Ghent University Academic Bibliography

Advanced

sfinx : an R package for the elimination of false positives from affinity purification-mass spectrometry datasets

Kevin Titeca UGent, Pieter Meysman, Kris Laukens, Lennart Martens UGent, Jan Tavernier UGent and Sven Eyckerman UGent (2017) BIOINFORMATICS. 33(12). p.1902-1904
Please use this url to cite or link to this publication:
author
organization
year
type
journalArticle (original)
publication status
published
subject
journal title
BIOINFORMATICS
Bioinformatics
volume
33
issue
12
pages
1902 - 1904
ISSN
1367-4803
1460-2059
DOI
10.1093/bioinformatics/btx076
language
English
UGent publication?
yes
classification
A1
copyright statement
I have transferred the copyright for this publication to the publisher
id
8514808
handle
http://hdl.handle.net/1854/LU-8514808
date created
2017-03-20 09:04:55
date last changed
2017-07-06 09:06:53
@article{8514808,
  author       = {Titeca, Kevin and Meysman, Pieter and Laukens, Kris and Martens, Lennart and Tavernier, Jan and Eyckerman, Sven},
  issn         = {1367-4803},
  journal      = {BIOINFORMATICS},
  language     = {eng},
  number       = {12},
  pages        = {1902--1904},
  title        = {sfinx : an R package for the elimination of false positives from affinity purification-mass spectrometry datasets},
  url          = {http://dx.doi.org/10.1093/bioinformatics/btx076},
  volume       = {33},
  year         = {2017},
}

Chicago
Titeca, Kevin, Pieter Meysman, Kris Laukens, Lennart Martens, Jan Tavernier, and Sven Eyckerman. 2017. “Sfinx : an R Package for the Elimination of False Positives from Affinity Purification-mass Spectrometry Datasets.” Bioinformatics 33 (12): 1902–1904.
APA
Titeca, Kevin, Meysman, P., Laukens, K., Martens, L., Tavernier, J., & Eyckerman, S. (2017). sfinx : an R package for the elimination of false positives from affinity purification-mass spectrometry datasets. BIOINFORMATICS, 33(12), 1902–1904.
Vancouver
1.
Titeca K, Meysman P, Laukens K, Martens L, Tavernier J, Eyckerman S. sfinx : an R package for the elimination of false positives from affinity purification-mass spectrometry datasets. BIOINFORMATICS. 2017;33(12):1902–4.
MLA
Titeca, Kevin, Pieter Meysman, Kris Laukens, et al. “Sfinx : an R Package for the Elimination of False Positives from Affinity Purification-mass Spectrometry Datasets.” BIOINFORMATICS 33.12 (2017): 1902–1904. Print.