Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA

Alex Manicardi*†‡, Ellen Gyssels‡, Roberto Corradini†, Annemieke Madder*†

† Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
‡ Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, Gent 9000, Belgium.

Electronic Supporting Information - Table of contents

General 2

Probe synthesis 3-7
 Scheme S1: synthesis of the PNA monomers used in this study 3
 Monomer synthesis 3
 PNA synthesis 5
 Comparison of cleavage cocktails for the protection of furan 5
 General protocol for click reaction 5
 UPLC-MS characterization 5
 Fig. S1: MALDI spectrum and HPLC1-UV profiles of different cleavage cocktails 6

Measurements of \(T_m \) values 6
 Table S1: melting temperature of the PNA:DNA complexes 6

General protocol for crosslink reaction 7

General protocol for PAGE 7

PAGE experiments 8-10
 Fig. S2: full denaturing PAGE picture of the PNA:DNA crosslink experiment 8
 Fig. S3: full denaturing PAGE picture of the PNA:DNA crosslink experiment with long sequences 8
 Fig. S4: denaturing PAGE experiments for PNA T(f) probe 9
 Fig. S5: full denaturing PAGE picture of the strand invasion crosslink experiments 9
 Fig. S6: effect of 2% DMF in strand displacement crosslink experiments 10
 Table S2: densitometric evaluation of the ICL regions of PAGE shown in Fig 3 and Fig. S2 10
 Fig. S7: histogram representation of the data presented in Table S2 11
 Table S3: densitometric evaluation of the ICL regions of PAGE shown in Fig 5 and Fig. S5 11
 Fig. S8: histogram representation of the data presented in Table S3 12

Identification of the ICL products 13-14
 Fig. S9: example of HPLC trace of the ICL experiments 13
 Fig. S10: HPLC trace of purified regions of a PNA F+ DNA A sample 13
 Fig. S11: MALDI spectra of the isolated peaks 14
 Table S4: weighted average of the ICL MALDI peaks 14

NMR spectra 15-20
 Fig. S12: \(^1\)H-NMR and \(^13\)C-NMR (APT) of compound 1 15
 Fig. S13: \(^1\)H-NMR and \(^13\)C-NMR (APT) of compound 2 16
 Fig. S14: \(^1\)H-NMR and \(^13\)C-NMR (APT) of compound 3 17
 Fig. S15: \(^1\)H-NMR and \(^13\)C-NMR (APT) of compound 4 18
 Fig. S16: \(^1\)H-NMR and \(^13\)C-NMR (APT) of compound 5 19
 Fig. S17: \(^1\)H-NMR and \(^13\)C-NMR (APT) of compound 6 20

UPLC-MS chromatograms 21-24
 Fig. S18: UPLC-MS of PNA T 21
 Fig. S19: UPLC-MS of PNA T(f) 22
 Fig. S20: UPLC-MS of PNA f 23
 Fig. S21: UPLC-MS of PNA F 24
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA – Electronic Supporting Information

General

All solvents and chemical reagents were purchased from Sigma-Aldrich in the highest purity available. Non-modified DNA sequences were purchased from Eurogentec (Seraing, Belgium).

1H NMR and 13C NMR spectra were recorded on a Bruker Avance 300 or a Bruker DRX 500 spectrometer operating at room temperature. Chemical shifts are reported in parts per million relative to the residual solvent peak. Multiplicities are reported as singlet (s), doublet (d), doublet of doublets (dd), triplet (t) or multiplet (m).

LC-MS data were collected on an Agilent 1100 Series instrument with a Phenomenex Kinetex C18 100Å column (150 x 4.6 mm, 5 μm at 35 °C) connected to an ESM SD type VL mass detector (quadrupole ion trap mass spectrometer) with a flow rate of 1.5 ml/min was used with the following solvent systems: (A): 0.1% HCOOH in H$_2$O and (B) MeCN. The column was flushed with 100% A for 2 min, then a gradient from 0 to 100% B over 6 min was used, followed by 2 min of flushing with 100% B. UPLC-ESI-Q data were collected on a Waters Acquity UPLC system equipped with a Waters Acquity UPLC BEH C18 column (12.1x50 mm, 1.7 μm) at 35°C. A flow rate of 0.25 ml/min was used with the following solvent systems: (A): 0.2% FA in H$_2$O and (B): 0.2% FA in MeCN. The column was flushed for 0.9 min with solvent A, then a gradient from 0 to 50% B in 5.7 min. RP-HPLC analyses were recorded on an Agilent 1100 Series instrument with a Phenomenex Luna C18 column (250 x 4.6 mm, 5 μm) at 35 °C. A flow rate of 1 ml/min was used with the following solvent systems: (A): 0.1% TFA in H$_2$O and (B): MeCN. The column was flushed for 5 min with solvent A, then a gradient from 0 to 50% B in 30 min and to 100% B (HPLC1) or recorded on an Agilent 1200 system equipped with an Aeris Widepore column (150 x 4.6 mm, 3.6 μm) at 60°C. A flow rate of 0.8 mL/min was used with following solvent systems: (A): 0.1 M TEAA-buffer (with 5% MeCN) and (B): MeCN. The column was flushed for 2 min with solvent A, then a gradient from 0 to 12% B in 13 min and to 99% B in 1 min was used, followed by a flush of 5 min with 99% B (HPLC2).

MALDI-TOF spectra were acquired on an ABI Voyager DE-STR MALDI-TOF with a high performance nitrogen laser (337 nm), using the positive and reflector mode with delayed extraction. The matrix solution utilized was prepared as follows: 10 mg 2,5-Dihydroxybenzoic acid in 100 μL mQ/MeCN 2:1 with 1% TFA. Concentrations of DNA- and PNA-solutions were measured with a Trinean DropSense96 UV/VIS droplet reader. Thermal denaturation experiments were recorded on a Varian Cary 300 Bio instrument equipped with a six-cell thermostatted cell holder. Densitometric evaluation was performed using the program ImageJ 1.50.b, indication of the mean density is provided, together with the minimum and maximum value of intensity (0-255 range).
Probe synthesis

Scheme S1: synthesis of the PNA monomers used in this study.

3-(furan-2-yl)-propanoic acid (1): in a round bottom flask ethyl 3-(furan-2-yl)-propanoate (990.3mg, 5.89mmol, 1eq) was dissolved in 20mL THF. The solution was then cooled to 0°C with an ice bath before the addition of LiOH (988.5mg, 23.56mmol, 4eq) dissolved in 20mL water. After 5 minutes the solution was allowed to warm to r.t. and to react for 2h before removing the organic solvent under reduced pressure. The pH of the solution was lowered to 3 with concentrated HCl and the precipitation was favored for 2h at 4°C. The precipitate was then collected through Buchner filtration, and a second aliquot of product was obtained by extraction of the solution with AcOEt (2x20mL). Combining the two fractions 1 was obtained as a white solid in 85.6% yield (706.5mg).

TLC (AcOEt) Rf: 0.40; \(^1^H\) NMR (DMSO-d\(_6\), 400MHz) δ(ppm): 12.20 (s, 1H), 7.50 (dd, J = 1.8, 0.8 Hz, 1H), 6.34 (dd, J = 3.1, 1.9 Hz, 1H), 6.09 (ddd, J = 2.9, 1.8, 0.9 Hz, 1H), 2.83 (t, J = 7.4 Hz, 2H), 2.54 (t, J = 7.4 Hz, 2H); \(^{13}\)C NMR (DMSO-d\(_6\), 100MHz) δ(ppm): 173.8, 154.8, 141.8, 110.8, 105.6, 32.4, 23.4; HR-MS (ESI, MeOH): m/z calcd for [C\(_7\)H\(_7\)O\(_3\)]\(^-\): 139.04007, found: 139.04041.

3-(furan-2-yl)-N-(prop-2-yn-1-yl)propanamide (2): in a round bottom flask 1 (56.1mg, 0.400mmol, 1eq) and HBTU (159.4mg, 0.420, 1.05eq) were dissolved in 2mL DMF. The solution was then cooled to 0°C with an ice bath before the addition of DIPEA (135.63µL, 0.821mmol, 2.05eq). The reaction was left to stir at 0°C for 15 minutes followed by 15 minutes at r.t.. Finally, propargylamine (51.28µL, 0.801mmol, 2eq) was added to the mixture and left to react for 5h. The reaction was then diluted with AcOEt (50mL) and washed with 0.1M HCl (2x50mL), saturated aq. NaHCO\(_3\) (2x50mL) and brine (50mL). The organic layer was dried over Na\(_2\)SO\(_4\) and the solvent evaporated under reduced pressure to give 2 as a brownish solid in 88.5% yield (62.8mg).

TLC (AcOEt) Rf: 0.21; \(^1^H\) NMR (CDCl\(_3\), 300MHz) δ(ppm): 7.23 (dd, J = 1.8, 0.8 Hz, 1H), 6.21 (dd, J = 3.1, 1.9 Hz, 1H), 5.59 (br s, 1H), 5.59 (br s, 1H), 3.97 (dd, J = 5.2, 2.6 Hz, 1H), 2.93 (t, J = 7.5 Hz, 2H), 2.46 (t, J = 7.5 Hz, 2H), 2.15 (t, J = 2.6 Hz, 1H); \(^{13}\)C NMR (CDCl\(_3\), 75MHz) δ(ppm): 171.3, 154.1, 141.3, 110.3, 105.6, 79.4, 71.6, 34.7, 29.2, 23.8; MS (ESI, MeOH): m/z calcd for C\(_{10}\)H\(_{11}\)NO\(_2\) [M]: 177.07898, found: 178.2 [M+H]\(^+\), 377.2 [2M+Na]\(^+\), 176.1 [M-H]; HR-MS (ESI, MeOH): m/z calcd for [C\(_{10}\)H\(_{12}\)NO\(_2\)Na]\(^+\): 178.08626, found: 178.0859.
Fmoc-PNA-Furan-OBu (3): in a round bottom flask 1 (64.7mg, 0.462mmol, 2eq) and DhBtOH (75.4mg, 0.462mmol, 2eq) were dissolved in 2mL DMF and cooled to 0°C with an ice bath. EDC·HCl (88.5mg, 0.462mmol, 2eq) and DIPEA (114.5µL, 0.693mmol, 3eq) were then added and the mixture was left to react 10 minutes at 0°C and subsequently 10 minutes at r.t.. Finally, Fmoc-PNA-backbone-OBu (100.6mg, 0.232mmol, 1eq) was added and the mixture was left to react for 4h. The reaction was then diluted with AcOEt (100mL) and washed with 0.1M HCl (2x100mL), saturated aq. NaHCO₃ (2x100mL) and brine (100mL). The organic layer was dried over Na₂SO₄ and the solvent evaporated under reduced pressure. The crude was then purified through percolation over silica (elution from hexane to hexane:AcOEt 1:1) to obtain 3 as a foamy solid in 85.3% yield (102.7mg).

TLC (AcOEt)

*RF: 0.64; ¹H NMR (CDCl₃, 300MHz, major rotamer) δ(ppm): 7.69 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 7.1 Hz, 2H), 7.32 (t, J = 7.2 Hz, 2H), 7.23 (t, J = 7.2 Hz, 2H), 7.13 (s, 1H), 6.12 (br s, 1H), 5.95 – 5.80 (m, 2H), 4.28 (d, J = 7.0 Hz, 2H), 4.14 (t, J = 6.8 Hz, 1H), 3.84 (s, 2H), 3.42 (t, J = 5.8 Hz, 2H), 3.30 (t, J = 5.5 Hz, 2H), 2.87 (t, J = 7.0 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 1.40 (s, 9H);¹³C NMR (CDCl₃, 75MHz, major rotamer) δ(ppm): 171.3, 168.7, 156.5, 154.9, 146.3, 142.8, 140.3, 126.6, 126.05, 124.1, 118.9, 110.6, 109.2, 104.3, 81.3, 66.0, 50.0, 49.8, 48.6, 46.2, 38.4, 30.3, 27.0, 22.5;**

MS (ESI, MeOH): m/z calcd for C₃₀H₂₇Ν₂O₆: [M]: 519.24896, found: 519.2487.

Fmoc-PNA-Furan-OH (4): in a round bottom flask 3 (92.9mg, 0.179mmol, 1eq) was dissolved in 20mL DCM and cooled to 0°C with an ice bath. To this mixture 5mL TFA was added dropwise and the solution was left to react for 1h at 0°C and then 2h at r.t.. When conversion was complete the solvents were evaporated in presence of MeOH (20mL, color change from deep blue to yellow/green). Remaining TFA was finally co-evaporated with CHCl₃ to obtain 4 as a brownish solid in a quantitative yield. **TLC (hexane:AcOEt 1:1)** *RF: 0.07; ¹H NMR (DMSO-d₆, 300MHz, major rotamer) δ(ppm): 12.59 (s, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.50 – 7.23 (m, 5H), 6.35 – 6.30 (m, 1H), 6.11 – 6.02 (m, 1H), 4.29 (d, J = 6.3 Hz, 2H), 4.19 (t, J = 7.4 Hz, 1H), 3.94 (s, 2H), 3.46 – 3.22 (m, 2H), 3.20 – 3.05 (m, 2H), 2.82 – 2.75 (m, 2H), 2.70 – 2.60 (m, 2H);¹³C NMR (DMSO-d₆, 75MHz, major rotamer) δ(ppm): 171.6, 170.9, 156.2, 154.7, 143.8, 140.7, 127.6, 127.0, 125.0, 120.1, 110.3, 105.0, 65.4, 47.3 (x2), 46.7, 39.1, 30.0, 23.1;**

MS (ESI, MeOH): m/z calcd for C₁₆H₁₄N₂O₄: [M]: 462.17909, found: 463.2 [M⁺-butene+H⁺], 519.4 [M+H⁺], 541.3 [M+Na⁺], 553.2 [M+Cl⁺]; **HR-MS (ESI, MeOH):** m/z calcd for [C₁₆H₁₄N₂O₄]: 519.24896, found: 519.2487.

Fmoc-PNA-N₃-OBu (5): in a round bottom flask 2-azidoacetic acid (38.28µL, 0.511mmol, 2eq) and DhBtOH (83.4mg, 0.511mmol, 2eq) were dissolved in 2mL DMF and cooled to 0°C with an ice bath. EDC·HCl (98.0mg, 0.511mmol, 2eq) and DIPEA (126.8µL, 0.767mmol, 3eq) were added and the mixture was left to react 10 minutes at 0°C and then 10 minutes at r.t.. Finally, Fmoc-PNA-backbone-OBu (110.7mg, 0.256mmol, 1eq) was added and the mixture was left to react for 3h. The reaction was then diluted with AcOEt (100mL) and washed with 0.1M HCl (2x100mL), saturated aq. NaHCO₃ (2x100mL) and brine (100mL). The organic layer was dried over Na₂SO₄ and the solvent evaporated under reduced pressure. The crude was then purified through percolation over silica (elution from hexane to hexane:AcOEt 9:1 to hexane:AcOEt 1:1) to obtain 5 as a yellowish oil in 97.8% yield (119.9mg).

TLC (AcOEt) *RF: 0.63; ¹H NMR (CDCl₃, 300MHz, major rotamer) δ(ppm): 7.70 (d, J = 7.4 Hz, 2H), 7.52 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.25 (t, J = 7.4 Hz, 2H), 5.74 (br s, 1H), 4.32 (d, J = 7.0 Hz, 2H), 4.15 (t, J = 6.8 Hz, 1H), 3.88 (s, 2H), 3.85 (s, 2H), 3.40 – 3.25 (m, 4H), 1.41 (s, 9H);¹³C NMR (CDCl₃, 75MHz, major rotamer) δ(ppm): 169.0, 168.1, 156.6, 143.8, 141.3, 127.8, 127.1, 125.0, 120.0, 82.7, 67.0, 50.0, 49.8, 48.6, 47.2, 39.2, 28.0;**

MS (ESI, MeOH): m/z calcd for C₁₅H₁₄N₂O₄: [M]: 479.21687, found: 424.2 [M⁺-butene+H⁺], 502.2 [M⁺-butene+H⁺], 514.1 [M⁺+Na⁺], 514.1 [M⁺+Cl⁺]; **HR-MS (ESI, MeOH):** m/z calcd for [C₁₅H₁₄N₂O₄]: 502.20609, found: 502.2052.
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA – Electronic Supporting Information

Fmoc-PNA-N\textsubscript{3}-OH (6): in a round bottom flask 5 (113.0mg, 0.236mmol, 1eq) was dissolved in 10mL DCM and cooled to 0°C with an ice bath. To this mixture 4mL TFA was added dropwise and the solution was left to react for 5 minutes at 0°C and subsequently 30 minutes at r.t. When conversion was complete the solvents were evaporated in presence of MeOH (10mL). Remaining TFA was finally co-evaporated with CHCl\textsubscript{3} to obtain 6 as a yellowish solid in a quantitative yield. TLC (AcOEt) R\textsubscript{f}: 0.50; 1H NMR (DMSO-d\textsubscript{6}, 300MHz, major rotamer) \(\delta\text{ppm})\: 12.73 (s, 1H), 7.89 (d, \(J = 7.4 \text{ Hz}, 2\text{H}), 7.67 (d, \(J = 7.4 \text{ Hz}, 2\text{H}), 7.44 – 7.27 (m, 5\text{H}), 4.31 (t, \(J = 7.6 \text{ Hz}, 2\text{H}), 4.22 (d, \(J = 7.6 \text{ Hz}, 1\text{H}), 4.16 (s, 2\text{H}), 3.38 – 3.23 (m, 2\text{H}), 3.22 – 3.05 (m, 2\text{H}).; 13C NMR (DMSO-d\textsubscript{6}, 75MHz, major rotamer) \(\delta\text{ppm})\: 170.4, 167.9, 156.3, 143.8, 140.7, 127.6, 127.0, 125.1, 120.1, 65.4, 49.5, 49.1, 46.7, 45.7, 38.8; MS (ESI, MeOH): \(m/z\) calcd for C\textsubscript{21}H\textsubscript{21}N\textsubscript{5}O\textsubscript{5}\ [M]: 423.15427, found: 424.2 [M+H]+, 422.1 [M-H]−, 845.2 [2M-H]; HR-MS (ESI, MeOH): \(m/z\) calcd for [C\textsubscript{21}H\textsubscript{22}N\textsubscript{5}O\textsubscript{5}]+: 424.16155, found: 424.1610.

PNA synthesis: the synthesis of all the PNAs was performed with standard Fmoc-based manual synthesis protocol using Fmoc-PNA-T(N\textsubscript{3})-OH, 4 and 6 in addition to standard monomers, on a Rink amide ChemMatrix resin loaded with Fmoc-Gly-OH as first monomer (0.2 mmol/g), using HBTU/DIPEA as activating mixture. Cleavage of the resin was performed using a TFA/m-cresol 9:1 solution for all the PNA strands except for PNA F which was cleaved with a TFA/m-cresol/tioanisole 8:1:1 solution. The cleavage step was carried out for 1h, twice.

Comparison of cleavage cocktails for the protection of furan: few beads (about 1mg) of a test resin containing a furan moiety (Fmoc-AFGATCT-Gly-Res) were placed in an eppendorf tube, then 50 µL of cleavage cocktail (a- TFA/m-cresol 9:1, b- TFA/m-cresol/tioanisole 8:1:1, c- TFA/TIS/m-cresol 8:1:1, d- TFA/TIS/tioanisole 8:1:1) was added and left to react. After 1h30’ ethyl ether was added and the precipitate was collected by centrifugation. The crudes were then analyzed by HPLC-UV and the identity of the peaks was confirmed by purification and MALDI analysis.

General protocol for click reaction: different solutions were prepared: 200 mM solution of 2 in MeOH, 200 mM solution of copper sulfate in H\textsubscript{2}O, 200 mM solution of sodium ascorbate in H\textsubscript{2}O. Reaction was carried out with a final PNA concentration (from crude PNA) of 2 mM or 5 mM using a molar ratio alkyne/ascorbate/Cu(II) of 2:4:2. The mixture was then left to react for 2h before the purification (no significant variation of the HPLC profile observed between 15 minutes and 1h).

UPLC-MS characterization: PNA T: R\textsubscript{t}: 2.90 min, MW: 3090.98, \(m/z\) found: 1031.4 [M+3H]3+, 773.6 [M+4H]4+, 619.2 [M+5H]5+, 516.1 [M+6H]6+; PNA T(f): R\textsubscript{t}: 3.19 min, MW: 3351.23, \(m/z\) found: 1187.3 [M+3H]3+, 838.8 [M+4H]4+, 671.2 [M+5H]5+, 599.6 [M+6H]6+; PNA f: R\textsubscript{t}: 3.07 min, MW: 3227.13, \(m/z\) found: 1176.8 [M+3H]3+, 807.8 [M+4H]4+, 646.5 [M+5H]5+, 538.9 [M+6H]6+; PNA F: R\textsubscript{t}: 3.13 min, MW: 3089.00, \(m/z\) found: 1030.8 [M+3H]3+, 773.3 [M+4H]4+, 618.8 [M+5H]5+, 516.1 [M+6H]6+.

Fmoc-PNA-N\textsubscript{3}-OH (6): in a round bottom flask 5 (113.0mg, 0.236mmol, 1eq) was dissolved in 10mL DCM and cooled to 0°C with an ice bath. To this mixture 4mL TFA was added dropwise and the solution was left to react for 5 minutes at 0°C and subsequently 30 minutes at r.t. When conversion was complete the solvents were evaporated in presence of MeOH (10mL). Remaining TFA was finally co-evaporated with CHCl\textsubscript{3} to obtain 6 as a yellowish solid in a quantitative yield. TLC (AcOEt) R\textsubscript{f}: 0.50; 1H NMR (DMSO-d\textsubscript{6}, 300MHz, major rotamer) \(\delta\text{ppm})\: 12.73 (s, 1H), 7.89 (d, \(J = 7.4 \text{ Hz}, 2\text{H}), 7.67 (d, \(J = 7.4 \text{ Hz}, 2\text{H}), 7.44 – 7.27 (m, 5\text{H}), 4.31 (t, \(J = 7.6 \text{ Hz}, 2\text{H}), 4.22 (d, \(J = 7.6 \text{ Hz}, 1\text{H}), 4.16 (s, 2\text{H}), 3.38 – 3.23 (m, 2\text{H}), 3.22 – 3.05 (m, 2\text{H}).; 13C NMR (DMSO-d\textsubscript{6}, 75MHz, major rotamer) \(\delta\text{ppm})\: 170.4, 167.9, 156.3, 143.8, 140.7, 127.6, 127.0, 125.1, 120.1, 65.4, 49.5, 49.1, 46.7, 45.7, 38.8; MS (ESI, MeOH): \(m/z\) calcd for C\textsubscript{21}H\textsubscript{21}N\textsubscript{5}O\textsubscript{5}\ [M]: 423.15427, found: 424.2 [M+H]+, 422.1 [M-H]−, 845.2 [2M-H]; HR-MS (ESI, MeOH): \(m/z\) calcd for [C\textsubscript{21}H\textsubscript{22}N\textsubscript{5}O\textsubscript{5}]+: 424.16155, found: 424.1610.
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA – Electronic Supporting Information

Fig. S1: MALDI spectrum of the crude from test a (top) and HPLC1-UV profiles of the crude obtained from the different cleavage cocktails.

Measurements of T_m values: thermal denaturation profiles were measured by monitoring the absorbance at 260nm from 18°C to 90°C and from 90°C to 18°C with a heating rate of 1°C/min and recording every 0.1°C (3 cycles). Measurement condition: strand concentration = 5µM in pH 7.0 PBS buffer (100 mM NaCl, 10 mM NaH$_2$PO$_4$). Melting temperatures were calculated from the first derivative of the heating curves using the Cary 300 Bio software.

Table S1: melting temperature (°C) of the PNA:DNA complexes; PNA X: Ac-GGGCAXGATCT-Gly-NH$_2$, DNA Y: 5'-AGATCYTGCCC-3', DNA as: 5'-GGGCATGATCT-3'. Number inside parentheses indicate the hysteresis of the processes, i.e. the differences between the melting and annealing temperature, obtained by the heating and cooling curves respectively.

<table>
<thead>
<tr>
<th>PNA</th>
<th>DNA</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DNA T</td>
<td>68.94 (4.78)</td>
<td>49.97 (4.10)</td>
<td>55.44 (3.63)</td>
<td>56.84 (4.21)</td>
</tr>
<tr>
<td>f</td>
<td></td>
<td>49.98 (3.08)</td>
<td>49.81 (3.02)</td>
<td>59.52 (3.28)</td>
<td>51.24 (2.13)</td>
</tr>
<tr>
<td>T(f)</td>
<td></td>
<td>69.03 (2.99)</td>
<td>51.00 (2.62)</td>
<td>55.79 (2.78)</td>
<td>57.85 (3.11)</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>47.37 (2.98)</td>
<td>47.21 (3.28)</td>
<td>47.96 (3.18)</td>
<td>47.22 (3.60)</td>
</tr>
<tr>
<td>DNA T</td>
<td></td>
<td>50.52 (3.33)</td>
<td>33.86 (3.38)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General protocol for crosslink reactions: a solution was prepared at 10 µM concentration of each strand in PBS with a total volume of 50 µL solution. The complexes were slowly annealed from 90° to room temperature (in about 2h). During the crosslink reaction, temperature was kept constant in an Eppendorf thermomixer comfort at 25°C (unless otherwise mentioned). A stock solution of NBS (0.5 nmol/2 µL) was freshly prepared and to start the reaction, 1 equiv (=0.5 nmol) of NBS was added. This was repeated every 15 min until 4 equiv of NBS were added. The reactions were monitored by HPLC2.

For strand displacement experiments dsDNA was annealed at 20 µM probe concentration, then PNA was added to a final probe concentration of 10 µM, the solution was then left to equilibrate at controlled temperature (25°C or 37°C) for 3 hours.

General protocol for PAGE: a 20% polyacrylamide gel (acrylamide:bisacrylamide 19:1) for short oligonucleotide probe, or a 16% polyacrylamide gel (acrylamide:bisacrylamide 37.5:1) for long oligonucleotide probes, were prepared in 1x Tris-Borat-EDTA (TBE) buffer containing 7 M urea. The temperature of the gel was stabilized with a Julabo F12 at 25°C. The power supply used for gel electrophoresis was a consort EV202 and a voltage of 260 V was used to run the gels. Gels were stained with GelRed (VWR) or SYBR gold (Thermo Fisher Scientific, Life Technologies) and pictures were taken with an Autochemi imaging system (UVP). 4µL of the crosslink solution (10µM) were mixed with 16 µL formamide and from this mixture 8 µL was loaded on the gel.
PAGE experiments

5'- AGA TCY TGC CC -3'
H$_2$N-Gly- TCT AGX ACG GG -Ac

* 10 uM solutions
* 4eq NBS (1eq every 15')
In PBS @ 25°C

Fig. S2: full denaturing PAGE picture of the PNA:DNA crosslink experiment.

Fig. S3: full denaturing PAGE picture of the PNA:DNA crosslink experiment with long sequences. GelRed staining was used.
Fig. S4: denaturing PAGE experiments for PNA T(f) probe. Lanes (from left to right, each gel): 1) no NBS activation; 2) DNA A; 3) DNA C; 4) DNA G; 5) DNA T. Left gel was stained with GelRed, right gel was stained with SybrGold.

Fig. S5: full denaturing PAGE picture of the strand invasion crosslink experiments. Lanes (from left to right, each section): 1) Ref dsDNA A; 2) + PNA f; 3) + PNA F; 4) Ref dsDNA C; 5) + PNA f; 6) + PNA F. Stain: SybrGold.
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA – Electronic Supporting Information

Fig. S6: effect of 2% DMF in strand displacement crosslink experiments. Displacement was carried out at 37°C for 12h. Lanes (from left to right): 1) Ref; 2) PNA f + dsDNA A; 3) PNA f + dsDNA A + 2% DMF; 4) PNA f + dsDNA C; 5) PNA f + dsDNA C + 2% DMF; 6) PNA F + dsDNA A; 7) PNA F + dsDNA A + 2% DMF; 8) PNA F + dsDNA F; 9) PNA F + dsDNA C + 2% DMF; 10) PNA T(f) + dsDNA A; 11) PNA T(f) + dsDNA A + 2% DMF; 12) PNA T(f) + dsDNA C; 13) PNA T(f) + dsDNA C + 2% DMF; 14) color.

Table S2: densitometric evaluation of the ICL regions of the PAGE experiments shown in Fig. 3 and Fig. S2.°

<table>
<thead>
<tr>
<th>Lane</th>
<th>PNA</th>
<th>DNA</th>
<th>SybrGold</th>
<th>GelRed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Min</td>
</tr>
<tr>
<td>1</td>
<td>Ref lane</td>
<td>57.475</td>
<td>53</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>f A</td>
<td>61.761</td>
<td>50</td>
<td>115</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>99.507</td>
<td>52</td>
<td>189</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>55.362</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>54.362</td>
<td>42</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>T(f) A</td>
<td>54.489</td>
<td>43</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>57.764</td>
<td>45</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>56.565</td>
<td>37</td>
<td>205</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>56.036</td>
<td>48</td>
<td>97</td>
</tr>
<tr>
<td>10</td>
<td>F A</td>
<td>74.38</td>
<td>52</td>
<td>120</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>69.986</td>
<td>57</td>
<td>87</td>
</tr>
<tr>
<td>12</td>
<td>T</td>
<td>60.264</td>
<td>49</td>
<td>104</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>61.312</td>
<td>53</td>
<td>71</td>
</tr>
</tbody>
</table>

° As it cannot be assumed that the response factor for DNA and PNA-DNA is identical, the densitometric absolute values are given only for the ICL band region.
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA

Electronic Supporting Information

Fig. S7: histogram representation of the data presented in Table S2. Left: gel stained with SybrGold; right: gel stained with GelRed.

Table S3: densitometric evaluation of the ICL region of PAGE shown in Fig. 5 and Fig. S5.

<table>
<thead>
<tr>
<th>Lane</th>
<th>PNA</th>
<th>DNA</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ref dsDNA A</td>
<td></td>
<td>80.486</td>
<td>51</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>dsDNA A</td>
<td>79.372</td>
<td>68</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td></td>
<td>76.793</td>
<td>68</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>Ref dsDNA C</td>
<td></td>
<td>65.128</td>
<td>51</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>dsDNA C</td>
<td>118.003</td>
<td>68</td>
<td>238</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td></td>
<td>85.293</td>
<td>51</td>
<td>119</td>
</tr>
<tr>
<td>7</td>
<td>Ref dsDNA A</td>
<td></td>
<td>76.559</td>
<td>51</td>
<td>153</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>dsDNA A</td>
<td>87.462</td>
<td>68</td>
<td>170</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td></td>
<td>83.417</td>
<td>68</td>
<td>153</td>
</tr>
<tr>
<td>10</td>
<td>Ref dsDNA C</td>
<td></td>
<td>82.479</td>
<td>68</td>
<td>102</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>dsDNA C</td>
<td>135.062</td>
<td>85</td>
<td>187</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td></td>
<td>175.803</td>
<td>136</td>
<td>238</td>
</tr>
</tbody>
</table>

As it cannot be assumed that the response factor for DNA and PNA-DNA is identical, the densitometric absolute values are given only for the ICL.

11
Fig. S8: histogram representation of the data presented in Table S3. Brighter bars correspond to reference lanes.
Identification of the ICL products

HPLC analysis of the ICL experiments was performed at 0 eq, 2eq and 4 eq of NBS added. Samples were prepared diluting 2 µL of sample with 18µL of milliQ water, sample analysis was performed using HPLC2 conditions with 15 µL of sample. DNA and starting PNA retention times (respectively 10 minutes and 13 minutes regions) were determined by injection of reference samples. ICL was identified with the peaks appearing before the PNA after the addition of NBS. This peaks were isolated, freeze-dried, and the identity was analyzed with both PAGE experiments and MALDI-TOF analysis.

Fig. S9: example of HPLC trace of the ICL experiments at 0 eq (blue), 2 eq (red) and 4 eq NBS (green); (A) PNA F + DNA A, (B) PNA F + DNA C, (C) PNA f + DNA C, (D) zoom of the 12-15 minutes region of the PNA F + DNA C experiments.

Fig. S10: HPLC trace of purified regions of a PNA F+ DNA A sample. In the insert the denaturing PAGE gel shift of the purified peaks in comparison with DNA A and PNA T(f) ICL experiments. Lane D in the gel corresponds to the B peak of a PNA F + DNA C ICL experiment. SybrGold staining was used.
For MALDI-TOF analysis, the collected products were directly dissolved in 2 µL of matrix solution and spotted on the MALDI plate. Both DNA and PNA matrixes were tested, but signals were obtained only when PNA matrix was used (2,5-Dihydroxybenzoic acid). Examples of MALDI analysis are reported in Fig. S11, analysis of the MALDI peaks was carried out with a weighted average of the signals in order to reduce noise and to obtain the mean m/z associated to the signal (Table S4).

Fig. S11: MALDI spectra of the isolated peaks (A), and zoom of the region used for the peak analysis (B).

Table S4: weighted average of the ICL MALDI peaks. Δ mass calculated in respect the MW of the furan-containing PNA.

<table>
<thead>
<tr>
<th></th>
<th>DNA</th>
<th>Δ mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>f</td>
<td>3333.4</td>
<td>- 106.3</td>
</tr>
<tr>
<td>F</td>
<td>3219.1</td>
<td>3194.9</td>
</tr>
</tbody>
</table>
NMR spectra

Fig. S12: 1H-NMR and 13C-NMR (APT) of compound 1
Fig. S13: 1H-NMR and 13C-NMR (APT) of compound 2
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA – Electronic Supporting Information

![H-NMR and 13C-NMR (APT) of compound 3](image-url)

Fig. S14: 1H-NMR and 13C-NMR (APT) of compound 3
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA – Electronic Supporting Information

Fig. S15: 1H-NMR and 13C-NMR (APT) of compound 4
Fig. S16: 1H-NMR and 13C-NMR (APT) of compound 5
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA – Electronic Supporting Information

Fig. S17: 1H-NMR and 13C-NMR (APT) of compound 6
Fig. 18: UPLC-MS of PNA T: UPLC-MS trace (top), MS spectrum of the corresponding peak at 2.90 min (center) and mathematical deconvolution of the multicharged signals (bottom).
Furan-PNA: a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA – Electronic Supporting Information

Fig. 19: UPLC-MS of PNA T(α): UPLC-MS trace (top), MS spectrum of the corresponding peak at 3.19 min (center) and mathematical deconvolution of the multicharged signals (bottom).
Fig. 20: UPLC-MS of PNA f. UPLC-MS trace (top), MS spectrum of the corresponding peak at 3.07 min (center) and mathematical deconvolution of the multicharged signals (bottom).
Fig. S21: UPLC-MS of PNA F: UPLC-MS trace (top), MS spectrum of the corresponding peak at 3.13 min (center) and mathematical deconvolution of the multicharged signals (bottom).