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The built environment in which we live, work, and play largely affects various 
aspects of our health. Three health aspects were studied in more detail in this thesis, 
and these are associated with the built environment in different ways. First, 
perceived and objective characteristics of the built environment may encourage or 
discourage people to be physically active. Second, accessibility to primary health 
care is largely influenced by the road network and the distribution of both the 
population and health care facilities. Third, the environment where people live and 
their individual travel patterns both have a major influence on their exposure to air 
pollution. 

However, studies examining the relationship between the built environment and 
these health aspects have several shortcomings. Often solely traditional methods 
are used to obtain data, the capabilities of geospatial data and analyses are often 
insufficiently exploited, and frequently individual travel patterns are neglected. 

To overcome these shortcomings, the aim of this thesis is to examine the 
relationship between the built environment and health by incorporating individual 
travel patterns, and using both existing and new geospatial data sources and 
analyses implemented in a GIS.
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In recent years, there has been a growing interest in understanding the different 
determinants of health. Besides personal characteristics, the built environment is an 
important determinant from a policy perspective, offering the possibility of a long-term 
influence on health for a large population group. The built environment in which we 
live, work, and play largely affects various aspects of our health, such as: physical activity, 
exposure to air pollution, accessibility to health care, and contact with green 
environments. Examples of built environment characteristics influencing these health 
aspects are the land use pattern, the road network density, and the spatial distribution of 
facilities (e.g. primary health care physicians). 
 
Three health aspects–particularly important in developed countries–were examined in 
this thesis, to study the relationship between the built environment and health in various 
contexts. We selected physical activity, accessibility to primary health care, and exposure 
to air pollution, as a plethora of studies have shown that they are of high importance for 
creating healthy communities and people. Being physically active, having a good 
accessibility to primary health care, and not being exposed to high air pollution 
concentrations all have positive short- and long-term health effects. These three health 
aspects are associated with the built environment in different ways. First, perceived and 
objective characteristics of the built environment may encourage or discourage people 
to be physically active. Second, accessibility to primary health care is largely influenced 
by the road network and the distribution of both the population and health care facilities. 
Third, the environment where people live and their individual travel patterns both have 
a major influence on their exposure to air pollution.  
 
However, studies examining the relationship between the built environment and these 
health aspects have several shortcomings. First, often solely traditional methods (e.g. 
questionnaires) are used to obtain data, such as physical activity levels or built 
environment characteristics, which may lead to subjective and biased measures. Second, 
the geographical aspect of the relationship is often overlooked, insufficiently exploiting 
the capabilities of geospatial data and analyses. Third, frequently only the residential 
neighbourhood is considered when studying the impact of the built environment on the 
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exposure to air pollution or greenness, without incorporating individual travel patterns. 
These shortcomings introduce two geographical problems: the Modifiable Areal Unit 
Problem when using different sized or shaped areal units, and the Uncertain 
Geographical Context Problem when neglecting the actual context where people spend 
their time. Because of these shortcomings, the resulting associations might be inaccurate, 
possibly misinforming policy makers trying to improve health by altering the built 
environment. 
 
To overcome these shortcomings, the aim of this thesis is to examine the relationship 
between the built environment and health by incorporating individual travel patterns, 
and using both existing and new geospatial data sources and analyses. From this general 
aim, two more specific research objectives are formulated. The first objective is to apply 
existing geospatial analyses to study the relationship between the built environment and 
health. The second objective is to additionally incorporate individual travel patterns 
when examining this relationship, using both existing and new geospatial data sources.  
 
For the first objective, geospatial analyses were implemented in a Geographic 
Information System (GIS) to check the correspondence between objective and perceived 
built environment characteristics and to calculate advanced measures of accessibility to 
primary health care. It was found that perceived characteristics do not correspond well 
with objectively determined characteristics, and that this correspondence is influenced 
by one's physical activity. Also, GIS was deemed very useful in calculating advanced 
measures of accessibility incorporating factors ignored in traditional measures. Using 
geospatial analyses in GIS can thus lead to a better understanding of the relationship 
between the built environment and health. However, depending on the method used 
(objective or perceived measures of the built environment, or different accessibility 
measures) the results can differ significantly. 
 
To meet the second objective, individual travel patterns were obtained–using either 
Global Positioning System (GPS) data combined with accelerometer data, or mobile 
phone network data–to measure where people are mostly physically active and to 
calculate their exposure to air pollution. It was found that people are more physically 
active in green areas than in non-green areas. Furthermore, the exposure to air pollution 
is significantly different when individual travel patterns were incorporated rather than 
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only taking into account the home location. These results show how incorporating 
individual travel patterns can contribute to a better insight in the relationship between 
the built environment and health, not possible when only considering the residential 
location. 
 
This thesis has shown that the use of various geospatial data sources and analyses 
implemented in a GIS, combined with other data sources, offers interesting insights into 
the relationship between the built environment and health, difficult to obtain using 
traditional methods. With each data source and analysis having its own strengths and 
weaknesses, researchers and policy makers should make a choice based on their research 
questions and available resources. The presented geospatial data sources and analyses 
also have large potential in other health-related research domains, and technological 
advances may further improve these techniques in the future. 
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De laatste jaren wordt er gestreefd naar een beter begrip van de verschillende factoren 
die onze gezondheid beïnvloeden. Naast persoonlijke kenmerken is ook de bebouwde 
omgeving een belangrijke factor voor beleidsmakers, die hen de mogelijkheid biedt om 
de gezondheid van een grote bevolkingsgroep op lange termijn te beïnvloeden. De 
bebouwde omgeving waarin we wonen, werken en ons ontspannen heeft een grote 
invloed op verschillende gezondheidsaspecten, zoals de fysieke activiteit, de blootstelling 
aan luchtvervuiling, de bereikbaarheid van gezondheidszorg en het contact met groene 
gebieden. Enkele kenmerken van de bebouwde omgeving die deze gezondheidsaspecten 
beïnvloeden zijn het landgebruik, de dichtheid van het wegennetwerk en de ruimtelijke 
spreiding van faciliteiten (bv. huisartsen). 
 
Drie specifieke gezondheidsaspecten – vooral van belang in ontwikkelde landen – 
werden grondiger bestudeerd in deze thesis om zo de relatie tussen de bebouwde 
omgeving en gezondheid in verschillende contexten te onderzoeken. We weerhielden 
fysieke activiteit, bereikbaarheid van gezondheidszorg en blootstelling aan 
luchtvervuiling omdat verschillende studies hun belang aantoonden bij het creëren van 
een gezonde bevolking. Voldoende fysieke activiteit, een goede bereikbaarheid van 
gezondheidszorg en weinig blootstelling aan luchtvervuiling hebben positieve 
gezondheidseffecten op zowel korte als lange termijn. Deze drie gezondheidsaspecten 
zijn op verschillende manieren geassocieerd met de bebouwde omgeving. Ten eerste 
kunnen gepercipieerde en objectieve kenmerken van de bebouwde omgeving mensen 
aan- of ontmoedigen om fysiek actief te zijn. Ten tweede is bereikbaarheid in grote mate 
afhankelijk van het wegennetwerk en de verdeling van zowel de bevolking als de 
faciliteiten die gezondheidszorg aanbieden. Ten derde beïnvloeden de omgeving waar 
mensen wonen en hun individuele verplaatsingspatronen hun blootstelling aan 
luchtvervuiling. 
 
Vaak lijden studies die de relatie tussen de bebouwde omgeving en gezondheidsaspecten 
onderzoeken echter aan verschillende tekortkomingen. Ten eerste worden regelmatig 
enkel traditionele methoden (bv. enquêtes) gebruikt om data betreffende fysieke 
activiteit en de bebouwde omgeving te verzamelen, wat aanleiding kan geven tot 
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subjectieve en/of foutieve waarden. Ten tweede wordt het geografische aspect van de 
relatie tussen de bebouwde omgeving en gezondheid vaak over het hoofd gezien, 
waardoor de mogelijkheden van ruimtelijke data en analyses niet ten volle worden benut. 
Ten derde wordt dikwijls enkel de woonlocatie in rekening gebracht bij het bestuderen 
van de impact van de bebouwde omgeving op de blootstelling aan luchtvervuiling of het 
contact met groene gebieden, zonder rekening te houden met individuele 
verplaatsingspatronen. Deze tekortkomingen leiden tot twee geografische problemen: 
enerzijds het probleem van de schaalbaarheid van ruimtelijke eenheden (Modifiable 
Areal Unit Problem) wanneer ruimtelijke eenheden van verschillende vorm of grootte 
gebruikt worden, en anderzijds het probleem van de onzekere geografische context 
(Uncertain Geographical Context Problem) wanneer de werkelijke locatie waar mensen 
tijd spenderen niet in rekening wordt gebracht. Door deze tekortkomingen kunnen de 
verkregen relaties onnauwkeurig zijn, waardoor beleidsmakers die de gezondheid van de 
bevolking proberen te verbeteren door de bebouwde omgeving aan te passen mogelijk 
verkeerd geïnformeerd worden. 
 
Om die redenen heeft deze thesis als doel de relatie tussen de bebouwde omgeving en 
gezondheid te bestuderen rekening houdend met individuele verplaatsingspatronen en 
gebruik makend van zowel bestaande als nieuwe ruimtelijke data en analyses. Dit leidde 
tot de volgende twee specifieke doelstellingen. De eerste is om via bestaande ruimtelijke 
analyses de relatie tussen de bebouwde omgeving en gezondheid te bestuderen. De 
tweede doelstelling bestaat erin om bijkomend individuele verplaatsingspatronen in 
rekening te brengen bij het bestuderen van deze relatie, door gebruik te maken van zowel 
bestaande als nieuwe ruimtelijke databronnen. 
 
Om de eerste doelstelling te bereiken werden ruimtelijke analyses geïmplementeerd in 
een geografisch informatiesysteem (GIS) om enerzijds de relatie tussen objectieve en 
gepercipieerde kenmerken van de bebouwde omgeving te controleren en anderzijds 
geavanceerde bereikbaarheidsmaten te berekenen. Hieruit bleek dat gepercipieerde 
omgevingskenmerken niet goed overeenkomen met objectief bepaalde kenmerken en 
dat deze relatie beïnvloed wordt door de hoeveelheid fysieke activiteit. GIS bleek 
bovendien heel nuttig om geavanceerde bereikbaarheidsmaten te berekenen die 
rekening houden met factoren die vaak genegeerd worden bij traditionele maten. 
Gebruik makend van ruimtelijke analyses in een GIS kan de relatie tussen de bebouwde 
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omgeving en gezondheid verder uitgediept worden. Belangrijk hierbij is dat afhankelijk 
van de methode (objectieve of gepercipieerde omgevingskenmerken, of verschillende 
bereikbaarheidsmaten) het resultaat significant verschillend kan zijn. 
 
Om de tweede doelstelling te realiseren, werd er gebruik gemaakt van twee databronnen 
met individuele verplaatsingspatronen, namelijk Global Positioning System (GPS)-
gegevens gecombineerd met accelerometerdata, en gsm-netwerkdata. Hieruit werd 
afgeleid waar mensen het meest fysiek actief zijn en wat hun blootstelling tot 
luchtvervuiling is. Zo bleek dat mensen fysiek actiever zijn in groene gebieden dan in 
niet-groene gebieden. Tevens is de blootstelling aan luchtvervuiling significant 
verschillend wanneer individuele verplaatsingspatronen in rekening gebracht worden en 
niet louter de woonlocatie. Deze resultaten tonen aan hoe het in rekening brengen van 
verplaatsingspatronen kan bijdragen tot een beter begrip van de relatie tussen de 
bebouwde omgeving en gezondheid, iets wat niet mogelijk is wanneer enkel de 
woonomgeving in rekening wordt gebracht. 
 
Als besluit kunnen we stellen dat dit doctoraat aantoont dat het gebruik van 
verschillende ruimtelijke databronnen en analyses geïmplementeerd in een GIS en 
gecombineerd met andere databronnen tot interessante inzichten kan leiden wat betreft 
de relatie tussen de bebouwde omgeving en gezondheid. Dergelijke inzichten zijn 
moeilijk te verkrijgen wanneer louter traditionele methoden gebruikt worden. Iedere 
databron en analyse heeft zijn eigen sterktes en zwaktes, waardoor onderzoekers en 
beleidsmakers een keuze moeten maken op basis van hun onderzoeksvragen en de 
beschikbare middelen. De voorgestelde ruimtelijke databronnen en analyses hebben 
tevens een groot potentieel in andere gezondheidsgerelateerde onderzoeksdomeinen. 
Technologische vernieuwingen kunnen deze technieken in de toekomst ongetwijfeld 
nog verder verbeteren. 
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1.1 INTRODUCTION 
 
The main purpose of this thesis is to examine the relationship between the built 
environment and health, how this relationship is influenced by people's individual travel 
patterns, and how geospatial data and analyses can help to further understand this. 
 
The built environment in which we live, work, and play largely affects our health. As 
early as in 400 BC, Hippocrates conceptualised the influence of place on health, 
explaining how places oriented differently towards the sun and the wind are 
characterised by distinct health conditions (Hippocrates, n.d.). Later, during the 
industrialisation in the 1800s and 1900s, epidemic diseases such as cholera and 
tuberculosis were linked with poor housing conditions and the distribution and/or use 
of polluted water pumps (Rosen, 1985; Snow, 1855). Even now, worldwide, there is a 
multitude of health issues related to the built environment. Some actual examples that 
illustrate the association between the built environment and health-related aspects–
particularly important in developed countries–are: industrial activities might have a 
negative impact on drinking and recreational water quality, the built environment may 
be designed to promote walking and cycling activities, the place we live or the route we 
take to work may impact our exposure to air pollution, the spatial distribution of 
hospitals and physicians influences the accessibility to health care, the accessibility to 
healthy eating facilities differs significantly from place to place, and an urban design 
where green areas are well incorporated might improve mental health. Not only does the 
built environment influence health, personal characteristics (e.g. gender, socio-
economic status, or one's attitude and preferences) may moderate this relationship 
(Barton & Grant, 2006).  
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However, when studying the relationship between the built environment and certain 
health aspects, in recent scientific work, often traditional methods (e.g. questionnaires) 
were used, the capabilities of geospatial analyses were insufficiently exploited, and/or 
individual travel patterns were neglected, leading to inaccurate results and possibly 
misinforming policy makers. In this thesis, we try to bridge these gaps by studying the 
relationship between the built environment and health using existing and new geospatial 
data and analyses, and analysing the influence of individual travel patterns. 
 
The following section will describe the built environment and how it is related to 
different health aspects (1.2). Next, the problem statement of the current research on this 
topic will be described, together with two fundamental geographical issues that are often 
referred to in this context (1.3). Finally, the research objectives of this PhD research will 
be formulated and an outline of the thesis will be presented (1.4), as well as a list of 
publications included in this thesis (1.5). 
 

1.2 THE BUILT ENVIRONMENT AND ITS RELATIONSHIP WITH DIFFERENT 

HEALTH ASPECTS 
 
The built environment is defined as "the totality of the following elements: land use 
patterns; the distribution across space of activities and the buildings that house them; the 
transportation system, the physical infrastructure of roads, sidewalks, bike paths, etc., as 
well as the service this system provides; and urban design, the arrangement and appearance 
of the physical elements in a community" (Handy, Boarnet, Ewing, & Killingsworth, 2002, 
p. 65). Researchers in the field of urban design and planning have mainly studied how 
the design of the built environment affects travel behaviour, both motorised and non-
motorised (Handy et al., 2002; Southworth, 2005). Consequently, a new research field 
emerged when health researchers examined the impact of the built environment on 
physical activity (PA) (Sallis, Frank, Saelens, & Kraft, 2004) and other health outcomes, 
such as the exposure to air pollution, water quality, mental health, and the accessibility 
to health services and healthy eating facilities (Srinivasan, O’Fallon, & Dearry, 2003). 
 
From a policy perspective, the built environment is an important factor that decision-
makers can change to improve health (Frank, Kavage, & Devlin, 2012). In contrast to 
personal and psycho-social characteristics, built environment characteristics reach a 
large number of people and initiate long-term changes on health (Gebel, Bauman, & 
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Petticrew, 2007; Ghekiere, Vanwolleghem, Van Cauwenberg, Cardon, & Deforche, 
2015). The relationship between the built environment and health has been a hot topic 
in scientific research for several years (Frank et al., 2012) and several special issues have 
been published on this topic (Boarnet, 2007; Jackson, 2003; Killingsworth, Earp, & 
Moore, 2003; Timmermans, Kemperman, & van den Berg, 2016). This growing 
knowledge of the relationship between the built environment and health is therefore 
observed in several health-promoting policy programmes in developed countries. 
Examples of such programmes are: Healthy People 2020 (Office of Disease Prevention 
and Health Promotion, 2016) and Urban Design 4 Health (Frank, 2016) in the US, the 
7th Environment Action Programme (European Environment Agency, 2013) in the EU, 
and the service Environment & Health (Department of Environment, Nature and 
Energy, 2016) in Flanders. 
 
In this thesis, three health aspects–particularly important in developed countries–are 
studied more thoroughly, to examine the relationship and use the proposed geospatial 
data and analyses in various contexts. The following three aspects of the relationship 
between the built environment and health were selected: PA (1.2.1), accessibility to 
primary health care (1.2.2), and the exposure to air pollution (1.2.3). The selection of 
these three aspects grew naturally during the PhD research, when appropriate datasets 
became available or a research question emerged from reading research papers or 
discussions with colleagues or promotors, always considering the main goal of the thesis: 
use existing and new geospatial data and analyses to examine the relationship between 
the built environment and health. We specifically selected these three aspects, because 
they are recurring in most of the aforementioned special issues (ibid.). Several 
researchers have identified these health aspects for being strongly influenced by the built 
environment and of high importance for creating healthy communities and people 
(Frank et al., 2012; Srinivasan et al., 2003). In this thesis, it is studied how characteristics 
of the built environment are related with PA, how using different methods influences 
the calculated accessibility to health care, and how being in contact with different 
environments affects the exposure to air pollution. In the Belgian context, these three 
aspects are important because of the general low amounts of PA and following health 
problems, the use of crude measures of health care accessibility, and the high exposure 
to air pollution (Bauman et al., 2009; IRCEL CELINE, 2015; RIZIV, 2013). The research 
in this thesis focuses both on adults (18 years and older), to obtain a broad view on the 



CHAPTER 1 

4 

relationship between the built environment and health, and on late middle-aged adults 
(58–65 years), since this age cohort is on the brink of retirement or recently retired and 
thus has varying time-activity patterns interesting for this research, and is associated 
with higher health risks. 
 

1.2.1 PHYSICAL ACTIVITY 
 
PA is defined as "bodily movements produced by skeletal muscles that result in energy 
expenditure" (Caspersen, Powell, & Christenson, 1985, p. 126) and is often classified into 
occupational, household-related, transport-related, and leisure time PA (Sallis et al., 
2006). Sedentary behaviour is not a synonym for physical inactivity, nor is it the opposite 
of PA: people may perform sufficient amounts of PA, but can still spend the rest of the 
time being sedentary (Owen et al., 2011). Examples of sedentary behaviour are: watching 
television, driving a car, sitting during meals, using a computer, and reading. 
 
Doing regular PA (approximately 150 minutes of moderate-to-vigorous PA (MVPA)–
more than 1,952 accelerometer counts per minute–per week for adults) has several 
positive short- and long-term effects on health (Department of Health, 2004; Freedson, 
Melanson, & Sirard, 1998; Garber et al., 2011; Haskell et al., 2007; Pate, Pratt, Blair, & 
Haskell, 1995; U.S. Department of Health and Human Services, 1996; Warburton, Nicol, 
& Bredin, 2006). PA plays a significant role in weight management and it lowers blood 
pressure (U.S. Department of Health and Human Services, 1996). Sufficient amounts of 
PA and less sedentary behaviour are associated with a decreased risk for several chronic 
diseases (e.g. cardiovascular diseases), obesity, some types of cancer, premature deaths, 
and lower mortality, resulting in lower economic costs (Andersen, 2003; Department of 
Health, 2004; Dishman, Washburn, & Heath, 2004; Hamilton, Healy, Dunstan, 
Theodore, & Owen, 2012; Healy et al., 2008; Katzmarzyk, Church, Craig, & Bouchard, 
2009). 
 
Although the benefits of PA are well-known, a significant part of the population living 
in developed countries does not meet the minimal guidelines to achieve health benefits 
(U.S. Department of Health and Human Services, 2008; WHO, 2010). In Belgium, self-
report data from the Belgian Health Survey indicates that 36% of all people aged 15 and 
older reaches the recommended amount of at least 30 minutes MVPA, whereas in the 
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age group of 55 to 64 year olds only 32% reaches this recommendation (Drieskens, 2014). 
To promote PA (and similarly reduce sedentary behaviour), it is important to have 
insight in the determinants that facilitate higher levels of PA. It is common to integrate 
the different determinants of PA in an ecological model (Sallis, Owen, & Fisher, 2008). 
Four levels have been identified as contributors to explain PA: personal, social, 
environmental, and policy (Bauman et al., 2012). In this thesis, we will focus on the 
personal and environmental determinants, although the other are sometimes 
intertwined within these two. 
 
Several personal characteristics have been identified as determinants of PA. Older, 
overweight, lower-educated, female, overweight adults tend to be less physically active 
than their counterparts (Allen & Vella, 2015; Bauman & Bull, 2007; Oliveira-Brochado, 
Oliveira-Brochado, & Brito, 2010). Psychological characteristics have also been 
associated with PA: self-efficacy (the confidence in being active on a regular basis), 
attitude towards PA, and perceived benefits are positively linked with PA in adults (De 
Bourdeaudhuij, Teixeira, Cardon, & Deforche, 2005; Oliveira-Brochado et al., 2010). 
Additionally, social factors, such as social support, are positively linked with PA in adults 
(De Bourdeaudhuij et al., 2005; Oliveira-Brochado et al., 2010). 
 
Next to personal characteristics, built environment attributes have been identified as 
important determinants of PA. Since 2002, an extensive amount of research articles and 
reviews on this topic has been published (Ding & Gebel, 2012). Several attributes of the 
built environment (e.g. walkability, access to public transport, land use mix, aesthetics, 
vegetation, and population density) are linked with PA in adults (Grasser, Van Dyck, 
Titze, & Stronegger, 2013; Owen, Humpel, Leslie, Bauman, & Sallis, 2004; Saelens & 
Handy, 2008; Wang, Chau, Ng, & Leung, 2016). Specifically for Belgian adults, a positive 
relationship was found between neighbourhood socio-economic status and walkability, 
and higher levels of PA (Van Dyck et al., 2010). A recent review showed that for 
European adults mainly the walkability of the built environment and access to 
shops/services/work are positively related with PA (Van Holle et al., 2012). Additionally, 
it was found that transportation PA was more often related to the built environment 
than recreational PA (Van Holle et al., 2012). Both living in an area with a higher 
availability of green areas (e.g. parks) and spending more time in green areas can lead to 
higher amounts of PA in adults (Shores & West, 2010; Van Holle et al., 2012; Van Holle 
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et al., 2014). Also, when PA occurs in green areas, it can have more positive effects on 
both physical (e.g. less exposure to pollution) and mental (e.g. wellbeing) health 
(Coombes, Sluijs, & Jones, 2013; Fan, Das, & Chen, 2011; Frumkin, 2001; Mackay & 
Neill, 2010; St Leger, 2003; Sugiyama, Leslie, Giles-Corti, & Owen, 2008; Thompson 
Coon et al., 2011). 
 
These built environment attributes can be assessed in either an objective or perceived 
manner. The EnRG (Environmental Research framework for weight Gain prevention) is 
a theoretical framework on the influence of both objective and perceived measures of the 
built environment on health-related behaviour (Kremers et al., 2006). It provides a dual-
process view, considering both direct and indirect–via cognitive mediators (e.g. 
attitude)–influences, moderated by various person- and behaviour-related factors. 
Objective attributes are the actual measured or calculated characteristics of the built 
environment, while perceived attributes are subjective characteristics interpreted by 
participants. The perception of the built environment depends on various personal 
characteristics, such as age, gender and PA itself (Lackey & Kaczynski, 2009; 
McCormack, Cerin, & Leslie, 2008). The fact that PA influences the perception of the 
built environment, creates a mutual relationship between the built environment and 
health. Both objective and perceived attributes do not necessarily coincide and may 
therefore relate differently with PA behaviour. For example, while the objective 
availability of pertinent destinations in a neighbourhood may be high, a person’s 
perceived availability can be low due to the fact that a person may not be aware of all 
feasible destinations in her/his neighbourhood (Mondschein, Blumenberg, & Taylor, 
2010). While previous studies have identified associations between perceived attributes 
of the built environment and PA (Gebel, Bauman, & Owen, 2009; Hoehner, Brennan 
Ramirez, Elliott, Handy, & Brownson, 2005; Kirtland et al., 2003; Lackey & Kaczynski, 
2009; McCormack et al., 2008; Sugiyama, Leslie, Giles-Corti, & Owen, 2009), these 
perceptions are not necessarily precise representations of the actual objective built 
environment (Blacksher & Lovasi, 2012; Cerin, Macfarlane, Ko, & Chan, 2007; Golledge 
& Stimson, 1997; Macintyre & Macdonald, 2008). Understanding how these two 
measures deviate from each other and which factors cause this, provides information on 
how people perceive their environment, which is useful for policy makers, e.g. to increase 
active transport by adapting the actual availability of certain facilities or by improving 
the perception of the environment (Gebel, Bauman, Sugiyama, & Owen, 2011; Jáuregui 
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et al., 2016). More research in how the objective and perceived built environment are 
correlated is therefore important to gain a more complete insight in the relationship 
between the built environment and health. 
 

1.2.2 ACCESSIBILITY TO PRIMARY HEALTH CARE 
 
Good accessibility to primary health care facilitates population health, and is considered 
a fundamental right (Guagliardo, 2004). Since good primary health care can prevent or 
reduce unnecessary expensive speciality care (P. R. Lee, 1995), ensuring equal 
accessibility to primary care for those in equal need is of major concern to public health 
policy makers, service providers, researchers, and consumers alike. In this thesis, the 
focus is on general practitioners often working in private practices or medical centres, 
who–in Belgium–administer first line, primary care and–when necessary–refer patients 
to specialists or the hospital. Despite the general good accessibility to primary health care 
services in Belgium, improvements can still be made (Gerkens & Merkur, 2010). A main 
problem in Belgium is that crude measures of health care accessibility are used to award 
financial assistance to physicians settling in shortage areas (RIZIV, 2013). 
 
However, measuring whether or not accessibility to health care is achieved is difficult, 
because there is no straight definition of accessibility (Aday & Andersen, 1974; Ansari, 
2007; Gulzar, 1999; Rogers & Pencheon, 1999). The main problem is that its original 
term 'access' is both a noun and a verb (Guagliardo, 2004; McGrail, 2012). The former 
deals with the actual use of health care services, while the latter focuses on the aggregated 
supply of available health care in an area and thus deals with the potential use of services. 
Both can be further subdivided into spatial and non-spatial accessibility. Non-spatial 
accessibility can be categorised into three dimensions: affordability (cost of health care), 
acceptability (health service compliance and satisfaction), and accommodation 
(appropriateness and suitability of health services) (Aday & Andersen, 1974; Joseph & 
Phillips, 1984; Neutens, 2015; Penchansky & Thomas, 1981). In this thesis, the main 
focus is on spatial accessibility, which consists of two dimensions: availability (the 
number and spatial distribution of health care providers and the population) and 
proximity (travel impedance between patients and providers) (Joseph & Phillips, 1984; 
Neutens, 2015; Penchansky & Thomas, 1981). When additionally the amount of time 
available for travel and activity participation, and travel speeds are considered, the term 
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space-time accessibility can be used (Burns, 1979; Hägerstrand, 1970). 
 
When defining spatial accessibility–further referred to as accessibility–the two spatial 
dimensions need to be measured together (Guagliardo, 2004; McGrail & Humphreys, 
2009). High availability of health care providers does not assure high accessibility, 
because it depends on the proximity of the population to these health care providers. 
The other way round, high proximity does not assure high accessibility, because it 
depends on the size of the population competing for the available providers. Health care 
providers and the population are spatially distributed and their distributions do not 
always match (Luo, 2004). The distribution of physicians can be linked with the 
threshold (the minimum number of patients needed to maintain the facility) and range 
(the maximum distance people are prepared to travel for health care) of Christaller's 
classic central place theory (Smith, 1979). The spatial barriers between the population 
and health providers contribute to lower health care use and a decreased uptake of 
preventive services, which may lead to poorer health outcomes (Neutens, 2015). 
 

1.2.3 EXPOSURE TO AIR POLLUTION 
 
Air pollution is defined as "contamination of the indoor or outdoor environment by any 
chemical, physical, or biological agent that modifies the natural characteristics of the 
atmosphere" (WHO, 2016). There are several pollutants which have major health 
impacts, for example: particulate matter (PM), carbon monoxide (CO), ozone (O3), 
nitrogen dioxide (NO2), and sulphur dioxide (SO2). Sources of air pollution are multiple, 
but traffic-related air pollution is identified as the highest (approximately 60%) 
contributor in developed countries (Brugge, Durant, & Rioux, 2007; Knibbs, Cole-
Hunter, & Morawska, 2011; Mcdonald, 2012; Weichenthal et al., 2011). Despite an 
improvement of the air quality in Belgium during the last decade (except NO2 which 
tends to increase), respectively 21 and 97% of the population is still exposed to yearly 
averaged PM10 and PM2.5 concentrations higher than health-based limit values (Fierens, 
2010; IRCEL CELINE, 2015). 
 
Being exposed to, and consequently inhaling, air pollution can have severe acute and 
chronic health impacts, such as respiratory and cardiovascular diseases (Beelen et al., 
2014; Brook et al., 2010; Brugge et al., 2007; Gehring et al., 2013; HEI, 2010; Peters et al., 
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2004; Pope III & Dockery, 2006; Riediker et al., 2004; WHO, 2003). This was accepted 
already in the 1970s and 1980s, largely because of increases in morbidity and mortality 
after extreme air pollution episodes (Pope III & Dockery, 2006). In the 1990s, several 
studies concluded that even low air pollution concentrations can have substantial health 
effects (Pope III & Dockery, 2006). 
 
As explained earlier, the built environment may influence individual behaviour. For 
example, the built environment may generate more walking behaviour and less 
motorised trips, resulting in lower air pollution concentrations (Frank, Schmid, Sallis, 
Chapman, & Saelens, 2005). More importantly, people are not only a source of air 
pollution, but are also exposed to air pollution. The location where people live, work, 
play, etc. influences their exposure to air pollution because of spatially and temporally 
varying air pollution concentrations. Several studies have indicated that residing in areas 
with higher long-term air pollution concentrations, increases the risk for cardiovascular 
morbidity and mortality (Brook et al., 2010). However, since a fair amount of time is 
spent away from the home location (e.g. transport, work, recreation), people's individual 
travel patterns also play an important role in their exposure to air pollution. Mainly 
spending time near roads (e.g. because of commuting) leads to a higher exposure to air 
pollution (Knibbs et al., 2011). 
 

1.3 PROBLEM STATEMENT 
 
Past research studying the aforementioned relationship between the built environment 
and these three health aspects has several shortcomings, which may lead to deriving 
erroneous associations between the built environment and health, possibly 
misinforming policy makers trying to improve health by influencing the built 
environment. First, in studies examining the impact of the built environment on PA, 
measures of PA were sometimes obtained merely using questionnaires, leading to 
subjective and possibly biased measures (1.3.1). Second, the capabilities of geospatial 
analyses were not sufficiently exploited, both for delineating neighbourhoods and 
calculating accessibility (1.3.2). Third, individual travel patterns were often not taken 
into account when studying the impact of the built environment on health (e.g. contact 
with green environments, exposure to air pollution) (1.3.3). 
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Because of these shortcomings, two well-known geographical problems may occur when 
studying the relationship between the built environment and health: the Uncertain 
Geographical Context Problem (UGCoP) and the Modifiable Areal Unit Problem 
(MAUP). 
 
The UGCoP, first documented by Kwan (2012), relates to the spatial and temporal 
uncertainty about the actual settings (e.g. home, work) that exert contextual influence 
on health behaviour (e.g. PA, exposure to air pollution) (Kwan, 2012). Not only the 
actual built environment people have contact with, but also their social context (e.g. 
friends and family) can influence their behaviour. This problem is characterised by an 
uncertainty in the exact geographic area having a direct influence on health behaviour, 
and the timing and duration individuals are exposed to these contextual influences 
(Dunton, Almanza, Jerrett, Wolch, & Pentz, 2014). The UGCoP may be the underlying 
cause for many of the inconsistencies found in research studying the influence of the 
built environment on health (Black & Macinko, 2008; Inagami, Cohen, & Finch, 2007; 
Wilks, Besson, Lindroos, & Ekelund, 2011). 
 
The MAUP, acknowledged in 1984, is a well-known fundamental problem in geography, 
that arises in studies examining the effects of area-based attributes on individual 
behaviour and health (Openshaw, 1984). The MAUP states that the geographical scale 
of the studied units and different configurations of units of the same size can affect the 
obtained results. In health-related research, this problem mainly comes forth when 
studying the impact of the neighbourhood on individual behaviour (here PA) and other 
health outcomes (e.g. exposure to air pollution or accessibility to health care) 
(Flowerdew, Manley, & Sabel, 2008; Houston, 2014; Parenteau & Sawada, 2011). Often 
the residential location is the base unit of study, but changing this unit may alter the 
results significantly. 
 

1.3.1 MISJUDGING PHYSICAL ACTIVITY USING QUESTIONNAIRES 
 
Often merely questionnaires (e.g. activity diaries) are used to assess the amount of 
sedentary behaviour or PA performed (Chaudhury, Campo, Michael, & Mahmood, 
2015; Coombes, Jones, & Hillsdon, 2010; Hillsdon, Panter, Foster, & Jones, 2006; 
Lachowycz & Jones, 2011; H. Lee et al., 2015). The International Physical Activity 
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Questionnaire (IPAQ) is often used to define the amount of PA performed during a week 
(IPAQ, 2014). An advantage of using self-reported measures is that additional personal 
information (e.g. gender, income, BMI) and information on the domain-specificity of 
sedentary behaviour and PA (transport, recreation, household, or occupation) can be 
obtained. 
 
However, the relative agreement between IPAQ and accelerometer-based PA is only 
small-to-moderate (! = 0.05 − 0.37) and is moderated by various sociodemographic 
factors (e.g. age, gender, weight, and education) (Cerin et al., 2016). Additionally, 
perceptions about behaviour are susceptible to recall bias and misclassification error 
(Almanza, Jerrett, Dunton, Seto, & Pentz, 2012), and it is difficult to classify PA in 
different PA levels (light, moderate, or vigorous) using questionnaires, and respondents 
often tend to over-report PA (Lee et al., 2011). There may also be inconsistency in the 
data between different population groups, influenced by language or literacy. 
 
To obtain more accurate measures of PA, objective measuring devices (e.g. heart rate 
monitors, pedometers, or accelerometers) could be used. However, these lack domain-
specific information on the performed PA. It should be noted that both perceived and 
objective measures supplement each other in informing the researcher on the actual PA 
(Kelly, Fitzsimons, & Baker, 2016). 
 

1.3.2 INSUFFICIENTLY EXPLOITING THE CAPABILITIES OF GEOSPATIAL 

ANALYSES 
 
Mainly in health practice and policy, but also in previous research, the capabilities of 
geospatial analyses were often insufficiently exploited when examining the relationship 
between the built environment and certain health aspects. 
 
Characteristics of the built environment were often determined using questionnaires. It 
is important to consider the perceived characteristics of the built environment to take 
someone's full context into account when studying the relationship between the built 
environment and individual behaviour (cf. the UGCoP). It can happen that these 
perceived characteristics have a bigger influence on individual behaviour than objective 
characteristics. A questionnaire that was often used to assess people's perceptions of the 
built environment in health-related studies is the Neighbourhood Environment 
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Walkability Scale (NEWS) (Cerin, Saelens, Sallis, & Frank, 2002). The NEWS 
questionnaire–of which test-retest reliability and construct validity has been 
established–measures the following built environment characteristics: residential 
density, land use mix, street connectivity, aesthetics, crime safety, availability and quality 
of walking and cycling facilities, and availability of PA equipment at home (Saelens, 
Sallis, Black, & Chen, 2003). The advantage of using a questionnaire is that the 
participants report characteristics on the area they consider their neighbourhood 
(Schipperijn, Ejstrud, & Troelsen, 2013). However, these perceived characteristics can be 
difficult to define by participants and they may be interpreted differently between 
participants. Also, increased PA may lead to better perceptions of the neighbourhood, 
which may in turn lead to increased PA, unravelling the directionality of the relationship 
(Hajna, Dasgupta, Halparin, & Ross, 2013). Also, these perceived characteristics were 
sometimes solely used, without considering objective characteristics of the built 
environment (Cerin et al., 2002; De Bourdeaudhuij, Sallis, & Saelens, 2003; Reimers, 
Mess, Bucksch, Jekauc, & Woll, 2013; Saelens et al., 2003; Spittaels et al., 2010; Sugiyama 
et al., 2009). Both objective and perceived measures of the built environment may 
however be related differently with health, and therefore it is important to consider them 
both. 
 
Second, when built environment characteristics were objectively calculated, often the 
area around the home location (the residential neighbourhood) was used as a base unit. 
Two reviews have shown that research studying the impact of the built environment on 
health outcomes defined the residential neighbourhood as either the surrounding 
administrative unit (e.g. census tract) or as a circular buffer around the residential 
location (Feng, Glass, Curriero, Stewart, & Schwartz, 2010; Jilcott, Evenson, Laraia, & 
Ammerman, 2007; Leal & Chaix, 2011; Van Dyck et al., 2010). Selecting an appropriate 
neighbourhood, both from a conceptual and mathematical perspective, is crucial 
(Schipperijn et al., 2013). It is however difficult to determine the 'right' neighbourhood 
to perform analyses on (Voigtländer, Razum, & Berger, 2013). Using a different unit to 
study the influence on individual behaviour may significantly alter the obtained results, 
an issue raised in the MAUP (Haynes, Jones, Reading, Daras, & Emond, 2008; James et 
al., 2014; Mitra & Buliung, 2012). 
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A third way in which the capabilities of geospatial analyses were insufficiently exploited, 
is when calculating accessibility to health care. In past research, three approaches have 
dominated measures of accessibility: physician-to-population ratios (PPR), 
distance/time to the nearest health provider, and gravity models (Guagliardo, 2004; 
Langford & Higgs, 2006). PPRs are usually calculated with zonal data, which is based on 
administrative boundaries that are considered impermeable. As a result, interaction 
across borders is not sufficiently taken into consideration (Guagliardo, 2004; Joseph & 
Phillips, 1984). Also, persons residing in the same administrative unit are assigned equal 
levels of accessibility, and the accessibility measures therefore do not provide a robust 
description of how access to health care is distributed among the population (Kwan & 
Weber, 2008; Neutens, 2015). Also, PPRs assume equal accessibility to physicians 
irrespective of where people live in that unit, which is obviously not the case (Higgs, 
2004; Wan, Zou, & Sternberg, 2012). Again, using a different zonation may significantly 
alter the results, as stated in the MAUP. Distance/time to the nearest provider, a second 
measure of accessibility, does not capture full accessibility, because it is often observed 
that people bypass the nearest physician when there are multiple available (Fryer et al., 
1999; Hyndman, D’Arcy, Holman, & Pritchard, 2003; Martin & Williams, 1992; 
McGrail, 2012). For these two measures, only limited Geographic Information System 
(GIS) tools are needed. Gravity models try to represent the potential interaction between 
any population point and all health care providers within a reasonable distance, 
assuming decreasing potential interaction with increasing distance (Guagliardo, 2004). 
A major caveat of this method is that the used distance-decay function is difficult to 
determine (Guagliardo, 2004; Joseph & Phillips, 1984; Luo & Wang, 2003; McGrail & 
Humphreys, 2009). 
 

1.3.3 NEGLECTING INDIVIDUAL TRAVEL PATTERNS 
 
In research studying the relationship between the built environment and various health 
aspects, often only the residential neighbourhood was taken into account. This is the case 
for studies examining how the built environment influences PA or other health 
outcomes (Grasser et al., 2013; Leal & Chaix, 2011; Van Dyck et al., 2010), as well as for 
studies calculating the exposure to air pollution (Brunekreef et al., 2009; Dons et al., 
2011; Jerrett et al., 2013; Pope III, Ezzati, & Dockery, 2009; Tenailleau, Mauny, Joly, 
François, & Bernard, 2015). However, because of individual travel patterns, people are 
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in contact with other areas, with characteristics other than at their home location. Their 
home location might thus not represent the actual area that has an influence on the 
health outcome (here PA and the exposure to air pollution), an issue raised in the 
UGCoP.  
 
Given that approximately 60% of daily PA occurs away from the home location (Troped, 
Wilson, Matthews, Cromley, & Melly, 2010), the residential neighbourhood may only 
partially explain PA behaviour. Also, someone's individual travel patterns throughout 
the day may result in different exposure to and inhalation of air pollution (de Nazelle et 
al., 2013). Disregarding individual time-activity patterns can thus lead to incomplete or 
incorrect associations between the built environment and PA, and bias in air pollution 
exposure assessments, possibly misinforming policy makers. 
 

1.4 RESEARCH OBJECTIVES AND OUTLINE OF THE THESIS 
 
To obtain more accurate results on the relationship between the built environment and 
health and correctly inform policy makers, it is important for researchers examining this 
relationship to accurately measure PA, taking more advantage of geospatial analyses, and 
consider the real context that might influence people's behaviour (e.g. PA) or exposure 
to air pollution by incorporating individual travel patterns. Integrating these techniques 
in future research may thus lead to more (and more accurate) policy recommendations. 
Therefore, the overall aim of this thesis is to examine the relationship between the built 
environment and different health aspects, applying both existing and new geospatial data 
and analyses, and address the issues raised in the MAUP and UGCoP. The specific 
research objectives can be described as: 
 

Objective 1: Demonstrate how existing geospatial analyses can be used to 
examine the relationship between the built environment and health in this field 
of research. 

 
Objective 2: Incorporate individual travel patterns to study the relationship 
between the built environment and health, using both existing and new 
geospatial data sources. 
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The general outline of this PhD thesis is illustrated in Figure 1.1. 
 
Chapter 2 provides an overview of the state-of-the-art in assessing the relationship 
between the built environment and different health aspects. The chapter describes the 
current state-of-the-art concerning both data sources and techniques available to 
overcome the issues mentioned in the problem statement. 
 
Chapters 3 to 7 are the original research articles of this PhD, which are published in 
international peer-reviewed journals. In these different studies, several topics (e.g. 
physical activity and the built environment, accessibility to primary health care, visiting 
green areas, and exposure to air pollution) are studied to gain a broad view on the 
relationship between the built environment and health, each contributing to the above 
mentioned research objectives. There can be some overlap between the different 
chapters, because these were written as independent publications. 
 

 
Figure 1.1: Outline of the thesis. 
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In chapters 3 and 4, different geospatial analyses are used to examine the relationship 
between the built environment and health, and are thus linked to objective 1. In chapter 
3, published in International Journal of Health Geographics, it is studied how good the 
perception (obtained using a questionnaire) of one specific built environment 
characteristic (i.e. walking time) corresponds with the objective measure calculated in 
GIS, and how this is influenced by various factors (e.g. PA), for 1,164 adults (18 years 
and older) living in Ghent, Belgium. In chapter 4, published in BMC Family Practice, 
various traditional methods to calculate accessibility to primary health care in Belgium 
are discussed and compared with the more advanced Enhanced 2-Step Floating 
Catchment Area (E2SFCA) method. 
 
In chapters 5 to 7, individual travel patterns are taken into account for examining the 
relationship between the built environment and health, using both existing and new 
geospatial data sources, and are thus directly linked to objective 2. Chapter 5, published 
in Geospatial Health, focuses on how the greenness of the environment has an effect on 
health (here PA), studying the actual time-activity patterns of 180 late middle-aged 
adults (58–65 years) living in Ghent, Belgium, collected using GPS and accelerometer 
data, and overlaying this with land-use data. The influence of individual travel patterns 
on the exposure to and inhalation of air pollution (largely determined by the built 
environment) is discussed, using GPS and accelerometer data of the same 180 late 
middle-aged adults in chapter 6, published in Journal of Transport and Health, and using 
mobile phone network data of approximately 5 million Belgian people in chapter 7, 
published in International Journal of Health Geographics. The combined use of GPS and 
accelerometer data, and especially using mobile phone network data is innovative for 
calculating the exposure to air pollution. 
 
The questionnaire and accelerometer data from the 1,164 adults–used in chapter 3–were 
collected as part of the Belgian Environmental Physical Activity Study (BEPAS), which 
is part of the International Physical Activity and the Environment Network (IPEN; 
funded by the National Institutes of Health and National Cancer Institute, 2009–2012). 
The GPS and accelerometer data from the 180 late middle-aged adults–used in chapters 
5 and 6–were collected as part of the post-doc research of dr. Veerle Van Holle. These 
datasets were available through a collaboration between our Department of Geography 
and the Department of Movement and Sports Sciences, both part of Ghent University. 
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The greenness data was received from the Flemish Institute for Technological Research 
(Vlaams Instituut voor Technologisch Onderzoek; VITO), the air pollution concentration 
data from Belgian Interregional Environment Agency, and the mobile phone network 
data from Proximus. The other data used is obtained from various other sources and is 
listed in Table 8.1. 
 
Chapter 8 provides the general discussion and main conclusions of this dissertation, 
together with some general strengths and limitations, implications for practice, and 
avenues for future work. 
 
Figure 1.2 shows how the different research articles from chapters 3 to 7 are situated 
within the general relationship between the built environment and health, using a 
mindmap. 
 

 
Figure 1.2: Mindmap to illustrate how the research articles from chapters 3 to 7 are 

situated within the general relationship between the built environment and the three 

studied health aspects. 
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This chapter gives an overview of some traditional and more advanced geospatial data 
sources and analyses that are available to examine the relationship between the built 
environment and different health aspects. 
 
To overcome the shortcomings and issues described in chapter 1, several options are 
available. First, accelerometers can be used to objectively measure someone's physical 
activity (PA) (2.1). Second, more advanced geospatial analyses can be used in a threefold 
way: to objectively calculate characteristics of the built environment (instead of using 
questionnaires), to make a more accurate delineation of the neighbourhood, and to 
calculate advanced accessibility measures (2.2). Third, individual travel patterns can be 
taken into account to incorporate the actual context where people spend their time, to 
better understand where they are mostly physically active and to be able to calculate 
more dynamic measures of air pollution exposure (2.3). Applying these improvements 
also limits the issues of the Modifiable Areal Unit Problem (MAUP) and the Uncertain 
Geographical Context Problem (UGCoP). 
 

2.1 MEASURING PHYSICAL ACTIVITY OBJECTIVELY 
 
Determining PA is challenging because movements are often sporadic. To obtain more 
accurate and objective measures of the amount of PA performed, accelerometers can be 
used. Other devices are also available, for example heart rate monitors (J. S. Duncan, 
Badland, & Schofield, 2009), but the association between the number of accelerations 
and PA has been studied more extensively and therefore accelerometers are often 
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preferred (Pruitt et al., 2010). Other techniques are also available to measure energy 
expenditure (EE), such as calorimetry, metabolic equivalent, and the doubly layered 
water technique (Hills, Mokhtar, & Byrne, 2014). Both PA and EE are often considered 
synonymous, but it is important to know that PA is considered as behaviour, which 
results in EE and should thus be assessed using different approaches. In this thesis, the 
focus is on PA, since we also want to study e.g. duration and intensity, not possible using 
EE. 
 
An accelerometer is an advanced pedometer, which logs the amount of accelerations in 
one or three directions (side-to-side: X; forward and backward: Y; and up and down: Z) 
per time interval (e.g. 15 or 60 seconds), often for a period of four to ten consecutive days 
in this type of research (Trost & O’Neil, 2014). Accelerometers have been shown to be 
valid and reliable tools to measure PA (Copeland & Esliger, 2009; Pruitt et al., 2010). 
Because the devices are small (approximately 5 x 3 x 1.5 cm), light (approximately 40 g) 
and non-invasive, they are well-tolerated by the participants. The uniaxial GT1M and 
the triaxial Actigraph GT3X+ (Actigraph LLC, n.d.) are currently the most frequently 
used accelerometers and have received considerable research attention (Trost, Way, & 
Okely, 2006). Currently, the ActivPAL accelerometer is considered as the golden 
standard in objectively determining physical activity and sedentary behaviour, as it is 
also able to detect someone's posture (e.g. standing, sitting), because it is placed on the 
upper leg (Kozey-Keadle, Libertine, Lyden, Staudenmayer, & Freedson, 2011). 
Standalone accelerometers are predominantly asked to be worn at the hip or wrist, 
compared to wearing it in a backpack or around the ankle (Trost & O’Neil, 2014). When 
worn at the hip, the most accurate results are obtained (Kamada, Shiroma, Harris, & Lee, 
2016; Rosenberger et al., 2014). A disadvantage of this placement, as well as the backpack 
or wrist placement, is that only little accelerations are registered when cycling, despite 
being physically active (Hansen, Kolle, Dyrstad, Holme, & Anderssen, 2012; Montoye, 
1996). Despite its lower accuracy, there has been a growing interest in wrist-worn 
accelerometers because of the higher acceptability leading to a higher wear time (Quante 
et al., 2015). Also, the increasing popularity of wrist-worn accelerometers aimed at 
consumers (e.g. Fitbit) offers a potential new data source for objectively measuring PA. 
 
As an alternative to standalone devices, built-in accelerometers in smartphones can also 
be used (de Nazelle et al., 2013), but these offer less accurate results since a phone is often 
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worn at different positions (e.g. hand, pants pocket, or handbag) and some population 
groups may be difficult to reach (e.g. children and older adults) (Guidoux et al., 2014). 
 
The advantage of using objective measures of PA is that respondents cannot over-report 
their activity time, and recall and misclassification errors are brought to a minimum 
(Evenson, Catellier, Gill, Ondrak, & McMurray, 2008). Also, the PA of respondents is 
logged automatically without disturbing them, except to explain them how and where to 
wear it. However, crucial information is needed when reporting the validity and 
reliability of objective (and perceived) measures, since PA is not a single, unidimensional 
construct, but is characterised by different domains, dimensions, correlates, and 
determinants (e.g. transport or recreation, total movement or only walking bouts, type 
of PA, with who, intensity, and duration) (Kelly, Fitzsimons, & Baker, 2016). The 
Edinburgh Validity and Reliability Framework provides a strategy for combining 
research methods and analyses to find out how valid and reliable measures of PA are 
(Kelly et al., 2016). 
 

2.2 EXPLOITING THE CAPABILITIES OF GEOSPATIAL ANALYSES 
 
Geospatial analyses can be easily implemented in a Geographic Information System 
(GIS): a piece of software that enables to input, store, manipulate, analyse, and visualise 
spatial information (Higgs, 2004). In a GIS, data is structured in different layers, with 
each layer containing information on a single feature (e.g. road network, locations of 
health care facilities, park locations, or air pollution concentration). The analytical power 
of GIS holds tremendous value for health researchers and policy makers in uncovering 
the relationship between the built environment and health (Butler, Ambs, Reedy, & 
Bowles, 2011). "GIS uses sophisticated databases and software to analyse data by location, 
revealing hidden patterns, relationships and trends that may not be apparent in 
spreadsheets or through the use of the standard statistical packages from epidemiology or 
the social sciences" (Leslie et al., 2007, pp. 113–114). For a brief overview of GIS and the 
applications in health science, we refer to other work (Schipperijn, Ejstrud, & Troelsen, 
2013). 
 
GIS can be used to visualise various data sources (e.g. air pollution data, land use data, 
or primary care physician locations). In addition, GIS also holds a large potential in 
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geographically analysing the data (on their own or combined with each other). Some 
examples of geospatial analyses are: shortest path along the network, area calculation, 
buffer creation, and calculating spatial statistics. In the following paragraphs, it is 
explained in what other ways GIS can contribute in examining the relationship between 
the built environment and health. 
 

2.2.1 CHARACTERISTICS OF THE BUILT ENVIRONMENT 
 
Although we acknowledge the importance of incorporating perceived characteristics of 
the built environment, these may be difficult to define by participants, interpreted 
differently between participants, or influenced by the participants' PA. Hence, it is 
important to consider objective measures–next to self-reported measures–of the built 
environment. 
 
Therefore, a first use of GIS is to calculate objective measures of the built environment 
using geospatial analyses (e.g. overlay, network analysis, density calculation), extensively 
proven to be useful in earlier studies (Carlson et al., 2012; D’Haese, Van Dyck, De 
Bourdeaudhuij, Deforche, & Cardon, 2014; Houston, 2014; James et al., 2014; King et al., 
2011; Leslie et al., 2007; Loon, Frank, Nettlefold, & Naylor, 2014; Lovasi et al., 2008; 
Marshall, Piatkowski, & Garrick, 2014). Examples of such objective characteristics are: 
residential density, street network connectivity, land use mix, and accessibility or 
distance/time to certain destinations (e.g. school, park, shop) (Brownson, Hoehner, Day, 
Forsyth, & Sallis, 2009). With GIS, the obtained measures are more objective, accurate, 
and reliable. Earlier research showed high correlations between GIS-derived measures 
of the built environment and measures obtained via on-field audits from experts, 
indicating that these GIS-derived measures can be used instead of labour and cost-
intensive audits (Hajna, Dasgupta, Halparin, & Ross, 2013). However, sometimes on-
field audit data from experts is needed because GIS data on more micro-level 
environmental features might not exist. 
 

2.2.2 NEIGHBOURHOOD DELINEATION 
 
Second, characteristics of the built environment are often calculated within the 
administrative unit (often census tract or municipality) of the participant's residential 
location, but researchers have identified neighbourhoods in various ways, making 



STATE-OF-THE-ART IN EXAMINING THE RELATIONSHIP BETWEEN THE BUILT ENVIRONMENT AND HEALTH 

35 

comparisons across studies difficult (Schipperijn et al., 2013). The advantage of using 
administrative units to define a neighbourhood is that often other (e.g. socio-economic) 
data is available from these units. However, these boundaries are not always relevant for 
the health outcome studied, they might not represent the actual context someone is 
exposed to, and administrative units are often varying in size making comparisons less 
straightforward (Schipperijn et al., 2013). 
 
With GIS, it is easy to improve this by calculating a buffer around the participant's home 
location. One must be aware of the issues raised in the MAUP, when differently sized or 
shaped buffers are used. The easiest method is to calculate a circular buffer, but since 
GIS are often already used to calculate these buffers, it is only a small step to incorporate 
the road network to calculate street network buffers (Oliver, Schuurman, & Hall, 2007). 
This way, a more veracious measure of the area influencing someone's behaviour can be 
obtained (Leal & Chaix, 2011; Oliver et al., 2007), and the issues of the UGCoP are thus 
limited. To further eliminate the UGCoP, additionally the work or school location–or 
other important destinations–could be considered. Also, the actual locations 
(determined e.g. using GPS data) where people were could be used, for example within 
a certain distance from the home location, thus looking at someone's activity space 
(Perchoux, Chaix, Cummins, & Kestens, 2013; Villanueva et al., 2012; Zenk et al., 2012). 
Another approach would be to ask the participants what they see as their 
neighbourhood, as this might be differently related with health behaviour than the 
objectively determined neighbourhoods (Chaix, Merlo, Evans, Leal, & Havard, 2009).  
 
It is important for health researchers to be aware of how the chosen neighbourhood 
influences the results, and care should therefore be taken to choose the 'right' 
neighbourhood (Schipperijn et al., 2013). 
 

2.2.3 ADVANCED ACCESSIBILITY MEASURES 
 
Third, with GIS it is easy to calculate advanced accessibility measures, which overcome 
the limitations of the basic measures (e.g. PPR and distance to nearest provider). "There 
is now a wide recognition of the value of GIS in mapping the spatial distribution of health 
care needs and utilisation, monitoring and evaluating the socio-spatial repercussions of 
health policy actions, determining optimal health service locations and disentangling the 
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relationships between disparities in accessibility and health outcomes" (Neutens, 2015, p. 
14). 
 
A more advanced method than the traditional measures to calculate accessibility is the 
Enhanced 2-Step Floating Catchment Area (E2SFCA) method (Langford & Higgs, 2006; 
Langford, 2012; Luo & Qi, 2009; McGrail, 2012). This method combines overlay and 
buffer analyses in GIS using geolocated data on primary health care locations and the 
road network (if a network catchment/buffer is used). The E2SFCA method controls for 
capacity restrictions, local competition between health care providers, cross-border 
primary care-seeking behaviour, and distance decay of accessibility within these borders 
(Luo & Wang, 2003; Neutens, 2015). The most significant strength of the E2SFCA 
method is that "no fixed geographic or administrative boundaries are used, but instead 
floating catchments which overlap, enabling the measurement of real-life healthcare access 
behaviour with unrestricted utilisation" (McGrail, 2012, p. 2). 
 

2.3 INCORPORATING INDIVIDUAL TRAVEL PATTERNS 
 
Incorporating individual travel patterns is important to better understand in which areas 
people spend their time. This leads to more accurate results in both studying the 
influence of the built environment on individual behaviour (in our case PA) and air 
pollution exposure assessments, the two cases previously described where often only the 
home location is considered. This largely constrains the UGCoP as this way the actual 
built environment context influencing individual behaviour and exposure is taken into 
account (Houston, 2014). 
 
There is a multitude of geospatial data sources available to determine individual travel 
patterns. In past research often questionnaire-based methods are used to deduce 
individual travel patterns, using for example travel diaries. Alternatively, mathematical 
models of travel patterns are sometimes used. Currently, there is a growing pervasiveness 
of various location-acquisition technologies leading to large spatiotemporal datasets 
(Giannotti & Nanni, 2007). Global Positioning System (GPS) and mobile phone network 
data are two techniques used in this thesis. There are however also other techniques 
available to obtain individual travel pattern data. 
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2.3.1 TRAVEL DIARIES AND TRANSPORT MODELS 

 
A first method to determine individual travel patterns, often used in national travel 
surveys, is to use travel diaries (questionnaires), on paper, by phone, or on computer. An 
advantage of travel diaries is that the transport mode, destination, and purpose can be 
identified accurately, as well as the accompaniment and participant perceptions (Mavoa, 
Witten, McCreanor, & O’Sullivan, 2012), similar to using questionnaires to measure PA 
(activity diaries). Major disadvantages of this approach are the large non-response rate 
(Wilson, 2004), non-representative sample (Murakami, 2008), high costs (Stopher & 
Greaves, 2007), and limited temporal resolution (Maas, Sterkenburg, Vries, & Pierik, 
2013). Also, similar as with activity diaries, recall errors (when, how, with whom, and 
along which route the trip was made) may occur. Finally, using travel diaries, often only 
the start and end location of a trip is known. The actual route can be questioned in the 
travel diary, but recall may be difficult with complex routes (Stopher, FitzGerald, & 
Zhang, 2008). 
 
The base information from travel diaries (e.g. residential location, working hours, 
household activity pattern and its scheduling, opening hours, and choice behaviour) can 
be used to build transport models to estimate the spatiotemporal behaviour of 
individuals. Such models often use the activity-based approach to predict which, where, 
when, for how long, with whom, and with which transport mode activities are conducted 
(Beckx et al., 2009). More information on the activity-based modelling framework can 
be found elsewhere (Mcnally & Rindt, 2007). Some examples of such models are: the 
Built Environment Stochastic Spatial Temporal Exposure (BESSTE) model for Orange 
County, North Carolina, US (de Nazelle, 2007), A Learning-Based Transportation 
Oriented Simulation System (ALBATROSS) for the Netherlands (Arentze & 
Timmermans, 2004), the Forecasting Evolutionary Activity-Travel of Households and 
their Environmental RepercussionS (FEATHERS) for Flanders and Brussels (Belgium) 
(Bellemans, Janssens, Wets, Arentze, & Timmermans, 2010). An advantage of using 
models is that they can be used without disturbing participants and without high costs 
of additional infrastructure. Also, they provide information within a short time period, 
and, more importantly, they can predict travel patterns for the future. However, real-
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world travel patterns are so complex that they are difficult to accurately determine using 
models (Arentze & Timmermans, 2004). 
 

2.3.2 GLOBAL POSITIONING SYSTEMS 
 
As early as in 1995–when the system became fully operational for the public–it was 
suggested that GPS could be used to locate and monitor vehicles for research-purposes 
(Zito, D’Este, & Taylor, 1995). In respectively 1999 and 2001, it was suggested to improve 
or eliminate travel survey data by gathering individual travel patterns using GPS data 
(Murakami & Wagner, 1999; Wolf, Guensler, & Bachman, 2001). Several studies have 
demonstrated the valuable use of GPS in health-related research (Kerr, Duncan, & 
Schipperijn, 2011; Krenn et al., 2011; Maas et al., 2013). GPS data have already shown 
their added value in air pollution exposure assessments (Bekö et al., 2015; de Nazelle et 
al., 2013; Dons et al., 2011; Steinle, Reis, & Sabel, 2013), and in other studies examining 
the relationship between the built environment and health (Kerr et al., 2012; Krenn et 
al., 2011). 
 
With GPS data, a more detailed time-activity pattern can be obtained than when using 
travel diaries (Duncan, Badland, & Mummery, 2009; Houston, Ong, Jaimes, & Winer, 
2011; Stopher & Speisser, 2011), therefore reducing the spatial and temporal uncertainty 
in the actual areas that exert contextual influences on individual behaviour and health, 
reducing the issue stated in the UGCoP (Boruff, Nathan, & Nijënstein, 2012; James et al., 
2014; Jankowska, Schipperijn, & Kerr, 2015; Madsen, Schipperijn, Christiansen, Nielsen, 
& Troelsen, 2014; Zenk et al., 2012). Major advantage of GPS data is that origin, 
destination and route are automatically collected, both in space and time, without 
troubling the respondent. GPS devices estimate their location (latitude, longitude, and 
the altitude relative to standardised sea level) by triangulating their position using signals 
from satellites orbiting the earth. The position is determined by calculating the difference 
in time between when a satellite signal was sent to when it was received. More 
information on the obtained accuracy of the GPS devices has been described earlier 
(Duncan et al., 2009), but it has been shown that GPS offers location data accurate 
enough for assessing human behaviour (Schutz & Chambaz, 1997; Witte & Wilson, 
2004). Possible errors in GPS data are: the initialisation period when powering on the 
device leading to no data in this period, cluttered data when the device is indoors, and 



STATE-OF-THE-ART IN EXAMINING THE RELATIONSHIP BETWEEN THE BUILT ENVIRONMENT AND HEALTH 

39 

signal reflection and/or blocking because of buildings (e.g. in urban canyons) and natural 
structures (Kerr et al., 2011; Maas et al., 2013; Schipperijn et al., 2014). 
 
GPS devices have evolved over time, from large devices to small portable devices (passive 
tracking; i.e. data must be downloaded to a computer), and now even built-in devices on 
smartphones accessed through an application (active tracking is possible because of the 
available internet connection). Advantage of a built-in GPS tracker in a smartphone is 
that participants only have to install an application instead of carrying a standalone 
device with them, which limits the time needed to collect the data from participants (de 
Nazelle et al., 2013). A disadvantage of such applications is that they drain the battery of 
the smartphone (Montini, Prost, Schrammel, Rieser-Schüssler, & Axhausen, 2015). 
Using standalone devices requires informing the participant about the use of the device, 
and costs more than using an application, therefore leading to a smaller study sample 
than possible using an app. The spatial accuracy of a standalone device is however higher 
than a smartphone app, making a standalone device currently the most chosen method 
for GPS tracking (Montini et al., 2015; Zandbergen, 2009). 
 
In contrast to travel diaries, GPS data only consists of location data. Additional 
information on transport mode and purpose is not directly available. GPS data can be 
combined with data from travel diaries to obtain additional information on participant 
perceptions, trip purpose, transport mode, and accompaniment (Mavoa et al., 2012). 
Combining these two data sources is however difficult, with manual matching offering 
the best results, but with high labour costs. Sequence alignment might offer a more cost-
efficient method to match the two data sources (Mavoa et al., 2012). There are also 
methods to derive trip purpose and transport mode using only GPS data (Prins et al., 
2014; Wolf et al., 2001). When the speed is calculated, the transport mode can be derived 
using predefined (average and maximum) speed classes. Trip purpose can be derived by 
combining the GPS data with land use data, offering information on the trip destination 
(e.g. residential, industrial, or commercial). 
 
When GPS data is combined with accelerometer data, the exact location of people can 
be linked with their objectively measured PA, which has proven useful in several earlier 
studies (Almanza, Jerrett, Dunton, Seto, & Pentz, 2012; Cooper et al., 2010; Kang, 
Moudon, Hurvitz, Reichley, & Saelens, 2013; Klinker, Schipperijn, Toftager, Kerr, & 
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Troelsen, 2015; Lachowycz, Jones, Page, Wheeler, & Cooper, 2012; McCrorie, Fenton, & 
Ellaway, 2014; Oliver et al., 2007; Oreskovic, Blossom, Field, Chiang, & Jonathan, 2012; 
Prins et al., 2014; Wheeler, Cooper, Page, & Jago, 2010). This way, the transport mode 
can also be specified more accurately, since each transport mode is characterised by 
certain acceleration patterns (Troped et al., 2008). An often used online tool is the 
Personal Activity Location Measurement System (PALMS), where GPS and 
accelerometer data can be combined together with for example heart monitor data, 
erroneous data can be removed, and important stop locations and trips can be identified 
(PALMS, 2015). 
 

2.3.3 MOBILE PHONE NETWORK 
 
Location data can also be obtained from mobile phone network data (or passive mobile 
positioning data), which originates from radio waves from the mobile phone network to 
trace the location of mobile phones using the network. The phone switches to the Base 
Transceiver Station (BTS) with the strongest radio coverage, which is often the closest 
one. This way, an approximate location of the mobile phone user is available. Major 
advantages of this method are that it is non-intrusive and that a large study sample (often 
several millions of users) can be tracked. A disadvantage is that the spatial resolution of 
the location data depends on the density of BTSs, and that because of varying signal 
strengths mobile phones can connect to BTSs further than the closest one. Also, major 
measures must be taken to preserve people's privacy, since people can be tracked without 
knowing. 
 
This method has been used in previous research mainly to analyse population densities 
(de Jonge, Van Pelt, & Roos, 2012; Deville et al., 2014; Ratti, Frenchman, Pulselli, & 
Williams, 2006), in tourism (Ahas, Aasa, Roose, Mark, & Silm, 2008; Asakura & Iryo, 
2007; Kuusik, Nilbe, Mehine, & Ahas, 2014), and mobility (Ahas, Silm, Järv, Saluveer, & 
Tiru, 2010; Alexander, Jiang, Murga, & Gonz, 2015; Calabrese, Ferrari, & Blondel, 2014; 
Calabrese, Lorenzo, Liang, & Carlo, 2011; Widhalm, Yang, Ulm, Athavale, & Gonz, 
2015). To our knowledge, only one study has used mobile phone network data to 
calculate the exposure to air pollution (Gariazzo, Pelliccioni, & Bolignano, 2016). 
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2.3.4 OTHER TRACKING TECHNOLOGIES 

 
A disadvantage of GPS data is that indoor positioning is unavailable or largely 
inaccurate. There are similar methods available to track individuals when indoors, using 
technologies available on mobile phones. Examples of this are Bluetooth and Wi-Fi. 
Bluetooth has previously been successfully used to track the location of crowds at mass 
events (Versichele, Neutens, Delafontaine, & Van de Weghe, 2012) or to track tourists 
in a certain area (Versichele et al., 2014). Wi-Fi has shown promising results to detect 
the location of people indoors (Zhou et al., 2014; Zhou, Qiu, Xu, Tian, & Wu, 2016). 
Another tracking technique currently tested, is to identify and track people using 
cameras. This method has a wide application in security surveillance, and now gets to 
the attention of researchers studying human movement behaviour (Liu, Liu, Zhang, Zhu, 
& Chen, 2015; Sugandi, Kim, Kooi Tan, & Ishikawa, 2009). These various tracking 
technologies can also be used outdoors, but they require the set-up of sensors to acquire 
the location of mobile devices within this sensor network, and are therefore limited in 
tracking people over large areas (Gartner, 2014). 
 
Several of the proposed geospatial data sources and analyses were used in the different 
studies performed for this thesis, to examine the relationship between the built 
environment and different health aspects. Accelerometers were used to objectively PA, 
advanced GIS-based analyses were used in a threefold way (define built environment 
characteristics, delineate neighbourhoods, and calculate accessibility), and individual 
travel patterns were incorporated based on GPS and mobile phone network data. In 
Table 8.2, an overview of these geospatial data sources and analyses is given, which is 
useful in future research and for policy makers to choose the IDEAL data source or 
analysis, depending on for example the research question, available time, and budget. 
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3.1 ABSTRACT 
 
Doing regular physical activity has positive effects on health. Several built environmental 
factors are identified as important correlates of physical activity. However, there seems 
to be a difference between perceived and objective measures of the built environment. 
This study examines the influence of physical activity, neighbourhood walkability, and 
socio-demographic characteristics on the correspondence between self-reported and 
objectively measured walking time to urban destinations of adults in the city of Ghent 
(Belgium). Previously collected survey data was used from 1,164 respondents in the city 
of Ghent who reported walking times to various closest destinations in the 
neighbourhood of residence. These were compared with corresponding walking times 
that were objectively measured through geographical information systems. Physical 
activity was recorded over a 7-day period using accelerometers. Neighbourhood 
walkability was assessed on the basis of residential density, connectivity, and land-use 
mix. We observed a relatively poor agreement between objective and perceived walking 
times. Stronger agreements were noted amongst the most physically active group, while 
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low-level walkers tended to overestimate walking time. Surprisingly, however, people 
residing in a low-walkable neighbourhood underestimated walking times more 
frequently relative to those in high-walkable neighbourhoods. Researchers investigating 
the influence of built environmental attributes on physical activity behaviour should 
thus be cautious when using only self-reported built environmental data, since these are 
a priori influenced by physical activity levels and various socio-demographic factors. 
 

3.2 BACKGROUND 
 

3.2.1 INTRODUCTION 
 
Doing regular moderate-to-vigorous physical activity (MVPA) has several positive 
short- and long-term effects on health (Haskell et al., 2007; Pate, Pratt, Blair, & Haskell, 
1995; U.S. Department of Health and Human Services, 1996; Warburton, Nicol, & 
Bredin, 2006). In 2008, approximately 31% of the global adult world population was not 
active enough to obtain these positive health effects (World Health Organization, 2010). 
Being insufficiently active is associated with an increased risk for several chronic 
diseases, like cardiovascular diseases, type 2 diabetes, obesity and some types of cancers 
(Andersen, 2003; Department of Health, 2004; Dishman, Washburn, & Heath, 2004). 
Overall, being insufficiently active is related to premature deaths, resulting in heavy 
economic costs (Andersen, 2003; Department of Health, 2004). No changes in activity 
levels have been observed, and obesity rates and sedentary activities have increased 
during the last decade for example in North America and Australia, despite efforts that 
seek to encourage physical activity (PA) (Bauman & Bull, 2007). 
 
It is therefore important to develop insight in the correlates of PA and to develop a 
comprehensive population-based approach in promoting PA instead of an individual 
approach, which is the case nowadays (Bauman & Bull, 2007; Bauman, Sallis, 
Dzewaltowski, & Owen, 2002; Owen et al., 2011; Sallis & Owen, 1998; Van Holle et al., 
2012). Next to personal, cultural, and socio-economical factors, built environmental 
attributes have been identified as important correlates of PA. A bourgeoning number of 
studies have offered compelling evidence that the built environment influences people’s 
propensity to engage in physically active pursuits (Owen, Humpel, Leslie, Bauman, & 
Sallis, 2004; Saelens & Handy, 2008; Saelens, Sallis, Black, & Chen, 2003; Saelens, Sallis, 
& Frank, 2003; Sallis et al., 2009; Van Dyck et al., 2010; Van Holle et al., 2012). For 
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example, Humpel et al. found a positive relationship between accessibility and aesthetic 
attributes with PA in several reviewed articles (Humpel, Owen, & Leslie, 2002). In 
another review article, Saelens et al., for their part, identified 14 studies where an 
association between several neighbourhood attributes (e.g. accessibility, land use mix, 
access to public transport, and population density) and PA occurred (Saelens, Sallis, 
Black, et al., 2003). In a related study, Saelens et al. concluded that people living in high 
walkable neighbourhoods in San Diego, California (US) engaged in approximately 52 
more minutes of PA during a week compared to their counterparts living in low walkable 
neighbourhoods (Saelens, Sallis, & Frank, 2003). Likewise, Owen et al. reviewed 18 
articles and observed that several built environmental attributes (i.e. aesthetics, walking 
facilities, accessibility, and traffic perceptions) are linked with walking behaviour (Owen 
et al., 2004). 
 
However, these built environmental attributes can be assessed in either an objective or 
perceived manner. Objective built environmental attributes are measured using detailed 
georeferenced data by means of geographical information systems (GIS), while perceived 
attributes stem from self-reports in the form of surveys or questionnaires. Both types of 
attributes do not necessarily coincide and therefore may relate differently with physical 
activity behaviour. For example, while objective availability of pertinent destinations in 
a neighbourhood may be high, a person’s perceived availability can be low due to the fact 
that a person may not be aware of all feasible destinations in her/his neighbourhood 
(Kwan & Hong, 1998; Mondschein, Blumenberg, & Taylor, 2010). A decreased 
environmental awareness may in turn lead to a lower propensity to walk in that 
neighbourhood, although the objective availability of destinations suggests otherwise. 
People process and store information about their environment according to their own 
attitudes, motivations, and preferences. These perceptions are not necessarily precise 
representations of the actual objective built environment (Blacksher & Lovasi, 2012; 
Golledge, 1991). Incorporating both objective measures and perceptions of residents in 
research is important, as the impact of the objective built environment on health depends 
on human perceptions, motivation, and deliberation (Blacksher & Lovasi, 2012). 
 
In response to this potential discrepancy between the objective and perceived built 
environment, several studies have scrutinised the concordance between objective and 
perceived built environmental attributes, such as accessibility, walkability, dwelling 
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density, street connectivity, land use mix, and retail density. Cerin et al., for example, 
observed moderate to high correspondence between objective and perceived access to 
services, ease of walking, street connectivity, and walkability, whereas Ball et al. found 
only a poor agreement between perceived and objective availability of PA facilities (Ball 
et al., 2008; Cerin, Leslie, Owen, & Bauman, 2007). Additionally, Ball et al. noticed a 
greater mismatch between objective and perceived availability of PA facilities for less 
active people (Ball et al., 2008). However, they only examined whether or not certain 
facilities lie within a buffer zone around respondents’ location of residence (i.e. 
availability), but did not investigate distances to these facilities (i.e. accessibility). In a 
similar vein, Gebel et al. observed a fair overall agreement between objective and 
perceived measures for dwelling density, intersection density, land use mix, and retail 
area (Gebel, Bauman, & Owen, 2009). They found that less active people are more likely 
to misperceive the walkability of their neighbourhood. The reason for this is that more 
active people walk more in their neighbourhood, resulting in a better awareness of the 
built environment (Cohen & Weatherford, 1980; Golledge & Stimson, 1997; Thorndyke, 
1982). Gebel et al. additionally found that male, higher educated, normal weighted, older 
people from high walkable neighbourhoods make more correct estimations of built 
environmental attributes (Gebel et al., 2009). 
 

3.2.2 RELATED WORK 
 
Instead of examining previously mentioned built environmental attributes, this paper 
studies the agreement between objective and perceived walking times from respondents’ 
residences to different locations. Only few studies examined the agreement between 
objective and perceived walking distances/times to date. Jilcott et al. and Macintyre et 
al., for example, observed a fair agreement between objective and perceived walking 
distances to parks, gyms, and schools, while McCormack et al. and Lackey & Kaczynski 
noticed only a poor agreement for these destinations (Jilcott, Evenson, Laraia, & 
Ammerman, 2007; Lackey & Kaczynski, 2009; Macintyre & Macdonald, 2008; 
McCormack, Cerin, & Leslie, 2008). Besides general agreement, some studies also 
studied the degree of underestimation or overestimation. In both Jilcott et al. and 
McCormack et al., it was concluded that on average the perceived walking distance to 
several destinations is greater than the objective walking distance, presumably because 
people can be unaware of the existence certain close facilities (Jilcott et al., 2007; 
McCormack et al., 2008). An overestimation of walking distance in self-reported data 
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was also identified in many earlier studies (Canter & Tagg, 1975; Gatrell, 1983; Golledge 
& Stimson, 1997; Walmsley & Jenkins, 1992). 
 
The agreement between objective and perceived walking distances/times can depend on 
several factors, with PA having the strongest influence. Because of greater environmental 
exposure and concomitant locational awareness, active people not only have a better 
perception of the previously mentioned attributes such as walkability and connectivity, 
but they can also make more accurate estimates of walking distances/times (Lackey & 
Kaczynski, 2009; McCormack et al., 2008). Regarding shops, McCormack et al. found 
that less active people overestimate the distance in comparison to their active 
counterparts (McCormack et al., 2008). Looking at distances to parks, Lackey & 
Kaczynski concluded that people who did at least some park-based PA can more 
accurately appraise walking distances, since they experience more intimate and slow 
speed interaction with the places resulting in better distance estimates (Cohen & 
Weatherford, 1980; Humpel et al., 2002; Kirtland et al., 2003; Lackey & Kaczynski, 2009; 
Mondschein et al., 2010; Thorndyke, 1982). However, reasoning also works the other 
way around: people with a good mental map of the built environment might be more 
likely to be physically active, because they are more familiar with the local environment. 
However, to date, no literature was found to substantiate this direction of causation. 
Next to PA, other factors have also been tested. McCormack et al. observed, for instance, 
that people from high walkable neighbourhoods in Adelaide (Australia) overestimated 
distances to several destinations (McCormack et al., 2008). Also, it has been pointed out 
that people overestimate short and well-known routes and underestimate long and less-
known routes (Canter & Tagg, 1975; Cervero & Radisch, 1996; Frank, Engelke, & 
Schmid, 2003; Golledge & Stimson, 1997). Considering other socio-demographic 
variables, Lackey & Kaczynski concluded that younger, high educated, and normal 
weighted people have higher odds of achieving a match between objective and perceived 
proximity to parks in Ontario (Canada) (Lackey & Kaczynski, 2009).  
 
This study seeks to add to the knowledge base surrounding the above discussion by 
bringing additional evidence to the fore that sheds new light on the differential effects of 
objective and perceived access to urban destinations on physical activity.  
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The first objective is to analyse the agreement between objective and perceived walking 
times for residents from the city of Ghent. This is done by comparing objective and 
perceived walking times from one’s residence to different facilities (e.g. bakery, 
restaurant, and swimming pool etc.). The second objective is to test whether or not this 
agreement depends on PA, neighbourhood walkability, gender, educational level, body 
mass index (BMI), and age. It will be determined whether the degree of underestimation 
or overestimation differs depending on the previously mentioned factors. 
 

3.3 METHODS 
 

3.3.1 PARTICIPANTS AND PROCEDURES 
 
For this study, data was used from the Belgian Environmental Physical Activity Study 
(BEPAS), conducted between May 2007 and September 2008 in the city of Ghent 
(237,000 inhabitants, 156.18 km2, and 1,468 inhabitants/km2). An equal number of 
respondents were selected from 24 neighbourhoods, containing one to five adjacent 
statistical sectors. Statistical sectors are the smallest units for which demographical data 
is available. An equal proportion of neighbourhoods with high/low walkability 
(explained later) and high/low socio-economic status (SES) based on neighbourhood 
level income data was selected. This means that six neighbourhoods are high 
walkable/high SES, six are high walkable/low SES, six are low walkable/high SES, and six 
are low walkable/low SES. From each neighbourhood, 250 adults aged 18–66 were 
randomly selected by the Public Service of Ghent. Two to six days after receiving an 
informational letter on the study, home visits were made to potential participants, until 
50 participants in each neighbourhood agreed to participate in the study. Overall 
response rate was 58% (2069 possible participants found at home, of which 1,200 were 
willing to participate). From these participants, 1,164 had datasets that could be used for 
this study. For a more detailed description of the procedures, the reader is referred to 
Van Dyck et al. (Van Dyck et al., 2010). 
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3.3.2 MEASURES 

 
3.3.2.1 PERCEIVED WALKING TIMES 

 
As part of a questionnaire assessing perceived built environmental attributes in the 
neighbourhood (Neighbourhood Environmental Walkability Scale (NEWS)), 
respondents were asked to estimate walking times to various closest destinations: 
supermarket, bakery, butchery, clothes shop, post office, library, primary school, 
restaurant, bank, video shop, pharmacy, bus or tram stop, and swimming pool (Cerin et 
al., 2007; De Bourdeaudhuij, Sallis, & Saelens, 2003; Saelens, Sallis, Black, et al., 2003). 
Response options included: 1–5min, 5–10min, 11–20min, 21–30min, and more than 30 
minutes. Previously, it has been shown that this NEWS survey has strong reliability and 
validity (Saelens, Sallis, & Frank, 2003)s. In the remainder of the paper, this self-reported 
walking time will be referred to as the perceived walking time. 
 

3.3.2.2 OBJECTIVE WALKING TIMES 
 
Objective walking times to the closest facilities were calculated in ArcGIS 9.0™ using 
Network Analyst. This was done by calculating the shortest route from residents’ home 
locations (available from the survey) to different types of destinations (available from a 
large and detailed inventory from 2009 of urban destinations in the city of Ghent). A GIS 
street network layer of routes available for walking, including exclusive pedestrian paths, 
is used in this analysis. These walkable paths are exported from the Large-Scale Reference 
Base (in Dutch: GRB, Grootschalig Referentiebestand), which is a highly accurate (20 
cm) geographical database with information about various characteristics of roads, 
buildings, railways, water areas, and parcels and will soon be available (erratum: as of the 
end of 2013 it is complete) for the whole of Flanders (Agentschap voor Geografische 
Informatie Vlaanderen, 2011). Computed shortest distances were transformed into 
walking times by dividing them by an average walking speed. Average walking speeds 
were differentiated by gender and age according to Bohannon (Bohannon, 1997). 
Bohannon calculated these average comfortable speeds from 230 healthy individuals (see 
Table 3.1). 
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Following McCormack et al., 0.3 km/h was subtracted from the average speeds to correct 
for stopping at crossings and for turning (McCormack et al., 2008). The calculated 
walking times were then grouped into the same categories as those available in the NEWS 
questionnaire (i.e. 1–5min, 6–10min, 11–20min, 21–30min, and >30min) in order to be 
able to compare these to the self-reported walking times. 
 
Table 3.1: Average corrected walking speeds (km/h), based on the results of Bohannon 

(Bohannon, 1997), from a sample of 230 individuals and corrected according to the results 

of McCormack et al. (McCormack, Cerin, and Leslie, 2008). 

Age group Male Female 
18–30 4.71 4.77 
31–40 4.95	 4.79 
41–50 4.96 4.71 
51–60 4.71 4.72 
61–70 4.59 4.37 
>70 4.49 4.28 

 
3.3.2.3 PHYSICAL ACTIVITY 

 
In order to estimate the level of PA, participants were asked to wear an accelerometer 
(model 7164, Computer Science Application) for seven consecutive days. 
Accelerometers have proven to be a valid and reliable instrument for PA assessment in 
adults (Melanson & Freedson, 1995; Welk, Schaben, & Morrow, 2004). The 
accelerometers were set to measure the number of accelerations per minute. 1,952 to 
5,724 accelerations per minute correspond with moderate PA, and >5,724 accelerations 
per minute correspond with vigorous PA (Freedson, Melanson, & Sirard, 1998). Only 
data from participants with at least 10 hours wear time for at least four days (including 
at least one weekend day) were included in the study. From the raw data, the average 
time of moderate-to-vigorous physical activity (MVPA) per day was calculated. To 
dichotomise this variable, the health norm was used, which is recommended by several 
organisations (Department of Health and Ageing, 1999; Department of Health, 2004; 
U.S. Department of Health and Human Services, 1996; World Health Organization, 
2003). The American College of Sports Medicine also recommends this health norm 
(Garber et al., 2011). It stipulates that adults with at least 30 minutes of MVPA per day, 
for at least five days per week are physically active enough to take advantage of health 
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benefits. Adults who do not reach this threshold are considered physically insufficiently 
active. 
 

3.3.2.4 NEIGHBOURHOOD WALKABILITY 
 
Neighbourhood walkability indicates "the extent to which characteristics of the built 
environment and land use are conducive to walking for leisure, exercise or recreation, to 
access services, or to travel to work" (Leslie et al., 2007, p. 112). Using a GIS, a 
neighbourhood walkability index was constructed on the basis of three built 
environmental variables: street connectivity, residential density, and land use mix 
(Saelens, Sallis, Black, et al., 2003). These built environmental variables were obtained 
from the Service for Environmental Planning in Ghent. A more detailed description on 
how this neighbourhood walkability is calculated can be found in Van Dyck et al. (Van 
Dyck et al., 2010). 
 

3.3.2.5 SOCIO-DEMOGRAPHIC VARIABLES 
 
From the survey, different personal and socio-demographic factors were obtained, 
including gender, educational level (higher education (i.e. college or university degree) 
or not), BMI (≥25: overweight or <25: normal weight), and age (dichotomised to 18–45 
and >45 years). 
 

3.3.3 ANALYSES 
 

3.3.3.1 OBJECTIVE 1:  AGREEMENT BETWEEN OBJECTIVE AND 

PERCEIVED WALKING TIME 
 
The first objective of this study is to examine the degree of agreement between objective 
and perceived walking times. To test whether the difference between objective and 
perceived walking times is significant, a Wilcoxon t-test was used. This was done for the 
separate destinations as well as for all destinations together. To calculate average 
(objective and perceived) walking times, the time categories were transferred to the mean 
value. Also the total proportion of underestimations, correct estimations, and 
overestimations was calculated for all destinations using cross tabs. Correct estimations 
occur when the perceived walking time class is the same as the objective walking time 
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class. Underestimations and overestimations occur when the perceived walking time 
class is respectively lower and higher than the objective walking time class. 
 

3.3.3.2 OBJECTIVE 2:  RELATION BETWEEN DIFFERENT FACTORS 

( PA,  NEIGHBOURHOOD WALKABILITY,  GENDER,  
EDUCATIONAL LEVEL,  BMI,  AND AGE)  AND DEGREE OF 

AGREEMENT 
 
The second objective of this study is to assess the relation between different factors and 
the degree of agreement between objective and perceived walking times. To assess the 
odds of achieving a match (i.e. objective and perceived walking time are in the same 
category) in relation to the different factors, a logistic regression model was constructed. 
In this logistic regression, the odds ratios of making a correct estimation were calculated, 
depending on the different factors. If the 95% confidence interval does not include the 
null value 1, the selected part of the respondents (depending on the factor) has 
higher/lower odds of achieving a match. For factors found to be significant, the 
proportion of people making an underestimation, correct estimation or overestimation 
was calculated again, but now for the two ends of the factor (e.g. active and insufficiently 
active people) for all destinations separately. The proportion of underestimations, 
correct estimations, and overestimations were also calculated for the other factors, for 
all destinations combined. The logistic regression was repeated to assess the odds of 
making an underestimation or overestimation. 
 

3.4 RESULTS 
 

3.4.1 DESCRIPTIVE STATISTICS 
 
In Table 3.2 the descriptive statistics of the study sample are given. The sample contains 
slightly more active than insufficiently active respondents. The number of people from 
high and low walkable neighbourhoods is almost equal. There are more females than 
males in the sample. The majority of the sample has a higher education and normal 
weight and there are approximately 10% more 18–45 year olds in comparison with 46–
66 year olds. 
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Table 3.2: Descriptive statistics (n=1,164). 

Characteristic N % 
PAa   
    Insufficiently active 560 48.1 
    Active 604 51.9 
Gender   
    Male 558 47.9 
    Female 606 52.1 
Educational level   
    No higher education 450 38.7 
    Higher education 701 60.2 
    Missing 13 1.1 
BMIb   
    Normal weight 705 60.6 
    Overweight 418 35.9 
    Missing 41 3.5 
Age   
    18–45 years 646 55.5 
    46–66 years 518 44.5 
Neighbourhood walkability   
    Low 583 50.1 
    High 581 49.9 

a Physical activity 
b Body mass index 
 

3.4.2 OBJECTIVE 1:  AGREEMENT BETWEEN OBJECTIVE AND 

PERCEIVED WALKING TIME 
 
The percentage of participants with available perceived walking time data was calculated 
(Table 3.3). It can be inferred that these percentages are very high and vary only slightly 
between different destinations. Table 3.3 also shows the average objective and perceived 
walking times for all destinations combined and for all destinations separately. Clothes 
shops, post offices, libraries, video shops, and swimming pools are on average located 
farthest from the respondents, while bus or tram stops tend to be present closest to the 
respondents’ home location. In addition, Table 3.3 shows the average difference between 
perceived and objective walking times. It is clear from Wilcoxon’s test that for all but two 
destinations (i.e. post office and library), participants significantly overestimate the 
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objective walking time. The absolute average difference is greatest for supermarkets, 
clothes shops, and restaurants. For post offices there is a significant underestimation of 
objective walking time. 
 
Table 3.3: Average objective and perceived walking times, average differences, 

underestimations, correct estimations, and overestimations. 

Destination 

Respondents for 
whom perceived 

walking time was 
available (%) 

Average 
objective 

walking time 
(min)* 

Average 
perceived 

walking time 
(min)* 

Average 
difference 

(min) 

Under-
estimation 

(%) 

Correct 
estimation 

(%) 

Over-
estimation 

(%) 

All 
destinations 97.2 13 16 3** 13.9 52.2 33.9 

Bus or tram 
stop 99.5 3 4 1** 2.6 83.2 14.2 

Restaurant 98.9 6 13 7** 6.9 39.1 54.0 

Primary 
school 98.0 8 12 4** 12.0 47.2 40.8 

Bakery 99.2 8 9 1** 15.3 63.8 20.9 

Pharmacy 99.1 8 10 2** 5.8 66.5 27.7 

Supermarket 99.3 9 17 8** 7.1 27.7 65.2 

Butchery 99.3 10 11 1** 14.3 55.2 30.5 

Bank 99.2 10 14 4** 8.7 50.0 41.3 

Clothes shop 98.5 16 22 6** 10.9 42.8 46.3 

Video shop 97.2 18 20 2** 18.4 56.0 25.6 

Post office 99.3 21 20 -1** 28.3 50.3 21.4 

Library 98.8 24 23 -1 29.5 45.5 25.0 

Swimming 
pool 98.7 24 26 2** 20.4 51.5 28.1 

* Time category midpoints were used to calculated average values 
** p<0.001 from Wilcoxon t-test 

 
From this average difference, no further information about the proportions of 
underestimations, correct estimations or overestimations can be deduced. Therefore, 
cross tabs were made with the objective and perceived walking times from all 
destinations combined and separately. From these cross tabs, the total proportion of 
people making an underestimation, correct estimation and overestimation were 
calculated. This can be found in the final three columns of Table 3.3. On average, for all 
destinations combined, 52.2% of the respondents made a correct estimation, 13.9% made 
an underestimation, and 33.9% made an overestimation. The largest proportion of 
correct estimations is found for bakeries, butcheries, video shops, pharmacies, and bus 
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or tram stops. Most underestimations are found for post offices, libraries, and swimming 
pools. These are typically the destinations, which are generally located farthest away 
from the location of residence. Overestimations are most prominent for supermarkets, 
clothes shops, and restaurants.  
 

3.4.3 OBJECTIVE 2:  RELATION BETWEEN DIFFERENT FACTORS ( PA,  
NEIGHBOURHOOD WALKABILITY,  GENDER,  EDUCATIONAL LEVEL,  
BMI,  AND AGE)  AND DEGREE OF AGREEMENT 

 
Table 3.4 depicts the results of a logistic regression, performed to assess the relation 
between different factors and the degree of agreement between objective and perceived 
walking times. PA is the only significant predictor of the degree of agreement 
(OR=1.138), suggesting that active people have higher odds of achieving a match 
between objective and perceived walking times. 
 
Table 3.4: Logistic regression to test the relation between different factors and the degree 

of agreement between objective and perceived walking times. 

Factor (concerning category) Odds Ratio 95% Confidence Interval 
PAa (active) 1.138* 1.068–1.214 
Gender (female) 0.972 0.911–1.036 
Educational level (higher education) 1.010 0.945–1.078 
BMIb (overweight) 0.965 0.902–1.032 
Age (>45 years) 1.054 0.989–1.124 
Neighbourhood walkability (high) 0.992 0.931–1.058 

* p<0.05 from the logistic regression 
a Physical activity 
b Body mass index 
 
The logistic regression only tells us something about the degree of agreement, but it does 
not give any information about whether walking times are underestimated or 
overestimated. Hence, Figure 3.1 shows the proportion of both active and insufficiently 
active people making an underestimation, correct estimation, and overestimation. For 
all destinations combined, it can be observed that active people make more correct 
estimations than insufficiently active people, which aligns with the results from the 
logistic regression. In addition, active people make more underestimations than 



CHAPTER 3 

64 

insufficiently active people and insufficiently active people make more overestimations 
than active people. 
 
For all destinations separately (except for post offices, libraries, primary schools, and 
swimming pools) active people make more correct estimations than insufficiently active 
people. For butcheries, post offices, libraries, banks, and swimming pools active people 
make more underestimations than insufficiently active people. The overall result is that 
for all destinations insufficiently active respondents make more overestimations than 
active people. 
 

 
Figure 3.1: Proportion of underestimations, correct estimations, and overestimations, for 

active and insufficiently active people. 

 
As can be seen in Table 3.4, no significant results were obtained for the other factors 
from the logistic regression. But since the logistic regression only estimates the odds 
ratios of achieving a match, the proportion of underestimations, correct estimations, and 
overestimations were additionally calculated for the other factors for all destinations 
combined. The results are summarised in Table 3.5. Significant results from the 
additional logistic regression are marked with an *. It can be inferred that male, normal 
weight, younger people make significantly more underestimations and significantly less 
overestimations than their female, overweight, older counterparts. Also, people from a 
low walkable neighbourhood make almost 5% more underestimations than people from 
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a high walkable neighbourhood. In addition, people from a high walkable 
neighbourhood make almost 5% more overestimations than people from a low walkable 
neighbourhood.  
 
Table 3.5: Proportion of underestimations, correct estimations, and overestimations, for 

active and insufficiently active people. 

Factor   
Under-

estimation 
(%) 

Correct 
estimation 

(%) 

Over-
estimation 

(%) 

PAa 
Insufficiently active 13.2* 50.6* 36.1* 
Active 14.4* 53.7* 31.9* 

Gender 
Male 14.4* 52.6 32.9* 
Female 13.3* 51.9 34.9* 

Educational 
level 

No higher education 13.6 52.3 34.1 
Higher education 14.0 52.2 33.8 

BMIb 
Normal weight 14.5* 52.5 33.0* 
Overweight 13.0* 51.6 35.4* 

Age 
≤45j 15.0* 51.6 33.4 
>45j 12.3* 53.0 34.7 

Neighbourhood 
walkability 

Low 16.2* 52.3 31.5* 
High 11.5* 52.1 36.4* 

a Physical activity 
b Body mass index 
* p<0.05 from the logistic regression 
 

3.5 DISCUSSION 
 

3.5.1 OBJECTIVE 1:  AGREEMENT BETWEEN OBJECTIVE AND 

PERCEIVED WALKING TIME 
 
The first objective of the study was to examine the agreement between objective and 
perceived walking times to various closest destinations. This agreement was found to be 
relatively poor: on average 52.2% of the respondents made a correct estimation. This 
finding aligns with Macintyre et al. and Jilcott et al., who respectively found a 
correspondence of 62.0% and 60.9% (Jilcott et al., 2007; Macintyre & Macdonald, 2008). 
However, the observed agreement strongly differs from that of Lackey & Kaczynski 
(17.9%) and McCormack et al. (11.4%) (Lackey & Kaczynski, 2009; McCormack et al., 
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2008). However, it ought to be noted that it is difficult to compare with the studies of 
Macintyre et al. and Lackey & Kaczynski since they have only studied perceived and 
objective access to parks by verifying whether there is a park within 750 m from one’s 
residence or not (Lackey & Kaczynski, 2009; Macintyre & Macdonald, 2008). 
Furthermore, in our study, 33.9% of the respondents tended to overestimate the 
objective walking time. This general overestimation was also found in earlier studies as 
mentioned in the specific literature review and may be explained by the fact that people 
can be unaware of certain close facilities (Jilcott et al., 2007).  
 
More specifically, when separate destinations are considered, the furthest destinations 
(swimming pools, libraries, post offices, and video shops) have the largest proportion of 
underestimations. This is similar to the results of McCormack et al., where the two 
farthest destinations (libraries and post offices) also represented the largest amount of 
underestimations (McCormack et al., 2008). Also in accordance with McCormack et al., 
the walking time to supermarkets is overestimated most (McCormack et al., 2008). 
Proffitt et al. mention a possible explanation for this: it has been shown that carrying 
heavy bags requires more physical effort, which results in distance overestimations 
(Proffitt, Stefanucci, Banton, & Epstein, 2003). Additionally, people often go shopping 
by car to prevent carrying heavy bags or to make sure that frozen goods do not melt. The 
use of motorised transport causes less interaction with the environment (Mondschein et 
al., 2010), resulting in more overestimations (Cohen & Weatherford, 1980; Golledge & 
Stimson, 1997; Thorndyke, 1982). Another possible explanation for the overestimation 
of walking time to supermarkets is that small (often foreign) shops are also included in 
the data, although people may not patronise these shops as frequently as larger shops. 
Walking times to destinations that are most common (bakeries, butcheries, pharmacies, 
and bus or tram stops) are most often estimated correct. Also walking times to video 
shops and swimming pools are estimated rather well, probably because only few of these 
facilities exist which are therefore well known. 
 

3.5.2 OBJECTIVE 2:  RELATION BETWEEN DIFFERENT FACTORS ( PA,  
NEIGHBOURHOOD WALKABILITY,  GENDER,  EDUCATIONAL LEVEL,  
BMI,  AND AGE)  AND DEGREE OF AGREEMENT 

 
As mentioned in the introduction, it has previously been shown that active people can 
better estimate walking distances/time because of their greater exposure and awareness 
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resulting from more intense interaction with the environment (Cohen & Weatherford, 
1980; Humpel et al., 2002; Kirtland et al., 2003; Lackey & Kaczynski, 2009; McCormack 
et al., 2008; Thorndyke, 1982). The logistic regression carried out in this paper showed 
that active people actually have higher odds (OR=1.138) of achieving a match between 
objective and perceived walking distances. Detailed analyses showed that active people 
make 3.1% more correct estimations than insufficiently active people. While 
McCormack et al. observed that insufficiently active people overestimate only the 
distance to shops, this paper found that insufficiently active people overestimate walking 
times to all destinations (McCormack et al., 2008). More specifically, insufficiently active 
people make 4.2% more overestimations than active people. Additionally, active people 
make 1.2% more underestimations than insufficiently active people. 
 
Since an earlier study in Ghent showed that people from high walkable neighbourhoods 
tend to be more active than people from low walkable neighbourhoods (Van Dyck et al., 
2010), it was expected that people from high walkable neighbourhoods would make 
more underestimations, whereas people from low walkable neighbourhoods would 
make more overestimations. However, our results showed that there is almost no 
difference in the proportion of correct estimations between high and low walkable 
neighbourhoods and that residents of low walkable neighbourhoods make more 
underestimations, while those of high walkable neighbourhoods make more 
overestimations. There may be two explanations for this. First, the higher degree of 
overestimations of distance can be explained by the presence of more intersections in 
high walkable neighbourhoods (Cohen & Weatherford, 1980; Sadalla & Magel, 1980; 
Sadalla & Staplin, 1980). Second, routes to destinations in high walkable neighbourhoods 
are often relatively short and it has been shown earlier that short and well-known routes 
are more often overestimated, whereas long and unknown routes are more often 
underestimated (Canter & Tagg, 1975; Cervero & Radisch, 1996; Frank et al., 2003; 
Golledge & Stimson, 1997). 
 
For the other demographic variables (gender, educational level, BMI, and age) no 
significant results were found in Macintyre et al. and Lackey & Kaczynski (Lackey & 
Kaczynski, 2009; Macintyre & Macdonald, 2008). This coincides with the results of this 
study, since these factors had no significant influence on the odds of making a correct 
estimation. However, results of this paper show that male, normal weighted, younger 
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people make more underestimations and less overestimations, than female, 
overweighed, older people. These results are as expected, because male, normal 
weighted, and younger people are more active (Trost, Owen, Bauman, Sallis, & Brown, 
2002). 
 

3.5.3 STUDY STRENGTHS AND LIMITATIONS 
 
This study has several strengths. First, it is to our knowledge the first study in European 
mainland about the effect of physical activity behaviour on travel time estimations and 
on associations between objective and perceived walking distances to destinations. Other 
studies concerning the relationship between the built environment and PA are mainly 
North American and Australian. Previous studies were conducted, among others, in 
South Carolina (US), North Carolina (US), Glasgow (UK), Adelaide (Australia), and 
Ontario (Canada) (Jilcott et al., 2007; Kirtland et al., 2003; Lackey & Kaczynski, 2009; 
Macintyre & Macdonald, 2008; McCormack et al., 2008). Second, the sample of 1,164 
respondents used in this study is larger than that of many other similar studies: 86 in 
McCormack et al., 199 in Jilcott et al., 574 in Lackey & Kaczynski, and 658 in Macintyre 
et al. (Jilcott et al., 2007; Lackey & Kaczynski, 2009; Macintyre & Macdonald, 2008; 
McCormack et al., 2008). Only in Kirtland et al. a similar number of participants (1,112) 
were studied (Kirtland et al., 2003). Third, more types of destinations are taken into 
consideration: 13 in contrast with 1 to 9 in the previously mentioned studies. Fourth, as 
in Jilcott et al., this study uses accelerometer data to estimate PA, which is more objective 
compared to the self-reported data used in many previous studies including Kirtland et 
al., McCormack et al., Macintyre et al., and Lackey & Kaczynski (Jilcott et al., 2007; 
Kirtland et al., 2003; Lackey & Kaczynski, 2009; Macintyre & Macdonald, 2008; 
McCormack et al., 2008). Fifth, body mass index (BMI) has been taken up as an 
explanatory variable in this study, which is not the case in the other five similar studies 
(ibid.). Sixth, in contrast to prior work, walking time is used instead of walking distance. 
The advantage of this is that walking speeds, and thus walking time–in contrast to 
walking distance–can be differentiated according to gender and age (Bohannon, 1997). 
 
Apart from the many advantages our study has over similar studies, there are also 
limitations. First, it is possible that people do not know the closest facility of a particular 
type simply because they are unaware of it. Incorporating the time that respondents have 
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lived in their neighbourhood might help to gain insights in this effect. Second, the 
questionnaire (NEWS) used for this study uses predefined categories to estimate the 
perceived walking time to various closest destinations. The reason for this is to minimise 
errors, because it can be hard to estimate walking times with a precision of one minute. 
However, because of these categories, short objective walking times cannot be 
underestimated and long objective walking times cannot be overestimated.  Third, in 
choosing routes, people are often driven by sense of safety, attractiveness and complexity 
of the built environment, and emotional responses (Briggs, 1973; Gatrell, 1983; Golledge 
& Stimson, 1997; Owen et al., 2004; Saelens, Sallis, & Frank, 2003), and therefore do not 
necessarily take the shortest route possible. Future studies comparing objective and 
perceived walking times should therefore include the actual routes, possibly making use 
of the GPS technology, and compare these with the objective and perceived shortest 
routes.  
 

3.6 CONCLUSIONS 
 
While in the past several studies used perceived walking times or distances as a substitute 
for actual walking times as a measure for access to different facilities (Hawthorne & 
Kwan, 2012; Sugiyama, Leslie, Giles-Corti, & Owen, 2009), this study has shown that 
these perceived walking times/distances are often an overestimation of the objective 
walking times/distances. Future studies should keep this poor correspondence in mind, 
as well as the fact that when only using self-reported walking times, the results can be 
influenced by physical activity and other variables. In general, people overestimate 
walking times, but physically insufficiently active people in particular make even more 
overestimations, probably because of their inadequate mental map resulting from lower 
interaction and experience with their residential neighbourhood. By overestimating 
walking times, people can be discouraged to walk and might end up being insufficiently 
active. These vicious circle effects should make policy makers aware that in order to 
promote physical activity, one should not only look at the objective neighbourhood 
characteristics but also at how people of socio-demographic segments and with different 
PA levels may perceive these. It is important for policymakers to appreciate that by 
influencing people’s perception, one can change PA behaviour without adjusting the 
built environment itself. 
 



CHAPTER 3 

70 

 
3.7 REFERENCES 

 
Agentschap voor Geografische Informatie Vlaanderen. (2011). Grootschalig 

referentiebestand: GRB in GIS-formaat. 
Andersen, R. E. (2003). Obesity: etiology, assessment, treatment, and prevention. 

Champaign, IL: Human Kinetics Publishers. 
Ball, K., Jeffery, R. W., Crawford, D. a, Roberts, R. J., Salmon, J., & Timperio, A. F. (2008). 

Mismatch between perceived and objective measures of physical activity 
environments. Preventive Medicine, 47(3), 294–298. 

Bauman, A. E., & Bull, F. C. (2007). Environmental correlates of physical activity and 
walking in adults and children: a review of reviews. American journal of public 
health. Loughborough. 

Bauman, A. E., Sallis, J. F., Dzewaltowski, D. A., & Owen, N. (2002). Toward a better 
understanding of the influences on physical activity. American Journal of 
Preventive Medicine, 23(Suppl 2), 5–14. 

Blacksher, E., & Lovasi, G. S. (2012). Place-focused physical activity research, human 
agency, and social justice in public health: taking agency seriously in studies of the 
built environment. Health and Place, 18(2), 172–179. 

Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20-
79 years: reference values and determinants. Age and Ageing, 26(1), 15–19. 

Briggs, R. (1973). Urban distance cognition. In R. M. Downs & D. Stea (Eds.), Image and 
environment: cognitive mapping and spatial behavior (pp. 361–388). Chicago: 
Aldine Transaction. 

Canter, D., & Tagg, S. K. (1975). Distance estimation in cities. Environment and 
Behavior, 7(1), 59–80. 

Cerin, E., Leslie, E., Owen, N., & Bauman, A. (2007). Applying GIS in physical activity 
research: community “walkability” and walking behaviors. In P. C. Lai & A. S. H. 
Mak (Eds.), Lecture notes in geoinformation and cartography: GIS for health and 
the environment (pp. 72–89). Hong Kong: Springer. 

Cervero, R., & Radisch, C. (1996). Travel choices in pedestrian versus automobile 
oriented neighborhoods. Transport Policy, 3(3), 127–141. 

Cohen, R., & Weatherford, D. L. (1980). Effects of route traveled on the distance children 
and adults estimates of children and adults. Journal of Experimental Child 
Psychology, 29, 403–412. 

De Bourdeaudhuij, I., Sallis, J. F., & Saelens, B. E. (2003). Environmental correlates of 
physical activity in a sample of Belgian adults. American Journal of Health 
Promotion, 18(1), 83–92. 



CORRESPONDENCE BETWEEN OBJECTIVE AND PERCEIVED WALKING TIMES 

71 

Department of Health. (2004). At least five a week: evidence on the impact of physcal 
activity and its relationship to health. Nutrition Bulletin (Vol. 29). Canberra. 

Department of Health and Ageing. (1999). National physical activity guidelines for 
Australians. Canberra. 

Dishman, R., Washburn, R., & Heath, G. (2004). Physical activity epidemiology. 
Champaign, IL: Human Kinetics Publishers. 

Frank, L. D., Engelke, P. O., & Schmid, T. L. (2003). Health and community design: the 
impact of the built environment on physical activity. Washington: Island Press. 

Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the Computer Science 
and Applications, Inc. accelerometer. Medicine & Science in Sports & Exercise, 
30(5), 777–781. 

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. a, Lamonte, M. J., Lee, I.-M., 
… Swain, D. P. (2011). Quantity and quality of exercise for developing and 
maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in 
apparently healthy adults: guidance for prescribing exercise. Medicine and Science 
in Sports and Exercise, 43(7), 1334–1359. 

Gatrell, A. (1983). Distance and space. New York: University Press. 
Gebel, K., Bauman, A., & Owen, N. (2009). Correlates of non-concordance between 

perceived and objective measures of walkability. Annals of Behavioral Medicine, 
37(2), 228–238. 

Golledge, R. G. (1991). Cognition of physical and built environments. In T. Gärling & G. 
W. Evans (Eds.), Environment, cognition, and action: an integrated approach (pp. 
35–62). New York: Oxford University Press. 

Golledge, R. G., & Stimson, R. J. (1997). Spatial behaviour: a geographic perspective. New 
York: Guilford. 

Haskell, W. L., Lee, I.-M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., … 
Bauman, A. E. (2007). Physical activity and public health: updated 
recommendation for adults from the American College of Sports Medicine and the 
American Heart Association. Circulation, 116(9), 1081–1093. 

Hawthorne, T. L., & Kwan, M.-P. (2012). Using GIS and perceived distance to 
understand the unequal geographies of healthcare in lower-income urban 
neighbourhoods. The Geographical Journal, 178(1), 18–30. 

Humpel, N., Owen, N., & Leslie, E. (2002). Environmental factors associated with adults’ 
participation in physical activity: a review. American Journal of Preventive 
Medicine, 22(3), 188–199. 

Jilcott, S. B., Evenson, K. R., Laraia, B. a, & Ammerman, A. S. (2007). Association 
between physical activity and proximity to physical activity resources among low-
income, midlife women. Preventing Chronic Disease, 4(1), 16. 

Kirtland, K. a., Porter, D. E., Addy, C. L., Neet, M. J., Williams, J. E., Sharpe, P. a., … 



CHAPTER 3 

72 

Ainsworth, B. E. (2003). Environmental measures of physical activity supports. 
American Journal of Preventive Medicine, 24(4), 323–331. 

Kwan, M.-P., & Hong, X.-D. (1998). Network-based constraints-oriented choice set 
formation using GIS. Geographical Systems, 5, 139–162. 

Lackey, K. J., & Kaczynski, A. T. (2009). Correspondence of perceived vs. objective 
proximity to parks and their relationship to park-based physical activity. The 
International Journal of Behavioral Nutrition and Physical Activity, 6(53), 9. 

Leslie, E., Coffee, N., Frank, L., Owen, N., Bauman, A. E., & Hugo, G. (2007). Walkability 
of local communities: using geographic information systems to objectively assess 
relevant environmental attributes. Health and Place, 13(1), 111–122. 

Macintyre, S., & Macdonald, L. (2008). Lack of agreement between measured and self-
reported distance from public green parks in Glasgow, Scotland. International 
Journal of Behavioral Nutrition, 5(26), 8. 

McCormack, G. R., Cerin, E., & Leslie, E. (2008). Objective versus perceived walking 
distances to destinations: correspondence and predictive validity. Environment 
and Behavior, 40(3), 401–425. 

Melanson, E., & Freedson, P. S. (1995). Validity of the Computer Science and 
Applications, Inc. (CSA) activity monitor. Medicine & Science in Sports & Exercise, 
27, 934–940. 

Mondschein, A., Blumenberg, E., & Taylor, B. (2010). Accessibility and cognition: the 
effect of transport mode on spatial knowledge. Urban Studies, 47(4), 845–866. 

Owen, N., Humpel, N., Leslie, E., Bauman, A. E., & Sallis, J. F. (2004). Understanding 
environmental influences on walking: review and research agenda. American 
Journal of Preventive Medicine, 27(1), 67–76. 

Owen, N., Sugiyama, T., Eakin, E. E., Gardiner, P. a, Tremblay, M. S., & Sallis, J. F. (2011). 
Adults’ sedentary behavior determinants and interventions. American Journal of 
Preventive Medicine, 41(2), 189–196. 

Pate, R., Pratt, M., Blair, S., & Haskell, W. (1995). Physical activity and public health. 
Journal of the American Mecical Association, 273(5), 402–407. 

Proffitt, D. R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in 
perceiving distance. Psychological Science, 14(2), 106–112. 

Sadalla, E. K., & Magel, S. G. (1980). The perception of traversed distance. Environment 
and Behavior, 12(1), 65–79. 

Sadalla, E. K., & Staplin, L. J. (1980). The perception of traversed distance. Environment 
and Behavior, 12(2), 167–182. 

Saelens, B. E., & Handy, S. L. (2008). Built environment correlates of walking: a review. 
Medicine and Science in Sports and Exercise, 40(Suppl 7), S550–S566. 

Saelens, B. E., Sallis, J. F., Black, J. B., & Chen, D. (2003). Neighborhood-based 
differences in physical activity: an environment scale evaluation. American Journal 



CORRESPONDENCE BETWEEN OBJECTIVE AND PERCEIVED WALKING TIMES 

73 

of Public Health, 93(9), 1552–1558. 
Saelens, B. E., Sallis, J. F., & Frank, L. D. (2003). Environmental correlates of walking and 

cycling: findings from the transportation, urban design and planning literatures. 
Annals of Behavioral Medicine: A Publication of the Society of Behavioral Medicine, 
25(2), 80–91. 

Sallis, J. F., & Owen, N. (1998). Physical activity and behavioral medicine. Thousand 
Oaks: Sage Publications. 

Sallis, J. F., Saelens, B. E., Frank, L. D., Conway, T. L., Slymen, D. J., Cain, K. L., … Kerr, 
J. (2009). Neighborhood built environment and income: examining multiple 
health outcomes. Social Science and Medicine, 68(7), 1285–1293. 

Sugiyama, T., Leslie, E., Giles-Corti, B., & Owen, N. (2009). Physical activity for 
recreation or exercise on neighbourhood streets: associations with perceived 
environmental attributes. Health and Place, 15(4), 1058–1063. 

Thorndyke, P. W. (1982). Differences in spatial knowledge acquired and navigation from 
maps and navigation. Cognitive Psychology, 14, 560–589. 

Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of 
adults’ participation in physical activity: review and update. Medicine and Science 
in Sports and Exercise, 34(12), 1996–2001. 

U.S. Department of Health and Human Services. (1996). Physical activity and health: a 
report of the surgeon general. Washington DC. 

Van Dyck, D., Cardon, G., Deforche, B., Sallis, J. F., Owen, N., & De Bourdeaudhuij, I. 
(2010). Neighborhood SES and walkability are related to physical activity behavior 
in Belgian adults. Preventive Medicine, 50, S74–S79. 

Van Holle, V., Van Cauwenberg, J., Deforche, B., Goubert, B., Maes, L., Van de Weghe, 
N., & De Bourdeaudhuij, I. (2012). Relationship between the physical environment 
and different domains of physical activity in European adults: a systematic review. 
BMC Public Health, 12(807), 17. 

Walmsley, D. J., & Jenkins, J. M. (1992). Cognitive distance: a neglected issue in travel 
behaviour. Journal of Travel Research, 31(1), 24–29. 

Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical 
activity: the evidence. Canadian Medical Association Journal, 174(6), 801–809. 

Welk, G. J., Schaben, J. A., & Morrow, J. R. J. (2004). Reliability of accelerometry-based 
activity monitors: a generalizability study. Medicine and Science in Sports and 
Exercise, 36(9), 1637–1645. 

World Health Organization. (2003). Diet, nutrition and the prevention of chronic 
diseases. Geneva. 

World Health Organization. (2010). Global status report on noncommunicable diseases 
2010. Global status report on noncommunicable diseases. Geneva. 

 





 

75 

 
 
 

Adapted from: Dewulf, B., Neutens, T., De Weerdt, Y., Van de Weghe, N. (2013) 
Accessibility to primary health care in Belgium: An evaluation of policies 
awarding financial assistance in shortage areas. BMC Family Practice, 14(122), 
13p. 
 
© Copyright retained by the authors 

 
 

4.1 ABSTRACT 
 
In many countries, financial assistance is awarded to physicians who settle in an area 
that is designated as a shortage area to prevent unequal accessibility to primary health 
care. Today, however, policy makers use fairly basic methods to define health care 
accessibility, with physician-to-population ratios (PPRs) within predefined 
administrative boundaries being overwhelmingly favoured. Our purpose is to verify 
whether these basic methods are accurate enough for adequately designating medical 
shortage areas and explore how these perform relative to more advanced GIS-based 
methods. Using a geographical information system (GIS), we conduct a nation-wide 
study of accessibility to primary care physicians in Belgium using four different methods: 
PPR, distance to closest physician, cumulative opportunity, and floating catchment area 
(FCA) methods. The official method used by policy makers in Belgium (calculating PPR 
per physician zone) offers only a crude representation of health care accessibility, 
especially because large contiguous areas (physician zones) are considered. We found 
substantial differences in the number and spatial distribution of medical shortage areas 
when applying different methods. The assessment of spatial health care accessibility and 
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concomitant policy initiatives are affected by and dependent on the methodology used. 
The major disadvantage of PPR methods is its aggregated approach, masking subtle local 
variations. Some GIS methods overcome this issue, but have limitations in terms of 
conceptualisation of physician interaction and distance decay. Conceptually, the 
enhanced 2-step floating catchment area (E2SFCA) method, an advanced FCA method, 
was found to be most appropriate for supporting areal health care policies, since this 
method is able to calculate accessibility at a small scale (e.g. census tracts), takes 
interaction between physicians into account, and considers distance decay. While at 
present in health care research methodological differences and modifiable areal unit 
problems have remained largely overlooked, this manuscript shows that these aspects 
have a significant influence on the insights obtained. Hence, it is important for policy 
makers to ascertain to what extent their policy evaluations hold under different scales of 
analysis and when different methods are used. 
 

4.2 INTRODUCTION 
 
Primary health care is the first line of defence for a population and can prevent or reduce 
unnecessary, expensive speciality care (Lee, 1995; Luo & Qi, 2009; Luo, 2004). Hence, 
accessibility to primary health care is considered a fundamental right and an important 
facilitator of overall population health. 
 
Ensuring equal accessibility to primary care for those in equal need has long been of 
concern to public health policy makers, service providers, researchers, and consumers 
alike. Various countries have implemented incentive health programmes to redress 
spatial gaps in service provision. In the US, for instance, the federal government spends 
over one billion dollars a year on programmes (e.g. National Health Service Corps 
Program) that seek to improve accessibility to health care by, among others, offering 
financial support to health care professionals, who serve shortage areas (GAO: United 
Stated General Accounting Office, 1995; Luo & Qi, 2009). Likewise, in Belgium, the 
'Rijksinstituut voor Ziekte- en Invaliditeitsverzekering' (RIZIV; ‘National Institute for 
Disease and Invalidity Insurance’) has an incentive programme, called Impulseo I, which 
awards 20,000 euros to physicians who settle in a physician zone–consisting of multiple 
municipalities–with a low physician-to-population ratio; that is, less than 90 
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physicians/100,000 inhabitants, or both less than 120 physicians/100,000 inhabitants and 
less than 125 inhabitants/km2 (RIZIV, 2013). 
 
While medical deficits determined on the basis of zonal physician-to-population ratios 
can be derived easily from a simple spread sheet, they may–if not complemented by a 
more in-depth spatial analysis–generate only crude and even misleading insights into 
the health provision landscape. Such a spatial analysis can be achieved by using 
geographical information systems (GIS) that enable to input, store, manipulate, analyse, 
and visualise spatial information (Higgs, 2004). The analytical power of GIS holds 
tremendous value for public health reformers in uncovering and mapping socio-spatial 
disparities in health care accessibility, and monitoring the impact of policy initiatives 
aimed at reducing these (Langford & Higgs, 2006; Nettleton, Pass, Walters, & White, 
2006). However, it is regrettable to observe with Joyce that "despite GIS having 
applications in fields as diverse as engineering and anthropology, the potential of GIS has 
yet to be fully exploited in health settings" (Joyce, 2009, p. 831). Policy decisions in 
Belgium–and elsewhere–are based on rather crude definitions of what constitutes 
accessibility, disregarding the full diversity of sophisticated indicators that have been 
proposed in the academic literature. 
 
In this paper, we examine the validity of the Belgian policy directives regarding financial 
support for physicians using different GIS-based methods to designate underserved 
areas of primary health care. The general aim is to evaluate to what extent spatial health 
care accessibility and concomitant policy initiatives are affected by and depend on the 
method and scale of analysis used. This general aim unfolds into two specific objectives. 
The first objective is to statistically analyse the results from four different GIS methods 
using cross tabs and compare these with current practice in Belgium. The second 
objective is to perform an analysis of the spatial distribution of shortage areas. 
 

4.3 BACKGROUND 
 
Health care accessibility can be classified into two categories: revealed accessibility and 
potential accessibility (Joseph & Phillips, 1984; Phillips, 1990; Thouez, Bodson, & Joseph, 
1988). The former deals with the actual use of health care services, while the latter focuses 
on the aggregated supply of available health care in an area and thus the potential use of 
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services. Both can be further subdivided into spatial and non-spatial accessibility. Spatial 
accessibility is based on spatial factors, including the distribution of primary health care 
providers (supply; in Belgium mostly self-employed physicians) and population 
(demand), and the distance/time between supply and demand (Aday & Andersen, 1974). 
Non-spatial accessibility is based on non-spatial factors such as socio-economic factors, 
the health status of the population, and people’s knowledge about the health care system 
(Aday & Andersen, 1974; Joseph & Phillips, 1984). It is essential toward any effective 
government intervention programme to identify where potential shortage areas are 
located (Guagliardo, 2004; Luo, 2004). In this paper, we will focus on potential spatial 
accessibility (henceforth briefly referred to as accessibility). 
 
To calculate primary health care accessibility in general and physician shortage areas in 
particular, various methods can be used. Basic methods include distance/time 
(Euclidean, Manhattan, or network) to the nearest physician, the average distance/time 
to a certain number of physicians, and cumulative opportunity (which is calculated as 
the number of physicians within a certain distance/time) (Apparicio, Abdelmajid, Riva, 
& Shearmur, 2008; Talen, 2003). However, these methods give only a rough estimation 
of accessibility. Distance to the nearest provider for example does not capture full 
accessibility, because it is often observed that people bypass the nearest service when 
there is more than one service to choose from (Fryer et al., 1999; Goodman et al., 1999; 
Hyndman, D’Arcy, Holman, & Pritchard, 2003; Martin & Williams, 1992; McGrail, 
2012). Cumulative opportunity does not take interaction between population and 
physicians, and competition between physicians into consideration (Fryer et al., 1999; 
McGrail, 2012). 
 
Physicians co-exist in a network of overlapping catchments, and people are free to 
choose health care wherever and from whomever. Therefore, physicians compete for the 
population’s use of their services (McGrail, 2012). Some methods are based on PPRs to 
measure accessibility in a predefined area, as is the case in Impulseo I. The advantage of 
these methods is that they are easy to implement (no GIS tools needed) and comprehend. 
In spite of this, traditional PPRs have several limitations (Kleinman & Makuc, 1983; 
McGrail & Humphreys, 2009a; Wing & Reynolds, 1988). First of all, PPRs are usually 
calculated with zonal data, which are based on administrative boundaries (e.g. 
municipalities). In Impulseo I, PPRs are calculated per physician zone, which have a 
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median area of 86.53 km2 with a median population of 36,613. When using 
administrative zones boundaries are considered impermeable and as a result, the 
interaction across borders is not sufficiently taken into consideration (Guagliardo, 2004; 
Joseph & Phillips, 1984). Second, the physical separation with physicians is not equal for 
all inhabitants residing in the same zone, which causes accessibility to vary within that 
zone (Guagliardo, 2004; Wan, Zou, & Sternberg, 2012). Nonetheless, the PPR method 
assumes equal accessibility to services irrespective of where individuals live within the 
zone (Higgs, 2004). Calculating PPRs within administrative borders can hence strongly 
influence the results when working on a different scale level, which constitutes a well-
known source of statistical bias in geography termed the modifiable areal unit problem 
(MAUP) (Openshaw, 1984). MAUP generally occurs when point-based measures of 
spatial phenomena are aggregated into districts. 
 
A method that partly overcomes both limitations is the 2-step floating catchment area 
(2SFCA) method, developed by Luo & Wang and based on the spatial decomposition 
idea by Radke & Mu (Luo & Wang, 2003; Radke & Mu, 2000). In this method, a circle 
(catchment) of some reasonable radius (matched on the road network) centred on the 
census tract centroid is used as the basic unit instead of using a predefined administrative 
boundary to calculate PPRs. 
 
Because catchments are used instead of administrative borders, crossing of borders is 
now possible. This can be seen in Figure 4.1, where an example of a catchment from a 
centroid of a census tract (in casu ‘Rekencentrum’ in Ghent) is shown. This catchment 
is strongly related with the road network and intersects with the census tract boundaries. 
The catchment radius is defined as the maximum distance/time along the road network, 
where all physicians are deemed accessible and equally proximate to that particular 
population (centred at the census tract centroid). The catchment that is hereby formed 
floats from census tract centroid to census tract centroid, hence the name of the method. 
This way, shortage areas with PPRs lower than a predefined value can be defined. 
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Figure 4.1: Example of a service area around a census tract centroid, showing the 

alignment with the road network and the intersection with the census tract boundaries. 

 
The PPR per census tract centroid is calculated in two steps. In the first step, the PPR is 
first calculated on each physician location, using equation 4.1. In the second step, the 
PPR is calculated per census tract centroid by summating all PPRs from step one, using 
equation 4.2. Doing so, the method considers interaction between population and 
physicians (Higgs, 2004; McGrail, 2012). 
 

 )* =
+,

-..∈ 0.,102
  (eq. 4.1) 

34 = )**    (eq. 4.2) 
where Rj is the PPR at physician location j, Sj is the number of physicians at location j, Pk 
is the population of census tract k whose centroid falls within the physician catchments 
(that is, dkj≤d0), dkj is the travel distance between k and j, d0 is the travel distance radius 
of the catchment, and Ai represents the accessibility at census tract i to physicians. 
 
In the 2SFCA method, the assumption of equal accessibility within the catchment and 
no accessibility outside stands (McGrail & Humphreys, 2009a; Yang, Goerge, & Mullner, 
2006). The enhanced 2-step floating catchment area (E2SFCA) method overcomes this 
by applying a distance decay function (Luo & Qi, 2009). Each catchment is divided into 
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multiple sub catchments, which receive varying weights defined by a weight function, 
which can be adjusted depending on the type or importance of a service. Equations 4.1 
and 4.2 are hereby transformed into equations 4.3 and 4.4. By doing this, it is accepted 
that services that are closer to the census tract centroid are more accessible. The use of 
this function is required when working across large geographies, which is often the case 
for health policies at national level (Luo & Qi, 2009). 
 

)* =
+,

-.56.∈ 0.,176
 (eq. 4.3) 

 34 = )*89*    (eq. 4.4) 
where Wr is the distance weight for the r-th travel time zone defined by the distance 
decay weight function capturing the distance decay of accessibility to physician j. 
 
This E2SFCA method is now considered the standard FCA method, and is used in a 
variety of studies (Langford, 2012; Luo & Qi, 2009; Ngui & Apparicio, 2011). McGrail 
suggests to use a variable catchment size function, depending on the population type 
(urban or rural) and service (McGrail, 2012). The reason for this is that rural populations 
are generally more accustomed to travel further to a service location, and urban 
populations will mostly access services in a closer proximity because service locations 
are densely located. However, since in Belgium differences between urban and rural 
populations are not as big as in, say, Australia or North America, such function will not 
be applied here. 
 
FCA-based methods have the advantage of calculating accessibility on a much smaller 
scale than is feasible with traditional PPRs (McGrail & Humphreys, 2009a). 
 

4.4 DATA AND METHODS 
 

4.4.1 DATA 
 
The study area of the paper is the whole country of Belgium (see Figure 4.2), with a 
population of approximately 10.8 million inhabitants on an area of 30,528 km2. Belgium 
is divided into 161 physician zones (median area: 86.53 km2, median population: 36,613), 
589 municipalities (median area: 40.10 km2, median population: 11,702), and 19,781 
census tracts (median area: 0.51 km2, median population: 310). A physician zone collects 
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physicians who are active in a contiguous geographic area that consists of one or more 
municipalities, or is part of a municipality in the large agglomerations of Antwerp, 
Brussels, Ghent, and Liège. Population data per census tract of the year 2011 were used, 
together with the geocoded addresses of all active physicians (in total, 10,353) in Belgium 
in that same year. Physicians are considered active when they have at least 500 patient 
contacts per year, which is concurrent with the official definition of Impulseo I. In order 
to calculate shortest paths between physicians and census tracts centroids, and 
subsequently define service areas we have used a transportation network shapefile 
(TeleAtlas MultiNet®), consisting of a detailed topological representation of the Belgian 
road network. 
 

 
Figure 4.2: Study area indicating Belgium and its neighbouring countries, the major 

motorways, and the population density per municipality. 

 
4.4.2 METHODS 

 
All calculations were performed in ArcGIS 9.3TM. Four types of methods to measure 
accessibility were selected on the basis of their frequent use in health studies: (i) PPR, (ii) 
distance to closest physician(s), (iii) cumulative opportunity, and (iv) floating catchment 
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area (FCA) methods. To explore the scale effect of the MAUP, different spatial units of 
analysis were used: physician zone, municipality, and census tract. 
 
First, PPRs were calculated per physician zone (which is also done in the official 
Impulseo I method) and per municipality. PPRs have not been calculated per census 
tract, simply because a lot of census tracts contain no physicians (which would yield a 
PPR of zero), while in fact there is a physician located in its proximity (e.g. in one of the 
adjacent tracts). This is often referred to as the small population problem. 
 
Second, basic GIS methods expressing physical separation between population and 
physicians were calculated per census tract, including distance to the nearest physician, 
and mean distance to the nearest three physicians. This last method was included, 
because people often bypass the nearest physician (Fryer et al., 1999; Hyndman et al., 
2003). 
 
Third, cumulative opportunity was calculated per census tract as the number of 
physicians within a certain distance from its centroid. These thresholds are often 
arbitrary and difficult to select. Based on previous studies (Apparicio et al., 2008; Higgs, 
2004), we have used buffers of 5 and 10 km. 
 
Finally, two types of FCA-based methods were computed per census tract. It is noted 
that calculating FCA measures per census tract is meaningful because in FCA methods, 
crossing administrative borders, including those with zero physicians, is possible 
(Apparicio et al., 2008). This spatial smoothing effect thus solves the small population 
problem (Wang, 2012). Based on prior work and in analogy with the cumulative 
opportunity metric, the 2SFCA was performed with a catchment of 5 and 10 km 
(Apparicio et al., 2008; Higgs, 2004). Following McGrail, in the E2SFCA, we used the 
following slow step-decay function: 1, 0.80, 0.55, and 0.15, respectively for the 
catchments 1 km, 2 km, 5 km, and 10 km (McGrail, 2012). A slow step-decay function 
is preferred to a fast step-decay function, because in the context of Belgium physicians 
located outside the 1 km catchment not necessarily have a low accessibility. 
 
To implement the accessibility measures above, distances and car travel times were 
calculated along the street network. This was done by using the Network Analyst 
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Extension of ArcGIS 9.3TM. However, like Apparicio (Apparicio et al., 2008), we found a 
strong positive correlation between both the shortest network distance and car travel 
time (two-tailed Pearson r = 0.949, p < 0.001), and therefore in this paper we only 
elucidate the results using network distances. Also, network distances are preferred 
because we did not want to presuppose the transport mode used to get to a physician by 
using mode-specific speeds for calculating travel time (Apparicio et al., 2008; Dewulf, 
Neutens, Van Dyck, De Bourdeaudhuij, & Van de Weghe, 2012; Luo, 2004). 
 
Impulseo I defines the following criteria to determine whether an area is underserved: 
(i) PPR <90 physicians/100,000 inhabitants, or (ii) <120 physicians/100,000 inhabitants 
and population density <125 inhabitants/km2. For the FCA based methods (2SFCA, and 
E2SFCA), we have used the same criteria, but without criterion (ii). This is because 
population density is already indirectly incorporated in the FCA methods as it accounts 
for the fact that people compete for physicians (and vice versa). For average distance to 
the (three) closest physician(s) and cumulative opportunity within 5 and 10 km, the same 
number of census tracts as resulting from the official Impulseo I method (i.e. PPR per 
physician zone) have been designated as shortage area. This means that a threshold 
distance and cumulative opportunity value had to be set, with all census tracts having an 
accessibility value above/below this threshold being designated as underserved. 
 
The different methods will be tested on correlation using a two-tailed Pearson test in 
SPSS Statistics 21TM. The methods that did not exhibit high mutual correlation will then 
be compared with each other and with the official Impulseo I method using a large cross 
tab and by visualising the spatial data in maps. To accomplish the second objective, i.e. 
the detailed spatial analysis of the conceptually most advanced method (E2SFCA 
method), a geographical analysis will be performed. 
 

4.5 RESULTS 
 

4.5.1 STATISTICAL ANALYSIS 
 
Table 4.1 shows the results from a two-tailed Pearson correlation test, indicating the 
correlation coefficient and its significance. It can be observed that there is a strong and 
significant correlation (0.739) between the distance methods (Dist1 and Dist3). In 
addition, there is a strong correlation (0.653) between the cumulative opportunity 
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methods (Cum5 and Cum10). A moderate to strong correlation is noted among the 
different FCA methods (2SFCA5, 2SFCA10, and E2SFCA). The E2SFCA method in 
particular has a rather strong correlation with the other FCA-based methods. It should 
also be noted that the correlation between different methods is rather weak (mostly lower 
than 0.4). Based on the outcome of this correlation analysis, we have selected four 
specific methods (one per method group) for further analysis: PPR per municipality 
(PPR_Mun), distance to three closest physicians (Dist3), cumulative opportunity within 
10 km (Cum10), and the E2SFCA method. 
 
Table 4.1: Results from the two-tailed Pearson correlation test. 

Method PPR_Phys1 PPR_Mun2 Dist13 Dist34 Cum55 Cum106 2SFCA57 2SFCA108 E2SFCA9 

PPR_Phys1 1*         
PPR_Mun2 0.396* 1*        
Dist13 0.176* 0.110* 1*       
Dist34 0.203* 0.122* 0.739* 1*      
Cum55 0.269* 0.152* 0.410* 0.543* 1*     
Cum106 0.321* 0.121* 0.355* 0.457* 0.653* 1*    
2SFCA57 0.169* 0.277* 0.201* 0.218* 0.244* 0.045* 1*   
2SFCA108 0.207* 0.215* 0.149* 0.155* 0.145* 0.190* 0.199* 1*  
E2SFCA8 0.192* 0.267* 0.341* 0.367* 0.310* 0.131* 0.597* 0.488* 1* 
* Correlation is significant at the 0.01 level. 
1: physician-to-population ratio per physician zone; 2: physician-to-population ratio per municipality; 
3: mean distance to nearest physician; 4: mean distance to nearest physician; 5: cumulative opportunity 
within a 5km network buffer; 6: cumulative opportunity within a 10 km network buffer; 7: 2-step floating 
catchment area method with a catchment of 5 km; 8: 2-step floating catchment area method with a 
catchment of 10 km; 9: enhanced 2-step floating catchment area method. 
 
The results of these methods will be compared mutually as well as against the official 
Impulseo I method (that is PPR per physician zone; PPR_Phys) using a cross tab (Table 
4.2), showing the number (Count) and percentage (Table %) of underserved census 
tracts per method. 
Table 4.2 shows that in total 8,157 census tracts (41.2% of all census tracts) are 
underserved and should thus receive financial assistance, when using the official 
Impulseo I method (PPR_Phys). In contrast, when using the first selected method 
(PPR_Mun) 9,498 census tracts (48.0%) are identified as shortage areas (Table 4.2). In 
total, 5,841 census tracts (29.5%, compared to 41.2% from the official method) are in 
both methods consistently classified as underserved, while 7,967 census tracts (40.3%, 
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compared to 58.8% from the official method) are in both methods consistently not 
identified as shortage areas. This PPR_Mun method is most similar to the official 
PPR_Phys method, simply because both are based on calculating PPRs. 
 
The second alternative method (Dist3) consists of calculating the average distance to the 
three closest physicians. The average value of all average distances from each census tract 
centroid to the closest three physicians for the whole of Belgium is 2,045 m. In order to 
identify the same amount (8,157) of underserved census tracts as in the official Impulseo 
I method, a threshold value (1,878 m) was determined so that exactly 8,157 census tracts 
had a value higher than this threshold and were thus classified as underserved. Table 4.2 
shows that 4,335 census tracts (21.9%/41.2%) are shortage areas in both methods (Dist3 
and PPR_Phys). It can also be deduced that 61.3% (39.4% + 21.9%) of all census tracts 
were in both the official PPR_Phys and the Dist3 method classified consistently, while 
in 38.6% (19.3% + 19.3%) of all census tracts there are inconsistent evaluations as to 
whether or not financial assistance should be awarded. 
 
For the third method (Cum10), we calculated the number of physicians within 10 km 
for all census tracts, and considered the 8,157 census tracts with the lowest number of 
physicians within 10 km. We found 8,215 census tracts with less than 58 physicians 
within 10 km. Following Table 4.2, 4,928 census tracts (24.9%/41.2%) are identified as 
shortage areas in both methods (official and Cum10 method). 67.0% (42.1% + 24.9%) of 
all census tracts are assessed consistently in both methods, while 32.9%/58.8% (16.6% + 
16.3%) are different. 
 
Finally, when using the E2SFCA method, 8,968 census tracts (45.3%) are considered 
underserved and 10,813 (54.7%) are not (see Table 4.2). In 4,629 census tracts 
(23.4%/41.2%) financial assistance is awarded in both methods (official and E2SFCA 
method) and in 7,285 (36.8%/58.8%) not. Also, 60.2% (36.8% + 23.4%) of all census tracts 
are equally identified in both methods (official and E2SFCA method) and 39.7% (21.9% 
+ 17.8%) are different. 
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The results of the four methods can also be visually represented in maps. Figure 4.3 and 
Figure 4.4 show the spatial distribution of census tracts that are considered as shortage 
areas in Belgium, for the official Impulseo I method as well as the four selected methods. 
Additionally, Table 4.3 provides some general numbers for each of these methods. The 
table summarises the percentage of census tracts that are underserved, but also shows 
the percentage of underserved area and population. In order to illustrate the potential 
financial implications of methodological choices, the last column indicates the money 
that would have to be awarded per year assuming an increase of one physician per 10 
underserved census tracts per year. 
 

 
Figure 4.3: Map showing which census tracts are considered shortage areas, using the 

official Impulseo I method (PPR per physician zone), additionally indicating the location 

of all physicians. 
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Table 4.3: Percentage of underserved census tracts, area, and population, and amount of 

money needed for the official and the four selected methods. 

Method Census tracts 
underserved (%) 

Area 
underserved (%) 

Population 
underserved (%) 

Amount of money 
needed per yeara (€) 

PPR_Phys1 41.2 51.9 35.3 16,314,000 
PPR_Mun2 48.0 51.2 47.7 18,996,000 
Dist33 41.2 66.3 17.1 16,314,000 
Cum104 41.5 62.5 23.1 16,430,000 
E2SFCA5 45.3 60.2 33.1 17,936,000 
a Assuming one new physician per 10 underserved census tracts per year. 
1: physician-to-population ratio per physician zone; 2: physician-to-population ratio per municipality; 
3: mean distance to nearest 3 physicians; 4: cumulative opportunity within a 10 km network buffer; 5: 
enhanced 2-step floating catchment area method. 
 

 
Figure 4.4: Map showing which census tracts are considered underserved, using the (i) 

PPR per municipality, (ii) distance to three closest physicians, (iii) cumulative opportunity 

within 10 km, and (iv) E2SFCA method. 
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In the official PPR_Phys method, the analysis is performed per physician zone. These 
cover large areas, and therefore the zones where financial assistance is given or not are 
large contiguous areas (Figure 4.3). As mentioned earlier, 41.2% of all census tracts are 
underserved, which coincides with 51.9% of the total area and 35.3% of the total 
population of Belgium (Table 4.3). Assuming one new physician per 10 underserved 
census tracts per year, an amount of €16.3 million would be needed each year, which is 
the lowest amount of money of all selected methods. 
 
When using the PPR_Mun method, and identifying shortage areas with the same 
criterion as in the official Impulseo I method but on the scale of municipalities, the 
ascription of financial assistance is now much more geographically diversified (Figure 
4.4). Also, more census tracts are underserved (48.0%; see Table 4.3), resulting in a higher 
amount of money needed (almost €19 million). Approximately the same percentage of 
area is seen as shortage area (51.2%), but 47.7% of the population lives within these 
census tracts, which means that with this PPR_Mun method, census tracts with higher 
population densities are selected. 
 
With the Dist3 method, the spatial distribution of census tracts where financial 
assistance should be given is striking. Here, shortage areas are mainly located outside 
city centres (Figure 4.4). The reason for this is the increasing distance to physicians 
outside city centres, because physicians are mainly located in city centres. From Table 
4.3, this can also be deduced, because with the same percentage of census tracts as with 
the official PPR_Phys method (41.2%), an area of 66.3% and a population of only 17.1% 
is considered underserved. 
 
It can be inferred from Figure 4.4 that with the Cum10 method, mainly physicians that 
settle in rural areas receive financial assistance. However, the geographical spread is 
much more clustered than with the Dist3 method and mainly in Wallonia physicians 
receive financial assistance. As with the previous method, a similar pattern is visible in 
Table 4.3: a large area of 60.2%, but only 23.1% of the population is underserved. 
 
With the E2SFCA method, again a different spatial result is obtained (Figure 4.4). Now, 
mainly suburban and rural regions are underserved. With this method, 45.3% of census 
tracts are seen as shortage area, resulting in an amount of almost €18 million needed. 
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Now, approximately the same percentage of population (33.1%), but a larger area 
(60.2%) is identified as underserved. 
 

4.5.2 DETAILED SPATIAL ANALYSIS 
 
In this section, the official Impulseo I method (PPR per physician zone) is geographically 
compared in more detail with the method that is conceptually most advanced and often 
used in recent studies: the E2SFCA method. Figure 4.5 shows all census tracts, divided 
in four classes, depending on whether or not the census tract is considered a shortage 
area in both methods. 
 

 
Figure 4.5: Detailed geographic analysis between Impulseo I and the E2SFCA method, 

with classes: ‘Fin. assist. for PPR and E2SFCA’, ‘Fin. assist. for PPR, but not for E2SFCA’, ‘Fin. 

assist. for E2SFCA, but not for PPR’, and ‘No fin. assist. for PPR and E2SFCA’. 

 
The two classes represented in green (‘Financial assistance for PPR and E2SFCA’ and 
‘No financial assistance for PPR and E2SFCA’) indicate the census tracts that are in both 
methods consistently classified as underserved/overserved. Underserved areas occur 
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mainly in the periphery of the country, while overserved areas are mostly located in the 
central part of the country. 
 
More important from a policy perspective is class ‘Financial assistance for PPR, but not 
for E2SFCA’. In the southern part of Belgium, many areas where physicians receive 
financial assistance by the official Impulseo I method would not have been identified as 
underserved on the basis of the E2SFCA method. Class ‘Financial assistance for E2SFCA, 
but not for PPR’ is also interesting for policy makers as these represent locations where 
currently no financial assistance is awarded while it might be appropriate. Mainly rural 
and suburban regions occur in this class. 
 

4.6 DISCUSSION 
 

4.6.1 GENERAL DISCUSSION 
 
Whether or not financial assistance should be awarded to physicians strongly depends 
on the selected method and spatial unit of analysis. Policy makers often define shortage 
areas by calculating PPR per physician zone, for the simple reason that it is an easy 
calculation and offers a readily understandable measure of accessibility. The advantage 
of this method is that it considers both the number of physicians and the population 
within the zone. However, it only offers a very crude representation of accessibility to 
primary health care because physician zones cover too large geographic areas (Kleinman 
& Makuc, 1983; McGrail & Humphreys, 2009b; Wing & Reynolds, 1988). Therefore, it 
cannot detect local variations in accessibility. 
 
When calculating PPR per municipality, we observe slightly more underserved census 
tracts. This means that when using physician zones, some municipalities are not 
identified as shortage areas, while in fact they should be. There are however also some 
municipalities that are considered underserved, while they should not be. There can 
nevertheless be variations at an even smaller scale (e.g. census tracts), which cannot be 
detected using this method. Another disadvantage of this method is that interaction 
across borders is not sufficiently taken into account (Guagliardo, 2004; Joseph & Phillips, 
1984). 
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Other basic GIS methods (Dist1, Dist3, Cum5, and Cum10) are solely based on the 
supply (physicians), while the demand (population) is not accounted for. The results 
show that when using the Dist3 method, only few census tracts maintain their status as 
shortage area. The Cum10 method provides a result that coincides more with the official 
method, because both are based on the number of physicians. 
 
FCA-based methods have the advantage of the small geographical scale of analysis at the 
level of census tracts, and taking interaction between population and physicians into 
account. From the FCA-based methods, the E2SFCA method is preferred because it 
accounts for distance decay by using a weight function (Higgs, 2004; Luo & Qi, 2009). 
The use of this method results in more shortage census tracts compared to the official 
Impulseo I method. However, only 51.6% of these census tracts were originally indicated 
as shortage areas. This means that 48.4% of all census tracts should be seen as shortage 
areas, while now they are not. When geographically comparing the results of the official 
Impulseo I method (PPR per physician zone) with the results of the E2SFCA method, 
the ascription of financial assistance is very different. Despite high population densities, 
urban areas are mostly not identified as shortage areas because of a dense concentration 
of physicians. Rural and suburban areas are often considered as shortage areas because 
physician accessibility is low. When using the official Impulseo I method, this pattern is 
less pronounced, because extreme values are filtered out. This aligns with the findings of 
Apparicio and McGrail, who found that most accessibility problems occur in suburban 
areas, with low population density and mostly non-residential land use (Apparicio et al., 
2008; McGrail, 2012). Interestingly, however, the defined shortage areas follow the 
distribution of physicians much better when using the E2SFCA method. 
 
The total number of census tracts where financial assistance should be awarded when a 
physician settles there is slightly higher with the E2SFCA method, so more money would 
be needed to invest in helping underserved areas. However, approximately the same 
population (33.1%) and a much bigger area (60.2%) is reached. Therefore, we would 
advise policy makers to use this method in future evaluations of accessibility to primary 
health care, because it aligns better with the actual distribution of physicians. In this way, 
and according to the spatial analysis, the current policy in Belgium could be adjusted 
towards a more area-oriented approach. 
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Additionally, we want to propose a different way of awarding financial assistance to 
physicians settling in shortage areas. Now, shortage areas are defined based on a sharp 
threshold (PPR <90 physicians/100,000 inhabitants). Alternatively, one could vary the 
financial award in function of the magnitude of shortage (see Figure 4.6 for an example). 
The higher the shortage, the higher the award a physician receives when settling there. 
Doing so, unequal accessibility to primary health care would possibly be conquered even 
more effectively, since more underserved areas would have a higher attraction to 
physicians. 
 

 
Figure 4.6: Choropleth map of the area around Ghent showing the PPR calculated with 

the E2SFCA method. 

 
4.6.2 STUDY STRENGTHS AND LIMITATIONS 

 
This study has several strengths. First, most previous studies using FCA-based methods 
use the centroid of the municipality where physicians live as physician location 
(Guagliardo, 2004; Luo & Qi, 2009; Luo & Wang, 2003; Luo, 2004), whereas we use the 
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exact location of physicians, leading to more accurate estimations of accessibility and 
reducing the influence of the MAUP. 
 
Second, distance in this study has been considered following the street network, instead 
of following a straight line. In many studies (e.g. (Apparicio et al., 2008; Luo, 2004)) the 
lack of using street network data is considered a major limitation. 
 
Third, the study area (Belgium) is larger and more populated relative to other 
applications of FCA-based methods in the context of accessibility to primary care. Our 
study area measures 30,528 km2 and has 10.8 million inhabitants, whereas in other 
studies the spatial coverage was limited to 19,774 km2 and 3.8 million inhabitants (nine 
counties in central Texas, USA; (Wan et al., 2012)), 14,331 km2 and 1.6 million (9 
counties surrounding DeKalb in northern Illinois, USA; (Luo & Qi, 2009; Luo, 2004)), 
4,258 km2 and 3.4 million (Montreal census metropolitan area, Canada; (Apparicio et 
al., 2008)), 499 km2 and 1.9 million (island of Montreal, Canada; (Ngui & Apparicio, 
2011)), and 177 km2 and 601,000 (Washington DC, USA; (Guagliardo, 2004)). Two 
studies have bigger study areas, but a lower population: 230,000 km2 and 1.5 million 
inhabitants (rural Victoria, Australia; (McGrail & Humphreys, 2009b)), and 227,000 km2 
and 5.5 million inhabitants (Victoria, Australia; (McGrail, 2012)). 
 
Fourth, the proposed study adds to the spatial coverage of evidence by spatially 
complementing existing studies that have been carried out primarily in North America 
(e.g. (Apparicio et al., 2008; Guagliardo, 2004; Luo & Qi, 2009; Luo, 2004; Ngui & 
Apparicio, 2011; Wan et al., 2012)) and Australia (e.g. (McGrail & Humphreys, 2009b; 
McGrail, 2012)) with evidence from Europe. 
 
Fifth, previous studies (ibid.) are all regional, while ours is nation-wide. A disadvantage 
of a regional study is that there can occur edge effects, because people can also go to a 
physician in a neighbouring region (Luo, 2004). Our nation-wide study limits this, 
because it is less likely that inhabitants of Belgium will go to a doctor in a neighbouring 
country. Small edge effects can still occur within Belgium however. Belgium is separated 
in two regions with different languages, which implies that people prefer to go to a 
physician that speaks their native language. It was however difficult to control for this, 
because the language of physician and aggregated population was not known and there 
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is a lot of bilingualism along the borders between the two regions. Also, with our nation-
wide study, we can link our results with the conducted policy of the entire country to 
check whether the policy decisions correspond with the scientific results. 
 
However, this study also has some limitations, most of which constitute interesting 
avenues for future work. First, accessibility is considered from the home location. 
However, people can also access primary health care from their working location, which 
can influence accessibility (Kwan, 2009; Neutens, Delafontaine, Scott, & De Maeyer, 
2012; Salze et al., 2011). Nevertheless, in Belgium people shall probably be inclined to go 
to a physician in their residential neighbourhood whom they are familiar with, rather 
than searching for a physician near their work location. 
 
Second, according to some studies, the size of the catchment should vary depending on 
whether it is urban or rural (Luo & Qi, 2009; McGrail & Humphreys, 2009b; Yang et al., 
2006). Despite the small differences between urban and rural populations in Belgium, 
adding a varying catchment size function (larger catchment sizes for rural populations) 
could improve the results. 
 
Third, the population per census tract is now centred at its centroid. This is more 
accurate than looking at a scale level of a municipality or physician zone, but still is an 
approximation of reality. To improve this, one could consider each home location as a 
population location, from where accessibility is calculated. However, such data is often 
not available because of privacy issues and the calculation would be very computationally 
intensive. 
 
Fourth, various socio-economic factors can also influence accessibility to primary health 
care (Luo & Wang, 2003). Several studies have considered such factors as financial 
barriers, car-ownership, and educational level (Joseph & Phillips, 1984; Khan, 1992; 
Kirby & Kaneda, 2005; Meade & Emsch, 2010; Prentice, 2006; Van der Heyden, 
Demarest, Tafforeau, & Van Oyen, 2003). Also, data about the actual use of health 
services could provide information about revealed accessibility, instead of potential 
accessibility what is studied now. However, collecting this data is expensive (Luo, 2004), 
definitely at the scale of our study. Socio-economic attributes of physicians (e.g. 
ethnicity, gender, age) could also provide interesting information. This could however 
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be incorporated in future research. Gender could be accounted for since the sex of a 
physician is known to be a barrier for certain population groups (e.g., young women 
(Young, Dobson, & Byles, 2000)). Age could be dealt with because it will enable to 
identify and anticipate future shortage areas (i.e. areas that are likely to become 
underserved because of ageing physicians). Some other factors could also be 
incorporated in future research concerning this topic: e.g. the fact that physicians can 
also visit patients, visiting hours of physicians, average visit length which can vary per 
physicians, and congestion problems along the road network. 
 

4.7 CONCLUSIONS 
 
Because of the simplicity of basic PPR methods, policy makers often use these to award 
financial assistance to shortage areas considering primary health care accessibility. 
Despite the fact that the PPR takes both supply and demand into consideration, a major 
disadvantage is its aggregated approach and the lack to detect local variations in 
accessibility, which arises because of local clustering and dispersion in the physician 
distribution. 
 
Other GIS-based methods (e.g. distance to closest physician, cumulative opportunity, 
FCA-based methods) overcome this by not taking any boundaries into consideration. 
The E2SFCA method takes interaction between population and physicians into account, 
and considers distance decay by applying a weight function (which can be adjusted 
depending on the type or importance of a service). This method can however also be 
used to define accessibility to other services, e.g. dentists, post offices, hospitals, and 
schools. Network data is more and more accessible, and the effective use of network 
analysis software makes it possible to easily use more advanced GIS methods. 
 
This manuscript has clearly shown that a different method and scale of analysis provides 
different results, not only in the total number of census tracts that are underserved, but 
also in the geographical spread. Currently, health policy makers often neglect the 
importance of these aspects in accessibility analyses. As a consequence, the distribution 
of financial incentives to prevent unequal spatial accessibility to primary health care may 
be biased. 
 



CHAPTER 4 

98 

 
4.8 REFERENCES 

 
Aday, L. A., & Andersen, R. (1974). A framework for the study of access to medical care. 

Health Services Research, 9, 208–220. 
Apparicio, P., Abdelmajid, M., Riva, M., & Shearmur, R. (2008). Comparing alternative 

approaches to measuring the geographical accessibility of urban health services: 
distance types and aggregation-error issues. International Journal of Health 
Geographics, 7(7), 14. 

Dewulf, B., Neutens, T., Van Dyck, D., De Bourdeaudhuij, I., & Van de Weghe, N. 
(2012). Correspondence between objective and perceived walking times to urban 
destinations: influence of physical activity, neighbourhood walkability, and socio-
demographics. International Journal of Health Geographics, 11(43), 10. 

Fryer, G., Drisko, J., Krugman, R., Vojir, C., Prochazka, A., & Miyoshi, T. (1999). Multi-
method assessment of access to primary medical care in rural Colorado. Journal of 
Rural Research, 15(1), 113–121. 

GAO: United Stated General Accounting Office. (1995). Health care shortage areas: 
designations not a useful tool for directing resources to the underserved. 

Goodman, D. C., Mick, S. S., Bott, D., Stukel, T., Chang, C., Marth, N., … Carretta, H. J. 
(1999). Primary care service areas: a new tool for the evaluation of primary care 
services. Health Services Research, 38(1), 287–309. 

Guagliardo, M. F. (2004). Spatial accessibility of primary care: concepts, methods and 
challenges. International Journal of Health Geographics, 3(3), 13. 

Higgs, G. (2004). A literature review of the use of GIS-based measures of access to health 
care services. Health Services & Outcomes Research Methodology, 5, 119–139. 

Hyndman, J. C. G., D’Arcy, C., Holman, J., & Pritchard, D. a. (2003). The influence of 
attractiveness factors and distance to general practice surgeries by level of social 
disadvantage and global access in Perth, Western Australia. Social Science & 
Medicine, 56, 387–403. 

Joseph, A. E., & Phillips, D. R. (1984). Accessibility and utilization: geographical 
perspectives on health care delivery. London: Harper & Row. 

Joyce, K. (2009). “To me it’s just another tool to help understand the evidence”: public 
health decision-makers’ perceptions of the value of geographical information 
systems (GIS). Health & Place, 15, 831–840. 

Khan, A. A. (1992). An integrated approach to measuring potential spatial access to 
health care services. Socio-Economic Planning Sciences, 26(4), 275–287. 

Kirby, J. B., & Kaneda, T. (2005). Neighborhood socioeconomic disadvantage and access 
to health care. Journal of Health and Social Behavior, 46(1), 15–31. 



ACCESSIBILITY TO PRIMARY HEALTH CARE PHYSICIANS IN BELGIUM 

99 

Kleinman, J. C., & Makuc, D. (1983). Travel for ambulatory medical care. Medical Care, 
21(5), 543–557. 

Kwan, M.-P. (2009). From place-based to people-based exposure measures. Social 
Science & Medicine, 69, 1311–1313. 

Langford, M. (2012). Measuring transit system accessibility using a modified two-step 
floating catchment technique. International Journal of Geographical Information 
Science, 26(2), 193–214. 

Langford, M., & Higgs, G. (2006). Measuring potential access to primary healthcare 
services: the influence of alternative spatial representations of population. The 
Professional Geographer, 58(3), 294–306. 

Lee, P. R. (1995). Health system reform and generalist physician. Academic Medicine, 
70(Suppl 1), S10–S13. 

Luo, W. (2004). Using a GIS-based floating catchment method to assess areas with 
shortage of physicians. Health & Place, 10, 1–11. 

Luo, W., & Qi, Y. (2009). An enhanced two-step floating catchment area (E2SFCA) 
method for measuring spatial accessibility to primary care physicians. Health & 
Place, 15, 1100–1107. 

Luo, W., & Wang, F. (2003). Measures of spatial accessibility to health care in a GIS 
environment: synthesis and a case study in the Chicago region. Environment and 
Planning B: Planning and Design, 30, 865–884. 

Martin, D., & Williams, H. C. W. L. (1992). Market-area analysis and accessibility to 
primary health-care centres. Environment and Planning, 24(7), 1009–1019. 

McGrail, M. R. (2012). Spatial accessibility of primary health care utilising the two step 
floating catchment area method: an assessment of recent improvements. 
International Journal of Health Geographics, 11(1), 50. 

McGrail, M. R., & Humphreys, J. S. (2009a). A new index of access to primary care 
services in rural areas. Australian and New Zealand Journal of Public Health, 33, 
418–423. 

McGrail, M. R., & Humphreys, J. S. (2009b). Measuring spatial accessibility to primary 
care in rural areas: improving the effectiveness of the two-step floating catchment 
area method. Applied Geography, 29, 533–541. 

Meade, S. M., & Emsch, M. (2010). Medical geography (3rd ed.). New York: The Guilford 
Press. 

Nettleton, M., Pass, D., Walters, G., & White, R. (2006). Public transport accessibility 
map of access to general practitioners surgeries in Longbridge, Birmingham, UK. 
Journal of Maps, 64–75. 

Neutens, T., Delafontaine, M., Scott, D. M., & De Maeyer, P. (2012). An analysis of day-
to-day variations in individual space–time accessibility. Journal of Transport 
Geography, 23, 81–91. 



CHAPTER 4 

100 

Ngui, A. N., & Apparicio, P. (2011). Optimizing the two-step floating catchment area 
method for measuring spatial accessibility to medical clinics in Montreal. BMC 
Health Services Research, 11(166), 12. 

Openshaw, S. (1984). The modifiable areal unit problem. Concepts and Techniques in 
Modern Geography (Vol. CATMOG 38). Norwich: Geo Books. 

Phillips, D. R. (1990). Health and health care in the third world. New York: Longman 
Scientific & Technical. 

Prentice, J. C. (2006). Neighborhood effects on primary care access in Los Angeles. Social 
Science & Medicine, 62, 1291–1303. 

Radke, J., & Mu, L. (2000). Spatial decompositions, modeling and mapping service 
regions to predict access to social programs. Geographic Information Science, 6(2), 
105–112. 

RIZIV. (2013). Impulseo I. Retrieved from 
http://www.riziv.fgov.be/care/nl/doctors/specific-
information/impulseo/index_impulseoI.htm 

Salze, P., Banos, A., Oppert, J.-M., Charreire, H., Casey, R., Simon, C., … Weber, C. 
(2011). Estimating spatial accessibility to facilities on the regional scale: an 
extended commuting-based interaction potential model. International Journal of 
Health Geographics, 10(2), 16. 

Talen, E. (2003). Neighborhoods as service providers: a methodology for evaluating 
pedestrian access. Environment and Planning B: Planning and Design, 30, 181–200. 

Thouez, J. M., Bodson, P., & Joseph, A. E. (1988). Some methods for measuring the 
geographic accessibility of medical service in rural regions. Medical Care, 26(1), 
34–44. 

Van der Heyden, J. H. a., Demarest, S., Tafforeau, J., & Van Oyen, H. (2003). Socio-
economic differences in the utilisation of health services in Belgium. Health Policy, 
65, 153–165. 

Wan, N., Zou, B., & Sternberg, T. (2012). A three-step floating catchment area method 
for analyzing spatial access to health services. International Journal of Geographical 
Information Science, 26(6), 1073–1089. 

Wang, F. (2012). Measurement, optimization, and impact of health care accessibility: a 
methodological review. Annals of the Association of American Geographers, 102(5), 
1104–1112. 

Wing, P., & Reynolds, C. (1988). The availability of physician services: a geographic 
analysis. Health Services Research, 23(5), 649–667. 

Yang, D.-H., Goerge, R., & Mullner, R. (2006). Comparing GIS-based methods of 
measuring spatial accessibility to health services. Journal of Medical Systems, 30(1), 
23–32. 

Young, A. F., Dobson, A. J., & Byles, J. E. (2000). Access and equity in the provision of 



ACCESSIBILITY TO PRIMARY HEALTH CARE PHYSICIANS IN BELGIUM 

101 

general practioner services for women in Australia. Australian and New Zealand 
Journal of Public Health, 24(5), 474–480. 

 
 
 





 

103 

 
 
 

Adapted from: Dewulf, B., Neutens, T., Van Dyck, D., de Bourdeaudhuij, I., 
Broekx, S., Beckx, C., Van de Weghe, N. (2016). Associations between greenness 
and physical activity amongst late middle-aged adults. Geospatial Health, 11(411), 
225–232. 
 
© Copyright retained by the authors 

 
 

5.1 ABSTRACT 
 
Physical activity is an important facilitator for health and wellbeing, especially for late 
middle-aged adults, who are more susceptible to cardiovascular diseases. Physical 
activity performed in green areas is supposed to be particularly beneficial, so we studied 
whether or not late middle-aged adults are more active in green areas than in non-green 
areas and how this is influenced by personal characteristics and the level of 
neighbourhood greenness. We tracked 180 late middle-aged (58–65 years) adults using 
global positioning system (GPS) and accelerometer data to know whether and where 
they were sedentary or active. These data were combined with information on land use 
to obtain information on the greenness of sedentary and active hotspots. We found that 
late middle-aged adults are more physically active when spending more time in green 
areas than in non-green areas. Spending more time at home and in non-green areas was 
found to be associated with more sedentary behaviour. Time spent in non-green areas 
was found to be related to more moderate-to-vigorous physical activity (MVPA) for 
males and to less MVPA for females. The positive association between time spent in 
green areas together with MVPA was the strongest for highly educated people and for 
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those living in a green neighbourhood. This study shows that the combined use of GPS 
and accelerometer data facilitates understanding of where people are sedentary or 
physically active, information that can help policy makers encourage activity in this age 
cohort. 
 

5.2 INTRODUCTION 
 
Aging is often associated with physical frailty and increased health problems (Rockwood 
et al. 2004; Landi et al. 2010). With increasing life expectancy and an expected increased 
number of middle-aged (45–65 years) and older adults (≥ 65 years) in the future, health 
care costs are expected to rise globally (Department of Health, 2004; Organization for 
Economic Cooperation and Development, 2006). Sufficient physical activity and limited 
sedentary behaviour can prevent certain diseases, especially in middle-aged and older 
adults who are more susceptible to e.g. cardiovascular diseases than younger people 
(Nicol and Bredin, 2006; Cavill et al., 2008; U.S. Department of Health and Human 
Services, 2008; King and Guralnik, 2010; Warburton et al., 2010; Hamilton et al., 2012). 
 
Theoretically, late middle-aged adults (58–65 years) have more leisure time to spend on 
recreational physical activity (PA) or active transport than younger adults and could thus 
be more physically active or spend more time away from home (Banister and Bowling, 
2004). However, with increasing age people seem to spend more time at home (Kerr et 
al., 2012), their sedentary behaviour increases (Clark et al., 2014; Ortlieb et al., 2014), 
and they are less physically active (Bauman and Bull, 2007; Troiano et al., 2008; Ortlieb 
et al., 2014). In most developed countries, 60 to 70% of adults aged 65 and more do not 
reach 150 minutes of moderate-to-vigorous PA (MVPA) per week, which is 
recommended to benefit positive health effects (Services and U.S. Department of Health 
and Human Services, 1996; WHO, 2010).  
 
The presence of green areas can have a positive impact on achieving these health effects. 
Several publications demonstrate that a higher availability of accessible green spaces is 
associated with a higher amount of PA (Van Cauwenberg et al., 2011; Van Holle et al., 
2012; Van Holle et al., 2014). On the other hand, when PA occurs in green areas (e.g. 
parks), it can have positive effects on both physical (e.g. less exposure to pollution) and 
mental (e.g. wellbeing) health (Frumkin, 2001; St Leger, 2003; Thompson et al., 2011; 
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Sugiyama et al., 2008; Mackay and Neill, 2010; Fan et al., 2011). It has also been 
demonstrated that performing PA in non-green areas, especially alongside urban roads, 
increases inhalation levels and hence exposure to air pollution (Int Panis et al., 2010). 
Providing a sufficient amount of accessible green areas in urban areas is potentially a 
cost effective way to improve health and wellbeing. However, the relationships between 
greenness and health are complex and further exploration is needed. The research 
presented here explores the link between PA levels of late middle-aged adults and the 
presence of green areas. Not only do we focus on where PA mainly takes place as this 
significantly influences health impacts, but also on the general relationship between the 
amount of available greenness and the level of PA. 
 
To better understand time-activity patterns and PA of late middle-aged adults, it is 
important to know if and where they are mostly active. Global positioning system (GPS) 
devices in combination with accelerometers have been previously used to analyse the 
location-specific PA in children (Elgethun et al., 2003; Oreskovic et al., 2012; Lachowycz 
et al. 2012; Almanza et al., 2012; Coombes, Sluijs and Jones, 2013). Knowing where 
people are can give insights into their exposure to different attributes of the environment 
(e.g. air pollution, noise, greenness) and related health effects (Seeger et al., 2007; Dons 
et al., 2013; Dewulf et al., 2015; Bekö et al., 2015). Knowing where people are physically 
active (in terms of location or greenness) can also provide policy makers with insights 
into people’s needs. 
 
There are numerous factors influencing both PA itself and the association between 
greenness, location (i.e. at home, in the neighbourhood or further away) and PA, which 
need to be known to further promote PA. Several personal characteristics are correlates 
of PA. Males with a higher income and normal weight tend to be more physically active 
than their counterparts (Bauman and Bull, 2007; Ortlieb et al., 2014). For older adults, 
'being confident to be physically active and having social support' is positively correlated 
with PA, while 'feeling too old' has an adverse effect (Bauman and Bull, 2007; Carlson et 
al., 2012). Next to personal characteristics, the relation of neighbourhood built 
environment factors and PA has been widely studied in the past, mainly showing that 
people living in highly 'walkable' neighbourhoods tend to be more physically active 
(Berke et al., 2007; Frank et al., 2010; King et al., 2011; Van Holle et al., 2014; Marshall 
et al., 2014; Marquet and Miralles-Guasch, 2015). However, a study based on a national 
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survey on Canadian adults reports that there is a positive association between 
neighbourhood greenness in a 500 m buffer around the home location and leisure-time 
PA (McMorris et al., 2015). Research on the influence of greenness on PA in late middle-
aged adults is however limited, and there is hitherto no research on how neighbourhood 
greenness impacts the time spent active in green areas. In general, specific research on 
late middle-aged adults is relatively uncommon (especially in Europe) and does often 
not include objective measures of PA (Berke et al., 2007; Kaczynski et al., 2008; Lovasi et 
al., 2008; Shigematsu et al., 2009; Frank et al., 2010; McMorris et al., 2015) or shows 
inconsistent results (Berke et al. 2007; Lovasi et al. 2008; Frank et al. 2010; King et al. 
2011; Carlson et al. 2012; Van Holle et al. 2014). 
 
To our knowledge, research on the influence of personal characteristics and 
neighbourhood greenness on the association between greenness, location and PA in late 
middle-aged adults in Europe is unprecedented. We also feel that the use of detailed GPS 
and accelerometer data in this line of research can offer new insights. The main goal of 
this study is to reach an understanding where late middle-aged adults are mostly 
physically active in terms of location (home/neighbourhood/further) and in relation to 
greenness. Secondly, the influence of several personal characteristics, such as gender, 
working status, body mass index (BMI) and diploma as well as neighbourhood greenness 
has been studied with respect to PA and its association with greenness and location. 
 

5.3 MATERIALS AND METHODS 
 

5.3.1 PARTICIPANTS AND PROCEDURES 
 
We used data from 180 community-dwelling late middle-aged adults selected from a 
systematic random sample. Participants were all between 59 and 65 years old, working 
or retired, and live in Ghent, a medium-sized city (156.2 km2; 250,000 inhabitants) (Stad 
Gent, 2014) in Belgium. In order to participate, individuals had to meet three criteria: 1) 
understand and speak Dutch; 2) live independently; and 3) be able to walk a couple of 
hundred metres without severe physical restrictions. The home address for each 
participant was available. They were all visited at home and asked to wear a GPS device 
(Qstarz BT-Q1000X from Qstarz International, Taipei, Taiwan) and an accelerometer 
(Actigraph GT3X, GT3X+, or GT1M, from ActiGraph, Fort Walton Beach, USA), a valid 
and reliable tool for objectively measuring PA levels (Melanson and Freedson, 1995; 
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Copeland and Esliger, 2009; Pruitt et al., 2010). The instruments were worn at waist 
height for a week. The participants entered the required information on PA for different 
purposes (home, work, transport, and recreation) in the international PA questionnaire: 
the 'long past seven days' version (IPAQ, 2014). They also provided information 
regarding several personal characteristics: e.g. gender, working status, height and weight 
(from which the BMI was calculated), and diploma. 
 

5.3.2 DATA COLLECTION AND ANALYSIS 
 

5.3.2.1 GLOBAL POSITIONING SYSTEM AND ACCELEROMETER DATA 
 
GPS and accelerometer data were captured during the participants' waking hours. GPS 
data were collected at a 15 seconds time interval, between February 22nd 2013 and April 
5th 2013 resulting in a raw dataset of 5,672,590 points. Additionally, participants were 
equipped with an accelerometer, which showed the number of accelerations per 15 
seconds. GPS and accelerometer data were linked using the 'personal activity and 
location measurement system' (PALMS) (Demchak et al., 2012; PALMS, 2015) enabling 
us to know the number of accelerometer counts for each GPS point, from which each 
participant's PA level was calculated based on the Freedson cut-off points (Freedson et 
al., 1998) as shown in Table 5.1. 
 
Because distinction between car and bike movement (especially in the city centre where 
they have similar speeds) is difficult, the ‘vehicle’ PA level will only be studied in the first 
part of the manuscript (sections 3.1 and 3.2). In the current study, we only took into 
account data points where people are either sedentary or active. Data points showing 
non-wearing time and erroneous ones were omitted from the dataset, resulting in 
3,019,491 valid (wearing) data points (53.2% of the original dataset). 
 
 
 
 
 
 
 
 



CHAPTER 5 

108 

Table 5.1: Estimated physical activities based accelerometer counts. 

Accelerometer data 
(counts per minute) 

Type of defined 
physical activity Activity 

> 60 minutes zero 
Non-instrument 

wearing/sleeping* 
Non-defined; 
not measured 

0–100 Sedentary Reading, watching TV, eating, desk work 
0–100 
(speed >5 km/h) 

Vehicle- 
related 

In transport (car/tram etc.), biking 

101–1,951 LPA1 Standing (e.g. ironing, washing up and other 
household tasks), low-speed walking 

1,952–100,000 MVPA2 Walking, running 
> 100,000 Error* N.A. 

1Light physical activity; 
2Moderate-to-vigorous physical activity; 
*removed from the dataset. 
 

5.3.2.2 LOCATION CALCULATION 
 
For each data point, the network distance to each participant’s home address was 
calculated in ArcGIS 10.0TM using Network Analyst (ESRI, 2011). Based on this distance, 
the following movement classification was made:  

• 0 to 50 m:  at the home location;  
• 51–1,000 m:  in the neighbourhood; 
• > 1,000 m:  outside the neighbourhood.  

 
We used a distance of 50 m for the home location including the yard, since too little 
movement can cause noise in the GPS data. A distance of 1,000 m coincides with a 10–
15 minute walk and is internationally used as the neighbourhood boundary (Frank et al., 
2005; Lovasi et al., 2008; Oliver et al., 2007; Bauman and Bull 2007; Boruff et al., 2012). 
 

5.3.2.3 GREENNESS CALCULATION 
 
A 10-m resolution land use map containing 48 classes of the Flanders and Brussels region 
was used to calculate the greenness of each location using ArcGIS 10.0TM (Van Esch et 
al., 2011). This map was developed by the Flemish Institute for Technological Research 
(Vlaams Instituut voor Technologisch Onderzoek (VITO); Boeretang 200, BE-2400 Mol) 
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and combines the CORINE land cover, detailed parcel data, a biological appreciation 
map (Biologische WaarderingsKaart) and others. The following land use classes were 
considered as 'green': agriculture, grassland, forest, swamp, heath land and coastal dune 
as well as park, recreation and sport terrains. The other classes were considered as 'non-
green' land uses (e.g. residential, commercial, industrial, roads). While a further 
distinction could be made between e.g. natural/built green areas and 
commercial/residential non-green ones, in this exploratory study we made a dichotomist 
distinction to offer a first view on the association between greenness and PA. 
 

5.3.2.4 AVERAGE VALUES PER PERSON 
 
To analyse the association of greenness and location with PA per person and to study 
the influence of personal characteristics on this association, the point dataset was 
summarised to obtain average values per person. The following values were calculated 
using pgAdminTM (a PostgreSQL administration and management tool; PostgreSQL 
Global Development Group, 2015): hours of PA levels (sedentary, vehicle, light PA 
(LPA), MVPA) per day, hours in green/non-green areas per day, hours at 
home/neighbourhood/further per day, hours of PA levels in green/non-green per day, 
hours of PA levels at home/neighbourhood/further per day. Only participants with at 
least 6 hours of valid accelerometer data per day and at least 4 valid days were included 
in the analyses. As a result, we maintained 138 (76.7%) participants of the initial 180, 
with respect to whom full further analyses were done. 
 

5.3.2.5 NEIGHBOURHOOD GREENNESS 
 
The neighbourhood greenness was calculated in a network buffer (only using 'walkable' 
roads) of 1,000 m around each participant’s home location using ArcGIS 10.0TM, and 
expressed as the percentage green land use cells of all cells. Data on the road network 
(TeleAtlas MultiNet®; Tele Atlas, 2015) was used to define the walkable roads. 
 

5.3.3 GEOGRAPHICAL AND STATISTICAL ANALYSES 
 
Geographical and visual analyses were performed in QGIS 2.8TM (QGIS Develoment 
Team, 2015). Statistical analyses were done using SPSS Statistics 22TM (IBM Corp., 2013). 
The association between greenness, location and PA per GPS data point (! =
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3,019,491) was tested for significance using an independent-samples t-test (after 
successfully testing the data for normality). The averaged data per person (! = 138) 
were examined by performing a linear regression analysis to study the associations of 
greenness and location with PA (again, after successfully testing the data for normality). 
To examine whether these associations are similar in different socio-demographic 
subgroup, stratified linear regression analyses were conducted.  
 

5.4 RESULTS 
 
This section presents first some general descriptive statistics about the population 
sample. The second part describes analyses of the 3,019,491 valid data points to detect 
where the late middle-aged adults (! = 180) are mostly active. The third part deals with 
the analyses based on the data per person (! = 138) and has to do with the association 
between greenness, the distance from home and PA level per person and includes an 
analysis of the influence of several personal characteristics and neighbourhood 
greenness. 
 

5.4.1 GENERAL DESCRIPTIVE STATISTICS 
 
General descriptive statistics of the 180 participants are presented in Table 5.2. The 
majority of the sample was non-smoking, had a higher education, was retired and had a 
partner. The mean age was 61.7 years and the mean body mass index (BMI) = 26.0. The 
sample contains slightly more women than men.  
 
From all valid data points (! = 3,019,491) it is clear that the participants were mainly 
sedentary (65.5%), followed by LPA (24.0%), vehicle (5.8%) and MVPA (4.7%). Table 
5.3 shows the distribution of valid data points for both greenness and location. The data 
points referring to the participants' whereabouts mainly pointed at non-green land use 
classes (residential, commercial, or other industrial) compared to green land use classes 
(forest, recreation, park, grassland, agriculture). Additionally, it was found that late 
middle-aged adults spent most of their time at the home location rather than anywhere 
else. 
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Table 5.2: General descriptive statistics of the study sample. 

Parameter Sample (n=180) 
Age (mean [5%–95%]1) 61.7 [58.0–65.0] 

BMI2 (mean [5%–95%]1) 26.0 [20.6–32.4] 
Gender (% male) 47.8 
Smoking (% not smoking) 90.0 
Working/retired (% working) 23.3 
Marital status (%) 
    Married 
    Living together 
    Single 
    Divorced 
    Widow(er) 

 
67.8 
7.8 
4.4 

14.4 
5.6 

Education (%) 
    Primary school 
    Secondary school 
    Higher/university 
    Missing 

 
7.2 

40.0 
52.2 
0.6 

1Confidence interval 
2Body mass index 
 
Table 5.3: Distribution of valid data points (n=3,019,491) with regard to greenness/non-

greenness and location. 

 Non-green area Green area Total 
Home (< 50 m) 1,618,459 (53.6%) 12,931 (0.4%) 1,631,390 (54.0%) 
Neighbourhood 
(50–1,000 m) 

441,267 (14.6%) 30,605 (1.0%) 471,872 (15.6%) 

Further away 
(> 1000 m) 852,484 (28.2%) 63,745 (2.1%) 916,229 (30.3%) 

Total 2,912,210 (96.4%) 108,281 (3.6%) 3,019,491 (100%) 
 

5.4.2 WHERE ARE LATE MIDDLE-AGED ADULTS MOSTLY ACTIVE? 
 

5.4.2.1 GEOGRAPHICAL AND VISUAL ANALYSES 
 
In Figure 5.1, data points from one specific green area as an example (the ‘Citadel’ park) 
are visualised for all participants, indicating the PA level. One can see that in this green 
area MVPA (probably mainly walking) was done along the walking trails. At certain 
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locations, we observed some LPA and sedentary behaviour as well, mainly near certain 
points of interest (in the Southwest a statue with benches, in the Northeast a pond with 
benches). This type of pattern was also observed at other green locations. 
 

 
Figure 5.1: Visualization of the collected GPS and accelerometer data in a green area 

(Citadel Park in Ghent, Belgium). 

 
5.4.2.2 ASSOCIATIONS OF GREENNESS,  LOCATION,  AND PA PER 

DATA POINT 
 
Figure 5.2 visualises the PA levels depending on the location and greenness of the data 
points, summed to 100% for greenness. We did not consider the home location (> 50 m) 
here, since this is a mainly non-green area, where this analysis would be purposeless. In 
the neighbourhood, the participants were mainly sedentary and performed LPA. Outside 
the neighbourhood we observed less sedentary behaviour (* < 0.05) in favour of more 
time spent in the vehicle (* < 0.001) and more MVPA (* < 0.001). LPA was 
approximately the same in the neighbourhood and further, and mainly involved walking 
at a slow pace. 
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Taking greenness into account, sedentary time was found to be much higher in non-
green areas than in green areas (* < 0.01). There is generally more vehicle use (* <
0.01) in green areas, because green areas are often located outside city centres and car 
use is higher there. LPA (* < 0.05) but more striking MPVA (* < 0.001) was 
significantly higher in green areas than in non-green areas. 
 

 

 
Figure 5.2: Percentages of the type of physical activity at of all valid points dependent on 

greenness and location. 
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5.4.3 INDIVIDUAL GREENNESS/LOCATION/PA ASSOCIATION AND THE 

INFLUENCE OF PERSONAL CHARACTERISTICS AND 

NEIGHBOURHOOD GREENNESS 
 

5.4.3.1 DESCRIPTIVE STATISTICS 
 
Table 5.4 shows some additional general descriptive statistics of the participants (! =
138), concerning greenness, location and PA. Each participant had an average of 12.0 
hours of data per day (non-wearing time and sleeping excluded) for on average 6.6 days. 
Only 30 minutes per day was spent in green areas, 6.7 hours are spent at the home 
location, almost 2 hours in the neighbourhood and more than 3 hours further away (the 
histogram of the time spent further away shows a large peak between from 1 to 5 hours, 
and a smaller peak from 6 to 9 hours). Almost 8 hours is spent being sedentary, and 
approximately 2.8 hours per day is spent being active (LPA and MVPA). 
 
Table 5.4: Descriptive statistics of the study sample (n = 138) concerning greenness, 

location, and physical activity. 

Parameter Hours per day (mean [5%–95%]1) 
Valid days 6.6 [5.0–8.0] (days) 
Data 12.0 [8.8–14.8] 
Greenness 
    Non-green 
    Green 

 
11.6 [8.4–14.4] 

0.4 [0.0–1.7] 
Location 
    Home 
    Neighbourhood 
    Further 

 
6.7 [0.0–12.0] 
1.8 [0.1–10.3] 
3.4 [0.6–9.4] 

Physical activity 

    Sedentary 
    Vehicle 
    LPA2 

    MVPA3 

 
7.9 [5.2–10.4] 
0.6 [0.1–1.3] 
2.3 [1.3–3.6] 
0.5 [0.1–1.3] 

1Confidence interval 
2Light physical activity 
3Moderate-to-vigorous physical activity 
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The results indicate that 70% of the late middle-aged adults are sedentary for more than 
7 hours per day and 35% does not reach the 21.4 minutes of MVPA per day (or 150 
minutes per week) to benefit positive health effects. 
 

5.4.3.2 ASSOCIATIONS OF GREENNESS,  LOCATION,  AND PA PER 

PERSON 
 
We performed a linear regression analysis to study the association of greenness and 
location (i.e. being at home) with PA and found some significant results (Table 5.5). 
More time spent in non-green areas was associated with more hours of sedentary 
behaviour and LPA, while more time in green areas was associated with less sedentary 
behaviour and more hours of MVPA. More time spent at home was also associated with 
more sedentary behaviour and LPA. 
 
Table 5.5: Results of linear regression analysis between greenness, location, and physical 

activity. 

Independent variable  – dependent variable .1 
Hours in non-green area  – hours of sedentary behaviour 0.80*** 
Hours in non-green area  – hours of LPA2 0.47*** 
Hours in non-green area  – hours of MVPA3 0.10 
Hours in green area         – hours of sedentary behaviour -0.16* 
Hours in green area         – hours of LPA 0.02 
Hours in green area         – hours of MVPA 0.17* 
Hours at home                 – hours of sedentary behaviour 0.33*** 
Hours at home                 – hours of LPA 0.37*** 
Hours at home                 – hours of MVPA 0.03 

1Standardized / regression coefficient 
2 Light physical activity 
3 Moderate-to-vigorous physical activity 
*p <0.05; **p <0.01; ***p <0.001 
 

5.4.3.3 INFLUENCE OF PERSONAL CHARACTERISTICS AND 

NEIGHBOURHOOD GREENNESS 
 
Table 5.6 shows of our analysis whether the association of greenness and location with 
PA differs depending on various personal characteristics (gender, working status, BMI, 
and educational level). 
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Table 5.6: Results of the stratified linear regression analysis. 
 Gender Working status BMI Diploma Neighbourhood 

greenness 
Indep. var. - 
dep. var. (hours 
in/of) 

/0123  /430123  /5367538  /9:5;7<=  /<:5012  />7=>  /2:9  />7=>  /<:6  /=533<  

Non-green - 
sed. beh. 0.86*** 0.73*** 0.82*** 0.70*** 0.78*** 0.82*** 0.79*** 0.84*** 0.81*** 0.75*** 

Non-green - 
LPA 

0.50*** 0.52*** 0.48*** 0.46** 0.44** 0.50*** 0.56*** 0.41*** 0.48*** 0.46*** 

Non-green - 
MVPA 0.31** -0.27* 0.13 -0.06 0.01 0.17 0.11 0.07 0.07 0.18 

Green - sed. 
beh. -0.20* -0.14 -0.22* 0.64 -0.30* -0.03 -0.36** 0.05 -0.18 -0.03 

Green - LPA 0.24** -0.13 0.04 -0.06 -0.17 0.16 -0.04 0.06 0.01 0.09 
Green - MVPA 0.26* 0.15* 0.19* 0.14* 0.23* 0.14* 0.10* 0.30** 0.07 0.31** 
At home - sed. 
beh. 0.30** 0.37** 0.50*** -0.23 0.28* 0.38** 0.45*** 0.24* 0.40** 0.24* 

At home - LPA 0.36** 0.38*** 0.40*** 0.36* 0.41** 0.35** 0.34** 0.42*** 0.36** 0.35** 
At home - 
MVPA -0.10 0.14 0.02 0.08 0.04 0.03 0.04 0.04 0.08 -0.00 

*: * < 0.05, **: * < 0.01, ***: * < 0.001 

 
The positive associations between the time spent in non-green areas and time being 
sedentary or in LPA were comparable for the different subgroups. The association 
between time spent in non-green areas and time in MVPA was positive for males, i.e. 
more time spent in non-green areas was related to more MVPA, and negative for 
females, i.e. more time in non-green was related to less MVPA. 
 
The negative association between time spent in green areas and sedentary time was only 
significant for male, retired participants with a normal BMI and lower education. The 
positive association between time spent in green areas and LPA was only significant for 
men, and the association between time spent in green areas and MVPA was the strongest 
for highly educated people and those living in a green neighbourhood. The positive 
association between the time spent at home and sedentary behaviour was strongest for 
retired participants. The association between the time spent at home and doing LPA is 
comparable in the different subgroups. 
 

5.5 DISCUSSION 
 
Previous research has shown that being active in green areas has a positive effect both on 
physical and mental health (Dewulf et al., 2016; Frumkin, 2001; St Leger, 2003; 
Thompson Coon et al., 2011). This study demonstrates that late middle-aged adults 
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spend an average of 30 minutes per day in green areas, and when more time is spent 
there, people are more active compared to their behaviour in non-green areas. This 
suggests that availability of green areas lead to higher amounts of PA. The knowledge of 
the link between greenness and PA hotspots is important for policy makers wishing to 
stimulate PA. Nevertheless, there will always be a large proportion of PA occurring in 
non-green areas (e.g. in city centres). Being physically active in these non-green areas 
does not necessarily imply a negative health impact, but small green features could be 
introduced to improve people's wellbeing. However, spending more time at home is 
associated with more sedentary behaviour, and with more time spent at home with 
increasing age (Kerr et al., 2012), a vicious circle is established that could thus lead to 
more sedentary behaviour and related health risks (Clark et al., 2014; Ortlieb et al., 2014). 
 
Our results of the influence of various characteristics on the association between 
greenness, location and PA indicate that the association between the time spent in non-
green and MVPA is positive for males and negative for females. This means that more 
time spent in non-green areas is related to more MVPA for males, while to less MVPA 
for females. The positive association between the time spent in green areas and MVPA 
is strongest for highly educated people and for those living in a green neighbourhood, 
indicating that living in a green neighbourhood leads to more PA when time is spent in 
green areas, which coincides with the findings by McMorris et al. (2015). In contrast to 
previous studies (Berke et al., 2007; Frank et al., 2010; King et al., 2011; Marquet & 
Miralles-Guasch, 2015; Marshall et al., 2014; Van Holle et al., 2014), on the other hand, 
living in a non-green neighbourhood was not found to be associated with more PA and 
less sedentary behaviour. The positive association between the time spent at home and 
sedentary behaviour was found to be the strongest for retired participants, indicating 
that once retired the time spent at home is often linked with sedentary behaviour. It 
would be interesting to study the association between greenness in the home 
neighbourhood and PA (and more specifically PA in green areas) further in different age 
groups. 
 
Our study has several strengths compared with similar studies. First, this research is the 
first to study the association between greenness, location and PA with respect to late 
middle-aged adults in Europe. Second, most studies are only based on self-reported PA 
values (Berke et al., 2007; Frank et al., 2010; Kaczynski et al., 2008; Lovasi et al., 2008; 
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Shigematsu et al., 2009), while we used accelerometer-based PA, which offers more 
objective values. This made it possible to attribute PA levels to each GPS data point, 
which cannot be done when using only self-reported data, where for example only binary 
data (participant walked or did not walk today) is extracted (Clark et al., 2014). Third, 
the combined use with GPS data offers detailed insights in where active behaviour is 
done (Duncan, Badland, & Mummery, 2009; Kerr et al., 2012; Oreskovic et al., 2012; 
Troped, Wilson, Matthews, Cromley, & Melly, 2010). In contrast to previous studies, 
where only the home neighbourhood is considered, we additionally gathered 
information on the specific context of where PA is carried out. 
 
Although our approach had also limitations, they open up interesting avenues for future 
work. First and foremost, we already described the difficulty to detect bicycle use 
(Hansen, Kolle, Dyrstad, Holme, & Anderssen, 2012) when deriving PA levels from 
accelerometer data. We considered both bike and car use as 'vehicle', therefore losing 
some active data when people are biking. In future work, mode-detection algorithms 
could be used to detect transport modes. However, for the specific research results 
reported here, the loss of information must be deemed limited as only 5.8% of the entire 
dataset was considered 'vehicle'-related. Second, in this cross-sectional study it was not 
possible to extract causal relationships. One must therefore be careful when interpreting 
the results, because it is not given that the greenness of the area is the cause of a higher 
PA activity. Future studies should focus on longitudinal research to detect whether or 
not changes are causal, and occasional or persistent. In this way, the effect of introducing 
green areas (using natural experiments) on PA levels can be studied (Bauman & Bull, 
2007). Third, the data were collected in March, possibly influencing space-time activity 
patterns of some participants because of the weather (e.g. low temperatures, snow). 
Future research should incorporate weather characteristics (e.g. temperature, rain, wind 
speed) to account for this. Fourth, future studies on this topic should try to incorporate 
socio-economic status (e.g. income, education) indicators, to analyse its possible 
correlation with 'walkability' and greenness and potential influence on the association of 
greenness, location and PA. Finally, we considered agriculture as a green area. Despite 
the fact that moving through these areas is associated with positive health effects, this 
can possibly affect our results since such trips can also be functional trips. For example, 
people living in a rural neighbourhood are likely to spend more time in green areas 
because they automatically pass through green areas when moving. This could be 
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reduced in future research by filtering the trips per goal. Related to this final limitation, 
a more detailed distinction could be made between natural (e.g. forest, coastal dune, 
grassland) and built green areas (e.g. park, sport terrain), in future work considering the 
possibility that they could be differently related to PA. 
 

5.6 CONCLUSIONS 
 
The combined use of GPS and accelerometer data can help detecting where people are 
sedentary or physically active. Knowing where people are mainly physically active should 
encourage policy makers to increase activity in this age cohort. Despite the fact that the 
observed population spends little time in green areas, higher levels of PA are reached in 
green areas. As this is the first research studying the association between greenness, 
location and PA, and the influence of several characteristics on this relationship, our 
results are useful in updating the current knowledge on PA in late middle-aged adults. 
However, more research is needed to better understand where and why late middle-aged 
adults are physically activity or sedentary. 
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6.1 ABSTRACT 
 
Exposure to air pollution can have severe health impacts, especially for the elderly. To 
estimate the inhaled dose of air pollution, traditionally only the air pollution 
concentration at the home location is considered, without incorporating individual 
travel behaviour and physical activity. This can lead to bias in health impact assessment 
and epidemiological studies, possibly underestimating exposure to air pollution and 
misinforming policy makers. Our paper addresses this issue using accurate 7-day GPS 
and accelerometer data on 180 participants aged between 58 and 65 living in Ghent 
(Belgium). NO2 concentration for Belgium is available from a land-use regression model. 
Three methods are used to calculate the inhaled dose of NO2. The first method is the 
traditional static method, using only the NO2 concentration at the home location. The 
second method incorporates travel behaviour using GPS data, thus looking at the NO2 
concentration at the exact location of the participant. The third method additionally 
incorporates accelerometer data and estimates the transport mode used and physical 
activity to calculate the ventilation rate. When incorporating geographical location, 
differences in inhaled dose of NO2 depend on the NO2 concentration at the home 
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location and the individual travel behaviour. When additionally incorporating 
ventilation rate, the inhaled dose of NO2 increases by more than 12%. In addition to 
comparing these three methods with each other, the influence of transport mode is 
tested. Cycling is associated with increased inhaled doses of NO2 relative to other modes. 
It is important for health impact assessment and epidemiological studies to incorporate 
individual travel behaviour and physical activity to measure the inhaled dose of air 
pollution, and this can be done accurately using GPS and accelerometer data. 
 

6.2 INTRODUCTION 
 
There is a large body of evidence indicating that exposure to air pollution causes various 
acute and chronic health effects, such as respiratory and cardiovascular diseases (Beelen 
et al., 2014; Brook et al., 2010; Brugge, Durant, & Rioux, 2007; Gehring et al., 2013; HEI, 
2010; Peters et al., 2004; Pope III & Dockery, 2006; Riediker et al., 2004; WHO, 2003). 
Several pollutants are identified as culprits of negative health effects, such as black 
carbon (BC), particulate matter (PM), and nitrogen dioxide (NO2). In our study, we 
focus on NO2, a pollutant that can cause an increase in pulmonary morbidity, a 
worsening of obstructive lung disease and a higher susceptibility to airway infections 
(Blomberg et al., 1997; Cesaroni et al., 2014; WHO, 2003). An additional focus of this 
article is on late middle-aged adults (age 58 to 65 years), since this is a vulnerable group 
concerning health impacts of air pollution and has a growing share of the population 
(Bentayeb et al., 2012; Schwartz, 1999). 
 
The majority of current health impact assessment and epidemiological studies examines 
exposure to air pollution by solely considering air pollution concentrations at the 
respondent’s home location (Brunekreef et al., 2009; Jerrett et al., 2013). Such static 
approaches that do not take individual travel behaviour into account may give rise to 
biased exposure assessments and may misinform policy makers. Not only do people have 
certain activities during the day, their travel behaviour also varies between days. It has 
been shown that people’s individual travel behaviour has a major influence on exposure 
to air pollution (Beckx et al., 2009; Dons et al., 2011; Setton, 2011). 
 
To obtain better and more dynamic estimates of inhaled dose of air pollution, more 
detailed information on travel behaviour is needed. This can be obtained by using an 
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activity-based transport model (Beckx et al., 2009; Dhondt et al., 2012; Fecht, Beale, & 
Briggs, 2014), travel diaries or Global Positioning Systems (GPS) data (Houston, Ong, 
Jaimes, & Winer, 2011). Using more accurate travel behaviour data, someone’s 
geographical location can be incorporated to calculate the inhaled dose of air pollution 
more dynamically. Compared with the static approach in which only air pollution at a 
person’s home location is accounted for, incorporating activity patterns and travel 
behaviour may lead to an increase in estimated exposure to air pollution (Dhondt et al., 
2012). 
 
Not only the location where people are, but also their physical activity (PA) has a major 
influence on the inhaled dose of air pollution. A high physical activity implies a high 
ventilation rate and thus a higher inhaled dose, but performing physical activity while 
being exposed to air pollution can also cause intermediary health effects like acute 
pulmonary effects, e.g. temporary decreases in lung function, acute cardiovascular 
effects (Bos, De Boever, Int Panis, & Meeusen, 2014; Strak et al., 2010; Weichenthal et 
al., 2011). Despite the fact that the relationship between PA and ventilation rate is 
uncertain because of complex lung physiology (EPA, 2011), incorporating ventilation 
rate can result in more detailed values of inhaled dose. 
 
Research combining both individual travel behaviour data and detailed physical activity 
or ventilation rate data, to improve the estimation of exposure to air pollution, is fairly 
limited (de Nazelle et al., 2013; Hu, Wang, Rahman, & Sivaraman, 2014; Int Panis et al., 
2010). De Nazelle et al. (2013) showed that using a smartphone app to track geographic 
location and physical activity could considerably alter exposure estimates. Hu et al. 
(2014), for their part, found significant differences in inhaled dose of CO taking 
ventilation rate into account (driving 186 μg/h, cycling 396 μg/h, and jogging 600 μg/h), 
compared to an equal inhaled dose of 156 μg/h when not incorporating ventilation rate. 
Finally, Int Panis et al. (2010) showed that bicycle users inhale 4.3 times more air 
pollution than car drivers because of a higher ventilation rate. 
 
This paper will contribute to the above strand of literature considering both travel 
behaviour (geographical location) and physical activity (and the resulting ventilation 
rate) to model the inhaled dose of air pollution. Our study seeks to bring additional 
evidence on how the combined use of GPS and accelerometer data can offer more 
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detailed estimations of the inhaled dose of air pollution. To overcome the limitations of 
previous studies, we use a large sample of 180 late middle-aged adults using accurate 
standalone GPS and accelerometer devices, collecting data from an entire week. Three 
methods are used to calculate the inhaled dose of NO2. The first method is the traditional 
static approach that only considers the NO2 concentration at the home location and will 
serve as a benchmark. The second method takes individual travel behaviour into 
account, by considering the outdoor NO2 concentration at the exact location where the 
participants are located. The third method additionally takes transport mode and 
physical activity into account, to make a better estimation of the inhaled dose by 
incorporating the ventilation rate. This paper has two specific objectives. The first and 
main objective of this study is to compare the inhaled dose from these three methods. 
The second objective is to check whether or not transport mode affects the inhaled dose. 
 

6.3 MATERIAL AND METHODS 
 

6.3.1 DATA 
 
For this study we used data of 180 adults, aged between 58 and 65 years, living in Ghent, 
a medium-sized city (247,941 inhabitants in 2012; Stad Gent, 2012) in Belgium. This age 
group contains both working and retired people. The participants were selected from a 
systematic random sample. In order to recruit a sufficient number of participants, the 
Public Service of Ghent selected a random sample of 7,500 58–65 year old adults from 
the municipal register. An information letter with the purpose of the study was sent by 
postal mail, with the announcement of the visit of a trained interviewer during the 
subsequent two weeks. Approximately one week after sending the letters, all selected late 
middle-aged adults were visited at home. The general descriptive statistics of the 
participants can be found in Table 6.1.  
 
7-day GPS data were collected with a Qstarz BT-Q1000X, at 15 seconds time interval, 
between February 22nd 2013 and April 5th 2013, resulting in a dataset of 5,811,375 points. 
Despite the fact that the participants live in Ghent, the GPS points are spread over the 
entire country. For 89.2% of the GPS data, 6 or more satellites were used to calculate the 
position, indicating a high accuracy. Additionally, participants wore an accelerometer 
Actigraph GT3X, GT3X+, or GT1M collecting a ‘count’ value giving an indication of the 
energy expenditure of the participant. 
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The NO2 concentration data (in μg/m3) for the entire country of Belgium is available 
from the Land Use Regression model RIO-IFDM-MIMOSA4 (Residual Interpolation 
optimised for Ozone - Immission Frequency Distribution Model - Milieu Model Stad 
Antwerpen, Antwerp City Environmental Model) from VITO (Vlaams Instituut voor 
Technologisch Onderzoek, Flemish Institute for Technological Research). This model 
combines air quality measurements and land use (RIO), meteorology (IFDM), and 
vehicle fleet and COPERT4 emission functions (MIMOSA4) to obtain high-resolution 
(10m) air quality maps (Lefebvre et al., 2013). We used the average NO2 concentration 
for the entire study period, because using hourly values severely increases the 
computational burden. The NO2 concentration in Belgium varies from 5 to 91 μg/m3 
and in the Ghent municipality from 16 to 66 μg/m3. 
 
Table 6.1: General descriptive statistics of participants (n=180). 

Parameter Sample 
Sex (%) 
   Female 
   Male 

 
52.8 
47.2 

Age (mean) 61.7 
Education (%) 
    Lower (technical and vocational) 
    Higher (general and higher) 
    Missing 

 
47.8 
51.7 
0.6 

Employment status (%) 
    Working 
    Retired 

 
23.9 
76.1 

Body mass index (mean) 26.0 
Smoking (%) 
    No 
    Yes 

 
90.6 
9.4 

Marital status (%) 
    Without partner 
    With partner 

 
23.9 
76.1 

 
6.3.2 DATA PROCESSING 

 
GPS and accelerometer data are linked to each other using PALMS (Personal Activity 
and Location Measurement System; Demchak et al., 2012; PALMS, 2015). Figure 6.1 
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schematically shows how the ventilation rate was calculated. The transportation mode is 
defined based on an existing speed profile (Reddy et al., 2010) to discriminate between 
walking (including vigorous walking and jogging), cycling and driving (car or public 
transport). The ventilation rate is calculated based on transport mode and physical 
activity (from the accelerometer counts). Despite the fact that being stationary is not a 
transport mode, it is however included in the analysis. When stationary or walking, 
physical activity is defined based on the number of accelerometer counts (Freedson, 
Melanson, & Sirard, 1998), from which a ventilation rate is calculated (Allan & 
Richardson, 1998), as indicated in  
 
Table 6.2. Because accelerometer devices detect little activity when riding a bike, this 
method cannot be used for the transport mode cycling. Therefore, often a constant factor 
is used to calculate the ventilation rate relative to sedentary behaviour (Bernmark, 
Wiktorin, Svartengren, Lewné, & Aberg, 2006; O’Donoghue, Gill, McKevitt, & 
Broderick, 2007; Rank, Folke, & Jespersen, 2001; Zuurbier, Hoek, van den Hazel, & 
Brunekreef, 2009). A better alternative is to use cycling speed as a proxy to calculate 
ventilation rate, using equation 6.1 (McNabola, Broderick, & Gill, 2007). For driving (car 
and public transport), we assume that physical activity levels are similar to sedentary 
behaviour. Additionally, the ventilation rate was adjusted for gender using equations 6.2 
and 6.3, based on Allan and Richardson (1998). 
 

 
Figure 6.1: Schematic representation of ventilation rate calculation. 
 
 ?@ABA23 = 	 3.55 1.61×	F − 5.85  (eq. 6.1; McNabola et al., 2007) 
 ?@0123 = 0.0079×?@I + 0.94×?@  (eq. 6.2; Allan & Richardson, 1998) 
 ?@430123 = 0.0071×?@I + 0.75×?@  (eq. 6.3; Allan & Richardson, 1998) 
with ?@ the ventilation rate (in l/min), and F cycling speed (in km/h). 
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Table 6.2: Physical activity and ventilation rate (l/min) for stationary and walking based on 

the number of accelerometer counts. 

Accelerometer counts (per 15 s) Physical activity1 Ventilation rate2 
(l/min) 

< 25 Sedentary 7.5 
25–488 Light physical activity 10.4 
488–1431 Moderate physical activity 14.7 
1431–2375 Heavy physical activity 27.6 
> 2375 Very heavy physical activity 54.3 

1: Based on Freedson et al. (1998). 
2: Based on Allan and Richardson (1998). 
 
Next, the NO2 concentration was spatially joined with each GPS point using PostGIS. 
Points outside the Belgian borders, with no pollution data available, were removed from 
the dataset. This way, 5,730,887 data points remained, which is 98.6% of the original 
dataset. 
 

6.3.3 DATA ANALYSES 
 
Knowing the ventilation rate and the NO2 concentration, the inhaled dose of NO2 was 
calculated using three methods. In this manuscript, we use the term 'inhaled dose' for 
the inhaled concentration of air pollution, without incorporating the exhaled 
concentration. The first method calculated the inhaled dose statically, using only the air 
quality at the home location and using a sedentary breathing rate (equation 6.4). The 
second method is more dynamic, since it takes individual travel behaviour into account 
using GPS data. Here, the NO2 concentration at each GPS location and a sedentary 
ventilation rate are used (equation 6.5). The third method is similar to the second one, 
but now the calculated ventilation rate, based on transportation mode and physical 
activity, at each individual GPS point is used (equation 6.6). Figure 6.2 illustrates this 
overlay of GPS points with the calculated ventilation rate value on a base map of NO2 
concentration, from a typical location in Ghent. The inhaled dose was calculated per 15 
seconds and transformed to a value in μg/h. Subsequently, average values for NO2 
concentration, ventilation rate and inhaled dose were calculated per person. 
 
 
 



CHAPTER 6 

132 

 K!ℎMNOP	PQROS = 	T>:03×?@U383<615B    (eq. 6.4) 

 K!ℎMNOP	PQROI = T7
122	VWX	Y:7<6U
7Z[ ×?@U383<615B  (eq. 6.5) 

 K!ℎMNOP	PQRO\ = T7×?@7
122	VWX	Y:7<6U
7Z[     (eq. 6.6) 

with T>:03 the NO2 concentration (in μg/m3) at the home location, T7  is the NO2 
concentration (in μg/m3) on GPS point ], and ?@ the ventilation rate (transformed from 
l/min to m3/15s) associated with sedentary behaviour or on GPS point ]. 
 
The averaged data per person was statistically analysed using IMB SPSS Statistics 22. To 
check for significant differences between the mean inhaled doses of the three methods, 
a paired-samples t-test was performed on all data points. An independent-samples t-test 
was used on all data points to check for significant differences between the mean inhaled 
doses from the dynamic method for different transport modes (after successfully testing 
the data for normality). Statistical significance was set at * < 0.05. 
 

 
Figure 6.2: Map illustrating the overlay of GPS points with the calculated ventilation rate 

on base map with NO2 concentration, from a random location in Ghent. 

 
 
 
 



DYNAMIC MODELLING OF INHALED AIR POLLUTION USING GPS AND ACCELEROMETER DATA 

133 

 
6.4 RESULTS 

 
This section is divided into two parts following the study objectives. First, the three 
methods used to calculate the inhaled dose of NO2 are compared with each other. 
Second, the influence of the transport mode on inhaled dose of NO2 is tested.  
 

6.4.1 STATIC VS. DYNAMIC MEASUREMENTS OF INHALED DOSE 
 
The mean NO2 concentration and mean inhaled dose of NO2 per person were calculated 
with the three methods and are presented in Table 6.3. The differences are small, but all 
values are significantly different from each other (* < 0.001), based on a paired-samples 
t-test. Figure 6.3 shows the mean inhaled dose of NO2 per person (data shown on 
participant’s home location) using method 3. Large differences in inhaled dose of NO2 
can be observed, not linked with the underlying NO2 concentration, indicating that the 
inhaled dose also largely depends on the travel behaviour and ventilation rate. 
 
Table 6.3: Mean NO2 concentration and mean inhaled dose of NO2 per person calculated 

with the three different methods. 

Method Mean NO2 concentration 
(μg/m3) [^_] 

Mean inhaled dose of 
NO2 (μg/h) [^_] 

1: NO2 concentration at the home 
location 

29.38 [5.56] 11.12 [2.36] 

2: NO2 concentration at each GPS 
point 

28.87 [4.89] 10.93 [2.23] 

3: NO2 concentration and 
ventilation rate at each GPS point 28.87 [4.89] 12.33 [2.67] 

 
By incorporating the GPS location of participants (comparing method 1 and 2), the 
mean inhaled dose of NO2 decreases with 0.19 μg/h (1.74%). To better visualise the 
disparity between the first two methods, Figure 6.4a shows the mean inhaled dose 
calculated with method 2 minus the inhaled dose calculated with method 1. About half 
of the participants (48%) has a lower inhaled dose of NO2 using method 2, compared to 
method 1. The other half (52%) has a higher inhaled dose, thus leading to the small mean 
difference between method 1 and 2. Despite the small average difference between the 
two methods, individual differences are not to be neglected. There is a significant 
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Pearson correlation (` = 0.44, * < 0.001) between the NO2 concentration at the home 
location and the difference in inhaled NO2 between method 1 and 2. 
 

 
Figure 6.3: Mean inhaled dose of NO2 per person using method 3, as an overlay on the 

NO2 concentration. 

 
When additionally including ventilation rate based on transport mode and 
accelerometer counts (method 3) the inhaled dose of NO2 increases by 1.40 μg/h 
(12.81%) compared to method 2. Figure 6.4b shows the mean inhaled dose calculated 
with method 3 minus the inhaled dose calculated with method 2. Almost all (97.8%) 
participants have an increase in inhaled dose. 
 

6.4.2 INFLUENCE OF TRANSPORT MODE ON INHALED DOSE 
 
For this analysis, we use method 3 since this method uses values of NO2 concentration 
and ventilation rate at each GPS point. To investigate the influence of transport mode 
on the inhaled dose, we first look at the NO2 concentration and the ventilation rate in 
function of transport mode. Figure 6.5a and Figure 6.5b show this visually using 
boxplots, and in Table 6.4 the mean values are presented. 
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Figure 6.4: Difference in mean inhaled dose of NO2, between method 1 and method 2 (a; 

‘method 2’ minus ‘method 1’) and between method 2 and method 3 (b; ‘method 3’ minus 

‘method 2’). 
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Figure 6.5: Boxplots showing a) NO2 concentration (μg/m3), b) ventilation rate (l/min), and 

c) inhaled dose of NO2 (μg/h) as a function of transport mode. 
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Table 6.4: Mean value of NO2 concentration, ventilation rate, and inhaled dose of NO2, for 

each transport mode. 

Transport 
mode 

NO2 concentration 
(μg/m3) 

Ventilation rate 
(l/min) 

Inhaled dose of NO2 
(μg/h) 

Stationary 28.8 7.08 11.5 
Walking 29.6 7.96 13.4 
Cycling 30.0 22.72 40.6 
Driving 27.4 6.40 10.6 

 
The average NO2 concentration is similar for the different transport modes. For 
stationary behaviour (i.e. when GPS speed is lower than 1.5 km/h) a sedentary 
ventilation rate is used, but now the accelerometer counts are taken into consideration, 
and therefore ventilation rate here is slightly higher than for driving. The ventilation rate 
is again higher for walking, but cycling has the highest ventilation rate. Combining the 
ventilation rate and the NO2 concentration leads to the inhaled dose of NO2, calculated 
per hour (Figure 6.5c  and Table 6.4). The high ventilation rate for cycling results in an 
inhaled dose of 40.6 μg/h, which is significantly larger (* < 0.001) than the three other 
transport modes ranging between 10.6 and 13.4 μg/h. 
 
To further investigate the relationship between transport mode and inhaled dose of NO2, 
we calculated the proportion that each transport mode contributes to the total amount 
of inhaled NO2. Table 6.5 shows the percentage of data points linked with each transport 
mode. The high percentage for stationary behaviour has various reasons. First, people 
are sleeping, and thus stationary, for approximately 8 hours per day. Second, older 
people are often less active than their younger counterparts and thus more sedentary. 
Combining this percentage with the mean inhaled dose results in a weighted inhaled 
dose contribution for each transport mode, shown in Table 6.5. Despite the fact that the 
inhaled dose for cycling is large, due to its small proportion in the data points, the 
weighted inhaled dose of NO2 for cycling is fairly small. When combining the number 
of data points with the inhaled dose, we obtain the total inhaled NO2 per transport mode 
for all participants combined (Table 6.5). Again it is clear that due to the small percentage 
of cycling in the dataset, the total inhaled NO2 for cycling is relatively small in this elderly 
population. 
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Table 6.5: Number and percentage of data points, weighted inhaled dose of NO2 and total 

inhaled dose of NO2 for all data points, per transport mode. 

Transport 
mode 

Data 
points 

Percentage Average weighted inhaled 
dose of NO2 per day 

(μg/h) 

Total inhaled dose 
of NO2 per day (g) 

Stationary 4,776,956 83.4 9.6 229 
Walking 737,751 12.9 1.7 41 
Cycling 92,593 1.6 0.6 16 
Driving 123,587 2.2 0.2 5 

 
6.5 DISCUSSION 

 
6.5.1 STATIC VS. DYNAMIC MEASUREMENT OF INHALED DOSE 

 
The influence of individual travel behaviour on the inhaled dose of air pollution is often 
neglected (Brunekreef et al., 2009), but recent studies indicate that this is of high 
importance in estimating air pollution exposure and inhalation (Beckx et al., 2009; Dons 
et al., 2011; Setton, 2011). Following our study, we can support that it is important in 
exposure assessments to incorporate both location and ventilation rate when calculating 
the inhaled dose of air pollution. Using GPS and accelerometer data offers accurate data 
to use in health impact assessment and epidemiological studies. 
 
Comparing method 1, only looking at the home location, with method 2, incorporating 
GPS location, we observe a mean decrease of 1.74% of inhaled dose of NO2. This small 
difference originates from the fact that people living in highly polluted areas often visit 
cleaner areas and thus undergo a decrease in inhaled dose when incorporating their GPS 
location, and people living in less polluted areas often visit more polluted areas and 
therefore increase their inhaled dose. Additionally, individual travel behaviour has a 
large influence on the inhaled dose of NO2. The average difference is small, but the 
average absolute value of the individual differences is important (this is called exposure 
misclassification and biases effects estimates). 
 
When additionally incorporating the ventilation rate in method 3 (based on the 
transport mode and physical activity), there is a 12.81% increase in inhaled dose. This 
means that, on average, the actual ventilation rate is higher than the sedentary ventilation 
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rate. Using this dynamic method, we obtain a mean value per person of 12.33 μg/h. Per 
day, that is 29 μg of inhaled NO2 that is not dealt with when using the static method.  
 

6.5.2 INFLUENCE OF TRANSPORT MODE ON INHALED DOSE 
 
Our results show that cycling leads to a 4 times higher inhaled dose of NO2, compared 
to the other transport modes, which is similar to the results of Int Panis et al. (2010) and 
Hu et al. (2014), who respectively found that bicycle users inhale 4.3 and 2 times more 
air pollution than car drivers. Other studies also support the statement that being 
physically active could lead to a higher inhaled dose of air pollution (Mills et al., 2007; 
Weichenthal et al., 2011). However, the proportion of cycling in our dataset is limited 
and therefore has a small influence on the total amount of NO2 inhaled. However, in 
other age cohorts, where the proportion of walking and cycling is higher, the total 
inhaled dose of NO2 for these transport modes will also be higher. 
 
Also, the positive influence of being physically active, especially for the elderly, cannot 
be underestimated (de Hartog, Boogaard, Nijland, & Hoek, 2011; Pate, Pratt, Blair, & 
Haskell, 1995; Warburton, Nicol, & Bredin, 2006). Hence, it is vital that older people are 
physically active (e.g. by walking or cycling), but preferable in areas outside the city or 
in parks where the concentration of air pollution is low. 
 

6.5.3 STRENGTHS AND LIMITATIONS 
 
Our study has several strengths over other similar studies, estimating the inhaled dose 
of air pollution using GPS and accelerometer data. First, using modelled air pollution 
concentrations offers nation-wide data on a detailed geographical scale (Beckx et al., 
2009; Dhondt et al., 2012) and is less costly to generate than personal measurements 
(Dons, Van Poppel, Kochan, Wets, & Int Panis, 2014). Second, in contrast to for example 
Dons et al. (2014) and Fecht et al. (2014) who used simulated travel behaviour, we used 
actual data measured with GPS. Third, the sample size largely exceeds those of de Nazelle 
et al. (2013) and Hu et al. (2014). Not only did we study 180 randomly selected persons, 
we also collected and used data from a full 7-day period. De Nazelle et al. (2013) only 
studied 31 predominantly female, high-educated people during one day and Hu et al. 
(2014) only had an initial experimental sample of 3 participants studied on one particular 
route. Fourth, the innovative aspect of these two studies is the fact they use smartphone 
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to collect data. This method has the potential to reach a very large study group, however 
using built-in GPS devices limits mobile phone battery life and thus limits data 
collection. We used accurate standalone GPS and accelerometer devices to measure 
geographical location and physical activity, every 15 seconds. 
 
Apart from these strengths, this study also has limitations that create interesting avenues 
for future work. First, using GPS, one could also retrieve information about the 
indoor/outdoor status based on the number of satellites in view. With this information, 
the exposure to air pollution could be further adjusted, since a recent study stated that 
outdoor environments account for only 5% of the daily exposure to ultrafine particles 
(Bekö et al., 2015). However, indoor air quality is very complex and previous studies 
show inconsistent results (EPA, 2011; Goyal, Khare, & Prashant, 2012). Therefore, more 
research is needed to shed light on indoor air quality assessments. Additionally, more 
research is needed on exposure to air pollution inside motorised vehicles, depending on 
ventilation parameters, to make a more accurate distinction between sedentary 
behaviour and driving (Hudda & Fruin, 2013; Riediker, Williams, Devlin, Griggs, & 
Bromberg, 2003). Second, we used the average NO2 concentration for the entire study 
period because of computational limitations. However, air pollution concentration can 
vary significantly during the day and between days. Therefore, we hope to be able to use 
hourly values in the future, to make better estimations of the inhaled dose of polluted 
air. Doing so, the inhaled dose calculated with the dynamic method could increase even 
more, because in those periods when air pollution concentration is highest (peak 
commute times), people are more likely to be active. The average value used now can 
however provide a first insight into the influence of individual travel behaviour and 
physical activity on the inhaled dose of NO2. Third, we used a cohort of late middle-aged 
adults, of which 76.1% are reported as retired. This study group is characterised with 
specific travel behaviour and results can therefore not be extrapolated tot other groups. 
The difference with other age cohorts should be further studied in the future. Fourth, it 
has been shown earlier that it is difficult to define transport modes, cycling in particular 
(Butte, Ekelund, & Westerterp, 2012). In this study, we defined transport mode based on 
speed measured by GPS. Future work should however combine GPS and accelerometer 
data to define the transport mode used (Troped et al., 2008). Nonetheless, with the 
increasing use of electrically assisted bicycles (e-bikes), especially by older adults, 
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defining physical activity for bicycle users becomes increasingly difficult, because less 
physical activity is required at higher speed levels. 
 

6.6 CONCLUSIONS 
 
This study has shown that it is important for epidemiological studies and exposure 
assessments, especially those relying on modelled exposure values, to incorporate 
individual travel behaviour and physical activity to estimate the inhaled dose of air 
pollution. This can be done using accurate GPS and accelerometer data. The change in 
inhaled dose of NO2 when using GPS data depends on the NO2 concentration at the 
home location and individual travel behaviour. However, when incorporating 
accelerometer data to estimate the ventilation rate, an increase of over 12% in inhaled 
dose of NO2 is observed compared to the traditionally used static method. Cycling is 
associated with the highest inhaled dose of NO2, mainly because of higher ventilation 
rate. Cycling and other active transport modes should be encouraged to increase physical 
activity. However, air pollution concentration should be reduced to limit negative health 
impacts. 
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7.1 ABSTRACT 
 
Exposure to air pollution can have major health impacts, such as respiratory and 
cardiovascular diseases. Traditionally, only the air pollution concentration at the home 
location is taken into account in health impact assessments and epidemiological studies. 
Neglecting individual travel patterns can lead to a bias in air pollution exposure 
assessments. In this work, we present a novel approach to calculate the daily exposure to 
air pollution using mobile phone data of approximately 5 million mobile phone users 
living in Belgium. At present, this data is collected and stored by telecom operators 
mainly for management of the mobile network. Yet it represents a major source of 
information in the study of human mobility. We calculate the exposure to NO2 using 
two approaches: assuming people stay at home the entire day (traditional static 
approach), and incorporating individual travel patterns using their location inferred 
from their use of the mobile phone network (dynamic approach). The mean exposure to 
NO2 increases with 1.27 μg/m3 (4.3%) during the week and with 0.12 μg/m3 (0.4%) 
during the weekend when incorporating individual travel patterns. During the week, 
mostly people living in municipalities surrounding larger cities experience the highest 
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increase in NO2 exposure when incorporating their travel patterns, probably because 
most of them work in these larger cities with higher NO2 concentrations. It is relevant 
for health impact assessments and epidemiological studies to incorporate individual 
travel patterns in estimating air pollution exposure. Mobile phone data is a promising 
data source to determine individual travel patterns, because of the advantages (e.g. low 
costs, large sample size, passive data collection) compared to travel surveys, GPS, and 
smartphone data (i.e. data captured by applications on smartphones). 
 

7.2 BACKGROUND 
 
A large body of evidence indicates that exposure to air pollution causes various acute 
and chronic health effects, such as respiratory and cardiovascular diseases (Beelen et al., 
2014; Brook et al., 2010; Brugge, Durant, & Rioux, 2007; Gehring et al., 2013; HEI, 2010; 
Peters et al., 2004; Pope III & Dockery, 2006; Riediker et al., 2004; WHO, 2003). 
Approximately 2 million deaths worldwide are caused by air pollution annually (WHO, 
2013). Mainly black carbon (BC), particulate matter (PM), and nitrogen dioxide (NO2) 
are identified as culprits of negative health effects. 
 
Current health impact assessments and epidemiological studies examining exposure to 
air pollution often only take the air pollution concentration at the home location into 
account (Bell, Ebisu, & Belanger, 2007; Brunekreef et al., 2009; Cesaroni, Badaloni, Porta, 
Forastiere, & Perucci, 2008; Hoek, Brunekreef, Goldbohm, Fischer, & Brandt, 2002; 
Huynh, Woodruff, Parker, & Schoendorf, 2006; Jerrett et al., 2013; Tenailleau, Mauny, 
Joly, François, & Bernard, 2015). Such static approach does not incorporate individual 
travel patterns and may lead to a bias in exposure and health assessments (Beckx et al., 
2009; Dons et al., 2011; Dons, Van Poppel, Kochan, Wets, & Int Panis, 2014; Setton, 
2011; Steinle, Reis, & Sabel, 2013; Valero et al., 2009). 
 
Detailed information on travel patterns is thus needed to obtain more dynamic estimates 
of the exposure to air pollution. Previous research showed an increase in exposure to air 
pollution by incorporating individual travel patterns (Dhondt et al., 2012), but the 
outcome depends on the air pollution concentration at the home location (Dewulf et al., 
2016). To assess individual travel patterns, often self-reported household travel surveys 
are used (Stopher & Greaves, 2007). Major disadvantages of this approach are the large 
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non-response rate (Wilson, 2004), non-representative samples (Murakami, 2008), and 
high costs (Stopher & Greaves, 2007). Alternatively, mathematical models of travel 
patterns can be used (Beckx et al., 2009; Dhondt et al., 2012; Fecht, Beale, & Briggs, 2014). 
This approach allows to draw more quantitative conclusions from a larger population 
size, but results are however only valid for situations similar to those for which their 
initial parameters were estimated. More recently, Global Positioning Systems (GPS) 
(Dewulf et al., 2016; Houston, Ong, Jaimes, & Winer, 2011) or smartphone data (de 
Nazelle et al., 2013; Su, Jerrett, Meng, Pickett, & Ritz, 2015) were used to provide detailed 
information on people’s travel patterns. However, data collection with GPS or 
smartphone devices is often intensive for both researchers and participants, expensive 
and only a limited number of people can be tracked. 
 
To overcome the limitations of travel surveys, travel models and GPS/smartphone data, 
mobile phone data can be used to derive information on individual travel patterns. At 
present, this kind of data is collected and stored by telecom operators mainly for 
management of the mobile network. However, it represents a major source of 
information in the study of human mobility. This data is continuously available, does 
not need additional costs to collect, and is often available for millions of phone users. 
With over 6 billion mobile subscriptions globally and a growing awareness of telecom 
operators of the potential, this data source offers a wide range of applications and 
research possibilities (Calabrese, Ferrari, & Blondel, 2014). However, the number of 
studies published with such data is limited up to now because of privacy issues and 
problems accessing the data (Ahas, Silm, Järv, Saluveer, & Tiru, 2010). Previous studies 
using this type of data mostly analyse population densities (de Jonge, Van Pelt, & Roos, 
2012; Deville et al., 2014; Ratti, Frenchman, Pulselli, & Williams, 2006), tourism (Ahas, 
Aasa, Roose, Mark, & Silm, 2008; Kuusik, Nilbe, Mehine, & Ahas, 2014), and mobility 
(Ahas et al., 2010; Alexander, Jiang, Murga, & Gonz, 2015; Calabrese et al., 2014; 
Calabrese, Lorenzo, Liang, & Carlo, 2011; Chen, Bian, & Ma, 2014; de Jonge et al., 2012; 
Pappalardo, Simini, Rinzivillo, Pedreschi, & Giannotti, 2015; Widhalm, Yang, Ulm, 
Athavale, & Gonz, 2015). To our knowledge, no studies have used mobile phone data to 
dynamically estimate the exposure to air pollution. 
 
This research will add knowledge to the existing strand of literature by calculating the 
exposure to air pollution using mobile phone data of more than 5 million people in 
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Belgium. Our main objective is to bring evidence on how this innovative, underused data 
source can offer more dynamic estimations of the exposure to air pollution. Further, we 
explore how using daily averaged and hourly air pollution concentrations influences the 
results. 
 

7.3 METHODS 
 

7.3.1 DATA 
 

7.3.1.1 MOBILE PHONE DATA 
 
Mobile phone data (or passive mobile positioning data) is based on signalling 
information that is exchanged between mobile devices and the mobile network. When 
using the mobile network, there is a flow of signalling information between the device 
and the mobile network. The mobile device switches to the antenna with the strongest 
radio coverage, which is typically the closest one. The signalling messages contain an 
indication of the antenna in use. 
 
The data used for this study is available from probes installed in the Proximus network, 
which capture this information. We have data available from more than 4,000 antennae 
sites. On each antenna site there are typically three or four antennae, delivering network 
coverage in diverged directions. As sites can be equipped with 2G, 3G and 4G 
technologies in different frequency bands, we make abstraction of the different 
technologies and group all cells that are co-located on the same antenna site and cover 
the same sector to considerably reduce complexity. This leads to more than 10,000 macro 
cells covering the entire country of Belgium. The mobile phone location is thus available 
at the precision of these macro cells, with each cell having its own, unique geographical 
coverage area and identity code. Figure 7.1 shows the antennae with the associated macro 
cells for the region of Ghent, overlaid on the road network. Because of the higher capacity 
needs, macro cells are smaller in urban areas and larger in rural areas. Figure 7.2 shows 
a histogram of the area of the macro cells. Some macro cells are larger than 10 km2 (with 
a maximum of 49 km2), but 50% of them have an area smaller than 2 km2. 
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Figure 7.1: Map showing the macro cells of the region of Ghent, overlaid on the road 

network. 

 

 
Figure 7.2: Histogram showing the area (km2) of the macro cells. 

 
Data is collected from more than 5 million users of the Proximus network, which are 
representative for the Belgian population (Proximus, 2015). In Belgium, Proximus has a 
market share of about 41%, which is higher than the other Belgian telecom operators: 
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Mobistar (27%), Telenet (14%), Base (11%), and others (7%) (Smart Business Strategies, 
2014). 
 
The network probing system collects from all active users. Each data point consists of an 
anonymised user ID, the date and time of the transaction, the cell where the transaction 
occurred, and the transaction type. The following transaction types are possible: a) 
turning on and off the phone; b) setting up, maintaining and terminating calls; c) 
sending and receiving text messages; d) setting up, maintaining and terminating data 
sessions; e) location update (when changing from location area; a location area is a group 
of cells of which there are approximately 65 in the Proximus network); f) periodic 
location update (automatic update every three hours when there is no activity). For this 
study, we used mobile phone data for both one week and one weekend day: Thursday 
October 8 and Saturday October 11 2015. Because of regulation terms we had limited 
access to the data, but these two days were chosen to be as representative as possible, in 
terms of weather conditions for the time of the year, and travel behaviour (e.g. no 
holidays). No data of the home location was available due to privacy issues. Therefore, 
we used the location of the users at 4 am as a proxy for their home location (hereafter 
called reference location), since it is assumed most of the people are at home at that time. 
 
Privacy issues of using mobile phone network data are a major concern of phone owners, 
telecom operators, researchers, and the general public. Because of this, no personal 
information is linked to the mobile phone data, and IDs that can link directly to 
individuals are removed. Individual exposure measures were aggregated to postal code 
level for mapping purposes. 
 

7.3.1.2 AIR POLLUTION DATA 
 
We focus on NO2, an understudied pollutant that can cause an increase in pulmonary 
morbidity, a worsening of obstructive lung disease, and a higher susceptibility to airway 
infections (Blomberg et al., 1997; Cesaroni et al., 2014; WHO, 2003). Hourly NO2 
concentration data (in μg/m3) for Belgium was provided by the coupled RIO-IFDM 
model (Lefebvre et al., 2013). This model couples the land use regression model RIO, the 
road emissions model MIMOSA4 (considering COPERT4 emission functions, vehicle 
fleet and vehicle counts), and the Gaussian plume model IFDM. The latter is used to 
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incorporate large concentration variations close to the major air pollution sources, such 
as roads and point sources. The model has been validated extensively for the discussed 
region (Lefebvre et al., 2013; VMM & VITO, 2013). Hourly air quality measurements are 
provided by the Belgian Interregional Environment Agency (IRCEL, 2015). 
 
In line with the mobile phone data, NO2 concentration patterns in Belgium were 
modelled during two days. NO2 concentration levels varied from 3 to 63 μg/m3 on the 
weekday (Thursday October 8 2015) and from 5 to 54 μg/m3 on the weekend day 
(Saturday October 11 2015). Figure 7.3 shows the mean NO2 concentration for the entire 
country of Belgium, for both Thursday October 8 and Saturday October 11 2015. 
 

7.3.2 DATA PROCESSING 
 
Mobile phone data are collected and stored by the telecom operator, mainly for 
management of the mobile network and technical operations. Because each user in the 
mobile network has a different mobile activity, the temporal resolution of the data varies. 
The last known position (cell) of each user was used at a temporal resolution of 15 
minutes. We assume that when there is no new data point within 15 minutes the user is 
at the same location as before. As an example, Figure 7.4 shows the user density (number 
of users per cell divided by the cell area) of Thursday October 8 2015 at 12 am UTC.  
 
Proximus has 5,574,000 active customers (Leroy et al., 2015). Active customers are 
customers who have made or received at least one call, or sent or received at least one 
message in the last three months, or if at least one data connection has been made on the 
last month. From the initial dataset, users are omitted if: 

• they are international users; 
• their data relate to machine-to-machine transactions (e.g. car kits; to avoid 

duplicate data); 
• their travel patterns exceed the borders of Belgium during the selected days (no 

air pollution concentration available); 
• they have no known position from 1:00 until 4:00 in the morning (necessary to 

derive the reference location).  
This results in a dataset of 3,465,917 users on the weekday and 3,495,453 on the weekend 
day. 
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Figure 7.3: Map showing the mean NO2 concentration for the entire country of Belgium, 

for both Thursday October 8 and Saturday October 11 2015. 
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Figure 7.4: User density per cell on October 8 2015 at 12 am UTC. 

 
The point dataset of the NO2 concentration is triangulated to a 50x50 m grid, using the 
SAGA ‘gridding triangulation tool’ in QGIS. Following, we calculate the average NO2 
concentration per cell using the SAGA ‘grid statistics for polygons tool’ in QGIS to 
combine this with the location data. The mean NO2 concentration per cell is 29.36 μg/m3 
on the weekday and 27.32 μg/m3 on the weekend day, with a mean standard deviation 
per cell of respectively 3.62 μg/m3 and 2.73 μg/m3. 
 
The location of the users is combined with the air pollution concentration, to calculate 
the exposure to air pollution. The air pollution data is in Coordinated Universal Time 
(UTC), and the mobile phone data is in local time (UTC+1). Therefore, we have an 
overlap of 23 hours (92 quarters) per day, and are thus able to combine the datasets from 
0 am UTC to 11 pm UTC. The exposure to NO2 is calculated using either a static or 
dynamic location. For the static approach, we use the cell where the user is at 4 am UTC 
as their reference location. For the dynamic approach, we use the exact cell where the 
user is, at a temporal resolution of 15 minutes. Additionally, we use the NO2 
concentration per cell in two different ways. We either use the hourly concentration or 
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the daily averaged concentration per cell. This results in four possible average air 
pollution concentrations each user is exposed to during the day. 
 

7.3.3 DATA ANALYSES 
 
First, having these four average air pollution exposure values for two days, we check what 
the influence of using hourly air pollution concentrations (hour) is on the exposure to 
air pollution, compared to using the daily average air pollution concentration (day). 
Second, we compare the effect of using the reference location of the user (static) with 
taking into account the actual location of the user (dynamic) on the calculated exposure 
to air pollution. Third, this comparison is also analysed geographically. 
 
The data was statistically analysed using R 3.2.2TM. To check for significant differences 
between the approaches, paired-samples a-tests (hour vs. daily averaged air pollution 
concentration, static vs. dynamic approach, week vs. weekend days) were performed. 
The data does not have to be tested for normality, because of the large sample size 
(Altman & Bland, 1995). Statistical significance was set at * < 0.05. Geographical 
analyses were performed in QGIS 2.12TM. Averages of individual exposure values were 
calculated per municipality and visualised using choropleth maps. 
 

7.4 RESULTS 
 
To gain insight into the origin of the four average values per user, Figure 7.5 shows the 
exposure to NO2 during the weekday for a random user, calculated statically and 
dynamically, with both hourly and daily averaged NO2 concentrations. Using hourly 
NO2 concentrations leads to a higher level of detail of the exposure to air pollution. 
However, since we calculate the average exposure to air pollution per day, this has 
limited effects on the results. It is also clear that taking into account actual travel patterns 
(instead of assuming the person stays at the reference location) leads to a different 
exposure to air pollution. In this case, the person spends time in cells with a higher NO2 
concentration than at his or her reference location.  
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Figure 7.5: Exposure to NO2 during the weekday for a random user, using the four different 

approaches (static_hour, dynamic_hour, static_day, dynamic_day). 

 
The mean NO2 exposure per person was calculated statically and dynamically, using 
hourly NO2 concentration values for both the week and weekend day, and is presented 
in Table 7.1. The significance of the differences was tested using multiple paired-samples 
a-tests (daily averaged vs. hourly NO2 concentrations, static vs. dynamic, week vs. 
weekend). 
 
Table 7.1: Mean exposure to NO2 per person, calculated statically and dynamically, using 

hourly and daily averaged NO2 concentrations, for both the weekday (n=3,465,917) and 

weekend day (n=3,495,453). 

Method 
Mean NO2 exposure (μg/m3) [^_] 

Weekday Weekend day 
NO2 per hour NO2 per day NO2 per hour NO2 per day 

Static 29.69 [12.03] 29.69 [12.03] 27.47 [8.58] 27.47 [8.58] 
Dynamic 30.96 [11.26] 30.83 [11.25] 27.59 [7.99] 27.57 [8.01] 
Difference 1.27 [5.02] 1.14 [4.43] 0.12 [2.82] 0.10 [2.41] 
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7.4.1 COMPARISON OF USING HOURLY OR DAILY AVERAGED AIR 

POLLUTION CONCENTRATIONS 
 
From Table 7.1, we observe practically no difference in the mean NO2 exposure 
calculated with hourly and daily averaged NO2 concentrations for the static approach, 
which is expected. For the dynamic approach, we observe a small significant difference 
(* < 0.001) only during the week. Here, the calculated NO2 exposure is 0.13 μg/m3 
(0.4%) higher when using hourly values compared to when using daily averaged values. 
 

7.4.2 COMPARISON OF THE STATIC AND DYNAMIC CALCULATION OF 

THE EXPOSURE TO AIR POLLUTION FOR A WEEK AND WEEKEND 

DAY 
 
To compare the static with the dynamic approach, we will only consider the values 
calculated with the hourly NO2 concentrations, since this way the highest level of detail 
is obtained. 
 
Table 7.1 shows that by incorporating individual travel patterns (dynamic), the mean 
exposure to NO2 increases with 1.27 μg/m3 (4.3%) on the weekday and with 0.12 μg/m3 
(0.4%) on the weekend day, compared to assuming the person stays at the reference 
location (static). These values are all significantly different from each other (* < 0.001). 
Figure 7.6 combines the static and dynamic approach for the two days in a histogram. It 
is clear that during the week, there are more users who experience an increase in 
exposure to NO2. During the weekend, the values are more central and the increase in 
NO2 exposure is less pronounced. During the week, 12.4% of the users have no change, 
54.5% have an increase, and 33.1% have a decrease. During the weekend, 20.1% have no 
change, 43.3% have an increase, and 36.6% have a decrease. 
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Figure 7.6: Histogram of the average NO2 concentration that the users are exposed to 

using the static and dynamic approach, for the week (n=3,465,917) and weekend day 

(n=3,495,453), including the mean reference line for both approaches. 

 
Figure 7.7 shows a scatterplot of the exposure to NO2 calculated statically and 
dynamically, for both the week and weekend day. During the week, it is clear that users 
with a low NO2 exposure calculated statically (thus with a low average NO2 
concentration at the reference location) experience a strong increase in NO2 exposure 
when dynamically calculated (indicated in blue), a pattern that is less pronounced during 
the weekend. This is also true the other way around: users with high NO2 concentrations 
at the reference location experience a decrease in NO2 exposure when their travel 
patterns are considered (indicated in green), which is also observed during the weekend. 
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Figure 7.7: Scatterplot of the exposure to NO2 calculated with the static and the dynamic 

approach, for the week (n=3,465,917) and weekend day (n=3,495,453). 

 
7.4.3 GEOGRAPHICALLY ANALYSING THE COMPARISON BETWEEN THE 

STATIC AND DYNAMIC CALCULATION OF THE EXPOSURE TO AIR 

POLLUTION 
 
Next to these statistical analyses, we also performed geographical analyses on the 
comparison between the static and dynamic approach to calculate the NO2 exposure. 
Here, again only hourly NO2 concentrations were used in the calculations. 
Figure 7.8 shows the average exposure to NO2 per municipality, for both the week and 
weekend day, calculated statically and dynamically with hourly NO2 concentrations. 
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Figure 7.9 shows the difference between the average exposure to NO2 calculated with the 
static and dynamic approach (dynamic minus static), using hourly NO2 concentrations, 
per municipality for both the week and weekend day. During the week, there is a large 
increase mostly in the municipalities surrounding larger cities (Brussels, Antwerp, 
Ghent) and a decrease in these larger cities. During the weekend we observe a similar 
pattern, but with lower increases and more decreases in the difference between the static 
and dynamic approach. 
 

 

 
Figure 7.8: Maps of Belgium, showing the statically and dynamically calculated exposure 

to NO2, for the week (n=3,465,917) and weekend day (n=3,495,453). 
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Figure 7.9: Maps of Belgium showing the difference between the statically and 

dynamically (dynamic minus static) calculated exposure to NO2, for both the week 

(n=3,465,917) and weekend day (n=3,495,453). 
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7.5 DISCUSSION 

 
7.5.1 GENERAL DISCUSSION 

 
First, our study shows that using daily averaged instead of hourly NO2 concentrations 
leads to only a 0.4% decrease in dynamically calculated exposure to NO2 in our analyses. 
If hourly data is available, it is preferred to use it (Beckx et al., 2009; de Nazelle et al., 
2013). If, however, no detailed hourly NO2 concentration data is available, the impact 
will be limited. 
 
Second, our study supports the findings of several recent studies stating the importance 
of incorporating individual travel patterns in estimating air pollution exposure (Beckx 
et al., 2009; Dewulf et al., 2016; Dons et al., 2011; Setton, 2011; Steinle et al., 2013; Valero 
et al., 2009), an issue sometimes overlooked (Brunekreef et al., 2009). Mobile phone data 
makes it possible to estimate individual travel patterns to use in health impact 
assessments and epidemiological studies. We observe a mean increase in NO2 exposure 
of 4.3% during the weekday and 0.4% during the weekend day when incorporating 
individual travel patterns, which means that current health impact assessments 
underestimate the exposure to NO2 and the related acute and chronic health effects. 
These increases were also found in previous research, where integrating time-activity 
information lead to a 1.2% increase air pollution exposure than when assuming people 
are always at their home location (Dhondt et al., 2012). We observed an increase or 
decrease in NO2 exposure for respectively 54.5% and 33.1% of the users because of their 
travel patterns during the week. In the weekend, respectively 43.3% and 36.6% of the 
users experience an increase or decrease in exposure. Thus, people tend to make more 
trips to areas that are less polluted than their reference location in the weekend than 
during the week. During the week, people living in areas with a low NO2 concentration 
undergo an increase in NO2 exposure because of their travel patterns (going to work in 
a more polluted area) whereas people living in highly polluted areas undergo a decrease 
in NO2 exposure, which is similar to our previous study (Dewulf et al., 2016). 
 
Third, concerning the geographical analysis, our study reports that people living near 
Brussels are most exposed to NO2 both during the week and the weekend, because of the 
highest density of air pollution sources (industry and roads), and Brussels being one of 
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the most congested cities in Europe (FOD Mobiliteit en Vervoer, 2013; OECD, 2013). 
People living in the south of Belgium are least exposed to NO2. Mainly people from 
municipalities around larger cities experience an increase in exposure to air pollution 
during the week because of their travel patterns (going to work in these cities). The 
average difference for people living in these cities is negative since people working in the 
city do not experience any change and people working outside the city experience a 
decrease in NO2 exposure. During the weekend, we observe lower increases and more 
decreases in NO2 exposure because of individual travel patterns, because during the 
weekend people tend to visit more areas with lower air pollution concentrations than at 
the reference location. In more rural areas (e.g. the south of Belgium) there is an increase 
in NO2 exposure during the weekend when incorporating travel patterns, because every 
trip people living in this area make leads to an increased NO2 exposure due to the low 
air pollution concentration at people's reference location. 
 

7.5.2 STRENGTHS AND LIMITATIONS 
 
This study has several strengths compared to similar studies. First, to our knowledge, 
this is the first study that combines mobile phone data with air pollution concentration 
data to dynamically estimate the exposure to air pollution. Using mobile phone data has 
several advantages above GPS data or questionnaires: no additional costs have to be 
made to collect the data, a very large number of people can be traced because of the wide 
adoption of the mobile phone, the data collection is passive so people are not disturbed 
and does not influence the battery of their mobile devices, and they are tracked without 
them knowing so they don’t change their normal behaviour. Numerous practical 
applications can be developed based on the presented method, both for individual as on 
a community level. Policy makers can for example be interested to follow-up the average 
population exposure indicator or to assess the impact of a policy measure such as on the 
exposure. However, it is not easy to access mobile phone data. Concerning privacy issues, 
good agreement with the telecom operator is needed, as well as a clear understanding of 
the data use (Ahas et al., 2008; Calabrese et al., 2014). A second strength of the current 
study involves the type of location data that were used. Previous studies using mobile 
phone data only collected a location when users made a phone call or sent a text message. 
In our study, we additionally locate users when turning the phone on or off, during a 
data session, when changing location area, or when periodically updating the location 
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area by the telecom operator. This approach significantly improves the spatial accuracy 
of all the users but also includes relevant information on non-frequent callers in the 
population. Third, using modelled air pollution concentrations instead of personal 
measurements offers nation-wide data on a detailed geographical scale (Beckx et al., 
2009; Dhondt et al., 2012) and is easier to generate than personal measurements (Dons 
et al., 2014). Fourth, we used both the hourly and daily averaged NO2 concentrations in 
contrast to our previous research (Dewulf et al., 2016), making a comparative analysis 
possible. Using daily averaged values does not alter the results extremely, since we 
calculated daily exposure values. It is however preferred to use the hourly values when 
available, to obtain more accurate results. 
 
Apart from these strengths, this study also has some limitations that open up interesting 
avenues for future work. First, we only used air pollution concentration and individual 
travel data for two days. Despite the fact that these days were chosen to be as 
representative as possible, it would be better to use more data, e.g. for an entire week, 
month or even year. Also, in order to assess the associated health impacts, more data is 
required. Second, following the privacy issues of mobile phone data, it is difficult to 
combine this data with personal sociodemographic variables or other semantic 
information (e.g. transport purpose and trip mode), which limits the analysis 
possibilities. Future research could try to deduce the sociodemographic characteristics 
from the most likely living place (possible to determine using long-term location data) 
to get an idea of the socioeconomic status of the users. These privacy issues could be 
addressed by using privacy-enhancing technologies (Giannotti & Pedreschi, 2008). One 
possible solution is to slightly obfuscate the location of the user, while keeping enough 
information to perform satisfying analyses (Wightman, Coronell, Jabba, Jimeno, & 
Labrador, 2011). Another possibility is that telecom providers could ask for an opt-in 
consent from their customers to make use of their location data for scientific research 
and try to build a trust relationship with them, and build services where customers 
benefit from. Third, since we had no information on the user's home location, we used 
the location at 4 am as a proxy for their home location (and use it as reference location). 
A better solution would be to use mobile phone data from a longer period (e.g. one 
month), to make a more accurate estimate of the most likely living location. Fourth, the 
spatial resolution of mobile phone data is limited to that of the used cells, which is low 
compared to the spatial accuracy of GPS data. Because of this low spatial resolution, local 
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differences in air pollution concentration (e.g. near roads) may not be taken into 
account. This might mean that the exposure to air pollution is probably even higher 
because of people spending time in traffic (Dons et al., 2011). On the other hand, the 
pollution concentration gradients in the rural areas, where the macro cell size is larger, 
are in general very small. As a result, smaller rural macro cells, if available, would not 
increase the accuracy of our results. The spatial resolution of the data could be increased 
by applying triangulation (Alexander et al., 2015; Ratti et al., 2006). 
 

7.6 CONCLUSIONS 
 
Hourly air pollution concentrations are preferably used over daily averages to maximise 
the level of detail when combining air pollution with individual travel patterns. This 
study shows that for epidemiological studies and exposure assessments, it is relevant to 
incorporate individual travel patterns to estimate the exposure to air pollution. The 
change in exposure to air pollution depends on the air pollution concentration at the 
reference location and someone’s individual travel patterns, but on average we found an 
increase of 4.3% in the exposure to NO2 during the week and 0.4% during the weekend. 
People living in and near large cities are most exposed to NO2. However, people from 
other areas experience a higher increase in NO2 exposure when taking their travel 
patterns into account. Mainly people living in municipalities surrounding larger cities 
have an increase in NO2 exposure because they work in these cities. Aside from privacy 
issues, we strongly believe that using mobile phone data has several advantages (e.g. low 
costs, large sample, passive data collection) over travel surveys, GPS, and smartphone 
data. Especially for air pollution research the applications of using mobile phone data 
are numerous. Policy makers can use this information to assess the impact of air 
pollution on the population. Also, they can analyse the impact of a certain policy 
measure or occurring events (e.g. festivals, strikes) on the individual travel patterns and 
assess the associated impacts on exposure to air pollution. Mobile phone data is therefore 
a promising data source for air pollution research. 
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The research described in this thesis examined the relationship between the built 
environment and three health aspects, how this relationship is influenced by people's 
individual travel patterns, and how geospatial data and analyses can help to further 
understand this. This final chapter starts with a summary of the main findings of the 
different studies described in chapters 3 to 7 (8.1). Next, an overall discussion and 
conclusion across these studies are given (8.2). Further, general strengths and limitations 
are provided (8.3), as well as implications for practice (8.4). Finally, some possibilities 
for future research are formulated (8.5). 
 

8.1 WHAT THIS DISSERTATION ADDS:  SUMMARY OF THE MAIN 

RESEARCH FINDINGS 
 
Chapters 3 and 4 were devoted to explore the first research objective: demonstrate how 
existing geospatial analyses can be used to explore the relationship between the built 
environment and health. We studied how perceived measures of the built environment 
correspond with objectively calculated Geographic Information System (GIS)-based 
measures, and how geospatial analyses, implemented in GIS, can be used to calculate 
advanced measures of accessibility. 
 
In chapter 3, one specific characteristic of the built environment (as an example of built 
environment characteristics influencing health) was studied: walking time to various 
destinations (e.g. supermarket, restaurant, swimming pool) in the residential 
neighbourhood. The perceived–self-reported–measure was determined using a 
questionnaire on 1,164 adults aged 18–66 years living in Ghent, Belgium, while the 
objective measure was calculated as the shortest road network distance using GIS. It was 
found that perceived walking times to various destinations do not coincide well with 
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objectively calculated walking times: only 52.2% of the participants made a correct 
estimation (i.e. the perceived walking time class is the same as the objective walking time 
class, using 5-minute class widths). Walking time to closer, well-known destinations, 
such as bus stops and bakeries, were more often correctly estimated. Additionally, it was 
found that individual health (here with physical activity (PA) as a proxy for the 
individual health status, objectively measured using accelerometers) influences this 
correspondence. Physically more active adults tended to make more correct and 
underestimations of walking time, while physically less active adults made more 
overestimations. Reason for this might be the greater interaction with and awareness of 
the neighbourhood in the physically more active group. Another possible reason is that 
less active adults making these overestimations walk slower than the speeds used in the 
study. This could not be verified since no Global Positioning System (GPS) data was 
available for these participants, but future research could answer this question by using 
GPS data to obtain the actual used route and walking speed. Using GPS tracks also 
overcomes the problem that certain walking paths might not be included in the street 
network dataset. It could also be inferred that male, normal weight, younger adults made 
significantly more underestimations and significantly less overestimations than their 
female, overweight, older counterparts. 
 
In chapter 4, advanced measures of accessibility to primary health care physicians in 
Belgium were calculated in a GIS and compared with traditional, often-used measures. 
Three traditional measures were calculated: physician-to-population ratio (PPR; the 
official method used by policy makers in Belgium to award financial assistance to 
physicians settling in shortage areas), distance to closest physician, and cumulative 
opportunity (the number of physicians within a certain distance). These were compared 
with the more advanced Enhanced 2-Step Floating Catchment Area (E2SFCA) method. 
The major disadvantage of the PPR method is its aggregated approach because it is 
calculated within administrative borders. The other two traditional GIS methods 
overcome this issue, but have limitations in terms of conceptualisation of physician 
interaction and distance decay. Conceptually, the E2SFCA method was found to be most 
appropriate for supporting areal health care policies, since this method is able to 
calculate accessibility at a small scale (e.g. census tracts), takes competition between 
physicians and interaction between the population and physicians into account, and 
considers distance decay. We found substantial differences in the defined shortage areas 
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using the different accessibility measures. Not only the amount of shortage areas was 
strongly different, but also their spatial distribution differed significantly. 
 
The second research objective was to study how individual travel patterns alter the 
relationship between the built environment and health, using both existing and new 
geospatial data sources. In chapters 5 to 7, we measured individual travel behaviour using 
both conventional (GPS) and new (mobile phone network) geospatial data sources and 
incorporated this information when calculating health-related measures (PA in green 
environments and the exposure to air pollution). 
 
In chapter 5, we tested how the greenness of the environment influences PA, objectively 
measured using accelerometers. We studied if 180 late middle-aged adults (58–65 years) 
living in Ghent, are more physically active in green areas than in non-green areas. 
Additionally, it was tested how this is influenced by personal characteristics and 
residential neighbourhood greenness. The whereabouts of the participants were 
determined using GPS data, and were combined with land use data. The neighbourhood 
greenness was determined within a road network buffer around the home location, 
instead of using a circular buffer, to obtain a more veracious measure of the area 
influencing the participants' behaviour. We found that, for late middle aged adults, PA 
is significantly higher in green areas than in non-green areas. More specifically, when 
more time is spent in green areas, people spend less time being sedentary and are more 
physically active. Spending more time at home and in non-green areas was found to be 
associated with more sedentary behaviour. The results were slightly different between 
subgroups based on personal characteristics (gender, working status, BMI, educational 
level). Men have a positive association between the time spent in non-green areas and 
performing MVPA, while women have a negative association. Also, people living in 
green neighbourhoods have a stronger association between the time spent in green areas 
and performing MVPA, although they do not necessarily perform more PA in general. 
 
In chapters 6 and 7, we examined how individual travel patterns influence the exposure 
to and inhalation of air pollution (here: nitrogen dioxide; NO2). This exercise was done 
using two travel data sources: GPS and accelerometer data of the same 180 late middle-
aged adults from chapter 5 on the one hand (chapter 6) and mobile phone network data 
of more than 5 million mobile phone users in Belgium on the other (chapter 7). Three 
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important conclusions resulted from chapter 6. First, we found that the inhalation of air 
pollution for late middle-aged adults is significantly different when incorporating 
individual travel patterns, compared to only considering the home location. Second, 
when the ventilation rate–based on the number of accelerations–was incorporated, the 
amount of inhaled air pollution increased with more than 12%. Third, the transport 
mode cycling was associated with the highest inhaled doses of air pollution, compared 
to being stationary and other transport modes (walking and driving), mainly because of 
the higher ventilation rate when cycling. From chapter 7, we can conclude that 
incorporating individual travel patterns leads to an average increase in the exposure to 
air pollution, compared to considering only the home location. This increase was 4.3% 
during the week and 0.4% during the weekend. During the week, mostly people living in 
municipalities surrounding larger cities experienced the highest increase in NO2 
exposure when incorporating their travel patterns, because most of them work in these 
larger cities with higher NO2 concentrations. Although the average difference between 
only considering the home location and additionally incorporating individual travel 
patterns might be relatively small (mean = 1.27 / 0.12 μg/m3 for week and weekend days) 
and might have limited health impacts, the individual difference for certain people can 
however be much higher (^_ = 5.02 / 2.82 μg/m3 for week and weekend days), and might 
be overlooked when only considering the home location. 
 
In order to perform the analyses associated with the aforementioned research articles, 
different data sources were used and are presented in Table 8.1.  
 

8.2 OVERALL DISCUSSION AND CONCLUSIONS 
 
The problem statement explained in chapter 1 pointed out three issues recurring in 
studies on the relationship between the built environment and certain health aspects. 
First, sometimes PA is measured using questionnaires, leading to subjective and possibly 
biased measures. Second, both for delineating neighbourhoods and calculating 
accessibility, often the capabilities of geospatial analyses are insufficiently exploited. 
Third, when studying the impact of the built environment on several health aspects (e.g. 
contact with green environments, exposure to air pollution), individual travel patterns 
are often not taken into account. This section points out how the different studies from 
chapters 3 to 7 overcome these issues. 
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8.2.1 MEASURING PHYSICAL ACTIVITY OBJECTIVELY 

 
Measuring PA objectively, as done in chapters 3, 5, and 6, was deemed useful. First and 
foremost, using accelerometers leads to accurate, valid, and reliable measures of PA at a 
high temporal resolution (Melanson & Freedson, 1995; Welk, Schaben, & Morrow, 
2004). Second, from these detailed measures, it is possible to classify PA in predefined 
classes (e.g. light or moderate-to-vigorous PA). With questionnaires, it is difficult to 
obtain such detailed classifications, as for participants these classes are vague and can be 
interpreted differently. Third, over-reports because of social desirability are avoided 
(Rzewnicki, Vanden Auweele, & De Bourdeaudhuij, 2003; Sallis & Saelens, 2000). 
 
However, a limitation of (Actigraph) accelerometers–often worn at the hip–is that 
sedentary behaviour may be overestimated, for example when standing or cycling (Healy 
et al., 2012). An alternative is the activPAL accelerometer attached to the upper leg and 
uses an inclinometer, which is thus capable of detecting whether or not the participant 
is standing, sitting, or cycling (Kozey-Keadle, Libertine, Lyden, Staudenmayer, & 
Freedson, 2011). 
 
Also, because merely accelerometers are used to assess PA, the obtained measures lack 
domain-specific information (Aadland & Ylvis, 2015). Therefore, in chapters 3 and 5 we 
miss valuable information on whether the PA is transport-, recreational-, household-, or 
occupation-related. In chapter 3, it may be that adults engaging in more transport-
related PA are better at estimating walking times. In chapter 5, it may be that spending 
time in green might be related to higher levels of MVPA, because recreational PA is 
stimulated. However, destinations (e.g. shops, offices) are located further in green areas, 
which may result in discouraging transport-related PA (Van Dyck et al., 2012). 
Aggregating different PA domains might obscure the obtained relationships between the 
built environment and PA (Van Cauwenberg et al., 2011). It is therefore recommended 
to use a combination of accelerometers and self-reported measures to obtain a more 
exhaustive measure of PA (Lubans et al., 2011). The choice of measure is influenced by 
various factors, such as affordability, participant acceptability, age of participants, and 
sample size (Hills, Mokhtar, & Byrne, 2014). 
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Also, because only limited PA is detected with accelerometers when people are cycling, 
the total amount of PA can be underestimated (Hansen, Kolle, Dyrstad, Holme, & 
Anderssen, 2012). The increasing popularity of e-bikes, also in older age groups, 
increases the complexity of this problem. A possible solution is to determine the used 
transport mode, not based on the amount of accelerations, but based on the GPS speed, 
as done in earlier studies (Prins et al., 2014; Wolf, Guensler, & Bachman, 2001) and in 
our study explained in chapter 6. A second possibility is to determine the transport mode 
using a combination of GPS and accelerometer data, as explained later (8.5). 
 
Often–even recent–studies merely use questionnaires (e.g. travel diaries) to determine PA. 
Such questionnaires may however generate inaccurate measures, and the participants may 
have difficulties in recalling the performed activities. Accelerometers log the participants' 
activities automatically at a high temporal resolution, offering an objective, accurate, and 
valid alternative to questionnaires, however lacking domain-specific information. In 
future research, preferably a combination of self-reported and objectively determined 
measures of PA are used to obtain an exhaustive representation of PA. Knowing which 
factors influence this correspondence may offer additional information on how people 
perceive their environment, leading to knowledge for policy makers on how to increase 
active behaviour. 
 

8.2.1 EXPLOITING THE CAPABILITIES OF GEOSPATIAL ANALYSES 
 
First, geospatial analyses were deemed useful for calculating objective measures of the 
built environment. In chapter 3, we calculated the objective walking time to various 
urban destinations along a walkable road network to compare with perceived walking 
times. Our result of 52.2% of the participants making a correct estimation coincides with 
earlier findings of about 60% correspondence (Jilcott, Evenson, Laraia, & Ammerman, 
2007; Macintyre & Macdonald, 2008). Also, our result of more active people making 
more correct estimations of walking times because of higher awareness of the 
environment corresponds with earlier findings (McCormack, Cerin, & Leslie, 2008). 
One should be aware of this poor correspondence between objective and perceived 
characteristics of the built environment when examining the relationship between the 
built environment and health, as using either one of them may lead to different results. 
It is important to know that both objective and perceived measures of the built 
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environment may be related differently with PA or other health outcomes (Arvidsson, 
Kawakami, Ohlsson, & Sundquist, 2012). Future research should include the effect of PA 
as a moderator, when studying the relationship between perceived measures of the built 
environment and health, since the results are a priori influenced by health (here PA). 
Because we used an average walking speed per gender and age group, some uncertainty 
remains in knowing the actual walking time since the actual walking speed of the 
participants is unknown. It may therefore be that physically more active people actually 
walk faster than less active people, and thus do not necessarily make overestimations of 
the walking time. Additionally, it is not known if the perceived walking time is that one 
to the closest facility–it may happen that people don't know the closest one–potentially 
leading to uncertain results. A possibility to overcome both problems is to use GPS data 
to determine the actual walking speed and route taken. 
 
Second, built environment characteristics are often calculated within a neighbourhood 
buffer, frequently the administrative unit or a circular buffer around the home location. 
In chapter 5, we calculated a network buffer around the home location to determine the 
greenness of the home neighbourhood, by calculating zonal statistics. Additionally, the 
walkability of each neighbourhood was calculated using GIS, based on other spatial 
parameters (residential density, street connectivity, and land use mix). In chapters 5 to 
7, we determined the land use and/or air pollution concentration for each (GPS or 
mobile phone network data) location point. Considering where people actually were, 
offers a more veracious measure of the actual context people are exposed to, thus limiting 
the issue raised by the Uncertain Geographical Context Problem (UGCoP). However, 
one should keep in mind that using other shaped or sized buffers to examine the 
influence of the built environment on health can largely affect the results, cf. the 
Modifiable Areal Unit Problem (MAUP). This remains an important issue, because it is 
difficult to identify which criteria are most effective in defining zones relevant to health: 
"maximum equality of size, compactness of shape, homogeneity in social composition, or 
accordance with natural boundaries" (Flowerdew, Manley, & Sabel, 2008, p. 1241). 
 
Third, geospatial analyses were used to calculate advanced measures of accessibility. A 
method often used by policy makers determines the physician-to-population ratio (PPR) 
within a predefined area. Despite being a geographical measure, this ratio is often 
calculated within a simple spreadsheet and does not incorporate any advanced geospatial 
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analyses. There is a multitude of geospatial analyses available in GIS to calculate 
accessibility to health care providers–or other facilities–more accurately. In chapter 4, 
we tested various methods to calculate accessibility, leading to significantly different 
results. The E2SFCA method is conceptually the best to calculate accessibility, since this 
method incorporates border crossing, competition between physicians, interaction 
between population and physicians, and distance decay. The E2SFCA methods limits the 
MAUP (because constant distances are used to calculate catchments) and the UGCoP 
(because network buffers are used). However, there are several possibilities to further 
limit the MAUP and UGCoP, and these will be pointed out in the section on future 
research possibilities (8.5). Also, as will be explained in the limitations section (8.3.2), 
the E2SFCA method has some other drawbacks.  
 
By using a road network or GPS-based buffer instead of a circular buffer to define the 
context people are exposed to, and by using more advanced measures to calculate 
accessibility, the MAUP is reduced both mathematically by maximising homogeneity 
within each area and conceptually by choosing the neighbourhood unit based on the 
specific health outcome in focus (Schipperijn, Ejstrud, & Troelsen, 2013). However, 
using for example different road network buffer sizes, may influence the results, 
indicating that the MAUP may still occur. 
 
A fourth use of geospatial analyses implemented in GIS is when incorporating individual 
travel patterns as explained further (8.2.2). This travel data was overlaid with highly 
detailed land use data (Van Esch, Poelmans, Engelen, & Uljee, 2011) and modelled air 
pollution data (Beckx et al., 2009; Dhondt et al., 2012; Lefebvre et al., 2013) available for 
the entire country. The combination of GPS locations with a detailed land use map in 
chapter 5 has shown to be fruitful in determining where people spend their time. Since 
no travel diaries were used, such land use data can offer–be it limited–domain-specific 
information of individual travel behaviour. In a number of earlier studies, individual 
travel behaviour measured with GPS devices has been combined with personal air 
pollution monitors (Steinle, Reis, & Sabel, 2013). Although this offers detailed spatial 
and temporal information about the actual exposure to air pollution, this leads to high 
investments needed. Therefore, we chose to use modelled air pollution data instead, 
offering the possibility to perform this analysis on an existing GPS dataset. Additionally, 
when using mobile phone network data, modelled air pollution data is effective, since it 
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is available over extended areas and for any time period. In chapter 6, we only used daily 
averaged air pollution concentrations, whereas in chapter 7, we used both hourly and 
daily averaged air pollution concentrations to examine the influence of the temporal 
resolution on the obtained results. The results did not differ significantly when daily 
averaged air pollution concentrations are used instead of hourly values. 
 
In previous research, the geographical aspect of the relationship between the built 
environment and health is often overlooked. Our research shows that geospatial data and 
analyses have a lot of capabilities in gaining more geographical insights in this relationship, 
for example when defining objective built environment characteristics, delineating a more 
veracious neighbourhood, calculating accessibility using advanced measures, or combining 
accurate travel data with other data sources. 
 

8.2.2 INCORPORATING INDIVIDUAL TRAVEL PATTERNS 
 
To incorporate the actual context where people spend their time, we defined individual 
travel patterns using two geospatial data sources: GPS data in chapters 5 and 6, and 
mobile phone network data in chapter 7. We chose not to use modelled travel patterns 
because of the uncertainty still existing within these (Arentze & Timmermans, 2004), 
neither did we use other technologies (e.g. Bluetooth) because of the problem to track 
people over large areas (Gartner, 2014). Compared to travel diaries, GPS and mobile 
phone network data are available at a very high temporal resolution, making them 
particularly suitable for measuring individual travel behaviour. This way, the actual area 
where people spend their time–influencing their behaviour–and are physically active is 
known, thus limiting the problem raised by the UGCoP. 
 
We used standalone GPS devices to obtain a high spatial resolution and to avoid battery 
drainage problems occurring when using smartphone applications (Montini, Prost, 
Schrammel, Rieser-Schüssler, & Axhausen, 2015; Zandbergen, 2009). With standalone 
devices, the participants need to be informed on how to use and wear the device. Also, 
the initial purchase cost for this method is relatively high, and therefore only a limited 
amount of participants can be tracked depending on the funds available. Despite this, 
using GPS to define individual travel behaviour was particularly suitable for our 
research, and offered significant results with 180 participants. Combining GPS data with 



CHAPTER 8 

182 

accelerometer data, for example using the online tool Physical Activity Measurement 
Location System (PALMS, 2015), offers information on where people are mostly 
physically active or sedentary, an approach already shown to be valuable (Quigg, Gray, 
Reeder, Holt, & Waters, 2010; Stopher & Speisser, 2011; Troped et al., 2008). This way, 
we were able to detect if people are more active in green areas (chapter 5) and to 
determine the ventilation rate influencing the inhalation of air pollution (chapter 6). The 
combined use of GPS and accelerometer data is an accurate geospatial data source to use 
in health impact assessments and other health-related studies, proving its growing 
popularity in health research (Kerr, Duncan, & Schipperijn, 2011; Krenn et al., 2011). 
When using GPS devices, whether or not combined with accelerometer data, it is 
important to use standardised procedures in terms of device selection, GPS settings, data 
cleaning, data processing, and implementation of the data in GIS to obtain valuable data 
(Kerr et al., 2011; Maas, Sterkenburg, Vries, & Pierik, 2013). 
 
In chapter 5 we incorporated travel patterns to examine if people are more active in green 
environments than in non-green environments. The combination of GPS data with 
detailed land use data offers information on the trip destinations. This can offer an 
alternative to travel diaries to obtain domain-specific information. When combined with 
accelerometer data, the link between greenness (or other land uses) and PA is easily 
obtained, which is useful for policy makers trying to improve PA. Our results were 
similar to previous studies (Shores & West, 2010; Wheeler, Cooper, Page, & Jago, 2010), 
showing increased PA in green areas. 
 
As an alternative to GPS data, in chapter 7 we used mobile phone network data to 
determine people's individual travel behaviour and calculate their exposure to air 
pollution. The main advantage of using mobile phone network data–compared with GPS 
data–is that small efforts are needed to generate this data since people are passively 
tracked. The exposure to air pollution can therefore be assessed for a large-scale 
population. However, a decent agreement with a mobile phone network provider is 
necessary. In our study, we were able to use the individual travel behaviour–be it at a 
lower spatial detail than GPS data–of more than 3 million users, which is much larger 
than the study sample that can be obtained using GPS. Privacy issues of using mobile 
phone network data are however a major concern of phone owners, operators, 
researchers, and the general public. Because of this, no personal information was linked 
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to the mobile phone data and data records that could potentially be linked directly to 
individuals were removed. 
 
The combination of individual travel patterns with air pollution data leads to interesting 
insights in the exposure to and inhalation of air pollution (chapters 6 and 7). Both with 
GPS and mobile phone network data, incorporating individual travel patterns can lead 
to both decreases and increases in exposure to air pollution, compared to only 
considering the home location, similar as in other studies (Beckx et al., 2009; Dons et al., 
2011; Gariazzo, Pelliccioni, & Bolignano, 2016; Setton, 2011). The change depends on 
the air pollution concentration at the home location and the individual travel pattern, 
depending on for example where the working location is situated. Since it was previously 
shown that being physically active can lead to higher inhaled doses of air pollution (Mills 
et al., 2007; Weichenthal et al., 2011), the combined use of GPS and accelerometer data 
also showed its value here. 
 
Frequently only the residential neighbourhood is considered when studying the impact of 
the built environment on for example exposure to air pollution or greenness, despite the 
fact that a large amount of time is spent away from home. This thesis shows that 
incorporating individual travel patterns–using either GPS or mobile phone network data–
combined with other geospatial data sources may lead to further insights in the 
relationship between the built environment and health. 
 

8.3 STRENGTHS AND LIMITATIONS 
 
Next to the strengths and limitations applicable within each original research paper, 
there are some general strengths and limitations overarching the different studies. 
 

8.3.1 STRENGTHS 
 
A first strength of this thesis is that we explored different topics in health research (PA, 
accessibility to health care, contact with green environments, and exposure to air 
pollution) to study how geospatial data and analyses, and incorporating individual travel 
patterns can provide more insights in the relationship between the built environment 
and health. We used various advanced geospatial data and analyses (e.g. mobile phone 
network data, GIS analyses), each having its own strengths (e.g. high accuracy, passive 
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tracking). This offers alternatives to researchers and policy makers examining this 
relationship, leading to accurate insights difficult to obtain using traditional methods. 
 
Second, some of the performed analyses were implemented in a scripting environment 
(Matlab, R, or PostgreSQL with the PostGIS extension). This way, personally adjusted or 
created analyses can be implemented without being limited to a finite set of predefined 
functions. Also, the analyses can be coded in a way that they are automated instead of 
manually repeating multiple analyses. The raw scripts can be found at: 
github.com/dewulfbart/PhD-Bart-Dewulf. These scripts are not standalone executables, 
but can be used when similar data is available. 
 
Third, when possible, we performed the analyses on the entire country of Belgium, while 
similar studies often consider a single city or region (Apparicio, Abdelmajid, Riva, & 
Shearmur, 2008; Gariazzo et al., 2016; Guagliardo, 2004; Luo & Qi, 2009; Luo, 2004; Ngui 
& Apparicio, 2011; Wan, Zou, & Sternberg, 2012). This way, the entire national context 
is considered and edge effects are minimised. Such studies are particularly useful for 
policy makers to make nation-wide policy decisions supported by scientific research. 
Some of the studies were also the first to be conducted in Europe, adding evidence to 
existing studies mainly carried out in North America and Australia. 
 
A fourth strength is that when incorporating individual travel patterns for studying the 
change in exposure to air pollution, we used two different methods (GPS and mobile 
phone network data), exploiting the advantages of both methods and using different 
study samples. With GPS data we were able to detect individual travel patterns at a high 
spatial accuracy, whereas with mobile phone network data we collected travel behaviour 
for a large study sample. In both cases, this led to the same outcome: the exposure to air 
pollution largely depends on the air pollution concentration at the home location and 
the individual travel behaviour. 
 

8.3.2 LIMITATIONS 
 
First, some of the results about the influence of the home neighbourhood on health 
might be influenced by residential self-selection. The problem of residential self-
selection is that physically more active people will self-select their residential location 
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based on their preferences and may therefore choose to live in areas with, for example, a 
higher walkability (Cao, Handy, & Mokhtarian, 2006).  This potentially generates a high 
correlation between walkability and PA, not directly caused by the built environment 
characteristics. 
 
Second, although the E2SFCA method is brought forward as conceptually the best 
method to calculate accessibility, it still has some drawbacks. The main problem of the 
E2SFCA is that the obtained measure is difficult to interpret because of the used distance 
decay and weights. An improvement for this method would be to implement varying 
buffer sizes for population subgroups or different regions (e.g. smaller buffer sizes in 
more densely populated areas) (McGrail & Humphreys, 2014; McGrail, 2012). Three 
fundamental shortcomings of the E2SFCA have recently been identified: i) the measure 
is static, not allowing for travel time, supply and demand to vary over time, ii) 
populations that fall within the overlay of several catchments are counted multiple times, 
and iii) spatial bias occurs because the demand for health care is often modelled using a 
single spatial proxy point (e.g. the centre of an administrative unit) (Neutens, 2015). 
Additionally, catchments may change during the day, e.g. because of changing travel 
times due to congestion, possibly leading to issues mentioned in the MAUP. Because 
these catchments can change over time, monitoring change in health outcomes becomes 
difficult. Also, the UGCoP may still arise when using the E2SFCA, because individual 
travel patterns are neglected. Additionally, the specific context of primary health care 
may impact the usability of the obtained accessibility measures. For example, next to the 
income and education, the age of the population in a certain area will largely influence 
the demand for health care, as in Belgium the number of visits to primary health care 
providers increases from 2 per year for 15-24 year olds to 8 per year for people older than 
75 years (Drieskens, 2014). Also, more research is needed to understand the reason why 
people choose a specific physician; this depends on the context and might affect the 
usefulness of certain measures: do people choose the closest physician from their home 
location, do they rely on experiences from people they know, or are there other factors 
at play? 
 
Third, in chapter 5 we used a stratified linear regression analysis to study how the 
relationship between the time spent in certain areas (green, non-green, at home) and PA 
differs depending on various personal characteristics (e.g. gender, working status). 
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However, this only offers an indication of possible differing results. To find out whether 
or not the results differ significantly between subgroups interaction effects should be 
examined. Additionally, a possibility would have been to use a multivariate regression 
(general linear model) to take the possible mutual dependence between the independent 
variables into consideration. 
 
A fourth limitation also occurs in chapter 5, where the relationship between the built 
environment (greenness) and behaviour (PA) was studied using individual GPS points. 
However, because of self-selection, this type of neighbourhood delineation is less useful 
(e.g. people wanting to visit a green area to be physically active will likely find a green 
area). 
 
Fifth, to determine the transport mode, we only considered the GPS speed, leading to a 
rough estimate. We did not use accelerometer data because only little activity is 
registered when cycling, making this particular transport mode difficult to distinguish 
from driving (e.g. car, bus), especially in city centres where their speeds are similar. 
However, for our research, this problem is limited as only 5.8% of the GPS dataset 
contained 'vehicle'-like speeds (cycling and driving). There are however more advanced 
methods available to make a more accurate estimation of the transport mode, which will 
be explained in a following section (8.5). 
 
A sixth limitation of this thesis is that for the studies using GPS and accelerometer data, 
we used a cohort of late middle-aged adults (58–65 years), of which 76.1% are reported 
as retired. This age group is characterised with specific travel behaviour and it is 
therefore difficult to extrapolate the results to other age groups. The difference with 
other age cohorts should be further studied in the future. Additionally, it is questionable 
if the used cut-off points to classify the accelerometer counts into different PA classes 
(sedentary, LPA, MVPA) are valid. A recent study proposes that different cut-off points 
should be used depending on the age of the participants, because the intensity of certain 
activities can differ substantially depending on the age (Van Holle, De Bourdeaudhuij, 
Deforche, Van Cauwenberg, & Van Dyck, 2015). Instead of using the Freedson cut-off 
points, which are supposed to be applicable for all adults, but were tested on a sample 
with a mean age of 25 ± 4 years (Freedson, Melanson, & Sirard, 1998), the Copeland & 
Esliger cut-off points could be used, which are based on a sample of older adults with a 
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mean age of 70 ± 4 years (Copeland & Esliger, 2009). However, the choice of cut-off 
points remains arbitrary and future researchers should be aware of this issue. 
 
Seventh, during a significant amount of time, people are indoors (e.g. in buildings or 
cars) and are thus exposed to other air pollution concentrations than modelled outdoor 
concentrations, which has been used in chapters 6 and 7. We assume that indoor air 
pollution concentrations are, in absence of a filtering mechanism and the presence of 
major indoor sources (e.g. heating), linked–with a lag–to the outdoor pollution at that 
location. This relationship is however inconclusive and may vary between pollutants 
(Avery et al., 2010; Montagne et al., 2014). Though, for NO2 it has been shown that LUR 
models significantly predict individual exposure (Montagne et al., 2013). It would be 
interesting to further study how well modelled air pollution concentrations model 
individual (and indoor) air pollution exposures more in detail, using individual exposure 
devices. 
 

8.4 IMPLICATIONS FOR PRACTICE 
 

8.4.1 APPLYING THE RESULTS WITHIN THE POLICY 
 
As many health issues (e.g. obesity because of physical inactivity, a large exposure to air 
pollution, and little contact with green areas) remain prevalent in developed countries, 
the findings of this thesis are of great importance for policy makers. It is clear that 
studying the relationship between the built environment and different health aspects, 
using geospatial data and analyses, and incorporating individual travel patterns can help 
policy makers in understanding how they can improve the health of their residents. 
Therefore, they can use similar data sources and analyses to explore this relationship in 
their area of interest. In the next section (8.4.2), we list the most important advantages 
and disadvantages of the methods used methods in this thesis, to inform future 
researchers and policy makers. In the following paragraphs, we list some more specific 
implications for practice. 
 
First and foremost, the main contribution of this thesis is in advancing methods to 
examine the relationship between the built environment and several health aspects. 
Building on the proposed geospatial data and analyses, more–and more accurate–policy 
recommendations will follow from future research. 
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Second, we learned that the built environment largely affects people's PA. Policy makers 
and urban planners may design communities or cities in a way that PA is increased, for 
example by enhancing walking and cycling instead of taking the car. It should however 
be noted that different built environment characteristics might be related to different PA 
domains or PA types (e.g. walking or cycling) (Gray, Zimmerman, & Rimmer, 2012; 
Hoedl, Titze, & Oja, 2010). As we saw, this increased activity may however result in a 
larger exposure to air pollution when this occurs in areas with a high air pollution 
concentration. Therefore, PA should be increased primarily in areas with lower air 
pollution concentrations, together with a general decrease of the air pollution 
concentration. However, the benefits of being physically active outweigh the risks of a 
higher exposure to air pollution, except in extreme air pollution conditions (Tainio et 
al., 2016). Furthermore, compared to recreational PA, increasing transport-related PA 
may be more achievable because it is more easily integrated into daily life, and it may 
have additional benefits when adopted by large groups (e.g. decreasing air pollution 
emissions and traffic congestion). Additionally, it is important to know where PA 
actually takes place (e.g. in green areas or not). The combined use of GPS and 
accelerometer data can help in detecting where people are sedentary or physically active. 
Also, mobile phone network data can offer insights in the travel behaviour of a large 
sample of the population, without the need of additional devices. 
 
Third, both objective and perceived walking times to various destinations–as an example 
of a built environment characteristic–may (differently) influence someone's health 
behaviour and the correspondence between the two is influenced by various factors (e.g. 
socio-economic status), as shown in earlier work (Ma, 2014). To promote PA or other 
health-related issues, the built environment could be altered. Also, someone's perception 
may change when the built environment is altered. Additionally, someone's perception 
could be influenced, without adjusting the environment itself, using psychosocial 
programmes. When considering PA, this improved perception may result in even more 
PA, possibly starting a vicious circle effect. Depending on the feasibility of altering the 
environment itself or the available budget, one of the two approaches can be used. 
Ideally, multidimensional interventions–combining psychosocial programmes with 
built environment alterations–are particularly beneficial since the benefits of both 
approaches are combined (Van Dyck, 2012). 
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Fourth, to calculate the accessibility to health care–and by extension other measures–
policy makers should know that different results can be obtained when using different 
methods. We observed that changing the unit of study may have a large impact on the 
results, cf. the MAUP. Hence, it is important for policy makers and researchers to 
ascertain to what extent their policy evaluations hold under different scales of analysis 
and using different methods. It is key that policy makers are consistent in the used areas 
(size, shape, and method) to limit the MAUP. Further, when possible, social differences 
(e.g. language barriers, divergent health needs, mobility issues) within the study units 
should be incorporated since these may have an influence on the accessibility of certain 
social groups at the micro-level; for example, using the Gini coefficient (Neutens, 2015). 
It is also important to overcome the UGCoP by considering the most appropriate context 
of people when studying the impact of the environment on health; for example, by 
considering both the home and work (or school) location, incorporating individual 
travel patterns, and considering individual factors influencing the demand for health 
care (e.g. age, income, and education) (Kwan, 2013). 
 
Fifth, it is important to incorporate individual travel behaviour, for example when 
calculating the exposure to air pollution, instead of only considering the home location. 
Studying individual travel patterns over a longer period may help policy makers to assess 
the impact of a policy measure or occurring events (e.g. festivals or strikes) on health 
(e.g. air pollution or the contact with green areas). 
 
Finally, linking individual travel patterns with other geospatial data might also be useful 
for companies offering their users services to track their travel patterns. Examples of this 
are Nike, Runkeeper, and Strava, companies offering apps to track runs and walks, and 
inform their users with the energy expenditure from an activity. When this location data 
is combined with air pollution and greenness data, the users could be informed with the 
amount of air pollution or greenness they were exposed to during their activity, having 
an impact on their health. This way, people could choose to follow routes where they are 
less exposed to air pollution or have more contact with greenness. Also, in moments 
when air pollution is peaking (e.g. during busy hours or bad weather conditions), users 
could be informed not to run in particular areas. The focus should however be on 
promoting PA (e.g. active transport), and not on scaring people to be physically active. 
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8.4.2 SELECTING THE APPROPRIATE METHOD FOR FURTHER RESEARCH 

AND IN POLICY 
 
We can conclude from this thesis that geospatial data and geospatial analyses 
implemented in GIS are very useful in health research in general and in objectively 
studying the relationship between the built environment and certain health aspects in 
particular. 
 
For the different studied topics, multiple data sources and analyses can be used. Built 
environment characteristics can be obtained from questionnaires or measured 
objectively (in circular, network, or GPS-based buffers). Similarly, the amount of PA can 
be obtained from a questionnaire or can be measured objectively using accelerometers. 
The accessibility to certain facilities can either be calculated using non-spatial data or 
using more advanced GIS-based methods. The exposure to green areas and/or air 
pollution can be calculated statically in a GIS using only the home location or 
dynamically using individual travel patterns measured with GPS or mobile phone 
network data. Based on the work performed in this thesis, we made an overview (Table 
8.2) of the available data sources and analyses with their advantages and disadvantages. 
This provides useful information for future research and for policy makers, to determine 
which data source or analysis to use depending on the research question and available 
resources (budget and time). 
 

8.5 WHAT THIS DISSERTATION COULD NOT ADD:  POSSIBILITIES FOR 

FUTURE RESEARCH 
 
This thesis showed that geospatial data and analyses can contribute in examining the 
relationship between the built environment and different health aspects. Additionally, 
we showed that incorporating individual travel patterns may impact the results. There 
are however several possibilities to further explore this relationship between the built 
environment and health, both in Geography and Health & Movement Sciences. In 
Geography, the future lies in optimising existing methods and creating new ones, using 
new techniques to collect data, and using databases and scripting techniques to analyse 
big data. In Health & Movement Sciences, the main aim is to incorporate these geospatial 
data and analyses in current and future research. 
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First, the data sources used to define the individual travel patterns (GPS and mobile 
phone network data) can also be applied in other research domains (e.g. exposure to 
noise or sunlight, or contact with unhealthy eating facilities). Geospatial data and 
analyses implemented in GIS have a large potential in health-related studies. A lot of 
research has been conducted on the relationship between the built environment and 
health during the past ten years. Future research "should address a range of spatial scales–
from buildings to metropolitan areas–and a range of health outcomes–not only physical 
activity but also mental health, respiratory health, neurodevelopment among others–"and 
"public health and design professionals must recognise those at greater risk and with the 
greatest need for intervention and focus accordingly" (Jackson, Dannenberg, & Frumkin, 
2013, p. 1543). 
 
Second, the use of GPS data to determine the area where people spend their time can be 
expanded. Instead of using individual GPS points to detect the participants' location, 
GPS-based activity buffers could be calculated, for example using a minimum convex 
polygon (Rundle et al., 2016). From this delineated buffer zonal characteristics can be 
calculated, better representing the neighbourhood than administrative or network 
buffers, which is difficult when using individual GPS points (Schipperijn et al., 2013). It 
should however be noted that using such GPS-based buffers are particularly useful for 
studying the relationship between the built environment and actual exposure (e.g. to air 
pollution), but care is needed when using this to study the relationship between the built 
environment and behaviour (e.g. PA) because of self-selection. A possible solution 
would be to only consider the GPS points located in a 1 km buffer around the home and 
work location of a participant. 
 
Third, it was not possible to extract causal relationships in chapter 5, because a cross-
sectional study was conducted. Future studies should focus on longitudinal research or–
more ideally–natural experiments to investigate if built environment alterations induce 
behaviour changes and whether or not these changes are occasional or persistent. 
Natural experiments could also have great value in the other studied topics, for example 
to check if residents' perceptions can be improved, to study if introducing green areas 
has a positive effect on PA, or to examine if introducing health care facilities at certain 
locations improves accessibility to health care. 
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Fourth, as mentioned earlier, the transport mode can be defined more accurately than 
we did using only GPS based speeds. Future work should try to combine GPS and 
accelerometer data to define the used transport mode. A possible method is to detect 
trips from the raw dataset, using the GPS speed (average and/or maximum) and 
accelerometer counts, as each transport mode is characterised with certain values. Next, 
the transport mode (e.g. walking, running, cycling, car, motorcycle, bus, or train) per 
trip can be identified using a predefined function (Troped et al., 2008) or using a 
Bayesian belief network (Feng & Timmermans, 2013). Nonetheless, with the increasing 
use of electrically assisted bicycles (e-bikes)–especially by older adults–defining PA for 
cyclists becomes increasingly difficult because less physical activity is required at higher 
speed levels. As heart rate monitors placed around the wrist–which are less obtrusive 
than those placed around the chest–are becoming increasingly popular, these could be 
used to calculate PA as an alternative to accelerometers. However, more research is 
needed to model the relationship between heart rate and PA for different subgroups (e.g. 
gender, age). GPS and accelerometer data could also be overlaid with land use data to 
improve transport mode estimations, for example based on the proximity of public 
transport stops, and the vicinity of railway tracks and walking trails. 
 
Fifth, some of the research conducted can be further expanded by incorporating more 
personal characteristics, such as the socio-economic status. We addressed the issue 
raised in the UGCoP by incorporating the spatial context people are exposed to. 
However, in future research also the social context (e.g. interaction with friends) could 
be incorporated to gain more insight in how social factors influence different health 
aspects. 
 
Sixth, with the increasing battery life of smartphones, apps could be used instead of 
standalone devices to collect the participants' location or PA. This way, the cost of 
collecting data becomes less of a problem and a larger study sample could be reached. 
Also, real-time data collection is possible (active tracking) and live feedback from 
participants can be asked when smartphones are connected to the internet, leading to 
new research possibilities (Maas et al., 2013). An example of such a smartphone app is 
Mobile Teen, where PA is objectively measured using the mobile phone's built in motion 
sensor, combined with self-report surveys to collect information on the type, purpose, 
and context of the activity (Dunton et al., 2014). The growing interest of the Quantified 
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Self movement (i.e. the self-monitoring of e.g. weight, PA, caloric intake, and sleep 
quality using wearable sensors such as Fitbit or Apple Watch) indicates that such big 
data is not only interesting for researchers, but also for people wanting to quantify their 
everyday life (Singer, 2011). 
 
Seventh, the accessibility measures described in chapter 4 can be further improved. The 
E2SFCA method has been examined recently and several suggestions have been made to 
further improve this measure (Neutens, 2015). In a more 'ideal' accessibility measure 
temporal metrics such as individual travel patterns or the opening hours of the facilities 
should be more integrated. Additionally, measures should be more person-based and 
non-spatial factors (e.g. income, age, language barriers) should be taken into account. 
However, often only data per administrative unit–and not per individual–is available. 
Then, it is important to acknowledge and–if possible–consider social differences within 
these units, for example using the Gini coefficient (Neutens, 2015). However, more work 
is needed to develop more dynamic and individualised conceptualisations of health care 
accessibility. 
 
Finally, other innovative techniques could be used to analyse individual travel data, to 
explore the relationship between the built environment and health on a next level. A first 
possibility is to use the Sequence Alignment Method (SAM) to discover interesting 
patterns in visited destinations or to detect (de)similarities between different sequences 
of visits (Delafontaine, Versichele, Neutens, & Van de Weghe, 2012; Shoval & Isaacson, 
2007). A second option is to use the Continuous Spatio-Temporal Model (CSTM) to 
perform analyses and create visualisations at multiple temporal and spatial resolutions 
(Van de Weghe, De Roo, Qiang, & Versichele, 2014). While these methods have been 
explored in a variety of research subjects (e.g. market analysis and bioinformatics), they 
could also be implemented in health-related studies using big datasets of individual 
travel patterns. 
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