esomeprazole or rabeprazole at high doses.21 Additionally, amoxicillin three times a day could have been prescribed as it was proposed in east Asia, potentially increasing the eradication frequency.12 Furthermore, these results might not be generalisable to other populations; Asians tend to be smaller and lighter than individuals of other ethnic origins and therefore the smaller volume of antibiotic distribution might have positively affected the outcome of treatments.

With regard to adverse events, beyond the usual symptoms, there was a consequence of treatment not yet assessed—ie, the effect on gut microbiota with long-term effects on the patients that might be different according to the compounds used. Also the discrepancy (up to 5\%) between the results of phenotypic and genotypic resistance for both clarithromycin and fluoroquinolones raises a question about the most accurate method for susceptibility testing.

Overall, this study shows that some empirical treatments, especially bismuth quadruple therapy, can lead to excellent eradication frequencies, thanks to bismuth salts and tetracycline for which no resistance is usually found and can therefore be an alternative to the tailored treatments after antimicrobial susceptibility testing. If concomitant therapy, the other effective regimen in the study, is used, the recommended treatment duration should be 14 days unless 10 days are proven effective locally.21

*Francis Megraud, Javier P Gisbert
Laboratoire de Bactériologie, Hôpital Pellegrin, Place Amélie Raba-Léon, 33076 Bordeaux, France (FM); and Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain (JPG)
francis.megraud@chu-bordeaux.fr

We declare no competing interests.

(1·1 deaths per 100 person-years in the EVAR group vs 0·9 deaths per 100 person-years in the open-repair group). An early and significant survival benefit was noted in the EVAR group at 6 months after randomisation (adjusted hazard ratios 0·61, 95% CI 0·37–1·02 for total mortality; and 0·47, 0·23–0·93, p=0·031 for aneurysm-related mortality), and only after 8 years did open repair have a significantly lower mortality (1·25, 1·00–1·56, p=0·05 for total mortality; and 5·82, 1·64–20·65, p=0·006 for aneurysm-related mortality). The increased aneurysm-related mortality beyond 8 years was mainly attributable to secondary aneurysm sac rupture post-EVAR. Overall, aneurysm re-intervention rates were higher in the EVAR than in the open-repair group (4·1 and 1·7 per 100 person-years; p<0·0001) with most re-interventions taking place within 4 years of the initial treatment.5

In this trial, patients were treated more than 12 years ago and, fortunately, medical and endovascular management have since progressed. Case selection, device choice,4 and planning with technical skills by use of simulation,3 imaging modalities with decreased radiation, best practices in medical treatment, and surveillance programmes in centralised aortic units have all improved the overall management of aortic aneurysmal disease.8 Although the EVAR trial 1 will always be a landmark trial, the long-term findings with only 57% of patients being alive at the end of follow-up should be interpreted with caution because of the following limitations.

The data collection from 10–15 years risks bias since it was done both retrospectively and prospectively, and relies on data from NHS records for procedures at the time of patient discharge (Hospital Episode Statistics) and trial-based data. The benefit was that patients lost to follow-up were retrieved and that re-interventions after open repair, such as incisional hernia repair, not collected before 2009, could be included in a retrospective manner. Follow-up for mortality (the primary outcome) was unchanged between 1999 and 2015.

In 1999, the mean age at randomisation for the EVAR trial 1 was 74 years, indicating that patients were a high-risk group for malignancy based on age rather than radiation exposure. The difference in total malignancy deaths at 15 years is small (126 in the EVAR group vs 123 in the open-repair group) and in fact more malignancy deaths were noted in the open-repair group at time intervals 6 months to 4 years and at 4–8 years. Appropriate investigation and robust data are needed and any insinuation that EVAR predisposes to or increases the risk of cancer might be dangerously misleading.

The long-term surveillance after aneurysm repair in the UK trial, a country known for its evidence-based medicine, was astonishingly low despite reports warning the endovascular community about the importance of lifelong follow-up.9

Unfortunately, imaging data have not yet been included to explain why aneurysms excluded with second and third generation devices still rupture during long-term follow-up. Was this aneurysm growth or rupture caused by true device failures10 (eg, fractures, migration, endoleak type I or III), or was the initial stent graft not deployed within 3 mm of the lowest renal artery? Was surveillance continued for long enough (median CT surveillance six scans [IQR 3–8] in EVAR group vs three scans [1–6] in open-repair group5) and were serious and life-threatening complications managed appropriately by secondary interventions (such as by relining, coiling, proximal fenestrated cuff) to save the patient’s life?10 Local investigators in this trial by Patel and colleagues5 were at liberty to treat patients to their best knowledge, but some complications that are now known to cause aneurysm rupture were not treated.11

EVAR has gained enormous popularity worldwide with a lower initial operative mortality than open repair. Secondary ruptures after EVAR account for the long-term increase in aneurysm-related mortality. These findings, confirmed by 15 years of follow-up data from the EVAR 1 trial,5 should alert physicians managing abdominal aortic aneurysms and might have implications for case
selection, patients’ treatment choices, and continuous surveillance after EVAR. These results also show that long-term follow-up of surgical innovations is crucial.12

*Isabelle Van Herzeel, Frank Vermassen
Department of Thoracic and Vascular Surgery, Ghent University Hospital, Ghent, 9000, Belgium
isabelle.vanherzeel@ugent.be

IVH is an adviser for Medtronic Academia and Silk Road Medical, has received research grants from Medtronic Academia and W L Gore & Associates, and has a research grant from Simbionix, which is unrelated to the topic of this Comment. FV is a consultant for Medtronic, W L Gore & Associates, Cook Inc, and Bloomingdale. Medtronic, W L Gore & Associates, Cook Inc, and Bloomingdale have been involved in training workshops for EVAR procedures and registries using later generation stent-grafts.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license.

eTHoS piles pressure on haemorrhoidopexy

Surgical innovation strives to address the perceived shortcomings and potential pitfalls associated with traditional therapeutic techniques. New devices are often recommended to patients on the basis of incomplete clinical datasets that highlight specific short-term gains over standard treatment but may not confirm long-term benefit. Enthusiasm for new technology in surgery should be balanced by the requirement to undertake objective, high-quality studies to establish the overall clinical and economic effect of surgical therapies.1

In the \textit{Lancet}, Angus Watson and colleagues present eTHoS,2 a randomised, non-blinded, multicentre, phase 3 study assessing clinical outcomes and cost-effectiveness for treatment of moderate or severe haemorrhoids using novel stapled haemorrhoidopexy versus the long-established traditional excisional haemorrhoidectomy.2 These outcomes are of importance as each year millions of people are affected by haemorrhoids worldwide;3 the UK National Health Service carries out in excess of 20 000 haemorrhoidal treatments.4 Traditional haemorrhoidectomy excises symptomatic tissue from the anal canal leaving wounds that usually take 6 weeks to heal.5 Surgeons often contend that traditional haemorrhoidectomy is a good treatment for haemorrhoids, the axiom of “6 weeks’ pain for 5 years’ gain” has long been touted, although surprisingly little high-quality evidence exists to support this position.6 Patients experience short-term discomfort after traditional haemorrhoidectomy until their anal canal wounds heal, and, if severe, this pain might give rise to additional problems such as a fear of evacuation, constipation, and an inability to pass urine requiring catheterisation.

Stapled haemorrhoidopexy was specifically developed to tackle the problem of early pain after traditional haemorrhoidectomy.7 A ring of tissue is excised from the relatively insensate, viscerally innervated upper anal canal, with the cut edges simultaneously brought together and fixed by a circle of staples. Traction draws the prolapsing haemorrhoids into the anal canal where they remain fixed (pexy). Stapling might also interrupt the submucosal blood flow to haemorrhoids, thereby reducing symptoms of bleeding. Initial experience reinforced the view that stapled haemorrhoidopexy was less painful for patients than traditional haemorrhoidectomy, however, severe