlu M, Haegeman J, Verstraete F. Anyons and matrix product operator algebras. ANNALS OF PHYSICS. 2017;378:183–233.
IEEE
[1]
N. Bultinck, M. Mariën, D. Williamson, M. Şahinoğlu, J. Haegeman, and F. Verstraete, “Anyons and matrix product operator algebras,” ANNALS OF PHYSICS, vol. 378, pp. 183–233, 2017.
@article{8519065,
  author       = {{Bultinck, Nick and Mariën, Michaël and Williamson, DJ and Şahinoğlu, MB and Haegeman, Jutho and Verstraete, Frank}},
  issn         = {{0003-4916}},
  journal      = {{ANNALS OF PHYSICS}},
  keywords     = {{Tensor networks,Matrix product operators,Entanglement,Topological order,Fusion category,Anyons,ENTANGLED PAIR STATES,QUANTUM,RENORMALIZATION,TRANSFORMATIONS,CLASSIFICATION,STATISTICS,SUBFACTORS,PARTICLES,PHASES}},
  language     = {{eng}},
  pages        = {{183--233}},
  title        = {{Anyons and matrix product operator algebras}},
  url          = {{http://dx.doi.org/10.1016/j.aop.2017.01.004}},
  volume       = {{378}},
  year         = {{2017}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: