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1.1 Problem statement 

Land degradation in Ethiopia stems from the historical development of agriculture and human 

settlement in highland regions (Hurni, 1988; Nyssen et al., 2015). The human impact on the change 

in forest cover dates back 2000 to 3000 years in northern Ethiopia, which is a much longer period 

than in any other East African country (Nyssen et al., 2004; Lanckriet et al., 2016). The presence 

of this longstanding agricultural civilization that used the plough (Ehret, 1979; McCann, 1995) has 

led to the presence of extensive open fields, where good yields are sustained through fertilizer 

inputs (Kraaijvanger & Veldkamp, 2015).  

In contrast, the southwestern Ethiopian montane rainforest (Fig. 1.1) where the local people have 

developed traditional management practices based on customary tenure rights and religious 

believes (Zewdie, 2007) has been much less studied, similarly to other agricultural systems on the 

margins of the Ethiopian highlands (Kuls, 1962; Tilahun, 2015). Semi-permanent cultivation 

systems (Ruthenberg, 1983) in and at the margin of tropical forests are under threat worldwide 

(e.g. De Jong et al., 2001; Fleskens & Jorritsma, 2010) and such is also the case in southwest 

Ethiopia (Engdawork & Bork, 2016). There, current land management dynamics that have resulted 

in deforestation are related to cropland expansion under the form of open farmlands, settlement 

and investment in commercial agriculture (Mekuria, 2005; Dereje, 2007; Bedru, 2007; Belay, 

2010).  
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Figure 1.1. The montane forest in southwest Ethiopia with tree cover in 2000 (after Hansen et al., 

2013) 

1.2  The environmental degradation in southwestern Ethiopia  

The southwestern part of Ethiopia highlands was completely covered by montane rainforest at the 

beginning of 19th century (Chaffey, 1979; Reusing 1998, 2000). In this respect, the closed 

evergreen broadleaf forest covers 38% of the area in between 1971 and 1975 (Chaffey, 1979). The 

evergreen broadleaf forest of southwestern Ethiopia is complex in structure and composition, 

where the upper canopy trees like Aningeria adolfi-friedericii (Engl.), Croton macrostachyus 

(Hochst.) ex Delile, Celtis africana N.L.Burm, Albizia gummifera (J.F.Gmel.) C.A.Sm, Schefflera 

abyssinica (Hochst. ex A.Rich) were associated with middle stratum trees like Millettia ferruginea 

(Hochst) Baker, Hagenia abyssinica (Willd.), Polyscias fulva (Hiern). The understory layer consist 

of small trees, shrubs and herbs like Cyathea manniana (Hook.), Vernonia amygdalina (Delile), 

Grewia ferruginea (Hochst.), Justicia schimperiana T.Anderson, Coffea arabica (L.) and patch of 

herbs (Friis, 1986; Feyera, 2006; Schmitt, 2006).  
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The forest management in southwestern Ethiopia is based on the local customary forest tenure 

system and religious concepts (Dereje & Tadesse, 2012; Zewedie, 2007). For instance, the access 

to cultural forest is restricted through resource and habitat taboos (Fig. 1.2) through the guudo 

(cultural forest used as a worship place) and deddo (a large tree under which prayers or religious 

ceremonies are conducted). This customary forest tenure system, which has been functioning for 

more than a century, is still recognized by the local communities. However, the past and present 

governments has not been given full recognition by any statutory law (Dereje & Tadesse, 2012; 

Zewedie, 2007).  

The traditional agroforestry is one of practice of the local community in the southwestern Ethiopia 

by modification of the forest or planting selected agroforestry tress for home garden  agroforestry 

practice. In the first case, some matured woody species in the forest are coppiced and reduced in 

density, to favour regeneration and productivity of the understory plants, mainly coffee and other 

plant species. The traditional agroforestry systems of southwestern Ethiopia consists of complex 

plant structure and composition, which  is composed of Coffea arabica L., as a cash crop integrated 

with food crops such as false banana (Ensete ventricosum Welw. Cheesman), banana (Musa 

sapientum L.) and taro (Colocasia esculenta L. Schott) and spices like korarima (Aframomum 

corrorima Braun). Moreover, various fruit trees such as mango (Mangifera indica L.), avocado 

(Persea americana Mill.), papaya (Carica papaya L.) and orange (Citrus sinensis L. Osbeck) are 

also integrated in the farming system. Furthermore, native trees like Albizia gummifera J.F.Gmel. 

C.A.Sm., Cordia africana Lam., Millettia ferruginea Hochst. Baker, Polyscias fulva Hiern. 

Harms, are kept for shade, fodder, firewood, medicinal value and soil fertility maintenance 

(Bishaw  &  Abdu,  2003).   



 

 

29 

 

 
Figure 1.2. The upper part of this catchment in Daken (7° 2' 35"N, 35° 38' 55"E) is occupied by a 

cultural forest and henceforth protected from encroachment, what leads to the sharp 

boundary between cropland and forest. 
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Table 1.1. Forests studied in southwest Ethiopia, listed from South to North 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the past, agriculture production in southwestern Ethiopia practiced shifting cultivation, cattle 

rearing, hunting and wild honey collection. The local farmers use sticks and hoes for tilling their 

farmland. The sedentary lifestyle and agriculture that now dominates, began with the imposition 

of the Menelik II regime in the 1890s (Akalu, 1982; Legesse, 2000). The agriculture land is mainly 

dominated by cereal crops like maize (Zea mays L.), sorghum (Sorghum bicolor L.), barley 

 

Forest 

name 

Coordin

ates of 

forest 

centre  

Admini

stra-

tive 

zone 

Area 

of the 

fores

t 

(km²) 

* 

Nearby 

towns  

Main ethnic groups 

in and around the 

forest 

Elevati

on (m 

a.s.l.) 

References 

Gem 6.96°N, 

35.65°E 

Bench 

Maji  

80-

200 

Mizan-

Teferi 

Bench  1400 - 

2800 

Getachew (2010)  

Kontir-

Berhane 

(part of 

Sheko 

forest) 

7.08°N, 

35.40°E 

Bench 

Maji  

 

250 

 

Sheko, 

Mizan-

Teferi, 

Gezmeret 

Sheko, Bench, 

Keffa, Majangir, 

Me'en  

Settlers: Amhara 

950 - 

1800 

Feyera (2006) 

Sheko 7.09°N, 

35.37°E 

Bench 

Maji 

 

2200 

- 

3940 

Tepi, 

Mizan-

Teferi, 

Gezmeret 

 

Sheko, Majangir, 

Keffa, Bench, Me'en 

Settlers: Amhara 

700 - 

2800 

 

Dereje (2005); 

WCC-PFM 

(2011); Feyera 

(2006) 

Bonga 7.27°N, 

36.07°E 

Keffa  1600 

-

2500 

 

Sheshinda

, 

Wushwus

h,  

Gimbo 

 

Keffa, Bench, Kulo, 

Charra,  

Manjo**, Oromo, 

Nao  

Settlers: Amhara, 

Oromo, Gawata 

1000 - 

3500 

 

Tezera (2008); 

Schmitt (2006); 

Sisay (2008); 

Bender-Kaphengst 

et al. (2011) 

 

Koma 

(part of 

Bonga 

forest) 

7.30°N, 

36.09°E 

Keffa 12 Wushwus

h, Agama, 

Komba 

Keffa, Manjo** 

Settlers: Kambata 

1850 - 

2250 

Stellmacher 

(2005); 

Stellmacher & 

Mollinga (2009); 

Vandenabeele 

(2012); Ayana et 

al. (2015) 

Boginda 7.50°N, 

36.02°E  

Keffa 

 

600 - 

1000 

Bonga, 

Wushwus

h, Gewata  

Keffa, Bench, Kulo, 

Charra, Manjo**, 

Nao  

Settlers: Amhara, 

Oromo  

1500 - 

3500 

Mekuria (2005); 

Philippe (2003); 

Sisay (2008) 

 

Sheka 7.60°N, 

35.48°E 

Sheka  

 

1000 

- 

2400 

Masha, 

Tepi, 

Gecha 

 

Sheka, Keffa, Sheko, 

Bench, Majangir , 

Manjo** 

Settlers: Amhara, 

Oromo, Sidama  

900 - 

2700 

Tadesse (2007); 

Zewdie (2007); 

Tadesse & Fite 

(2011) 

* Reported areas vary among authors; lower value indicates natural forest, higher values include also villages, 

grazing land and cropland in clearings; ** Manjo is a lower social-ethnic caste within the main ethnic groups 

http://en.wikipedia.org/wiki/Carl_Linnaeus
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(Hordeum vulgare L.), wheat (Triticum aestivum L.), rice (Oryza sativa L.) and "teff" (Eragrostis 

tef Zucc.); integrated with some pulse crops like field pea (Pisum sativum L.) and haricot bean 

(Phaseolus vulgaris L.) and root crops like  yam (Dioscorea rotundata Poir.), taro (Colocasia 

esculenta L.) and cassava (Manihot esculenta L.)  (FARM Africa & SOS Sahel-PFM, 2004; 

Tezera, 2008; van Beijnen et al., 2004; Belay, 2010). 

1.2.1. Drivers of land use change 

Resettlement  

The arrival of settlers from drought-prone areas of central or northern Ethiopia and from other 

parts of southern Ethiopia to the densely forested region of southwest Ethiopia influenced the local 

forest management, agroforestry practices and forest cover (Belay, 2010; Mekuria, 2005; 

Stellmacher, 2005). There are, however, no official statistics on how many people have resettled 

in southwest Ethiopia over the past decades. During the reign of Emperor Haile Selassie (1930–

1974), many peasants were relocated from northern Ethiopia to the southern and southwestern 

regions (Kassa, 2004; Wood, 1977). It is estimated that 20,000 families were resettled in Keffa 

through 1974 (Clarke, 1986). The Derg regime (1974–1987) officially supported the resettlement 

of several thousands of people from the central highlands to southwest Ethiopia because of an 

epidemic disease outbreak that caused a massive decimation of domestic animals (Alemneh, 

1990). Approximately 250,000 people were resettled in Keffa between 1985 and 1988 (Alemneh, 

1990). Similarly, the current government has relocated several thousands of people from northern 

and other southern regions to southwest Ethiopia (Belay, 2010).  

Settlers originate from food-insecure and famine-struck areas of the country. The new settlers were 

and are still selected based on the severity of the problem, free consent and willingness of resettlers 

to move from drought-prone densely populated areas of central and northern Ethiopia (Wood, 

1982; Pankhurst, 1988; Kloos & Aynalem, 1989). During Derg regime, large numbers of people 

were forcefully resettled in a disorganized way (Pankhurst & Piguet, 2004; Mulat et al., 2006). 

Land allocated to new settlers, for farmland and for residence, had been forests which local people 

used for harvesting NTFPs (Mekuria, 2005; Belay, 2010; Moti et al., 2011; Bedru, 2007). The 

settlers were also provided with permanent communal grazing lands in the area (Belay, 2010).  

http://en.wikipedia.org/wiki/Carolus_Linnaeus
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Though most of the resettlement in Southwest Ethiopia was undertaken without consultation of 

the local people, except for the recent EPRDF regime planned resettlement, the host communities 

generally do not oppose resettlement if there is unoccupied land available (Moti et al., 2011). The 

installation of infrastructure and distribution of agricultural inputs related to resettlement 

programmes also benefits host communities. Pankhurst & Piguet (2004) indicate that the 

opposition of the host community on the new settler starts not on their arrival, but the crux of the 

matter lies in the relations between hosts and migrants and their resource use, given the tendency 

for migration to exacerbate resource conflict. 

Reusing (2000) indicated that the settlers have introduced a new farming system, which is not 

adapted to the area. For settlers from northern, central and other parts of the southern region, 

resettlement entailed a shift from an intensive agro-based livelihood to a forest-based system of 

which they had no experience and were not prepared to manage. Rather, an extensive cereal-based 

farming system was established at the expense of large tracks of forest in the region (Alemneh, 

1990; Baah et al., 2000; Mekuria, 2005). Forests are burnt, trees are felled and even the largest of 

them are killed by debarking and, in case of protected trees, illegal underground cutting of their 

roots. This led to the rapid expansion of cropland. Further, indigenous people are dynamically 

changing their agricultural system mimicking the resettlers’ cultures (Belay, 2010). The increase 

in population because of resettlement in the region increased the demand for land, fuel wood and 

construction wood, which further aggravated deforestation (Mekuria, 2005; Reusing, 2000; Belay, 

2010). Furthermore, the 2 ha of land given to new settlers upon arrival are frequently expanded 

through different mechanisms, i.e. by illegal clearing of the forestland, by bribing local 

administrators or through the purchase of land from the local community. Furthermore, the 

intensive coffee management needs more labour and, as a result, a type of social coalition has 

formed between the labourers and the local coffee growers to maintain labour support during 

coffee management periods. Hence, most coffee growers assign a plot of land to labourers for 

sharecropping practice to keep the workforce in the area. These casual labourers put their 

maximum effort to utilise the land productively as terms of the agreement are for short periods. A 

sharecropper who works in such a manner after a certain period of time may purchase this land or 

other agricultural land and become registered as a landowner. This manner of settlers gaining 

ownership of land further causes land shortages in local communities, which consequently results 
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in the logging of forestland for new cultivation (Dereje, 2007; Belay, 2010). According to Reusing 

(2000), settler demand for the expansion of grazing land to support intense livestock production 

has also aggravated forest degradation. 

Commercial agriculture  

Commercial agricultural projects have expanded rapidly in forested areas of southwest Ethiopia. 

Large areas of forestland have been set aside for tea, coffee, soapberry, rubber tree, black pepper 

and cereal crop production investment in the region, which has resulted in a rapid decrease of 

forested areas in the region (Tadesse, 2007; Tezera, 2008; Dereje, 2007). For example, tea and 

soapberry plantations require the complete clearance of forest, while for coffee plantations some 

forest trees are left for their shade. The 6000 ha Bebeka coffee plantation is the largest and oldest 

in the country. Large forest land (3000 ha) managed under the kobbo customary system has for 

instance been converted to a commercial tea plantation (Tadesse et al., 2002). A coverage of 100 

km² of commercial farms was reported for Sheka zone (Tadesse, 2007) and 220 km² for Keffa 

zone (Tezera, 2008). Given the increasing number of international land deals in Ethiopia (Dereje 

et al., 2015), it is anticipated that larger areas of forest land has been allocated to commercial 

agriculture in recent years. Many plantations in forests were started without any environmental 

impact assessment (EIA). Currently, project EIAs prepared by investors are accepted by authorities 

(including the Environmental Protection Agency) based on trust and without verification (Tadesse, 

2007). Moreover, as the government’s interest now in Ethiopia is rapid development, EIAs are 

frequently seen as hurdles introduced to act against development activities. Such conception leads 

to an exploitative type of relation between investment and nature (Leykun, 2008; Tadesse, 2007). 

Land clearing for commercial farming has also contributed to changing the local people’s 

perception and respect of taboos, cultural forests and sacred sites. Furthermore, investor expansion 

of coffee and tea inside the farmers’ land through the approach of an out-grower scheme has 

facilitated forest degradation in the region. To encourage such expansion, investors have provided 

training and thousands of tea seedlings to farmers (Tadesse, 2007; Sisay, 2008). 

Land tenure and its socio-economic impacts  

Emperor Menelik II (1889–1913) confiscated land from the Keffa nobility and distributed fertile 

land and forests to northern landlords and loyal servants of the emperor (Wood, 1985). These 
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feudal landlords had the right to impose taxes and to require the labour of the local peasants. In 

return, the landlords had the obligation of paying coffee as a tribute to the emperor. This obligation, 

coupled with the emerging coffee trade business and free labour resulted in the expansion of semi-

forested coffee and the transplantation of coffee seedlings in the forest and home gardens in the 

region (Schmitt, 2006). Tewoldeberhan (1990) states that much of the existing forest at the 

beginning of the 20th century was secondary growth that had developed since the late 19th century 

as a result of the forest being cleared for agriculture.  

During the reign of Emperor Haile Selassie (1930–1974), land in southwest Ethiopia was owned 

either by the state, the church, and particularly the fertile land was in the hands of northern 

landlords, political elites and appointed local chiefs. Additionally, landlords who gave use rights 

to the peasants ruled most of the forest. Because less revenue could be obtained from the degraded 

north, the central government had given much attention to the expansion of exportable products 

such as coffee in southwest Ethiopia. The increase in demand of coffee by the Arab world and 

Europe encouraged the northern landlords, as well as foreign merchants and investors, to cultivate 

coffee plantations in southwest Ethiopia in 1933 (Schmitt, 2006). Keffa began to contribute large 

amounts of coffee in the late 1950s and became Ethiopia’s largest contributor (27%) of exportable 

coffee in the 1960s (Fee, 1961; Krug & De Poerck, 1968). Country-wide, the increases in 

exportation and in domestic consumption of coffee have led to a strong increase of the coffee 

production, from about 3 million bags (in 1990) to nearly 8 million bags in 2012 (Mitiku et al., 

2015). This increase in coffee demand encouraged the expansion of coffee farms through the 

clearing of virgin forests, which, coupled with peasant insecurity in land use rights, led to the 

degradation of the region’s forests (Tewoldeberhan, 1990). 

After the overthrow of the Imperial regime in 1974, the Derg regime announced a land reform 

programme abolishing the feudal system and nationalising all lands. Coffee plantation areas owned 

by foreigners and feudal landlords were confiscated by the government or redistributed amongst 

local peasants (Schmitt, 2006). Peasant associations distributed land to landless tenant farmers. 

This trend resulted in the expansion of cultivated land at the expense of forestland (Mekuria, 2005). 

In addition to land distribution, peasant associations encouraged coffee and cereal production by 

distributing improved coffee and cereal varieties, fertiliser, agrochemicals and by disseminating 

modern management and marketing practices among the farmers. This encouraged the rapid 
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expansion of cereal crops, coffee plantations and semi-forest coffee in southwest Ethiopia 

(Philippe, 2003; Schmitt, 2006, Mekuria, 2005). Disrupting the customary forest tenure system, 

weakening the local belief system and implementing development programmes, such as 

villagisation without the consent and willingness of the community, contributed to forest 

degradation in southwest Ethiopia (Stellmacher, 2005; Wood, 1993). Farmers in Southwest 

Ethiopia live in scattered manner partly because their most vital land resources are scattered in 

space (Lorgen, 1999). Enforced villagisation (Yihenew, 2002) started in 1985 and had two 

objectives: removing people from the natural forest edges so as to reduce the pressure on the forests 

and providing basic social services to farmers at a centralized location (Baah et al., 2000). This 

contributed to land use change dynamics: villagisation caused land abandonment around forest 

edges and initiated reversal transitions. However, this was short-lived and later farmers returned 

to their original locations exerting further pressure on the natural forest (Mekuria, 2005). 

After the overthrow of the Derg regime in 1991, the Ethiopia People’s Revolutionary Democratic 

Front (EPRDF) confirmed that the right to ownership of rural and urban land, as well as natural 

resources, is exclusive to the state and that it cannot be subjected to sale or other means of exchange 

(Philippe, 2003; Stellmacher, 2005; Stellmacher & Mollinga, 2009). The governmental forest 

policy in Ethiopia primarily focused on ‘rigid conservation’, hence on the exclusion of human 

interference, rather than on the management of forest resources. This affects the practicability of 

the ancestral customary forest management system in the area. For example, the lack of legal 

recognition of the customary institution by the government created a perception of forest resources 

not being a common resource, therefore every member of the community would be utilising the 

forest resources illegally (Zewdie, 2007). 

Additionally, after 1991, the distribution of large forest areas for commercial agriculture, 

resettlement and the exclusion of local customary forest management in the region intensified large 

clearings of forests for their resources (Belay, 2010; Zewdie, 2007). The distribution of improved 

varieties of cereal and coffee, fertilisers, chemicals and credit services from the government 

facilitated the conversion to cultivated land (Mekuria, 2005). According to Dereje (2007), the 

increase in the price of coffee and market incentives further encouraged farmers to expand coffee 

cultivation both in the forest and in their garden.  
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The uncertainty in land and forest ownership results from the feeling among farmers that land or 

forest could be given or redistributed to others because all land, including the natural resources, 

belongs to the state. This feeling of insecurity causes further exploitation of the forests (Belay, 

2010). Zewdie (2007) indicated that after the shift of ownership of forestland to the state, 

deforestation of the cultural forests and other forests around settlements was aggravated by the 

expansion of large-scale commercial farms and illegal timber extraction in the Sheka zone. This 

in turn created less responsibility for forests on the part of the local community and developed a 

perception of forest resources being common resources. The social, economic and cultural 

marginalisation of the Manjo community has had an immense effect on forest degradation. The 

marginalisation by the Keffa and Sheka people, which began during the imperial regime, forced 

them to live and hunt in the forest. However, the Derg regime tried to integrate these people with 

the rest of the society through the villagisation programme. They were assigned a plot of land. 

However, due to a lack of access to disease-resistant seeds or seedlings or to fertile land and lack 

of livestock and agricultural experience, they were forced to frequently change settlements. This, 

coupled with a weak position in land tenure, resulted in a shift to subsistence living, such as 

frequently changing agricultural locations by clearing forestland and selling wood and charcoal to 

villages (Zewdie, 2007; Hartmann, 2004; Gore, 1994). 

Assefa (2007) and Zewdie (2007) further state that the increased demand for charcoal and wood 

in towns and large villages for construction and household consumption, coupled with the 

economic problems of densely populated rural communities, has caused immense forest 

degradation in the region. Nevertheless, no research was conducted on rural and urban 

consumption of wood fuel (Assefa, 2007, Belay, 2010). 

1.2.2 Land use changes 

The southwestern part of the Ethiopian Highlands was once almost completely covered by 

montane rainforests at the beginning of 19th century (Chaffey, 1979; Reusing, 1998, 2000). In this 

regard, 38.4% of the southwestern region remained covered by closed forests between 1971 and 

1975 (Chaffey, 1979). In a similar study, Mekuria (2005) showed that the Bonga catchment (Fig. 

1.1) has undergone significant alteration and transformation in recent decades. The portion of large 

natural forest (35%) and wooded grassland (30%) in 1967 dropped to 7% natural forest and 6% 
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wooded grassland in 2001, whereas 19% of the cultivated and settlement land in 1967 increased 

to 75% in 2001. Similarly, Behailu (2010) and Belay (2010) reported on the conversion of natural 

forests, shrubs, marshes and woodland to cultivated, grazing and settlement land in the Bench Maji 

and Keffa zones.  

According to Dereje (2007), the 4000 km2 Sheko forest (Fig. 1.1, Table 1.1) has also undergone 

significant changes to the portion of forestland (71%) in 1973, dropping to 48% in 2005, whereas 

agriculture and settlement lands increased to 15%, state coffee plantations to 5%, bare land to 10%, 

and agroforestry to 22%. Another change was the traditional forest fallow land management that 

was replaced by agroforestry (Fig. 1.3).  

 

Figure 1.3. Land cover changes of Sheko forest between 1973 and 2005 (after Dereje, 2007). FL-

forest land; FF-forest fallow land; AF-agroforestry; AS-agriculture and resettlement; 

BL-bare land; SP-state coffee plantation. 

According to NTFP-PFM (2009), large clearings of coffee forestland were recorded between 1973 

and 2009, with the forest coverage dropping from 74% to 59%, whereas agricultural land increased 

from 22% in 1973 to 36% in 2009 (Fig. 1.4). The portion of coffee and tea estates increased from 

0% in 1973 to 1.6% coffee and 0.15% tea estates in 2009. Similarly, the portion of Sheka’s dense 

closed forests (39%) and open forests (33%) in 1987 decreased to 31% and 25%, respectively, in 

2001 (Bedru, 2007). However, the portion of agriculture (6%) and tea plantations (0%) in 1987 

increased to 10% and 0.5%, respectively, in 2001 (Bedru, 2007). 
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Figure 1.4. Land cover changes in and around the forests of Bench Maji, Sheka and Keffa zones 

in SW Ethiopia between 1973 and 2009 (after NTFP, 2009). FL-forest land; AG-

agriculture land; BM-bamboo; BMT-bamboo and trees; CTES-coffee and tea estate; 

GR-grassland; WL-wetland. 

1.2.3 Consequences of forest degradation 

Impacts on biodiversity 

In southwest Ethiopia, the conversion of natural forest to monoculture resulted in significant 

impacts on biodiversity richness (Tadesse, 2007). Monocultural tea and eucalyptus plantations 

instead of natural forest results in large losses of plant biodiversity, forest ecosystems and their 

services, and the many animal species that are dependent on forest ecosystems. Tea plantations 

and black pepper cultivation can cope with some exotic trees, however the soapberry endod 

(Phytolacca dodecandra L'Hér.) requires full land clearance for best results. Exotic tree plantations 

for coffee shade and as energy source for the tea processing industry have resulted in the 

destruction of forest ecosystems in the Sheka region. This has led to the loss of many species of 

birds, insects, mammals, bee colonies, and microorganisms that depend on the forest ecosystem 

(Tadesse, 2007). Similarly, wetlands for which indigenous cultivation systems had been developed 
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(Dixon, 2002), are excessively drained, which has led to strong decreases in species diversity 

(Kassahune et al., 2014). 

Impact on soil loss and fertility 

The soils in cereal-based farming show a change in properties compared to soils in a perennial-

based farming system, which are generally higher in silt, clay, available P, available K, organic 

carbon, total nitrogen, and cation exchange capacity (CEC). Furthermore, most of the soil property 

values decline with increasing years of cultivation in the cereal-based farming system (Mekuria, 

2005). In studies near Mizan Teferi (Getachew, 2010) and Bonga (Berhanu, 2011) (Fig.1.1), it was 

also shown that soil organic matter, total nitrogen, available phosphorus, and cation exchange 

capacity (CEC) were higher in forestland than cultivated land. 

Very few studies on soil erosion rates have been conducted in Southwest Ethiopia. Getachew 

(2010) reported higher rates of soil loss (184 Mg ha-1 y-1) in cropland compared to fallow land and 

forestland on the slopes of Gem mountain (Fig. 1.5). The soil loss rate increased over time as 

cultivation continued after forest clearing (Fig. 1.6). Moreover, the cultivated lands show a net soil 

loss with high sediment deposition on the lower and middle slopes in the early years after the start 

of cultivation, as well as increased sediment delivery to the rivers (Fig. 1.6). Rill and gully erosion 

are probably the dominant process that leads to the delivery of rock fragments from the hillslopes 

to the drainage network (Poesen, 1987). Mekuria et al. (2012) found a mean annual soil loss from 

cultivated fields of 15±3 Mg ha-1 y-1, whereas Berhanu (2011) measured a soil loss of 14.7 Mg ha-

1 y-1 in the upper part of a catchment cultivated by settlers in the Bonga area, 11 Mg ha-1 y-1 in the 

middle part and 7.6 Mg ha-1 y-1 in the lower part, which are higher soil loss rates than in a nearby 

catchment cultivated by natives.  
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Figure 1.5. Rates of soil loss by water in cropped (CRL), fallow (FAL) and forest land (FOL) on 

upper, middle and lower slope positions in Bench Maji Zone (modified from 

Getachew, 2010). 

Field observations show the presence of ancient debris flows and recent landslide scars, but its 

extent has not been studied. Possible linkages to deforestation are through (1) decreased shearing 

resistance of soils after disappearance of root cohesion (Ammann et al., 2009), and (2) river down 

cutting, which leads to increased sediment delivery to rivers (Fig. 1.7), as observed in the study 

area by Broothaerts et al. (2012).  

 
Figure 1.6. Soil erosion and deposition rates along the slope over time (in years since forest 

clearing) in a sub-catchment of Gimbo Wereda (Keffa Zone); positive values indicate 

deposition, negative values soil loss (after Mekuria et al., 2012). 



 

 

41 

 

 
Figure 1.7. Gravel bars in the Eseni river near Aman (6.9481°N, 35.5495°E). Local residents claim 

that the occurrence of gravel and sand in river beds is a new phenomenon that occurred 

after deforestation. The coarse material is commonly related to increased rill and gully 

erosion and peak flow discharge, but part of this material could also have been 

delivered by landslides entering the river. 
 

Impact on the local communities’ livelihood and culture 

The livelihood of southwest Ethiopia’s farmers largely relies on production of non-timber forest 

products such as honey, spices, medicinal plants, fodder, fuel wood and construction materials. 

Wetlands provided thatching materials, fodder, year-round water and medicinal plants (Kassahune 

et al., 2014). Problems related to the conversion of forests (and wetlands) to other land uses in line 

with agricultural investment and resettlement has resulted in altered livelihood strategies by the 

local community, which further exacerbates rural poverty and migration (Zewdie, 2007; Moti et 

al., 2011). Cereal crop production requires improved varieties and high inputs, which is less 

affordable for most farmers. This is a challenge compared to the forest NTFPS, which do not 

require much input (Mekuria, 2005). Finally, the large-scale clearing of cultural forests without 

the consent of the local community affects the cultural practices of the local community who 

consider the forests as sacred places (Zewdie, 2007). 
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1.2.4 Conservation efforts in southwest Ethiopia 

Biodiversity conservation 

The issue of in-situ wild coffee conservation has received attention since 1998 when the coffee 

improvement project of Ethiopia proposed the establishment of three in-situ conservation reserves 

in the southwestern forests (Demel et al., 1996). The Kontir-Berhane forest and the Buginda forest 

(Fig. 1.1, Table 1.1) were among the first priority areas for the in-situ conservation of wild coffee’s 

genetic resources, but for a variety of reasons the project ceased in 2008. However, a new approach 

to forest management with the dual purpose of conservation and development through 

participatory management of the in-situ conservation of wild coffee was started in the Bench Maji 

and Keffa zones (WCC-PFM, 2011; FARM Africa & SOS Sahel-PFM, 2004). The introduction 

of participatory forest management (PFM) was designed to share government management of the 

forest to the local community as Co-management between the state and community. The forest 

areas were placed under the PFM programme to reduce environmental degradation, increase 

sustainable forest conservation, conserve the ecosystem and improve the welfare of the local 

community (Gobeze et al., 2009; Stellmacher & Mollinga, 2009).  

However, through an in-depth ethnographic case study in the Agama forest (part of the Koma 

forest), Vandenabeele (2012) showed that the NGOs initiating the PFM face challenges because 

of missing to incorporate the local community’s historical background and the socio-political 

context in the conceptual framework of the PFM. For instance, the community-based institutions 

(forest cooperatives) developed by the NGOs failed to achieve the desired goal of participatory 

forest management because local power relations were insufficiently considered. To be more 

precise, although government representatives signed an agreement to share resources and 

responsibilities with communities, “the long-standing uneven relationships between the 

government and local people hardly changed” (Ayana et al., 2015). 

The Keffa and Sheka forests were registered as UNESCO Biosphere Reserves in 2010 and 2012, 

respectively. The biosphere reserve approach aims to conserve biodiversity and improve the 

livelihoods of the local community through innovative marketing of their products, 

environmentally friendly agriculture and ecotourism (Fig. 1.8). It also promotes education and 

research as well as interaction with global networks (Berghöfer et al., 2013; Tadesse & Fite, 2011). 
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Despite, the UNESCO designation of Keffa and Sheka Biosphere reserves is to enhance people's 

livelihoods and ensure environmental sustainability, which once designated, a site becomes a 

member of the World Network of Biosphere Reserves, wherein integrated research and monitoring 

as well as exchange and sharing of experience takes place. Yet, no much effort and fruits has been 

observed on cooperation, research and development programe on Keffa and Sheka Biosphere 

reserves. However, the Nature and Biodiversity Consrvation Union (NABU) project in Keffa is 

promoting ecotourism in Keffa Biosphere Reserve, increased the income of the local community 

by selling spices, cofee and fresh honey.   For example, ca. 10 000 tourists visited Keffa in 2008 

of which 200 were foreigners (Tezera, 2008; Berghöfer et al., 2013). The Bebeka coffee plantation 

also organises touristic activities on its estate.  

 
Figure 1.8. Promotion of ecotourism in Keffa 

 

Farmer cooperatives (ca. 10 000 ha in Keffa) are supplying NTFPs such as high quality organic 

coffee, spice and honey for export to the international market (Berghöfer et al., 2013). Mitiku et 

al. (2015) showed that especially Rainforest Alliance certification improved the incomes of coffee 

producers. 
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Soil conservation  

The majority of the cereal-based farming in the southwestern Ethiopian highlands is however 

accomplished without soil conservation measures (FARM Africa & SOS Sahel-PFM, 2004) and a 

nation-wide map shows that in the study area conservation structures are installed on less than 1% 

of the cropland, in contrast to 20-75% in central and northern Ethiopia (Hurni et al., 2015). Major 

reasons for absence of soil conservation on cropland in the study area are (a) a perceived absence 

of urgent need for conservation, given the recent deforestation and hence availability of still 

relatively deep soils (Yesuf et al., 2005), and (b) absence of “food-for-work” programmes or other 

financial or policy incentives for conservation activities (sensu Shiferaw & Holden, 1997), because 

overall the area is not considered as food insecure. However, Baye & Terefe (2009) indicated that 

introduced vetiver grass (Vetiveria zizanioides L) plays a crucial role in controlling runoff, soil 

erosion and in stabilising steep slopes inside coffee, rubber, fruit and cereal fields. Accordingly, 

the office of agriculture and other governmental institutions in the Bench Maji, Keffa and Sheka 

zones are reproducing and distributing vetiver grass, indigenous and nitrogen-fixing trees to 

agricultural land on steep slopes (pers. comm. Nardose Takele, 2013; own observations). 

Nevertheless, vetiver grass is not really taken up by the communities because of space occupied, 

its non-palatable nature, and decreased need for thatching given the wide introduction of metal 

sheets for roofing (based on interviews in villages of Bench-Maji zone). 

1.3 Study area 

We focussed on Bench Maji, one of the westernmost administrative zones of the Southern Nations, 

Nationalities and Peoples Region, the later being one of the nine regional states of the Federal 

Democratic Republic of Ethiopia. The Gacheb catchment  (Fig 1.9) is one of the biggest 

catchments in Bench Maji Zone, which drains to the White Nile through the Baro-Akobo river 

system. The Gacheb catchment was selected mainly because of environmental problems, i.e the 

forest frontiers has been rapidly deforested for agriculture land expansion, flooding risk, sediment 

siltation and water turbidity. Further, the catchment is important sources of water supply for both 

drinking water treatment plant and hydropower plant (Fig 1.9; Fig 1.10).  
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Figure 1.9. The study sites in the Gacheb catchment, southwest Ethiopia. 

. 
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Figure 1.10. Environmental problems at downstream sites in southwest Ethiopia: (a) agriculture 

land expansion near the river; (b) flooding and high suspended sediment in Dembi 

hydro-power reservoir; (c) high suspended sediment in the water source of a 

treatment plant; (d) frequent flooding and sediment clogging the Dembi hydropower 

machine.    
 

 

 

Climate of southwest Ethiopia 

Seasonal rainfall in Ethiopia is driven by the north-south movement of the Inter-Tropical 

Convergence Zone (ITCZ). After shifting northward, the ITCZ brings intense rainfall to southwest 

Ethiopia (Messerli & Rognon, 1980; Goebel & Odenyo, 1984). The annual rainfall pattern can be 

classified into two seasons: the dry season (December–February), and the rainy season (March–
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November) with particularly strong rains in summer. The commonly used bimodal rainfall 

distribution of the central and northern Ethiopian highlands with spring rains (belg) and the 

summer main rainy season kiremt (Fazzini et al., 2015) is not applicable in southwest Ethiopia, 

neither when observing annual rain distribution (Fig. 1.11), nor in the terminology that is used in 

the local languages of southwest Ethiopia (Table 1.2). The average yearly rainfall in Aman near 

Mizan Teferi, the main town of Bench Maji zone (Fig. 1.11) is 2296 (±244) mm y-1, 1707 (±216) 

mm y-1 in Bonga (Keffa zone), and 1603 (±404) mm y-1 in Tepi (Sheka zone) (NMA, 2013) (Fig. 

1.11). The average air temperature ranges from 13 °C to 27 °C and varies according to elevation 

(IFPRI & CSA, 2006). Combined high rainfall, long growing season and temperature variation 

with elevation lead to a wide range of cropping possibilities. 

 

Figure 1.11. Average monthly rainfall at Tepi (1980-2012), Bonga (1960-2012) and Aman near  

Mizan Teferi (1954-2010) (Source: National Meteorological Agency). 
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Table 1.2. Terminology to designate the seasons in the languages of the main ethnic groups living 

around southwest Ethiopia’s forests 

Languagea Rainy seasonb Dry season 

 (March – November) (December – February) 

Bench Wole/ Dane enet Ober enet 

Keffa  Yoyo Kawa 

Sheka  Yoyo Belo 

Sheko  Ero benji Siyatu benji 

aAll languages belong to the North Omotic language group; particularly Keffa and Sheka 

languages are closely related (Aklilu, 2003; Theil, 2012). bWhile agreeing that the second part of 

the rainy season is generally heavier, all key informants stressed that the terminology used 

designates the rainy season as a whole. 

  

Lithology and soils 

The southwestern Ethiopian highlands developed along the western margin of the Rift Valley as a 

result of uplifting over the past 18 million years (Beccaluva et al., 2011). The underlying basement 

rock is of Precambrian origin. These intensely folded and faulted basement rocks are mostly 

directly overlain by Tertiary volcanic rocks that dominate the geology of the area (Kazmin, 1972). 

Although undifferentiated on the maps, the Precambrian rocks comprise a variety of 

metasediments, metavolcanic and intrusive rocks (Westphal, 1975). Following the uplift, the 

region has been dissected by rivers, resulting in elevations ranging from 900 to 3500 ma.s.l. 

Southwest Ethiopia drains partly to the White Nile through the Akobo-Baro river system, and 

partly to the Omo-Turkana basin. 

According to the harmonized soil map of Africa (Dewitte et al., 2013), the major reference soil 

groups of the southwestern highland plateaus are Nitisols, Vertisols, Leptosols, Regosols, 

Cambisols, Alisols and Acrisols. The dominant soil group in the Gacheb catchment are Leptosols, 

Nitisols, Alisols, Cambisols and Fluvisols. Nitisols are the dominant reference soil group in coffee-

growing areas of southwest Ethiopia. Nitisols have a depth of more than 1.5 m, are clayey and red 

in colour. They primarily occupy slopes steeper than 5%. These soils are well-drained with good 

physical properties; they have high water-storage capacity, a deep rooting depth and stable soil 

aggregate structure. Nevertheless, rates of decomposition of organic matter and leaching of 
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nutrients are extremely fast. Acidity ranges from medium to strong, and pH is generally less than 

6 (Feyissa & Mebrate, 1994; Schmitt, 2006). On steep slopes, such as escarpments and on 

undulating topography, Cambisols and Regosols are most common. Vertisols are dark and heavy 

clay soils and are found in waterlogged plains and seasonal swamp areas in Keffa (Fig. 1.1). 

Acrisols are dark red to reddish brown soils, with a texture of clay to sandy clay. They are found 

in few areas of the Keffa zone (Tafesse, 1996). In Bench Maji Zone, Leptosols are dominant on 

crests, while Nitisols are dominant on the hill slopes (lower, middle and upper parts), to which 

Alisols and Cambisols are associated locally. Fluvisols are found in the flat valley bottoms where 

meandering rivers occur (Dewitte et al., 2013). 

Biodiversity in the genetic home of coffee 

Ethiopia is one of the top 25 biodiversity-rich countries in the world (WCMC, 1994). The majority 

of the species are found in the highland forests and particularly in the southwestern highlands. The 

forests of the southwestern highlands fall within the eastern montane hotspot of Ethiopia and are 

the genetic home of coffee (Coffea arabica L.) (Labouisse et al., 2008; Meyer, 1965; Vavilov, 

1935). Among the seven major vegetation types in Ethiopia, four vegetation types occur in 

southwest Ethiopia, namely montane rainforest, transitional rainforest, dry peripheral semi-

deciduous Guineo-Congolian forest and riverine forest (Friis, 1992). 

The Bonga forest (Table 1.2) is one of the most species-rich forests in Ethiopia (Friis et al., 1982; 

Schmitt, 2006; Matheos, 2011; Sisay, 2008; Ensermu & Teshome, 2004; Kochito, 2008; Feyera, 

2006). In addition to plant diversity richness, at least 17 endemic plant species were identified in 

these forests (Sisay, 2008; Schmitt, 2006). Similarly, the Maji, Sheka and Sheko forests (Table 

1.2) are rich in plant species composition. Apart from richness, the Sheka forest holds 55 plant and 

10 bird species endemic to Ethiopia (Tadesse, 2007; Feyera, 2006; Gemedo & Simon, 2007; 

MELCA Ethiopia, 2012). 
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According to Leykun (2008), three forests in Bonga hold 61 mammalian species, 210 bird species, 

10 reptiles, 7 amphibian species and 6 fish species. The forests comprise 21% of all mammals and 

23% of all bird species in Ethiopia, of which five species are endemic.  

Figure 1.12. Schematic representation of the research organization 

1.4 Thesis objectives and research questions 

The main objective of this thesis is to evaluate the impact of deforestation on land degradation at 

southwest Ethiopia’s Afromontane forest frontier. 

This broad research aim can be further refined to more specific objectives: 

- to contrast the soil fertility and organic carbon and nitrogen stocks in forest, agroforestry and 

cropland; 

- to compare the species diversity in forest, agroforestry and cropland; 

- to quantify the components of surface water balance in forest and cropland; and 

- to quantify the suspended sediment yield from forest and cropland on daily basis. 

The two key research questions of the thesis may arise as: 

- To what extent does the transition from Afromontane forest to cereal based farming affect the 

environment?    
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- In which way could land management allow sustainable agricultural development and 

protection from land degradation ? 

These important research questions were addressed by organizing the research on the impact of 

deforestation in to various chapters (Fig 1.12).  

These core questions can be subdivided in a number of sub-questions addressed in the individual 

chapters: 

- What do we know already about causes and impacts of the transition of Afromontane forest to 

cereal based farming? (Chapter 1)   

- As compared to Afromontane forests, to what extent are the soil fertility, organic carbon and 

nitrogen stocks decreased in the main cropping systems (agroforestry and cropland)? (Chapter 

2) 

- To which extent did the species diversity decrease due to deforestation/land use change? (Chapter 

3) 

-  Is the runoff response impacted by deforestation? (Chapter 4) 

- Is the suspended sediment yield increased due to deforestation? And what is sediment yield from 

the forest itself? (Chapter 5) 

- What is the overall implication of land management in the three main land use types (forest, 

agroforestry, cropland) on land degradation? (Chapter 6) 

1.5 Definitions 

Forest has more than 800 different definitions worldwide. According to the Food and Agriculture 

Organization (FAO), forest is tree covered land where the tree cover density is greater than 10%, 

5 m tree height and 0.5 ha area coverage (FRA, 2015). Within the United Nations Framework 

Convention of Climate Change (UNFCC), the definition of forest is more flexible. The threshold 

value for a forests lies within a minimum range of 0.01-1.0 ha, 2-5 m tree height and 10-30 percent 

crown cover (UNEP et al., 2009). 

In this work forest is understood as an area covered with large complex structure of trees, shrubs 

and herbs.  

Alike the forest, “agroforestry” has received various definitions. According to FAO, agroforestry 

is a collective name for land use systems and technologies where woody perennials (trees, shrubs, 



 

 

52 

 

palms, bamboos etc.) are deliberately used on the same land management units as agricultural 

crops and/or animals, in some form of spatial arrangement or temporal sequence (Nair, 1993).  

Agroforestry is an integration of composite agriculture production to the tree and shrub system. 

Again, for cropland, many definitions exist. In this case “cropland” stands for land that is under an 

agricultural practice that has been introduced from central Ethiopia and that has been defined as a 

“permanent upland cultivation system” (Ruthenberg, 1983), or “grain-plough complex” 

(Westphal, 1975). Nearly all woody vegetation is removed, the land is shared among farmers along 

fixed boundaries, and cereal crops are dominantly grown using the oxen-drawn Ethiopian ard 

plough as main cultivation tool (McCann, 1995). 

Forest frontier or "forest margin" is the spatial transition zone between tropical forests and 

converted land uses. 

Cultural forest are large complex forest with similar or different tree density and composition 

conserved for religious, ceremonial and ecological purpose. 
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Impact of deforestation on soil fertility, soil organic carbon and nitrogen 

stocks in southwest Ethiopia 
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Abstract 

The evergreen forests of southwest Ethiopia are important for soil fertility sustenance and climate 

change mitigation. However, the increasing human population and expansion of agriculture land 

have led to deforestation. We determine the effect of deforestation on soil fertility, soil carbon and 

nitrogen stocks and hypothesise that tropical forest and agroforestry have similar characteristics, 

in contrast to the deforested areas used as cropland. Hence, soil samples (n = 360) have been taken 

from natural forest, agroforestry and cropland at four depths (0-20 cm, 20-40 cm, 40-60 cm and 

60-80 cm) in three altitudinal belts, high (2300-1800 m a.s.l.), middle (1800-1500 m a.s.l.) and 

low (1500-1200 m a.s.l.). The topsoil and subsoil physico-chemical characteristics bulk density, 

pH, organic carbon, total nitrogen, available phosphorus, exchangeable calcium, magnesium, 

cation exchange capacity and exchangeable base cations were significantly higher in both forest 

and agroforestry than in cropland, at all elevation zones. Soil organic carbon and nitrogen stocks 

in soil under forest are similar to those under agroforestry at all elevation zones (0-20 cm, 20-40 

cm, 40-60 cm and 60-80 cm soil depths). However, soil organic carbon and nitrogen stocks in soil 

under both forest and agroforestry lands were significantly different from cropland on all elevation 

zones at all depths except 60-80 cm. The highest total soil organic carbon stocks were recorded in 

the forest (412 Mg ha-1 at the FH site and 320 Mg ha-1 at the FL site) and agroforestry (357 Mg ha-

1 at the DM site, 397 Mg ha-1 at the ZH site and 363 Mg ha-1 at the ZM site). The total organic 

carbon loss due to the conversion of forest to cropland ranges from 3.3 Mg ha-1 y-1 at the FL site 

to 8.0 Mg ha-1 y-1 at the FH site. The soil organic carbon and nitrogen loss due to the conversion 

of forest to cropland is proportional to the loss from agroforestry to cropland. The total carbon 

dioxide emission due to the conversion of forest to cropland ranges from 12 Mg ha-1 y-1 at the FL 

site  to  28 Mg ha-1 y-1 at the FH site. Agroforestry has the potential to maintain soil fertility, and 

stores higher soil organic carbon and nitrogen in proportion to the natural forest. Therefore, it can 

be suggested that agroforestry has a similar capacity as Afromontane forests to sustain soil fertility 

as well as to regulate  greenhouse gas emissions.  

Key words: Evergreen forest, Soil physico-chemical characteristics, Greenhouse gas  
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2.1 Introduction 

The southwestern highlands of Ethiopia hold four potential natural vegetation zones (Afromontane 

rainforest, dry peripheral semi-deciduous Guineo-Congolian forest, transitional rainforest and 

riverine forest vegetation) (Friis et al., 1982; Tadesse, 2007). These forests provide different 

environmental contributions like soil fertility sustenance, soil erosion protection and climate 

change mitigation (Aticho, 2013; Getachew, 2010; Mekuria, 2005). However, the increasing 

human population and the growing need for expansion of agricultural land have led to 

deforestation. For instance, the region’s coffee-based agroforestry and cereal cultivation have 

undergone a rapid expansion owing to the growing demand for food crops, coffee, spices and the 

fruit market, driven by the resettlement expansion, commercial investment, land tenure policy, 

socio-economic issues and the current Agriculture Development Led Industrialization (ADLI) 

economic policy of the country (Dereje, 2007; Mekuria, 2005). 

The soil is the basis for agriculture, natural plant community and natural climate regulation, with 

75% terrestrial organic carbon storage (Lal, 2004; Lemenih & Itanna, 2004). Vegetation has  a 

lion’s share in the sustenance of such ecosystem services of both surface and subsurface soil. 

However, the dense and fragmented forests in the upper reaches of the Gacheb catchment (ca. 450 

km²) have been converted to agroforestry and croplands (Dereje, 2007; Hansen et al., 2013). Land 

use changes demonstrate  several undesirable consequences like decline in soil fertility, soil carbon 

and nitrogen stocks (Lemenih, 2004; Lemenih and Itanna, 2004; Tesfaye et al., 2016). For instance, 

radical losses in soil fertility, soil carbon and nitrogen stocks have been recorded in the first 20-25 

years after deforestation in the southernregionofEthiopia (Lemenih et al., 2004; Mekuria, 2005; 

Tesfaye et al., 2016). 

However, some studies show that the extent of soil quality,soil organic carbon and nitrogen 

stocksvaries with native vegetation, climate, soil type, management practice, land use history and 

time since conversion (Craswell and Lefroy 2001; Lemenih, 2004; Lemenih and Itanna, 2004). 

Moreover, studies show inconsistency regarding the role of coffee agroforestry on soil fertility 

maintenance, soil organic carbon and soil nitrogen stocks (Hombegowda et al., 2016; Kessler et 

al., 2012; Mohammed & Bekele, 2014; Souza et al., 2012). Furthermore, the soil fertility, soil 

organic carbon and nitrogen stocks’ decline (owing to land use changes) was not restricted to the 

surface but comparative changes were proportionally high in the subsoil (Don et al., 2011; 
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Lemenih, 2004). For instance, more than 50% of the global organic carbon is stored in the subsoil 

(Amundson, 2001) and more than two-thirds of the soil nutrients are stored in subsoil and  used 

for plant growth (Kautz et al., 2013).  

Therefore, a regional scale evaluation of soil quality, soil organic carbon, nitrogen stocks and 

changes in trend concerning land use is very important for sustainable agriculture land 

management practice. Despite the study area’s high annual rainfall, no effort has been made to 

assess the effect of land use changes on soil fertility, soil organic carbon and nitrogen stocks at 

deeper soil depths. The objectives of this study are: (i) to determine the impact of deforestation on 

soil fertility, (ii) to quantify the effect of deforestation on soil organic carbon and nitrogen stocks 

and (iii) to link deforestation induced loss of soil organic carbon to the climate change debate. The 

presented hypotheses include that the soil fertility, soil carbon and nitrogen stocks in agroforestry 

would be comparable to those of montane forests, while it would be less in croplands. 

 

2.2 Materials and methods 

2.2.1 Study area 

The study area encompasses the upper Gacheb catchment, located in the headwaters of the White 

Nile in southwest Ethiopia. Altitudes range from 1000 to 2600 m a.s.l. (Fig. 2.1) and the lithology 

comprises Tertiary basalt traps and rhyolites (Mengesha et al., 1996; GSE 2005).The annual 

rainfall pattern is unimodal with a rainy season from mid-March to mid-November. Theaverage 

annual rainfall depth in Mizan Teferi (1440 m a.s.l.) is 1780  270 mm y-1 and the annual reference 

evapotranspiration amounts to 125912 mm y-1 (Grieser et al., 2006); the average air temperature 

ranges from 13 to 27 °C (Tadesse et al., 2006). The harmonized soil map of Africa (Dewitte et al., 

2013) indicates that Leptosols are dominant on crests, while Nitisols are dominant on the hill slopes 

(lower, middle and upper parts), to which Alisols and Cambisols areassociated locally.Fluvisols 

are found in the flat valley bottoms (where meandering rivers are located).  

The forest vegetation of Gacheb catchment structurally consists of a mix of areas with upper 

canopy trees like Aningeria adolfi-friederici Engl., Croton macrostachyus Hochst. ExDelile, 

Hagenia abyssinica Willd., Millettia ferruginea Hochst. Baker, Polyscias fulva Hiern.Harms, 
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Albizia gummifera J.F.GmelC.A.Sm., Bridelia micrantha Hochst.Baill. integrated with lower 

canopy trees like Grewia ferruginea Hochst. ex A.Rich, Vernonia amygdalina Delile. Cyathea 

manniana Hook and Solanecio mannii HookF.C. Jeffrey (Chapter 3). 

The agroforestry land of Gacheb catchment is composed of Coffea arabica L., as a cash crop 

integrated with food crops such as false banana (Ensete ventricosum Welw. Cheesman), banana 

(Musa sapientum L.), taro (Colocasia esculenta L. Schott) and spices like korarima (Aframomum 

corrorimaBraun). Moreover, various fruit trees such as mango (Mangifera indica L.), avocado 

(Persea americana Mill.), papaya (Carica papaya L.) and orange (Citrus sinensis L. Osbeck) are 

also part of the farming system. Furthermore, native treeslike Albizia gummifera J.F.Gmel. 

C.A.Sm., Cordia africana Lam., Millettia ferruginea Hochst. Baker, Polyscias fulva Hiern. 

Harms, are kept for shade, fodder, firewood, medicinal value and soil fertility maintenance. On the 

other hand, on the cropland cereal crops like maize (Zea mays L.) are integrated with root 

vegetables like taro and  park trees (Chapter 3). 
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Figure 2.1.13 Land cover and location of the study area sites in the Gacheb catchment, 

southwestern Ethiopia. 

2.2.2 Data collection and analysis 

The soil samples were taken in April and May 2013. A preliminary field visit was made using 

topographic mapsso as to fully understand  the land features and landscape for locating the study 

area’s representative soil sampling points. Five study sites were randomly selected along three 

altitudinal transects and stratified according to the land-use type (forest, agroforestry, cropland) 

and three elevation zones (high, 2300-1800 m a.s.l., middle, 1800-1500 m a.s.l. and low, 1500-

1200 m a.s.l.). Four depths have been selected for the following reasons: the soil depth (0-20 cm) 

is the average cropland plow layer in the study area, and the soil depths (20-40 , 40-60 and 60-80 

cm) constitute  the average depth to which nutrients and clay particles are leached to the subsoil in 

a high rainfall area and a layer where fine roots of trees have a role in nutrient addition and 

recycling. The plots - both under agroforestry and cropland - had been under forest up to 15 to 25 
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years earlier as reported by farmers and confirmed by satellite images. The land-use changes’ 

history of the soil sampling plots was first gathered by interviewing the farmers and local 

agricultural institutions.  

The soil samples were collected from 20 × 20 m2 plots with three replicates at a 20 m interval. 

From each plot, soil samples were collected at 0-20 cm, 20-40 cm, 40-60 cm and 60 to 80 cm soil 

depths. A total of 360 soil samples have been taken from the three land-use types. Separate soil 

samples were gathered at the middle of each plot for soil bulk density determination. The soil 

samples consisted of bulked subsamples and were analyzed at the Addis Ababa National Soil 

Testing Centre and the Ghent University Sedimentology Laboratory. The standard analytical 

procedures have been  followed so as to determine the soil texture (Sedigraph III plus Particle Size 

Analyzer), bulk density (using 100 cm³ Kopecky rings), soil pH (1:2.5 H2O), organic carbon 

contents (Walkley & Black, 1934), total nitrogen  using the Kjeldahl method (Bremner & 

Mulvancy, 1982), available phosphorus (Olsen et al., 1954), exchangeable bases (Ca, Mg, K and 

Na) in the soils were estimated by the ammonium acetate (1M NH4OAc at pH 7) extraction 

method. The extracted Ca and Mg were then defined utilizing an atomic absorption 

spectrophotometer. The exchangeable K and Na were measured using a flame photometer. The 

cation exchange capacity (CEC) was determined by the ammonium acetate method (Hesse, 1972). 

The  base cation saturation (BS) has been calculated based on the standard formula:  

BS (%) = [(Na+ + K++ Ca2+ + Mg2+)/ CEC] × 100                                                                    (2.1) 

The soil carbon and nitrogen stocks were calculated based on the next  formula (Chan, 2008a): 

 Ct= Kd × ρ × %C                                    (2.2) 

Where Ct= Carbon stock (g/cm²), Kd= the depth of the soil sample thickness of the sampled soil 

layer (cm), ρ= the soil bulk density (g/cm³), %C= the percentage soil organic carbon.  

The total nitrogen was also computed with a similar formula. The sink/loss in soil C and N-because 

of deforestation- were estimated by subtracting the total soil C and N stocks under forest  or 

agroforestry land to the corresponding depth under cropland. The computed loss values were then 

divided by the number of years since the conversion to obtain soil C and N losses per year. The 

carbon dioxide emission due to the conversion of both forest and agroforestry to cropland was 
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calculated  based on the relation between soil organic carbon and carbon dioxide reported by Chan 

(2008b); an increase in 1 Mg ha-1 in soil organic carbon represents a 3.67 Mg of carbon dioxide 

removal from the atmosphere. 

The topsoil and subsoil’sphysico-chemical characteristics of the three land-use types have been  

analyzed by factor analysis (FA). The  factor analysis was used in order to define the most 

significant topsoil and subsoil’sphysico-chemical characteristics in differentiation of the three 

land-use types. The physico-chemical characteristics with factor loading (>0.5) were considered. 

The differences in soil physico-chemical characteristics, soil carbon and nitrogen stocks between 

forest, agroforestry and cropland were tested by one way ANOVA using SPSS (software version 

20). The  means have been  compared by the least significant difference (LSD). 

2.3. Results  

2.3.1 Contrasts between the three land-use types  

The biplots of the topsoil show that the first factor axis (FA-1) corresponds to a gradient of plots 

from forest to cropland, whereby the plots under agroforestry are similar to those under forest. The 

soil physico-chemical characteristics Nt, pH, Mg2+, Ca2+, P and CEC are also higher under forest 

and agroforestry than under cropland. Most importantly, all cropland topsoil are sandy, but soil 

organic carbon are low in some and high in other cropland. The second factor axis (FA-2) is 

independent from the gradient, forest to cropland. This sets aside the three plots studied at low 

elevation (FL site) have lower soil organic carbon than the high (FH and ZH) and middle elevation 

(DM and ZM) sites. This correspons to a gradient from high soil organic carbon to low soil organic 

carbon (Fig.2.2a).  

The biplot of the subsoil’s first factor axis (FA-1) is independent from the gradient, forest to 

cropland. However, the plots at low elevation (FL site) are different from the high (FH and ZH) 

and middle elevation (DM and ZM sites) plots in the first factor axis (FA-1). This corresponds to 

a gradient from high soil organic carbon and low sand (FL site) to low soil organic carbon and 

high sand (FH, ZH, DM and ZM site). Soil physico-chemical charcterstics Mg2+, Na+, CEC and 

Ka+ are higher in FL site. The second factor of the biplots corresponds with a gradient of plots 

from forest to cropland. The plots under agroforestry are similar to the forest plots. Most 
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importantly, a gradient from high soil organic carbon and high sand (Forest) to low soil organic 

carbon and low sand (cropland) (Fig 2.2b). 

 

Figure 2.2.14 Biplots of (a) topsoil (0-20 cm) and (b) subsoil (40-60 cm) physico-chemical 

characteristics of 5 study sites. Land use types: cropland, agroforestry and forest. 

Study sites: FH= Faketen high, DM= Dakin middle, ZH= Zemika high, ZM= 

Zemika middle and FL= Fanika low. Soil physico-chemical characteristics: BD= 

bulk density, Soil texture (sand, silt and clay), OC= organic carbon, Nt= total 

nitrogen, CEC= cation exchange capacity, P= available phosphorous, Ka= available 

potassium, Mg= exchangeable magnesium, Ca= exchangeable calcium, K= 

exchangeable potassium, Na= exchangeable sodium. The arrow represents the 

direction of high weighting of soil physico-chemical characteristics in first factor 

(FA-1) and second factor (FA-2). The FA-1 and FA-2 of topsoil explains 87% of 

the variation between individuals. The FA-1 and FA-2 of subsoil explains 75% of 

the variation between individuals.    

 

 

2.3.2 Soil physico-chemical characteristics 

Soil texture and bulk density 

The topsoil sand fraction of cropland is significantly different from that in forest and agroforestry 

(P<0.00001) at the FH, DM, ZH, ZM and FL sites. The highest sand contents were recorded  in 
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cropland at FH site (34%), DM (36%), ZH site (36%), ZM (36%) and FL site (27%). The topsoil 

silt and clay contents in the forest are significantly different from the cropland (P<0.00001) at all 

sites. The silt contents in forest and agroforestry were found to be similar at all sites, but clay 

content in the forest soil is different from the agroforestry at all sites except DM site. The highest 

silt contents were recorded in the forest (55% at the FH, DM and ZH site) and agroforestry (53% 

at the ZM site).  Like silt, the highest clay contents were recorded in the forest (24% at DM site, 

25% at the ZH, 26% at ZM site and 36% at the FL site) and agroforestry (23% at the FH and) (Fig 

2.3). Similarly, the subsoil sand and silt content of the forest and agroforestry were similar on all 

sites, but cropland is different from both. On the contrary, the subsoil texture fraction (clay) in the 

forest, agroforestry and cropland proved to be similar at the FH, DM, ZH, ZM and FL sites (Fig 

2.4). 

The topsoil bulk density of cropland differs significantly  from both that of the forest and 

agroforestry at all sites (P<0.00001). The topsoil bulk density of the forest is similar to agroforestry 

at all sites. The highest bulk density has been recorded in cropland at the FH site (1.0 g cm-3), DM 

site (1.2 g cm-3), ZH site (1.24 g cm-3), ZM site (1.24 g cm-3) and FL (1.21 g cm-3) (Fig 2.3). 

Similarly, the subsoil bulk density of cropland varies  significantly from both the forest and 

agroforestry at all sites (P<0.001). However, the forest and agroforestry are similar in the subsoil 

bulk density at all sites. The highest subsoil bulk density was recorded in cropland at the FH site 

(1.34 g cm-3), DM site (1.30 g cm-3), ZH site (1.37 g cm-3), ZM  site (1.32 g cm-3) and FL site (1.30 

g cm-3) (Fig 2.4). 

Soil pH and organic carbon 

The topsoil pH in both forest and agroforestry was significantly different from that in cropland at 

all sites (P<0.01). Yet, the soil pH in agroforestry is similar to the forest’s at all sites. The highest 

soil pH was recorded in the forest at the FH site (6.0), ZH site (5.7), ZM site (5.6) and FL site 

(6.4); and in agroforestry at DM site (5.7) (Fig 2.3). As  the topsoil, the subsoil pH of both the 

forest as well as agroforestry is significantly different from cropland at all sites. However, the 

forest and agroforestry are similar at all sites except the ZM and FL site. The highest subsoil pH 

was recorded in the forest (5.4 at the FH site, 5.37 at the DM site, 5.1 at the ZH and 5.1 at the ZM 

site) and agroforestry (5.9 at the FL site) (Fig 2.4).  
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The topsoil organic carbon contents of the forest (as well as agroforestry) varied significantly  from 

the cropland (P<0.0001) at all sites. However,the forest’s organic carbon contents are similar to 

the agroforestry at all sites. The highest organic carbon was measured in the forest at the FH site 

(8.2%), DM site (6.8%), ZH site (7.9%), ZM site (6.5%) and FL site (5.0%) (Fig 2.3). The subsoil 

organic carbon contents regarding both forest and agroforestry are significantly different from 

cropland at all sites. Alike the topsoil, the forest and agroforestry are similar in organic carbon 

contents at all sites. The highest soil organic carbon was recorded in the forest at the FH site 

(4.0%), DM site (3.6%) and FL site (3.9%) and in agroforestry at ZH site (3.8%) and ZM site 

(3.6%) (Fig 2.4). 

 

Total nitrogen, available phosphorus, exchangeable calcium and magnesium 

The topsoil total nitrogen contents of both forest and agroforestry were significantly different from 

cropland at all sites (P<0.001). Yet, the forest and agroforestry were similar in nitrogen contents 

at all sites. The highest total nitrogen was recorded in the forest (1.1% at the FH site and 0.80% at 

the ZH site) and agroforestry (0.7% at the DM site, 0.7% at the ZM site and 0.79% at the FL site) 

(Fig 2.3). Likewise, the subsoil nitrogen contents of both the forest and agroforestry differed 

significantly from the cropland at all sites (P<0.01). Yet, the forest and agroforestry are similar at 

all sites. The highest soil total nitrogen contents were noticed in the forest at the FH site (0.43%), 

DM site (0.37%) and FL site (0.33%) and in agroforestry at the ZH site (0.42%), ZM site (0.32%) 

(Fig 2.4). 

The topsoil available phosphorus contents (both agroforestry and forest) were found to be 

significantly different from the cropland (P<0.0001) at all sites. Similarly, the forest’s topsoil 

available phosphorus contents are similar with agroforestry at all sites, except at the ZM and FL 

site. The highest available phosphorus was recorded in the forest (14 mg kg-1 at FH site) and 

agroforestry (11 mg kg-1 at DM, 12 mg kg-1 at ZH site, 11 mg kg-1 at ZM site and 12 mg kg-1 at 

FL site) (Fig 2.3). However, both forest and agroforestry are similar regarding the subsoil available 

phosphorus contents at all sites except for the FL site, but both are significantly different from the 

cropland at all sites except the similarity with the forest at the ZM site. The highest available 

phosphorus was measured in the forest (6 mg kg-1 at FH site, 4 mg kg-1 at DM site, 6 mg kg-1  at 

ZH site and 6 mg kg-1 at ZM site) and agroforestry (10 mg kg-1 at FL site) (Fig 3b). 
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The topsoil exchangeable calcium and magnesium contents of both the forest and agroforestry are 

significantly different from the cropland (P<0.0001) at all sites. Yet, there is no difference in the 

exchangeable calcium and magnesium contents between the forest and agroforestry at all sites, 

except the ZH site. The highest topsoil exchangeable calcium was recorded in the forest at the FH 

site (20 cmol (+) kg-1), ZH site (18 cmol (+) kg-1) and ZM site (14 cmol (+) kg-1) and in agroforestry 

at the DM site (14 cmol (+) kg-1) and FL site (16 cmol (+) kg-1). The highest topsoil exchangeable 

magnesium contents have been recorded in the forest at the FH site (36 cmol (+) kg-1), DM site 

(30 cmol (+) kg-1), ZH site (30 cmol (+) kg-1), ZM site (31 cmol (+) kg-1) and FL site (30 cmol (+) 

kg-1) (Fig 2.3). However, the subsoil exchangeable calcium contents of the three land-use types 

are similar at all sites (except the difference at the ZM and FL site). On the contrary, the subsoil 

exchangeable magnesium contents of both the forest and agroforestry vary significantly from the 

cropland at all sites (P<0.0001). The highest subsoil exchangeable calcium was recorded in the 

forest at the FH site (11 cmol (+) kg-1),  DM site (10 cmol (+) kg-1),  ZM site (11cmol (+) kg-1) and 

in agroforestry at ZH site (11 cmol (+) kg-1) and FL site (14 cmol (+) kg-1). The highest subsoil 

exchangeable magnesium was recorded in the forest at the FH site (25 cmol kg-1), DM site (26 

cmol (+) kg-1), ZH site (23 cmol (+) kg-1), ZM site (19 (cmol (+) kg-1) and FL site (30 cmol (+) kg-

1) (Fig 2.4).  

 

Cation exchange capacity and base cation saturation 

The topsoil cation exchange capacity and the exchangeable base cation of both forest and 

agroforestry are significantly different from the cropland at all sites (P<0.0001). Yet, the forest 

and agroforestry are similar regarding CEC and the exchangeable base cation at all sites except the 

difference in CEC at FH site. The highest cation exchange capacity was recorded in the forest at 

the FH site (94 cmol kg-1), DM site (83 cmol kg-1), ZH site (75 cmol kg-1), ZM site (81 cmol kg-1) 

and FL site (86 cmol kg-1). The highest exchangeable base cation was recorded in the forest (57% 

at FH site, 66% at ZH site and 56% at ZM site and) and agroforestry (53% at DM site and 63% at 

FL site) (Fig 2.3). Like the topsoil, the subsoil cation exchange capacity and exchangeable base 

cation contents (under both forest and agroforestry) were found to be different from the cropland 

at all sites, except the ZM site. Nevertheless, the forest and agroforestry are similar at all sites, 

except for the difference in the exchangeable base cation saturation at the FL site. The highest 

subsoil CEC was recorded in the forest at the FH site (69 cmol kg-1), DM site (69 cmol kg-1), ZH 



 

 

76 

 

site (64 cmol kg-1), ZM site (56 cmol kg-1) and FL site (72 cmol kg-1) (Fig 2.4). The highest subsoil 

exchangeable base cation was recorded in the forest (54% at DM site and 55% at ZH site) and 

agroforestry (53% at FH site, 55% at ZM site and 66% at FL site) (Fig 2.4). 
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Figure 2.3.15 Physico-chemical characteristics of topsoil (0-20 cm) under forest, agroforestry and cropland. Study site: FH= Faketen 

high, DM=Dakin middle, ZH= Zemika high, Zemika middle, FL= Fanika low. Number of replicates (n=3). *Mean value 

of land used types soil physico-chemical characteristics with similar letter within the same site are not significantly 

different to each other at p<0.05.   
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Figure 2.4.16 Physico-chemical characteristics of subsoil (40-60 cm) under forest, agroforestry and cropland.Study site: FH= Faketen 

high, DH=Dakin middle, ZH= Zemika high, Zemika middle, FL= Fanika low. Number of replicates (n=3) *Mean value 

of land used types soil physico-chemical characteristics with similar letter within the same site are not significantly 

different to each other at p<0.05.   
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2.3.3 Soil carbon and nitrogen stocks in the three land use types 

Soil organic carbon stocks 

The soil organic carbon stocks of both forest and agroforestry are similar in all sites at all soil 

depths (0-20, 20-40, 40-60 and 60-80 cm). However, both forest and agroforestry are significantly 

different from cropland in all sites at all depths except at 60-80 cm. The soil organic carbon stocks 

of forest and agroforestry are similar to cropland in all sites at 60-80 cm soil depth. The highest 

total soil organic carbon stocks were recorded in forest (412 Mg ha-1 at FH site and 320 Mg ha-1 at 

FL site) and agroforestry (357 Mg ha-1 at DM site,  397 Mg ha-1 at ZH site and 363 Mg ha-1 at ZM 

site ) (Table 2.1).   

Soil nitrogen stocks 

Similarly, the soil nitrogen stocks in soil under both forest and agroforestry were similar in all sites 

at all soil depths (0-20, 20-40, 40-60 and 60-80 cm). Yet, the soil nitrogen stocks in both forest 

and agroforestry were found to be different from cropland in all sites at all soil depths except 60-

80 cm. The soil nitrogen stocks in forest, agroforestry and cropland were similar in all sites at 60-

80 cm soil depth. The highest total soil nitrogen stocks were recorded in forest (46 Mg ha-1 at FH 

site) and agroforestry (36 Mg ha-1 at DM site, 45 Mg ha-1 at ZH site, 37 Mg ha-1 at ZM site and 37 

Mg ha-1at FL site) (Table 2.1). 
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Table 2.1.3 Soil organic carbon and nitrogen stocks in cropland, agroforestry and forest land use 

types  
 

 
Soil organic carbon stocks (Mg ha-

1)                                   

Soil nitrogen stocks (Mg ha-1)   

Site Elevation Depth (cm) Land use types  
 

Land use types   
 

 
 

 
CL  AG  FO  CL  AG  FO  

FH    High 0-20  103±6.6b  149±8.3a  153±9.8a  12±1.3b  19±1.8a  21±1.3a   
 20-40  78±1.3b  109±2.9a  109±1.0a  7±0.2b  10±0.3a  10±0.3a  
 40-60  77±4.8b  98±3.4a  103±5.0a  7±0.4b  9±0.9a  10±0.7a   
 60-80  50±3.4a  50±3.7a  52±2.4a  5±0.5a  5±0.8a  5±0.9a   
 Total  308 406 417 31 43 46 

DM Middle 0-20 94±7.0b 135±6.6a 132±1.0a 8±0.3c 14±0.2a 13±0.3b  
 20-40 74±3.4b 96±5.0a 95±1.6a 6±1.5b 9±0.4a 9±0.3a  
 40-60 65±1.0b 84±2.0a 85±2.1a 5±0.2b 8±0.5a 8±0.2a  
 60-80 36±2.3a 42±4.8a 40±2.3a 5±0.5a 5±0.5a 5±0.5a  
 Total    269 357 352 24 36 35 

ZH High 0-20  121±4.4b  151±5.5a  151±1.5a  12±0.9b  16±0.2a  16±0.1a   
 20-40  80±2.4b  99±4.6a 97±1.1a  9±1.2b  13±0.5a  12±1.4a   
 40-60  75±5.8b  89±8.0ab  92±8.4a  7±0.4b  10±1.1a  10±0.4a   
 60-80  54±3.4a  58±2.1a  54±5.5a  6±0.4a  6±0.5a  6±0.7a  
 Total    330 397 394 34 45 44 

ZM Middle 0-20  96±3.2b 135±5.6a 130±5.8a 8±0.1c 14±0.1a 13±0.3b  
 20-40  80±1.2b 102±3.9a 101±1.3a 7±0.4b 10±0.5a 10±0.2a  
 40-60  63±6.0b 86±1.2a 85±7.9a 5±0.3b 8±1.0a 7±0.5a  
 60-80  37±2.2a 40±2.8a 40±2.3a 5±0.5a 5±0.5a 5±0.6a  
 Total    276 363 356 25 37 35 

FL  Low 0-20  81±3.2b  104±2.1a  103±1.8a  12±0.4b  16±0.7a  15±0.3a   
 20-40  72±3.5b  92±1.1a  92±0.8a  8±0.6b  9±0.1a  9±0.6a   
 40-60  68±4.8b  85±3.2a  88±4.6a  7±0.6a  7±0.6a  8±0.7a   
 60-80  37±1.8a  37±1.7a  37±2.6a  4±0.5a  4±0.6a  4±0.4a   
 Total     258 319 320 30 37 36 

Study site: FH= Faketen high, DM=Dakin middle, ZH= Zemika high, ZM=Zemika middle, FL= Fanika 

low. Land use types: CL=Cropland, AG=Agroforestry, FO= Forest. *Mean value of land used types soil 

carbon and nitrogen stocks with the same letter within the same site and depth are not significantly different 

to each other at p< 0.05.   

 

 

Soil carbon and nitrogen loss 

The estimated total soil carbon loss as the result of conversion of forest to cropland leads to a soil 

carbon loss of 8 Mg ha-1 y-1 at FH site, 4.2 Mg ha-1 y-1 at DM site, 4.3 Mg ha-1 y-1 at ZH site, 3.5 

Mg ha-1 y-1 at ZM site and 3.3 Mg ha-1 y-1 at FL site. Similarly, conversion from agroforestry to 

cropland leads to a soil carbon loss of 7 Mg ha-1 y-1 at FH site, 4.4 Mg ha-1 y-1 at DM site, 4.5 Mg 

ha-1 y-1 at ZH site, 3.8 Mg ha-1 y-1 at ZM site and 3.2 Mg ha-1 y-1 soil carbon at FL site (Table 2.2).  
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The conversion of forest to cropland leads to an emission of 28 Mg ha-1 y-1 CO2 at FH site, 15.2 

Mg ha-1 y-1 CO2 at DM site, 15.7 Mg ha-1 y-1 CO2 at ZH site, 12.8 Mg ha-1 y-1 CO2 at ZM site and 

12 Mg ha-1 y-1 CO2 at FL site. Similarly, converting agroforestry to cropland leads to an emission 

of 26 Mg ha-1 y-1 CO2 at FH site, 23 Mg ha-1 y-1 CO2 at DM site, 18 Mg ha-1 y-1 CO2  at ZM site and 

16 Mg ha-1 y-1 CO2 at FL site (Table 2.2).    

With regard to nitrogen loss, conversion of forest to cropland leads to a soil nitrogen loss of 1.1 

Mg ha-1 y-1 at FH site, 0.6 Mg ha-1 y-1 at DM site, 0.7 Mg ha-1 y-1 at ZH, 0.4 Mg ha-1 year-1 at ZM 

site and 0.3 Mg ha-1 y-1 at FL site. Similarly, conversion of agroforestry to cropland leads to a soil 

nitrogen loss of 0.9 Mg ha-1 y-1 at FH site, 0.6 Mg ha-1 y-1 at ZH site, 0.7 Mg ha-1 y-1, 0.5 Mg ha-1 

y-1 at ZM site and 0.4 Mg ha-1 y-1 at FL site (Table 2.2). 

 

  

Table 2.2.4Soil carbon and nitrogen loss (Mg ha-1 y-1)  related to change in land use (conversion 

from forest and agroforestry to cropland) 

 
  

Forest  
 

Agroforestry 

Sites Elevat-

ion 

Soil  

depth 

(cm) 

SOC loss  

(Mg ha-1 

y-1) 

N loss 

(Mg ha-1 

y-1) 

CO2 loss 

(Mg ha-1 

y-1) 

SOC loss  

(Mg ha-1 

y-1) 

N loss 

(Mg ha-1 

y-1) 

CO2 loss 

(Mg ha-1 

y-1) 

FH FH 0-20  3.6 0.6 13 3.3 0.5 12 

 
 

20-40  2.2 0.2 8.1 2.2 0.2 8.1 

 
 

40-60  1.9 0.2 6.8 1.5 0.1 5.5 

 
 

60-80  0.1 0.0 0.3 0.0 0.0 0.0 

 
 

Total   8 1.1 28 7 0.9 26 

DM DM 0-20 1.9 0.3 7.0 2.1 0.3 7.5 

 
 

20-40 1.1 0.2 3.9 1.1 0.2 4.0 

 
 

40-60 1.0 0.2 3.7 1.0 0.2 3.5 

 
 

60-80 0.2 0.0 0.7 0.3 0.0 1.1 

 
 

Total    4.2 0.6 15.2 4.4 0.6 16.1 

ZH ZH 0-20  2.0 0.3 7.3 2.0 0.3 7.3 

 
 

20-40  1.1 0.2 4.2 1.3 0.3 4.6 

 
 

40-60  1.1 0.2 4.2 0.9 0.2 3.4 

 
 

60-80  0.0 0.0 0.0 0.3 0.0 1.0 

 
 

Total    4.3 0.7 15.7 4.5 0.7 16.4 

ZM ZM 0-20  1.5 0.2 5.4 1.7 0.3 6.2 

 
 

20-40  0.9 0.1 3.4 1.0 0.1 3.5 

 
 

40-60  1.0 0.1 3.5 1.0 0.1 3.7 

 
 

60-80  0.1 0.0 0.5 0.1 0.0 0.5 

 
 

Total    3.5 0.4 12.8 3.8 0.5 13.9 

FL  FL  0-20  1.2 0.2 4.2 1.2 0.2 4.5 
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Sites: FH= Faketen high, DM= Dakin middle, ZH= Zemika high, ZM= Zemika middle, FL= Fanika 

lower.  Total soil carbon and nitrogen loss were the sum of loss from all soil depths (0-80 cm) within the 

land use type in each site.  

 

2.4. Discussion 

2.4.1 Factor analysis of soil characteristics 

The biplot of the topsoil first factor axis (FA-1) reveals the similarity in soil characteristics between 

forest and agroforestry and the difference in soil characteristics of both forest and agroforestry 

with  cropland. This study aligns with the findings of Biro et al. (2011), who reported the difference 

in soil characteristics between woodland and cultivated land in the first principal component axis 

(PC1). The topsoil’s second factor axis (FA-2)  reveals the distinction  in soil organic carbon 

between the low elevation (FL) site and both the high (FH and ZH) and middle elevation (ZM and 

DM) sites. This is most likely because soil organic carbon content normally increases with altitude 

owing to slow soil organic matter decomposition. This findings is in line with the finding of 

Aguilera et al. (2013), who reported an increase in surface soil organic carbon with increasing 

altitude. Further, Wei et al. (2013) reported that low temperature at high altitude are useful in 

maintaining a low soil organic matter decomposition rate. 

The biplot of the subsoil’s first factor axis (FA-1) reveals that the low elevation subsoil organic 

carbon and sand content are difference from both the middle (ZM and DM) and higher elevation 

(FH and ZH) sites. Similarly Hobley & Wilson (2016) reported that the negative association of 

temperature with the depth depletion constants of soil organic carbon indicates that proportionally 

more subsurface soil organic carbon is retained in hotter than in cooler climates. Although this is 

potentially due to a low surface soil organic carbon in low altitude (warmer) compared with high 

altitude (cooler). The subsoil’s second factor axis (FA-2) reveals the difference in soil organic 

carbon and sand content of the cropland from both the forest and agroforestry. The presence of 

high soil organic carbon and sand content in both forest and agroforestry is probably due to the 

contribution of fine root biomass of trees. and . This study is in line with Deng et al. (2016), who 

 
 

20-40  1.1 0.1 3.9 1.1 0.1 3.9 

 
 

40-60  1.1 0.1 3.9 0.9 0.0 3.3 

 
 

60-80  0.0 0.0 0.0 0.0 0.0 0.0 

 
 

Total    3.3 0.3 12.0 3.2 0.4 12.0 
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reported a greater presence of  soil organic carbon in the subsoils (20-60 cm) of vegetated land 

(compared to cropland). 

2.4.2 Soil physico-chemical characteristics 

Soil texture and bulk density 

The presence of high topsoil clay and silt fraction in forest and agroforestry may be due to the 

presence of various trees and shrubs canopy, litter and root protection of the surface soil from 

leaching and soil erosion. This study’s findings are consistent with Yeshaneh (2015), who 

indicated that the forest reduces the soil erosion risk by its crown, litter and root support. The 

resemblance in the subsoil’s soil texture (sand, silt and clay) between forest, agroforestry and 

cropland reveals the presence of a similar weathered parent material on each site and less land 

management intervention in the deep subsoil of  cropland. These findings correspond with 

Yeshaneh (2015), who reported a small difference in the subsoil’s soil texture characteristics 

between the forest and cultivated land. The presence of high soil bulk density in the cropland may 

be due to soil compaction, mainly because of livestock grazing after the crop harvest, a continuous 

cultivation and a decline in organic matter. Livestock grazing can directly cause an increase in soil 

compaction and soil strength because of the pressure exerted on the soil via the livestock's hoof 

action (Hamza & Anderson, 2005; Don et al., 2011).  

The presence of low subsoil bulk density in forest and agroforestry may be due to the existence of 

relative high subsoil organic carbon in the forest and agroforestry. The dead fine roots and 

mycorrhizal fungi constitute a primary supplement of the subsoil’s organic matter in forest and 

agroforestry; soil with a larger organic matter has a low bulk density because of the low particle 

density of the organic matter and soil aggregate formation. Tree roots contribute- to a larger extent 

- to a subsoil organic matter accumulation, up to the tree root senescence and root litter 

decomposition, which in turn decrease the subsoil bulk density (Sharma, 2011; Scheffer & Aerts, 

2000).  
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Soil pH and organic carbon  

The presence of lower topsoil pH in cropland can be related to the decrease in base forming cations 

(Ca2+, K+, Mg2+ and Na+) through a continuous nutrient cation uptake by plants during repeated 

cultivation and leaching and soil erosion loss, as stated earlier on by Noble et al. (2000) and 

Adugna and Abegaz (2015). Additionally one can conclude that the existence  of high subsoil pH 

in both forest and agroforestry may be related to the availability of high exchangeable bases cation 

(because of the organic matter decomposition and weathered parent material by the tree, shrub and 

mycorrhizal fungi function in the subsoil).This study is in accordance with the findings of Sharma 

(2011). 

The occurrence of higher topsoil organic carbon in both forest and agroforestry can  be due to the 

litter fall addition from trees and shrubs to the surface soil (Nsabimana et al., 2008; Worku et al., 

2014; Fantaw et al., 2007). Furthermore, the forest and agroforestry possess a higher subsoil 

organic carbon; through dead fine tree and shrub roots and the mycorrhizal fungi contribution of 

organic matter in the subsoil(Lemma et al., 2006; Fantaw et al., 2007). 

Total nitrogen, available phosphorus, exchangeable calcium and magnesium 

The forest and agroforestry have higher topsoil  nitrogen, available phosphorus, exchangeable 

calcium and magnesium. This is probably related to the high litter fall from various leguminous 

and non-leguminous trees, shrubs and herbs. The leguminous tree species (Albizia gummifera 

J.F.Gmel.C.A.Sm., Millettia ferruginea Hochst Baker, Sesbania sesban LMerr and Leucaena 

leucocephala Lam. de Wit) play a significant role  in supplying organic matter, organic carbon and 

nitrogen to the soil. The inherent ability to fix the atmospheric nitrogen and the association with 

symbiotic bacteria and mycorrhizal fungi lead to organic carbon and nitrogen accumulation in the 

biomass of trees. The tree leafs contribute then significantly to the topsoil’s levels of nitrogen, 

organic carbon, exchangeable calcium and magnesium. Furthermore, the cropland’s loss of 

nitrogen, available phosphorus, exchangeable calcium and magnesium during the crop harvest, 

leaching and surface erosion can be the reason for the decline in those soil features. This study is  

consistent with the findings of Adugna & Abegaz (2015), Nsabimana et al. (2008) and Binkley & 

Giardina (1998). 
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Similarly, both forest and agroforestry show higher subsoil  nitrogen, available phosphorus, 

exchangeable calcium and magnesium. This matches the availability and release of the organic 

matter supplement by dead fine tree roots  and shrubs and mycorrhizal fungifunction in the subsoil. 

The mycorrhizal fungi associated to the roots of leguminous trees promote the subsoil’s 

decomposition and organic matter breakdown. This enhances the availability of those soil nutrients 

in the subsoil. This study is in line with the findings of Sharma (2011) and Hodge et al. (2001), 

who stated that the arbuscular mycorrhizal symbiosis  enhances the decomposition and increase of 

nitrogen capture from the organic matter in the soil. The cropland subsoil’s similarity in 

exchangeable calcium contents with both forest and agroforestry may be due to the leaching of 

exchangeable calcium from the topsoil.  These results are in line with Duguma et al. (2010) and 

Adugna & Abegaz (2015). 

Cation exchange capacity and base cation saturation 

The forest and agroforestry have a higher topsoil cation exchange capacity and exchangeable base 

cation. This may be due to the presence of high organic matter and clay contents in the topsoil of 

forest and agroforestry, from which the organic matter formed by  trees and shrubs litter underwent 

a complete microbial breakdown and decomposition(and which release humic substances and 

exchangeable bases in their turn).This result matches the  conclusions of Nsabimana et al. (2008) 

and Saikh et al. (1998). The presence of a higher subsoil cation exchange capacity and 

exchangeable basecations in the forest and agroforestry can be explained by the organic matter 

decomposition  and the availability of weathered parent material. The various trees and shrub roots 

and mycorrhizal fungi have inherent ability to enhance the availability of organic matter, release 

of base cations and nutrients in the deep soil horizon. This result is  consistent with the findings of 

Saikh et al.(1998), who reported an abrupt increase in the cation exchange capacity and 

exchangeable base cations on the organic matter (in rich evergreen forest of India).  

2.4.3 Soil organic carbon and nitrogen stocks 

The presence of high soil organic carbon and nitrogen stocks in the forest and agroforestry can be 

explained by a continuous leaf defoliation from trees and shrubs. Various leguminous tree species 

(Albizia gummifera J.F.Gmel.C.A.Sm., Millettia ferruginea Hochst Baker, Sesbania sesban LMerr 

and Leucaena leucocephala Lam. de Wit) could constitute the lion’s share for the high organic 
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soil  and nitrogen stocks (in forest and agroforestry). The carbon and nitrogen fixed in the tissue 

of leguminous trees contribute a lot to to surface and subsurface soil in the form of detritus upon 

seasonal defoliation and senescence. These results correspond with the findings of Mohammed 

and Bekele (2014) and Lal (2001), who evidenced high soil carbon stocks in the native forest and 

(coffee-based) agroforestry compared to the arable land. Binkley and Giardina (1998) indicated 

that the tropical forest that holds leguminous trees, increases the nitrogen contents of the litter fall 

by 4-50 times compared to non-legumes.  

Furthermore, the existence  of low carbon stocks in the cropland may be due to the crop uptake, 

leaching and surface erosion losses.  Inadequate land management, the crop residue removal and 

grazing after the harvest might have contributed to the low soil carbon storage in the cropland’s 

topsoil and subsoil, in concordance with the findings of Don et al. (2011) and Lemenih (2004). 

The similarity in subsoil (60-80 cm) organic carbon stocks between the three land-use types may 

be due to the absence of human interaction with the subsoil. Further, the presence of the subsoil 

organic matter in the cropland, resulted most probably from gradual decomposition of the remnant  

roots of slashed forest trees and shrubs after conversion. This study is in line with Lemenih (2004), 

who concluded that the wood roots buried in the soil after slashing decompose gradually and 

continue to enrich the soil organic matter for some time after the forest clearance.Furthermore, the 

estimated topsoil organic carbon and nitrogen stocks in the forest and agroforestry fall within the 

range reported by Mohammed and Bekele (2014) (230 Mg ha-1 in forest; 151 Mg ha-1 in 

agroforestry and 65 Mg ha-1 on arable land) and Lemenih & Itanna (2004). The total soil organic 

carbon stocks (estimated to a depth of 80 cm)are withinthe range for the Afromontane forest in 

Tanzania (252 and 581 Mg ha-1) (Munishi & Shear, 2004), lower than the range reported for the 

Afromontane forest in Bonga, located in the northern part of our study area (639.6 Mg ha-1) 

(Aticho,2013) but beyond the rage estimated to a depth of 60 cm in a humid Podocarpus falcatus 

forest (235 Mg ha-1) (Lemenih & Itanna, 2004), tropical soils in general (216 Mg ha-1) (Lal,2004) 

and the global average (254 Mg ha-1) (Batjes,1996). 

Despite the fact that the estimated organic carbon loss could vary depending on the time of land 

use conversion,  the organic carbon loss due to the conversion of forest to cropland as well as 

agroforestry to cropland were yet considered as a rapid decline. The topsoil organic carbon loss 

related to the conversion of both forest and agroforestryto cropland are in the same range to the 
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carbon loss by converting the semi-arid Acacia woodland to cropland(2.4 Mg ha-1)(Lemenih and 

Itanna, 2004). The estimated carbon dioxide emission through the conversion to cropland is big 

enough to contribute to the atmospheric greenhouse gas effect.  

2.5. Conclusions  

The topsoil and subsoil  fertility of agroforestry is comparable with that of the natural forest at the 

high, middle and low elevation zones. The soil fertility of the topsoil and subsoil under cropland 

were significantly lower compared to the forest and agroforestry at the high, middle and low 

elevation zones. The total soil organic carbon and nitrogen stocks were higher in the soils under 

both forest and agroforestry at the three elevation zones. The soil organic carbon and nitrogen 

storage potential of agroforestry is equivalent to the natural forest at all three elevation zones. 

Cropland has low soil organic carbon and nitrogen pools at all  elevation zones. Conversion of 

both forest and agroforestry to cropland has promoted significant losses of carbon and nitrogen 

and emission of carbon dioxide to the atmosphere. Therefore, it is very important to strengthen the 

agroforestry as a main agricultural strategy in order to sustain the agriculture production and 

ecosystem services on  steep mountainous terrain and in the heavy rainfall areas of southwest 

Ethiopia and probably in other similar areas. Additional efforts ought to be taken so as to  maintain 

the soil fertility, carbon and nitrogen storage in cropland. However, further studies are needed to 

assess the nutrient, carbon and nitrogen stocks’ levels in the vegetation canopy of the three land-

use types. 
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Chapter 3  

The agro-ecological implications of forest and agroforestry conversion 

towards cereal-based farming systems: the case of the Gacheb catchment 
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Abstract 

The Afromontane forests of southwest Ethiopia are high in endemism and biodiversity. However, 

the increasing human population and expansion of agricultural land have led to deforestation. We 

evaluated the effects of land use change on species composition, species diversity and soil fertility. 

Woody and herbaceous plant species were recorded in natural forest, agroforestry and cropland at 

different altitudes, using 15 plots with three replicates. A total of 180 soil samples were taken. In 

total, 77 woody and herbaceous species have been recorded. The selective felling of trees and 

shrubs in the agroforestry system to favour coffee growth through enhanced light penetration also 

favours the grass and herb diversity. The Shannon species diversity of the forest is significantly 

different from both agroforestry and cropland. However, the agroforestry shannon species 

diversity is less than forest but greater than the cropland. The species richness of agroforestry is 

equivalent to that of the forest, but greater than the cropland. Therefore, this study suggests that 

the agroforestry practices are important for keeping biodiversity and soil fertility at levels similar 

to the natural forest. 

Keywords: Afromontane forest, Agroforestry, Species composition, Soil fertility. 
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3.1 Introduction 

The Afromontane forests of southwest Ethiopia are known for their high biodiversity due to their 

original sites providing Coffea arabica L. (e.g. Gebre-Egziabher, 1991; Feyera, 2006; Schmitt, 

2006; Assefa et al., 2014). In-migration, population growth and expansion of plantation agriculture 

have led to significant deforestation (e.g. Getahun et al., 2013) but also to a conversion of the 

traditional agroforestry farming systems towards farming systems which are dominated by cereals, 

such as maize (Zea mays L.), sorghum (Sorghum bicolor L. Moench), barley (Hordeum vulgareL.), 

wheat (Triticum aestivum L.), rice (Oryza sativa L.) and teff (Eragrostis tef Zucc.Trotter). Besides, 

large forest swaths are also being converted to commercial plantations of tea (Camellia sinensis 

L. O. Kuntze), coffee (Coffea arabica L.), soap berry (Phytolacca dodecandra L'Herit.) and rubber 

tree (Hevea brasiliensis Willd. ex A. Juss.) (Mekuria, 2005; Tadesse, 2007). 

The agroforestry farming systems of southwest Ethiopia are structurally complex and harbour a 

large diversity of mainly indigenous species. Coffee, as a cash crop, is integrated with food crops 

(Wale 2010) such as false banana (Ensete ventricosum Welw. Cheesman), taro (Colocasia 

esculenta L.Schott) and cassava (Manihot esculenta Crantz.). Various spices are also integrated in 

the farming systems: korarima (Aframomum corrorima Braun. P.C.M.Jansen), ginger (Zingiber 

officinale Roscoe) and turmeric (Curcuma longa L.).Native trees include Cordia africana Lam., 

Millettia ferruginea Hochst. Baker., Albizia gummifera J.F.Gmel. C.A.Sm.and 

FicusvastaForssk.,which are being kept for shade, fodder, firewood, medicinal value and soil 

fertility maintenance (Bishaw & Abdelkadir, 2003; Anteneh, 2006). The cropland mainly consists 

of open field cultivation of cereal crops like maize (Zea mays L.) and sorghum (Sorghum bicolor 

L. Moench) (Mekuria, 2005). 

In the upper Gacheb catchment (ca. 450 km²; Fig. 4.1), parts of dense montane forest have 

persisted. However, since the mid-20th century, large parts of this forest have been converted to 

agroforestry and cropland for cereal production, as shown in Figure 4.1 (Hansen et al., 2013; 

Dereje, 2007), resulting in a decline in biodiversity (Schmitt, 2006). The objective of this study 

was therefore (i) to evaluate the tree, shrub and herb species composition and diversity of forests, 

agroforestry and croplands and (ii) to assess the effects of land-use changes on the soil fertility and 

hence sustainability of the farming system. The hypothesis was that biodiversity in agroforestry 

would be less high than in the forest but larger than in the arable land. Likewise, it was expected 
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that the soil fertility under agroforestry would be comparable to the one under forest, while it 

would be less in croplands.  

3.2. Materials and methods 

 3.2.1 Study area and data collection 

The study area is the upper Gacheb catchment, located in the headwaters of the White Nile in 

southwest Ethiopia. Altitudes range from 1000 to 2600 m a.s.l. (Fig. 3.1) and the outcropping 

lithology comprises Tertiary basalt traps and rhyolites (Mengesha et al., 1996; GSE, 2005). The 

annual rainfall pattern is unimodal with a rainy season from mid-March to mid-November. The 

average annual rainfall depth in Mizan Teferi (1440 m a.s.l.) is 1780  270 mm y-1 and the annual 

reference evapotranspiration depth amounts to 125912 mm y-1 (Grieser et al., 2006); the average 

air temperature ranges from 13 to 27 °C (Tadesse et al., 2006). The harmonized soil map of Africa 

(Dewitte et al., 2013) indicates that Leptosols are dominant on crests, while Nitisols are dominant 

on the hill slopes (lower, middle and upper parts), to which Alisols and Cambisols areassociated 

locally. Fluvisols are found in the flat valley bottoms where meandering rivers occur. The 

dominant granulometric class of the study area is silt (51%), followed by clay (25%) and sand 

(24%). 

In April and May 2013, vegetation records were made and soil samples were taken. Fifteen study 

sites have been selected along three altitudinal transects and stratified according to the land use 

type (forest, agroforestry, cropland) and three elevation zones (high, 2300-1800 m a.s.l.; middle, 

1800-1500 m a.s.l., and low, 1500-1200 m a.s.l.). The plots that were under agroforestry and 

cropland had been under forest 15 to 25 years earlier, as reported by farmers and confirmed by 

satellite images. The main plots were 20 × 20 m2 with 3 replications at 20 m interval. Trees with 

a diameter atbreast height > 2 cmand above 1.5 m height were counted inside the 20 × 20 m2 plots, 

shrubs were counted in subplots of 5 × 5 m2 at the four corners of the main plot, and herbaceous 

species inside 3 × 3 m2 subplots at the four corners of the main plot. Species which are difficult to 

be identified in the field have been collected, pressed and taken to Mizan-Tepi University for 

further identification. The species richness (S), i.e. the number of different species represented in 

an ecological community, was obtained by simple tallying. The Shannon diversity index and 

species’ evenness were calculated based on the equations by Magurran (1988): 
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                                                                                                                   (3.1) 

 

where, H= the Shannon diversity index, Pi= fraction of the entire population made up of species i, 

S= numbers of encountered species. The evenness (E′) was calculated based on: 

E′= H/Hmax= H/lnS                                                                                             (3.2) 

where, E′ represents evenness, H= Shannon diversity index, Hmax= the maximum level of diversity 

possible within a given population, which equals lnS. 

The topsoil (0-20 cm) soil characteristics  soil texture (sand, silt and clay), bulk density, pH, 

organic carbon, nitrogen, available phosphorous, exchangeable bases (sodium, potassium, 

magnesium  and calcium) and CEC,  which was analyzed and used on chapter 2 was used again 

for correlation analysis in this chapter, since the soil samples were collected from vegetation 

recorded plots of the three land use types. The spearman's correlation analysis was used to evaluate 

the correlation between the FA axis and the topsoil variables.  

3.3.2 Data analysis 

Floristic composition and species association of the 15 sites have been analyzed based on the 

frequency of occurrence of all species with a two-way indicator species analysis (TWINSPAN) 

and a factor analysis with PC-ORD (McCune and Melford 2011). We applied TWINSPAN with 

the following parameters: cut-off levels set at 0, 2, 5, 10 and 20; the minimum group size for 

division 5; the maximum number of indicators per division 5, the maximum number of species in 

the final table. The differences in Shannon species diversity, richness and evenness between the 

three vegetation groups had been tested by one-way ANOVA using SPSS. The topsoil physico-

chemical soil characteristics’ ordination was determined by factor analysis (FA) with PC-ORD. 

The relation between the vegetation composition and topsoil physico-chemical characteristics was 

examined by calculating the Spearman's rank correlation coefficient between the FA axis -derived 

from the vegetation data- and the soil physico-chemical characteristics. Whether there are 

differences in soil physico-chemical characteristics between the forest,agroforestry and cropland 

at different sites was tested by the one-way analysis of variance (ANOVA) using SPSS (software 

version 20). 
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 Figure 3.1.17 Land cover and location of the study sites in the Gacheb catchment, southwestern Ethiopia.Land cover and location of 

the study sites in the Gacheb catchment, southwestern Ethiopia.
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3.3 Results 

Vegetation characteristics 

Overall, 77 plant species belonging to 40 families had been recorded in 45 studied plots. With 

TWINSPAN, the vegetation could be sorted, classified into evergreen forest, disturbed forest 

or/and agroforestry and arable land (Table A1-3). Out of the 77 species (trees, shrubs, herbs and 

grasses), the evergreen forest holds 58 species (75%), belonging to 28 families. However, the 

disturbed forest or/and agroforestry holds 51 species (66%) belonging to 29 families and arable 

land 19 species (25%) belonging to 16 families.  

The identification of the common species on the basis of species frequency of occurrence on each 

land use of the vegetation group show that the evergreen forest holds 8 species which belongs to  

7 families, the disturbed or/agroforestry holds 15 species which belongs to 12 families. Whereas 

the cropland holds 7 common species which belongs to 5 families (Table 3.1).   

The endemic species identification on the basis of IUCN category show that the three vegetation 

groups in the Gacheb catchment holds endemic species. The evergreen forest holds 6 endemic 

species out of which three belong to the category of near threatened and vulnerable species under 

the IUCN species category, whereas the disturbed or/and agroforestry holds 2 endemic species 

which belongs to the vulnerable and least concern species category of IUCN. The arable holds one 

endemic species which belongs to least concern species category of IUCN (Table 3.2). 
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Table 3.1.5 Most common species in the three vegetation groups 

 Vegetation groups  

Species  Evergreen  

forest 

Disturbed or/and 

agroforestry  

Arable   Family  

Polyscias fulva Hiern √ √ × Araliaceae 

Cordia africana Lam.  √  √ × Boraginaceae 

Croton macrostachyus Hochst. ex Delile √ ×  × Euphorbiaceae 

Albizia gummifera J.F.Gmel.C.A.Sm.  √ √ × Leguminosae 

Millettia ferruginea Hochst Baker √ √ × Leguminosae 

Justicia schimperiana T.Anderson √ × × Acanthaceae 

Phytolacca dodecandra L'Herit √ × × Phytolaccaceae 

Carissa spinarum L √ √ × Apocynaceae 

Mangifera indica L ×  √ × Anacardiaceae 

Rhamnus prinoides L’Hérit × √ × Rhamnaceae 

Coffea arabica L.  × √ × Rubiaceae 

Ocimum lamiifolium Hochst.ex Benth × √ × Lamiaceae 

Ensete ventricosum Welw.Cheesman × √ × Musaceae 

Colocasia esculenta L. Schott × √ × Araceae 

Brassica oleracea L × √ × Brassicaceae 

Galinsoga parviflora Cav × √ √ Asteraceae 

Bidens pilosa L.1753  × √ √ Asteraceae 

Agerantum conyzoidesL.1753 × √ × Asteraceae 

Zea mays L × × √ Poaceae 

Plectranthus barbatus Andrews × × √ Lamiaceae 

Veronica persica Poiret × × √ Plantaginaceae 

Bidens pachyloma Oliv. and Hiern Cufod × × √ Compositae 

Agerantum conyzoides L × × √ Asteraceae 

 Summary No of common species   

Evergreen 8    

Disturbed or/and agroforestry 15    

Arable 7    

 The identification of the most common species on the bases of frequency of occurrence of the 

species on each land use types of each vegetation group. A species which occur in all 5 land use 

of each vegetation group are considered for identification of the most common species on each 

vegetation group.  
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Table 3.2.6 Endemic plant species on the three vegetation groups in Gacheb catchment. (IUCN 

categories; CR=Critically endengered; EN=Endengered; VU=Vulnerable NT=Near 

Threatned; LC=Least Concern; NE=Not Evaluated. 

Endemic species  Growt

h form 

Family IUCN  

categor

y 

Vegetation group 

Millettia  ferruginea Hochst Baker T Leguminosa

e 

LC Evergreen forest & 

Disturbed/agroforestr

y 

Solanecio gigas Vatke C.Jeffrey S Asteraceae LC Evergreen forest 

Circium schimper Vatke C.Jeffrey ex Cuf. H Asteraceae NE Evergreen forest 

Echinops kebericho Mesfin H Asteracea VU Evergreen forest & 

Disturbed/agroforestr

y 

Inula confertiflora A. Rich. H Asteraceae NT Evergreen forest  

Bidens pachyloma Oliv. & Hiern Cufod. H Asteraceae LC Arable  

Hypericum quartinianum A. Rich. S Hypericacea

e 

VU Evergreen forest 

Summary No of endemic species 

Evergreen forest 6    

Disturbed or/and agroforestry 2    

Arable  1    

Growth form: T= tree; S=shrub; H: herb 

The Shannon species’ diversity index for trees of the evergreen forest (2.3) is significantly different 

from disturbed forest or/and agroforestry (2.0) (P<0.05), as well as from the arable land (0.5) 

(P<0.00001). Similarly, the disturbed or/and agroforestry diversity index differs significantly from 

the trees on arable land. The Shannon’s diversity index for shrubs in the evergreen forest (1.9) is 

significantly different from the disturbed forest or/and agroforestry (1.1) (P<0.001), as well as 

from arable land (0.7) (P<0.00001). Like the trees, the disturbed forest or/and agroforestry differs 

significantly in shrub species diversity from the arable land (P<0.01).The Shannon species’ 

diversity index for herbs in the evergreen forest (2.2) is similar to the disturbed forest or/and 

agroforestry (2.0). However, the Shannon’s index for herbs in both the evergreen and disturbed 

forest or/and agroforestry is significantly different from the arable land (1.8) (P<0.005).The total 
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(trees, shrubs and herbs) Shannon diversity index of the evergreen forest (3.1) is significantly 

higher than the one of the disturbed forest or/and agroforestry (2.8) (P<0.01), as well as the one 

regarding the arable land (2.0) (P<0.00001). In contrast, the arboreal, herbal and total species’ 

richness and evenness in the disturbed forest or/and agroforestry is similar to the evergreen forest’s 

(Table 3.3). 

Table 3.3.7  Vegetation indices of evergreen forest, disturbed forest or/and agroforestry and 

arable land 

                    Vegetation groups 

Growth form Parameter Evergreen 

forest 

Disturbed or/and 

agroforestry 

Arable 

Trees Shannon’s diversity index 2.3±0.3a 2.0±0.2b 0.5±0.2c 

 Species richness 13.8±3.6a 11.6±2.1a 2.4±0.9b 

 Species evenness 0.9±0.05a 0.8±0.03ab 0.6±0.3b 

Shrubs Shannon’s diversity index 1.9±0.2a 1.1±0.3b 0.7±0.2c 

 Species richness 9.0±2.8a 6.2±1.3b 2.4±0.6c 

 Species evenness 0.9±0.1a 0.6±0.1b 0.8±0.2ab 

Herbs Shannon’s diversity index 2.2±0.2a 2.1±0.1a 1.8±0.1b 

 Species richness 12.2±3.6a 10.4±2.0ab 8.0±0.7b 

 Species evenness 0.9±0.1a 0.9±0.1a 0.9±0.1a 

Overall Shannon’s diversity index 3.1±0.2a 2.8±0.1b 2.0±0.03c 

Trees, shrubs & herbs Species richness 35.0±9.4a 28.2±4.2a 13.4±0.9b 

 Species evenness 0.9±0.04a 0.9±0.02a 0.8±0.02b 

Mean values with different letters among the vegetation groups are significantly different from 

each other (p<0.05).  

The ordination, based on the FA analysis based on frequency of occurrence of all species shows 

differences in species composition between the three land use types. The first FA axis (48% of the 

variance) corresponds to a gradient from the evergreen forest to the disturbed forest or/and 

agroforestry and a gradient from the evergreen forest to arable land. The second FA axis (34%) 

matches a gradient from the disturbed forest or/and agroforestry to arable land; and a gradient from 

the evergreen forest to arable land. However, the disturbed forest or/and agroforestry and 

evergreen forest were similar (Fig. 3.2).  Further, the second FA shows that the forest in middle 

elevation (ZM and DM) are different from the forest in high and low (FH, ZH and FL) Fig. 3.2).   
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Figure 3.2 Biplot of the FA ordination of vegetation composition in three land use types at 5 

topographic positions: FH= Faketen high, DM= Dakin middle, ZH= Zemika high, 

ZM= Zemika middle and FL= Fanika low. The first FA and second FA of the 

vegetation composition explain 82% of the variation between individual sites.  

Topsoil characteristics in relation to vegetation  

The Spearman's correlation coefficient was determined for the vegetation FA axis and soil 

variables (Table 3.3). The first FA axis of the vegetation, which corresponds to the gradient from 

forest to agroforestry and forest to cropland, is significantly correlated with the clay content (0.41), 

organic carbon (0.43), nitrogen (0.57), exchangeable sodium (0.56), potassium (0.46), calcium 

(0.52), magnesium (0.47), cation exchange capacity (0.51), bulk density (-0.53) and sand (-0.59) 

(P<0.05)  (Table 3.3). The second FA axis, which corresponds to a gradient from agroforestry to 

cropland and forest to cropland, is significantly correlated with the clay (0.45) and bulk density (-

0.39), organic carbon (-0.43), nitrogen (5.0), available phosphorus (0.43), exchangeable potassium 
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(0.38), exchangeable calcium (0.51). (Table 3.3). Overall, the first and second FA share the same 

significant correlation with clay, BD, OC, N, K and Ca. However, sand, Na, Mg and CEC are only 

significant in the first FA axis, whereas P is only significant in the second FA (Table 3.3). 

 

Table 3.4.8 Spearman's correlation between FA axes of the vegetation and soil variables 

** Correlation is significant at the 0.01 level (2-tailed).; * Correlation is significant at the 0.05 

level (2-tailed).   

 

3.4 Discussion 

Vegetation patterns 

The vegetation composition of woody and herbaceous plants reveals the presence of indigenous, 

modified and planted vegetation at the study sites. The evergreen forest group is state-managed 

natural and plantation forest, which matches the Afromontane rainforests and the transitional 

rainforest of southwest Ethiopia (Friis, 1992). The disturbed forest or/and agroforestry vegetation 

group is farmer-owned modified and planted vegetation, which corresponds to the semi-forest 

coffee, forest coffee (Schmitt, 2006) and home garden agroforestry (Badege & Abdelkadir, 2003). 

The arable land vegetation group is farmer-owned planted vegetation, which corresponds to the 

recently introduced cereal-based farming system (Mekuria, 2005).  

The common species in disturbed or/and agroforestry group is 30% higher than the evergreen 

forest and 36% higher than the arable. The is due to the presence of commonly adopted crops 

Spearman's correlation  
FA 1 FA 2 

Sand -0.59** -0.36 

Silt 0.34 0.24 

Clay 0.41* 0.45* 

BD -0.53** -0.39* 

pH 0.38 0.36 

OC 0.43* 0.43* 

N 0.57** 0.50** 

P 0.32 0.43* 

Na 0.56** 0.24 

K 0.46* 0.38* 

Ca 0.52** 0.51** 

Mg 0.47* 0.26 

CEC 0.51** 0.37 
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(coffee, fruits, shade trees and food crops (enset, taro and cabbage)) in the agroforestry.  Similarly, 

Cruz-Angón et al (2008) reported high numerical dominance of common species in agroforestry 

compared to natural forest. Yet, both evergreen and disturbed or/and agroforestry groups have 

33% similarity in common species. This reveals the role disturbed or/and agroforestry group in 

conservation of indigenous species in agroforestry. Similarly, Vallejo-Ramos et al. (2016) reported 

the conservation of indigenous species in agroforestry.  

The presence of relative higher endemic species in evergreen forest reveals the importance of the 

evergreen forest in conservation of endemic species. Similarly, Schmitt (2006) and Feyera (2005) 

reported the presence of endemic species in the Afromontane forest of southwest Ethiopia. The 

disturbed or/and agroforestry have relative medium endemic species, which implies that the 

disturbed or/and agroforestry play an important role in conservation of endemic species. In 

contrast, Laurance et al. (2006) and Garcia-Fernandez et al. (2003) reported high loss and poor 

endemic species in agroforestry. The presence of low endemic species in arable group may be 

attributed to management intervention.  

The difference in tree species Shannon’s diversity index between forest and disturbed forest or/and 

agroforestry reveals the occurrence of management interventions for coffee productivity: farmers 

selectively fell trees to enhance light exposure for the coffee plants, in line with findings by Schmitt 

(2006) and Steffan-Dewenter et al. (2007). 

The occurrence of relatively lower values for shrub species Shannon diversity index, richness and 

evenness under the disturbed forest or/and agroforestry (as compared to the evergreen forest), as 

also observed by Schmitt (2006), may be related to the coffee dominance and the removal of 

competing shrubs. In contrast, the herb species Shannon diversity index and richness under the 

disturbed forest or/and agroforestry is similar to the evergreen forest’s. This can be due to the fact 

that the removal of herbs, which is less frequent than the removal of shrubs, is offset by the 

enhanced light exposure and the nutrient contents of these soils. Steffan-Dewenter et al. (2007) 

found an even greater herb species diversity and richness under agroforestry than under the natural 

forest in a nearby study area.  

The arable land has lower tree, shrub and herb species Shannon diversity index and richness, which 

is related to the dominance of maize cropping and affined management interventions. This study 



 

 

108 

 

coincides with the findings of Tadesse (2007), who discussed the dominance of this single cereal 

crop and the monocultural cultivation in the study area. 

Interactions between vegetation and topsoil characteristics of the land use  

The influence of vegetation and its litter on topsoil characteristics as already observed by authors 

such as Ruggiero et al. (2002), Aweto (2013) or Runyan et al. (2012), is evidenced here by the 

strong correlation between the first and second FA axes and these topsoil characteristics. 

Furthermore, forest and agroforestry are distinct in vegetation composition, as reflected by the first 

FA axis of vegetation and by Shannon’s index (i.e. tree and shrub life forms) (Fig. 3.2). 

Nevertheless, forest and agroforestry are exhibiting an equivalent topsoil fertility, since clay, OC, 

N, K and Ca were both significantly high in both forest and agroforestry, but still Na, Mg and CEC 

were high forest; and P is high in agroforestry. This implies that the tree species composition in 

agroforestry plays a significant role in the soil fertility restoration and maintenance. Particularly 

the presence of large number of leguminous plants (Albizia gummifera J.F.Gmel.C.A.Sm., 

Millettia ferruginea Hochst Baker, Sesbania sesban L Merr and Leucaena leucocephala Lam. de 

Wit) in the agroforestry of the study area (Table A1-3), has enhanced the nutrient cycling and litter 

decomposition, as also highlighted by Sharma (2011).  

3.5 Conclusion 

The presence of relative high tree, shrub and herb species Shannon's diversity indices (and richness 

in the disturbed forest or/and agroforestry vegetation group) is a sign of potential indigenous 

vegetation restoration and conservation in the study area. This biodiversity in both the evergreen 

forest and the disturbed forest or/and agroforesty also determines good topsoil fertility. 

Remarkably, the topsoil fertility under disturbed forest or/and agroforesty is equivalent to the 

natural forest’s (Fig 2.2a, Fig 2.3), while the species composition, diversity and richness (for trees, 

shrubs and herbs) and soil fertility -under cropland- are much lower. Most importantly, both forest 

and agroforestry are conserving endemic plant species under endangered category of IUCN. 

Therefore, in the upper Gacheb catchment -and most probably in the larger part of southwest 

Ethiopia- agroforestry plays a similar role in forest biodiversity sustenance, conservation and 

topsoil fertility maintenance, confirming the findings by Toledo & Moguel (2012) who 

demonstrated the multiple values and benefits of coffee-based agroforestry systems worldwide. 
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Inversely, cereal-based open field cropping shows a negative impact on the species composition 

and diversity, as well as on the soil fertility.  
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Chapter 4  

Runoff response in five paired catchments astride southwest Ethiopia’s 

tropical forest frontier 
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Abstract 

Tropical montane forests are source of most of the plant's fresh water and regulators of the global 

hydrological cycle. However, increasing human population and expansion of agricultural land 

have led to deforestation. We evaluated the impact of deforestation on surface runoff, base flow 

and run coefficients (RC) in five paired forest and cropland small catchments in Gacheb catchment. 

The runoff data were recorded in the main rainfall seasons (June – October) of 2013 and 2014 

using nine San Dimas flumes and one V-notch weir installed in natural forest and cropland 

stratified in three altitudinal zones; high (2300-1800 m a.s.l.), middle (1800-1500 m a.s.l.) and low 

(1500-1200 m a.s.l.). The results show that the average seasonal runoff and RC of the cropland is 

2 to 4 times greater than that of the forest. However, the average seasonal base flow from forest is 

1.5 to 4 times greater than from cropland. The average monthly runoff depth from cropland (51 

mm) is significantly higher than that from forest (22 mm). Similarly, the runoff coefficient of the 

cropland (18%) is significantly higher than the forest (8%). In contrast, the monthly average base 

flow depth in forest (6 mm) is significantly higher than that of cropland (2 mm). The runoff 

coefficient of both cropland (R=0.64) and forest (R=0.22) has association with catchment area, but 

the association in cropland is stronger than the forest. Therefore, forest land use plays an important 

role on surface runoff and base flow regulation at small scale catchments in Ethiopia’s upper White 

Nile basin.  

Keywords: Afromontane forest, Base flow, Runoff coefficient, Vegetation density, Soil 

characteristic 
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4.1 Introduction 

Tropical montane forests are the most important source of planet's fresh water and regulator of the 

global hydrological cycling (Bruijnzeel, 2004). They also play an important role in capturing water 

and minimizing surface runoff (Bruijnzeel, 2004; Kramer et al., 1995). However, human induced 

deforestation is directly impairing the hydrological and ecological functions, thereby causing 

profound environmental degradation (Foley et al., 2007; Nyssen, et al., 2004). 

At the beginning of 19th century, southwest Ethiopia was completely covered by afromontane forest. 

Between 1971 and 1975, 38.4% of the southwestern region remained covered by closed forests. 

However, several studies show a rapid decline in natural forest cover and a rapidexpansion of cropland 

in the region. For instance, Bonga forest declined by 28% and 24% in between 1976 to 2001,whereas 

cropland and settlement increased by 56%; Sheko forest declined by 23% in the period 1973 -2005; 

part of Bench, Keffa and Sheka forest declined by 15%, while cropland increased by 14% ( Mekuria, 

2005; Dereje, 2007; NTFP, 2009). 

The upper Gacheb catchment (Fig. 4.1) is the main source of water for a water treatment plant and 

a hydro power plant. However, large part the Gacheb catchment afromontane forest have led to 

deforestation, mainly because of increase in population and large scale expansion of agriculture 

land. Several studies in the humid tropics reported that deforestation has a significant impact on 

reservoir water storage capacity of the plant (Yin & Li, 2001),  increase flooding risk (Acreman et 

al., 2000) and increase in water turbidity (Chapman & Chapman, 2003; Dessie & Bredemeier, 

2013), hydrological cycle, hydrological process, water availability, water variability, surface 

runoff, soil infiltration, transpiration,  groundwater recharge, stream flow dynamics and water 

yield of the catchment (e.g. Bewket & Sterk, 2005; Hayhoe et al., 2011; Meher, 1991; Muñoz-

Villers & McDonnell, 2013; Sahin & Hall, 1996; Savary et al., 2009). However, studies reported 

that the magnitude of surface runoff varies with climate, management practice and duration of 

cultivation after forest conversion (Recha et al., 2012; Muñoz-Villers & McDonnell, 2013).  

Despite, the southwest Ethiopia forest frontier is one the deforestation hot spots in Ethiopia,  yet, 

no study has been carried out to evaluate the impact of deforestation on surface runoff in southwest 

Ethiopia. In this regard, several runoff studies have been conducted in northern Ethiopia (e.g. 

Girmay et al., 2009; Hurni et al., 2005; Teka et al., 2013). Moreover, there was no quantitative 

http://onlinelibrary.wiley.com/doi/10.1111/conl.12008/full#conl12008-bib-0041
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study on surface runoff at small catchment level in Ethiopia. Therefore, it is important to improve 

our understanding on the impact of deforestation on surface runoff characteristics in the upper part 

of Gacheb catchment. 

The objective of the study using five paired catchments astride the forest frontier in Gacheb 

catchment was therefore (i) to evaluate the impact of deforestation on surface runoff, base flow 

and runoff coefficient for small catchments under forest and cropland, which is deemed 

representative for the larger southwestern Ethiopian highlands.  

4.2 Materials and Methods 

4.2.1 Study area 

The upper Gacheb catchmentstudy area, located in the headwaters of the White Nile in southwest 

Ethiopia. Altitudes range between 1000 and 2600 m a.s.l. (Fig. 4.1). The underlying basement 

Precambrian formations comprise a variety of metamorphosed sedimentary, volcanic and intrusive 

rocks. These Precambrian basement rocks are overlain by Mesozoic strata (marine origin)and 

Tertiary basalt traps (Westphal, 1975; Mengesha et al., 1996). 

The annual rainfall pattern is unimodal with a rainy season from mid-March to mid-November. 

Average annual rainfall depth in Mizan Teferi (1440 m a.s.l.) is 1780  270 mm y-1, annual 

reference evapotranspiration depth is 1259  12 mm y-1 (Grieser et al., 2006), and the average air 

temperature ranges from 13 to 27 °C (Tadesse et al., 2006). The harmonized soil map of Africa 

(Dewitte et al., 2013) indicates that Leptosols are dominant on crests, while Nitisols are dominant 

on the hill slopes (lower, middle and upper parts), to which Alisols and Cambisols are locally 

associated. Fluvisols are found in the flat valley bottoms where meandering rivers occur. 
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Figure 4.1.18 Location of the Gacheb catchment study area, southwest Ethiopia, with the study 

catchments and instrumentation  

The Afromontane forest vegetation of Gacheb catchment is composed of Aningeria adolfi-

friederici Engl., Croton macrostachyus Hochst. ex Delile,  Hagenia abyssinica Willd., Cordia 

africana Lam., Prunus africana Hook.f.Kalkman, Millettia ferruginea Hochst. Baker, Polyscias 

fulva Hiern.Harms, Albizia gummifera J.F.Gmel C.A.Sm., Bridelia micrantha Hochst.Baill. at the 

upper stratum of the vegetation structure, integrated with Grewia ferruginea Hochst. exA.Rich, 

Vernonia amygdalina Delile. Cyathe amanniana and Ricinus communis L. at the lower stratum.    

The agroforestry land of Gacheb catchment is composed of Coffea arabica L., as a cash crop 

integrated with food crops such as false banana (Ensete ventricosum Welw. Cheesman), banana 

(Musa sapientum L.) and taro (Colocasia esculenta L. Schott) and spices like korarima 

(Aframomum corrorima Braun). Moreover, various fruit trees such as mango (Mangifera indica 
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L.), avocado (Persea americana Mill.), papaya (Carica papaya L.) and orange (Citrus sinensis L. 

Osbeck) are also integrated in the farming system. Furthermore, native trees like Albizia 

gummifera J.F.Gmel. C.A.Sm., Cordia africana Lam. and Millettia ferruginea Hochst. Baker, are 

kept for shade, fodder, firewood, medicinal value and soil fertility maintenance.   

 In the croplands taro (Colocasia esculenta) is grown in moist places, while maize (Zea mays) is 

dominant. Beans are grown in as mixed crop with maize and single crop in the uplands, and 

sorghum may be added later on spots where the original crop failed and after harvesting of maize. 

Taking benefit of reliable rains at the onset of the rainy season, maize is sown in May, after 2-3 

tillage operations with oxen-drawn Ethiopian maresha ard plough and 1-2 by hand tools that 

generally take place in April (Table 4.1). Given the high growth of maize, the cropped fields are 

not weeded after the crop is well established and a strong herb undergrowth develops on cropland, 

which after crop harvest is used as livestock feed in the cropland (Fig. 4.2B). 

Table 4.1.9 Agricultural calendar in Gacheb catchment for major crops in the main growing season 

: maize (*), taro (¤), and beans (#).  
 

Major activities1 J F M A M J J A S O N D 

Land preparation2    ¤ *#        

Sowing or planting    ¤ *#        

Weeding and cultivation3      *#¤ *#¤      

Harvesting         *# *# ¤ ¤ 

1In our study catchments, farmers do not use fertiliser, and maize monocropping is dominant (without crop rotation, 

without fallowing). Only in the upper FHC catchment, there is crop rotation with beans and barley. 
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4.2.2 Experimental setup and data collection 

Runoff  

Runoff data was collected at the outlet of paired catchments with forest and cropland (Fig. 4.1). 

Ten small catchments were selected along three altitudinal transects and stratified according to 

land use type (forest and cropland) and three elevation zones (high, 1900-2300 m a.s.l.; middle, 

1500-1900 m a.s.l.; and low, 1200-1500 m a.s.l.). All forest and cropland catchments had a runoff 

monitoring station equipped with a calibrated flume at the outlet (Fig. 4.1; Table 4.1). 

Runoff data was collected during the main rainy season of 2013 and 2014 (June 8 to October 

30).Ten paired small catchments (5 in forest and 5 in cropland) were selected in the Gacheb 

catchment study area. The runoff stations consisted of nine San Dimas flumes and one V-notch 

weir, installed on the outlet of the drainage basins. The flumes were equipped with a graduated 

strip, to manually record the runoff depth. The flow depth was measured at ten minutes interval 

during every rainfall event. The dimension of the flumes installed in forest (1.5×0.5×0.5 m; 

Length×Width×Height) is different from the cropland (2.1×0.7×0.7 m; L×W×H), because the 

runoff depths from the forest are generally smaller than those from cropland (Table 4.2). 

Flow discharge rating curves 

In order to determine the discharge, a current meter was used to record the number of rotations 

within 30 second interval at various flow depths at all San Dimas flumes. The recorded rotation 

number at various flow depths was then converted to surface velocity with the standard formula:   

V(cm s-1)= 1.93+31.17×N, if N≤1.98; V(cm s-1)= 0.19+32.05×N, if 1.98<N>10.27;  

V (cm s-1)= -14.09 + 33.44 × N, if N ≥ 10.27                                                                           (4. 1)                                                                                         

where, V=surface velocity, 1.93, 31.17, 0.19, 32.05, -14.09 and 33.44= standard number for the 

current meter and N=Number of rotations.                                                              

The cross-sectional flow area was determined from the San Dimas flume width and the flow depth. 

Instantaneous runoff discharge for all velocity and corresponding flow depth measurements was 

then calculated as: 



 

 

121 

 

Q=A*V                           (4.2)                                                                                                         where, 

Q= Instantaneous runoff discharge (cm3 se-1), A= cross sectional flow area (cm2) and V= surface 

velocity (cm se-1) 

However, the current meter calibration was suspected to lead to underestimations, because of 

partial submersion of the current meter during calibration of runoff events in all measurement 

stations. To validate this we compared our calibration with the standard discharge curve for 

modified San Dimas flume. It was found that the discharge curve for modified San Dimas flume 

developed by Bermel (1950) is in correspondence with our discharge rating curves. Hence, adapted 

discharge rating curves were developed for 500 mm (small San Dimas flume) and 700 mm size 

(large San Dimas flume) on the basis of Bermel’s (1950) rating curve (Table 4.2). 

Conversion to continuous discharge series  

The continues discharge serious was calculated based on the modified equation for small and large 

San Dimas flumes, which was interpolated for installed San Dimas flumes (small=500 mm; 

large=700 mm) from Bermel (1950) flow depth-discharge rating curves measured over a wide 

range of flow depths on various modified San Dimas flumes. It is calculated with the equation 

(modified from Bermel (1950)):  

Q= a db                                                                                                                                  (4.1) 

where Q = discharge, d = flow depth, a and b are fitting parameters.  

At the lowest forest, when observing the channel, very small runoff discharge was expected and a 

V-notch weir was installed. The standardized rating curve for 90° V-notch weir was used to 

calculate the discharge. However, as the V-notch weir was installed in a level area, large volumes 

of water ponded behind it; hence a stage-water volume rating curve was developed based on the 

geometry of the pond. This volume was then added to the measured discharge in the V-notch weir 

(Table 4.2). These rating curves were used to convert the manually recorded continuous flow depth 

series to storm discharge records. The resulting continuous runoff discharge series were integrated 

on event and daily basis.  
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Figure 4.2.19 Cropland (top) and forest (bottom) catchments at the outlet of which San Dimas  

flumes were installed (October 2013) 

Rainfall 

Five rain gauges were installed, each of them representing two runoff monitoring stations (forest 

and cropland catchments) (Fig. 5.1). Half-daily (12 hr) rainfall was recorded every morning at 8:00 

AM and evening 8:00 PM. The rainfall depth was calculated from the area of rain gauge opening 

and collected water volume.  

Estimation of missing runoff discharge data  

For some rain events, especially in the night, runoff discharge data could not be recorded. Hence, 

the missing discharge Qd was estimated by a regression between the 12 hr observed rainfall and 

runoff per station (Table 4.3).  

Base flow and runoff coefficients  

The base flow was measured every morning and evening; as well as before and after every rain-

related flood. The base flow recorded before the beginning of the rainfall events were used to 
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calculate the base flow at that particular rainfall event on the station. The seasonal runoff 

coefficients were calculated by dividing the seasonal runoff by the seasonal rainfall per catchment. 

The seasonal runoff can, however, partly be attributed to base flow, while the other part consists 

of surface runoff.  

Plant density 

Plant density was recorded on plots within the forest and cropland catchments. The main plots 

were 20 × 20 m2 replicated three times in each catchment. Tree species above 1.5 m height were 

counted inside the 20 × 20 m2 main plot and shrubs were counted in subplots of 5 × 5 m2 at the 

four corners of the main plot. The plant density of the trees, shrubs and herbs were calculated based 

on the equation by Mueller-Dombois & Ellenberg (1974):   

Density of species i = 
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐭𝐡𝐞 𝐩𝐥𝐚𝐧𝐭𝐬 𝐨𝐟 𝐬𝐩𝐞𝐜𝐢𝐞𝐬 𝐢

𝐀𝐫𝐞𝐚 𝐨𝐟 𝐪𝐮𝐚𝐝𝐫𝐚𝐧𝐭𝐬
                                                                  (4. 3)                                                   

Soil characteristics 

Soil samples were collected from 20 × 20 m2 plots under the forest and cropland, in each catchment 

where runoff was monitored. A total of 60 soil samples were taken from both forest and cropland. 

Separate soil samples were taken at the middle of each plot for soil bulk density determination. 

The standard analytical procedures were followed to determine soil bulk density (using 100 cm³ 

Kopecky rings), soil texture (Sedigraph III plus particle size analyzer) and organic carbon content 

(Walkley & Black, 1934), which soil organic matter was obtained from the organic carbon (i.e 

SOM= SOC*1.72). The soil texture, bulk density, soil organic matter were selected to determine 

areas susceptible to surface runoff (Kadlec et al., 2012; Schmocker-Fackel et al., 2007).   

Data analysis 

The difference in monthly base flow, runoff, runoff coefficient, vegetation density and physico-

chemical soil characteristics between forest and cropland was analyzed in one way ANOVA using 

SPSS (software version 20). Means were compared by least significant difference (LSD). The 

relationship between runoff coefficient and area of catchment was analyzed using correlation 

analysis. 
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Table 4.2.10Characteristics of catchments monitored during the main rainy season of 2013 and 2014 (June 8-October 30) 

FHF: Faketen high forest; FHC: Faketen high cropland; DMF: Dakin middle forest ; OMC: Oka middle cropland; ZHF: Zemika high 

forest; ZHC: Zemika high cropland; ZMF: Zemika middle forest; ZMC: Zemika middle cropland; FLF: Fanika low forest; FLC: 

Fanika low cropland. 
 

 

4.3 Results 

4.3.1 Rainfall 

The average seasonal (146 days) rainfall depth was 1405 mm at FH site, 1223 mm at DM site, 1535 mm at ZH site, 1360 mm at ZM 

site and 1227 mm at FL site (Table 5.4). Average monthly precipitation during the rainy season was 281±95 (FH site), 244±73 (DM 

site), 307±110 (ZH site), 272±88 (ZM site) and 225±73 (FL site) (Table 4.5). 

Description FHF FHC DMF OMC ZHF ZHC ZMF ZMC FLF FLC 

Location  

of stations 

6°59' N 

35°39' E 

7°0' N 

35°39' E 

7°2' N 

35°38' E 

7°1' N 

35°39' E 

6°55' N 

35°34' E 

6°55' N 

35°34' E 

6°55' N 

35°33' E 

6°55' N 

35°33' E 

6°58' N 

35°30' E 

6°57' N 

35°30' E 

Area (ha) 11.5 7.0 7.9 5.2 5.9 4.2 3.7 4.0 4.1 3.6 

Elevation (m a.s.l) 2135 1990 1632 1606 2022 1879 1544 1717 1261 1324 

Rainfall (mm) 1405±92 1405±92 1218±88 1218±88 1535±31 1535±31 1360±23 1360±23 1126±14 1126±14 

Slope (%) 42 29 23 33 35 18 20 23 14 14 

Perimeter (m) 1399 1064 1050 990 952 954 730 1034 888 1032 

Compactness 0.74 0.78 0.90 0.67 0.83 0.86 0.87 0.65 0.65 0.60 

Tree density (m-2) 0.24 

±0.004 

0.003 

±0.001 

0.21 

±0.01 

0.003 

±0.001 

0.23 

±0.01 

0.003 

±0.001 

0.21 

±0.004 

0.003 

±0.001 

0.19 

±0.01 

0.003 

±0.001 

Shrub density (m-2) 2.6± 0.1 0.72±0.1 2.5 ±0.1 0.7±0.04 2.5 ±0.1 0.7 ±0.1 2.5 ±0.1 0.71 ±0.1 2.4 ±0.1 0.7 ±0.04 

Location of  rain gauge 

stations 

6°59' N  35°39' E 7° 2' N 35°39' E 6°55' N 35°34' E 6°55' N 35°33' E 6°58' N 35°30' E 
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Table 4.3.11 Rating curves of standardized San Dimas flume and V-notch weir installed in forest 

and cropland catchments  

Statio

n 

Catchmen

t 

Regression equation of 

flow discharge (Q, in cm³ 

s-1) vs. flow depth (d, in 

cm) 

Instrumentation and procedures 

FHF Forest Q = 2352* d1.366 All forest catchments except FLF are equipped with 

small San Dimas flumes (50 cm width and 50 cm 

height). Bermel’s (1950) flow depth relationship 

with discharge for modified San Dimas flume was 

used as calibration curve equation. 

DMF Forest 

ZHF Forest 

ZMF Forest 

FLF Forest Q=2.3691Ce tan( θ
/2)*√2g*hu2.5 

Qv =0.789*x 

This forest catchment was yielding very low runoff 

response, hence a V-notch weir was installed. 

Event runoff volume Qd was calculated as the sum 

of ponded water behind the V-notch (Qv) and 

possible free flow discharge through it (∑Q). A 

regression equation was developed for standard V-

notch weir with 90° opening (θ = 90°; Ce = 

discharge coefficient; hu = head), and depth – 

volume curve developed for the ponding water 

depth (x).  

FHC Cropland Q = 4729*d1.408 All cropland catchments are equipped with large 

San Dimas flumes (70 cm width and 70 cm height). 

Bermel’s (1950) flow depth relationship discharge 

for modified San Dimas flume was used as 

calibration curve equation. 

OMC Cropland 

ZHC Cropland 

ZMC Cropland 

FLC Cropland 

FHF=Faketen high forest; FHC=Faketen high cropland; DMF=Dakin middle forest; OMC=Oka 

middle cropland; ZHF= Zemika high forest; ZHC= Zemika high cropland; ZMF: Zemika middle 

forest; ZMC: Zemika middle cropland; FLC: Fanika low cropland; FLF: Fanika low forest. 

3.3.2 Runoff 

Seasonal runoff, base flow and runoff coefficient 

In the study catchments at the tropical forest frontier of Gacheb, runoff coefficients vary between 

12% in the Faketen high forest (FHF) sub-catchment in 2013 and 23% in the Faketen highland 

cropland (FHC) catchment in the same year (Table 4.4). Overall, the mean RC from cropland 

catchments (19% ±2%) is double than that from forest catchments (8% ±3%), whereas the mean 
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base flow of the forest (29±14 mm) is 2 times higher than that from the cropland (13±7 mm) (Table 

4.5). The RCs per land use class appear to be well grouped around their averages.  

The contrast between forest and agricultural land is also evident in Fig. 4.3, where, as an example, 

the paired Oka and Dakin catchments are contrasted. This figure shows that the storm runoff in 

Oka is relatively higher than Dakin forest. However, the base flow in cropland is less than that 

from the forest throughout the season.  

The seasonal runoff depth in cropland is higher than that for forest in all sites. The runoff depth in 

cropland was 314±45 mm at FHC site, 239±24 mm at DMC site, 290±58 mm at ZHC site, 211±38 

mm at ZMC site and 212±35 mm at FLC site (Table 4.4).  However, the seasonal base flow of the 

forest is higher than the cropland. The base flow in the forest was 42±6 mm at FHF site, 16±2 mm 

at DMF site, 39±9 mm at ZHF site and 18±4 mm at ZMF site. Alike the runoff, seasonal runoff 

coefficients of the cropland is higher than the forest. The runoff coefficients in cropland were 22±1 

at FH site, 20±1 at DM site, 19±0 at ZH site, 16±1 at ZM site and 19±1 at FL site (Table 4.5). 
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Table 4.4.12 Regression equations for the relationship between observed 12 h rainfall depth (P, 

in mm) and storm runoff depth (Qd, in mm) in the paired catchments 

Catchment Land 

use  

Year Regression equation between 

half-daily rainfall (P) and 

runoff (Qd) 

Number of 

observation 

FHF Forest 2013 Qd= 0.152P-0.68, R² = 0.94 n=117 

  2014 Qd= 0.152P-0.63, R² = 0.87 n=143 

DMF Forest 2013 Qd= 0.062P -0.27, R² = 0.90 n=103 

  2014 Qd= 0.084P -0.55, R² = 0.89 n=71 

ZHF Forest 2013 Qd= 0.141P-0.59, R² = 0.93 n=116 

  2014 Qd= 0.132P-0.57, R² = 0.94 n=131 

ZMF Forest 2013 Qd= 0.117P -0.55, R² = 0.90 n=115 

  2014 Qd= 0.108P -0.49, R² = 0.92 n=113 

FLF Forest 2013 Qd= 0.105P-0.45, R² = 0.87 n=78 

  2014 Qd= 0.111P-0.49, R² = 0.92 n=95 

FHC Cropland 2013 Qd= 0.356P-1.48, R² = 0.96 n=128 

  2014 Qd= 0.343P -1.36, R² = 0.94 n=112 

OMC Cropland 2013 Qd= 0.312P -1.30, R² = 0.92 n=89 

  2014 Qd= 0.368P -2.04, R² = 0.91 n=95 

ZHC Cropland 2013 Qd= 0.302P-1.12, R² = 0.95 n=122 

  2014 Qd= 0.294P-1.30, R² = 0.94  n=110 

ZMC Cropland 2013 Qd=  0.266P-1.13, R² = 0.94  n=112 

  2014 Qd=  0.243P-1.00, R² = 0.93 n=116 

FLC Cropland 2013 Qd=  0.277P-1.14, R² = 0.91 n=82 

  2014 Qd = 0.30P-1.20, R² = 0.91 n=90 

The half-daily rainfall and runoff relationship were developed to calculate the runoff for missed 

rainfall events. FHF=Faketen high forest; FHC=Faketen high cropland; DMF=Dakin middle 

forest; OMC=Oka middle cropland; ZHF= Zemika high forest; ZHC= Zemika high cropland; 

ZMF: Zemika middle forest; ZMC: Zemika middle cropland; FLC: Fanika low cropland; FLF: 

Fanika low forest. 
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Table 4.5.13Seasonal depths of rainfall, runoff, base flow and runoff coefficients during the rainy seasons 

(June–October) of 2013 and 2014 for the 10 catchments in Gacheb catchment 

Station Year Land use types P (mm) Rs 

(mm) 

BF (mm) R (mm) RC (%) 

FHF 2013 Forest 1470±11

8 

132±13 46±4 178±17 12±2 

FHF 2014 Forest 1340±78 103±9 38±2 140±12 11±1 

Average 
 

 1405±92 118±21 42±6 159±27 12±1 

FHC 2013 Cropland 1470±11

8 

323±34 22±3 345±37 23±4 

FHC 2014 Cropland 1340±78 258±23 24±3 282±26 21±4 

Average 
 

 1405±92 291±46 23±1 314±45 22±1 

DMF 2013 Forest 1280±79 47±5 17±1 64±6 5±1 

DMF 2014 Forest 1155±72 42±4 15±1 57±5 5±1 

Average 
 

 1218±88 45±4 16±2 61±5 5±0 

OMC 2013 Cropland 1280±79 245±22 11±1 256±23 20±3 

OMC 2014 Cropland 1155±72 211±17 11±1 222±18 19±2 

Average 
 

 1218±88 228±24 11±0 239±24 20±1 

ZHF 2013 Forest 1312±10

5 

106±12 33±3 139±15 11±2 

ZHF 2014 Forest 1757±10

5 

143±12 45±4 189±15 11±2 

Average 
 

 1535±31

5 

125±26 39±8 164±35 11±0 

ZHC 2013 Cropland 1312±10

5 

241±29 8±1 249±30 19±4 

ZHC 2014 Cropland 1757±10

5 

321±27 10±1 331±28 19±4 

Average 
 

 1535±31

5 

281±57 9±1 290±58 19±0 

ZMF 2013 Forest 1195±83 72±8 15±2 87±10 7±2 

ZMF 2014 Forest  1524±89 99±8 21±1 119±9 8±1 

Average 
 

 1360±23

3 

86±19 18±4 103±23 8±1 

ZMC 2013 Cropland 1195±83 175±20 9±1 184±20 15±4 

ZMC 2014 Cropland 1524±89 231±40 7±1 238±20 16±2 

Average 
 

 1360±23

3 

203±39 8±1 211±38 16±1 

FLF 2013 Forest 1023±82 66±6 0 66±6 6±1 

FLF 2014 Forest 1230±64 79± 8 0 79±8 6±1 

Average 
 

 1127±14

6 

73±9 0 73±9 6±0 

FLC 2013 Cropland 1023±82 176±20 11±2 187±20 18±4 

FLC 2014 Cropland 1230±64 225±19 12±2 237±21 19±3 

Average 
 

 1127±14

6 

201±35 12±1  212± 

35 

19±1 
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Summar

y 

Forest  
 

89±32 29±13 112±48 8±3 

 
Cropland  

 
241±43 13±7 253±47 19±2 

Seasonal rainfall (P), seasonal storm runoff (Rs), seasonal base flow (BF), seasonal catchment 

runoff (R) and seasonal runoff coefficient (RC). FHF=Faketen high forest; FHC=Faketen high 

cropland; DMF=Dakin middle forest; OMC=Oka middle cropland; ZHF= Zemika high forest; 

ZHC= Zemika high cropland; ZMF: Zemika middle forest; ZMC: Zemika middle cropland; FLF: 

Fanika low forest; FLC: Fanika low cropland. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.20 Cumulative rainfall, base flow and storm runoff depths from the paired Dakin forest 

catchment (DMF) (green lines) and Oka middle cultivated catchment (red lines) 
 

Correlation between average monthly runoff coefficient and rainfall depth 

The average monthly runoff coefficient of the cropland and forest has positive correlation with 

rainfall depth, but the relationship in the forest (R2=0.66) is not as strong as the cropland (R2=0.90) 

at FH site. Similarly, strong correlation between runoff coefficient and rainfall depth was recorded 
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in cropland at DM (R2=0.86), ZH (R2=0.83), ZM (R2=0.81) and FL (R2=0.76) as compared to the 

corresponding forest sites (Fig. 4.4).  

 

 

Figure 4.4.21  Average monthly (June to October) rainfall relationship with runoff coefficient in 

five paired catchments,with monthly evolution shown in red colour for cropland 

and blue colour for forested catchments: (a) FHF: Faketen high forest; FHC: 

Faketen high cropland; (b) DMF: Dakin middle forest; OMC: Oka middle cropland; 

(c) ZHF: Zemika high forest; ZHC: Zemika high cropland; (d) ZMF: Zemika 

middle forest; ZMC: Zemika middle cropland; (e) FLF: Fanika low forest; FLC: 

Fanika low cropland.  
 

Average monthly runoff, base flow and runoff coefficient  

The average monthly runoff depth from the cropland is significantly higher than that from forest (P<0.01) 

at all sites: cropland FHC (63±30 mm), DM (48±20 mm), ZH (58±28 mm), ZM (42±20mm) and FL (43±20 
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mm). However, the average monthly base flow from forest is significantly higher than from cropland 

(P<0.05) at all sites except FL. The highest base flow was recorded in a forest catchment at FH (8.3±3 mm), 

followed by DM (3±1 mm), ZH (8±4 mm), and ZM (4±1 mm). Alike the runoff, the average monthly runoff 

coefficient in cropland is significantly different from the forest (P<0.0001) at all sites. The highest runoff 

coefficients were recorded in cropland at FHC site (21±4%), DMC sites (19±2%), ZHC site (18±4), ZMC 

site (15±3%) and FLC site (18±3%) (Table 4.6). 

Table 4.6.14 Average monthly rainfall (P), storm runoff (R), base flow (BF), runoff coefficient 

(RC) per season of the studied catchments. Data collected on 2013 and 2014 (June 

to October) 

Site Station Land use 

type 

P (mm) R(mm) BF (mm) RC (%) 

FH FHF Forest 281±95 32±14b 8.3±3a 11±2b 

 FHC Cropland 281±95 63±30a 4±3b 21±4a 

DM DMF Forest 244±73 12±5b 3±1a 5±1b 

 OMC Cropland 244±73 48±20a 2±1a 19±2a 

ZH ZHF Forest 307±110 33±15b 8±4a 10±2b 

 ZHC Cropland 307±110 58±28a 2±1b 18±4a 

ZM ZMF Forest 272±88 21±9b 4±1a 7±1b 

 ZMC Cropland 272±88 42±20a 2±1b 15±3a 

FL FLF Forest 225±73 14±7b 0±0b 6±1b 

 FLC Cropland 225±73 43±20a 2±2a 18±3a 

Summary  Forest  22±10b 6±3a 8±3b 

  Cropland  51±9a 2±1b 18±2a 

Mean values with different letters among catchments at the same site are significantly different 

from each other (P<0.05). P: average monthly rainfall; R: average monthly runoff, BF: average 

monthly base flow (mm). RC: average monthly runoff coefficient. FHF=Faketen high forest; 

FHC=Faketen high cropland; DMF=Dakin middle forest; OMC=Oka middle cropland; ZHF= 

Zemika high forest; ZHC= Zemika high cropland; ZMF: Zemika middle forest ; ZMC: Zemika 

middle cropland; FLF: Fanika low forest; FLC: Fanika low cropland. 
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Figure 4.5.22 Base flow in the upper Kashem river in the second part of the rainy season. 

Photograph taken on 16 September 2012, nearby the ZMF monitored catchment 

under forest. 

Vegetation density and soil physico-chemical characteristics 

The forest and cropland shows a difference in vegetation density (tree and shrub) at all sites. The 

tree density in the forest is significantly different from the cropland (P<0.0001) at all sites. The 

highest tree density was recorded in the forest at FH (0.24 m-2) and DM sites (0.21 m-2). The shrub 

density under forest was also significantly higher than in cropland (P<0.001) at all sites (2.4 - 2.6 

m-2) (Table 4.7). 

The soil bulk density, organic matter, clay and sand content of the forest is significantly different 

from the cropland at all sites. The highest soil bulk density was recorded in the cropland at all sites 

(1.3-1.4 g cm-3). Alike the bulk density, the highest sand was recorded in the cropland at all sites 
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(24-33%).  Expectedly, the highest organic matter (13 to 14 %), as well as clay (32 to 38%) was 

recorded under forest in all sites (Table 4.7). 

 

Table 4.7.15 Vegetation density and topsoil characteristics of the paired catchments 

Station

s 

Land 

use 

types 

 Vegetation density Soil characteristics    

  Tree (m-2) Shrub (m-2) BD (g cm-3) OM (%) Clay 

(%) 

Sand(%) 

FHF Forest 0.24±0.004a 2.60±0.08a 1.1±0.02b 13.9±0.1

a 

32±0.9a 25±0.7b 

FHC Cropland 0.003±0.001b 0.72±0.10b 1.4±0.01a 9.3±0.2b 24±1.0b 33±1.4a 

DMF Forest 0.21±0.010a 2.5±0.06a 1.1±0.03b 13.9±0.3

a 

33±1.1a 22±1.5b 

OMC Cropland 0.003±0.001b 0.72±0.04b 1.4±0.03a 9.3±0.2b 26±1.0b 32±0.8a 

ZHF Forest 0.23±0.010a 2.5±0.1a 1.0±0.01b 13.9±0.3

a 

34±1.7a 23±0.5b 

ZHC Cropland 0.003±0.001b 0.71±0.1b 1.3±0.02a 9.5±0.2b 26±0.9b 32±1.0a 

ZMF Forest 0.21±0.004a 2.5±0.1a 1.1±0.1b 13.8±0.1

a 

33±1.1a 25±1.0b 

ZMC Cropland  0.003±0.001b 0.71±0.1b 1.3±0.1a 9.3±0.1b 23±0.8b 34±1.7a 

FLF Forest 0.19±0.006a 2.4±0.07a 1.1±0.03b 13.8±0.2

a 

38±1.5a 21±1.1b 

FLC Cropland 0.003±0.001b 0.72±0.04b 1.3±0.03a 9.1±0.3b 33±0.8b 33±1.1a 

Mean values with different letters among the catchments on the same site are significantly different 

from each other (P<0.05). BD: Bulk density; OM: Organic matter; Clay; Sand. FHF: Faketen high 

forest; FHC: Faketen high cropland; DMF: Dakin middle forest; OMC: Oka middle cropland; 

ZHF: Zemika high forest; ZHC: Zemika high cropland; ZMF: Zemika middle forest ; ZMC: 

Zemika middle cropland; FLF: Fanika low forest; FLC: Fanika low cropland. 
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4.4 Discussion 

Seasonal rainfall, runoff, base flow and runoff coefficient 

The seasonal rainfall at the study sites (1227 – 1405 mm) is considered to be higher for humid area 

in Ethiopia and medium for humid tropical regions. The average monthly and seasonal rainfall of 

the study sites are within the range of 54 years average rainfall of Aman meteorological station 

(i.e average monthly rainfall: 269 mm; average seasonal rainfall: 1344 mm) (National meteorology 

agency). The seasonal cropland runoff is 39% higher than from the forest, which clearly manifests 

the presence of relatively high runoff in the cropland. The reported difference in percentage of 

total seasonal runoff between forest and cropland is in line with the findings of Mao & Cherkauer 

(2009) and Mishra et al. (2010), who reported 20-40% increases in total runoff in agricultural land 

compared to the forest. In general, the seasonal runoff from cropland seems low in view of the 

high seasonal rainfall, which is possibly due to high herb cover density (crops and weed) in the 

cropland during the growing season (Fig. 4.2a), which is in turn related to early and reliable onset 

of the rainy season. The cropland seasonal base flow is 38% less than from the forest; in cropland 

baseflow was observed to drastically decline and dry during the low rainfall season of the year. 

However, the base flow in the forest flows continuously throughout the year. The percentage of 

seasonal base flow difference between forest and cropland is within the range of Muñoz-Villers & 

McDonnell (2013), who reported a 35 to 75% decrease in base flow in non-forest land compared 

to forest in humid tropical region. On the contrary, Mishra et al. (2010) reported 4% increase in 

base flow following conversion to agricultural land. Like runoff, the seasonal runoff coefficient in 

cropland  is 40% higher than under the forest. The increase in runoff coefficient from cropland is 

larger than the 20-30% reported by Pakoksung & Koontanakulvong (2000) in Thailand. Overall, 

the average seasonal runoff coefficient from forest (8%) seems large, which may be related to 

intensive livestock grazing in the forest catchments, where the majority of the local community 

around the forest herds their cattle. Especially during the growing season their land is occupied by 

crops and the communal grazing lands are not able to feed all cattle, horses and mules of the local 

community as reported by Zewedie, (2007), Reusing (2000) and Belay (2010), for the wider 

Afromontane forests of southwest Ethiopia. Additionally seasonal soil saturation with water may 

also enhance runoff from the forests. 

Correlation between average monthly runoff coefficient and rainfall depth 
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The monthly runoff coefficients both for the forest and cropland catchments are positively 

correlated with rainfall depth, implying that the runoff coefficient increases with increasing rainfall 

depth. Yet, the correlation in cropland are significantly stronger than for forest, which is possibly 

associated with reduced rainfall interception in the cropland. This finding is consistent with Li et 

al. (2016) and Li et al. (2015), who reported the strong positive relationship between runoff 

coefficient and rainfall depth on agriculture land. In addition, the stronger temporal variation of 

the monthly runoff coefficient under cropland (Fig. 4.4) could be related to strong variability in 

phenology of maize and taro throughout the growing season. 

Average monthly runoff, base flow and runoff coefficient 

The cropland average monthly runoff is higher than forest. This may be due to soil compaction in 

cropland soils, the compaction possibly associated with the use of the cropland for grazing 

livestock and low organic carbon content. The livestock's hoof can exert downward pressure on 

the soil surface similar to that of heavy agriculture machineries, this directly compact the soil by 

breaking up the large soil pores, thus forming more small pores, increase soil bulk density and 

reduce soil infiltration rate (Soane & van Ouwerkerk, 1994). Further, the presence of low organic 

matter in the cropland tends to enhance compaction, which is associated with the decrease in soil 

aggregate formation and strength. Inversely, and as observed in the study area (Chapter 2), the 

high organic matter in the forest benefits the soil to have strong, large and stable aggregates that 

can resist compaction, which tend to increase the soil permeability and hence lower runoff from 

forests. This finding is consistent with the findings (Hoorman et al., 2011; Kavian et al., 2014). 

Furthermore, the presence of relatively low vegetation density (trees and shrubs) in cropland open 

a space for direct raindrop impact on the soil, hence this possibly have led to crust layer formation, 

sealed soil layer and greatly increase surface runoff (Mills & Fey, 2004). 

The base flow at the outlet of cropland catchments is lower than the one from forests. This is 

possibly due to lower soil infiltration capacity in the cropland, which is associated with soil 

compaction and thus reduced recharge of subsurface water storages in the cropland. The higher 

base flow in the afromontane forest may be due to larger catchment water storage capacity 

associated with the presence of the dense permanent vegetation (Fig. 4.5). This finding is 

consistent with the findings of Price et al. (2011), who reported that compacted soil reduces ground 

water recharge and reduces base flow. Muñoz-Villers & McDonnell (2013) reported that forest 



 

 

136 

 

catchments with deep soil profile tend to store more water, which leads to higher base flows for 

longer periods in the forest, besides the water uptake by the woody vegetation. Conversely, and in 

line with Markart et al. (2006) and Vlčková et al. (2009), we found high runoff coefficients in 

cropland, compared to forest.  

 

Vegetation density and soil characteristics 

The tree and shrub vegetation density of the forest is higher than the cropland. This may be 

associated with the occurrence of management intervention for monoculture farming of cereal 

crops in the cropland. This is in line with the study of Mekuria (2005) and Dereje (2007), who 

reported the dominance of single cereal crops on agricultural land. The soil organic matter and 

clay content  in forest is higher than the cropland. This may be due to the litter fall from the tree 

and shrub, and thus increase the organic matter and protect the soil from erosion. This is in line 

with Fentaw et al. (2007) and Yeshane (2015),  who reported the increase in soil organic matter 

and low soil loss under forest, because of tree litter fall and tree crown and root protection. 

4.5 Conclusions 

This study indicates that a conversion from forest to cropland affects runoff depth, base flow depth 

and runoff coefficient in the upper reaches of Gacheb catchment, and likewise in similar deforested 

areas of southwest Ethiopia. The seasonal surface runoff depth and runoff coefficient from 

cropland is 2 to 4 times greater than that from forest. Reversely, the monthly base flow in cropland 

is relatively lower than in forest, where tree and shrub vegetation density, soil organic matter,  clay 

content are much higher than in cropland. The study suggests that forest can play a prominent role 

on regulating the base flow, runoff and runoff coefficient at small catchment scale in Gacheb 

catchment, and in the whole surrounding southwestern Ethiopian forest frontier zone.  

4.6 References 

Acreman, M., Farquharson, F.A.K., McCartney, M.P., Sullivan, C., Campbell, K., Hodgson, N., 

Morton, J., Smith, D., Birley, M., Knott, D., Lazenby, J. 2000. Managed flood releases from 

reservoirs: issues and guidance. Report to DFID and the World Commission on Dams. Centre for 

Ecology and Hydrology, Wallingford, UK. pp86.  



 

 

137 

 

Bewket, W., Sterk, G. 2005. Dynamics in land cover and its effect on stream flow in the Chemoga 

watershed, Blue Nile basin, Ethiopia.Hydrol.Process.19, 445–458. 

Bremner, J.M., Mulvaney, C.S. 1982. Nitrogen-Total, in: Page, A.L., Miller, R.H., Keeney, D.R. 

(Eds.), Methods of Soil Analysis, Part 2., Agronomy Monogr. 9. American Society of Agronomy 

and Soil Science Society of America. Madison, Wisconsin, pp. 595–624. 

Bruijnzeel, L.A. 2004. Hydrological functions of tropical forests: not seeing the soil for the trees? 

Agriculture, Ecosystems & Environment. 104, 185-228. 

Chapman, C.A., Chapman, L.J. 2003. Deforestation in tropical Africa. Conservation, ecology, and 

management of African fresh waters. University of Florida Press, Gainsville. pp.229-246. 

Dereje, T. 2007. Forest cover change and socioeconomic drivers in south-west Ethiopia. MSc. 

Thesis, University of Munchen, Germany. 

Dessie, A., Bredemeier, M. 2013. The Effect of Deforestation on Water Quality: A Case Study in 

Cienda Micro Watershed, Leyte, Philippines. Resources and Environment, 3: pp.1-9.  

Dewitte, O., Jones, A., Spaargaren, O., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, 

J., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Michéli, E., Montanarella, L., 

Thiombiano, L., Van Ranst, E., Yemefack, M., Zougmore, R. 2013. Harmonisation of the soil map 

of Africa at the continental scale. Geoderma, 211–212:138–153. 

EEPCO. 2015. Decommission of Demi Hydro Electric Power plants. Dembi power plant 

Environmental impact and feasibility study report. Final report, 2015, Addis Ababa. 

FAO. 2006. NewLocClim. Local Climate Estimator software and global climate database. 

(version 1.10). FAO, Rome, Italy. 

Foley, J.A., Asner, G.P., Costa, M.H., Coe, M.T., DeFries, R., Gibbs, H.K., Howard, E.A., Olson, 

S., Patz, J., Ramankutty, N., Snyder, P. 2007. Amazonia revealed: forest degradation and loss of 

ecosystem goods and services in the Amazon Basin. Frontiers in Ecology and the Environment.5, 

25-32. 

Girmay, G., Singh, B.R., Nyssen, J., Borrosen, T. 2009. Runoff and sediment-associated nutrient 

losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology. 376, 70-80. 

Hayhoe, S.J., Neill, C., Porder, S., McHorney, R., LeFebvre, P., Coe, M.T., Elsenbeer, H., 

Krusche, A.V. 2011. Conversion to soy on the Amazonian agricultural frontier increases stream 

flow without affecting storm flow dynamics. Global Change Biology.17, 1821-1833. 



 

 

138 

 

Hoorman, J.J., Sá, J.C.D.M.J., Reeder, R. 2011. The biology of soil compaction. Soil Tillage 

Res.68, 49-57. 

Hurni, H., Kebede, T., Gete, Z. 2005. The Implications of changes in population, land use, and 

land management for surface runoff in the Upper Nile basin area of Ethiopia. Mountain Research 

and Development. 26, 147–154. 

Kadlec, V., Holubík, O., Prochazkova, E., Urbanova, J.,  Tippl, M. 2012. Soil organic carbon 

dynamics and its influence on the soil erodibility factor.  Soil Water Res, 7, 97-108. 

Kramer, R A., Sharma, N., Munasinghe, M. 1995. Valuing Tropical Forests: Methodology and 

Case Study of Madagascar, World Bank Environment Paper 13. The world Bank, Washington, 

D.C. 

Line, D. E., White, N. M. 2007. Effects of development on runoff and pollutant export. Water 

Environment Research.79, 185‐190. 

Li, Y., Li, X., Li, G. 2015.Runoff coefficient characteristics and its dominant influence factors of 

the riparian Myricariasquamosa Desv. shrubs over Qinghai Lake basin, NE Qinghai-Tibet Plateau. 

Arab J Geosci. 8, 6655. DOI:10.1007/s12517-014-1738-7. 

Li, Z., Liu, D., Li, X. 2016. Runoff coefficient characteristics and its dominant influencing factors 

in a riparian grassland in the Qinghai Lake watershed, NE Qinghai-Tibet Plateau.Arab J Geosci. 

9, 397. DOI:10.1007/s12517-016-2404-z. 

MACWE. 2014. Raw water supply sediment prevention and controlling. A project proposal by 

Mizan-Aman city water supply sanitation enterprise.SNNPR, Bench Maji Zone, Mizan-Aman city. 

Mao, D., Cherkauer, K. 2009. Impacts of land-use change on hydrologic responses in the Great 

Lakes region. Journal of Hydrology. 374, 71-82. 

Markart, G., R. Kirnbauer, B. Kohl, H. Pirkl., L. Stepanek. 2006. Approaches to runoff 

management for land use planning in small catchments of mountain Austria, Environ.Plann. 

Manage. 49, 58 – 71. 

Meher-Homji, VM. 1991. Probable impact of deforestation on hydrological processes.Climatic 

change.19, 163-173. 

Mekuria, A. 2005. Forest conversion-soil degradation-farmers’ perception nexus: implications for 

sustainable land use in the southwest of Ethiopia. Doctoral Thesis. ZEF-Ecology and Development 

Series No. 26, ISBN-3-86537-444-1. University of Bonn, Germany. 



 

 

139 

 

Mengesha, T., Tadiwos, C., Workineh, H. 1996. Explanation of the Geological Map of Ethiopia. 

Scale 1:2.000.000. In : Ethiopian Institute of Geological Survey Bull . No.3, 80, 2nd eds. EIGS, 

Addis Ababa. 

Mills, AJ., Fey, MV. 2004. Effects of vegetation cover on the tendency of soil to crust in South 

Africa. Soil Use Manage 20:308–317. DOI:10.1079/SUM2004262. 

Mishra, V., Cherkauer, K.A., Niyogi, D., Lei, M., Pijanowski, B.C., Ray, D.K., Bowling, L.C., 

Yang, G. 2010. A regional scale assessment of land use/land cover and climatic changes on water 

and energy cycle in the upper Midwest United States. International Journal of Climatology.30. 

2025-2044. 

Mueller-Dombois, D., H. Ellenberg. 1974. Aims and methods of vegetation ecology.John Wiley 

and Sons, New York, NY. 

Muñoz-Villers, L.E., McDonnell, J.J. 2013. Land use change effects on runoff generation in a 

humid tropical montane cloud forest region.Hydrology and Earth System Sciences. 17, 3543–

3560. 

NTFP-PFM. 2009. Forest landscape sustainability and improved livelihoods through non-timber 

forest  product  development  and  payment  for  environmental  services.  Non-Timber  Forest 

Products  Research  and  Development  Project  South-West  Ethiopia.  Year  two  annual  report, 

Huddersfield (UK) and Mizan Teferi (Ethiopia). 

Olsen, S.R., Cole, C.V, Watanabe, F.S, Dean, L.A. 1954. Estimation of Available Phosphorus in 

Soils by Extraction with Sodium Bicarbonate. U.S Dep. Agri. Cir. 939. Washington DC. 

Pakoksung, K., Koontanakulvong, S. 2000. The effect of land use change on runoff in the Nan 

Basin. Master thesis, Chulalongkorn University, Thailand. 

Recha, J.W., Lehmann, J., Walter, M.T., Pell, A., Verchot, L., Johnson, M. 2012.Stream discharge 

in tropical headwater catchments as a result of forest clearing and soil degradation.Earth 

Interactions.16, 1-18. 

Sahin, V., Hall, MJ. 1996. The effects of afforestation and deforestation on water yields. J. 

Hydrol. 178, 293–309. 

Savary, S., Rousseau, AN., Quilbe, R. 2009. Assessing the effects of historical land cover changes 

on runoff and low flows using remote sensing and hydrological modeling. J. Hydrol. Eng. 14, 575–

587. 



 

 

140 

 

Schmocker-Fackel, P., Naef, F., Scherrer, S. 2007. Identifying runoff processes on the plot and 

catchment scale. Hydrology and Earth System Sciences, 11, 891-906. 

Soane, B.D., van Ouwerkerk, C. 1994. Soil compaction in crop production.Developments in 

Agricultural Engineering, 11, Elsevier, Amsterdam. 

Tadesse, M., Alemu, B., Bekele, G., Tebikew, T., Chamberlin, J., Benson, T. 2006. Atlas of  

the Ethiopian rural economy. IFPRI,CSA and IFPRI. Addis Ababa, Ethiopia. 

Teka, D., van Wesemael, B., Vanacker, V., Poesen, J., Hallet, V., Taye, G., Deckers, J., 

Haregeweyn, N. 2013. Evaluating the performance of reservoirs in semi-arid catchments of Tigray: 

Trade off between water harvesting and soil and water conservation. Catena 110, 146-154. 

Vlčková, M., Nechvátal, M., Soukup, M. 2009. Annual runoff coefficient in the Cerhovický 

Stream catchment. Journal of Water and Land Development. 13, 41-56. 

Walkley, A., Black, A.C. 1934. An Examination of Degtja-reff Method for Determining Soil 

Organic Matter and Proposed Modification of the Chromic Acid Titration Method. J. Soil Science. 

37, 29-38. 

Westphal, E. 1975.  Agricultural Systems in Ethiopia. Agricultural research reports 826, Center  

for Agricultural Publishing and Documentation. Wageningen. 

Yin, H., Li, C. 2001. Human impact on floods and flood disasters on the Yangtze River. 

Geomorphology, 41: pp.105-109. 

 

  



 

 

141 

 

  



 

 

142 

 

 

 

 

 

 

 

 

Chapter 5  

Sediment yield at southwest Ethiopia’s forest frontier 
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Abstract 

Deforestation is one of the major factors of soil erosion in equatorial regions, but to what extent 

does crop growth in deforested areas protect the land from erosion? We evaluated the effect of 

deforestation on suspended sediment yield at the scale of zero-order catchments by contrasting five 

paired small forest and cropland catchments at Ethiopia’s southwestern forest frontier. Suspended 

sediment samples were collected from nine San Dimas flumes and one V-notch weir installed in 

catchments draining natural forest and cropland, at different altitudes. The suspended sediment 

data was collected from June 8 to October 30 of the years 2013 and 2014. The suspended sediment 

yield of both land-use types is strongly correlated with the corresponding discharge. The results 

show that the average seasonal suspended sediment yield from cropland (20 ± 7.6 Mg ha-1) is five 

times higher than that from the paired forest (4.0± 1.9 Mg ha-1). High sediment yield from forests 

is related to livestock grazing it, but forests still have an important role in the protection of the 

surface soil from erosion  at southwest Ethiopia’s forest frontier. Land management in 

southwestern Ethiopia’s highlands will need a strong change in paradigm, in which the overall 

belief in the recently imported mahrasha ard plough is abandoned, oxen and other cattle decreased 

in number and kept at the homestead, the forest better protected from human and livestock 

interference, and the open farmlands turned into agroforestry. Such an approach is still possible as 

all required elements are available in the landscape. 

Keywords: Deforestation; Soil loss; Afromontane forest; Tropics; Ethiopia. 
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5.1 Introduction 

Deforestation is a global phenomenon, particularly severe in the tropical region (Steininger et al., 

2001). There, it considerably increases the rate of soil loss, mainly by increasing the soil’s 

vulnerability to erosion (e.g. removal of protective vegetation, degradation of soil structure) and 

by higher magnitudes of splash, sheet, rill and gully erosion (Lal, 1987). Deforestation has been a 

major factor leading to land degradation in Ethiopia (Nyssen, 2004). Currently, the closed 

afromontane forest of southwest Ethiopia (Fig. 1.1) is facing deforestation. For example, the share  

of the closed natural forest declined by 24-28%  in Bonga forest; 23% in Sheko forest; 15% of Bench, 

Keffa and Sheka forest, while  agriculture land abruptly increased by 56% in Bonga; 14% in Bench, 

Keffa and Sheka forest in between 1973 and 2005 (Dereje, 2007; Mekuria, 2005; NTFP-PFM, 2009).  

 

Figure 5.1.23 Gacheb sub-catchments: View of Faketen (FHF) forest in upper Gacheb basin on 21 

October 2013 (A). View of the cropped Oka (OMC) catchment on 7 October 2013. 

Maize stalks and leafs are wilted, so it is harvesting time. In front some sorghum 

that was sown later to fill an area with poor crop growth. Since some decennia, the 

farmers typically manage their cropland as an open field with not much trees or 

shrubs (B).  

This deforestation had several environmental and financial impacts on the region. Most notably, 

the Dembi hydroelectric power plant was decommissioned, due to the reduction of water storage 

capacity of the reservoir because of siltation (EEPCO, 2000).  Furthermore, the water treatment 

plant has been forced to spend additional money and time for water treatment, mainly due to the 

presence of high concentrations of suspended sediment in the water (MACWE, 2014). Thus, the 

environmental degradation emanating from deforestation is not only the concern of farmers in the 

catchment, but also to downstream communities benefiting from the water resources. Management 
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of the affected areas requires understanding the extent and magnitude of impact of deforestation, 

for which our knowledge remain poor for tropical mountain regions worldwide.  

Even though previous studies have pointed to the impact of deforestation on soil loss in the study 

area, the intensity of soil loss may vary depending on land use and land management practice, duration 

of cultivation period, climate, runoff volume and topography (Girmay et al., 2009; Mekuria et al., 

2012). However, no systematic studies have been done to quantify the impact of deforestation on 

sediment yield at the forest frontier in southern Ethiopia, taking into account also the variability in 

local catchment characteristics. Particular characteristics of southwest Ethiopia’s forest frontier forest 

are that after deforestation, like in all tilled cropland the root mat is destroyed (de Baets et al., 2007; 

Ghidey & Alberts, 1997; Mamo & Bubenzer, 2001) but crops grow in dense stands (Fig. 5.1).  

Furthermore, soil loss in the Afromontane forest belt has been hardly studied, and there are 

particularly few filed measurements at the catchment scale, i.e. between erosion plots and whole river 

basins in Africa (Vanmaercke et al., 2014), and beyond (Vanmaercke et al., 2011).  

To increase our understanding on the impact of deforestation at the scale of small catchments in 

tropical mountains, we quantified suspended sediment yield and export in ten zero-order catchments 

at three altitudinal ranges in Gacheb catchment of southwest Ethiopia. The objective of this study is 

to evaluate the effect of deforestation on suspended sediment yield between paired forest and cropland 

at small catchment scale in the White Nile basin of Ethiopia and to get an insight to what extent the 

dense crop cover does (not) compensate for the lost tree cover and corresponding soil strengthening 

by the root mat. 

5.2 Materials and methods 

5.2.1 Study area 

The study area is the upper Gacheb catchment, located in the headwaters of the White Nile in 

southwestern Ethiopia. Altitudes range between 1000 and 2600 m a.s.l. (Fig. 5.2). The underlying 

basement Precambrian formations comprise a variety of metamorphosed sedimentary, volcanic 

and intrusive rocks. These Precambrian basement rocks are overlain by Mesozoic marine strata 

and Tertiary basalt traps (Westphal, 1975; Mengesha et al., 1996). 
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Figure 5.2.24 Location of the Gacheb catchment, southwestern Ethiopia, with the study catchments 

and instrumentation. In the codes, the first letter stands for the location (see Table 

6.2), the second for elevation (Low, Middle, High) and the third for monitoring of 

Cropland, Forest or Rainfall. 

 

The annual rainfall pattern is unimodal with a rainy season from mid-March to mid-November 

(Fig. 1.11). Average annual rainfall depth in Mizan Teferi (1440 m a.s.l.) is 1780  270 mm y-1 

and annual reference evapotranspiration depth is 1259  12 mm y-1 (Grieser et al., 2006); the 

average air temperature ranges from 13 to 27 °C (Tadesse et al., 2006). The harmonized soil map 

of Africa (Dewitte et al., 2013) indicates that Leptosols are dominant on crests, while Nitisols are 

dominant on the hill slopes (lower, middle and upper parts), to which Alisols and Cambisols are 

locally associated. Fluvisols are found in the flat valley bottoms where meandering rivers occur. 

Topsoils in the studied catchments typically contain 8.0-8.1% OC under forest and 5.3-5.5% OC 

in cropland. Soil texture again is quite homogenouse per land-use type: clay-silt-sand proportion 

of 25-50-25% in cropland, and 35-50-15% in forest. Three main land-use types exist in this region: 

afromontane forest, agroforestry zones particularly around the villages and open field cropland. 
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The Afromontane forest vegetation of Gacheb catchment is composed of Aningeria adolfi-

friederici Engl., Croton macrostachyus Hochst. ex Delile,  Hagenia abyssinica Willd., Cordia 

africana Lam., Prunus africana Hook.f.Kalkman, Millettia ferruginea Hochst. Baker, Polyscias 

fulva Hiern.Harms, Albizia gummifera J.F.Gmel C.A.Sm., Bridelia micrantha Hochst.Baill. at the 

upper stratum of the vegetation structure, integrated with Grewia ferruginea Hochst. exA.Rich, 

Vernonia amygdalina Delile. Cyathe amanniana and Ricinus communis L. at the lower stratum.    

The agroforestry land of Gacheb catchment is composed of Coffea arabica L., as a cash crop 

integrated with food crops such as false banana (Ensete ventricosum Welw. Cheesman), banana 

(Musa sapientum L.) and taro (Colocasia esculenta L. Schott) and spices like korarima 

(Aframomum corrorima Braun). Moreover, various fruit trees such as mango (Mangifera indica 

L.), avocado (Persea americana Mill.), papaya (Carica papaya L.) and orange (Citrus sinensis L. 

Osbeck) are also integrated in the farming system. Furthermore, native trees like Albizia 

gummifera J.F.Gmel. C.A.Sm., Cordia africana Lam. and Millettia ferruginea Hochst. Baker, are 

kept for shade, fodder, firewood, medicinal value and soil fertility maintenance.   

 In the croplands taro (Colocasia esculenta) is grown in moist places, while maize (Zea mays) is 

dominant. Beans are grown in as mixed crop with maize and single crop in the uplands, and 

sorghum may be added later on spots where the original crop failed and after harvesting of maize. 

Taking benefit of reliable rains at the onset of the rainy season, maize is sown in May, after 2-3 

tillage operations with oxen-drawn Ethiopian maresha ard plough and 1-2 by hand tools that 

generally take place in April (Table 5.1). Given the high growth of maize, the cropped fields are 

not weeded after the crop is well established and a strong herb undergrowth develops on cropland, 

which after crop harvest is used as livestock feed in the cropland (Fig. 5.1B). 
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Table 5.1.16 Agricultural calendar in Gacheb catchment for major crops in the main growing 

season: maize (*), taro (¤), and beans (#).  

Major activities1 J F M A M J J A S O N D 

Land preparation2    ¤ *#        

Sowing or planting    ¤ *#        

Weeding and cultivation3      *#¤ *#¤      

Harvesting         *# *# ¤ ¤ 

1In our study catchments, farmers do not use fertiliser, and maize monocropping is dominant (without crop rotation, 

without fallowing). Only in the upper FHC catchment, there is crop rotation with beans and barley. 

2The land is tilled three times in all catchments with oxen-span and a plough of the ard type (2 times in DMC)  

3Cultivation is done once, with hand tools (twice at FHC) 
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Table 5.2.17 Characteristics of sub-catchments monitored in the main rainy seasons of 2013 and 2014 (June 8-October 30) 

Description FHF FHC DMF OMC ZHF ZHC ZMF ZMC FLF FLC 

Location of 

stations 

6°59' N 

35°39' E 

7°0' N 

35°39' E 

7°2' N 

35°38' E 

7°1' N 

35°39' E 

6°55' N 

35°34' E 

6°55' N 

35°34' E 

6°55' N 

35°33' E 

6°55' N 

35°33' E 

6°58' N 

35°30' E 

6°57' N 

35°30' E 

Area (ha) 11.5 7.0 7.9 5.2 5.9 4.2 3.7 4.0 4.1 3.6 

Elevation(m a.s.l) 2135 1990 1632 1606 2022 1879 1544 1717 1261 1324 

Rainfall (mm) 1405±92 1405±92 1218±88 1218±88 1535±31 1535±31 1360±23 1360±23 1126±14 1126±14 

Slope (%) 42 29 23 33 35 18 20 23 14 14 

Perimeter (m) 1399 1064 1050 990 952 954 730 1034 888 1032 

Compactness 0.74 0.78 0.90 0.67 0.83 0.86 0.87 0.65 0.65 0.60 

Tree density (m-2) 0.24 

±0.004 

0.003 

±0.001 

0.21 

±0.01 

0.003 

±0.001 

0.23 

±0.01 

0.003 

±0.001 

0.21 

±0.004 

0.003 

±0.001 

0.19 

±0.01 

0.003 

±0.001 

Shrub density (m-2) 2.6± 0.1 0.72 ±0.1 2.5 ±0.1 0.7±0.04 2.5 ±0.1 0.7 ±0.1 2.5 ±0.1 0.71 ±0.1 2.4 ±0.1 0.7 ±0.04 

Location of  rain 

gauge stations 

6°59' N 35°39' E 7° 2' N 35°39' E 6°55' N 35°34' E 6°55' N 35°33' E 6°58' N 35°30' E 

FHF: Faketen high forest; FHC: Faketen high cropland; DMF: Dakin middle forest; OMC: Oka middle cropland; ZHF: Zemika high 

forest; ZHC: Zemika high cropland; ZMF: Zemika middle forest; ZMC: Zemika middle cropland; FLF: Fanika low forest; FLC: Fanika 

low cropland.  
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5.2.2 Experimental setup and data collection 

5.2.2.1 Rainfall and runoff 

Five rain gauges were installed, each of them representing two runoff monitoring stations (forest 

and cropland catchments) (Fig. 5.3, Table 5.2). Rainfall was manually recorded twice a day: in the 

morning at 8:00 AM and evening 8:00 PM.  

 

Figure 5.3.25 Rain gauge located centrally between paired forest and cropland catchments (Zemika 

High); the data collector demonstrates how the upper part (funnel) can be lifted up 

to access the receiving container under it. Photograph taken on 17 October 2013 

Runoff data was collected at the outlet of paired catchments with forest and cropland. Ten study 

sites were selected along altitudinal transects and stratified according to land use type (forest and 

cropland) and three elevation zones (high, 1900-2300 m a.s.l.; middle, 1500-1900 m a.s.l.; and 

low, 1200-1500 m a.s.l.). All forest and cropland catchments had a runoff monitoring station 

equipped with a standardized flume at the outlet (Table 5.2). 

Runoff data was collected in main rainy season of 2013 and 2014 (June 8 to October 30). Ten 

paired sub-catchments (five fully under forest and five under cropland) were selected in Gacheb 

catchment. No catchments were found that are entirely under agroforestry.  The runoff stations 

consisted of nine San Dimas flumes (Fig. 5.2; Fig 5.4) and one V-notch weir, installed on the outlet 

of the drainage basins. Compared to the rectangular cross-section of the San Dimas flumes, the V-

shaped V-notch is more suitable for recording smaller flows. The flumes were equipped with a 

graduated strip, to manually record the runoff depth. The flow depth was measured at ten minutes 
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interval during every rainfall event. The dimension of the flumes installed in forest (1.5×0.5×0.5 

m; Length×Width×Height) is different from the cropland (2.1×0.7×0.7 m; L×W×H), because the 

runoff from the forest is generally lower than from cropland. In order to determine the discharge, 

a current meter was used to record the number of rotations within 30 second interval at various 

flow depths at all San Dimas flumes. The recorded rotation number at various flow depths was 

then converted to velocity with the standard formula: 

V = 1.93+31.17×N, if N ≤ 1.98; V = 0.19+32.05×N, if 1.98 < N > 10.27; V = -14.09 + 33.44 × N, 

if N ≥ 10.27                                                                                                                       (5.1)

                            

where, V= velocity in cm s-1; 1.93, 31.17, 0.19, 32.05, -14.09 and 33.44 = calibrated values for the 

current meter; and N= Number of rotations. 

The cross-sectional flow area was determined from the San Dimas flume width and the flow depth. 

Instantaneous runoff discharge for all velocity and corresponding flow depth measurements was 

then calculated as: 

Q=A*V                                                                                                                                  (5. 2) 

where, Q = Instantaneous runoff discharge (cm3 se-1), A= cross sectional flow area (cm2) and V = 

velocity (cm s-1). 

However, the current meter calibration was suspected to lead to underestimations, because of 

partial submersion of the current meter during calibration of runoff events in all measurement 

stations. To validate this we compared our calibration with the standard discharge curve for 

modified San Dimas flume. It was found that the discharge curve for modified San Dimas flume 

developed by Bermel (1950) is in correspondence with our discharge rating curves. Hence, adapted 

discharge rating curves were developed for 500 mm (small San Dimas flume) and 700 mm size 

(large San Dimas flume) on the basis of Bermel’s (1950) rating curve (Table 5.3). 

Conversion to continuous discharge series  

The continues discharge serious was calculated based on the modified equation for small and large 

San Dimas flumes, which was interpolated for installed San Dimas flumes (small=500 mm; 

large=700 mm) from Bermel (1950) flow depth-discharge rating curves measured over a wide 

range of flow depths on various modified San Dimas flumes. It is calculated with the equation 

(modified from Bermel (1950)): 
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Q= a db                                                                                                                                  (5.3) 

 where Q = discharge, d = flow depth, a and b are fitting parameters. 

At the lowest forest, when observing the channel, very small runoff discharge was expected and a 

V-notch weir was installed. The standardized rating curve for 90° V-notch weir was used to 

calculate the discharge. However, as the V-notch weir was installed in a level area, large volumes 

of water ponded behind it; hence a stage-water volume rating curve was developed based on the 

geometry of the pond. This volume was then added to the measured discharge in the V-notch weir 

(Table 5.4). These rating curves were used to convert the manually recorded continuous flow depth 

series to storm discharge records. The resulting continuous runoff discharge series were integrated 

on event and daily basis. Rainfall-runoff relations were established so that the missed events 

(particularly during nights) could be estimated. 

 

Figure 5.4.26 San Dimas flume installed at the outlet of the Dakin forest catchment (8 

September 2013). At right the staff gauge that was read every 10 minutes during 

runoff events, and the plastic container to take grab samples or runoff water and 

sediment that was then transferred into a plastic bottle (A). Filtering installation in 

the labratory of Natural Resources Management Department at Mizan-Tepi 

University. The wooden boards have been perforated to fix funnels, in which 

Whatman filter paper was inserted. The bottles on top of the boards contain the 

sample, the bottles under it collect the filtered water so that the quality of filtering 

can be checked. After filtering, the filter paper is numbered, oven-dried and 

weighed. Two thousand fourteen samples were analysed in this way and used in the 

study (B). 
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5.2.2.2 Sediment yield measurements and export 

During runoff events, suspended sediment samples were collected at different flow depths. Grab 

samples were collected and transferred into with 1 litre plastic bottles (Fig. 5.4). The samples were 

then filtered in a funnel using Whatman 42 filter paper (pore size of 2.5 μm). The filter paper with 

sediment was then oven-dried for 24 hours at 105 °C and weighed to determine the suspended 

sediment concentration (Fig. 5.4). 

The suspended sediment concentration (SSC, in g l-1 or kg m−3) was calculated as:  

SSC = (M – 1.6186) / V                                                                                                            (5. 4)                                                                                                                                                    

where M is the gross mass of the dried filter with suspended sediments (g); 1.6186, the average 

mass (n = 10) of oven-dried empty filter paper (g); V, the volume of the water sample (l). 

Based on a large set of SSC samples (999 in 2013, 1015 in 2014, or ca. 200 per catchment), 

suspended sediment to discharge rating curves were developed for all forest and cropland sub 

catchments (Asselman, 2000; Moliere et al., 2004; Vanmaercke et al., 2010). 

Several studies show that the relationship between Q and SSC is often subject to a lot of scatter 

and variable at different temporal scales (Asselman, 2000; Moliere et al., 2004; Alexandrov et al., 

2007). A preliminary check (Fig. 5.5; Table 5.3) showed that in our study catchments, relations 

were consistent throughout the rainy season. We have thus worked with seasonal rating curves per 

station. Daily sediment export was calculated for each forest and cropland station using: 

Qs, d = ∑ (Qi
𝑛

𝑖=1
∗ SSCi ∗ 600 s)                                                                                             (5.5)                                                                                        

Where Qs,d is the daily sediment export (t day−1); n is the number of 10-min intervals per day; Qi 

is the runoff discharge for each 10-min interval (m3 s−1), and SSCi is the corresponding estimated 

SSC (kg m−3) calculated with the discharge rating curves.  Total sediment export for each forest 

and cropland sub catchment was calculated as the sum of all Qs,d values. Suspended sediment 

yield (SSY) is the total exported sediment per month or season (June to October) calculated against 

catchment area. 

For about a quarter of the rainfall events, runoff could not be monitored and no SSC samples were 

taken, particularly for storms that occurred in the middle of the night. We have estimated the 
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sediment yield of those events by establishing, per station and based on the monitored events, a 

regression analysis between event rainfall and sediment yield. Using the rainfall data of the missed 

runoff event, we could then calculate the estimated sediment yield of that event (Table 5.4). 

Catchment boundaries were digitized using topographic maps of the study area, complemented 

with GPS recordings taken in the field. The area of all sub-catchments was then calculated using 

GIS software. 

Plant density 

Plant density, as a potential explanatory factor for differences in SSY, was recorded on plots within 

the forest and cropland catchments. The main plots were 20 × 20 m2 replicated three times in each 

catchment. Tree species above 1.5 m height were counted inside the 20 × 20 m2 main plot and 

shrubs were counted in subplots of 5 × 5 m2 at the four corners of the main plot. The plant density 

of the trees and shrubs and herbs was calculated based on the equation by Mueller-Dombois & 

Ellenberg (1974):   

Density of species i = 
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐭𝐡𝐞 𝐩𝐥𝐚𝐧𝐭𝐬 𝐨𝐟 𝐬𝐩𝐞𝐜𝐢𝐞𝐬 𝐢

𝐀𝐫𝐞𝐚 𝐨𝐟 𝐪𝐮𝐚𝐝𝐫𝐚𝐧𝐭𝐬
                                                                  (5. 6)      

Data analysis 

The difference in monthly suspended sediment yield between forest and cropland was analyzed in 

one way ANOVA using SPSS (software version 20). Means were compared by least significant 

difference (LSD). The relationship between suspended sediment yield and area of catchment, 

seasonal rainfall and slope gradient was analyzed using correlation analysis.  

5.3 Results  

5.3.1 Suspended sediment concentration 

The suspended sediment concentration (SSC) of our sites reached values up to 16 g l-1; all sites 

showed a pattern of linearly increasing SSC with discharge (Fig. 5.5). Data are relatively well 

grouped around the regression lines and for all catchments the correlations between SSC and Q 

are strong (Table 5.3). 
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5.3.2 Sediment yield 

The seasonal suspended sediment yield in cropland is higher than the forest in all sites. The 

suspended sediment yield in cropland ranges from 30 ± 5.5 Mg ha-1 in FH site to 14 ± 3.9 Mg ha-

1 in FL site, whereas the forest suspended sediment yields are between 6.0 ± 1.3 Mg ha-1 at FH site 

and 2.0 ± 0.7 Mg ha-1 at FL site (Table 5.4).  

 

Figure 5.5. 27 Suspended sediment concentration (SSC) as a function of discharge (Q) in two 

paired catchments af similar size in the mid-elevation belt. (left) OMC Oka 

cropland, n=116, 5.2 ha, outlet at 1606 m a.s.l.; (right) DMF Dakin forest, n=93, 

7.9 ha, outlet at 1632 m a.s.l. 

 

 

Table 5.3.18 Regression equations for the relationship between measured discharge (Q, in m³ s-1) 

and suspended sediment concentration (SSC, g l-1) in Gacheb catchment 

Statio

n 

Catch-

ment 

Yea

r 

Regression Equation of SSC and Q Regression equation of event 

P and SSY 

FHF Forest 2013 SSC=67.398Q +1.706 (R²=0.52; 

n=117) 

SSY=97362P-54032 (R²=0.90) 

  2014 SSC=13.967Q +2.534 (R²=0.54; 

n=113) 

SSY=83312P-36986 (R²=0.81) 

DMF Forest 2013 SSC=17.675Q +3.327 (R²=0.53; n=93) SSY=24294P-11229 (R²=0.84) 

  2014 SSC=20.274Q +3.582 (R²=0.56; n=89)  SSY=37773P-27201 (R²=0.86) 

ZHF Forest 2013 SSC=12.640Q +3.239 (R²=0.51; n=91) SSY=40645P-18456 (R²=0.91) 

  2014 SSC=12.046Q +3.210 (R²=0.50; n=95) SSY=35056P-16243 (R²=0.91) 

ZMF Forest 2013 SSC=17.049Q +3.399 (R²=0.53; n=89) SSY=23242P-11326 (R²=0.87) 

  2014 SSC=16.421Q +2.766 (R²=0.58; n=94) SSY=19028P-10296 (R²=0.84) 

FLF Forest 2013 SSC=36.209Q +0.624 (R²=0.51; n=91)  SSY=21095P-84346 (R²=0.83) 
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  2014 SSC=34.432Q +1.589 (R²=0.52; n=99) SSY=12320P-54359 (R²=0.89) 

FHC Cropland 2013 SSC=76.047Q +4.542 (R²=0.67; 

n=114)  

SSY=32182P-2E+06 

(R²=0.91) 

  2014 SSC=77.485Q +6.510 (R²=0.68; 

n=118)   

 

OMC Cropland 2013 SSC=91.743Q +5.799 (R²=0.64; 

n=116)   

SSY=15333P-72667 (R²=0.86) 

  2014 SSC=70.491Q +6.229 (R²=0.61; 

n=108)  

 

ZHC Cropland 2013 SSC=77.278Q +5.057 (R²=0.60; 

n=106)  

SSY=12974P-56175 (R²=0.93) 

  2014 SSC=70.180Q +4.816 (R²=0.60; 

n=110)  

 

ZMC Cropland 2013 SSC=98.102Q +4.209 (R² =0.65; n=92)  SSY=11263x - 57532 

(R²=0.87) 

  2014 SSC=71.207Q +4.849 (R² =0.64; n=97)  

FLC Cropland 2013 SSC=95.235Q +2.513 (R² =0.62; n=90)  SSY=71590x - 37402 

(R²=0.86) 

  2014 SSC=79.818Q +3.920 (R² =0.65; n=92)   

Gacheb catchment land use: FHF: Faketen high forest; FHC: Faketen high cropland; DMF: Dakin 

middle forest; OMC: Oka middle cropland; ZHF: Zemika high forest; ZHC: Zemika high cropland; 

ZMF: Zemika middle forest; ZMC: Zemika middle cropland; FLF: Fanika low forest; FLC: Fanika 

low cropland.  

 

 
 

 

Table 5.4.19 Total seasonal rainfall and suspended sediment yield (period of June to October)  from paired 

catchments at southwest Ethiopia’s forest frontier 

Station Land-use 

types 

Year P (mm) SSY (Mg ha-1) 

FHF Forest 2013 1470 6.6 

FHF  2014 1340 4.8 

Average   1405±92 6±1.3 

FHC Cropland 2013 1470 33 

FHC  2014 1340 26 

Average   1405±92 30±5.5 

DMF Forest 2013 1280 2.3 

DMF  2014 1155 2.9 

Average   1218±88 2.6±0.4 

OMC Cropland 2013 1280 19.1 

OMC  2014 1155 18.7 

Average   1218±88 19±0.2 
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ZHF Forest 2013 1312 5.1 

ZHF  2014 1757 6.7 

Average   1535±315 6±1.1 

ZHC Cropland 2013 1312 21.1 

ZHC  2014 1757 22.1 

Average   1535±315 22±0.7 

ZMF Forest 2013 1195 3.9 

ZMF  2014 1524 4.6 

Average   1360±233 4±0.5 

ZMC Cropland 2013 1195 15.0 

ZMC  2014 1524 20.7 

Average   1360±233 18±4.0 

FLF Forest 2013 1023 1.1 

FLF  2014 1230 2.1 

Average   1127±146 2±0.7 

FLC Cropland 2014 1230 11.6 

FLC  2014 1230 17.0 

Average   1127±146 14±4 

Summary Forest   4±1.9 

 Cropland   20±5.7 

P: Rainfall; SSY: Area-specific seasonal suspended sediment yield. Catchment names like in Table 

5.2 

 

The average monthly SSY of the cropland is significantly different from the paired forest in all 

sites (Table 5.5). In general,  the overall average monthly sediment yield of the cropland (3.5±2.4 

Mg ha-1) is significantly higher than that of the corresponding paird forest (0.9±0.5 Mg ha-1). The 

average monthly suspended sediment yield of the cropland and forest (Table 5.5) shows very little 

hysteresis throughout the year (Fig. 5.6).   
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Figure 5.6. 28 Average monthly (June to October) suspended sediment yield (From Table 6.5) 

relationship with runoff in five paired catchments. (A) FH site forest and cropland; 

(B) DM site forest and cropland; (C) ZH site forest and cropland; (D) ZM site 

forest and cropland; (E ) FL site forest and cropland. 
 

Explanatory factors for suspended sediment yield 

Measured values for explanatory factors catchment area, slope gradient, seasonal rain and tree 

density, were analysed for the two sub-groups of catchments. It appears that the homogeneity in 

density of trees (0.19-0.24 m-2 in forest, 0.003 m-2 in cropland) and shrubs (2.4-2.6 m-2 in forest, 

0.71-0.72 m-2 in cropland) in the studied catchments (Table 5.6) does not allow analysing their 

impact on sediment yield, other than the overall contrast between the two land-uses types. 

However, in cropland the SSY is strongly associated to catchment area (R2=0.63), to average 
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catchment slope gradient (R2=0.50), to seasonal rainfall depth (R2=0.11); and similar strong 

association were found under forest: SSY with catchment area (R2=0.19); with average catchment 

slope gradient (R2=0.68), and with seasonal rainfall depth (R2=0.93) (n=5)  (Fig. 5.7). 
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Table 5.5.20 Monthly average area-specific suspended sediment yield (SSY, Mg ha-1) in the monitored catchments (2013 and 2014) 

Station Site Catchment Year June July August September October Monthly average SSY (Mg ha-1) 

FHF FH Forest 2013 0.7 1.9 1.0 2.3 0.7 1.1±0.6b 
 

  2014 0.5 1.6 1.2 1.0 0.5  
 

 Average 0.6±0.2 1.7±0.2 1.1±0.1 1.6±0.9 0.6±0.1  

FHC FH Cropland 2013 3.2 10.5 5.9 11.6 2.3 5.9±3.5a 
 

  2014 3.0 9.4 5.6 5.9 1.8  
 

 Average 3.1±0.1 9.9±0.8 5.8±0.2 8.8±4.0 2.1±0.4  

DMF DM Forest 2013 0.3 0.8 0.7 0.2 0.3 0.5±0.3b 
 

  2014 0.3 0.9 0.8 0.5 0.4  
 

 Average 0.3±0.0 0.9±0.1 0.8±0.1 0.4±0.1 0.3±0.1  

OMC DM Cropland  2013 2.1 6.8 5.6 2.3 2.3 3.8±1.9a 
 

  2014 1.7 6.3 4.4 3.5 2.8  
 

 Average 1.9±0.3 6.5±0.3 5.0±0.8 2.9±0.9 2.5±0.3  

ZHF ZH Forest 2013 0.4 1.9 1.1 1.1 0.6 1.2±0.5b 
 

  2014 0.5 1.9 1.5 1.2 1.5  
 

 Average 0.4±0.1 1.9±0.0 1.3±0.3 1.2±0.0 1.1±0.7  

ZHC ZH Cropland 2013 0.7 6.0 2.8 3.1 1.8 2.9±1.6a 
 

  2014 1.0 4.9 3.1 3.0 3.0  
 

 Average 0.8±0.2 5.5±0.7 2.9±0.3 3.1±0.1 2.4±0.9  

ZMF ZM Forest 2013 0.3 1.7 0.8 0.6 0.5 0.9±1.7b 
 

  2014 0.4 1.5 0.7 1.1 0.9  
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 Average 0.3±0.1 1.6±0.2 0.8±0.0 0.9±0.3 0.7±0.3  

ZMC ZM Cropland 2013 0.6 4.2 2.2 2.1 1.9 2.6±1.2a 
 

  2014 1.5 4.3 2.2 3.5 3.5  
 

 Average 1±0.7 4.2±0.0 2.2±0.0 2.8±1.0 2.7±1.2  

FLF FL Forest 2013 0.3 1.2 0.3 0.8 0.6 0.5±0.3b 
 

  2014 0.3 0.8 0.4 0.3 0.3  
 

 Average 0.3±0 1.0±0.3 0.4±0.1 0.6±0.4 0.5±0.2  

FLC FL Cropland  2013 0.6 2.7 1.0 2.6 1.3 2.0±1.1a 
 

  2014 1.3 4.3 2.3 2.0 2.2  
 

 Average 0.9±0.5 3.5±1.1 1.7±0.9 2.3±0.5 1.7±0.6  

Summary Forest  
    

0.9±0.5b 
 

 Cropland 
     

3.5±2.4a 

Mean values with different letters among the land use on the same site groups are significantly different from each other (P<0.05). 

SSY: Suspended sediment yield.
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Figure 5.7.29 Total seasonal sediment yield (TSSY) in forested (n = 5) and cropland catchments 

(n = 5) astride the  forest frontier in southwest Ethiopia, as a function of catchment 

area (A), average catchment slope gradient (B) and seasonal rainfall (C) 

. 

 

Figure 5.8.30  Livestock grazing in ZHF forest 
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5.4 Discussion 

Impact of land use on seasonal suspended sediment yield 

Average seasonal suspended sediment yield from catchments under cropland (20 Mg ha-1) is five 

times larger than that from similar catchments under forests (4 Mg ha-1), what is explained  by the 

relative high surface runoff and exposure of the soil to splash erosion. In reverse, the relatively 

high tree and shrub density in forests allows raindrop interception, and tree and shrub roots and 

litter increase the resistance of the surface soil to water erosion.  

The average suspended sediment yiled in the forest (4 Mg ha-1) is considerably less than in 

cropland but larger than the 0.5 Mg ha-1 suspended sediment yield from a caribbean forest (Cox et 

al., 2006), and much higher when compared with worldwide estimates of soil loss of 0-0.58 Mg 

ha-1y-1 (Sands, 2013), and 0.004 to 0.05 Mg ha-1 y-1 proposed for forests (Roose, 1988). The 

occurrence of high suspended sediment yield in the studied forest catchments, and also high 

suspended sediment concentration even at relatively low discharges (Fig. 5.5, right) is probably 

partly due to selective logging as evidenced by the presence of species typical of secondary 

vegetation (such as Albizia gummifera (J.F.Gmel.) C.A.Sm. Hagenia abyssinica (Willd), Polyscias 

fulva (Hiern).) or Schefflera abyssinica (Hochst. ex A.Rich)) and the pressure on the forest by 

grazing livestock, particularly in the crop growing period when stubble grazing is impossible. 

Livestock grazing basically results in decreased soil porosity and infiltration, which in turn 

increase surface runoff and soil loss. Soil disturbance by hoofs and horns of grazing livestock has 

been shown to significantly increase the suspended sediment yield in overland flow (McDowell et 

al., 2003).  

 When considering the monthly variation in SSY, we could not observe the expected higher 

sediment load for the same discharge in the early rainy season as contrasted to the late rainy season 

(Fig. 5.6). The absence of such hysteresis would indicate that conditions of production and 

transport of sediment yield stay more or less the same throughout the rainy season (Bača, 2008). 

This is most probably related to the overall humid environment that favours continuous vegetation 

growth, including off-season weeds, and soil humidity, hence little or no dust. Also the near-

absence of crop rotation favours weed development (Liebman & Dyck, 1993). 
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The seasonal suspended sediment yield measured on the cropland catchments (20 Mg ha-1) is larger 

than that of earlier partial studies from agricultural lands with similar slope, rainfall and 

management practices in neighbouring Keffa Zone (Fig. 1.1). For example, the soil loss in 

agriculture land was measured on runoff plots as 15 Mg ha-1 y-1 in Keffa Zone (Mekuria et al., 

2012), 8-15 Mg ha-1y-1 at different slope positions on settlers’ farms near Bonga in Keffa Zone 

(Berhanu, 2011). Just like our findings, the measured results strongly contrast with model results 

of 184 Mg ha-1 y-1 in Bench Maji Zone (Getachew, 2011). Our findings on cropland are also higher 

than the median of measured values in Africa for catchments of 2 ha (7.8 Mg ha-1 y-1) or 8 ha (6.3 

Mg ha-1 y-1) (Vanmaercke et al., 2014). In Ethiopia, all measured SSY for catchments up to 1000 

km² are in the range of 5-40 Mg ha-1 y-1 (Vanmaercke et al., 2010). Despite higher rainfall than all 

other measurement sites, our two-years measurement results on cropland are well within this range. 

Most plausible explanations are the fact that rains start slowly giving all chance to crops (and 

weeds) to get well established by the time that the June-September rains occur. 

Impacts of rainfall depth and topography on sediment yield 

Besides the overwhelming effect of land use type, the suspended sediment yield is also dependent 

on other catchment characteristics (Fig. 5.7). The increasing trends of SSY with catchment area, 

both in forest and in cropland could be related to the fact that soils are relatively saturated in the 

rainy season. In absence of soil and water conservation structures, alluvial plains or topographical 

flats, this leads to longer runoff length in the larger catchments, hence greater soil erosion, with 

little opportunity for deposition. Another reason for this positive relation is that in larger 

catchments (at this scale range) topographic thresholds are exceeded for e.g. (ephemeral) gully 

erosion and shallow landsliding. These processes become often more important when catchment 

size increases, as shown for instance by Verbist et al. (2010) in a tropical volcanic agroforestry 

landscape in Indonesia. 

A steeper slope gradient leads to increase in SSY, despite the coarsening of soil particles on steeper 

slopes and higher rock fragment cover, as observed elsewhere in Ethiopia (Miserez, 2013; 

Lanckriet et al., 2012). Finally, we could also observe higher SSY in catchments with more 

seasonal rainfall (Fig. 5.7, right); as, per land use type, land cover is quite similar, more rain is 

expected to lead to more splash erosion, more runoff, and hence greater SSY. When comparing 
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forest and cropland (Fig. 5.7), correlations are as strong, but the gradient is less, translating an 

overall buffering effect of the forest. 

5.5 Conclusions 

The study shows that changing southwest Ethiopia’s Afromontane forest into open field cropland 

significantly affects the sediment concentration and seasonal suspended sediment which is around 

five times higher in cropland catchments as compared to the paired forest catchments. Suspended 

sediment yield is strongly correlated with runoff in both forest and cropland. Even under grazing 

pressure, the forest plays an important role in protecting the soil from loss. Yet, soil loss from 

cropland (20 Mg ha-1/ rainy season) is lower than what could be expected after tropical 

deforestation, which we particularly relate to dense cover by crops and weeds particularly at the 

time of strongest rains. Unexpectedly high sediment yield from forests (4 Mg ha-1/rainy season) is 

probably due to degradation and particularly livestock pressure on the forests. Under both land-

uses types, soil loss increases with catchment area, average catchment slope gradient and seasonal 

rainfall. 

It has been shown in the study area that promoting agroforestry instead of open field cropping is 

paramount to sustain the soil fertility, soil organic and nitrogen stocks, and species richness and 

diversity in the upper catchment. Moreover, even under significant human and livestock pressure, 

forests have a prominent role in buffering storm runoff and enhancing baseflow. Here we showed 

also that removing the tree cover leads to strong increases in suspended sediment yield. 

Nevertheless, not only the forest area is under pressure, but the quality of the forest itself is also 

endangered. In brief, land management in southwestern Ethiopia’s highlands will need a strong 

change in paradigm, in which the overall belief in the recently imported plough is abandoned, oxen 

and other cattle decreased in number and kept at the homestead, the forest better protected from 

human and livestock interference, and the open farmlands turned into agroforestry. Such an 

approach is still possible as all required elements are available in the landscape. 

5.6 References 

Alexandrov, Y., Laronne J., Reid, I. 2007. Intra-event and inter-seasonal behavior of suspended 

sediment in flash floods of the semi-arid northern Negev, Israel. Geomorphology, 85:85–97. DOI: 

10.1016/j.geomorph.2006.03.013. 



 

 

167 

 

Asselman, N.E.M. 2000. Fitting and interpolation of sediment rating curves.Journal of Hydrology. 

234: 228-248. DOI: 10.1016/S0022-1694(00)00253-5.  

Bača, P. 2008. Hysteresis effect in suspended sediment concentration in the Rybárik basin, 

Slovakia. Hydrological Sciences Journal, 53(1), 224-235. DOI: 10.1623/hysj.53.1.224. 

Berhanu, A. 2011. Impact of resettlement on soil quality and management practices: the case of 

Gimbo Woreda, Keffa Zone, SNNPR, Ethiopia. MSc. Thesis in Environmental science, Addis 

Ababa University, Ethiopia. 

http://etd.aau.edu.et/bitstream/123456789/1090/3/BERHANU%20ACHAMO.pdf (accessed on 

1.11.2016). 

Cox, C.A., Sarangi, A., Madramootoo, C.A. 2006. Effect of land management on runoff and soil 

losses from two small watersheds in St Lucia. Land Degradation & Development. 17, 55-72. DOI: 

10.1002/ldr.694. 

De Baets S, Poesen J, Knapen A, Galindo P. 2007. Impact of root architecture on the erosion-

reducing potential of roots during concentrated flow.Earth Surf.Proc. Land. 32, 1323–1345. DOI: 

10.1002/esp.1470 

Dewitte, O., Jones, A., Spaargaren, O., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, 

J., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Michéli, E., Montanarella, L., 

Thiombiano, L., Van Ranst, E., Yemefack, M., Zougmore, R. 2013.Harmonisation of the soil map 

of Africa at the continental scale. Geoderma, 211–212:138–153. 

DOI:10.1016/j.geoderma.2013.07.007.  

EEPCO. 2015. Decommission of Demi Hydro Electric Power plants. Dembi power plant 

Environmental impact and feasibility study report. Final report. Ethiopian Electric Power 

Corporation, Addis Ababa. 

FAO NewLocClim. 2006. Local Climate Estimator software and global climate database. (version 

1.10). FAO, Rome, Italy.  

Fu, B., Wang, Y., Xu, P., Wang, D. 2009. Changes in overland flow and sediment during simulated 

rainfall events on cropland in hilly areas of the Sichuan Basin, China. Progress in Natural Science. 

19, 1613-1618. DOI: 10.1016/j.pnsc.2009.07.001. 

Getachew, M. 2010. Significance of traditional land use practices and land-scape positions on soil 

degradation in Gem Mountain at Mizan Teferi. Unpublished MSc. dissertation, Mekelle 

University, Ethiopia.  

http://etd.aau.edu.et/bitstream/123456789/1090/3/BERHANU%20ACHAMO.pdf


 

 

168 

 

Ghidey F, Alberts EE. 1997. Plant root effects on soil erodibility, splash detachment, soil strength 

and aggregate stability.Transactions of the American Society of Agricultural Engineers. 40: 129–

135. Doi: 10.13031/2013.21257. DOI: 10.13031/2013.21257. DOI: 

10.1016/j.jhydrol.2009.07.066. 

Girmay, G., Singh, B.R., Nyssen, J., Borrosen, T. 2009.Runoff and sediment-associated nutrient 

losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology.376, 70-80. 

Lal, R. 1987. Response of maize and cassava to removal of surface soil from an Alfisol in Nigeria. 

International Journal of Tropical Agriculture. 5, 77–92. 

Lanckriet, S., Tesfay Araya, Cornelis, W., Verfaillie, E., Poesen, J., Govaerts, B., Bauer, H., 

Deckers, S., Mitiku Haile, Nyssen, J. 2012. Impacts of conservation agriculture on runoff and soil 

loss under changing climate conditions in May Zeg-zeg (Ethiopia). Journal of Hydrology, 475: 

336-349. DOI: 10.1016/j.jhydrol.2012.10.011. 

Liebman, M., Dyck, E. 1993. Crop rotation and intercropping strategies for weed management. 

Ecological applications, 3, 92-122. DOI: 10.2307/1941795.  

MACWE. 2014. Raw water supply sediment prevention and controlling. A project proposal by 

Mizan-Aman city water supply sanitation enterprise.SNNPR, Bench Maji Zone, Mizan-Aman city. 

Mamo M, Bubenzer, GD. 2001. Detachment rate, soil erodibility and soil strength as influenced 

by living plant roots, Part II: Field study. American Society of Agricultural Engineers. 44: 1175–

1181. Doi: 10.13031/2013.6446. 

McDowell, R. W., Drewry, J.J., Muirhead, R.W., Paton, R.J. 2003. Cattle treading and phosphorus 

and sediment loss in overland flow from grazed cropland.Soil Research.41, 1521-

1532.DOI.org/10.1071/SR03042. DOI:10.1002/ldr.1088.  

Mekuria, A., Vlek, PLG., Denich, M. 2012. Application of the Caesium-137 technique to soil 

degradation studies in the southwestern highlands of Ethiopia. Land Degradation & Development 

23: 456 –464. DOI:10.1002/ldr.1088. 

Mengesha, T., Tadiwos, C., Workineh, H. 1996. Explanation of the Geological Map of  Ethiopia. 

Scale 1:2.000.000.  In:  Ethiopian Institute of Geological Survey Bull .No.3, 80, 2nd eds. EIGS, 

Addis Ababa. 

Miserez, A. 2013. Soil erodibility and mapping in different hydrological land systems of Lake 

Tana basin, Ethiopia. M.Sc. thesis study, Department of Soil and Water Management, KU Leuven, 

Belgium. 



 

 

169 

 

Moliere, D.R., Evans, K.G., Saynor, M.J., Erskine, W.D. 2004. Estimation of suspended sediment 

loads in a seasonal stream in the wet-dry tropics, northern territory, Australia. Hydrological 

processes. 18: 531-544. DOI: 10.1002/hyp.1336. DOI: 10.1002/hyp.1336.  

Mueller-Dombois, D.,  H. Ellenberg. 1974. Aims and methods of vegetation ecology.John Wiley 

and Sons, New York, NY. USA. 

Nyssen, J., Poesen, J., Moeyersons, J., Deckers, J., Mitiku, H., Lang, A. 2004. Human impact on 

the environment in the Ethiopian and Eritrean highlands–a state of the art.Earth-Science Reviews. 

64, 273–320. DOI:10.1016/S0012-8252(03)00078-3. 

Roose, E. 1988. Soil and Water Conservation Lessons from Steep-Slope Farming in French 

Speaking Countries of Africa. In: Conservation Farming on Steep Lands; Moldenhauer, W.C., 

Hudson, N., Eds.; Soil and Water Conservation Society, World Association of Soil and Water 

Conservation: Ankeny, IA, USA. pp. 130–131.  

Sands, R. ed. 2013. Forestry in a global context. CABI publishing. Wallingford, England. 

Steininger, M.K., Tucker, C.J., Townshend, J.R., Killeen, T.J., Desch, A., Bell, V., Ersts, P. 2001. 

Tropical deforestation in the Bolivian Amazon. Environmental conservation. 28, 127-134. DOI: 

10.1017/S0376892901000133. 

Tadesse, M., Alemu, B., Bekele, G., Tebikew, T., Chamberlin, J., Benson, T. 2006. Atlas of the 

Ethiopian rural economy.CSA and IFPRI, Addis Ababa, Ethiopia. 

Vanmaercke, M., Zenebe, A., Poesen, J., Nyssen, J., Verstraeten, G., Deckers, J. 2010. Sediment 

dynamics and the role of flash floods in sediment export from medium-sized catchments: a case 

study from the semi-arid tropical highlands in northern Ethiopia. Journal of Soils and Sediments 

10: 611-627. DOI: 10.1007/s11368-010-0203-9. 

Vanmaercke, M., Poesen, J., Verstraeten, G., de Vente, J., Ocakoglu, F. 2011. Sediment yield in 

Europe: spatial patterns and scale dependency. Geomorphology, 130, 142-161. DOI: 

10.1016/j.geomorph.2011.03.010. 

Vanmaercke, M., Poesen, J., Broeckx, J., Nyssen, J. 2014. Sediment yield in Africa.Earth-Science 

Reviews, 136, 350-368. DOI: 10.1016/j.earscirev.2014.06.004. 

Verbist, B., Poesen, J., van Noordwijk, M., Suprayogo, D., Agus, F., Deckers, J. 2010. Factors 

affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic 

agroforestry landscape. Catena, 80, 34-46. DOI: 10.1016/j.catena.2009.08.007.  

Westphal, E. 1975.   Agricultural Systems in Ethiopia. Agricultural research reports 826, Center  



 

 

170 

 

for Agricultural Publishing and Documentation. Wageningen. The Netherlands.  

 

  



 

 

171 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

 General discussion and conclusions 

  



 

 

172 

 

6.1 General discussion 

1. What do we know already about causes and impacts of the transition of Afromontane forest to 

cereal based farming? (Chapter 1)   

Deforestation has received major attention, because it is resulting in environmental degradation in 

Ethiopia, and is the major factor challenging food security, livelihood and sustainable development 

(Bishaw & Abdelkadir, 2003; Nyssen, 2004). The impact is more for poor farmers of Ethiopia, 

especially farmers of southwest Ethiopia whose livelihood depends on collection of timber, wood, 

fruit, honey, spice and hunting from the forest (Anteneh, 2006).  Despite the forest has been 

providing several importance to the local community livelihood, several human induced factors 

have led to deforestation, mainly related to expansion of agriculture land and settlement (Mekuria, 

2005).  

From the perspective of forest cover change, Reusing (2000), Mekuria (2005), Bedru (2007), 

Dereje (2007), and Belay (2010) are in agreement with the identified causes of Geist & Lambin 

(2002), Lambin et al. (2003) and Kabanza et al. (2013), who showed that forest cover changes are 

driven by a complex of underlying causes rather than by single factors such as ‘shifting cultivation’ 

or ‘increasing population’ pressure.  

The forest degradation related to resettlement has been driven by the increase in population, 

government policy and economic factors. The introduction of a new unsustainable farming system, 

the increased demand for land, fuel wood and construction wood for a growing population, the 

illegal expansion of agriculture and grazing land and the policy choice to have settlers achieve 

food security at the expense of available natural resources provokes the degradation of dense 

natural forests in the settlement areas (Mekuria, 2005; Reusing, 2000; Behailu, 2010; Belay, 2010). 

Similarly, Geist & Lambin (2002) indicate that the immigration of settlers in less populated regions 

increased the deforestation in Africa and Latin America (Geist & Lambin, 2002). In contrast, 

Kabanza et al. (2013) showed that where population density was the highest in southeastern 

Tanzania, large areas of cropland and bush land were converted to cashew tree cultivation, which 

represents a case of “more people, more trees”.  

In a country like Ethiopia, where agriculture is a mainstay for the livelihoods of the majority of 

the population, a natural or man-made failure in agriculture could have a tremendous effect on the 
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food security of a population. Thus, resettlement is considered to be the easiest solution to curb 

the problem temporarily or permanently. However, as shown here, such resettlement programmes 

have a profound impact on the environment. In addition, population increase, market access, and 

government land policy enforceability further exacerbated the extent and degree of forest 

degradation. 

Forest degradation related to the expansion of large-scale commercial agriculture has been driven 

by national and international market demand and government tenure policy. The rapid expansion 

of large-scale private cash crops (coffee, tea, endod, rubber tree, pepper and cereal), the expansion 

of the out-grower scheme approach, a large demand for tea, and illegal logging for the expansion 

of commercial farmland has resulted in the large-scale destruction of ecologically important forest 

resources. Furthermore, despite the environmental policy of Ethiopia (EPE) was issued in 1997 to 

provide guidance in the conservation and sustainable utilization of the country’s  natural resource, 

weak law enforcement in relation to the implementation of EIA and environmental audits are 

undertaken on private investment projects in the southwest Ethiopia. This is because the EIA has 

not given attention on the development project implementation, since project evaluation and 

decision making mechanism have focused only on short-term technical feasibility, economic 

benefit and increase in foreign currency (Tadesse, 2007; Bedru, 2007; Tezera, 2008; Dereje, 2007). 

Similarly, Dereje et al (2015) indicated that land has leased without Environmental impact 

assessment (EIA), this resulted large scale deforestation and woodland degradation. Further, 

Lambin et al. (2003) indicated that commercialisation and the increase in growth of the national 

and international market as well as market failure have driven deforestation in Indonesia, where 

the presence of ill-defined policy and weak institutional enforcement has resulted in an increase in 

extensive illegal logging. Furthermore, Barbier (1997) showed that economic factors and policies 

have a direct impact on the decision making of land managers. Forest degradation related to the 

expansion of large-scale commercial farms stems from crop selection, national and international 

markets, investors’ perceptions about ecology and technological factors. Market- and profit-

oriented agricultural investments always have short- or long-term impacts on the environment due 

to a higher priority assigned to profit maximisation than to ecological issues. Furthermore, poor 

environmental impact assessments and policy enforcement on investment projects have led to 

uncontrolled and unbalanced decisions concerning the environment. The government tenure policy 
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has a significant impact on the sustainability of natural resources. Provision of ownership rights is 

of great importance on the behaviour of individuals towards resource utilisation and care. A feeling 

of insecurity about resources results in suspicion, less motivation to conserve and, consequently, 

leads to fear-motivated decision-making over resource utilisation, as also demonstrated by Kalema 

et al. (2015) in other parts of Equatorial Africa. In contrast, Liscow (2013) indicated that strong 

protection of property rights in Nicaragua encouraged agricultural investment and consequently 

led to accelerated deforestation. Yet, in their meta-analysis of the relationship between land tenure 

and tropical deforestation, Robinson et al. (2014) showed that, overall, greater land tenure security 

is associated with a slow rate of deforestation. 

The unconsented villagisation programme caused local communities, that were dependent on 

forests for their livelihoods, to feel insecure, which further caused a shift in livelihoods, such as 

logging timber for sale to the village and further forest degradation when returning to their original 

location (Zewdie, 2007, Mekuria, 2005). Similarly, Kikula (1997) indicated that the villagisation 

programme in Tanzania has had long-term negative environmental impacts such as forest cover 

decrease and land degradation. Kabanza et al. (2013) also showed that villagisation resulted in a 

decline in forest cover in the Makonde plateau in southeastern Tanzania, even though the 

villagisation policy was enacted with the intention to reduce the impact on the forests and to 

provide collective social services. However, villagisation works only when the people consent to 

the programme; otherwise it has a strong impact on the environment by alternating the utilisation 

of resources in the new and in the previous place. Villagisation was perceived as temporary, which 

consequently led to the rapid and less sustainable utilisation of natural resources.  

Governmental policy’s direction towards promoting the large- and small-scale expansion of cash 

crops for national and international markets has resulted in forest degradation. The distribution of 

inorganic fertilisers, improved variety of coffee and cereals, pesticides, credit services for farmers 

and market facilities have resulted in the rapid expansion of crop and coffee land at the expense of 

forests (Mekuria, 2005; Belay, 2010). Similarly, Tuner (1999) indicated that the provision of better 

access to credit, improved crop varieties and markets can potentially encourage more deforestation 

rather than relieving pressure on the forest (Turner, 1999). Geist & Lambin (2002) also showed 

that economic factors are prominent underlying forces of tropical deforestation. High demand in 

national and international markets for commercialisation hastened deforestation. Land tenure and 
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agricultural policy have been organised to promote cash crop expansion. The policy direction 

towards securing food demand at the local, regional and national level and a need to increase 

foreign income has resulted in forest degradation. A policy direction that promotes market-oriented 

production at the expense of forests could be catastrophic in the long run.  

Though the intent of nationalising forest resources has been to better protect them, ignoring the 

cultural and socio-economic tie of local people with the forest exacerbated forest degradation. 

According to Zewdie (2007), the customary land tenure system played a pivotal role in the 

sustainable management of forests in the region. Typically, traditional leaders claim authority over 

land and natural resources by referring to their pivotal role in the relationship they maintain 

between local people and place by mediating between the material and the spiritual world 

(Dondeyne et al., 2012; Virtanen, 2005; Convery, 2006). The customary tenure system and 

culturally oriented ecological tie are important for the conservation of forest ecosystems as sites, 

such as springs, pools, rivers, forests, rocks and mountains are valued and respected because of 

their ancestral spiritual tie with the local community. So, despite the government attempts – indeed 

under the various political regimes – to undo the traditional customary tenure rules of access to 

land these still de facto function to some extent. Formal recognition of these institutions could be 

beneficial to the conservation and sustainable management of the forest resources. 

2. As compared to Afromontane forests, to what extent are the soil fertility, organic carbon and 

nitrogen stocks decreased in the main cropping systems (agroforestry and monocropping)? 

(Chapter 2) 

The topsoil clay content, bulk density, pH, soil organic carbon, nitrogen, phosphorous, cation 

exchange capacity and base cation saturation in agroforestry is equivalent to the forest (<3% 

difference) except an increase with (8%) in phosphorous in agroforestry, whereas the cropland 

show a decrease in clay, with (42%), pH (15%), soil organic carbon (39%), nitrogen (43%), 

available phosphorous (44%), cation exchange capacity (28%), base cation saturation (35%) and 

an increase in bulk density (40%), when compared to the forest. The clay content of the forest and 

agroforestry (25-30%) are within the marginal range of total clay content requirement for Nitisol 

(WRB, 2006). The percentage of soil organic carbon and nitrogen decrease from the cropland is 

in line with the decrease in percentage  (30-50%) of those characteristics by Mulugeta (2005) and 

Rossi (2009). Similar decrease in available phosphorous, with (31-82%) Ngoze et al (2008), CEC 
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(25%) and base cation saturation (30-40%) Awoonor (2012) was reported in agriculture land. 

However, the available phosphorous in forest and agroforestry (6-11 mg kg-1) are below the critical 

value (75-150 mg kg-1), which reveals that the soils of the study area critically deficient in available 

phosphorous. Similar studies in studies in south west Ethiopia by Getachew (2010), Berhanu 

(2011), Mekuria, (2005), Mulugeta et al, (2005a and 2005b) showed a significant decrease in soil 

fertility after conversion of forest to agriculture land. Overall, the continues crop cultivation 

without management, as observed on the cropland in the study area have led to deterioration of 

soil quality. The severity of the problem in relation to crop cultivation in agriculture land evolved 

from malpractice, where cropland is cultivated continuously without supplementary inputs in one 

area till exhaustion and then moving on to the forest and/or some where the land appears in good 

condition. The soil organic carbon and nitrogen stocks in the agroforestry have not shown any 

decrease in percentage, when compared to the forest, whereas the cropland soil organic carbon 

decrease, with (21%) (Fig 6.1B) and nitrogen stocks (27%). Similar soil organic carbon stocks 

decrease was reported in agriculture land by Wei et al (2014)  (41% decrease) and Done et al 

(2011) (25% decrease). The percentage of nitrogen stocks decrease in the cropland is in line with 

the range reported by Barros et al (2014) (17%). The major threat of soil organic carbon stocks 

decrease in the cropland associated with the increase in CO2 emission to the atmosphere, which 

consequently have short and long term effect on the atmosphere, in particular it contributes to 

global warming and climate change impact. The  emission of green house gases from agriculture 

has not been given attention, yet the agriculture is now become responsible for 7% of total 

emissions of green house gases in to the atmosphere (Parton et al., 2011). Therefore, apart from 

crop production it is very essential to view the reversible impact of expanding agriculture land, 

especially the impact related to green house gas emission.  

 

3. To what extent is the species diversity decreased due to deforestation/land use change? (Chapter 

3) 

The overall plant species diversity of the agroforestry have shown a 12% decrease in plant species 

diversity, compared to the forest, whereas the cropland species diversity decrease by 36% (Fig 

6.1A) The decrease in species diversity in cropland is in line with the report of 13-50% decrease 

in species diversity in agriculture land after conversion of tropical forest of Africa (Lovejoy, 1980;  
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Ehrlichh & Ehrlich, 1981); and below the range (40-70%) decrease in species diversity in cropland 

reported by Zhi-yun (1999). The plant species richness of the agroforestry decrease by 19%, 

whereas the cropland decrease by 62%. The decrease in species richness from the cropland is in 

agreement with Zhi-yun (1999), who reported 50-80% decrease in species richness in agriculture 

land, compared to forest. Similar studies around southwest Ethiopia by Tadesse (2007) and Moti 

et al. (2011) reported a significant biodiversity loss after forest conversion to monoculture. This 

finding is also in agreement with the findings of Thiollay (1997, 1999), Onderdonk & Chapman 

(1999), Hamer et al. (1996), and Vasconcelos (1999). Changes in forest cover, structure and 

composition have detrimental effects on the disturbance and survival of plant and animal diversity. 

Thiollay (1997, 1999), Schulze et al. (2000), Vasconcelos (1999), Hamer et al. (1996) and 

Onderdonk & Chapman (1999) found that changes in forest structure negatively affect the 

composition and diversity of microorganisms, insects, birds and primates. Habitat conversion or 

modification by humans to produce goods and services is the most substantial human alteration of 

ecosystems threatening biodiversity (Chapin et al., 2000). The conversion of forestland to 

monocultures has irreversible effects on biodiversity loss. Forests play an important role in 

creating positive ecological conditions for understory plants, animals, microorganisms, insects and 

birds. The disturbance and removal of the forest results in the disturbance of habitats, food and 

water sources of other organisms, which results in the migration and death of living organisms that 

depend on the forest. Worldwide, Runyan et al. (2012) showed that deforestation leads to a rapid 

decline of mycorrhizal fungi, Rhizobium sp. and soil microbial population. Overall, the presence 

of low difference in overall species diversity and richness between the forest and agroforestry is 

due the integration of various food and commercially important crops in the agroforestry system.  

The plant species richness and diversity were limited under cropland, in which few commercially 

important species dominate the land management unit. This practice severely threatens the 

diversity and led to a shift from the land of diversity and richness, which the area is known to 

dominance of monocropping or/and land of uniform species. This is evident in developing 

countries like Ethiopia, where natural resource utilization has been taken as a prior alternative for 

poverty reduction.  
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4. Is the runoff response impacted by deforestation? (Chapter 4) 

The seasonal base flow of the cropland show a 57% decrease, when compared to the forest (Fig 

6.1C). This is in agreement with the a decrease in base flow, with (50%) Ogden et al (2013) and 

4% Alibuyog et al (2009) after conversion of tropical forest to agriculture land.  On the other hand,  

the cropland seasonal runoff increase, with (126%), when compared to the reference forest (Fig 

6.1D). Similar increase in surface runoff (100%) was reported by Dias et al (2015) after conversion 

of tropical forest to agriculture land. Similarly Lal (1990) reported a significant increase in runoff 

after conversion of tropical forest to annual cropping system. The decrease in base flow in the 

cropland appears as an evident for substantial negative effects of agriculture land use on water 

availability for irrigation and household and dried base flows on dry season of the year, as observed 

in all cropland catchment in the study area.  

5. Is the suspended sediment yield increased due to deforestation? And what is sediment yield from 

the forest itself? (Chapter 5) 

The seasonal suspended sediment yield of the cropland increase by 410%, when compared to the 

forest (Fig 6.1E). Similarly, Trimble & Mendel (1995) reported 200% increase in soil loss in the 

agriculture after conversion of tropical forest.  Similar studies in south west Ethiopia by Berhanu 

(2011),  Getachew (2010) and (Mekuria et al., 2012) reported significant increase in soil loss after 

conversion of afromontane forest to cultivated land. In addition, with time soil loss rates increase 

in line with declining soil structure and organic matter content, what will lead to irreversible 

degradation (Getachew, 2010; Runyan et al., 2012). Overall, the soil erosion result of the cropland 

reveals that the soil erosion of the cropland is sever, which is probably related to long term heavy 

rainfall, relatively low rainfall interception by the crop. Moreover, the seasonal suspended 

sediment yield in cropland (20 Mg ha-1)/season is beyond the critical threshold level for soil in 

Ethiopia (13 Mg ha-1 y-1) and above the soil formation rate for warm humid agro-ecologies in 

Ethiopia (18 Mg ha-1 y-1) (Hurni, 1983). 
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6. What is the overall land management implication of the three main land uses (forest, 

agroforestry, cereal monoculture) on land degradation? (Chapter 6) 

The forest has an important role in stabilizing the soil quality, green house gas emission, 

biodiversity, surface runoff and soil loss, as it shows high value on soil physico-chemical 

characteristics, soil organic carbon and nitrogen stocks, plant species diversity; and scores less in 

surface runoff and soil loss. Alike the forest, the agroforestry has an important and equivalent role 

in sustaining soil fertlity, soil organic carbon and plant species diversity. As there were no 

homogenous catchments available under agroforestry we could not evaluate their impact at 

catchment scale on hydrology and sediment. Yet, our expertise in the field tends to indicate that 

similarly to other parameters, the effect of agroforestry on runoff and sediment yield is in between 

that of forest and open field cropland. The cropland now under crop cultivation are not in 

sustainable, as the soil quality, soil organic carbon stocks, plant biodiversity, and base flow are 

low; and high in surface runoff and soil loss. Moreover, the cropland land management in 

southwest Ethiopia’s highlands appear to be  poor, despite the high rainfall, mountain landscape 

and steep slopes could led to irreversible impact on land, as it can be seen on the cropland of the 

study area;  low soil fertility, low plant diversity, low soil organic carbon and nitrogen stocks, low 

base flow; and high surface runoff and soil loss. Further, the impact is worst for poor farmers of 

south west Ethiopia, who do not have the capacity to purchase inputs like chemical fertilizer, no 

fallow period and have less crop residue remained in the soil for soil organic matter amendment, 

as the crop residue (maize stalk and weed) has been used by the grazing livestock's. As reported 

by Warren (2002), land degradation cannot be judged independent of its spatial, temporal, 

economic, environmental and cultural context. That is to say, while analysing land degradation in 

space and time, not only does the limitation of natural conditions have to be considered but also 

the roles of the socio-economic and cultural driving forces. Apart from the natural factors, ongoing 

changes on soicio-economic and cultural in southwest Ethiopia, which actually related to 

population increase, government policy and resettlement could lead to irreversible land 

degradation, in line with the report by Getachew (2010), Berhanu (2011) and Mekuria (2005) on 

southwest Ethiopia.  

The presence of high species diversity and the increased and continual threat on the forest has 

encouraged conservation to reduce the risk of biodiversity loss, land degradation and socio-
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economic impacts. According to Baye & Terefe (2009), biological soil and water conservation 

techniques play an important role in controlling runoff and sediment transport. In-situ conservation 

of wild coffee in the forest with the intention to shift to co-management (involvement of local 

community and government) through participatory forest management contributed to the 

conservation of wild coffee and forests and generated income for the local community. Other 

conservation efforts, such as registration with UNESCO’s biosphere reserves, have played an 

important role by strengthening biodiversity conservation, improving the local community’s 

livelihood, and promoting environmentally friendly agriculture and eco-tourism. Because the 

cause for land use and land cover changes are diverse and are the result of different interacting 

factors, diverse strategies are needed to tackle the forest degradation problem other than simply 

giving more priority to strict conservation rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.31Conceptual model of 

the research results. Land use: FO: 

forest; AG: agroforestry; CR: 

cropland. species diversity (A); 

SOC stocks (B); base flow (C); 

runoff (D) and soil loss (E). 
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6.2 General conclusion  

The agroforestry is paramount to sustain the soil fertility, soil organic and nitrogen stocks, and 

species richness and diversity in the upper catchment of Gacheb. Moreover, even under significant 

human and livestock's pressure, forest plays a prominent role in protection of surface runoff and 

suspended sediment yield. Nevertheless, not only the forest area is under pressure, but the quality 

of the forest itself is also endangered. In brief, land management in southwest Ethiopia’s highlands 

will need a strong change in paradigm, in which the overall belief in the recently imported plough 

is abandoned, oxen and other cattle decreased in number and kept at the homestead,  the forest 

better protected from human and livestock interference, and the open farmlands turned into 

agroforestry. Such an approach is still possible as all required elements are available in the 

landscape. 
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Appendix A 

Appendix A. The background history of studied cropland and agroforestry land use on chapter 2 and chapter 3. 

Site Land use Current and Land use history  Land management  

FH Cropland -  Maize, taro  and weeds are dominant crops in the cropland 

- The land was forest before 14 year 

 

- No fallowing 

- Crop rotation: Maize, Bean and Barly 

 - Plowing: Ox plow= 3 times,  Hand tools= 2 times 

 - No fertilizer application 

Agroforestry Coffee mixed with various multipurpose trees (nitrogen fixing 

shade trees and fruit trees). Coffee is the dominant crop. Root 

and tuber crops (Taro and "Enset") are also mixed in the 

agroforestry. 

- Litter fall from the tree are collected and  

incorporated to the soil 

-  Weeding before coffee harvesting 

DM Cropland  - Maize, taro and weeds are dominant crops in the cropland 

- The land was forest before 20 year 

-  No fallowing 

-  Crop rotation: Maize, Bean and Sorghum  

-  Plowing: Ox plow= 3 times,  Hand tools= 1 times 

-  No fertilizer application 

Agroforestry Coffee, fruit trees, root and tuber crops, multipurpose trees are 

appreciably present in the agroforestry. Coffee is a dominant 

crop but nitrogen fixing shade trees, fruits and food crops (root 

and tuber crops) are mixed and have complex structural 

composition.  

- Litter fall from the tree are collected and  

incorporated to the soil 

-  Weeding before coffee harvesting 

ZH Cropland - Maize, taro and weeds are dominant crops in the cropland  

- The land was forest before 15year 

- No fallowing 

- Crop rotation: Maize only 

- Plowing: Ox plow= 3 times, Hand tool= 0 

- No fertilizer application 

Agroforestry Coffee, shade tree, spices, fruit tree and food crops (root and 

tuber crops) are high and created complex structure in the 

agroforestry. Alike other agroforestry coffee is dominant crop 

but the presence of   multipurpose trees, food crops and other 

cash crops are also dense.  

- Litter fall from the tree are collected and  

incorporated to the soil 

-  Weeding before coffee harvesting 

ZM Cropland - Maize, taro and weeds are the dominant crops in the cropland. 

- The land was forest before 23 year 

- No fallowing 

- Crop rotation: Maize and Sorghum 
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- Plowing: Ox plow= 3 times, Hand tool= 1 

Agroforestry Coffee mixed with various multipurpose trees ( nitrogen fixing 

shade trees and fruit trees). Coffee is dominant crop but spices 

crops, fruit plants, root and tuber crops and nitrogen fixing 

shade trees are also high in the agroforestry. 

- Litter fall from the tree are collected and  

incorporated to the soil 

-  Weeding before coffee harvesting  

FL Cropland - Maize and weeds are the dominant crops in the cropland 

-No taro crop in the cropland 

- The land was forest before 19 year 

- No fallowing 

- Crop rotation: Maize, Bean and Sorghum 

 - Plowing: Ox plow= 3 times,  Hand tool= 1 times 

 - No fertilizer application 

 Agroforestry  Coffee mixed with various multipurpose trees (nitrogen fixing 

shade trees and fruit trees). Coffee is dominant crop. Fruit trees 

are sparsely distributed. Poor in presence of root and tuber 

crops.  

- Litter fall from the tree are collected and  

incorporated to the soil 

-  Weeding before coffee harvesting 

Site: FH:Faketen high; DM: Dakin middle; ZH: Zemika high; ZM: Zemika middle; FL: Fanika low. *Detail of the the above land use types vegetation species 

frequency and composition  are present on Appedix C table. 
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Appendix B 

 Appendix B (1). Topsoil (0-20 cm) physico-chemical characteristics of land use in Gacheb catchment  

 

 

 

 

  

Land 

use 

types 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

BD 

(g cm-1) 

pH OC 

(%) 

N 

(%) 

P 

(mg 

kg-1) 

Na 

cmol  

(+) kg-1 

K 

cmol  

(+) kg-1 

Ca 

cmol 

(+)kg-1 

Mg 

cmol 

(+)kg-1 

CEC 

cmol 

kg-1 

BS 

(%)  

FHC 34±1.1 55±1.9 12±0.8 1.0±0.05 5.6±0.1 4.7±0.2 0.5±0.1 11±0.8 0.4±0.03 0.5±0.1 5.6±1 2±1 61±1 44±2 

FHA 21±1.1 56±0.9 23±1.3 0.7±0.04 5.8±0.1 8.0±0.1 1.0±0.1 14±1.5 0.4±0.03 1.2±0.1 17.4±1 34±1 89±2 60±1 

FHF 22±1.6 57±1.4 21±0.8 0.7±0.05 6.0±0.1 8.2±0.2 1.1±0.1 14±0.8 0.5±0.03 1.1±0.1 20.4±1 36±1 94±2 62±2 

DMC 36±1.2 51±0.9 13±0.8 1.2±0.04 5.1±0.1 3.9±0.2 0.3±0.02 5±0.4 0.3±0.04 0.3±0.02 7±0.3 12±1 64±2 31±2 

DMA 23±0.9 55±1.5 23±0.9 0.8±0.03 5.7±0.1 6.8±0.2 0.7±0.03 11±0.6 0.3±0.03 0.7±0.02 14±0.5 29±2 82±1 53±2 

DMF 21±0.6 55±1.3 24±0.7 0.8±0.03 5.6±0.1 6.8±0.2 0.7±0.02 11±0.6 0.4±0.03 0.6±0.03 13±0.4 30±1 83±2 52±2 

ZHC 36±0.7 51±1.0 14±0.6 1.2±0.3 5.1±0.2 4.9±0.1 0.5±0.03 5±0.9 0.2±0.01 0.5±0.06 6±0.6 14±1 52±2 39±3 

ZHA 22±0.8 55±0.9 23±0.6 0.9±0.3 5.6±0.1 7.8±0.2 0.9±0.02 12±0.8 0.4±0.02 1.2±0.12 17±1.0 28±2 72±2 64±2 

ZHF 20±1.1 55±1.1 25±1.0 0.9±0.2 5.7±0.1 7.9±0.1 1.0±0.02 11±1.0 0.4±0.02 1.3±0.10 18±0.6 30±2 75±1 66±2 

ZMC 36±1.9 48±0.9 16±1.0 1.2±0.05 4.9±0.2 3.9±0.1 0.3±0.02 5±0.7 0.2±0.02 0.4±0.02 8±1.1 15±1 56±2 42±1 

ZMA 23±1.1 53±1.2 24±0.9 0.9±0.03 5.3±0.2 6.5±0.1 0.7±0.02 11±0.6 0.4±0.02 0.5±0.02 14±0.6 29±1 80±1 54±2 

ZMF 22±1.1 52±1.6 26±0.6 0.9±0.04 5.6±0.2 6.5±0.1 0.6±0.01 10±0.4 0.4±0.02 0.5±0.02 14±0.6 31±2 81±2 56±2 

FLC 27±0.9 51±0.9 22±1.0 1.2±0.03 6.0±0.1 3.4±0.1 0.5±0.02 5±0.3 0.3±0.01 3.1±0.1 10±0.3 12±1 69±2 37±0.1 

FLA 18±0.8 50±1,2 33±0.6 0.9±0.03 6.4±0.1 4.9±0.1 0.8±0.02 12±0.3 0.4±0.01 3.6±0.1 16±0.3 33±1 84±2 63±0.6 

FLF 15±1.3 49±1.8 35±0.6 0.9±0.02 6.4±0.2 5.0±0.1 0.8±0.02 10±0.5 0.4±0.01 3.6±0.2 16±0.5 34±1 86±1 62±1.1 
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Appendix B (2). Subsoil (40-60 cm) physico-chemical characteristics of the  land uses in the Gacheb catchment 

Land  

use  

types 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

BD 

(g cm-1) 

pH OC 

(%) 

N 

(%) 

P 

(mg kg-1) 

Na 

cmol  

(+) kg-1 

K 

cmol  

(+) kg-1 

Ca 

cmol 

 (+) kg-1 

Mg 

cmol 

 (+) kg-1 

CEC 

cmol  

kg-1 

BS 

(%)  

FHC 22±1.9 46±0.8 33±2.2 1.3±0.04 5.1±0.1 2.9±0.2 0.2±0.02 4.2±0.3 0.1±0.02 0.5±0.05 10±0.5 16±1 59±2 47±2 

FHA 19±1.0 48±1.5 33±1.2 1.1±0.03 5.3±0.2 4.1±0.1 0.4±0.03 5.6±0.5 0.2±0.02 0.7±0.08 11±0.5 25±1 68±2 53±1 

FHF 18±1.3 49±1.2 33±2.0 1.1±0.03 5.4±0.1 4.3±0.1 0.4±0.02 6.2±0.3 0.3±0.02 0.7±0.08 11±0.9 25±1 69±2 53±2 

DMC 23±1.1 46±1.3 31±0.6 1.3±0.10 5.0±0.1 2.5±0.1 0.2±0.05 2.5±0.3 0.2±0.05 0.2±0.05 10±0.3 18±1 59±2 48±4 

DMA 19±1.3 50±1.5 31±0.9 1.2±0.06 5.3±0.1 3.5±0.1 0.3±0.05 4.3±0.2 0.3±0.05 0.4±0.05 10±0.5 25±1 67±2 53±1 

DMF 18±1.4 50±1.8 32±0.7 1.1±0.06 5.4±0.2 3.6±0.1 0.4±0.06 4.2±0.2 0.3±0.05 0.4±0.05 10±0.5 26±1 69±2 54±1 

ZHC 26±1.1 47±0.5 28±0.7 1.4±0.06 4.8±0.1 2.7±0.2 0.3±0.02 3.7±0.5 0.1±0.02 0.2±0.06 11±0.8 13±1 52±1 45±3 

ZHA 21±0.7 51±1.0 28±1.2 1.1±0.10 5.1±0.1 3.8±0.1 0.4±0.03 5.2±0.3 0.2±0.03 0.6±0.06 11±0.5 21±1 63±2 52±2 

ZHF 21±0.8 51±0.6 29±1.2 1.2±0.06 5.1±0.1 3.8±0.2 0.4±0.02 5.7±0.3 0.2±0.02 0.5±0.06 11±0.5 23±1 64±1 55±2 

ZMC 25±1.4 49±0.6 27±1.0 1.3±0.05 4.7±0.1 2.4±0.2 0.2±0.02 5.0±0.5 0.1±0.02 0.3±0.02 9±0.2 15±1 53±2 46±3 

ZMA 20±0.8 52±1.1 27±1.9 1.2±0.06 4.9±0.1 3.6±0.1 0.3±0.03 5.3±0.3 0.2±0.02 0.4±0.01 10±0.2 19±1 55±1 55±2 

ZMF 20±1.0 53±1.4 27±1.0 1.2±0.04 5.1±0.1 3.5±0.2 0.3±0.03 5.8±0.3 0.2±0.01 0.4±0.02 11±0.3 19±1 56±2 54±3 

FLC 19±1.3 48±1.6 34±0.5 1.3±0.02 5.0±0.2 2.6±0.2 0.3±0.02 5.2±0.3 0.3±0.04 2.4±0.07 6±0.3 22±1 63±2 48±1 

FLA 16±1.6 50±1.8 34±0.8 1.2±0.02 5.8±0.2 3.7±0.2 0.3±0.02 10.4±0.2 0.4±0.04 2.9±0.08 14±0.3 30±1 70±1 66±2 

FLF 16±0.8 49±1.3 35±0.9 1.1±0.02 5.4±0.2 3.9±0.2 0.3±0.03 7.5±0.3 0.4±0.03 2.6±0.06 12±0.3 30±1 72±2 62±1 
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Appendix C 

Appendix C. Frequency of occurrence and species composition in evergreen forest, disturbed forest or/and agroforestry and arable land 

 
                    Evergreen forest                         Disturbed forest or/and agroforestry            Arable land 
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Polyscias fulva Hiern. T 15 5 9 4 8 5 10 2 3 2 2 - - - - 

Schefflera abyssinica 

Hochst. ex A.Rich 

T 15 - - 3 - 2 - - - - - - - - - 

Sapium ellipticum Hochst. 

Pax 

T 6 - 2 3 6 - - - - - - - - - - 

Cordia africana Lam. T 11 5 11 4 5 3 3 7 9 3 2 1 2 - 2 

Cyathea manniana Hook. T 25 - - 22 - - - - - - - - - - - 

Bridelia micrantha 

Hochst.Baill. 

T 12 - - 2 - 2 2 - - - - - - - - 

Croton macrostachyus 

Hochst.exDelile 

T 3 4 14 3 5 3 - 2 - 2 - - - 1 - 

Albizia gummifera 

J.F.Gmel.C.A.Sm. 

T 8 7 9 4 8 3 21 25 19 23 - - - - - 

Millettia ferruginea Hochst 

Baker 

T 4 8 11 4 16 25 26 22 21 25 - 2 - - - 
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Trichilia dregeana Sond. T 5 - - 2 - - - - 2 2 - - - - - 

Ficus sur Forssk. T 4 2 6 4 - - - 2 2 - - - - - - 

Hagenia abyssinica Willd. T 2 - 4 6 3 3 3 - - - - - - - - 

Prunus africana 

Hook.f.Kalkman 

T - - - 2 - - - - - - - - - - - 

Aningeria adolfi-friedericii  

Engl. 

T 11 - - 5 3 2 - - - - - - - - - 

Juniperus procera Hochst. 

exEndl. 

T - 42 - - - - - - - - - - - - - 

Grevillea robusta A. Cunn T - 44 - - - - - - - 4 - - - 3 - 

Spathodea campanulata 

P.Beauv 

T - 1 - - - - - - - - - - - - - 

Ficus vasta Forssk T - - 4 - 4 - - 2 - - - - - - - 

Dracaena steudneri 

Schweinf.ex Engl. 

T - - 2 - - - - - - - - - - - - 

Sesbania sesban LMerr T - - 3 - - 3 4 - 3 2 - - 1 - - 

Syzygium guineense Wall. T 2 - 2 1 - - - - - - - - - - - 

Celtis africana N.L.Burm T 2 - 1 1 - - - - - - - - - - - 
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Leucaena leucocephala 

Lam. de Wit 

T - 18 - - - 3 2 - - 2 - - - - - 

Milicia excelsa 

Welw.C.C.Berg 

T - - 1 - - - - - - - - - - - - 

Ehretia cymosa Thonn. T 2 - - 1 - - - - - - - - - - - 

Manilkara butugi  

L.Dubard 

T 2 - 6 - - 3 - - - - - - - - - 

Mangifera indica L. FT - - - - - 21 4 2 5 22 - - - - - 

Carica papaya L. FT - - - - - 3 3 - 3 - - - - - - 

Persea americana Mill. FT - - - - - 26 28 3 5 24 - - - - 1 

Citrus sinensis L.Osbeck FT - - - - - - 5 2 - - - - - - - 

Vernonia amygdalina 

Delile 

S 20 - 8 12 11 3 3 - - - - - - - - 

Rhamnus prinoides 

L'Hérit. 

S - - - - - 6 6 3 3 5 5 - - - - 

Coffea arabica L. S - - - - - 54 42 40 39 46 - - - - - 

Catha edulis Vahl Forssk. 

Ex.Endl 

S - - - - - 9 6 - 15 - - - - - 20 

Grewia ferruginea Hochst. S 5 - - 3 6 - - - - - - - - - - 
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Delonix ragia Boi.ex 

Hook.Raf. 

S - 36 - - - - - - - - - - - - - 

Ricinus communis L. S 3 4 3 2 - - - - 2 5 2 - - - - 

Solanecio gigas VatkeC. 

Jeffrey 

S 12 - - 16 2 - - - - - - - - - - 

Discopodium 

penninervium Hochst. 

S 5 - - 2 - - - - - - - - - - - 

Heliotropium cinerascens 

A. DC. 

S - - - - - - - - - - - 6 - - - 

Hypericum quartinianum 

A. Rich. 

S 5 - - - - - - - - - - - - 17 - 

Isoglossa somalensis 

Lindau 

S - 2 - - - - - - - - - - - - - 

Justicia schimperiana 

T.Anderson 

S 3 2 5 2 3 - 5 - - - - 2 5 - - 

Microglossa pyrifolia Lam. 

O. Ktze 

S 3 - 2 - - - - - - - - - - - - 

Ocimum lamiifolium 

Hochst. exBenth. 

S 3 6 - 2 - - - 4 3 2 - - - - - 



 

 

195 

 

 
                    Evergreen forest                         Disturbed forest or/and agroforestry            Arable land 

 

 

Scientific name 

G
ro

w
th

 

fo
rm

   

Z
H

F
O

 

 

Z
M

F
O

 

 

F
L

F
O

 

 

F
H

F
O

 

 

D
M

F
O

 

 

Z
H

A
G

 

 

Z
M

A
G

 

 

F
L

A
G

 

 

F
H

A
G

 

 

D
M

A
G

 

 

Z
H

C
U

 

 

Z
M

C
U

 

 

F
L

C
U

 

 

F
H

C
U

 

 

D
M

C
U

 

Phytolacca dodecandra 

L'Herit. 

S 2 2 4 2 2 - 6 - - - - - - - - 

Premna schimperi Engl S 2 - 3 2 - - - 2 - - - - 2 4 - 

Salvia lecucantha Cav. S 3 6 - 3 3 - - - - - - - - - - 

Carissa spinarum L. S 4 6 2 2 6 3 4 2 3 3 - - 3 2 3 

Ensete ventricosum 

Welw.Cheesman 

H - - - - - 6 8 3 10 2 - - - - - 

Colocasia esculenta L. 

Schott 

H - - - - - 51 31 7 47 18 61 50 - - 70 

Zea mays L. G - - - - - - - - - - - 117 79 103 106 

Musa sapientum L. H - - - - - - 5 9 - 2 - - 4 - - 

Ruta graveolens L. H - - - - - 3 6 7 - 4 - - - - - 

Brassica oleracea L H - - - - - 2 12 6 5 2 - - - - - 

Aframomum corrorima 

A.Braun Jansen 

H - - - - - 3 12 - - - - - - - - 

Acanthus eminens L. H 2 4 4 2 3 - - - - - - - - - - 

Argemone mexicana L. H 6 10 3 2 - - - - - - - - - - 
 

Berkheya spekeana Oliv. H 6 - - 5 - - - - - - - - - - 
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Cirsium schimperi Vatke 

C. Jeffrey exCuf  

H 3 - - 1 - - - - - - - - - - 
 

Clematis hirsuta 

Guill&Perr. 

H 4 - 12 6 4 - - 3 - - - - - - - 

Echinops kebericho Mesfin H 3 - - 4 2 - - - - - - - - - - 

Galinsoga parviflora Cav. H - - - - - 37 78 53 42 27 41 140 56 133 127 

Leonatis ocymifolia Burm. 

f. lwarsson 

H 5 - 6 - - - - - - - - - - - - 

Hypoestes forskaolii 

VahlRoem. & Schult. 

H 3 - 21 9 - 3 - - - - - - - - - 

Inula confertiflora A. Rich. H 6 9 - 7 - - - - - - - - - - - 

Isodon schimperi 

VatkeJ.K.Morton 

H 2 - 12 8 - 1 - 7 21 6 - - - - - 

Justicia striata Klotzsch 

Bullock 

H 3 2 5 2 3 - 5 - - - - 2 5 - - 

Lablab purpureus L. Sweet H 2 6 9 6 4 3 - - - - - - 26 15 8 

Physalis peruviana L. H 2 2 - 1 2 - - - - - - - - - - 

Plectranthus barbatu 

Andrews 

H 25 9 26 15 2 - - - - - 22 37 8 15 35 
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Bidens pilosa L. 1753 H 3 15 4 5 3 4 9 26 27 25 27 45 76 16 21 

Solanum incanum L. 1753 H - 9 - - 2 - - - - - - 4 - - - 

Veronica persica Poiret H - - - 14 10 4 - 12 24 5 22 20 99 26 34 

Bidens pachyloma Oliv. 

and Hiern Cufod. 

H - - - - - - - - - - 12 32 12 26 13 

Agerantum conyzoides 

L.1753 

H - - - - - 6 27 22 28 5 29 45 20 10 11 

Ocimum basilicum L. H 3 - - 2 - 3 - - - - - - - - - 

The three vegetation groups are based on species presence and absence data from 45 studied plots using TWINSPAN analysis: evergreen forest, disturbed forest 

or/and agroforestry and arable land. Growth forms: T: tree; FT: fruit tree; S: shrub;G: grass; H: herb.  

 


