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Abstract—A novel low-cost kriging-based multivariable para-
metric macromodeling technique for microwave filters is pre-
sented. Kriging is used to model both the residues and poles of
a microwave filter’s reflection coefficient, and the zeros of the
transmission coefficient. The proposed residue-pole-zero (RPZ)
technique is demonstrated to efficiently model a high dimensional
(8D) microwave filter with pseudoelliptic characteristics.

Index Terms—Parametric macromodeling, kriging, rational
approximation, microwave filters.

I. INTRODUCTION

DESIGN of microwave filters based on the full-wave
electromagnetic solvers often requires a large number

of computationally intensive and time-consuming simulations.
To expedite the design process surrogate models whose re-
sponse approximates the behaviour of a complex system can
be used in lieu of electromagnetic analysis. This approach
is especially attractive for design-by-optimization. However,
surrogate based optimization (SBO) makes sense only if the
model is sufficiently accurate and cheap to build. Unfortu-
nately, when the number of design variables increases, the cost
of model construction often increases exponentially. For this
reason it is essential to investigate techniques that are capable
of evaluating the coefficients on multivariate models with as
few electromagnetic simulations as possible.

A good problem formulation is a crucial aspect often over-
looked in surrogate modeling. Often the values of the device’s
response at selected frequency points are considered [1]–
[3]. For microwave circuits this implies creating a surrogate
model of scattering parameters. This obvious choice does
not have to be a good one. In [2], [3], so-called response
feature points are utilized for modeling a scattering response.
This method has been shown to give good results in the
modeling of the amplitude of the transmission coefficient,
provided the consistency of the feature points is maintained
across a training set. Recently, several approaches based on
the parametrization of rational models have been presented
[4], [5]. In [4], interpolation of so-called root macromodels
with sequential sampling is presented. In [5], neural networks
are trained to learn the relationship between residues and poles
of the rational model approximating scattering matrix and the
geometrical parameters. In this approach, relatively many full-
wave response samples were needed to build a precise sur-
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rogate model. Moreover, this technique was demonstrated for
models involving a narrow variation of geometrical parameters
and, hence, the resulting model is only accurate for a specified
frequency interval and cannot be used for a new design with
a different center frequency and bandwidth.

In this paper, we present a new technique for low-cost
surrogate modeling and design of microwave filters. Instead
of using interpolated root macromodels or artificial networks
advocated in [4], [5], a hierarchical approach based on vector
fitting and a kriging interpolant [6] is employed to find the
relationship between the residues and poles of filter’s reflection
coefficient as well as transmission zeros, all extracted from
the full-wave frequency response, and geometrical parameters.
This choice of the quantities to be modeled (RPZ) and the
interpolation technique (kriging) yields high quality broadband
surrogate models that are valid over a wide range of filter di-
mensions, and yet cheap to build. This is the main contribution
of this paper. The robustness and effectiveness of the proposed
RPZ kriging methodology is demonstrated by modeling a
microwave filter with pseudoelliptic characteristics. The cost
of setting up the RPZ kriging model involving as many as
eight parameters is just 30 full-wave simulations. The quality
of the high-dimensional RPZ kriging model is verified for six
designs of pseudoelliptic filters with different center frequency
and bandwidths.

II. THEORY

Our model is the rational representation of the filter char-
acteristics, as a function of the geometrical parameters. The
reflection coefficient is represented in the residue-pole form
(1), while its transmission coefficient is presented using the
zero-pole (2) formulation, where s = jω. Both, S11 and S21

have common poles (pi).

S11(s) =

N∑
i=1

ri
s− pi

, (1) S21(s) =

∏Nz

i=1(s− zi)∏N
i=1(s− pi)

. (2)

Using a different representation for S11 (residue-pole) and
S21 (zero-pole) is essential for obtaining compact models. This
can be explained as follows. The reflection response consists
of N complex conjugate pairs of residues (ri) and N complex
conjugate pairs of poles (pi), where N is the filter order.
However, the number of transmission zeros (zi) in the circuit is
equal to Nz , which in most practical cases is lower than N . As
a result, the RPZ surrogate model of an N th order filter with
Nz transmission zeros has 4N plus 2Nz scalable variables
compared to 6N scalable parameters needed when the RP
representation is used for both S11 and S21 (real and imaginary
parts of residues, poles and zeros are modelled separately). In
fact, 4N plus 2Nz independent surrogate models are created.

The computations of all data needed for model construction
proceed as follows. First, the residues, poles and zeros for each
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sample are identified using an efficient Vector Fitting tech-
nique (VF) [7] based on the scattering parameters computed
with a full-wave simulator. At the beginning of VF interpola-
tion, the function order is set to 2N (VF yields a conjugate
pair of each residue, pole or zero). To achieve good accuracy
of the interpolation, the VF algorithm is invoked adaptively
and the order of the function is increased as the interpolation
becomes more accurate. As a result the final order of the VF
model could be higher than needed for modeling the filter. The
rational model of the reflection response in the vicinity of the
passband is of order N . So, when VF stops, all insignificant
poles (and corresponding residues) can be removed. The same
holds for the transmission zeros. Firstly, all residues, zeros
and poles with negative imaginary parts are discarded. Next,
from the remaining values, the relevant residues, zeros and
poles extracted from the simulated response are identified
by matching them to the corresponding residues, poles and
zeros of the ideal transfer function obtained from circuit
synthesis [8]. After that process, the number of poles and the
corresponding residues is equal to N , while the number of
transmission zeros is Nz . Next, the kriging interpolation is
used to create the surrogate model over the geometrical design
parameters. For each training sample N residues, N poles and
Nz zeros are modeled.

Kriging is a well-known interpolation technique [9], [10].
Assume a set of n samples, X = {x1, . . . ,xn}T in d
dimensions and y the associated function values, where (·)T
is the transpose of a vector or matrix.

The aim is to construct an interpolant for the given samples
X and associated function values. In this work the kriging
interpolant with a constant mean function α is used,

ŷ(x∗) = α+ r(x∗) ·Ψ−1 · (y−α1), (3)

where 1 is a column vector of ones. The coefficients α are
determined using generalized least squares.
r(x∗) = (ψ(x∗,x1), . . . , ψ(x∗,xn)) is an 1 × n vector of

correlations between the test point x∗ and the samples X . The
n× n correlation matrix Ψ is,

Ψ =

 ψ(x1,x1) . . . ψ(x1,xn)
...

. . .
...

ψ(xn,x1) . . . ψ(xn,xn)

 ,

where ψ(·, ·) is the correlation function. ψ(·, ·) is parametrized
by a set of hyperparameters θ, which are identified by
Maximum Likelihood Estimation (MLE). Specifically, the
(negative) concentrated ln-likelihood is minimized to find the
optimal hyperparameters θ,

− ln(Lmarginal) = −n
2

lnσ2 − 1

2
ln(|Ψ|) (4)

where the signal variance σ2 = 1
n (y − 1α)TΨ−1(y − 1α).

|.| denotes the determinant of a matrix. The computational
complexity is governed by the inverse of the correlation matrix
Ψ which is O(n3) in the number of samples using Cholesky
decomposition.

The popular Gaussian correlation functions assumes the
underlying response surface to be infinite differentiable, which
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Fig. 1: Geometry of an open-loop bandpass filter

is unrealistical for many engineering problems. Hence, in this
work we adopt the Matérn correlation function with ν = 5/2
as it is twice differentiable [11],

ψ(x,x′)ν=5/2 =

(
1 +
√

5l +
5l2

3

)
exp

(
−
√

5l
)
,

with l =
√∑d

i=1 θi(xi − x′i)2.

III. NUMERICAL EXAMPLE

The example is a third-order open-loop bandpass filter in
a triplet configuration [12]. The filter is parametrized using 8
geometrical parameters (Fig. 1), x = [l1 l2 d1 d2 s1 s2 t w]T

(all dimensions in mm). The variable interval for construction
the surrogate RPZ model is set to [19 6 0.8 0.8 0.5 1.6 3.0 1.2]
– [21 9 1.25 1.25 1.0 2.0 4.2 1.8]. The width of feed lines
set to 1 mm, respectively. The dielectric constant is equal
to 10.8, and the substrate height is 1.27 millimetres. Three
complex residues and poles (N=3) of the reflection coefficient
and one complex transmission zero (Nz=1) of the microwave
filter are modeled over the frequency range [0.8-1.15] GHz.
The total number of independent surrogate models (scalable
parameters) is 14, since the real and imaginary parts are
modeled separately. The EM response is obtained from the
full-wave solver Momentum.

The kriging model is built using a research platform for
surrogate modeling, the SUrrogate MOdeling (SUMO) toolbox
[13]. The total budget of training samples is only 30 elec-
tromagnetic simulations in the 8D design space, arranged in
a (maxi-min) Latin Hypercube Design using the translational
propagation algorithm. The model accuracy is verified using 5-
fold cross-validation, resulting in a mean root relative squared
error of 0.1661 (the coefficient of determination, R2 is 0.97).

For comparison we have applied kriging to model the
magnitude of reflection S11 and transmission S21 coefficient
and to create model based on real and imaginary part of S11

and S21. We used the same training set. The mean root relative
squared error 1.3966 and 0.6744 was obtained for the first
and the second kriging model, respectively. The comparison
between RPZ models and real, imaginary scattering parameters
surrogate models (Sparam) is presented in Fig. 2 a-c).

To verify the accuracy of the model we design-by-
optimization six different filters using the scalable RPZ kriging
model and compared the surrogate-based filter response with
the electromagnetic solver response evaluated at the corre-
sponding optimal solution. Optimization was performed using
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(a) f0 = 0.925 GHz, fz = 0.986 GHz,
fbw = 0.04
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(b) f0 = 0.95 GHz, fz = 0.998 GHz,
fbw = 0.05
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fbw = 0.06
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(d) f0 = 0.9 GHz, fz = 0.948 GHz,
fbw = 0.05
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(e) f0 = 0.96 GHz, fz = 1.008 GHz,
fbw = 0.045
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(f) f0 = 1.0 GHz, fz = 1.045 GHz,
fbw = 0.05

Fig. 2: Comparison between residue-pole-zero surrogate model (RPZ) and scattering parameters surrogate models (Sparam)
and corresponding full-wave (EM) model responses (upper row) and comparison between surrogate model (RPZ) optimization
results and corresponding full-wave (EM) model responses (lower row).

a cost function based on the location of zeros and poles of
filter’s transfer and reflection function [8]. To this end, residues
predicted by the constructed RPZ kriging surrogate model are
converted to reflection zeros.

The designs on which the RPZ surrogate model was tested
involved a variety of specifications, including the center
frequency (f0) over the range 0.9-1.0 GHz, the fractional
bandwidth (fbw) in the following interval 0.04-0.06 and
different position of transmission zeros (fz). The return loss
level in all cases is set to 20 dB. The comparison between the
optimized response of the surrogate model and the full-wave
characteristics are presented in Fig. 2 a-f. It is seen that in all
cases the RPZ surrogate models and EM simulations responses
are in good agreement.

IV. SUMMARY

A mixed residue-pole-zero (RPZ) representation of a fil-
ter’s transfer and reflection coefficient has been proposed
for kriging-based modeling of a pseudoelliptic microwave
bandpass filter. The RPZ model was constructed for a high
dimensional design space for a wide range of geometrical
parameters with using only 30 training samples. The accuracy
of the presented method has been verified by design and
optimization of six different bandpass filters. Despite the high
number of geometric parameters (8), a very low number
of computational expansive samples can be used to build
surrogate models.
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