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Chapter 1  
 
Introduction and aims    
 

 
In recent years, scientific research on art historical and archaeological objects for 

the interpretation of our cultural heritage has received much attention [1–3]. The study 

of these materials helps to support restoration/conservation processes and, at the same 

time, historical and visual examination can assist in the interpretation of scientific data. 

Close collaboration between multidisciplinary domains contributes in different ways to  

conservation studies as conservators need to assess and recover the damage that artworks 

have undergone during many years, due to exposure to different environments. This 

cooperation assists materially in deciding on treatment options and in the identification 

of materials and techniques (production processes) etc. [4,5]. 

 

The subject of this PhD thesis is directed towards this interdisciplinary context. It 

is part of a larger and unique project funded by the concerted research actions (GOA) 

program, called the Archaeometrical Study of the Ghent Altarpiece. This overall project 

comprises of members of different disciplines including art historians, conservators and 

scientists. The scientific studies performed by the Raman spectroscopy research group 

are strongly related to analytical chemistry/spectroscopy. Spectroscopic investigations 

deliver information about the composition of a historical sample. This type of research 

has an important role in the support of conservators or art historians who have sometimes 

the difficult job to date a piece of art and link an artist to it. Additionally, information 

can be obtained about old trading routes and the sociocultural and political interactions 

between societies.  

 

The Raman spectroscopy research group contributes in different ways to the GOA 

project: (i) conservation study of the exposed silver foils of the frames; (ii) optimisation 

of XRF techniques for the study of oil paintings and (iii) optimisation of mobile Raman 
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spectroscopy for the study of art objects. The latter objective forms the core study of 

this PhD thesis.  

1.11.11.11.1 Composition of paintComposition of paintComposition of paintComposition of paint    

To completely understand the problems and research questions surrounding the 

history of art works, one needs to be informed about the basic principles of paint  

manufacturing. Fresh paint is a solution, suspension or colloid, and consists of 3  

components: a colourant, a binder and a solvent [6–8]. The colour of paint is determined 

by the colourant, which can be a dye, pigment or lake. A dye is an animal or vegetable 

colour-providing substance that is soluble in the binding agent. It is often used in textile 

dyeing and its application in oil paintings is often limited due to its low refractive index 

and tendency to migrate [9]. Pigments, on the contrary, are not soluble and generally 

more stable, i.e. chemically inert. They are derived from a wide variety of sources: (i) 

naturally occurring minerals (such as e.g. cinnabar, lapis lazuli, azurite, malachite, and 

earths); (ii) synthetic pigments, manufactured by chemical processes (e.g. lead white, 

lead tin yellow); (iii) organic plant (e.g. indigo, carbon) and animal products (Kermes). 

The latter is a special case of a pigment source as it is obtained by precipitating a soluble 

dye upon a base substrate (i.e. a so-called lake) which is an usually insoluble, finely 

divided, inorganic inert substance such as aluminum hydrate or calcium sulphate [10,11]. 

 

To be able to dissolve or suspend the colourant, a combination of a binder and a 

solvent is used. This solvent must possess the appropriate viscosity and the ability to 

evaporate during drying [12]. Sometimes, it acts also as a thinner for the binder [6]. The 

binder is an organic material that is responsible for the good attachment of the colourant 

on the support. After application, the chemical drying process (curing) can commence, 

such as crosslinking by oxidation of a polymer network [13,14]. Different types of binding 

medium exist, such as drying oil, egg yolk, egg white, gum, etc. [15].  
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1.21.21.21.2 Structure of painted objectsStructure of painted objectsStructure of painted objectsStructure of painted objects    

Through history, many artists have used paint as a medium for expressing their 

ideas which can be practiced in different application methods on a range of substrates. 

For instance, wall paintings can be constructed with several techniques such as fresco 

and secco [16]. During the fresco technique, paint is applied on a wet background. In 

contrast, the secco technique involves painting onto a dry substrate. Whereas wall  

paintings are an important part of painted cultural heritage, illuminated manuscripts are 

intrinsically objects. Manuscripts were mainly produced in the Middle Ages where  

parchment, and in later stages paper, was used as a support [17,18]. The illuminations 

in manuscripts are generally characterised by a simple multilayered structure of the paint 

decoration.  

 

The stratigraphy of an easel painting, however, is much more complex [19]. A  

complete description of the painting materials and techniques is beyond the scope of this 

work. So here, a general description is given of the stratigraphy. The support of an oil 

Figure Figure Figure Figure 1111....1111 Stratigraphy of an oil painting on wooden support, based on a cross section from the 
Ghent Altarpiece, panel IV - Deity Enthroned, red mantle [20]. 
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painting can be canvas or wooden panels. In this thesis, only oil paintings with wooden 

supports will be analysed and their composition is illustrated in Figure 1.1, based on a 

cross-section from the Ghent Altarpiece panel IV - Deity Enthroned, red mantle [20].  

Traditionally, the wooden support is covered with a preparation layer, which is a mixture 

of animal glue with pigment, often gypsum or calcite. This layer is coated with an extra 

layer, the imprimatura, which reduces the permeability of the ground layer. This serves 

as an isolation layer and provides an overall homogeneous, optical effect in the painting. 

Then an underdrawing (employing charcoal, metal point, ink, etc.) is applied, followed 

by superimposed paint layers. The pictural layers are painted witth varying degrees of  

transparency. Different thin layers of glaze create subtle changes or small nuances in 

tone, such as shadow representations [21]. A glaze is a paint that is diluted with extra 

binder, giving a translucent effect. The oil painting is finished with a varnish layer, which 

has both a protective and aesthetic purpose.  

 

1.31.31.31.3 The analysis of art objectsThe analysis of art objectsThe analysis of art objectsThe analysis of art objects    

Preservation of cultural heritage is an important aspect in modern society as it 

reflects the culture and history of the past and present. Cultural objects are  

composed of a wide variety of materials and are of different sizes ranging from historical 

sites, to monuments, and to samples of fine craft or art. Their conservation is mainly 

dependent on the materials of which they are composed.  

 

Application of scientific research to artworks dates back to the 18th century, when 

in 1888 the first specialised laboratory, namely the Chemical Laboratory of the Royal 

Museums of Berlin, dedicated to scientific examination of cultural goods was established 

[22]. Currently, scientific disciplines play an essential role in the material characterisation 

of art objects. The analytical approach can be considered two-fold: the focus can be on 

material identification or on diagnostic analysis [22–24]. Material identification gives  

information about the artistic techniques and production techniques, which can be  

related to provenance, authentication and dating. So, analytical data provide useful  

information concerning the object’s history, conservation and restoration conditions.  
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Cultural goods are unique and often irreplaceable, and as such, they deserve to be 

preserved as intact as possible. This imposes restrictions for applying analytical  

techniques.  An analytical analysis can be divided into 4 steps: sampling, sample  

preparation, selection of the analytical method and data processing [22]. The first step is 

to determine the sampling strategy of which location of sampling, sampling method,  

number and size of the samples are important parameters. In general, research methods 

can be divided into direct techniques and analysis including sampling procedures [25–28]. 

The investigation of the entire object is the most desirable approach. In this case,  

sampling is not needed so the object can stay intact. Direct investigation of art objects 

is assumed to be non-destructive and does not require sampling. However, it has the 

disadvantage that either the analytical equipment or piece of art has to be transported. 

Direct approaches can be divided into imaging methods, point analyses and surface  

techniques. Unfortunately, direct analysis is not always possible or is deemed to be not 

the best approach to apply. The method of approach is dependent upon the research 

question: if for example information about stratigraphy or in-depth knowledge has to be 

obtained, the art object should be sampled. When sampling is needed, it should be kept 

to a minimum and the locations and number of samples should be well-planned. Reedy 

and Reedy [29] propose four possible sampling strategies for the analysis of a single art 

object: (i) take randomly located samples to estimate the composition of the entire object; 

(ii) perform sampling at regular intervals across an object; (iii) select positions which are 

restricted by aesthetic and preservation reasons and (iv) intentionally choose areas to 

gain information about specific alterations or the characterisation of the artist’s palette. 

These strategies all have a risk of obtaining biased results and are not totally  

representative for the total object. Techniques for which sampling is requested, can be 

divided into destructive and non-destructive methods. An overview of the different  

approaches, including several important analytical techniques in archaeometry, is given 

in Table 1.1.  

 

Analytical methods can deliver molecular (e.g. XRD, Raman spectroscopy) or  

elemental information (e.g. XRF, PIXE, SEM) and can be executed in a qualitative or 

quantitative manner. Qualitative techniques determine whether or not a compound or 

element is present. In many cases, this approach is sufficient to answer the conservator’s 
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question. Sometimes, a more extensive investigation is required which can be supported 

by quantitative analysis. An estimation is made of the concentration of  

components or elements and is often applied in, for example, provenance studies, dating 

purposes or for the development of conservation strategies for storage condition [30,31].  

 

Table Table Table Table 1111....1111 Several important analytical techniques for the analysis of art objects. This overview 
is just a selection of methods; more techniques exist on the market [25–28]. 

Direct analytical Direct analytical Direct analytical Direct analytical 
methodsmethodsmethodsmethods    

Imaging Infrared reflectography (IRR) 

 X-ray radiography 

 Raking light photography 

 High resolution microscopy  

Point analysis In situ particle-induced X-ray emission spectroscopy 
(PIXE) 

 In situ X-ray fluorescence spectroscopy (XRF) 

 Direct Raman spectroscopy 

 Portable X-ray diffraction (pXRD) 

Methods after Methods after Methods after Methods after     
sampling and, when sampling and, when sampling and, when sampling and, when 
needed, sample needed, sample needed, sample needed, sample 
preparationpreparationpreparationpreparation    

Non-destructive Micro-Raman spectroscopy 

 Micro-X-ray fluorescence spectroscopy (μ-XRF) 

 Scanning electron microscopy (SEM) 

 Total-reflection X-ray fluorescence spectroscopy 
(TXRF) 

 X-ray diffraction (XRD) 

Destructive Separation methods (e.g. High-performance liquid 
chromatography) 

 Inductively coupled plasma mass spectrometry (ICP-
MS) 

 Atomic absorption spectroscopy (AAS) 

 

A broad range of analytical techniques for art analysis is available on the  

commercial market. The ideal method for the examination of ancient artefacts is  

dependent upon the research question and needs to fulfil several requirements: it is  

preferable to apply a technique ideally that is sensitive, fast, non-destructive, universal,  

non-intrusive and, if possible, mobile. Hence, it is impossible to meet all these demands 

for one specific analytical technique. Therefore, to characterise analytically cultural  

artefact as completely as possible, multiple methods are preferred [24,32,33]. 
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The Raman research group (Ghent University) mainly specialises in Raman  

spectroscopy and XRF. Both methods are valuable techniques for art analysis because 

they fulfil almost all conditions mentioned above. As the demand for mobile, non- 

destructive methods in art analysis is increasing, this provides the focal point for the 

current PhD research. 

 

It is, however, noteworthy that XRF is not the only complementary method that 

is used alongside Raman spectroscopy in art analysis. Several other non-invasive methods 

exist such as optical microscopy, XRD, fibre optic reflectance spectroscopy (FORS), 

SEM-EDS and imaging micro-FTIR spectroscopy. Often as a first approach, macro  

photography and optical microscopy are used to observe the region of interest in order 

to understand the potential analytical problems [34]. These observations can help in 

deciding which complementary techniques can be of use. If sampling is not allowed, in 

situ, molecular methods like FORS and p-XRD are suitable techniques to use, along with 

Raman spectroscopy, as not every molecule is Raman active. FORS is user friendly, yet, 

it is difficult to interpret as a reflectance spectrum is influenced by the reflectivity,  

roughness and composition of the materials [35]. p-XRD, on the other hand, can give  

additional information to the Raman results as in Raman spectroscopy no distinction 

can be made between different crystalline phases of a molecular structure.  

Notwithstanding this, the positioning and the penetrating character of X-rays cause some 

difficulties during the measurements.  

 

When no restrictions concerning sampling need to be taken into account, techniques 

such as SEM-EDS and imaging micro-FTIR can be used in addition. Using SEM-EDS, 

information on the morphology (for example, to investigate alterations or degradation), 

with high magnification, and the elemental distribution is obtained. Unfortunately,  

measurements are expensive and samples need to be coated to increase the conductivity 

[36]. It is well-known that FTIR is a good complementary technique to Raman  

spectroscopy. Imaging micro-FTIR is an ideal tool to represent the molecular distribution 

in a sample of products which are not Raman active or which are masked by interferences 

(i.e. fluorescence, absorption).  
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1.41.41.41.4 Goals and outlineGoals and outlineGoals and outlineGoals and outline    

As described above, many analytical techniques exist for the investigation of  

cultural heritage. In this work, we concentrate on the application of mobile Raman  

spectroscopy for the investigation of art objects. The main aim is to explore the  

possibilities of a new mobile Raman spectrometer, the EZRaman-I-Dual Raman system  

(TSI Inc., Irvine CA, USA) in these applications. As a starting point, an approach is 

developed to evaluate the quality and applicability of mobile Raman instrumentation in 

archaeometry, which is illustrated by demonstrating it using the EZRaman-I-Dual  

Raman system. Furthermore, it is necessary to demonstrate the improvements in mobile 

Raman spectroscopy and their application for art analysis, compatible with the increasing 

use of Raman spectroscopy in this field. The theoretical background of Raman  

spectroscopy and X-ray fluorescence spectroscopy, required to understand the different 

approaches in this thesis is described in Chapter 2.  

 

In the first step of this study, the aspects which need to be considered when  

selecting a mobile Raman spectrometer for in situ art analysis are discussed. Chapter 3 

provides an approach to evaluate these parameters and to apply this to the commercially 

available Raman instrument discussed. This involves a twofold characterisation that  

includes the investigation of spectroscopic characteristics and the evaluation of specific 

properties that are useful for mobile studies in archaeometry. The research is completed 

with field tests by studying the pigments used in a mediaeval wall painting. In the  

subsequent chapters, the spectrometer’s beneficial use for different art applications is 

illustrated. 

 

Among the objects studied, pigments are very attractive targets for scientific  

analysis, because of their coloured appearance. Analysis can provide information about 

the artist’s palette and reveal information about the painter’s technique. Chapter 4  

illustrates the possibilities of the mobile Raman spectrometer for pigment analysis based 

on the investigation of an important mediaeval manuscript, De Civitate Dei (from the 

Cultural Heritage Library in Bruges, Belgium). By reason of their simple composition, 

mediaeval handwriting is ideal objects for the demonstration of the capabilities of the  
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instrument. This includes the description of its essential characteristics: the availability 

of two lasers and performance of the equipment.  

 

As pigment analysis is not the only application of Raman spectroscopy in  

archaeometry, the benefit of two excitation sources is also shown by the investigation of 

a set of glyptics (chapter 5) belonging to the collection of the museum ‘Quinta das Cruzes’ 

in Funchal (Madeira, Portugal). Thus far, a single method, Raman spectroscopy, has 

been applied. But often, the use of several complementary techniques results in a more 

complete documentation of the object. Therefore, chapter 5 also demonstrates the  

advantage of the complementary use of Raman spectroscopy and X-ray fluorescence  

spectroscopy for this type of sample. Additionally, the gemmological identification is 

confirmed and extra information about the glass composition is provided.   

 

Chapters 4 and 5 illustrate the excellent performance of the chosen Raman  

spectrometer in these studies. However, this instrument is not the only one available on 

the market. Chapter 6 describes the comparison between the EZRaman-I-Dual Raman 

system (785 and 532 nm laser) and an i-Raman® EX (1064 nm) to evaluate if our chosen 

equipment was a good choice out of the broad selection of the many commercially  

available Raman spectrometers. For this research, the mediaeval wall paintings from Sala 

Vaccarini are used as a case. It is shown that both mobile Raman spectrometers are 

useful for pigment analysis. However, the EZRaman-I-Dual Raman system is preferred 

when inorganic compounds need to be investigated due to the low Raman wavenumber 

detection range (down to 100 cm−1). 

 

Up to this point, painted materials with a simple paint structure (manuscripts, wall  

paintings) have been examined. Oil paintings are more complex in structure, which makes 

in situ measurements more complicated. Therefore, chapter 7 is concerned with the  

optimisation of the examination of mediaeval oil paintings towards in situ investigation. 

The opportunity was given to upgrade the use of in situ XRF and Raman spectroscopy 

based on the analysis of the Ghent Altarpiece, a magnificent piece of art, created by Jan 

and Hubert Van Eyck. As a result, it was possible to support the restoration campaign 
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by introducing Hirox microscopy investigations for the selection of the regions of interest 

prior to the spectroscopic analysis.  

 

Even though the approaches were successful, the application of mobile Raman  

spectroscopy can still be improved. Because, only point measurements were performed, 

causing the method to fail in the reconstruction of the chemical distribution of   

particular compounds. Chapter 8 discusses a first step towards a chemical imaging  

concept for in situ Raman spectroscopy. Challenges of the development are explained 

with its focus mainly on the data-treatment, which is important for the creation of a 

Raman map.  Also hard- and software modifications were considered, as a suitable  

set-up and software are essential for the development of an in situ Raman mapping 

system. 

 

A second improvement can be made towards an optimal, mobile Raman mapping 

system. Chapter 9 explains the first steps towards the direct coupling of a microscopic 

image with the molecular image. A methodology was devised for the combination of the 

Hirox microscope with the mobile Raman spectrometer for the successful recording of 

reasonable Raman spectra. 

 

Finally, the results obtained throughout this work are summarized in chapters 10 

(Eng) and 11 (NL), along with the conclusions and future perspectives. 
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Chapter 2  
 
Analytical techniques    

 

 

This chapter presents briefly some theoretical aspects of Raman spectroscopy and X-ray 

fluorescence spectroscopy. The theoretical backgrounds are discussed along with the  

instrumental properties of the applied Raman spectrometer.  

 

2.12.12.12.1 Raman Raman Raman Raman spectroscopy: theoryspectroscopy: theoryspectroscopy: theoryspectroscopy: theory    

 

2.1.1. Introduction  

Vibrational spectroscopy is the general term that covers Raman spectroscopy and 

infrared (IR) spectroscopy. These methods are often applied for vibrational studies of 

molecules present on the surface of art objects [1]. Molecular vibrations are measured 

either by the absorption of radiation (IR spectroscopy) or by the inelastic scattering of  

photons (Raman spectroscopy) [2]. In order for a vibration to be infrared active the 

molecular dipole moment must vary during the vibration. The Raman effect occurs when 

there is a change in polarizability. Because some vibrations can be active in the Raman 

but inactive in infrared (and vice versa), these techniques can be used in a  

complementary way [3]. Moreover, since IR spectroscopy is more sensitive to functional 

groups and asymmetric, polar bonds Raman spectroscopy can be very useful in  

determining backbone structures and symmetric, electron rich moieties [4].  

 

In this thesis, we shall concentrate on the application of Raman spectroscopy for 

art analysis. Raman spectroscopy is a non-destructive spectroscopic technique that is 

used to study low-frequency modes in a system. The Raman effect was discovered by Sir 

C.V. Raman in 1928 and ever since the technique has been widely developed and has 
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many applications, for example in archaeometry (e.g. pigment identification), solid state 

physics, and in the detection of counterfeit drugs, etc. [5-7].  

 

Here, a brief introduction to Raman spectroscopy is given. For a more in-depth 

study of the Raman effect, we refer to the literature [8-12]. 

2.1.2. The Raman effect 

In a classical approach, the fundamental condition for the Raman effect to occur is 

described by a change in polarizability. This reflects how easy an electron cloud of a 

molecule can be distorted by an electric field [1].  

 

The Raman effect can also be explained as a light scattering phenomenon in which 

the mechanism can be described in terms of energy transfer between monochromatic 

incident radiation (laser) and the scattering molecules. The energy level diagram of  

Figure 2.1 provides a qualitative view of the origin of Rayleigh and Raman scattering [3].  

Figure Figure Figure Figure 2222....1111 Energy level diagram that illustrates the origin of Rayleigh and Raman Scattering 
(Stokes and Anti-Stokes scattering). 
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One can consider that before the incident radiation interacts with the sample, the  

molecule is found in the ground state (E0). When the radiation with an energy hν0 (with 

h, Planck’s constant and ν0, the frequency of the incident monochromatic radiation)  

interacts with a molecule, the molecule can be excited to a virtual state. This situation 

is not stable and relaxes with the emission of a photon. Three different scattering  

processes can occur: 

 

1) More than 99% of the incident photons undergo Rayleigh scattering (i.e. an elastic 

effect). In this case, a photon excites the molecule from the vibrational ground state to 

a virtual state, which in his turn relaxes back to the vibrational ground state, releasing 

a photon with the same energy as the incident beam.  

 

2) If the scattered photon has a different energy in comparison with the incident beam, 

the collision is said to be inelastic (there is an energy transfer between the molecule and 

the photon) and this is called Raman scattering. Given this case, there are two possible 

phenomena: 

- If the molecule is promoted from the vibrational ground state to a virtual state, 

but relaxes to the first excited vibrational state, we can talk about Stokes  

Raman scattering. In this case the emitted photon has a lower energy than the 

incident photon.  

- If the molecule is transferred from the first vibrational excited state to the 

virtual state and relaxes to the ground state, then the scattered photon has 

more energy than the initial monochromatic light. This process is known as 

Anti-Stokes Raman scattering. 

2.1.3. The Raman spectrum 

Raman spectroscopy is based on focusing an intense, monochromatic  

electromagnetic beam on a sample. After interaction, the intensity of the scattered  

radiation is measured as a function of the frequency. A Raman spectrum plots these 

intensities against the corresponding Raman wavenumbers (expressed in cm−1) which 

represent the frequency difference between the scattered and incoming radiation. The 
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most intense band detected at 0 cm−1 is related to the inelastic scattering, the Rayleigh 

scattering. In many Raman spectrometers, this signal is suppressed using a holographic 

filter. Additionally, a Raman spectrum consists of inelastic scattering: Stokes and Anti-

Stokes lines. Raman bands are observed at positive and negative Raman wavenumbers, 

respectively, and have a symmetric pattern around 0 cm−1. According to the Boltzmann 

distribution, the number of molecules at thermal equilibrium in a lower vibrational state 

is always higher than those in a higher vibrational state. Therefore, the Stokes intensity 

is usually higher than the Anti-Stokes intensity and is thus only represented in a Raman 

spectrum.  

2.1.4. Advantages and disadvantages 

Raman spectroscopy has several advantageous properties: it is a non-destructive 

technique, there is almost no sample preparation needed, it is a relatively fast method 

and in situ measurements can be performed. Nevertheless, Raman spectroscopy is not a 

perfect technique and has some disadvantages as well. Absorption (i.e. reduction of the 

intensity of the scattering) and fluorescence are the two most important interferences 

that can occur [8]. Because the Raman effect is very weak, these phenomena interfere 

and cause a decrease in the quality of the Raman spectrum. In this work, Raman spectra 

are often presented after baseline correction: a polynomial is manually fitted to the spec-

tra, and then substracted to eliminate the fluorescence background. 

 

2.22.22.22.2 Raman mapping and imagingRaman mapping and imagingRaman mapping and imagingRaman mapping and imaging    

In this thesis, an attempt will be made to improve in situ Raman spectroscopy 

towards an in situ Raman mapping system. It is important to understand the  

fundamentals of this method in order to follow the development phases. The principle of 

Raman mapping is quite simple: the laser spot is stepwise moved relative to the sample 

over a defined region. At every position, a full Raman spectrum is recorded. Afterwards 

a map is created, based on the stored spectra with specific coordinates [11]. 
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This is not the only option to create a chemical image in Raman spectroscopy, as 

imaging exists. The main difference with Raman mapping lies in the way a chemical 

image is obtained. A larger area is illuminated with a defocused beam and, in its turn, 

the scattered radiation is filtered to image a specific Raman band. Typically a liquid 

crystal tunable filter is used which has a spatial resolution of 250 nm and spectral  

resolution of ~ 7 cm−1 [13]. Raman imaging is a fast method but due to its low spectral 

resolution, it is difficult to discriminate between single Raman bands. In addition, during 

an imaging experiment no discrimination is made between characteristic Raman signals 

and fluorescence photons with a similar wavelength. Moreover, the focus only relies on 

the detection of one compound whereas for Raman mapping one must decide what pa-

rameter to map such as intensity ratios, band positions, bandwidths, etc. Due to these 

limitations, Raman mapping is preferred. 

 

2.32.32.32.3 Raman instrumentationRaman instrumentationRaman instrumentationRaman instrumentation    

All measurements in this PhD thesis were performed using a new portable  

EZRaman-I-Dual Raman system (TSI Inc., Irvine CA, USA). The fiber-optic-based spec-

trometer is equipped with two lasers, a red diode laser (785 nm) and a green Nd:YAG 

laser (532 nm). For each wavelength there are three interchangeable lenses: a standard 

lens (STD), a long working distance lens (LWD) and a high numerical aperture lens 

(HiNA). The Raman spectrometer is also equipped with an adjustable power controller 

for each laser (maximum output power 400 mW and 100 mW for 785 nm and 532 nm 

laser, respectively) and has a Charge-Coupled-Device (CCD) detector. Depending upon 

the selected laser, a different grating is used in the spectrometer and hence a different 

spectral range is obtained. When using the 785 nm laser the signals are recorded between 

100 and 2350 cm−1, while, when using the green 532 nm laser, the spectral range lies 

between 100 and 3200 cm−1. Consequently, the spectral resolutions are different, namely 

6 or 7 cm−1, for the 785 and 532 nm lasers, respectively (as reported by the manufacturer). 

The spectrometer can be powered by using 230 V AC or by using an internal or external 

Li-battery, allowing for larger autonomy of usage. A schematic overview of the internal 

composition of the portable Raman spectrometer is given in Figure 2.2.  
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2.42.42.42.4 XXXX----ray fluorescence spectroscopyray fluorescence spectroscopyray fluorescence spectroscopyray fluorescence spectroscopy    

 

2.4.1. Introduction 

X-rays were discovered by Wilhelm Conrad Röntgen in 1895, during his  

experiments with Crookes tubes (discharge tubes), observing a green glow that was  

emitted by a fluorescent screen painted with BaPt(CN)4, positioned close to an  

operational tube. X-ray fluorescence spectroscopy is applied in many archaeometrical 

studies due to its non-destructive character. Via this method qualitative and semi- 

quantitative information on the elemental composition of materials of which art objects 

are made can be obtained. The basic principle of this technique relies on the detection of 

induced X-rays with a wavelength between 0.01 and 10 nm which corresponds to an 

energy range of approximately 0.1 to 100 keV [14]. The penetrating property of X-rays 

is dependent on their energy: high energy X-rays have a larger penetration depth than 

low energy X-rays.  

 

In general, when an incident X-ray photon interacts with a sample, three main  

phenomena can occur: Rayleigh scattering, Compton scattering and the photoelectric 

effect. [15] These interactions are explained in the next section.  

Figure Figure Figure Figure 2222....2222 Schematic overview of the composition of the portable EZRAMAN-I-DUAL Raman 
spectrometer. 
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2.4.2. Interaction of X-rays 

Two types of X-ray photon scattering can occur: Rayleigh and Compton scattering. 

Rayleigh scattering, also known as elastic scattering, is an interaction where no energy  

exchange occurs (Figure Figure Figure Figure 2222....3333). The scattering is a result of the interaction between an  

incoming photon and a tightly bound inner shell electron.[16-18] Compton scattering, on 

the other hand, is a type of inelastic scattering (Figure Figure Figure Figure 2222....3333). During this effect, an  

incoming X-ray interacts with a loosely bound atomic electron. Part of the photon energy 

is transferred to the bounded electron and is ejected in its turn with a kinetic energy 

equal to the energy difference between the incoming and scattered X-ray beam [19]. This 

energy difference depends on the scattering angle (θ) and is defined by the Compton 

equation (Equation (1)): larger scattering angles cause larger shifts in the energy of the 

Compton scattered photons. 

 

 E������	 =
E�

1 +
E�
m�c

� �1 − cos θ�
 (1) 

 

With E0: the energy of the initial photon; me the mass of the electron; c: the speed of 

light. 

 

Next to these scattering interactions a third and the most important phenomenon 

can occur, called the photoelectric effect. Figure Figure Figure Figure 2222....4444 illustrates the basic principle of the 

effect: an incoming X-ray is fully absorbed by the atom and causes the ejection of an 

electron of the inner shell. This vacancy is subsequently filled with an electron from  one 

of the higher shells. This transition releases energy by the emission of a secondary photon 

that is characteristic for every element. It is noteworthy that this interaction is in  

competition with the Auger effect, which has a higher probability to occur with lower Z 

elements.  
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Figure Figure Figure Figure 2222....3333. Schematic overview of the two types of X-ray photon scattering: Rayleigh (top) and 
Compton (bottom) scattering; with λ= initial wavelength, λ’= emitted wavelength, and 
θ = scattered angle.  
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2.4.3. The X-ray spectrum 

In X-ray fluorescence spectra, different contributions can be distinguished. Every  

spectrum is defined by a continuous background signal, i.e. Bremsstrahlung (Figure 2.5). 

The continuum X-rays are produced when electrons lose a part of their energy when  

interacting with the nucleus of an atom [14,20]. Next to this continuous contribution,  

characteristic X-rays for each atom are detected (as a result of the photoelectric effect) 

which are shown as sharp peaks as illustrated in Figure 2.5. Additionally, the two types 

of scattered radiation (Compton and Rayleigh scattering) can be observed. The Rayleigh 

peak corresponds to the highest X-ray energy in case of an incoming monochromatic  

X-ray beam. 

2.4.4. Advantages and disadvantages 

As for every analytical technique, X-ray fluorescence has its advantages and  

limitations. The method is widely used as a complementary technique due to its  

non-destructive character, in situ applicability, cheapness and its simplicity of use. It can 

be applied without any sample preparation to determine a large set of elements  

(main group and side) of the periodic system. However, the penetration depth of X-rays 

and matrix effects of untreated samples can influence the accuracy of a qualitative  

analysis.  

Figure Figure Figure Figure 2222....4444 The photoelectric effect with hν, the energy emitted by the source and hν’ the energy 
of the secondary X-ray.  
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2.52.52.52.5 ConclusionConclusionConclusionConclusion    

In this chapter, a brief introduction is made of the analytical techniques.  

Theoretical aspects of Raman and XRF spectroscopy are discussed which are of  

importance for understanding the approaches considered in the thesis. In addition, since 

all measurements are performed with one Raman instrument, its parameters are also 

explained.  

 

In a first step to explore the possibilities and applicability of mobile Raman  

instrumentation for art analyses, a protocol will be presented in the next chapter on the 

characterisation of a mobile Raman spectrometer by applying it to a specific Raman 

system.  
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Figure Figure Figure Figure 2222....5555 Example of an X-ray spectrum to illustrate the different contributions.     
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Chapter 3  
 
Characterisation of mobile Raman instrumentation for  
archaeometric research 
 

Based on the paper: D. Lauwers, A.G. Hutado, V. Tanevska, L. Moens, D. Bersani and  

P. Vandenabeele (2014). Characterisation of a portable Raman spectrometer for in situ analysis 

of art objects. Spectrochimica Acta A, 118:294-301.  

 

In the previous chapter theoretical considerations of Raman spectroscopy are discussed 

and a mobile Raman spectrometer, EZRaman-I-Dual Raman system, is introduced. In 

this chapter, the aim is to point out several aspects that need to be considered when 

selecting a mobile Raman spectrometer for in situ archaeometrical studies. A protocol 

has been drawn up that involves a twofold characterisation of mobile Raman  

instrumentation for art analysis. It includes the investigation of spectroscopic  

characteristics and the evaluation of specific properties that are useful for mobile studies 

in archaeometry. Finally, the research is completed with field tests by studying the  

pigments of a mediaeval wall painting. 

 

3.13.13.13.1 IntroductionIntroductionIntroductionIntroduction    

During the last few decades, Raman spectroscopy has grown to be an established 

analytical technique in archaeometry, art analysis and conservation science [1]. Indeed, 

the technique is well appreciated for its non-destructive character, its speed of analysis 

and for its ability to obtain molecular spectra of micrometer-sized particles of an organic 

or inorganic nature. In this research field, the technique has successfully been applied for 

the study of, amongst others, oil paintings [2-4], mediaeval manuscripts [5-7],  

ceramics [8-11], stained glass [12], wall paintings [13,14], rock art [15], gemstones [16,17] 

or for the analysis of archaeological objects [18]. Surface-enhanced Raman Spectroscopy 

(SERS) is frequently used for the analysis of dyes [19]. Moreover, Raman spectroscopy 
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is not only a favourable technique for the analysis of artists’ materials but it is also used 

for investigating degradation processes [20,21]. 

 

In archaeometrical research, often precious and brittle artefacts are examined. A 

typical request is to maximise the information that is obtained, while minimising the 

(risk of) damage to the artwork. Raman spectroscopy, being a non-destructive  

spectroscopic technique, is a favourable approach as, when a sample was taken, this 

sample remains available for further investigation. However, the method can also be used 

for non-destructive direct analysis of small objects by using laboratory instrumentation 

[22]. Mobile Raman instrumentation was developed, allowing to investigate art objects  

directly in situ, eliminating the need to transport the artefacts to the laboratory. Fiber 

optic probeheads have been shown to be successful to investigate pigments of paintings 

[23]. Dedicated instruments were developed to meet specific needs in art analysis. An  

important contribution was the creation of the in-house mobile art analyser (MArtA) by 

P. Vandenabeele [24]. The first instruments were used under many different conditions, 

such as museum environments [25–27], but also to investigate wall paintings [28].  

Increasingly, more mobile instruments came available on the commercial market and 

they were also used in different applications, such as the analysis of stained glass windows 

[29], porcelain [30,31] or rock art [32,33]. Mobile instrumentation was also used to  

investigate the degradation effects in situ due to environmental pollution on historical 

buildings [34,35].  

 

In 2007, a brief test to evaluate mobile Raman instrumentation in different  

laboratories around Europe was published [36]. The aim of this paper was to evaluate 

the quality of these instruments for their applicability towards art analysis. The evolution 

of mobile Raman instrumentation for applications in art and archaeology and other re-

lated fields of research has been extensively reviewed [37,38]. When characterising  

mobile Raman instrumentation, different types of mobile equipment have to be  

distinguished. Ph. Colomban [38] classifies instruments based on their weight: a mobile 

instrument weights less than 30 kg, whereas the instrument or probehead of an  

ultramobile or hands-on instruments weighs less than 2 kg. Smith [39] distinguished  

between transportable (by 4 men) and portable (by 1 man) instruments. We propose to 
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discriminate between transportable, mobile, portable, handheld and palm instruments, 

as described in Table 3.1 

 

Table Table Table Table 3333....1111 Overview of the distinction between transportable, mobile, portable, handheld and 
palm instruments. 

During the recent years, an increasing number of mobile Raman spectrometers have 

become available on the market. These spectrometers are generally designed for a broad 

range of applications. Evaluating and selecting a suitable portable instrument for  

applications in archaeometry is not always straightforward. Indeed, different parameters 

need to be taken into account. The aims of this research are multiple: (i) Selection of the 

characteristics of mobile Raman spectrometers that are of importance for Raman  

spectroscopic analysis of art objects; (ii) Suggested approaches that can be used to  

evaluate these parameters; (iii) Illustration of the method, by applying this approach to 

an EZRaman-I-Dual Raman spectro-meter and demonstration of the use of this instru-

ment during the analysis of a wall painting. 

Type of instrumentationType of instrumentationType of instrumentationType of instrumentation    DefinitionDefinitionDefinitionDefinition    

Transportable - Can be carried from one site to another 
- On site, some alignments have to be made to ensure  

optimal performances 
- Not designed to be moved frequently, although it is possible 
- Most laboratory Raman instruments are transportable 

Mobile - General term for all the Raman spectrometers, designed for 
mobile use 

- The engineers took into account the requirements for a  
stable spectrometer 

- User does not have to make any adjustments inside the  
spectrometer 

Portable - Mobile instrument that can be carried and brought at the 
field by a single person 

- Typically battery operated 

Handheld - Can be operated while held in one hand of the operator 
- Battery operated 

Palm - Spectrometer size reduced to very small dimensions 
- Fit into the palm of one’s hand 
- Battery operated 
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3.23.23.23.2 ExperimentalExperimentalExperimentalExperimental    

All measurements were performed using a portable EZRaman-I-Dual Raman system 

(TSI Inc., Irvine CA, USA). Specification of the instrument can be found in Chapter 2. 

3.2.1. Reagents 

A selection of products was used for wavelength calibration purposes: sulphur 

(UCB), epsilon-caprolactone (Acros Organics), cyclohexane (Kaiser), polystyrene pellets 

(Aldrich) and acetonnitrile/toluene (mixed in 50/50 volume%), obtained from Panreac 

and UCB respectively [24,40]. Lead tin yellow type I (Pb2SnO4) and vermilion (HgS) 

were obtained from Kremer, Aichstetten, Germany. NaCl from E. Merck (Germany) was 

used as a matrix for the measurement of the limit of detection (LOD) of the approach. 

3.2.2. Neon spectra 

Full spectral calibration was performed by analysing the atomic emission lines of a 

standard neon lamp (230 V AC, Gentronics, Belgium). Neon spectra were collected by 

placing the neon lamp in front of the objective. They were recorded for 1 s to acquire the 

intense neon emission lines and 30 s to collect also the weaker lines. During the  

measurements, the neon lamp was moved relative to the lens to ensure complete and 

reproducible filling of the aperture of the objective [40]. 

3.2.3. Software 

Data processing was performed by using Thermo Grams/AI 8.0_suite software 

(Thermo Galactic). For the study on the stability of the Raman instrument, the spectra 

were processed with ACD/SpecManager (ACD/Labs, Berks, England). 
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3.33.33.33.3 Results and discussionResults and discussionResults and discussionResults and discussion    

Different portable Raman instruments are available on the commercial market. To 

select the most suitable instrumentation for in situ art analysis, some critical  

requirements need to be examined. In general, the characteristics that should be  

evaluated can be divided in two groups. On the one hand, there are typical spectroscopic 

characteristics such as (amongst others) spectral resolution, spectral window, signal to 

noise ratio and limit of detection. On the other hand, there are a number of instrumental 

characteristics that are specifically of practical importance when performing art analysis. 

These include options for easy positioning and focusing, the ability to reduce laser power 

on the surface of the art object and the working distance between the probehead and the 

artefact. Although we present these characteristics here as two groups, in practice, the 

distinction is not so strict. 

3.3.1. Spectroscopic characteristics 

Spectral resolution and spectral window 

In contrast to to Fourier-transform (FT-) Raman spectrometers, in dispersive  

instruments, for a given detector, there is a trade-off between the spectral resolution and 

the spectral window: the higher the spectral resolution, the smaller the spectral window. 

Thus, when selecting a mobile Raman spectrometer, it is important to evaluate these 

properties. It has to be taken into account that the highest spectral resolution is not 

always the most desirable, as high resolution also means that few photons hit each pixel 

of the CCD detector – hence lower sensitivity is obtained.  

 

Instrument manufacturers typically state one number for the spectral resolution of 

an instrument. However, it is not always clear how this was determined. Sometimes there 

is confusion between the spectrometer resolution and the detector resolution  

(i.e. the numbers of pixels per wavenumber unit). However, the latter disregards the 

influence of the spectrometer grating, the spectrometer entrance slit, etc. Spectral  

resolution can be determined by measuring the full bandwidth at half maximum  
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(Lorentzian) of an atomic emission line of a neon lamp. It should be noted that the 

spectral resolution is typically not constant over the whole spectrum.  

 

When selecting the spectral window of an instrument, different aspects have to be 

taken into account. First of all, in art analysis it is often very useful to be able to detect 

Raman bands at relatively low wavenumbers. For example, the most intense Raman 

band of anatase (TiO2) is observed at 142 cm−1 [41]. On the other hand, the cut-off of 

the spectral window is not only determined by the (positioning of the) grating and  

detector, but the cut-off values of the Rayleigh filter also determine the lowest band 

position on which a Raman band can be detected. Similarly, the spectrometer response 

as a function of the wavenumber has to be taken into account when selecting the spectral 

window. As CCD detectors typically lack sensitivity in the infrared region it should be 

considered whether it is worthwhile to cover also the high wavenumber range (e.g. around 

3000 cm−1) when using a 785 nm laser. In our case, the spectral range of the  

EZRaman-I-Dual instrument was selected to be 100–2350 cm−1 and 100–3200 cm−1 for 

the 785 nm and 532 nm laser, respectively. Corresponding spectral resolutions are  

presented in Table 3.2 

 

Table Table Table Table 3333....2222 Overview of the spectral range and the corresponding spectral resolution of the  
EZRAMAN-I-DUAL Raman system for the 785 nm and 532 nm laser.     

Laser wavelengthLaser wavelengthLaser wavelengthLaser wavelength    RangeRangeRangeRange    NeNeNeNe----emission bandemission bandemission bandemission band        FullFullFullFull----widthwidthwidthwidth----half maximumhalf maximumhalf maximumhalf maximum    

785 nm 100-2350 cm−1 849.41 nm 0.41 nm 5.67 cm−1 

532 nm 100-3200 cm−1 537.03 nm 0.20 nm 6.94 cm−1 

 

Raman wavenumber calibration 

When selecting a portable Raman instrument for art analysis, the wavenumber 

stability has to be considered. Although wavenumber calibration might be time  

consuming, it is often of vital importance to obtain reliable results. Some mineral  

pigments have only slightly different band positions [9,10]. A typical example is the 

Raman band position of the ν(CO3) symmetrical stretching vibration in calcite  
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(CaCO3, 1086 cm−1), aragonite (CaCO3, 1086 cm−1), dolomite (CaMg(CO3)2, 1098 cm−1) 

and magnesite (MgCO3, 1094 cm−1). Due to the same Raman band position of calcite 

and aragonite at 1086 cm−1, one has to make a distinction based on the band position at 

713 or 704 cm−1, respectively. The identification of the correct pigment is of importance 

to understand production processes and the origin of materials, as aragonite is often 

linked with a marine origin of the chalk (e.g. sea shells) [42].  

 

For the calculation of the Raman shift axis [40], five standards were selected and 

were compared to their reference values which have been examined under the Authority 

of the American Society for Testing and Materials (ASTM) [43]. This set of wavenumbers 

has the advantage of being independent of the laser wavelength and covering a spectral 

region from 153.8 to 2292.6 cm−1 [44]. The linear interpolation of the recorded Raman 

wavenumbers as a function of the certified Raman band positions indicates a significant 

shift, especially at the low wavenumber range. Therefore, when it is necessary to  

determine precise band positions, two different calibrations need to be performed: one 

for the region below 500 cm−1 and a second one for the region above 500 cm−1  

(Figure 3.1). 

 

Another parameter of interest is the wavenumber stability of the spectrometer. This 

is its ability to retain its wavenumber calibration over a period of time [45]. Different 

aspects should be distinguished, such as: 

- The wavenumber stability over a relative short time span (several hours) 

- The stability of the laser wavelength 

- The influence of changing lasers (and thus changing the grating position) 

- The influence of moving the instrument (e.g. vibrations) 

- The wavenumber stability over a longer period (several days) 

- The influence of temperature fluctuations (e.g. when performing outdoor  

measurements). 
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In practice, due to the instrument use, it is not always possible to discriminate 

between all of these aspects. On the one hand, the stability of the spectrometer should 

be examined, whereas on the other hand reasons for possible instability should be  

evaluated. Therefore, the overall stability of the instrument was studied by measuring 

the possible drift of the Raman band positions of reference products. These variations 

can be caused by changes in the optics (e.g. grating position) as well as changes in the 

laser wavelength.  

    

To evaluate the short-term reproducibility, spectra of polystyrene pellets were  

recorded every 6 min over a period of 22 h 30 min, resulting in 226 spectra. The spectra 

were recorded for 30 s each, using maximum laser power. The procedure was repeated 

for each laser. Comparing the position of the most intense band (ring breathing vibration, 

1001 cm−1) of all the spectra, no significant changes are observed: an average band  

position of polystyrene at 1001.10 ± 0.04 cm−1 and 1001.99 ± 0.07 cm−1 for the 785 nm 
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and 532 nm laser, respectively. The long-term instrument stability was evaluated by 

measuring the same Raman band position of the polystyrene spectrum at the start of 

each working day, over a period of ca. 2 months. Raman band positions are highly  

reproducible, within a standard deviation that is lower than 0.5 cm−1.  

Mode-hopping of the lasers was evaluated by calibrating the spectrometer [46] based on 

the emission lines of a neon lamp and Equation (2). The laser wavelengths were, over a 

3 month period, considered as stable: 784.89 ± 0.05 nm and 531.80 ± 0.04 nm for the 

red and green laser, respectively. 

 

 Raman shift (cm−1) =  ( 1
λinc(nm) − 1

λstokes(nm)) × 107 (2) 

 

Sensitivity of the spectrometer 

It is obvious that the Raman spectrometer used for archaeometrical purposes should 

be as sensitive as possible. As discussed before, spectrometer sensitivity is related to the 

spectral resolution. Apart from the instrumental factors, the measured limits of detection 

[47] are dependent on laser intensity, measurement times and the analyte molecule in a 

specific matrix. 

 

To enhance the sensitivity, it is favourable to work at high laser power. However, 

when working with brittle artefacts, it is of the outmost importance to avoid any possible 

laser damage. The EZRaman-I-Dual Raman system is programmed so that the laser is 

only on during the measurements, thus limiting the time of exposure to laser radiation.  

Moreover, the laser can be adjusted according to the needs, by using a power control 

button. One thing that required testing is the correctness of this scale at the buttons. 

The correlation between the set laser power and the corresponding laser output power at 

the sample was measured with a Nova laser power monitor (Ophir Optronics ®). This 

study proved that the scale on the power control button (assigned by the company) does 

not correspond to the measured power reduction at the sample. Both lasers show a similar 

trend: from a minimum set laser power, 33% for the red laser and 55% for the green laser, 
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a linear relation was found (Figure 3.2). When recording spectra at a laser power lower 

than this critical value, no Raman signal was detected. Also from this approach, the 

same linearity was observed between the Raman signal intensity and the set laser power 

reduction.  

Figure Figure Figure Figure 3333....2222 Relation between the set laser power (%) and the corresponding laser output power 
at the sample (mW) for the 785 nm and the 532 nm lasers. 

The measured power at the sample surface is influenced by several factors, such as 

absorption by the particular objective lens used. As the intensity of the Raman effect is 

proportional to the power density at the sample, the effect of different lenses on the 

sensitivity of the Raman spectrometer should be evaluated. Moreover, the different  

objective lenses have different working distances and solid angles and hence different 

collection efficiencies. When performing in situ measurements it is, because of safety 

issues, interesting to have a long working distance, but this has to be balanced against 

the sensitivity.  

 

To measure the optimal working distance for all the lenses and both lasers, the 

fiber-optic probehead was placed on a millimeter metal bar, moving it over a distance of 
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25 mm in steps of 1 mm. For each step a spectrum of polystyrene pellets was recorded 

for 20 s at maximum power. At the same time, the laser spot size was determined at 

each distance.  

 

Figure 3.3 gives a graphical representation of the Raman band signal intensity, at  

1001 cm−1, as a function of the focal length. One can conclude that the optimal working 

distance is independent of the type of laser, except for the STD lens, and corresponds to 

a distance of 3 mm for the HiNA lens, <1 mm for the LWD lens. The STD lens has an 

optimal focal length at 7 mm and 8 mm for the 785 nm and 532 nm laser, respectively. 

The estimated optimal working distances of the HiNA and STD lenses are in agreement 

with the data given by the company. In contrast to this, the specified working distance 

for the LWD lens (13 mm) is totally different from that which has been experimentally 

determined. The LWD lens is equipped with a plastic tube, changing the LWD lens into 

a contact lens. In addition, the Raman band intensity at the focal distance is five times 

lower than in the case of the STD and HiNA lens. For the other lenses, other properties, 

such as spot size and differences in Raman signal intensity, also were examined at optimal 

focal distance. The STD and the HiNA lenses of both lasers have a similar circular spot 

size of 0.074 ± 0.002 mm and 0.088 ± 0.002 mm, respectively. Opposite to what is 
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Figure Figure Figure Figure 3333....3333 Relation between the Raman band intensity (Arbit. Units) of polystyrene, at 
1001 cm−1, and the working distance (mm) for the 785 nm laser (a) and the 532 nm laser (b), for 
the HiNa and STD lenses. 
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expected, when comparing the Raman signal intensity one can see that the intensity 

obtained with the STD lens is ca. double to what is obtained with the HiNA lens. This 

results in a lower efficiency for the latter lens.  

 

The sensitivity of a Raman spectrometer is an important spectroscopic  

characteristic of the instrument. Not only does a sensitive spectrometer allow us to reduce 

the measuring time at the artefact (hence, more spectra at different positions can be 

recorded in the same time), but also degradation products that may be present in low 

concentrations can be examined. Studying degradation processes of artists’ materials is 

highly important as this helps us to understand the phenomena that can be initiated by 

light, relative humidity, atmospheric pollutants (e.g. ozone, NO$, SO42−, acetic acid, etc.) 

or temperature [48,49]. The limit of detection (LOD) expresses the sensitivity of an  

instrument, as measured on known samples; when analysing samples with unknown  

composition, the limit of identification (LOI) should be considered [47]. The LOD,  

expressed as a concentration or quantity, is the lowest concentration of a sample in a 

given matrix that can be detected. The concentration of a product is related to the 

detection of its most intense Raman band. Therefore, the LOD can be determined at 

which the most intense Raman band of that product is still detectable. It can be defined 

as the concentration where the Raman signal intensity equals three times the spectral 

noise (Equation (3)): 

 

 LOD ~ Iraman > 3 × √IRaman + Ibackground (3) 

 

The total Raman intensity equals the sum of the Raman signal (IRaman) and the 

background signal (Ibackground). When determining the LOD of a sample, several factors 

that influence the LOD have to be considered: it is a function of the laser intensity and 

laser wavelength, experimental conditions, sample matrix and the studied analyte [47,50]. 

Here, two pigments (lead tin yellow type I (Pb2SnO4) and vermilion (HgS)) were chosen 

to calculate the LOD of each sample. These pigments were selected, as these are  

commonly encountered in antique art objects, they are stable and can relatively easily 
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be purchased (e.g. for comparative experiments between laboratories). Moreover, these  

pigments are strong Raman scatterers. A series of well-known pigment concentrations 

was made by mixing them with a NaCl-matix. A NaCl matrix was selected, as this 

material is relatively transparent for the light and it is not Raman active. Moreover, it 

is easy to handle and the mixtures are easily made by weighing. For each concentration 

and pigment a Raman spectrum was recorded for 20 s at 50% laser power (70 mW) with 

the red laser. When determining the limit concentration, one has to consider the lowest 

intensity of the most intense Raman band (band position at 129 cm−1 and 252 cm−1 for 

lead tin yellow type I and vermilion, respectively), which is still detectable. As a result, 

the detection limits are determined, for the specified experimental conditions, to be  

9.8 mg g−1 for lead tin yellow type I and 43.8 mg g−1 for vermilion.  

3.3.2. Characteristics of particular importance to archaeometrical research 

Apart from the spectroscopic characteristics, some features of a mobile instrument 

are of particular importance when analysing art objects on site. In many cases, when 

bringing a mobile Raman instrument to a cultural heritage site (e.g. museum, cathedral, 

or archaeological site), weight and access to electrical power are important aspects, which 

may lead to some restrictions. The portable Raman spectrometer used in this work is  

43 x 33 x 18 cm and weighs ca. 17 kg. It works on 220 V AC, but is also supplied with 

an internal battery. Moreover, also an external lithium battery can be connected to the 

instrument and has an effective operational live time of ca. 6 h 30 min, although this 

time is reduced when often changing between two lasers. It should be noted that the 

laser output power decreases slightly with usage and thus leads to a decrease in Raman 

signal intensity, and that this reaches a constant power output of 230 mW after 2 h, 

until the battery is flat. The spectrometer is equipped with two 5 m long fibre optic 

cables, which allow one to record spectra from a distance. Each probehead has a trigger, 

which is useful when recording spectra in hand-accessible areas. The instrument is  

controlled by a built-in laptop, making it possible to visualise the spectra on a reasonably 

sized screen (opposite to palm-sized or handheld spectrometers). Although weight and 

electrical power constraints can be of importance, as archaeometrical research is often 

performed in museums, this is usually not a major problem for these studies.  
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As the Raman effect is relatively weak, and as the spectrometer is stray light  

sensitive, the experiment is also sensitive to interference from ambient light. Therefore, 

special attention should be given to blocking all ambient light. When working in a  

museum or a church it is not always possible to work in a darkened room. Therefore, it 

is advisable to work during the night or to use a shelter to avoid direct background 

illumination. If these two options are not applicable, one can use a light blocker (e.g. a 

piece of foam or metal) that can be applied over the lens so that no stray light can reach 

the objective. 

 

An important aspect when investigating art objects is the positioning of the  

probehead relative to the artefact. On the one hand, positioning equipment should be 

sufficient flexible, so that the set-up can be modified depending on the situation. On the 

other hand, the positioning equipment should be sufficiently stable and allow the focusing 

of the laser beam on the object. During the time of measurement the object should remain 

in focus. If the laser beam is not stable, band broadening occurs and a weaker spectrum 

is observed. In previous studies, different combinations of macro-positioning and micro-

positioning systems were examined [24]. A similar set-up is possible with the Enwave 

spectrometer; the probehead can be mounted on the existing stages. A clamp (Figure 3.4) 

was developed that is able to hold both probeheads simultaneously, thus facilitating an 

easy switch between the laser wavelengths. Moreover, the same clamp can also hold a 

digital microscope camera (dyno-lite), which is connected to the USB port of the laptop 

that is incorporated into the spectrometer. This digital microscope is also equipped with 

LED-lights, allowing the illuminate the whole area under study. 

 

Apart from the positioning equipment described hitherto [51], new positioning 

equipment was developed based on perpendicular optical rails with slides. This can easily 

be mounted on a tripod, thus allowing for an enhanced mobility, compared to more heavy 

positioning systems. The main advantage of using sliders over a simple tripod with clamp, 

is that this approach allows for easier positioning, hence, the time for positioning is 

reduced. Finally, thanks to the triggers that are present on the probeheads and provided 

that the measurements do not last too long, it is possible to hold the (light) probehead 

manually, during measurement. 
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Figure Figure Figure Figure 3333....4444 System for positioning the probeheads (P) of the portable Enwave dual laser Raman 
system. The system is based on two orthogonal rails that are mounted on a tripod and allow for 
easy positioning by sliding the probehead clamping system over the rails. A micrometer  
translation stage (M) is mounted for focusing, while a USB-microscope camera (C) allows for 
visualisation and illumination. On the drawing, a counterweight is shown to balance the system 
on the tripod. 

3.3.3. Field test: analysis of the mediaeval wall painting ‘‘San Cristoforo” 

(1495), Pianazzola, Italy 

The possibilities of the Enwave Raman spectrometer were tested by analysing some 

pigments from the mediaeval wall painting of San Cristoforo on the outside walls of the 

church of the village of Pianazzola (Prov. Di Sondrio, LO, Italy). This large painting was 

probably painted by Andrea Passeris di Torno (Como) in 1495, and was restored in 1892.  

To test the abilities of the instrument, spectra were recorded under bad conditions: bright 

sunlight and positioning the probehead by hand, in some cases standing on ladders to 

reach the highest zones (Figure 3.5) During the experiment, it was requested that we 

explain the work to the people living in the small village. To avoid as much as possible  

interference from ambient sunlight, a copper tube was slid over the objective lens tube. 

However, focusing was difficult and still some sunlight interfered with the spectral  

acquisition. 
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Figure Figure Figure Figure 3333....5555 Evaluation of the portable Raman spectrometer by analysing the pigments of the 
mediaeval wall painting of S. Cristoforo at the church of Pianazzola (a). During the analysis the 
research was explained to the inhabitants of the village (b). During the analysis the probehead 
was manually positioned (c-d) and the sunlight was blocked out by sliding a copper tube over 
the objective lens (c’). 

From this experience we shall propose the manufacture of small plastic or foam 

caps that effectively block all interferences from the sunlight. Nevertheless, it was possible 

to identify the pigments in this artwork. This was especially successful as we had access 

to two different lasers: where some pigments yield weak spectra with one of the lasers  

(or the signal is overwhelmed by fluorescence), it was possible to obtain better results 

when using the other laser. As an example of our approach, Figure 3.6a, we present two 

Raman spectra as recorded from a blue area, by using the green 532 nm laser. These 

spectra are recorded with only 10 s of accumulation time. Although the spectra are noisy,  

clear features from ultramarine (Na8–10(Al6Si6O24)S2–4) and calcite (CaCO3) can be  
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Figure Figure Figure Figure 3333....6666 Raman spectra as recorded from the wall painting of S. Cristoforo at the church of 
Pianazzola. (a) Two spectra from a blue area, recorded with the 532 nm laser, 10 s of measuring 
time. Features from ultramarine and calcite can be recognised. (b) Spectrum from a red area, 
recorded with the 785 nm laser, 60 s of measuring time. Spectral features from haematite (H), 
calcite (C), gypsum (G) and whewellite (W) are observed. 
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distinguished. The intense band from ultramarine at 545 cm−1 can be assigned to the 

stretching vibration of the [S–S]− ion [52]. It should be noted that we cannot discriminate 

between the natural lapis lazuli and the synthetic ultramarine, which could result from 

a previous restoration. The symmetrical stretching vibration of the CO32− ion in chalk is  

observed at 1086 cm−1. This material is formed during the drying process of the wall, 

whereby the calcium-hydroxide (Ca(OH)2) of the plaster reacts with carbon dioxide in 

the atmosphere. The Raman spectrum as presented in Figure 3.6b, is recorded by using 

the 785 nm laser, and was recorded for 60 s. Although a large fluorescence background 

is present, a number of spectral features can be observed. The colouring agent present is 

haematite (α-Fe2O3). Next to this, distinct feature of calcite (CaCO3), gypsum 

(CaSO4.2H2O) and whewellite (CaC2O4.H2O) can be identified [34,53]. It is interesting to 

see that, in this spectrum recorded with a mobile instrument, different types of possible 

degradation can be observed: the presence of gypsum could be caused by reaction of the 

calcite with atmospheric SO2, H2S or SO42− pollutants, while the presence of an oxalate 

tends to indicate some microbiological degradation processes. 

 

3.43.43.43.4 ConclusionsConclusionsConclusionsConclusions    

An overview of different features that are of importance when selecting a mobile 

Raman instrument for in situ art analysis, are provided. These comprise spectroscopic 

characteristics as well as specific topics that are of practical importance during  

archaeometrical studies. It is discussed how these characteristics can be evaluated and a 

standardised procedure is proposed for the evaluation of mobile Raman spectrometers. 

This approach is illustrated by using a dual laser portable Raman instrument. Finally, 

the research was completed with field tests by studying the pigments in a mediaeval wall 

painting. It is clear that, when selecting a mobile Raman spectrometer for  

archaeometrical research, a balance has to be found between different parameters, such 

as practical limitations (e.g. cost, weight, positioning, etc.), spectroscopic characteristics 

(e.g. spectral resolution, sensitivity, etc.), and the specific range of cultural heritage  

objects that forms the focus of the research group. 
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The present work is novel research on a micro-scale as well as in a broader  

perspective. On a micro-scale we are the first scientists to publish a full characterisation 

of the EZRaman-I-Dual spectrometer and use it for the first examination and report on 

the analysis of the Pianazzola church wall painting. In a broader view, it can be said 

that for the first time a protocol has now been established that describes how a mobile 

Raman instrument can be fully characterised and what characteristics are important or 

should be compensated. We have indicated the different options with advantages and 

disadvantages. Moreover, from time to time critical notes to common practices are made 

(e.g. saying that laboratory instrumentation is mobile, as it can be transported (while 

not designed for mobile use). 

 

As all the important characteristics of the EZRaman-I-Dual Raman spectrometer 

are evaluated, the suitability of the instrument for different art applications can be  

examined. In the coming chapters, its beneficial use for different art applications,  

including pigment analysis and gemstones, will be pointed out. In the next chapter, the 

capabilities for pigment analysis will be illustrated based on the investigation of an  

important mediaeval manuscript, De Civitate Dei. 
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Chapter 4  
 
Pigment identification of an illuminated mediaeval manuscript 
De Civitate Dei by means of portable Raman equipment 
 

Based on the paper: D. Lauwers, V. Cattersel, L. Vandamme, A. Van Eester, K. De Langhe,  

L. Moens and P. Vandenabeele (2014). Pigment identification of an illuminated mediaeval  

manuscript De Civitate Dei by means of a portable Raman equipment. Journal of Raman  

Spectroscopy, 45:1266-1271.  

 

In the previous chapter, the characteristics of the EZRaman-I-Dual spectrometer were 

extensively evaluated. This is a good starting point for checking the suitability of the 

instrument. Mobile Raman spectrometers should be versatile: the method should be  

applicable for various type of art objects with different shapes, sizes and composition. 

For this reason, it is important to check the applicability of the instrument in different 

case studies and optimise it where needed. In this next part, the possibilities of the 

portable Raman spectrometer for pigment analysis of an important mediaeval manuscript 

De Civitate Dei (cultural heritage library in Bruges, Belgium) are illustrated. Pigments 

are the most attractive targets for scientific studies, because of their colourful appearance. 

It can provide information of the artist’s palette and reveal information about the 

painter’s technique.  

  

The study of mediaeval handwriting was one of the first applications of Raman  

spectroscopy in art analysis as these are ideal objects to illustrate the capabilities of the 

instrument for pigment analysis, due to the simple paint composition (in comparison to 

oil paintings). Miniatures are usually painted in a tempera technique with arabic gum. 

The focus of this chapter mainly lays on the discussion of the characteristics important 

for in situ pigment analysis. The advantage of the availability of two lasers, which are 

an integral part of the equipment, are pointed out. Also, good performance of the Raman 

spectrometer to allow pigment identification in a short time is proven. At the same time, 



   

54 

 

information about the artists’ palette is obtained, which gives information about the 

working practice and the materials used by the illuminator. 

 

4.14.14.14.1 IntroductionIntroductionIntroductionIntroduction    

Direct identification of pigments in mediaeval illuminated manuscripts was one of 

the first applications of Raman spectroscopy in art and archaeology [1–3]. The analytical 

investigation of pigments is an important aspect of the technical characterisation of (art) 

historical objects [4,5]. It can reveal important information relevant to dating and  

authentication, conservation or restoration of art [4,6]. Micro-Raman spectroscopy is well 

known for its non-destructive character, molecular specificity, spatial resolution and its 

suitability for in situ characterisation of illuminated manuscripts [7–11]. Direct analysis 

can be performed in the lab or in the field, depending on the size of the artefact and the 

ability to transport the object [12–17]. If transportation of the book is not allowed,  

analytical approaches are available: (i) sampling via the Q-tip method as previously 

reported [18] or (ii) direct analysis with a mobile instrument. Often, despite the possible 

interference of fluorescence from support and binders [14,19], on-site analysis is preferred 

over sampling (Q-tip) due to the limited, thin paint layers used in miniature art  

(which can impede the sampling) [15,20].  

 

In previous in situ analysis campaigns of manuscripts, the equipment was typically 

provided with a single excitation source [21–23]. Nevertheless, the ability to switch  

between different lasers is extremely useful, as absorption of the scattered light by the 

sample may result in a reduced spectral quality of the Raman spectrum [24,25]. Moreover, 

in some cases, wavelength-dependent fluorescence can be overcome by using a different 

excitation laser. Therefore, in this work, a portable Raman spectrometer (cf. definition 

formulated elsewhere [26,27]), equipped with two lasers, is introduced to characterise the 

pigments present in the mediaeval De Civitate Dei manuscript from the cultural heritage 

library in Bruges. The pigment identification will contribute to the enrichment of  

information of the working practice and materials used by the illuminator. 
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4.24.24.24.2 ExperimentalExperimentalExperimentalExperimental    

In situ Raman spectroscopy was performed on a selection of illuminated folios in 

the manuscript De Civitate Dei using the EZRaman-I-Dual Raman system. The  

recorded Raman data were processed using Thermo Grams/AI 8.0 ® suite software 

(Thermo Galactic).  

 

On folio 1 (recto,r) the decorative fleuronnée initial of the letter ‘A’ was examined. 

The miniature on folio 22r was also a region of great interest, since it was attributed to 

the illuminator Willem Vrelant (or his workshop) by F. Lyna and G. Bousmanne [28,29]. 

The folios studied and the examined areas are shown in Figure 4.1. A digital version of 

the manuscript can be found on the website of the cultural heritage library in Bruges 

[30]. 

 

 

 
 

a.a.a.a. b.b.b.b. d.d.d.d.

c.c.c.c. 

Figure Figure Figure Figure 4444....1111 (a) Ms.106, f1r, Litterae duplex; (b) Ms.106, f22r, Litterae duplex and border 
decoration; (c) Ms.106, f22r, Detailed picture of the decorated initial; (d) Ms.106, f22r, Miniature 
of Saint Augustine who is teaching the audience. 
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4.2.1. Reagents 

Lead white (2PbCO3.Pb(OH)2),  atacamite (Cu2Cl(OH)3), cobalt blue (CoAl2O4) 

and red lead (Pb3O4) were obtained from Kremer, Aichstetten, Germany.  

4.2.2. The mediaeval manuscript De Civitate Dei (Ms.106) 

Since the original version of the De Civitate Dei was written in the 5th century, by 

the early theologian and philosopher Aurelius Augustine, this 22 chapter Latin-written 

manuscript has been very influential for Western Christian societies throughout the  

middle ages. Proof of its popularity can be found in the fact that almost 450 copies of 

this work are still preserved to date [31].  

 

In this research, an important copy of the De Civitate Dei, which is preserved at 

the public library Biekorf in Bruges, is examined. It was produced in the second half of 

the 15th century and ended-up in Bruges in the 17th century, foreseen of a so called 

Campmansstrap (after Bernard Campmans, the 40th abbot of the abbey Ten Duinen) 

and a cross of Ten Duinen. This indicates that the manuscript was once part of the 

Cistercian libraries. Although the cross of Ten Duinen denotes the provenance of the 

manuscript from the abbey Ten Duinen (Koksijde, Belgium), the book can also come 

from the abbey Ter Doest (a daughter foundation of Ten Duinen), due to the fusion of 

the abbeys. Codicological research (i.e. systematic study of all material aspects of a codex, 

including folio gathering,binding, etc.) with the focus on a microscopic study of the 

parchment support,supported the estimation of the manuscript production during the 

15th century. It showed that a high density of hair follicles are uniformly distributed 

throughout the parchment surface, which are representative for parchment made from 

calf skin. It is known that the use of this skin was widespread for this region throughout 

the 15th century [32]. 

 

The content of the manuscript focuses on Christian philosophy, more specific on 

the dualism between good and evil. The book is decorated with some colourful  

illuminations and can be attributed to Willem Vrelant, who was an active member of 

the Saint John the Evangelist Guild [18,28]. The latter was exclusively reserved for 
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craftsmen that were related to production and trade of manuscripts. Vrelant was most 

active during the third quarter of the 15th century and is considered as one of the most 

influential and commercially successful illuminators of his time. His distinctive technique 

and pictorial vocabulary can be described as rather conservative for the time. Most  

recognisable in his oeuvre are the static figures, oval faces, straight and slender noses, 

high and wide foreheads and the figures lacking personality [29].  

 

4.34.34.34.3 Results and discussionResults and discussionResults and discussionResults and discussion    

Technical aspects of miniature art can be studied via sampling and via direct  

analysis. Due to the limited materials, the preciousness and fragility of the manuscript, 

non-destructive investigation was chosen, more specific in situ Raman analysis.  

 

When analysing art objects directly, good quality positioning (i.e. focusing) of the 

equipment is of utmost importance to obtain high quality results [33]. It is required to 

have stable equipment and the way the instrument is mounted must be safe. Apart from 

the requirement for stable positioning equipment, it should also allow easy macro and 

micro-positioning. The set-up used for direct analysis is shown in Figure 4.2. The  

probeheads were mounted on an articulating arm [34], using the in-house developed clam 

that is introduced in chapter 3. Correct and easy positioning is made possible due to the 

presence of micrometer translation stages, which can be operated manually. This set-up 

also provides the advantage of allowing switching easily between both lasers, 785 and 

532 nm lasers, to use the preferred laser wavelength for a coloured area [19]. Switching 

is done rather quickly (200 s) and easily: the spectrometer is equipped with a switch 

button and is also provided with two operation software’s, one for each laser. To exchange 

between lasers, the software of the one laser has to be closed, and the cooling system 

needs to be turned off, using a central key. Next, the switch button has to be turned to 

the preferred laser, and the cooling system can be turned on again, together with starting 

up the software of the corresponding laser. To avoid damage to the manuscript  

(e.g. crumbling of the leather or parchment, peeling off the back or cover of the  

manuscript, but mainly to avoid  cracking of the binding), book pillows and V-shaped 

foam were used to open it. If needed also, lead laces were applied to keep manuscript 
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folios in place. In the next part, we will discuss some features that are of importance to 

direct analysis, applied to the investigation of the De Civitate Dei manuscript. 

 

4.3.1. Characteristics important for in situ analysis 

When performing analysis in museums, libraries, etc., the availability of the object 

is often limited in time. This means that the analyst has to plan well, in order to execute 

a complete characterisation of the object quickly. In this project, two approaches were 

taken into account: (i) obtain excellent quality spectra of a selection of paint colours and 

(ii) characterise as much as possible, i.e. record one spectrum (max. three) of each paint 

colour with a relatively good spectral quality (reasonable signal-to-noise ratio, SNR), in 

a short time. The selection of one of the approaches depends on the intended purpose. 

When the analyst wants to compare the composition of similar colours or identify  

degradation products (results in weak Raman bands), it is better to obtain excellent 

quality spectra. If he wants to obtain information about the total used artist’s palette, 

Figure Figure Figure Figure 4444....2222 General overview of the set-up for the pigment analysis of the De Civitate Dei.
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the second perspective is preferred. The latter approach was selected for the analysis of 

this mediaeval manuscript. Note that in this case, the Raman spectra (within short 

measuring time) are obtained probably at the expense of the spectral quality. Figure 4.3 

represents some of the Raman spectra that were recorded in only 30 s. As one can see, 

clear bands could be detected in a short time, with a good SNR. This proves that the 

introduced Raman spectrometer is highly performant to allow pigment identification in 

a short time, with reasonable spectral quality. As a result, all the paint colours at the 

selected regions (28 points), present in the folios, could be examined. As mentioned, two 

lasers (785 and 532 nm) can be used during the analysis of the De Civitate Dei  

manuscript, between which we can switch. This can lead to successful identification of 

pigments: as some pigments yield weak spectra with one of the lasers (i.e. low SNR), 

better results can be obtained with the other one. 

 

Some measurements were performed in the lab to point out the benefit of dual laser 

excitation. Raman spectra were recorded of several reference pigments with both lasers. 

In this paper, we selected four pigments (labelled by Kremer pigmente as lead white, 

atacamite, cobalt blue and red lead) for which the need of two lasers becomes clear. 

Figure 4.4 represents the Raman spectra recorded of the four pigments with both  

excitation sources. Cobalt blue and red lead prove to be good scatterers for the red laser 

but show clear absorption interference for the 532 nm laser, resulting in weak Raman 

bands. The green pigment labelled atacamite, on the other hand, strongly absorbs the 

red laser and can burn even with a low laser power. In this case, the green laser is the 

optimal laser to use; this is true for most blue and green pigments. Note, when taking a 

closer look to the recorded spectrum of atacamite (Kremer), it was clear that it does not 

correspond to the spectrum of this compound. Comparing this spectrum with reference 

spectra of malachite and atacamite from the database of RRUFF [35], it was found that 

we are dealing with malachite instead of atacamite. On the basis of the findings in the 

preceding text, it is clear that the presence of two lasers can lead to more successful 

identification of materials. Not every pigment is only Raman active for a certain laser 

wavelength: lead white for example results in a good Raman spectrum for both excitation 

wavelengths (Figure 4.4). 
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Figure Figure Figure Figure 4444....3333 Raman spectra are recorded with the 785 nm laser with only 30 s of accumulation 
time (baseline corrected), from the mediaeval manuscript, De Civitate Dei. (a) spectrum of a red 
area (f22r, border decoration, point 10). Features of vermilion can be recognised; (b) spectrum 
of a white area (f22r, miniature, point 15) which can be assigned to lead white; (c) spectrum of 
a yellow area (f22r, miniature, point 16) with features of lead-tin yellow type I; (d) spectrum of 
the incarnation (f22r, miniature, point 27), which is a mixture of lead white and lead-tin yellow 
type I. 
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To prove this concept, the instrument was tested on the manuscript: the blue area 

of the decorated initial (f22r, point 11) was analysed with both lasers. The spectra were 

recorded with a total measured time of 150 s, using the STD lens. Although both spectra 

are noisy, the SNR is much better for the green laser than for the red laser (Figure 4.5). 

Studying the detected band position, the blue pigment used for the illumination could 

be identified as azurite (Cu3(CO3)2(OH)2). Azurite was an important blue mineral in the 

middle ages and has characteristic Raman bands at 405 (vs) and 1093 (s) cm−1, due to 

Cu-O stretching vibration and the symmetrical stretch vibration of the carbonate ion, 
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Figure Figure Figure Figure 4444....4444 Raman spectra are recorded with the 785nm laser (full line) and the 532 nm laser 
(striped line) (a) Raman spectrum of lead white (�=785 nm: 2x2 s, 129 mW; �=532 nm: 2x2 s, 
21 mW); (b) Raman spectrum of atacamite (�=785 nm: 60x10 s, 10 mW; �=532 nm: 10x5 s, 8 
mW); (c) Raman spectrum of red lead (�=785 nm: 2x2 s, 70mW; �=532 nm: 10x5 s, 0.9 mW) 
(d) Raman spectrum of cobalt blue (�=785 nm: 10x5 s, 129 mW; �=532 nm: 10x5 s, 20 mW). 
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respectively. The intensity of the bands can differ, depending on the orientation, because 

azurite is anisotropic: the spectrum is strongly orientation-dependent [36]. 

 
 

 

4.3.2. Pigment identification of the De Civitate Dei manuscript 

The different colours were examined using the Enwave Raman spectrometer, in the 

border illumination (f22r), a decorated initial (f22r), fleuronée-initials, more specific  

litterae duplex (f1r and f22r) and the miniature (f22r), ascribed to Willem Vrelant. The 

litterae duplex, in both folios, was written by using a combination of red and blue ink 

[37]. For both initials, vermilion (HgS) was used as a pigment in the red ink.  

Unfortunately, the composition of the blue ink could not be determined (Table 4.1) due 

to very strong fluorescence: this may arise from the binding agent [38–40]. The decorated 

initial, on the other hand, was painted with four pigments: an unknown red  
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Figure Figure Figure Figure 4444....5555 Raman spectra (30x2s, STD lens, 70mW, External power source) of: top: Raman 
spectrum of the unknown blue colour recorded with the 532 nm laser, identified as azurite 
(Cu3(CO3)2(OH)2); bottom: Raman spectrum of the unknown blue colour recorded with the 785 
nm laser, identified as azurite (Cu3(CO3)2(OH)2). 
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(probably organic) pigment, azurite (Cu3(CO3)2(OH)2) for the blue colour and malachite 

(Cu2CO3(OH)2) for the green colour (Table 4.1). In this latter zone also, lead-tin yellow 

type I (Pb2SnO4) was detected: it was used to create a lighter hue in some areas.  

 

The selected regions of the border decoration and miniature contain blue, white, 

green, yellow, black, brown, grey, orange, gold and different red paints (Table 4.1). When 

investigating the green leaf of the border decoration, a remarkable identification was 

carried out: an exact match was found with chrome yellow (PbCrO4, bands at 840 and 

358 cm−1) (Figure 4.6a). On the basis of microscopic evaluation, it is difficult to say 

whether the green colour was obtained by a mixture of a blue pigment and a yellow 

pigment or if a green pigment was used in combination with the yellow pigment to soften 

the colour. The reason why we were not able to detect the additional Raman bands of 

the green or blue pigment, lies in the fact that these pigments are weak Raman scatters. 

It is likely that these bands are masked by the strong scatterer lead chromate. Chrome 

yellow is an artists’ pigment that was commonly used after the mid of the 19th century 

[41]. This proves that this pigment could not be used in the original colour palette and 

thus points out a probable restoration of the manuscript during the 19th century. It is 

known that in 2006 a restoration was executed by BVBA De Zilveren Passer. During 

this intervention, mainly the structural elements were stabilised. It is not clear if  

interventions were also made on the illuminated parts of the manuscript. 
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Figure Figure Figure Figure 4444....6666 Baseline corrected Raman spectra (λ=785 nm, 30x5 s, STD lens, 70mW, External 
power source) of: (a) Raman spectrum of the unknown green colour in the border decoration, 
with bands at 840 and 358 cm−1 that can be assigned to chrome yellow (PbCrO4); (b) Raman 
spectrum of the unknown gold colour in the miniature with characteristic band at 313 cm−1 that 
can be assigned to mosaic gold (SnS2). 
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Table Table Table Table 4444....1111 Overview of the identified pigments used for the illumination of the miniature, border 
decoration and initials present in the De Civitate Dei (Ms.106). 

 

 

 

Ms.106: Ms.106: Ms.106: Ms.106: 
FolioFolioFolioFolio    

Colour and number of Colour and number of Colour and number of Colour and number of     
measured point measured point measured point measured point     

((((Figure Figure Figure Figure 4444....1111))))    

Laser (nm)Laser (nm)Laser (nm)Laser (nm)    Pigment Pigment Pigment Pigment     
IdentificationIdentificationIdentificationIdentification    

Chemical Chemical Chemical Chemical     
FormulaFormulaFormulaFormula    

f1r Red (2) 785 Vermilion HgS 

Blue (1) 532 /  

f22r, text Blue (3) 532 /  

Red (4) 785 Vermilion  HgS 

f22r,  
initial 

Red (13) 785 /  

Blue (11) 532 Azurite Cu3(CO3)2(OH)2 

Green (12) 785 Lead tin yellow type I  

Malachite 

Pb2SnO4 

Cu2CO3(OH)2 

f22r,  
decoration 

Yellow/gold (5, 6) 785 / (probably gold leaf)  

Red (strawberries) (7) 785 Vermilion  
Lead white 

HgS 
2PbCO3·Pb(OH)2 

Red (flower) (9) 785 /  

Red (hat) (10) 785 Vermilion  HgS 

 Green (8) 785 Chrome yellow  PbCrO4 

f22r,  
miniature 

White (14,15) 785 Lead white  2PbCO3·Pb(OH)2 

Yellow (16) 785 Lead tin yellow type I  
Lead white  

Pb2SnO4 

2PbCO3·Pb(OH)2 

Yellow/gold (17, 18) 785 Mosaic gold  SnS2 

Red (19) 532 /  

Orange/red (20) 785 Minium  Pb3O4 

Purple (21) 785 Lead white, ?  2PbCO3·Pb(OH)2 

Green hills (23) 785 Lead tin yellow type I  Pb2SnO4 

Green mantle (22) 532 and 785 /  

Blue (24) 532 Azurite Cu3(CO3)2(OH)2 

Brown (29) 785 /  

Grey (26) 785 Lead white  2PbCO3·Pb(OH)2 

Black (25) 785 Carbon black  

Incarnation (27, 28) 785 Lead white  
Lead tin yellow type I  

2PbCO3·Pb(OH)2  
Pb2SnO4 
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Another important colour in the investigation of the border decoration and  

miniature is the gilding. The question arises if the gilding is actual gold or mosaic gold, i.e. tin 

sulphide (SnS2) [42]. On the basis of visual investigation, the golden colour has been painted, 

not gilded [9]. The analysis showed that in the border decoration, probably metallic gold was 

used because of the absence of Raman bands and the presence of a high fluorescence signal. 

In the miniature, on the other hand, on several illuminations, the characteristic Raman band 

of mosaic gold (SnS2) at 313 cm−1, corresponding to ν(SnS) symmetric stretching, was detected 

(Figure 4.6b) [43]. However, its production and use in the middle ages has been described 

repeatedly [44,45], the identification of mosaic gold in mediaeval manuscripts is rather rare 

[46]. Probably its use was suppressed by other easily obtainable yellow pigments [47]. 

 

On the basis of these results, one can conclude that the Raman spectrometer was a 

helpful instrument in the identification of the materials used. However, it must be mentioned 

that there are still pigments unidentified such as, amongst others, the yellow in the border 

decoration. Complementary, in situ techniques (such as XRF and FTIR reflectance) exist to 

support the obtained results and enrich the information. Because of limited access to the 

manuscript, these experiments could not be performed. Also micro-sampling techniques (e.g. 

Q-tip method) exist, but due to the preciousness of the manuscript, sampling was not allowed. 

 

4.44.44.44.4 ConclusionsConclusionsConclusionsConclusions    

It can be concluded that the Raman spectrometer, EZRaman-I-Dual Raman system, is 

well suited for the identification of pigments in mediaeval manuscripts. It is discussed how the 

availability of two lasers, leads to a more successful identification of pigments and what is the 

importance of stable positioning. In addition, it is proven that the introduced Raman  

spectrometer is highly performant to allow pigment identification in a short time. Finally, the 

research was completed with an in situ test by characterising the pigments in the mediaeval 

manuscript De Civitate Dei (Ms.106). This resulted in the identification of pigments, which is 

in agreement with the mediaeval artists’ palette. However, the identification of chrome yellow, 

suggests a modern (post 1800) restoration. 
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This research was the starting point for the investigation of other interesting mediaeval 

manuscripts. As it was confirmed that the equipment is an ideal tool for pigment identification, 

two additional projects were undertaken, contributing to the material research of two master 

thesis topics [48,49]. In comparison to the illustrated example, it was preferred in these cases 

to obtain excellent quality spectra of a selection of paint colours to solve the research questions. 

In a first project two manuscripts of the Chronicles of Flanders (Ms. 437 (public library 

Biekorf, Bruges) and Ms. 13073-74 (Royal library, Brussels) were compared to understand if 

they were manufactured by the same person (as assumed by Dogaer [50]) (cf. Master thesis  

“De Kronieken van Vlaenderen ontleed” (2013-2014), Ine Craenhals, UA). The second case 

study contained the visual and technical investigation of 4 Cistercian manuscripts (Ms. 27, 

Ms. 101, Ms. 140, Ms. 142 (public library Biekorf, Bruges)) in order to obtain more knowledge 

about the manuscripts and to try to assign them to the abbeys Ten Duinen or Ter Doest  

(cf. Master thesis “Verluchtingen Ten Duinen en Ter Doest belicht” (2014-2015), Jitske  

Groenland, UA).  

 

As pigment identification is not the only application of Raman spectroscopy in art  

analysis, another type of material has been investigated to prove the success of the dual laser 

portable Raman spectrometer. In the next chapter, a collection of glyptics, belonging to the 

collection of the museum ‘Quinta das Cruzes’ in Funchal (Madeira, Portugal), is examined to 

illustrate the advantage of the two lasers in one set-up.   

 

In addition, the investigation of the mediaeval manuscripts has shown that the use of a 

single technique is sometimes not sufficiently satisfactory. Raman spectroscopy has the  

disadvantage of being a weak effect and can be masked by a high fluorescence signal, leading 

to missing pigment identification. A combined approach of two techniques can overcome this 

problem. The following chapter demonstrates the benefit of using multiple, complementary 

techniques, portable Raman spectroscopy and handheld XRF, for in situ analysis. 
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Chapter 5  
 
Evaluation of portable Raman spectroscopy and handheld X-ray 
fluorescence analysis (hXRF) for the direct analysis of glyptics 

 

Based on the paper: D. Lauwers, A. Candeias, A. Coccato, J. Mirao, L. Moens and  

P. Vandenabeele (2016). Evaluation of portable Raman spectroscopy and handheld X-ray  

fluorescence (hXRF) for the direct analysis of glyptics. Spectrochimica Acta Part A: Molecular 

and Biomolecular Spectroscopy, 157:146-152.  

 

Portable Raman spectroscopy is known for its successful application for the pigment  

examination of art objects, as illustrated in chapter 4. However, the use of the method 

is not limited to this purpose: several other applications are known such as the  

investigation of rock materials, minerals, etc. To prove the appropriateness of the  

EZRaman-I-Dual spectrometer for applications other than pigment identification, a set 

of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the  

collection of the museum ‘Quinta das Cruzes’ in Funchal (Madeira, Portugal), is  

examined. The advantage of having two lasers in one set-up is described. 

 

Moreover, in previous chapters we have concentrated on the use of a single method for 

art analysis. However, the application of only one technique is not always sufficient to 

answer the research question. In the case of Raman spectroscopy, the weak Raman signal 

can sometimes be masked by fluorescence, which leads to missing results. Additionally, 

this qualitative method is not always the best to use: quantitative techniques are more 

suitable for provenance studies. 

 

To gain a maximum of information, complementary techniques can be applied. Here, we 

demonstrate the advantage of using portable Raman spectroscopy and handheld X-ray 

fluorescence spectroscopy for analysing engraved gemstones or glass materials  

(i.e. glyptics). Raman analysis results in molecular information, whereas XRF can deliver 

information on the main elemental composition of the material and, where possible,  
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illustrate differences between samples. These techniques were also used to confirm the 

gemmological identification of these precious objects and they can give extra information 

about the glass composition.   

 

5.15.15.15.1 IntroductionIntroductionIntroductionIntroduction    

In archaeometry, several studies have been published demonstrating the advantages 

of using Raman spectroscopy combined with X-ray fluorescence (XRF) spectroscopy such 

as when analysing paintings, manuscripts, tiles, etc. [1–3]. Despite the complementary 

use of these techniques, lithic material, like stones and gemstones, is usually only studied 

by one of these methods [4–6]. 

 

Classically, lithic material is examined by a gemmological approach which consists 

of measurement of the material’s physical properties (e.g. specific gravity, refractive  

index, thermal conductivity) and microscopic characteristics [7,8]. However,  

spectroscopic research provides specific information about the (elemental or molecular) 

composition of the material and thus results in a more complete identification [9,10]. 

When applying analytical methods for the characterisation of museum artefacts − in this 

particular case lithic material − it should be taken into account that some objects are 

immovable due to their size or preciousness. To avoid extensively high costs for  

transportation or insurance of a collection, the use of in situ instrumentation is a good 

alternative in archaeometrical research of museum artefacts [11–13]. 

 

Recently, in situ analysis of these precious materials, gained interest: several  

publications are found where in situ Raman or XRF spectroscopy is used for the  

identification of natural gems and imitations [10,14–18]. Nowadays, also the  

complementary use of XRF and Raman spectroscopy for these types of samples turns to 

be an interesting topic. Barone et al. describe a case study by using both instruments, 

portable Raman spectroscopy and handheld XRF spectroscopy [19]. The aim of their 

study was to validate the results obtained by portable Raman spectroscopy with lab 

instrumentation, and using XRF for the discrimination between synthetic and neutral 

sapphires. 
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In this study, we demonstrate for the first time the advantage of using both,  

portable Raman spectroscopy and handheld XRF spectroscopy for analysing engraved 

gemstones or glass materials (i.e. glyptics). Via these spectroscopic methods, a  

confirmation of the gemmological identification (based on visual appearance and expert 

gemmological knowledge) was obtained for a set of 64 glyptics (42 Roman pieces and 22 

modern artefacts) which belongs to the collection of the museum ‘Quinta das Cruzes’ in 

Funchal (Madeira, Portugal) [20]. Next to this, this section aims to describe the  

advantages of using handheld XRF spectroscopy as well as portable Raman spectroscopy 

with different lasers. Moreover, next to purely identifying the materials, this methodology 

can also serve to discriminate between Roman glass materials and modern ones. 

 

5.25.25.25.2 ExperimentalExperimentalExperimentalExperimental    

 

5.2.1. The collection of glyptics in the museum ‘Quinta das Cruzes’, Funchal  

(Madeira, Portugal) 

In this work, a collection of 64 glyptics was analysed by using different  

non-destructive techniques. All objects belong to the collection of the museum ‘Quinta 

das Cruzes’ in Funchal (Madeira, Portugal): it contains 112 glyptics, of which 64 pieces 

are displayed (Figure 5.1). Glyptics are engraved gemstones or glass objects; they consist 

sometimes of different layered materials. The word glyptic is derived from the Greek verb 

γλιπτω, a verb indicating engraving or carving on hard stones. Glyptics were originally 

used as stamps, to identify the owner, for instance on letters, but also on wine amphora. 

Later, they were also used as ornaments or as a talisman to protect the owner. The 

objects in the current collection, donated to the museum by César Filipe Gomes, seem 

to be brought together based on aesthetic aspects. The collection contains antique Roman 

objects (3rd century BC – 4th century AD), as well as more modern artefacts  

(16–19th century AD). The gemmological identification of these precious objects was 

based on visual analysis of the artefacts. In most of the cases, our findings confirm this 

identification.  
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5.2.2. Handheld X-ray fluorescence analysis (hXRF)  

All specimens in the collection were analysed by using handheld X-ray fluorescence 

analysis (hXRF). It is a non-destructive technique which delivers an elemental fingerprint 

of the material being investigated. More information about the principle can be found in 

the literature [21,22]. XRF spectroscopy was executed using a Bruker Tracer III-SD  

Figure Figure Figure Figure 5555....1111 Top: Overview of the glyptics collection at display in the museum ‘Quinta das Cruzes’ 
in Funchal (Madeira, Portugal). Bottom: Images of some glyphs in the collection. Numbers 
indicate the assigned number in the collection display case. 
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spectrometer with a silicon-drift (SDD) detector (XFlash ®) and a Rh-target delivering 

a polychromatic X-ray beam of 3 × 3 mm for the excitation of the analysed areas. The 

XRF spectrometer can operate at two different settings. In this work, 74 XRF spectra 

were recorded: each glyptic is measured once, except when we were dealing with ‘doublet’ 

assembled gemstones. Each specimen was analysed with setting I corresponding with 

following conditions: tube voltage of 40 kV, tube current 30 μA, without filter and  

measuring time of 60 s (life time). This setting delivers information about main, side and 

trace elements (like Pb or Sn). Spectra were recorded with a spectral resolution of  

145 eV. The X-ray source was connected to a portable PC, which allowed remotely  

controlling and monitoring the XRF measurements. Spectra were acquired using 

S1PXRF software (Bruker, version 3.8.30) and deconvoluted using the software Artax 

(Bruker) in order to obtain semi-quantitative data. 

 

For this study, the instrument was positioned in a stand and the object was placed 

on top of the instrument (Figure 5.2a). To avoid any scattered X-rays accidentally  

reaching the operator or bystanders, the sample and the nozzle of the device were covered 

by a metal cap. The instrument was operated from a distance through USB connection 

with a laptop computer (Figure 5.2b). Because the analysis was performed in a museum 

setting, access time was limited. Therefore only one spectrum per glyptic could be  

recorded, except if the sample was composed of two layers of material, i.e. a ‘doublet’ 

assembled gem (e.g. Figure 5.1, glyptic 60). As a consequence, performing multivariate 

data analysis is limited due to the small dataset and lack of repetitive measurements. 

5.2.3. Portable Raman spectroscopy 

The glyptic collection was analysed by using an EZRaman-I-Dual portable Raman 

spectrometer of which the technical characteristics are explained in chapter 2. The laser 

power was reduced to ca. 50% of the maximal laser power. In the museum, we had access 

to 230 V AC power, so it was not needed to use the built-in batteries. During this intense 

measurement campaign, 290 Raman spectra were recorded using the contact lens, with 

typical measuring times ranging from 20 s to 120 s. All measurements were performed 

using contact lenses and manually holding the probes in contact with the different zones 
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of the glyptics (Figure 5.2c-d). A detailed characterisation of the instrument is presented 

elsewhere [23]. 

 

5.35.35.35.3 Results and discussionResults and discussionResults and discussionResults and discussion    

 

5.3.1. Handheld X-ray fluorescence analysis (hXRF) 

hXRF was used to evaluate whether the antique Roman glass specimens can be 

discriminated from the modern ones, based on the elemental composition of the glass. It 

is known that Roman glass, typically contains high concentrations of Na. In Roman times, 

natron was used as a flux, to lower the melting temperature. Therefore, it would be 

interesting to check the results based on this concentration. Unfortunately, the  

a 

b d 

c 

Figure Figure Figure Figure 5555....2222 Overview of the experimental set-up during the analysis of the glyptics. a-b: Handheld 
XRF experiments (hXRF). c-d: portable Raman spectroscopy. 
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instrumentation is limited to the detection of elements with Z > 11. Therefore, other 

correlations of elements were evaluated. Interesting results are found by the relationship 

between Pb and Sn values, both normalised to the Rh-K line (source signal) (Figure 5.3): 

a clear distinction can be made between lead-based glasses and non-lead-based ones  

(i.e. often soda-limeglasses). Lead glasses are produced in the same way as ancient glasses 

but a proportion of potash or natron is substituted by lead oxide [24]. Based on  

Figure 5.3, they are characterised by a high amount of lead and tin. It seems also that 

both elements are correlated with each other. 

 

When taking a closer look at the graph, we see that the collection of modern glass 

samples is divided into two groups: lead-based samples and non-lead-based specimens. 

On the other hand, the Roman glass samples form a group and are characterised by a 

low amount of Pb and Sn. Lead glass was invented in the 17th century and thus explains 
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Figure Figure Figure Figure 5555....3333 Elemental evaluation of the glyptics made out of glass: discrimination between 
modern and Roman samples. Relationship between lead and tin (both normalised to rhodium) 
showing a clear separation of lead- and non-lead-based glasses. Roman glasses are characterised 
by a low amount of Pb and Sn. 
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the low concentration of lead in the Roman samples [24]. Note that one outlier is  

observed, glyptic 24, which groups together with the lead-based, modern glasses. We 

suspect that by visual inspection this sample was misclassified and probably belongs to 

a modern production batch. 

However, it should be noted that quantification of the elements in these artefacts 

is not straightforward, and the quantification table as produced by the handheld XRF 

instrument should be handled with care. At least two important reasons need to be 

considered. On the one hand, the sampling volume is not precisely determined and the 

objects may be inhomogeneous on the scale of the analysis. For handheld XRF  

instruments, the diameter of the X-ray bundle is typically more than 0.5 cm; the  

penetration depth is highly dependent on the matrix and is difficult to estimate. This 

inconvenience between the beam size and the sample inhomogeneity is illustrated when 

looking at object 60 (Figure 5.1), which seems to consist of two different materials. On 

the other hand, also matrix effects hamper the quantification procedure. Absorption of 

primary and secondary X-rays by the matrix result in a quantification that is offset. As 

the matrix is different for various glyptics, the extent of this effect is difficult to predict. 

Moreover, especially in the group of modern glasses, some lead-glasses are present, which 

strongly absorb the X-rays. Fortunately, the differences between antique and modern 

glasses are rather extreme, so these can be distinguished on qualitative grounds. 

5.3.2. Portable Raman spectroscopy 

On site molecular analysis of these precious artefacts was performed by using  

portable Raman spectroscopy. This approach is often used as analytical technique for 

the analysis of different minerals and gemstones. Provided the laser power is kept  

sufficiently low, the objects are not damaged. Moreover, the obtained spectrum contains 

information on the molecular composition as well as on the crystalline phases that are 

present. Being a molecular spectroscopic method, the technique is able to reveal the 

inorganic as well as the organic composition of the specimen. Although on-site Raman 

spectroscopic measurements are feasible, they are more complicated than measurements 
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carried out in the laboratory. Difficulties in orientation of the sample/the probehead and 

the inability to clean the mineral surface, can hamper the analysis [25]. 

 

A particular advantage of using the Enwave EZRaman-I-Dual portable Raman  

spectrometer is the availability of two different lasers. Therefore, if fluorescence  

overwhelms a Raman spectrum recorded with one laser wavelength, it is possible to 

record a spectrum by using the other laser. Figure 5.4 represents the Raman spectra, 

recorded for glyptic 9 using both lasers. The spectrum recorded with the red 785 nm laser 

is dominated by the Raman bands of haematite (α-Fe2O3: 224, 292, 401, 500, 605 and 

1325 cm−1), α-quartz (trigonal SiO2: 126, 206, 461 cm−1) and a small amount of moganite 

(monoclinic SiO2: 501 cm−1). When using the green 532 nm laser, only a high fluorescence 

signal is obtained. This can be explained by the fact that haematite strongly absorbs 

incoming radiation with a wavelength shorter than its optical absorption edge  
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Figure Figure Figure Figure 5555....4444 Raman spectra of glyptic 9. The spectrum recorded with the red 785 nm laser is 
dominated by the Raman bands of haematite (α-Fe2O3 : 224, 292, 401, 500, 605 and 1325 cm−1), 
α-quartz (SiO2: 126, 206, 461 cm−1) and a small amount of moganite (monoclinic SiO2: 501 cm−1);
when using the green 532 nm laser only a high fluorescence signal is obtained. 
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(570 nm) [26]. The detection of haematite, α-quartz and moganite is in strong relationship 

with the gemmological identification: the visual inspection declares that glyptic 9 can be  

identified as the gem jasper. Jasper is an impure, opaque variety of microcrystalline silica, 

usually red, yellow, green or brown [27]. It is known to contain a high amount of iron 

oxide, mainly haematite [28]. 

 

Another example of the advantage of having access to two different lasers is  

illustrated when analysing glyptic 61, displaying a human face carved in an orange lithic 

material. Two Raman spectra were recorded, by using the different lasers that are  

available (Figure 5.5). When using the 785 nm laser, a spectrum is recorded in the  

wavenumber range from 100 till 2200 cm−1, while when using the 532 nm laser, the 

recorded spectrum ranges between 165 and 3370 cm−1. The spectrum as recorded with 

the red laser is dominated by the intense band at 1086 cm−1, which together with the 

medium to weak bands at 712, 281, and 152 cm−1 can be assigned to the presence of 
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Figure Figure Figure Figure 5555....5555 Raman spectra of glyptic 61. The spectrum recorded with the red 785 nm laser is 
dominated by the Raman bands of calcite; when using the green 532 nm laser a resonance Raman 
spectrum is recorded of the polyenes in the coral. (Band positions are indicated in italics). 
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calcite (CaCO3). Note that although these spectra are recorded with a portable  

instrument, based on the Raman band positions it is straightforward to discriminate 

between the calcite and aragonite polymorphs of CaCO3 [29]. In this spectrum, the bands 

at 1516 and 1126 cm−1 are rather weak. However, when recording a spectrum of the same 

object with the green laser, the latter two bands are very strong. Carotenoids and  

polyenes are well-known to show resonance enhancement when irradiated with a 532 nm 

laser. These bands are assigned to the in-phase ν1(C=C) and ν2(C–C) stretching  

vibrations [30,31]. The exact band positions can be related to the length of the polyene 

chain [32]. Although it is difficult to assign these bands to a specific molecule, as band 

positions may shift slightly due to matrix effects and the folding of the chain [33,34], the 

ν(C–C) band position seems more likely to correspond to a non-methylated polyene than 

to a carotenoid, that typically shows this band at ca. 1155 cm−1 [35]. Our observed band 

positions are similar to those reported for the coral species Coenaculum secundum  

(514 nm laser: 1520, 1130, 1088 cm−1) [36], Leptogorgia punicea (632 nm laser: 1512, 

1126, 1090, 1020 cm−1), and Lespedeza violacea (632 nm laser: 1510, 1125, 1090,  

1020 cm−1) [35]. Not only the bands at 1126 and 1512 cm−1 are of interest, also the 

overtone bands at 2265 cm−1 (2 ν2) and 2642 cm−1 (ν1+ν2) have a significant value to the  

identification polyenes or carotenoids [37–40]. This proves again that the presence of two 

lasers is of great advantage: the red laser has a low quantum efficiency of the CCD-

detector at higher wavenumbers, which is not the case for the green laser [41]. 

5.3.3. Confirmation of gemmological identification 

After the demonstration of the beneficial use of both instruments, we want to  

illustrate the advantage of using both complementary techniques for the identification of 

the materials of the glyptic collection. Based on the gemmological identification, five 

main materials can be found in the assemblage: the collection mainly consists of  

chalcedony (most often carnelian), jasper, coral, glass and porcelain glyptics. All these 

materials, except coral, are silicates. Therefore, Si is an interesting element for  

investigation. As mentioned, XRF and Raman spectroscopy are applied to confirm the 

existing identification and to give additional information. In a first step, hXRF is used 

to discriminate the different types of samples based on their elemental composition. 
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When evaluating the correlation of the peak intensities of Fe and Si – normalised to  

Rh-K – (Figure 5.6), the jasper samples can clearly be distinguished from the other 

materials. Jasper is known to be analogues of low-temperature, hydrothermal iron  

deposits [27,42]. It is an opaque rock that owes its colour to the mineral content of the 

original sediment or ash, mainly iron oxides, and are commonly associated with massive 

sulphide deposits [43]. This can explain the high iron signal in the elemental fingerprint 

and thus results in the separation of jasper in the plot. Additionally, Raman spectroscopy 

(Figure 5.4) has proven that the jasper samples of the collection are composed of micro-

crystalline quartz with a high amount of iron oxide, mainly haematite. 

 

Not only jasper has a red colour in the museum collection as this applies also to 

the carnelians. This type is mainly composed of silica, as well as the jasper samples, is 

characterised by translucency, and has a hue from yellowish orange to orange and from 

deep red to brownish red. But why are they not showing a significant amount of iron in 

their elemental composition? An explanation can be found in the treatment of the gem, 

before its use. It is known that this type of gems were dyed or heated to improve their 

optical appearance or to enhance their colour [44]. So it can be suggested that the original  

carnelian was probably less intense in colour. Consequently, the impurities, which are 

responsible for the hue such as iron, are less represented and thus a low amount is  

detected. Carnelian belongs to the general group of chalcedony gems which are  

characterised by the presence of micro- or crypto-crystalline varieties of silica. The main 

component of chalcedony is α-quartz; it also contains minor component moganite and a 

lot of opacifying and colouring impurities [45,46]. The Raman spectra of all varieties of 

chalcedony samples – carnelian, agate, amethyst, nicolo, sard, plasma – show the same 

bands. A representative example is given in Figure 5.7a: the bands observed at 123 (E), 

201 (A1), 462 (A1), 802 (ELO), 1067 (ETO), 1154 (E(LO+TO)) cm−1 are corresponding to  

α-quartz; the one at 500 cm−1 (ν(Si–O–Si) symmetric stretching mode) can be assigned 

to moganite [47,48]. Some of the Raman spectra also have bands at 1147, 1227,  

1282 cm−1 that probably correspond to an organic red dye. This supports the assumption 

made for the low presence of iron. As a drawback, it can be said that Raman spectroscopy 

can only be used to identify the general type ‘chalcedony’. To determine the subgroup,  

complementary micro and macroscopic investigation is needed. The XRF data-analysis 
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was able to distinguish this type of glyptic from the others (Figure 5.6), characterised by 

a high amount of silicon and a low amount of iron.  

  

However, when taking a closer look at the graph, one outlier is observed  

(glyptic 28): it seems that this sample belongs to the group of glass objects instead of 

the carnelian artefacts. In a situation like this, Raman spectroscopy is of great help to 

give more insight on why this sample is not belonging to the carnelian group. Figure 5.7b 

represents the Raman spectrum obtained for this sample. The lack of sharp bands and 

the general shape of the Raman spectrum suggest the identification as a glassy silicate. 

However, the bands are detected at higher wavenumbers than usual aluminosilicates. 
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Figure Figure Figure Figure 5555....6666 Elemental evaluation of the glyptics: discrimination between the five major types of 
sample within the collection. Relationship between iron and silicon (both normalised to rhodium) 
showing a clear grouping of coral, carnelian samples and jasper samples. As expected, the 
porcelain objects cannot be distinguished from the glass artefacts. 



   

86 

 

When evaluating the spectrum, three bands are observed on top of the high fluorescence 

signal: 1336, 1236 and 1146 cm−1. Because they are detected at higher wavenumbers than 

the ones characteristic for general aluminosilicates [49–51], probably we are dealing with 

an other type of silicate. However, due to the lack of the more intense Raman bands at 

lower wavenumbers only an assumption can be made of the composition. Literature  

supports the idea that maybe the glyptic is composed of a borosilicate glass [52–54]. 

Modification of the connectivity of the (SiO4) polymeric network due to the presence of 

boron oxide gives a characteristic band at 1336 cm−1 that corresponds to B–O stretching 

vibration of non-bounded BO3 in the silicate network. More specifically, lead based  

borosilicate is thought to be identified. The XRF results support this observation: a 

significant amount of lead is detected. Due to the low atomic number of B, this element 

could not be detected. The high frequency band should occur at 1350 cm−1 but the  

presence of a concentration of PbO attributes to a shift towards a lower Raman position 

[55,56]. The band at 1236 cm−1 and 1146 cm−1 can be assigned to B–O stretching  

vibration of pyroborate and to Si–O vibration, respectively [57]. It needs to be noted that 

this detected Raman spectrum corresponds with some of the other Raman spectra of the 

modern glass materials in the collection. Figure 5.6 shows that the glass materials can 

be separated from the other artefacts in the collection, except from the porcelain samples, 

and show an intermediate amount of Si and low amount of Fe. However,  

different types of glasses (soda-limeglasses, lead glasses etc.) cannot be observed in this 

graph. Nevertheless, as described in section 5.3.1 it was possible to make a distinction 

between lead based glasses and non-lead based ones (Figure 5.3). More specifically, it has 

been concluded that the lead based glasses belong to the modern samples and the Roman 

glasses are characterised by a low amount of lead. The difference in elemental fingerprint 

of a lead based, modern glass (glyptic 57) and a Roman fragment (glyptic 5), is  

represented in Figure 5.8. 

 

Finally, the coral sample seems to be characterised by a low amount of Fe and Si.  

The Raman results have shown that the sample is mainly composed of calcium carbonate 

and polyene (based on the Raman results, Figure 5.5). However, no clear conclusion 

about coral objects can be drawn, as we are dealing with only one sample..
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Figure Figure Figure Figure 5555....7777 (a) Raman spectrum of glyptic 8 recorded with 785 nm laser for 30x4 s. Characteristic 
bands of  chalcedony are detected: bands of α-quartz (band positions are indicated in italics) and 
moganite are found.  

Figure Figure Figure Figure 5555....7777 (b) Raman spectrum of glass (glyptic 28) recorded with 785nm laser for 30x4 s. 
The bands can be assigned to a borosilicate glass. 
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5.45.45.45.4 ConclusionsConclusionsConclusionsConclusions    

This case study has confirmed that both techniques, portable Raman spectroscopy 

and handheld X-ray fluorescence spectroscopy, are well suited for the analysis of glyptics. 

The combined use of Raman spectroscopy and XRF spectroscopy leading to more  

successful identification of the material used have been discussed. Finally, the research 

was completed with a confirmation of the gemmological identification. Information about 

the molecular composition as well as the crystalline phases is obtained. The XRF analysis 

results in a clear distinction between the different types of material, present in the  

collection. Additionally, more information is gained about the glass materials used in 

Roman and modern times. 
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Moreover, it should be stressed that during in situ analysis some problems always 

need to be considered. A general issue is the time constraint for the research. When more 

measurement time would be available, more measurements can be performed. This can 

lead to more data and repetitive results, inducing the possibility to perform statistical 

data treatment to visualise significant differences between different types of samples. In 

the case of X-ray fluorescence spectroscopy, quantification of should be considered.  

Raman spectroscopy on the other hand, has the practical issues that crystal orientation 

and the inability to clean the mineral surfaces can hamper the results. Despite these 

issues, both techniques are well suited for the analysis of engraved gemstones. 

 

In this chapter, it was explained that the combined use of Raman spectroscopy and 

XRF spectroscopy is beneficial for art analysis. Both methods have their advantages and  

disadvantages but they can support each other: where one technique fails, the other one 

can give interesting results. In addition, a combination of results can lead to better  

conclusions. Nevertheless, as the focus of the PhD mainly lies on the application of mobile 

Raman spectroscopy an extra note has to be made. Until now, we were able to figure out 

characteristics which are of importance for the optimal use of the EZRaman-I-Dual  

portable Raman spectrometer for art analysis, based on the case studies of pigment  

analysis (chapter 4) and the investigation of gemstones (chapter 5). This knowledge can 

be used for future applications to work more efficiently and rapidly and can serve as a 

starting point for further optimisation. However, this instrument is not the only one 

available on the market. In the next chapter, the properties of this instrument are  

compared to other mobile spectrometers on the market, including a Raman spectrometer 

that is equipped with a longer wavelength (1064 nm). 
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Chapter 6  
 
Non-destructive Raman investigations on wall paintings at 
Sala Vaccarini in Catania (Sicily) 
 

Based on the paper: G. Barone, D. Bersani, A. Coccato, D. Lauwers, P. Mazzoleni, S. Raneri,  

P. Vandenabeele, D. Manzini, G. Agostino, N. F. Neri (2016). Non-destructive Raman  

investigation on wall paintings at Sala Vaccarini in Catania (Sicily). Applied Physics A,  

published: doi:10.1007/s00339-016-0370-7. 

 

A wide variety of analytical techniques can be applied in cultural heritage. As  

illustrated in chapter 5, the use of complementary techniques for art analysis can result 

in a complete characterisation of the investigated material. Various methods result in 

complementary information but within a single method, diverse instrumentation can  

deliver different or similar results. This will be illustrated in more detail for portable 

Raman spectroscopy, as it is the general topic of this thesis. 

 

Recently, an increasing number of mobile Raman spectrometers have become  

available and are designed for a broad range of applications. When selecting a suitable 

Raman spectrometer, different characteristics (spectroscopic and in situ related issues) 

need to be considered as described in chapter 3. However, the selection of the excitation 

source is still a topic that needs amplification. Spectrometers with different excitation 

sources are available (i.e. different laser wavelength) and it is useful to evaluate which 

excitation wavelength is of greater interest for art analysis. In this chapter, the  

EZRaman-I-Dual spectrometer, equipped with a 785 and 532 nm laser, is compared with 

a 1064 nm Raman equipment for its suitability. The examination is executed during the 

study of 17th century Sicilian wall paintings (Catania) that was acquired to provide an 

in situ diagnostic analysis of the paintings (in terms of colourants and preparation layer) 

and to support the conservators in the framework of the ongoing restoration. 
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6.16.16.16.1 IntroductionIntroductionIntroductionIntroduction    

After the well-known earthquake in 1693, the southeastern Sicilian towns  

experienced a lively architectonic and artistic season. The earthquake destroyed, partially 

or entirely, approximately fifty urban centers and intensive reconstruction work then 

started. In this framework, the Baroque architectural style flourished and the majority 

of the newly constructed monuments exhibited standards of beauty devoted to emphasize 

volumes and voids. The new artistic rules were applied in the buildings from outside to 

inside: painters revoked from the entire island decorated the rebuilt private and public 

buildings, cathedrals, and churches with exquisite frescoes on the walls and on the vaults. 

The town of Catania was widely reconstructed and new monumental buildings were also 

established in the urban center. Among the protagonists and the financiers of the  

restoration and construction works, the Benedictine Monasteries of San Nicolò stand out. 

They decided to take advantage of the earthquake to transfer their monastery to the 

urban center of Catania, where they built a huge Benedictine Monastery following the 

coeval artistic style. A large number of architects were invited to work at this project 

and numerous painters were mobilised in order to marvelously adorn the buildings. 

 

The Monastery is nowadays considered the second in the world for relevance and 

extension [1] and has been included since 2002 in the UNESCO Heritage List. Due to its  

relevance, the Monastery has therefore to be preserved and conserved. The preservation 

of such structures is quite complex, due to the association of different materials and parts 

(i.e.: masonry, substrate, wall paintings, etc.). Regarding wall paintings, numerous agents 

(external ones as well as those which are strictly related to the standing buildings) can 

affect their integrity and only appropriate restoration works can assure the maintenance 

of these object of art without damaging risks. In this sense, the planning of preliminary 

diagnostic campaigns is always highly recommended; archaeometric analyses can in fact 

help conservators, and provide art historians with precise information about techniques 

and materials employed by the artists.  
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Among the paintings decorating the buildings of the Benedictine Monastery, the 

17th century wall paintings on the vaults of the Sala Vaccarini Library are really  

fascinating. Several attempts of restoration were performed during the 19th century, 

mainly carried out in invasive way and without the support of appropriate diagnostic 

activities. For these reasons, part of the scenes was evidently damaged and, in 2014, a 

new restoration work was started with the aim to bring the frescoes to a more coherent 

appearance. This was an excellent opportunity to examine the artworks in order to  

establish an in situ diagnostic analysis of the wall paintings (in terms of colourants and 

preparation layer) and to support the conservators in the framework of the ongoing 

restoration. Of course, in consideration of the preciosity of the paintings, the application 

of non-invasive and non-destructive methodologies was required; among them, Raman 

spectroscopy has recently assessed as particularly suitable tool for the diagnosis of  

art-objects, especially for paintings, plasters and mortars [2-5]. The method allows in fact 

the quick, non-destructive, and contactless characterisation and identification of  

inorganic and organic materials, widely employed in art and archaeometry. Additionally, 

the development of mobile instruments designed for in situ archaeometrical research, 

brought this analytical method back to the top, especially in the case of unmovable 

artworks. 

 

Therefore, in this study, an approach based on portable Raman spectroscopic  

analysis has been applied to the paintings decorating the Sala Vaccarini Library with the 

aim to characterise (a) the pigments used by the painter; (b) the artistic technique  

employed; (c) the possible presence of overpaint and (d) the state of preservation of 

frescoes, including eventual degradation products and/or alteration of pigments. 

 

6.26.26.26.2 Materials and methodMaterials and methodMaterials and methodMaterials and method    

 

6.2.1. Studied wall paintings 

The investigated wall paintings are located on the vaults of the Sala Vaccarini, one 

of the exquisite Libraries part of the 16th century monumental complex of Benedictine  
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Monastery in Catania (Sicily, Italy). The construction of the Library, which would host 

the rich manuscript collections harvested by the Monasteries over the time, was directed 

by the architect Giovanni Battista Vaccarini. Finished in 1773, the Library currently 

preserves its original structural arrangement and numerous volumes collected by the 

Monastery as well as precious manuscripts. Besides the book collections, the wall  

paintings on the vaults represent one of the most fascinating aspects of the Library. They 

were realised in 17th century by the Sicilian painter Giovanni Battista Piparo using the 

fresco technique (according to bibliographic sources) and exhibit medallions with  

symbolic representation of Virtues, Arts and Sciences.  

 

Among the medallions, four scenes have been selected for Raman spectroscopic analysis 

(Figure 6.1), being representative of the “artist’s palette” and exhibiting several  

conservation issues as well as degraded areas. 

a.a.a.a. 
17.A17.A17.A17.A 

13.A13.A13.A13.A 

16.A16.A16.A16.A 
20202020.A.A.A.A 

12.A12.A12.A12.A 

15.A15.A15.A15.A 
11.A11.A11.A11.A 

18.A18.A18.A18.A 

19.A19.A19.A19.A 

9.A9.A9.A9.A 

10.A10.A10.A10.A 

7.A7.A7.A7.A 
8.A8.A8.A8.A 

1.A1.A1.A1.A 

6.A6.A6.A6.A 
5.A5.A5.A5.A 

4.A4.A4.A4.A 

3.A3.A3.A3.A 
2.A2.A2.A2.A 

b.b.b.b. 

6.B6.B6.B6.B 

9.B9.B9.B9.B 
1.B1.B1.B1.B 

5.B5.B5.B5.B 7.B7.B7.B7.B 

c.c.c.c. 

5.C5.C5.C5.C 

4.C4.C4.C4.C 

6.C6.C6.C6.C 
10.C10.C10.C10.C 

7.C7.C7.C7.C 2.C2.C2.C2.C 
1.C1.C1.C1.C 

3.C3.C3.C3.C 

9.C9.C9.C9.C 
8.C8.C8.C8.C 

d.d.d.d. 

2.D2.D2.D2.D 
1.D1.D1.D1.D 

Figure Figure Figure Figure 6666....1111 Pictures of the studied medallions and measurement points. Symbolic representation 
of (a) “The Alchemy”, (b) “The Literature” (c) “The Art Painting” and (d) “The Medicine” 
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6.2.2. Raman equipment 

Two portable Raman instruments equipped with different wavelength excitation 

sources have been used for the investigations: a portable EZRAMAN-I-DUAL Raman 

spectrometer (TSI Inc., Irvine CA, USA) and an i-Raman® EX (Madatec S.r.l., Milan). 

Specifications of the The EZRAMAN-I-DUAL Raman system can be found in  

chapter 2. For this investigation, the 785 nm line has been used with a spectral 

range/spectral resolution of 100-2350 cm−1/7 cm−1. The selected laser power for these 

analyses was adjusted at about 30 mW. The i-Raman® EX is a portable BWTek Raman 

system equipped with a 1064 nm line. Using a high sensitivity thermoelectrically cooled 

InGaAs array detector with a wide and high dynamic range, this portable Raman  

spectrometer delivers a high signal to noise ratio without inducing auto-fluorescence. The 

system provides spectral resolution as fine as 9.5 cm−1 and a spectral coverage range from 

175 to 2500 cm−1. It uses a fibre optic probe with an laser power adjustable up to  

450 mW. A laptop is connected to the spectrometer.  

 

Both spectrometers were calibrated before each experimental session. All spectra, 

from both instruments were recorded with a total measurement time of 2 to 10  

accumulations of 3 to 60 seconds each. The Raman probes were held a few millimeters 

from the front of the object, corresponding to the focal distance of the lens. In the chosen 

configurations, the laser spot was c.a. 0.1 millimeter in diameter, allowing the  

achievement of a real spatial resolution in the range of few microns. Due to the relatively 

large spot size, the laser power density was too weak to induce any undesired effect or 

damage, even on organic or photosensitive materials, with both laser lines. The  

instrument output lenses were shielded with a black cloth in order to minimise spectral 

interference from ambient light. Referring to the data processing, the Raman spectra 

acquired by the 1064 nm line have not been subjected to any data manipulation or 

processing techniques and are reported generally as collected, being characterised by a 

very low fluorescence background. In contrast, for spectra collected with 785 excitation, 

a baseline correction has been applied in order to better visualise the Raman signal. In 

general, during the measurement campaign, as both instruments were connected via a 

USB cable to a laptop, Raman spectra have been simultaneously visualised, allowing a 
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real time identification of materials. Of course, the final identification was accomplished 

by comparison with reference spectra present in the libraries of the authors and with 

published literature. 

 

6.36.36.36.3 ResultsResultsResultsResults    

 

6.3.1. Painted layers 

Reddish hues 

Red-orange, pink and yellow hues were investigated in the medallions representing 

“The Alchemy” and “The Art Painting”. In the Alchemy medallion, measurements were 

carried out by using both excitation sources, namely 785 nm (Figure 6.2a-c) and  

1064 nm (Figure 6.2d). In detail, the pinkish colour was measured on the skin of both 

the women (points 12.A and 13.A) and angel (point 8.A). The obtained results suggest 

the use of a mixture of haematite (Fe2O3; Raman bands at 620 and 412 cm−1 [6]) and 

lead white (2PbCO3·Pb(OH)2; Raman band at 1052 cm−1 [7]). Additionally, the 785 nm 

laser detected the presence of red lead (Pb3O4) (band at 548 cm−1). Different tones of the 

woman’s vest were analysed in order to characterise the pigmenting agents employed for 

obtaining the reddish hues. Measurements collected on bright red areas (point 18.A) 

reveal the use of pure vermilion (HgS; typical Raman bands at 343, 282, 252 cm−1 [8]), 

which seems to be mixed with haematite (main bands at 411 and 292 cm−1) and carbon-

based black pigments (typical Raman features of amorphous carbon centered at  

1588 and 1320 cm−1 [8]) for attaining bright shades of red (point 20.A). As far as the 

yellow hues present on the vase, the woman’s belt (points 15.A and 16.A) and the angel’s 

vest (point 7.A), the Raman spectra collected using both excitation sources exhibit the 

typical peak of goethite (α-FeO(OH); Raman band at about 403 cm−1 [9]). Finally, it 

should be noted that the presence of Pb-sulphates (anglesite, PbSO4) might indicate that 

the ongoing lead compound alteration process has occered due to atmospheric SO2 [10-

13]. It is not possible to determine which pigment, red lead or lead white, is degraded. 

However, as is evident from recent researches [14–16], sucha secondary phase is  
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occasionally detected on discoloured red lead [17], even if this soluble lead salt may be 

often leached out during ageing in humid conditions.  
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Figure Figure Figure Figure 6666....2222 Raman spectra collected from the medallion representing “The Alchemy” on (a) 
incarnate, (b) red and (c) yellow layers by using 785 nm line (baseline correction applied) and 
(d) incarnate, red and yellow layers by using 1064 nm line; (e-f) detail of the layers. Symbols: 
aC: amorphous carbon; Ang: anglesite; Cal: calcite; Gth: goethite; Gp: gypsum; 
Hem: haematite; Lw: limewash; Mgs: magnesite; Pb-r: red lead; Pb-w: lead white; Qz: quartz; 
V: vermilion. 
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Considering the “The Art Painting” medallion, measurements have been performed 

using the 1064 nm line on different red tones of the vest (points 9.B and 1.B) as well as 

on the angel skin (point 8.B). The analysis of the collected Raman spectra (Figure 6.3) 

suggests, also in this case, the use of vermilion (HgS; Raman bands detected at 345, 280, 

252 cm−1) in the reddish-orange areas. Haematite seems to be used in order to obtain 

dark and light red hues, also mixed with carbon-based pigments (presence of bands  

related to amorphous carbon). Finally, the use of a haematite and carbon mixture has 

been observed in the darker areas of the angel’s skin. 
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Figure Figure Figure Figure 6666....3333 Raman spectra collected on the medallion representing “The Art Painting” by using 
1064 nm line on (a) incarnate (point 8.B) and reddish layers (points 1.B and 9.B) and (b) a 
detail of the investigated layers, as examples. Symbols: aC: amorphous carbon; Cal: calcite; Gp: 
gypsum; Hem: haematite; Lw: limewash; V: vermilion. 



   

105 

 

Greyish and black hues 

The interpretation of the collected Raman spectra on greyish and black layers  

reveals the prevalent use of amorphous carbon as a pigmenting agent (Raman features 

centered at 1588 and 1350 cm−1), mixed with lead white (main Raman band detected at 

about 1052 cm−1). Such mixtures were detected at the measurement points established 

on the woman’s vest (point 17.A), angel’s wing (point 11.A) and ampoule (point 14.A) 

in the Alchemy medallion (Figure 6.4.a) and on the woman’s voile (point 6.B) and angel’s 

workbook (point 5.B) in the Art Painting (Figure 6.4.b). It is noteworthy that the  

mixture of carbon-based black pigment and lead white seems to be employed also in 

order to obtain a greyish-purple hue in some parts of the woman’s vest represented in 

the Alchemy allegoric frescoes. In detail, the purple tone has been obtained by adding  

haematite to the mixture (see point 17.A in Figure 6.4.a). The presence of lead-based 

pigments suggests, also in this case, the occurrence of degradation products. In fact, 

because of the use of the 785 nm laser, anglesite (PbSO4; Raman features at 978, 453 and 

437 cm−1), has been detected in several greyish areas (see point 11.A in Figure 6.4.a, for 

example). The missing lead white signal in the Raman spectrum can be explained by the 

fact that the residual concentration, after degradation, is less than the LOD of the Raman 

spectrometer. 

Green and blue hues 

In the medallions representing “The Literature” (Figure 6.5a-b) and  

“The Medicine”(Figure 6.5c-d) green and blue hues prevail. Globally, the analyses  

performed on different representative areas of the paintings did not allow the identifica-

tion of the pigmenting agents responsible for these colours, as only Raman features 

 attributable to lead white and carbon black were detected by using the 1064 nm line 

(Figure 6.5a). The latter maybe used in order to obtain darker tones. However, the 

employment of the 785 nm line has given some interesting results in comparison with the 

1064 nm excitation source, supporting some additional hypotheses. In particular, spectra 

collected on green areas show the presence of weak Raman bands at about 125 and  

846 cm−1 (Figure 6.5b) that could be related to the Cu-O vibration or hydroxyl 
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Figure Figure Figure Figure 6666....4444 Raman spectra collected on greyish layers: (a) measurement points (11.A, 14.A and 
17.A) on “The Alchemy” medallion by using 785 nm line and (b) measurements points (5.B. and 
6.B) on “The Art Painting” medallion by using 1064 nm line. Symbols: aC: amorphous carbon; 
Ang: anglesite; Cal: calcite; Gp: gypsum; Hem: haematite; Lw: limewash; Pb-w: lead white. 
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deformation in copper-chloride minerals (such as atacamite and paratacamite; 

Cu2Cl(OH)3), frequently found in pigments of ancient paintings as result of malachite 

and azurite degradation [18,19].  

 

In contrast, no pigments have been identified in the blue areas mainly  

investigated in “The Medicine” medallion. Notwithstanding this the detection of Raman 

bands attributed to the calcium oxalate whewellite (CaC2O4·H2O; main Raman band at 

1464 cm−1) could deny the use of copper salts as blue pigments (Figure 6.5c). In fact, 

even if oxalates were largely detected as deterioration products due to lichen attach in 

works of art, especially in paintings, blue surfaces achieved by using copper pigments are 

usually preserved as the Cu-ions inhibit the growth of microorganisms [20]. Finally,  

worthy of note is the evidence of a recent restoration campaign (PB15 and anatase; see 

Figure 6.5b point 8.C) in the light-blue background area of “The Literature” medallion 

scene.  

6.3.2. Substrate preparation 

Beside the Raman signals attributable to pigments, in all the spectra acquired by 

both excitation sources, a sequence of bands characteristic of calcite (CaCO3) was  

detected (main Raman band at 1086 cm−1, usually associated with weak bands at  

709 and 281 cm−1). This suggests a lime-based preparation layer and supports the  

bibliographic sources about the fresco technique used in the realisation of the medallions. 

Indeed, the use of lime and its derivative for the preparation of surfaces to aid adhesion 

of pigments is widely attested over time, especially from the Roman to the Renaissance  

period. Along with calcite, a band at 464 cm−1 reveals in some spectra the presence of 

quartz. This informs us about the use of sand mixed with pigments or used in the wall 

preparation (see Figure 6.2b). As its occurrence varies significantly with sampling  

position, it could be an indication of variable composition of the mortar used in the wall 

preparation. In addition, a more detailed inspection of the acquired spectra can provide 

additional information about the sourcing of materials, the methodologies of the wall 

painting preparation and the deterioration products. 
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The first interesting aspect is the concomitant presence of calcite and gypsum  

signals, characterised by the main Raman bands at about 1086 and 1008 cm−1,  

respectively (Figure 6.6.a). Usually, the presence of gypsum can be ascribed to the attack 

of sulfur dioxide from atmospheric pollution upon lime-based surfaces. However, in this 

case, because of the indoor location of the wall painting and the high intensity of both 
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Figure Figure Figure Figure 6666....5555 Raman spectra collected on the medallion representing “The Literature” on greenish 
layers by using (a) 1064 nm line and (b) 785 nm line; (c) Raman spectra collected on 
“The Medicine” medallion on blue layers by using 785 nm line; (d) detail of the investigated 
layers, as examples. Symbols: aC: amorphous carbon; Cal: calcite; Cu-chl: copper-chloride; 
Gp: gypsum; Lw: limewash; Pb-w: lead white; TiO2: anatase; PB15: PB15; Wh: whewellite. 
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calcite and gypsum signals, it is possible to hypothesize the use of a transitional approach 

for the substrate preparation, widely attested in literature, for which the two components 

are mixed together [21]. In addition, the presence of a broad feature in the form of an  

ill-resolved doublet at about 790 and 710 cm−1 (Figure 6.6.b) in the spectra acquired with 

the 1064 nm line, is of great interest. Numerous researches, also performed on lime-

wash/calcite wall paintings, have attributed this Raman feature to calcium hydroxides 

[22,23] and it has not been observed with lower wavelength excitation [24]. It may seem 

surprising that the conversion of limewash to calcium carbonate by reaction with  

atmospheric carbon dioxide is a relatively slow process and unconverted calcium  

hydroxide can persist for decades on wall painting substrates [21]. Based on this  

interpretation, we can suppose that, also in this case, the presence of the Raman bands 

attributable to slaked lime could be the evidence of an incomplete conversion of lime to 

calcium carbonate.  

 

Another interesting aspect, widely studied in ancient wall paintings, is  

related to the calcium carbonate source used for calcination; overall, the results obtained 

by the analysis of the collected spectra suggest the use of common limestone in the form 

of CaCO3. However, some spectra collected by using the 785 nm excitation line reveal a 

weak band at about 1092 cm−1 (see Figure 6.2c) attributable to magnesite MgCO3 or 

dolomite CaMg(CO3)2 [25], suggesting an interesting hypothesis on the probable use of 

dolomitic limestone [26]. 
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Figure Figure Figure Figure 6666....6666 Raman spectra collected on the studied wall painting representative of (a) the con-
comitant presence of calcite (Cal) and gypsum (Gp) suggesting a transitional  approach for 
substrate preparation  and (b) the presence of calcite (1086, 713 cm−1) with a greater relative 
proportion of unconverted limewash (Lw), as testified by the broad features centered at about 
780 cm−1. 
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6.46.46.46.4 Discussion and conclusionsDiscussion and conclusionsDiscussion and conclusionsDiscussion and conclusions    

The overview of the Raman spectra collected on the wall paintings (see Table 6.1) 

allows us to infer the following observations. As far as coloring agents, red hues were 

mainly obtained by using vermilion, mixed with lead white and carbon-based black pig-

ments in order to represent lighter and darker shades. However, the painter seemed to 

use also red lead and haematite, the latter usually mixed with white pigments for the 

restitution of the incarnate. Black and grey colours were achieved by using carbon-based 

pigments, also mixed with white ones for making lighter tones. In the case of blue and 

green colours, no evidence for specific pigmenting agents could be collected, even if  

the hypothesis on the use of copper salts for greenish hues could be proposed. 

 

Referring to the preparation layer (in terms of composition, source materials and 

technique), the detection of bands related to calcium carbonate confirms the use of a 

lime-based preparation by employing the secco or fresco technique. Bibliographic sources 

refer to the use of a fresco technique in the manufacture of the medallions. However, 

pigments such as lead white, red lead, vermilion are not compatible with this painting 

technique and points to the use of a secco technique [28,29]. Unfortunately, portable 

Raman spectroscopy could not contribute a solution to this issue. Therefore,  

cross-sectional analysis is needed to characterise the stratigraphy and provide information 

on the painting technique. The systematic association of calcite with high intensity bands  

attributable to gypsum, strongly supports the idea of the application of a transitional 

approach between Romanesque and Renaissance Art methods, in which both components 

were mixed together in the wall preparation. The occurrence of magnesium-containing 

carbonates could provide information on possible marine carbonate sources. Finally, the 

presence of calcium oxide/hydroxide (band at 790 cm−1, only detectable with the  

1064 nm laser), together with calcium carbonate (1086 cm−1) can provide information on 

the degree of calcination. In this case, the relative intensity of these two bands suggests 

an incomplete process has occurred probably due to the indoor conditions.  

 

The campaign offered also the possibility to compare the performances of the two 

portable Raman spectrometers that were used as well as to study the suitability of the 
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different laser lines. In fact, the EZRaman-I-Dual Raman spectrometer has a wider  

spectral window (starting from 100 cm−1) in comparison to the i-Raman® EX  

(which ranges from 175 to 2500 cm−1), allowing the detection of compounds characterised 

by low wavenumber Raman bands, such as lead-containing pigments, chloride minerals 

and Pb-sulphate alteration products. At the same time, by working at 785 nm, the  

identification of the minerals was made easier by the higher intensity of the Raman signal. 

On the other hand, as expected, a lower fluorescence background was observed by using 

the 1064 nm line, allowing the detection of compounds such as calcium oxide/hydroxide 

and carbon-based black pigments, characterised by broad Raman features. Apart from 

the aforementioned aspects, the use of the two instruments, equipped with different  

excitation wavelengths, produced in the majority of cases very similar results. In  

conclusion, this study has allowed us to achieve a complete characterisation of the  

pigments and technique used in the paintings of the vaults, supplying fundamental  

information to the conservators, useful for planning appropriate conservation and  

preservation actions. 

 

In general, both spectrometers are ideal tools for the investigation of artefacts. 

However, each laser wavelength has specific strengths and weaknesses. Instruments 

equipped with a laser of a short wavelength (785 nm and 532 nm) are more suitable for 

inorganic material detection, which has characteristic Raman bands at low wavenumbers 

(in this case until 100 cm−1). On the other hand, the competition between the fluorescence 

signal and the Raman effect is larger in comparison to a long laser wavelength (1064 nm), 

causing a higher background signal in the Raman spectrum. Furthermore, for a 532 nm 

and a 785 nm laser a CCD-detector can be used as detection system and shows an opti-

mum response in the visible range (400 − 750 nm) and the NIR range (750 − 1050 nm), 

respectively. However, this type of detector is not sensitive when using a 1064 nm laser 

and thus another detector, InGaAs, needs to be used which is less efficient [27].  

 

Due to these reasons, the EZRaman-I-Dual Raman spectrometer is preferred to the 

i-Raman® EX (1064 nm) as the focus of the research lays on art analysis and thus 

identification of inorganic compounds is of great interest. It is also noteworthy that an 

instrument provided with two excitation sources, as our Raman spectrometer, is more  
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beneficial for purchase. Not every compound is Raman active for the chosen laser  

wavelength. Therefore, when an additional laser is present, there is a better change to 

identify the unknown material in addition to the minimsaion of problems of interference 

such as absorption and fluorescence. 

 

Recapitulating the conclusions of the earlier chapters, the success of a Raman  

instrument is dependent upon the research question and can be evaluated based upon 

different parameters such as practical limitations, spectroscopic characteristics,  

measurement time, suitability of the type of laser, etc. So far, only painted objects with 

a simple paint structure have been examined. When considering complex painted mate-

rials, such as oil paintings, in situ Raman analysis becomes more complicated. Chapter 

5 has already illustrated that sometimes the use of a single technique is not satisfactory. 

Hence, chapter 7 will discuss the difficulties of in situ research performed on oil paintings 

and will explain the benefit of using complementary methods for these complex  

samples. Additionally, it will be described how the applied analytical methods are opti-

mised to obtain the best results.  
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Table Table Table Table 6666....1111 For each medallion, measurement point IDs, colour, main Raman bands (in cm−1) 
detected by using both wavelength (namely 785 nm and 1064 nm) and attribution are reported.  

    
Analysis Analysis Analysis Analysis 
point IDpoint IDpoint IDpoint ID    

ColourColourColourColour    Raman bands (cmRaman bands (cmRaman bands (cmRaman bands (cm−−−−1111))))    AttributionAttributionAttributionAttribution    

Medallion A: symbolic representation of “The Alchemy”Medallion A: symbolic representation of “The Alchemy”Medallion A: symbolic representation of “The Alchemy”Medallion A: symbolic representation of “The Alchemy”    

10
64

 n
m

10
64

 n
m

10
64

 n
m

10
64

 n
m

    

1.A light grey 1590, 1320, 1086, 1007, 790, 710, 280 amorphous carbon, calcite, 
limewash, gypsum 

2.A grey 1590, 1320, 1086, 1047, 1007, 790, 
713, 280 

amorphous carbon, calcite, 
limewash, lead white, gypsum 

3.A incarnate 1590, 1320, 1086, 1047, 1007, 790, 
713, 620, 490, 411, 280 

amorphous carbon, calcite, 
limewash, lead white, gypsum, 
haematite 

4.A dark-grey 1590, 1320 1086, 1047, 1007, 790, 280 amorphous carbon, lead white, 
calcite, limewash, gypsum 

5.A dark-orange 1590, 1320, 1086, 1007, 713, 613, 411 amorphous carbon, calcite, 
gypsum, haematite 

6.A dark background 1590, 1320 amorphous carbon 

7.A yellow 1590, 1320, 1136, 1086, 1007, 790, 
713, 620, 495, 404 

amorphous carbon, calcite, 
limewash, gypsum, goethite 

8.A incarnate 1590, 1320, 1136, 1086, 1047, 1007, 
620, 498, 411, 292, 226 

amorphous carbon, calcite, 
lead white, gypsum, haematite 

9.A greyish-purple 1590, 1320, 1086, 1047, 1007, 790, 
713, 460, 226 

amorphous carbon, calcite, 
limewash, lead white, gypsum, 
haematite 

10.A greyish-purple 1590, 1320, 1007 amorphous carbon, gypsum 

78
5 

n
m

78
5 

n
m

78
5 

n
m

78
5 

n
m

    

11.A grey 1598, 1056, 1086, 1050, 1008, 978, 
453, 437  

anglesite, gypsum, lead white, 
calcite 

12.A incarnate 1084, 1054, 1049, 1008, 978, 447, 437, 
280 

anglesite, gypsum, calcite, lead 
white 

13.A incarnate 1086, 1008, 710, 673, 549, 411, 280 calcite, gypsum, red lead 

14.A grey 1590, 1134, 1086, 1054, 1008, 668 amorphous carbon, lead white, 
calcite, gypsum 

15.A yellow 1269, 1136, 1086, 1008, 668, 404 goethite, magnesite, calcite, 
gypsum 

16.A yellow 1274, 1197, 1136, 1096, 1086, 1008, 
403 

goethite, magnesite, calcite, 
gypsum 

17.A dark grey 1590, 1330, 1008,  610, 411, 293 amorphous carbon, gypsum, 
haematite 

18.A bright red 1086, 340, 281, 251 vermilion, calcite 

19.A light red 1086, 1009, 712, 604, 463, 404, 383, 
343, 336,289, 283, 250, 151 

vermilion, haematite, calcite, 
gypsum, quartz 

20.A dark red 1590, 1134, 1084, 1006, 848, 633, 604, 
462, 406, 342, 290, 250, 221 

amorphous carbon, vermilion, 
haematite, calcite, gypsum, 
quartz 
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Medallion B: symbolic representation of “The Art Painting”Medallion B: symbolic representation of “The Art Painting”Medallion B: symbolic representation of “The Art Painting”Medallion B: symbolic representation of “The Art Painting” 

10
64

 n
m

10
64

 n
m

10
64

 n
m

10
64

 n
m

 

1.B light red 1136, 1086, 1007, 790, 713, 615, 496, 
411, 292 

calcite, limewash, gypsum, 
haematite 

2.B red 1136, 1086, 1007, 790, 713, 615, 495, 
411, 292, 225 

calcite, limewash, gypsum, 
haematite 

3.B light red 1086, 1007, 790, 713, 411, 280 calcite, limewash, gypsum, 
haematite 

4.B dark grey 1590, 1320 amorphous carbon 

5.B grey 1590, 1320, 1086, 1047, 1007 amorphous carbon, lead white, 
calcite, gypsum 

6.B grey 1590, 1320, 1086, 1007, 790, 713, 280 amorphous carbon, calcite, 
limewash, gypsum 

7.B absence of pig-
ment layer 

1086, 790, 710, 280 calcite, limewash 

8.B incarnate 1590, 1320, 1086, 1007, 615, 411, 292, 
225 

amorphous carbon, calcite, 
gypsum, haematite 

9.B reddish-orange 1086, 790, 713, 345, 280, 252 calcite, limewash, vermilion 

10.B black 1590, 1320 amorphous carbon 

Medallion C: symbolic Medallion C: symbolic Medallion C: symbolic Medallion C: symbolic representation of “The Literature”representation of “The Literature”representation of “The Literature”representation of “The Literature” 

10
64

 n
m

10
64

 n
m

10
64

 n
m

10
64

 n
m

 

1.C light blue 1590, 1320, 1086, 1047, 1007, 790, 
713, 280 

amorphous carbon, lead white, 
calcite, limewash, gypsum 

2.C dark blue  1590, 1320, 1086, 1047, 1007, 790, 
713, 280 

amorphous carbon, lead white, 
calcite, limewash, gypsum 

3.C blue 1590, 1320, 1086, 1047, 1007, 790, 
713, 280 

amorphous carbon, lead white, 
calcite, limewash, gypsum 

4.C light purple 1590, 1086, 790, 713, 411, 280, 225, 
157 

amorphous carbon, calcite, 
gypsum, haematite 

5.C dark purple 1136, 1086, 1007, 615, 493, 411, 292, 
225 

calcite, gypsum, haematite 

78
5 

n
m

78
5 

n
m

78
5 

n
m

78
5 

n
m

 

6.C green 1739, 1590, 1084, 1006, 851, 129, 125 amorphous carbon, calcite, 
gypsum, copper chloride 

7.C green 1600, 1086, 1007, 895, 851 amorphous carbon, calcite, 
gypsum, copper chloride 

8.C light blue 1600, 1528, 1449, 1340, 1305, 1285, 
1144, 1130, 1108, 1086, 1008, 987, 
951, 850, 746, 709, 679, 591, 401, 281, 
142 

amorphous carbon, calcite, 
gypsum, , copper chloride, an-
atase, PB15 

9.C light blue 1600, 1136, 1086, 895, 711, 670, 490, 
411, 279, 154 

amorphous carbon, calcite, 
gypsum 

10.C green 1600, 1140, 1086, 1006, 950 amorphous carbon, calcite, 
gypsum, copper chloride 

Medallion D: symbolic representation of  “The Medicine”Medallion D: symbolic representation of  “The Medicine”Medallion D: symbolic representation of  “The Medicine”Medallion D: symbolic representation of  “The Medicine” 

78
5 

n
m

78
5 

n
m

78
5 

n
m

78
5 

n
m

 

1.D light blue 1597, 1487, 1462, 1432, 1134, 1084, 
1008, 895, 710, 669, 503, 491, 410, 
278, 150 

amorphous carbon, calcite, 
gypsum, whewellite 

2.D dark blue 1600, 1462, 1320, 1006, 670 amorphous carbon, gypsum, 
whewellite 
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Chapter 7  
 
Direct analysis of the Ghent Altarpiece  

 
 

In the previous chapters, a description was given about how to decide which portable 

Raman spectrometer is the most suitable for answering research questions in  

archaeometry. The evaluation is based on different parameters such as practical  

limitations, spectroscopic characteristics, measurement time, suitability of the type of 

laser, etc. In the cases previously described, objects with a simple paint structure were 

investigated.  

 

When dealing with complex painted materials, more specifically oil paintings, in situ 

Raman analyses are not straightforward. Interferences of varnish or glaze overwhelming 

the Raman spectrum and masking weak Raman scatterers are commonly observed. 

Therefore, sometimes cross-sections need to be taken for lab analysis. However, this has 

the disadvantage that the results are only of specific (limited) areas and this causes 

damage to the artwork.  

 

Moreover, cross-sections are not the only solution to obtain better results.  

Complementary techniques can provide a more complete characterisation of the  

investigated material as well. Therefore, in this next part, we want to expand the  

investigation of mediaeval oil paintings resolving specific research questions supporting 

restoration and conservation with the aid of only in situ equipment. The opportunity 

was given to perform analyses on one of the most famous artworks of the Flemish  

Primitives i.e. the Ghent Altarpiece. The concerted research actions (GOA) program 

financially supported the archaeometrical study of the Ghent Altarpiece. This program 

forms a network between scientists, art historians and conservators for which close  

collaboration is of high importance. This scientific research represents only a small  

contribution to the total work package and is one of the three items which the Raman 

spectroscopy research group is working on. This research group is mainly dealing with (i) 
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the optimisation of XRF techniques for the study of oil paintings; (ii) the conservation 

study of the exposed silver foils of the frames and (iii) the optimisation of mobile Raman 

spectroscopy for the study of art objects (i.e. the topic of this PhD thesis). 

 

In this section, the used in situ analytical methods are described, followed by how the 

analysis can be  optimised to obtain as complete information as possible.  

 

7.17.17.17.1 IntroductionIntroductionIntroductionIntroduction    

In the 15th and early 16th century, the Low Countries saw a major breakthrough in 

the art of painting with the introduction of a group of painters, now known as the Flemish 

Primitives. They are well known for their refined oil painting technique and represent 

themes related to realism, naturalism and religion [1]. The brothers Hubert and Jan Van 

Eyck are considered to be some of the greatest contributors to this flourishing period and 

it was believed that Jan was the “inventor” of the technique of oil painting. However, in 

the last centuries, this has been refuted and it is now believed that probably oil as a 

medium was already used before their time [2] and thus a new assumption is made: the 

brothers Van Eyck can be considered as the masters who improved substantially the 

application of oil as a painting medium [3]. 

 

Hubert and Jan Van Eyck created one of the most important paintings of the 15th 

century, the Ghent Altarpiece (Figure 7.1) (1426- 1432), which has an enormous cultural 

and arthistorical impact [4]. It is a large oil painting with oak support, made for and still 

displayed in the Saint Bavo Cathedral (Ghent). Its impressive dimensions are  

3.5 x 4.6 m in open view (closed: 3.5 x 2.3 m). During its history, the panel painting was 

not continuously exhibited in the Cathedral. Over time, the individual oak panels have 

been repeatedly separated from each other for long periods, and groups of panels were  

subjected to distinctly different climatic conditions and restoration treatments [5]. In the 

18th century, the three top centre panels were removed from their original frames and 

cropped at the top. The wing panels retained their frames, however, only two panels, 

Adam and Eve, still have their original shapes. The other six wing panels were bought 

by Willem III of Prussian in the 19th century and displayed in the Gemäldegalerie, Berlin. 
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To exhibit all painted surfaces side by side, the panels were split lengthwise and the 12 

resulting panels were cradled at the back. [6]   

 

Due to its bad condition, related to its complex material history, the polyptych has 

been in conservation treatment from October 2012 which will last until at least October 

2019 by the Royal Institute for Cultural Heritage (KIK-IRPA). This scheduled  

conservation campaign has provided a unique opportunity to examine this precious  

painting.   

 

The conservation and restoration treatment is undertaken in the Museum of Fine 

Arts in Ghent and is divided into three phases (Figure 7.1): imvolving one third of the 

panels at a time, the other parts of the altarpiece remain in the Cathedral. It is important 

to devise separate treatment protocols for the panels due to their different material  

history. The previous (partial) treatment took place in 1950-51 (Coremans 1953) [7]. 

Before the current conservation project started, the panels underwent a preliminary  

examination and conservation in 2010, coordinated by Prof. A. Van Grevenstein  

(University of Amsterdam), consisting of 5 phases: (i) preparation of condition reports 

of the panels; (ii) consolidation securing flaking paint; (iii) conservation treatment of the 

copy of the Just Judges; (iv) report and advice for a complete conservation treatment of 

the Ghent Altarpiece, and (v) documentation of all panels in digital high resolution visual  

photography, infrared photography and infrared reflectography [6]. It is important to 

mention that the examinations were primarily in the function of the advisory report and 

thus the scientific interests were not considered at that time. 

 

With our research, we want to provide information on the painters’ technique and 

knowledge and also support the ongoing conservation, by analysing the materials used 

on the frames and painting to: (i) detect misidentified pigments during previous  

restoration campaigns; (ii) reveal overpainted areas and retouching. The project  

illustrates how several complementary, non-destructive approaches can be implemented 

in archaeometrical research and conservation science. Additionally, it is explained how 

the use of current spectroscopic techniques is optimised, from which the archaeometrical 

study of the Ghent Altarpiece benefits directly. 
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7.27.27.27.2 CrossCrossCrossCross----disciplinary projectdisciplinary projectdisciplinary projectdisciplinary project    

Different scientific projects including the development of mathematical tools based 

on wavelets for automated image analysis of the Eyckian painting, were conducted on 

the Ghent Altarpiece during this conservation campaign. We, the Raman spectroscopy 

research group, focussed on two aspects within the research: (i) support the identification 

of the paint material, original and overpaint; (ii) protection of the exposed silver foils of 

the frames, which is important for the conservation. As mentioned, this first item was 

the focal point of this thesis. Via the implementation of a non-destructive, in situ study, 

we created a quick method to identify the paint material and its authenticity without 

damaging the painting (i.e. taking cross-sections). These analytical data were essential 

to determine the state of conservation and reveal earlier restoration campaigns. 

Phase IIPhase IIPhase IIPhase IIIIII: Open altarpiece: Open altarpiece: Open altarpiece: Open altarpiece 

Phase IPhase IPhase IPhase II: Open altarpieceI: Open altarpieceI: Open altarpieceI: Open altarpiece 

Phase I: Closed altarpiecePhase I: Closed altarpiecePhase I: Closed altarpiecePhase I: Closed altarpiece 

Figure Figure Figure Figure 7777....1111 Ghent Altarpiece, created by Hubert and Jan Van Eyck. It is under conservation and 
restoration (2012-2019) by the Royal Institute for Cultural Heritage and the restoration 
campaign is divided in 3 phases. © Sint-Baafskathedraal Gent, copyright Lukasweb.be - Art in Flanders VZW, 
photo KIK-IRPA. 
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However, the spectroscopic work is only successful when it is embedded in a  

complementary way with the achievements of the other partners (UGent, KIK-IRPA, 

UA), as shown in Figure 7.2. The network for this cross-disciplinary project consists of 

art historians, scientists and conservators. Close collaboration between these research 

groups results in the adequate interpretation and contextualisation of the Ghent Altar-

piece. This includes information concerning the execution of the painting, the painting  

technique & materials and restoration history. Close collaboration in multi- 

disciplinary/multi-institutional projects is of high importance to obtain a complete  

documentation about the mediaeval painting. This is, however, not straightforward and 

is influenced by several factors. Colleagues of different disciplines have various  

backgrounds, which can cause communication problems. It is important to find a  

common way to report findings and explain them in a clear language. In addition, timing 

is crucial: conservation takes precedence over all other investigations. For example,  

Raman measurements are preferably executed when the varnish is removed. Yet, the 

restoration must proceed which limits the measurement time and thus measurement 

points need to be selected wisely. Moreover, parameters such as politics and commercial 

aspects may not be forgotten, as the Ghent altarpiece is an important piece of art. 

 

7.37.37.37.3 Analytical techniques for Analytical techniques for Analytical techniques for Analytical techniques for the the the the paint paint paint paint analysisanalysisanalysisanalysis    

In science, different in situ methods exist for the analysis of cultural heritage, each 

with their advantages and disadvantages. For the direct, non-destructive pigment  

analysis of the Ghent Altarpiece, three methods were available in our laboratory: 

handheld X-ray fluorescence spectroscopy (hXRF), high resolution digital microscopy 

and portable Raman spectroscopy. By using a combination of these complementary 

methods, optimal information can be obtained. However, to achieve the best results/ 

interpretation, it is crucial to have a close cooperation and interaction with colleagues 

from different disciplines.  
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As one can imagine, the interpretation of the data obtained is not simple. As the 

structure of oil paintings is complex (as illustrated in chapter 1, section 1.2), it is essential 

to know from which layer the information is retrieved. Table 7.1 gives an overview of the 

applied methods with some of their important instrumental and methodological  

characteristics. All these techniques are very useful to investigate the artists’ palette. 

Hirox microscopy can deliver information about distribution, colour and morphology of 

pigment particles; crack patterns; etc., whilst Raman spectroscopy is a good tool to  

obtain molecular information. To secure high quality results, it is better to perform 

measurements after varnish removal. This is a very delicate process and is therefore 

performed by the conservation team [9]. Finally, hXRF can provide information on the 

elemental composition of the paint. Although, it helps to exclude possible pigments that 

were used, we need to be aware that simultaneous information is obtained from several 

layers. This makes it harder to draw clear conclusions on the paint composition. 

 

Figure Figure Figure Figure 7777....2222 Schematic overview of the interdisciplinary collaboration for the best interpretation 
and contextualisation of the scientific results. [8] 
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Table Table Table Table 7777....1111 Overview of the applied methods with some of their important instrumental and  
methodological characteristics. 
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7.47.47.47.4 Results and discussionResults and discussionResults and discussionResults and discussion    

The direct analysis of the precious panel painting Ghent Altarpiece is a  

valuable tool for the conservation and restoration of the painting. The techniques used 

are non-destructive, fast and their application can reduce the necessity of sampling. Only 

when information on the stratigraphy needs to be retrieved, cross-sections have to be 

taken in the areas of interest. To be able to answer the research questions about overpaint, 

retouchings and misidentified pigments (during previous restoration campaigns), a good 

selection of instrumentation is required to obtain complementary information.  

Afterwards, their set-up needs to be optimised for the analysis in the conservation studio 

at the Museum of Fine Arts (Ghent). 

 

As mentioned, 3 techniques − portable Raman spectroscopy, hXRF and Hirox  

microscopy − were selected and measurements were performed once a week.  

Consequently, the equipment needs to be transported to the museum and back to the 

lab, on the same day. In order to optimise the set-up, some practical parameters need to 

be taken into account. Aforementioned research (i.e. previous chapters) performed, with 

the portable Raman spectrometer, apply an articulating arm (chapter 4) or a clamp (for  

holding the probeheads) mounted on perpendicular optical rails with slides (introduced 

in chapter 3). Because sometimes both XRF and Raman spectroscopy were used on the 

same day for the analysis of Ghent Altarpiece, it was more convenient to utilise the same 

stage for both instrumentation so the latter set-up has been preferred (Figure 7.3). There-

fore, a special holder for the hXRF spectrometer has been developed [10]. Also, this  

construction has the advantage of being compact and lightweight for travelling.  

Additionally, to secure the safety for the visitors and conservators, all measurements 

were performed in a black tent to preserve the safety zone. At the same time, this has 

the benefit to darken the area, so no interference from the environmental light would 

hamper the Raman signal. 

 

The confined measurement space in the Museum of Fine Arts (Ghent) is not the 

most optimal region to perform microscopic analysis with the Hirox instrumentation due 

to the lack of space. So another suitable area is required within the conservation room. 
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As for all analytical techniques, some issues need to be considered: it is desired to keep 

vibrations (caused by visitors and research people) and manipulation of the paintings to 

a minimum. For this reason, an aluminum table was created (HIROX Europe, including 

JAAP Enterprise for art scientific research, Amsterdam (JE)) which is equipped with 

wheels and shock absorbers (Figure 7.3c).  

 
Once these issues are solved, the analytical investigation of the different panels can 

be executed in their optimal condition. 

 

 

 

 

Figure Figure Figure Figure 7777....3333 Set up of the 3 applied non-destructive techniques handheld X-ray fluorescence 
spectroscopy (a), mobile Raman spectroscopy (b) and High resolution digital microscopy (c).
© Sint-Baafskathedraal Gent, copyright Lukasweb.be - Art in Flanders VZW, photo UGent. 

aaaa
....    

b.b.b.b.    
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7.4.1. Insert of Raman spectroscopy and hXRF 

In a first step, the non-destructive methods Raman spectroscopy and hXRF are 

applied, performing point measurements. Two examples of examinations conducted using 

these techniques are presented here.  

 

Pigment comparison of the polychrome decoration of the frames 

During the previous conservation campaign (1950-51), the scientific research was 

mainly focused on the analysis of the painted surface. However, the original frames also 

make an important contribution to the visual aspect of the total altarpiece. In the report 

of the preliminary examination and conservation campaign of 2010, it was described that 

the polychrome decoration of the frames is overpainted and their condition is bad; in 

some cases, the paint shows some blisters [7]. Within the present conservation campaign, 

more information needs to be retrieved on the materials used for both the original paint 

and overpaint, in order to assemble a more complete documentation. The question needs 

to be answered whether during the different interventions in the past the same materials 

as the original ones were used.  

Figure Figure Figure Figure 7777.3.3.3.3 Set up of the 3 applied non-destructive techniques handheld X-ray fluorescence 
spectroscopy (a), mobile Raman spectroscopy (b) and High resolution digital microscopy (c). 
© Sint-Baafskathedraal Gent, copyright Lukasweb.be - Art in Flanders VZW, photo UGent. 

cccc....    
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The frame of Johannes the Evangelist is selected for this research (Figure 7.4): the 

investigation focuses on the highighted pink areas. Before the start of the analysis, part 

of the frame was cleaned, enabling the investigation of the original paint and overpaint 

to be carried out. 

 

In a first approach, hXRF was used to provide a fast indication of the used material. 

XRF detects information from the pigment but also from the support: it is important to 

figure out which elemental signal is significant for the pigment. For this reason, blank 

spots were searched to record a fingerprint of the carrier. This is compared with the 

signal recorded at the pink spots, to facilitate the interpretation of the XRF-spectra 

(Figure 7.5a-c). The restored blank area is characterised by a significant amount of Cu, 

Zn, Mn and Sn in comparison to the original blank area. This can be explained by the 

fact that there is a continuous layer of paint on top of the wooden support. After  

subtracting the blank, it is found that both, restored and original, pink areas are  

characterised by a significant Hg peak. This suggests the use of vermilion (HgS), probably 

mixed with a white pigment, given the pale hue.  

 

IIIIIIII 

IIII 

OverpaintOverpaintOverpaintOverpaint    (I)(I)(I)(I) Original (II)Original (II)Original (II)Original (II) 

Figure Figure Figure Figure 7777....4444 XRF and Raman analysis area of the Frame of Johannes the Evangelist. Information 
about the original paint layers and overpainting is requried. © Sint-Baafskathedraal Gent, copyright 
Lukasweb.be - Art in Flanders VZW, photo KIK-IRPA and UGent. 
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To support this assumption Raman spectroscopy was applied (Figure 7.6). During 

the measurements, it has been discovered that the cloth of the dark tent was not  

sufficiently thick, causing interference due to the environment. A new fabric was  

purchased to solve this issue. Even though this problem occurred, it was possible to 

obtain clear Raman spectra. As suggested, it is confirmed that vermilion is used in both 

regions. Moreover, the Raman spectra prove the application of lead white 

(2PbCO3.Pb(OH)2) and calcite (CaCO3) in the original and overpainted areas,  

respectively, mixed with vermilion. This indicates that the conservators at the time of 

intervention, only focused on the visual imitation instead of the chemical similarity.  
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Figure Figure Figure Figure 7777....5555 XRF spectrum of the restored pink spot compared to the restored blank area (a) and 
the spectrum of the original pink spot compared to the original  blank area (b). A significant 
amount of Hg is detected in both cases.  
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Figure Figure Figure Figure 7777....5555cccc XRF spectrum of the restored pink spot compared to the restored blank area. A 
significant amount of Hg is detected. 
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Figure Figure Figure Figure 7777....6666 Raman spectra (λ=785 nm, 30x15 s, STD lens, 0.06mW, External power source, baseline 
corrected) of: (a) the restored pink spots, with Raman bands at 252 cm−1 (vermilion) and 1086 cm−1

(calcite); (b) the original pink spots, with Raman bands at 252, 283, 340 cm−1 (vermilion) and 
1053 cm−1 (lead white); Reference spectrum of (c) vermilion, (d) calcite, (e) lead white; (f) spectrum 
of the environmental signal. 
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Questions concerning original paint and retouching in a column of the painting  

Elisabeth Borluut.  

Both the frames and the panel paintings have been retouched. During the current 

conservation campaign a problem was observed in the panel representing Elisabeth  

Borluut, which needed to be clarified by spectroscopic analysis.  

 

The conservator, Marie Postec, observed via macrophotography and X-ray  

radiography some issues in the base of the left column of Elisabeth Borluut. Although, 

the pillar is homogeneous in colour and craquelure, the X-ray images of that area show 

some inhomogeneities (Figure 7.7). Our research group has taken additional microscopic  

images of the region of interest with a Dino-lite camera (Premier AD7013MT), revealing 

indeed the presence of depressions (i.e. lacunaes) in the panel surface, filled with  

retouching pigment (Figure 7.7). To complete the documentation, it is of interest to 

determine which pigments are used for the original paint and retouching. For this reason, 

hXRF and Raman analysis are performed. It is noteworthy that the examination with 

hXRF was not straightforward. The retouched lacunaes are smaller than the spot size of 

the hXRF instrument (5 mm2) and its positioning is not trivial. The detected signal is 

thus coming from the retouched areas as well as from the original paint  

(including all underlying layers). So a proper interpretation of the results cannot be made.  

 

Three retouched areas and one original one were investigated (Figure 7.8a). In all 

cases, a high amount of lead is detected and a high amount of calcium, which  

fluctuates between the different retouchings and the original paint (CaCaCaCa>>>>CaCaCaCa====CaCaCaCa>Ca>Ca>Ca>Ca)  

(Figure 7.8b-d; colours refer to different areas). These elemental data suggest that calcite 

and/or a lead containing pigment (such as lead white) is used. 
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Figure Figure Figure Figure 7777....7777 Overview of the problems (lacunaes) observed via macrophotography and 
X-ray radiography in the base of the left column of the painting Elisabeth Borluut. (colour codes 
correspond to Figure 7.8a) © Sint-Baafskathedraal Gent, copyright Lukasweb.be - Art in Flanders VZW, photo 
KIK-IRPA and UGent. 

Figure Figure Figure Figure 7777....8888 (a) Overview of the measured areas: Three retouched spots (black, red, green) and 
one original spot (blue). © Sint-Baafskathedraal Gent, copyright Lukasweb.be - Art in Flanders VZW, photo 
KIK-IRPA and UGent. 
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Figure Figure Figure Figure 7777.8.8.8.8 (b-d) XRF spectra of the retouched lacunaes compared to the original white areas.  
(Colour codes correspond to  Figure 7.8a) 
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A clearer interpretation can now be given, based on the Raman results of the same 

areas (Figure 7.9). It has been detected that in both cases, for both the retouched as 

original paints, calcite is used in the paint material. Furthermore, the original paint layer 

consists of a mixture of lead white and calcite, except in the highlighted area (Figure 

7.10). There is a difference noticeable in conservation of the pure and mixed lead white: 

the characteristic Raman band around 1050 cm−1 has different shapes. The single pigment 

seems to be altered − probably caused by the formation of a degradation product  

(possibly the presence of a mixture of new carbonate species mixed with unreacted lead 

white) due to the activity of H2S − while the calcite may have acted as a protection for 

the lead based pigment [11].   
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Figure Figure Figure Figure 7777....9999 Average Raman spectra (λ=785 nm, 5x10 s, STD lens, 35.03 mW, External power 
source, baseline corrected) of: (a) the retouched lacunaes, marked with •, with a characteristic 
Raman band at 1086 cm-1 (calcite); (b) the original white paint layer, marked with *, with Raman 
bands at 1054, 1050 cm−1 (lead white) and 1086 cm−1 (calcite); Reference spectrum of lead white
(c), calcite (d); (e) Raman spectrum of the environmental signal. 

Figure Figure Figure Figure 7777....10101010 Raman spectra (λ=785 nm, 5x10 s, STD lens, 35.03 mW, External power source, 
baseline corrected) of the original white paint layer, marked with *, with Raman bands at 1054,
1050 cm−1 (lead white) and 1086 cm−1 (calcite) (a-c); Reference Raman spectrum of lead white 
(d) and calcite (e). 
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When combining these results with the expertise of the conservators, it was  

concluded that the detection of calcite in the original oil paint layer is unexpected. Two 

possible explanations can be given: (i) calcite is added to the oil painting as an extender 

and to provide the desired consistency of the paint. It makes no contribution to the 

colour as it becomes transparent in the medium. (ii) it can be a marker for the detection 

of an overpaint but this seems, at first sight, rather unlikely. In order to exclude one of 

these assumptions, the conservation team and other partners performed further  

investigations. The examinations included macroscopic and microscopic observations  

(using Hirox microscopy) and macro-XRF imaging. In this later stage of the conservation, 

our assumption about the presence of an overpaint, proved to be correct. This first proof 

of overpainting was also the trigger for a more intensive investigation of the oil painting, 

leading to the remarkable conclusion that 70% of the panels were overpainted.  

General conclusions based on the given examples 

The in situ, non-destructive methods proved to be successful to reveal the presence 

of overpainting in an early phase of conservation. However, not all measurements were 

satisfactory to answer the conservators’ questions, especially with respect to the XRF 

measurements: the signal is obtained from different layers and often the spot size of the 

instrument was too large for the concerned area. In addition, it delivers mostly similar 

information as the Raman analyses. Consequently, it has been decided to complement 

the measurements with microscopic investigation of the paint material using Hirox  

microscopy. 

7.4.2. Combination of Raman spectroscopy and Hirox microscopy 

The combined use of Raman spectroscopy and Hirox microscopy is a new approach 

for the direct analysis of oil paintings. To use this combination in an effective way, a 

protocol had to be developed in order to have an optimal approach. 

 

It has been decided to apply Hirox measurements prior to the Raman analysis as 

the set-up does not allow one to record images and a Raman spectrum sequentially.  

Unfortunately, the table of the Hirox instrumentation does not fit in the dark tent where 
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Raman examinations need to be carried out. As a consequence, Hirox and Raman  

investigations cannot be performed on exactly the same spot and thus it is preferred to 

execute first a good documentation using Hirox microscopy, before moving the painting 

for Raman investigations. This proposal makes it possible to first determine and capture 

the status together with the conservators and to choose the best regions for the molecular  

investigation. Some parameters need to be kept in mind when selecting measurement 

areas: (i) the varnish layer should be absent (or as thin as possible); (ii) the selected area 

may not be smaller than the laser spot size (80 μm), to avoid interference of the  

surrounding paint; (iii) the location of the measurement spot should be easy to retrieve. 

The latter requirement is not as simple as it first seems as some details are barely visible 

with the naked eye. A solution is found by documenting the coordinates of the region of 

interest to relocate the are more precisely.  

 

As an example, the panel painting Johannes the Evangelist is examined with this 

protocol. In the painting some interesting areas of retouching and yellow details were 

found and documented with Hirox microscopy. This thesis focuses on the investigation 

of these yellow details as they were often misidentified in the previous conservation  

campaign (1950-51, Coremans) as massicot (PbO). The yellow pigment was found in the 

highlights of the robe and hands but also in the inscription on the soccle of the grisaille  

(Figure 7.11). Raman positioning was not always easy due to the issues mentioned above. 

Nevertheless, in all cases it is proven that the yellow pigment used by Van Eyck was not 

massicot, but lead tin yellow type I (Pb2SnO4) (Figure 7.11). A distinction between lead 

tin yellow type I (Pb2SnO4) and II (Pb(Sn1-xSix)O3) can be made due to the good spectral 

resolution of the Raman instrumentation. Both the images and the pigment  

identification were helpful to complete the documentation on the artist’ palette and  

technique. However, this approach can still be improved, to make it an excellent  

qualitative method. 
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7.57.57.57.5 Conclusions Conclusions Conclusions Conclusions     

This chapter has illustrated how several complementary, non-destructive, in situ 

approaches can be implemented in archaeometrical research and conservation science. 

More specifically, it is explained how the techniques hXRF, portable Raman spectroscopy 

and Hirox microscopy are optimised from which the conservation of Ghent Altarpiece  

benefits directly. 

 

Even though the approaches were successful, the method of application can still be 

improved. Until now, only point measurements were performed with both hXRF and 
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Figure Figure Figure Figure 7777....11111111 Examination of the panel John the Evangelist with Hirox microscopy and Raman 
spectroscopy. At the top, the recorded Hirox images are illustrated which are important for the 
documentation. Next to this, the Raman spectrum (λ=785 nm, 10x30 s, STD lens, 20 mW, 
External power source, baseline corrected) of the analysed yellow area is displayed with 
characteristic Raman bands at 129 cm−1 (Lead tin yellow type I) and 1052 cm−1 (Lead white) (a); 
Reference Raman spectrum of lead tin yellow type I (b), lead tin yellow type II (c) and lead 
white (d). © Sint-Baafskathedraal Gent, copyright Lukasweb.be - Art in Flanders VZW, photo KIK-IRPA
and UGent. 
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portable Raman spectroscopy. Recently, M. Alfeld et al. have developed an in situ  

scanning macro-XRF scanning system to create elemental distribution images [12]. In a 

next step of our research, it would be beneficial to automate the positioning system of 

the portable Raman spectrometer and develop a method that makes chemical imaging 

possible.  

 

In addition to the improvement made in the application of the single techniques 

the combined use of Raman spectroscopy and Hirox microscopy can be expanded in this 

direction. So far, the approach consists of two steps: firstly, the microscopic imaging is 

carried out, followed by Raman point measurements. To bring it to the next level,  

merging the microscopic imaging and the chemical imaging system would be of added 

value. For this, the set-up of the Hirox microscope and the portable Raman spectrometer 

should be combined in order to accomplish an in situ mapping system with high spatial 

resolution.  

 
To summarise, so far a complete characterisation of the portable Raman  

spectrometer for in situ art analysis, is discussed, including its beneficial combination 

with other techniques. For all the analyses, only point measurements were executed. In 

the next part of this thesis we want to take the applicability of portable Raman  

spectroscopy to a higher level and steps are undertaken to create an automated,  

molecular, in situ imaging system. Chapter 9 discusses a first step towards this chemical 

imaging concept where the challenges of the development are explained. The focus of the 

chapter mainly is on the data-treatment, which is important for the creation of a Raman 

map, but also hardware and software will be discussed, as a suitable set-up and software 

are essential for the in situ Raman mapping system.  
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Chapter 8  
 
In situ Raman mapping of art objects  

 
 

Based on the paper: D. Lauwers, Ph. Brondeel, L. Moens and P. Vandenabeele (2016). In situ 

Raman mapping of art objects. Philosophical transactions A, accepted.  

 

In the previous chapters, an intensive evaluation of the portable Raman spectrometer for 

in situ art analysis has been described. This included a discussion of the important  

characteristics for selecting an appropriate spectrometer as well as parameters which 

need to be taken into account for in situ analysis. Additionally, it has been pointed out 

that the use of complementary, non-destructive techniques is ideal to obtain more  

complete results. However, the individual Raman spectrometer as well as the combined 

use of different methods can still be improved.  

 

Until now, portable Raman spectroscopy fails in the reconstruction of the chemical  

distribution of a compound because only point measurements are performed. Laboratory 

Raman mapping experiments of paint cross-sections have several times proven their  

success of constructing chemical images with high spatial resolution. Why would we not 

implement this advantage on a bigger scale and develop an in situ Raman  

mapping system. This story was already achieved with success in the world of X-ray 

fluorescence spectroscopy: M. Alfed et al. developed recently an in situ scanning  

macro-XRF scanning system to create elemental distribution images [1].  

 

Therefore, in this chapter a first step towards an automated in situ Raman mapping 

system is made. The focus mainly lays on the data-treatment which is important for the 

creation of a Raman map, but also hard- and software will be discussed, as a suitable 

set-up and software are essential for the in situ Raman mapping system. 
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8.18.18.18.1 IntroductionIntroductionIntroductionIntroduction    

Archaeometrical research has grown significantly during recent decades and a trend 

can be observed to minimise sampling, for ethical reasons. Due to the development of 

more sensitive equipment, sample size could be reduced. Moreover, recently, the wide 

development of non-destructive approaches using, mobile instrumentation (Raman  

spectrometers, infrared devices, X-ray fluorescence equipment, etc.), allowing for in situ 

investigations makes sampling often unnecessary [1,2]. As the interest in archaeometrical 

science is still increasing, innovative approaches are needed.  

 

In situ methods are indispensable in cultural heritage research. Raman spectroscopy 

is a molecular spectroscopic approach that has many advantageous properties for the 

study of cultural heritage objects. These positive features include an excellent spatial 

resolution and the ability to perform in situ studies. Several publications can be found 

relevant to the on-site, molecular examination of mediaeval wall paintings, museum  

objects, geo-biological samples, etc. [3–7]. In these cases, point measurements are  

performed on the objects. This punctual analysis has some limitations that need to be 

taken into account. One of the main problems is the failure to represent the heterogeneity, 

complexity of materials or potential degradation phenomena present on the surface of 

art objects [8]. Until now, only laboratory micro-Raman mapping systems have been 

shown to be very useful for resolving these problems. Quaranta et al. [9] have shown that 

a Raman mapping system can be useful to represent the heterogeneity of corroded  

high-leaded bronzes. Not only is the investigation of degradation processes, using  

mapping experiments, of interest, also the study of pigment materials is an important 

research topic [10]. It has been demonstrated how impurities can be linked to their spatial  

distribution in historical zinc-based white pigments using laboratory instruments [11]. As 

for the complexity of materials, Raman maps with high spatial resolution were able to 

provide information of pigment distribution in painting cross-sections [12,13].  

However this sampling method has a major drawback in that only information of limited 

areas of a total panel painting is obtained. Therefore, we aim to combine the excellent 

spatial resolution of the approach with its ability to be applied in situ, allowing for a 

virtually unlimited size of the art object. 
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In all cases mentioned here it has been shown that laboratory Raman mapping 

systems are an ideal tool for imaging molecular distributions. However, these experiments 

also have their constraints [12,14,15]. As the object being investigated moved step by 

step under the microscope using an XYZ stage, the main limitation is the restriction of 

the sample size: the object has to fit under the microscope and should be sufficiently flat, 

even if an autofocus system is present [14]. In this project, we want to implement this 

approach for use outside the laboratory and for its use in situ. Challenges for the  

development of an in situ Raman mapping system are discussed. Although the focus of 

this paper mainly concentrates on the data-treatment which is important for the creation 

of a Raman map, also hardware and software will be explained, as a suitable set-up and 

software are both essential for the in situ Raman mapping system. 

 

8.28.28.28.2 ExperimentalExperimentalExperimentalExperimental    

 

8.2.1. Raman instrumentation 

For the development of an in situ Raman mapping system, the portable Raman 

spectrometer, EZRAMAN-I-DUAL Raman system is modified. For a correct positioning, 

in the current experiments, the LWD lens is selected, which has a focal distance of 15 

mm. In order to map accurately a region of interest, good positioning equipment is  

necessary. The set-up used for the direct analysis is shown in Figure 8.1. The probeheads 

are mounted on an articulating arm [16] using an clamp developed in-house [6].  

Micro-positioning of the probeheads can be performed by changing the position of the 

XYZ mounting stage by means of program controlled step motors, introduced by  

Vandenabeele et al. [16]. 
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8.2.2. Samples 

Objects with irregular surfaces are difficult to map and pose a problem for the 

correct focusing of the system. To avoid this issue during this phase of development, 19th 

century porcelain cards are used (Figure 8.2), as these are flat. Porcelain cards were used 

as publicity cards or for announcements in the 19th century. They consist of a card board 

that is first covered with a layer of lead white and then decorated by hand using pigments 

such as vermilion, chrome yellow, red lead, lead white, Prussian blue, etc.. Historical 

details of these cards are described elsewhere [17]. 

zzzz 
yyyy 

xxxx 

Raman spectrometerRaman spectrometerRaman spectrometerRaman spectrometer 

Controller to control the Controller to control the Controller to control the Controller to control the     
stepper motorsstepper motorsstepper motorsstepper motors 

Post with articulating armPost with articulating armPost with articulating armPost with articulating arm 

Figure Figure Figure Figure 8888....1111 In situ Raman mapping set-up, developed in-house. The porcelain card is horizontally 
positioned on a table, the system is focused and the probehead can move in a horizontal plane 
above the artefact.  
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8.38.38.38.3 Results and discussionResults and discussionResults and discussionResults and discussion    

 

8.3.1. Development of a Raman mapping system 

The development of a Raman mapping system is not straightforward. Several  

critical parameters are of importance: (i) focusing; (ii) stable positioning system;  

(iii) software for controlling the movements and data-acquisition; (iv) data-processing 

procedures to create the Raman map.  

 

The first factor ‘focusing’ is critical, as a defocused laser beam does not yield  

high-quality Raman spectra. Raman scattering is inherently weak: misfocusing leads to 

low SNR Raman spectra and thus characteristic Raman bands can be masked by the 

noise [18]. The laser beam is focused on the surface of the artefact by changing the 

distance between the probehead and the object of art. Different approaches can be used, 

such as the measurement of the distance towards the surface (profilometry) [19], or by 

evaluating the spectral response. It needs to be mentioned that not only the defocused 

beam is a major issue in the Raman analysis of art objects. Samples such as oil paintings 

have a problem in that they are covered by a varnish layer. The approaches mentioned 

here can lead to a focusing being made on this top layer instead of the layer of interest. 

Nevertheless, using objective lenses with a relatively large depth of focus, the influence 

Figure Figure Figure Figure 8888....2222 19th century porcelain cards, used for the test-measurements of the in situ Raman 
mapping system. 
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of focusing can be reduced [20]. The focusing problem when performing Raman mapping 

has been well-described by Davies (2015) [21].  However, solving this problem is currently 

out of the scope of our research, and therefore, to avoid this problem, porcelain cards are 

appropriate test-cases for the current work because of their flat surface.  

 

To be able to perform Raman mapping, an accurate and stable positioning system 

needs to be created. In cultural heritage research, many of the analysed objects are fragile, 

difficult to manipulate or too large to handle and therefore, it is easier to move the 

instrument probehead relative to the artefact, instead of moving the art object. Due to 

the beneficial use of the fiber-optic probeheads, a system can be developed such that 

these can be moved relative to the object, in a horizontal or vertical way. To make this 

operation feasible, a stable motorized stage is designed (Figure 8.1). Thus, the (flat) 

porcelain card is horizontally positioned on a table, the system is focused and the  

probehead can move in a horizontal plane above the artefact.  

 

The set-up can be operated by the in-house developed software which permits the 

control on the one hand the movements of the stepper motors (for stable and reliable 

positioning) and on the other hand the data acquisition. Both functions need to be  

well-coordinated, to be sure that the data recording of each spectrum is properly  

positioned. When performing a mapping experiment, typically a large number of spectra 

is recorded consecutively, and the measurement time per spectrum is kept as low as 

possible (in these experiments, typically 3 accumulations of 5 seconds). Moreover, the 

software also allows for the correct spectral calibration of the spectral data [22]. 

 

The large number of spectra in a Raman map has not only an influence on the data 

acquisition, but also on the post-measurement data processing. A Raman map typically 

is composed of hundreds to thousands of spectra and manual examination of every  

spectrum is impossible. Therefore, a well-structured data-processing protocol is needed.  
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8.3.2. Protocol for the creation of a Raman map 

Our data processing protocol consists of 4 essential steps: (i) importing the data in 

the software; (ii) visualisation of the dataset; (iii) extraction of variables of interest and 

(iv) creation of a Raman image.  

 

Correctly importing the spectra into the software (Matlab) is evidently a crucial 

step: the spectra need to be accurately read and linked to their x, y coordinates to create 

the appropriate Raman map. In a second step, it is convenient to be able to visualize the 

spectral data. Thus, the analyst is able to see the spectral quality, and to observe the 

different types of spectra that are present, to assist in selecting the variables of interest. 

Spectra can be plotted in a 3D plot, the average spectrum can be plotted or one can 

examine all the spectra separately (Figure 8.3). Creating an average spectrum can be 

useful when degradation phenomena are investigated: a direct evaluation can be made 

whether degradation processes occurred. It has to be remarked that making a 3D-plot is 

not always the best option when dealing with large datasets, as creating such a plot 

requires quite some computing time and small details are not easily observed in the large 

plot containing many spectra. 

 

Figure Figure Figure Figure 8888....3333 Visualisation methods to easily select the variables of interest. 
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Before extracting the variables of interest, sometimes a spectral pretreatment can 

be useful, as the spectral signal may originate from different processes (Raman scattering, 

cosmic rays, fluorescence, etc.). Moreover, because of the large number of spectra, they 

are typically recorded using short measurement times, the spectral quality  

(signal-to-noise ratio) is often rather poor. Preprocessing functions, such as baseline  

correction, smoothing, or taking the derivative can assist in avoiding these interferences. 

 

After visualization of the spectra and appropriate spectral preprocessing, the data 

for Raman mapping can be selected. It is possible to select univariate processing if  

spectral regions of interest are known. On the other hand, when using multivariate  

methods, the whole spectrum is used for the data extraction. 

 

Univariate analysisUnivariate analysisUnivariate analysisUnivariate analysis monitors one variable per spectrum. Different extraction  

methods are illustrated in Figure 8.4a. The selection of the method depends on the  

research question. In most of the cases, the selected variable corresponds to the Raman 

band intensity at a specific wavenumber. This approach can eventually be fine-tuned or 

modified by performing a (local) baseline correction, or by selecting the maximum or 

average intensity over a small window (to diminish the influence of slight shifts in the 

Raman spectrum). For other applications, it can be of interest to study the exact Raman 

band positions, as these can eventually indicate some degradation phenomena  

(e.g. photodegradation of realgar) or stress factors (e.g. in polymers used in contemporary 

art). The functions EPos or ENpos determine a specific Raman wavenumber within the 

region of interest and can result in important information about the ongoing degradation. 

To demonstrate the success of univariate extractions, a Raman mapping experiment has 

been performed on a 1.2 x 1 cm region on one of the porcelain cards. The characteristic 

band of lead white (2PbCO3·Pb(OH)2) at 1050 cm−1 has been selected for the processing 

to be able to create the Raman map. Figure 8.4b represents the result of different  

extraction methods. The approaches are illustrated in Figure 8.4a and they are described 

in more detail in Table 8.1. It seems that in this particular case the functions ENet and 

ENArea deliver the best results.  
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Table Table Table Table 8888....1111 Overview of the different extraction methods of a single variable. 

 

Multivariate processingMultivariate processingMultivariate processingMultivariate processing takes the entire spectrum into account instead of a single 

value. This approach can be of interest if many low quality spectra are present, for 

instance, when very short measuring times per spectrum were used. If the signal-to-noise 

ratio (SNR) is low, but sufficient to discriminate between different types of spectra/ 

materials, cluster analysis can be used to group similar spectra. Once good classification 

is achieved, representative spectra of each group can be examined and identified. It is 

even possible to average all the spectra of the same cluster, to obtain a better  

signal-to-noise ratio, as thus the influence of shot noise is reduced.  

 

Extraction methodExtraction methodExtraction methodExtraction method    DescriptionDescriptionDescriptionDescription    

Evalue Extraction of the Raman intensity at a fixed Raman wavenumber 

EMean For the characteristic wavenumber range, the average Raman  
intensity is calculated 

EMax Determination of the maximum Raman intensity within the  
wavenumber region of interest 

ENet Determination of the net Raman intensity within the wavenumber 
region of interest 

EArea  Calculation of the total band area (including net and background 
intensity) within the region of interest 

ENArea Calculation of the net Raman band area within the region of interest  

EPos A specific Raman wavenumber is saved of which its Raman intensity 
(sum of net and background intensity), within the selected Raman 
wavenumber range, is the highest  

ENPos A specific Raman wavenumber is saved of which its net Raman  
intensity, within the selected Raman wavenumber range, is the  
highest.  
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EValue EMean 

ENArea 

ENet EMax 

EArea EPos ENPos 

EArea EMax 

EMean 

ENArea 

ENet 

ENPos EPos 

EValue 

Figure Figure Figure Figure 8888....4444b b b b Application of the univariate extraction methods for the illustration of the 
distribution of lead white (characteristic band at 1050 cm−1) on the porcelain card. 

Figure Figure Figure Figure 8888....4444aaaa Univariate extraction methods for specific variables. 



   

155 

 

The possibility of multivariate analysis in this work is based on K-Means clustering. 

In contrast to hierarchical methods, the number of clusters needs to be defined  

beforehand. The clustering calculates the city block distance (i.e. the sum of absolute 

differences, Equation (4)) between the centroid and the individual spectra [23,24]. By 

using the K-Means clustering algorithm, each spectrum is assigned to one of the clusters, 

and the selected variable corresponds to the number of the cluster. 

 

;(<, >) = ∑∣<A − >A∣
B

A=1
 (4) 

 

The last step in data-treatment is the actual creation of the Raman map. This 

basically corresponds to colour-coding the selected variable and plotting it according to 

the coordinates on the map. For this, a function is created to simply map the data series 

in a 2D plot using these extracted data. A Raman map can be constructed by a single 

variable or visualising multiple variables in one map. For demonstration, on a porcelain 

card, an area of 60 x 20 steps is mapped using the 785 nm laser with a measurement 

time of 9s at each point. Three characteristic Raman bands are considered for further  

investigation and extracted with the ENet function: (i) 262 cm−1 of vermilion (HgS);  

(ii) 1050 cm−1 of lead white (2PbCO3·Pb(OH)2) and (iii) 536 cm−1 of Prussian blue 

(Fe4[Fe(CN)6]).  

 

As mentioned, different maps (single or multiple variables) can be produced.  

Figure 8.5a represents the Raman map of a single variable illustrating the distribution 

of the characteristic Raman band of vermilion (262 cm−1). A good image can be obtained 

for a single variable but also for multiple ones, as shown in Figure 8.5b.  
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It is clear that the proposed mapping processing method is very successful. When 

an in situ Raman mapping system is considered, not only the processing of this large 

dataset is of importance and it can be expected that the measurement area of interest  

(on an art object) can be large in size. As the access to the material is often limited, it 

needs to verify that in short acquisition time good Raman images can be obtained. For 

this purpose, an area of 50 x 30 points, where both vermilion and Prussian blue are 

present, is mapped with the 785 nm laser. This area is analysed twice, once with a 

measurement time of 3 accumulations of 3 s each and once with a single accumulation of 

1 s (Figure 8.6). Both the single variable Raman images of both compounds as the  

multivariate results, reveal that the 1 x 1 s measurement is too short for the proper 

identification of Prussian blue. It appears that the large difference in scattering efficiency  

between vermilion and Prussian blue seems significant. When dealing with weak Raman 

scatterers, a good quality image is rarely obtained for a single scan. On the other hand, 

it is proven that while measuring for only 9 s on each point, a relatively good image can 

be acquired. To achieve these results, the total measurement time is also largely  

aaaa bbbb 

Figure Figure Figure Figure 8888....5555 (a) Map of a single variable illustrating the distribution of the characteristic Raman 
band of vermilion (262 cm−1); (b) Map of a multiple variables illustrating the distribution of the 
characteristic Raman band of vermilion (262 cm−1), lead white (1050 cm−1) and Prussian blue 
(536 cm−1). Bands in both images are extracted with the ENet extraction function. 
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influenced by the system repositioning time since at each spot the system needs to  

repositioned which requires valuable set-up.  

 

 

8.48.48.48.4 Conclusions and perspectiveConclusions and perspectiveConclusions and perspectiveConclusions and perspectivessss    

Although the development is a challenging task, the first steps towards an in situ 

Raman mapping system seems to be very promising. The challenges of focusing, system 

positioning, software development and data-processing are well-discussed. As the  

positioning needs to be accurate and as sometimes the samples are too large and fragile 

Vermilion (252 cm−1) Prussian blue (2154 cm−1) 

3x3s 

1x1s 

Figure Figure Figure Figure 8888....6666 Raman maps obtained, with the 785 nm laser, of single variable extraction using the 
ENet function, illustrating the distribution of vermilion and Prussian blue using different 
acquisition times. 
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to be moved, a motorized stage was developed, operated with the in-house software, to 

move the probeheads of the instrument. In addition, the crucial steps for the creation of 

a Raman map, such as visualisation and extraction are described, based on the Raman 

analysis of a porcelain card. The extraction of variables can be performed in a univariate 

(monitoring one variable per spectrum) or multivariate way. The latter proved to be 

helpful when dealing with low quality spectra.  

 

At this stage, the system still requires improvement before being applicable in the 

field. Issues such as autofocus, roughness and complexity of a sample still need to be 

evaluated. In a later phase, the in situ Raman mapping system can be tested and opti-

mised for applications other than to art objects. Questions concerning homogeneity, 

complexity of composition, degradation phenomena, occur not exclusively in cultural 

heritage applications but also in the pharmaceutical sector, gemmology, astrobiology, 

etc. So further tests on different materials will be required to reach a final improvement 

of the system. 

 

In the world of Raman analysis of art objects, point measurements have been so 

far the only possible way to investigate samples in situ. Despite the fact that the  

development of an in situ Raman mapping system is still in its preliminary phase, the 

results obtained are positive results and support further development. As real world 

samples are often more complicated, this chapter was only a starting point for a complete 

development. Criteria such as autofocus, larger positioning system, etc. still need to be 

treated. One of the first optimisation steps towards the applicability in the field  

concerns the merging of microscopic information with molecular distribution. At this 

time, only chemical images are created during the in situ Raman mapping and it would 

be of great interest to be able to relate a microscopic image with the obtained molecular 

image. For this purpose, in the next chapter we try to merge the portable Raman map-

ping system with the Hirox microscope system involving the Hirox microscope set-up 

and this will be discussed in the next chapter.  
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Chapter 9  
 
In situ combination of microscopic and molecular imaging: 
proof-of-concept 
 

In situ Raman point analyses have extensively proven their success in different 

applications. In this thesis, a portable Raman spectrometer was introduced and applied 

for the examination of art objects. The equipment has been shown to be an excellent tool 

in this field (Chapter 4-7) after an extended characterisation and optimisation  

(Chapter 3). In a second stage (Chapter 8), this Raman spectrometer was modified   

further for the creation of an in situ Raman mapping system. 

 

When sampling is limited or not allowed, non-invasive Raman mapping may  

provide useful information on the composition and distribution of materials present at 

the artwork’s surface. In laboratory applications, Raman mapping systems have to face 

the restriction of sample size: the object needs to fit under the microscope and needs to 

be movable by operation of the stage. So, as introduced in previous chapter, the creation 

of an in situ Raman mapping system can overcome this problem. It was described which  

challenges are of importance during the first steps of the development phase. This  

includes issues relevant to the positioning system, software development and data  

processing.  

 

When using the in situ Raman mapping system (Chapter 8), an image is obtained 

of the distribution of (pigment) molecules over the surface. However, it would help the 

interpretation significantly if the obtained molecular distribution could be linked to the 

visual (microscopic) image. Therefore, in this chapter, we try to couple the mobile Raman 

instrument with a high-resolution 3D microscope. The latter instrument provides high-

quality digital images of paint surfaces and is already frequently used in conservation 

practice. 
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9.19.19.19.1 IntroductionIntroductionIntroductionIntroduction    

Innovation in archaeometrical science is a necessity as the interest in  

non-destructive methods is increased intensively. Chemical characterisation by Raman  

spectroscopy already has made a big step forward in its applicability in this field. This 

is noticeable by the large number of portable Raman spectrometers which are now  

available on the market. However, automatisation of these in situ instruments is still a 

working point. 

 

Micro-Raman spectrometers, developed for laboratory experiments, are often 

equipped with an automated system. In this way, the analyst is able to apply a Raman 

mapping or Raman imaging method. Mapping records a sequence of micro-Raman  

spectra where the position of the excitation laser is changed between sequential  

measurements [1]. During the raster scanning, the relative positions of the excitation 

beam are recorded along with the Raman spectra, which allows us to spatially address 

each Raman spectrum and then create chemical maps of the sample. The principle of 

Raman imaging consists of the illumination of a larger area, using a defocused beam, 

followed by the selection of a small spectral range (depending on the Raman band of 

interest), utilising filters, to image the area [2]. In the field of art analysis, it is preferred 

to perform Raman mapping experiments, as often the composition of the material is 

unknown before the analysis. Full spectra are obtained and one then has the option to 

decide which variable is of interest to map in the post-processing step, for instance band 

positions, Raman band intensities, etc [2]. 

 

When sampling is allowed the Raman mapping method can be used to gain insight 

into the composition of artworks’ multilayered structures, such as paintings. On the other 

hand, when sampling is not possible, information can be retrieved on the composition 

and distribution of materials present at the artwork’s surface. The problem within  

laboratory applications is the restriction of the sample size, as it needs to be able to fit 

under the microscope objective and be small enough to be moved by the stage [3], unless 

the probehead is moved over the object. 
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Lauwers et al. [4] described a first step towards the development of an in situ 

Raman mapping system. In this process, sampling is not required anymore and it can be 

utilised to map larger objects. The established system still requires improvement in  

different aspects such as autofocus, complexity of samples and combining the set-up with 

microscopic imaging of the object. Here, a first attempt concerning the optimisation of 

the set-up is undertaken. As a proof-of-concept, it is demonstrated how the coupling of 

the portable Raman spectrometer, the EZRAMAN-I-DUAL Raman system, with a high 

resolution digital microscope, Hirox microscope, is accomplished in order to combine 

chemical and microscopic information. 

 

9.29.29.29.2 ExperimentalExperimentalExperimentalExperimental    

In this work, it is aimed to combine The EZRAMAN-I-DUAL Raman system  

(TSI Inc., Irvine CA, USA) with the High-resolution digital microscopy (Hirox Europe). 

Details of both instruments have already been described in previous chapters.  

Experiments have been undertaken on 19th century porcelain  cards (introduced in  

chapter 8), using the 785 nm laser and the STD lens of the Raman spectrometer (focal 

length of 7 mm) and the MXG-2500REZ lens, with a working distance of 10 mm, of the 

Hirox microscope. In order to retrieve qualitative information, including knowledge about  

pigment distribution, the high magnification objective is selected for further the        

development....    

    

9.39.39.39.3 Results and discussionResults and discussionResults and discussionResults and discussion    

A Raman mapping system consists of several features such as stable equipment, 

controlling software for the set-up and recording the data, etc. In general, the working 

principle of performing a mapping is composed of the following steps: (i) image the area 

of interest; (ii) select the area you want to map and write observations/remarks;  

(iii) perform scanning and (iv) finalise with the creation of a chemical image and compare 

it to the microscopic image.  
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If we want to implement this approach in the field, an additional step to the  

creation of the in situ Raman mapping system (described in chapter 8) is needed. Until 

now, a basic motorised set-up has been designed but there is still room for improvement. 

As explained, the first important action in performing a Raman mapping experiment is 

the visualisation of the region of interest. At this moment the experimental arrangement 

does not have a camera/microscope to monitor the surface of the object. The  

implementation of a microscopic camera supports the observation of the area and can be 

used in the future for the development of an autofocus system.  

 

The experiment is based on the integration of an optical microscope, Hirox  

microscope, with the Raman mapping set-up in order to compare the microscopic image 

with the chemical distribution. In an ideal case, a region of interest is first scanned in 

microscopic view, with selected step sizes in the x- and y-direction. After the image is 

recorded, the same region is mapped in dark view (i.e. a Raman mapping). In this way, 

at each coordinate an image and chemical data are obtained which can be combined 

using post-processing software. However, the merging of the portable EZRaman-I-Dual 

Raman system with the Hirox microscope is not straightforward. Firstly, a solution needs 

to be found to guide the excitation beam via the microscope onto the sample. When a 

good pathway has been achieved, it is important to check the yield of the Raman signal 

and to ascertain whether or not the SNR is good. These issues will be discussed in this 

session. 

9.3.1. Combining the portable Raman spectrometer and the Hirox microscope 

Combining the two set-ups is not straightforward, as different constrains are  

encountered. Firstly, it was necessary to determine from which side the Hirox microscope 

could be approached without damaging the instrumentation. Figure 9.1a (standard  

illumination) represents a schematic overview of the Hirox microscope, where two  

possible access points can be considered, namely, access from the top or from the side, 

where the white light source enters the microscope. The first access point, however, is 

too dangerous because we do not want to jeopardize the microscope. The other access 

seems to be feasible after repositioning the fibre bunch at the other possible holder and 

after unmounting the part that contains the illumination optics (Figure 9.1a).  

Considering this access point, we first had to determine if the microscope objective was 
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corrected at infinity, using a collimated beam, in order to calculate whether additional 

lenses are needed. Tests have shown that the spot size on the sample was too large, which 

means that the objective is not infinity corrected. Consequently, additional lenses were 

needed to obtain a focused beam.  

From a more technical point of view, a way needs to be found to image the light 

field at Flaser onto the sample (Figure 9.1a). At this point, a second constraint had to be 

considered. The laser light should pass through the fixed aperture of the Hirox  

microscope (with a diameter фaperture) without losing laser intensity. The beam  

divergence was optimised at the intermediate imaging plane in order to fill the entire 

pupil of the Hirox microscope objective, i.e. optimising the étendue at the intermediate 

plane (Equation (4)).  

 

 Etendue =  Ѕ ×  Ω (5) 

with  S, the area of the entrance pupil and Ω, the solid angle 

Figure 9.1bFigure 9.1bFigure 9.1bFigure 9.1b    Picture of the merged set-up of the EZRaman-I-Dual Raman system and the Hirox 
microscope. 

L1 

L2 

M1 

M2 

M3 
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In addition, the alignment of the set-up is of great importance to avoid energy loss. 

Taking these remarks into account and with grateful assistance from Prof. Dr. Nicolas  

Le Thomas (UGent, Faculty of Engineering and Architecture, Department of Information 

Technology (INTEC), Photonics Research group), the portable Raman spectrometer and 

the Hirox microscope were combined successfully (Figure 9.1a-b). In this combination, 

the incident laser beam is directed along a collimator (L1, A1 76.2) to create a parallel 

beam and is then guided via two movable silver mirrors (M1, M2). The beam is again 

focused with the aid of a lens (L2, A2 63.5) and then directed onto the sample via the 

fixed mirror (M3), passing a beam splitter, both internal parts of the Hirox microscope, 

through the microscope objective.  

 

After the construction modification, the quality of the Raman signal was evaluated. 

For this experiment, the reference product lead white (2PbCO3·Pb(OH)2) was selected, 

which is a good Raman scatterer. The EZRAMAN-I-DUAL Raman system as a single 

instrument is often applied in situ with a fixed laser power of 50% (31.33 mW). This 

condition is proved to give relatively good Raman results and there is no risk posed of 

damage to the art object. Using the same output power in the combined set-up, no 

Raman signal was observed. To illustrate the output difference between the single  

spectrometer and the combined construction, the laser power was increased to a value of 

63% (103 mW). For both cases, the recorded Raman spectra are shown in Figure 9.2. 

Although this figure clearly demonstrates the loss in Raman signal, the SNR was  

significant for the application of subsequent data treatment that is included in the in 

situ Raman mapping system (chapter 8). The observed weak signal could be the  

consequence of several factors: It might be caused by a small misalignment or, more 

likely, it might be explained by the energy loss of at least 50% at the beam splitter. To 

retrieve better SNR the power can be increased but this may lead to possible damage of 

the optics.  
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9.3.2. Mapping experiment  

The combination of both instruments proved to be successful to record a Raman 

spectrum. In a second step, we wanted to find out if it is essential to focus the laser beam 

at the centre point of the microscopic image. If in one microscopic image multiple  

interesting areas are observed, it would be beneficial to be able to analyse them by only 

moving the probehead of the Raman spectrometer. At the same time, a first estimation 

of the spot size could now be obtained. 

 

In order to evaluate this research question, a Raman mapping experiment was  

performed to analyse the Raman spectral quality, recorded at different areas in one  

microscopic image. Figure 9.3a-c illustrates the microscopic images, taken by the Hirox 

microscope of the mapped area. In this region, only good Raman scatterers (vermilion 

and lead white) were present. In this way, we were sure that the Raman signals would 

be detectable. Before initiating the Raman map, the microscopic image is recorded and 
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Figure Figure Figure Figure 9999....2222    Raman spectra (λ = 785 nm, STD lens, 30 x 3 s, ext. power source) of the reference 
product lead white recorded with a set laser power of 63% by (a) the combined construction of 
the EZRAMAN-I-DUAL Raman sytem and Hirox microsope and (b) the single Raman
spectrometer as used before. 
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afterwards the light of the microscope was turned off because of interference with the 

Raman spectra.  

 

When determining the conditions for the measurement such as the step size of the  

mapping, it is important to estimate the spot size of the laser. For the adapted set-up, 

the spot size of the 785 nm laser measures 38.32 μm (Figure 9.3d), using the  

measurement tool of the Hirox software. The exact spot size determination should be 

made by a laser profile, using a mirror as substrate. However, it can already be said that 

the spot is at least half the size of the original beam (i.e. 0.074 ± 0.002 mm [5]), although 

it can vary depending on the scattering of the sample and laser power. In Figure 9.3d a 

second spot is visible as a result of internal reflection (possibly ascribed to a ghost image 

from the beam splitter) and could not be avoided. Fortunately, this reflection beam is 

weak and has no influence on the Raman results.   

38.32 μm 

a. b. 

c. d. 

Figure Figure Figure Figure 9999....3333 Microscopic images taken with the Hirox microscope of a piece of a 19th century 
porcelain card. In figure (a)-(c) the mapped area is marked. Figure (d) illustrates the spot size 
of the 785 nm laser after coupling the EZRaman-I-Dual Raman system and the Hirox microscope. 
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After spot size determination, a Raman mapping could be executed with a  

measurement condition of 3 accumulations with a measurement time of 60 s for each 

spot. Shorter analysis time would result in poor quality Raman spectra, as the Raman 

signal is already weak due to the low laser power (illustrated in Figure 9.2). Therefore, 

a limited amount of measurement points (20 x 20 points) was selected to keep the total 

measurement time reasonable. The data were processed via the univariate extraction 

method ENArea [4] for the specific variable of vermilion (the Raman band at 252 cm−1) 

and lead white (Raman band at 1050 cm−1) of which a Raman map is created  

(Figure 9.4). A good Raman map was obtained of the region of interest. Lead white was 

dispersed over the total region, as expected. However, the representation of the  

distribution of vermilion is missing at the border of the microscopic image. This could be 

a consequence of signal loss due to misalignment, an improper focusing or the intensity 

of Raman signal being lower than the detection limit. Based on our current observations, 

no clear answer can be given whether it is necessary to position the laser beam exactly 

to the centre point of the image. A better calibration with a homogenous sample is 

necessary, in order to correct the profile of the intensity map. To avoid this issue, the 

combined set-up can be improved by fixing the Raman probehead, the Hirox microscope 

and the intermediate optical system as one ensemble and move it as a whole.  

 

 

200 μm 
Vermilion Lead white 

Figure Figure Figure Figure 9999....4444 Raman map obtained, with the 785 nm laser, of single variable extraction using the 
ENArea function, illustrating the distribution of vermilion and lead white. 
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9.49.49.49.4 ConclusionsConclusionsConclusionsConclusions    

A proof-of-concept study was performed in order to merge microscopic images with 

chemical images for in situ application. The challenging attempt to combine  

High-resolution digital microscopy, the Hirox microscope, with portable Raman  

spectroscopy, applying the EZRaman-I-Dual Raman system, proved to have a successful 

outcome. The junction was accomplished by implementing different optics, resulting in 

some signal loss. In addition, information about the spot size and the scanning area, 

within one image, was obtained.  

 

It was possible to determine whether the coupling of the two set-ups was possible 

and a reasonable Raman signal could be retrieved. However, the experiments were   

performed with a good Raman scattterer, lead white, for which a relatively poor signal 

yield was obtained. This observation indicates possible problems could arise when  

investigating weak scatterers. So far, only the Raman probehead is moveable via the step 

motors, which limits the accessible field of view at the sample. As we want to apply the 

modified instrument for in situ analysis, it needs to be improved for larger objects such 

as paintings, but this is outside the scope of this proof-of-concept study. This  

improvement could be achieved by rigidly combining the Raman probehead with the 

Hirox microscope and the intermediate optical system and moving this entire ensemble 

simultaneously over the object. In this manner, large samples can be investigated with a 

high spatial and spectral resolution. However, in the case of time restrictions, it is  

probably better to depict regions of interest and investigate them with high spatial and 

spectral resolution.  

 

In general, it was proven that it is possible to couple a portable Raman system with 

a High-resolution digital microscope, which has a lot of potential  for art analysis. Still, 

several optimisation steps need to be executed to have an optimal tool for this purpose. 

The following three steps for improvement can be considered: (i) adjustment of the  

system to make it more user-friendly; (ii) improvement the data-treatment;  

(iii) enhancement of the speed of analysis. Usability is a key parameter in method devel-

opment. For this reason, the implementation of an autofocus and automatic adjustment 
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of the set-up will advance this aspect. The latter includes the improvement of the  

positioning and implement the possibility to switch between the two lasers. In addition, 

automatisation of the data-treatment would be of great help and is indirectly linked to 

the enhancement of the usability. Data-processing algorithms need to be programmed in 

order to combine the microscopic image with the chemical image. Also, during a Raman 

mapping measurement a large dataset is recorded and thus the development of an auto-

identification software would make it possible to obtain information rapidly about the 

materials and their distribution. 

 

A third, but no less important, aspect is related to the reduction of the  

measurement time and this can be achieved in several ways. During a Raman mapping 

experiment, a matrix of m× n point analyses is obtained. Consequently, for an m x n 

mapping, the overall measurement time equals m× n × t with t the acquisition time per 

spectrum), plus the time needed for repositioning of the probehead. A first reduction is 

based on practical issues and observations with other methods (visual or analytical) can 

reduce the field of interest A second time reduction can be achieved by the introduction 

of a fast scan method which can reduce the time by continuously moving the motors and 

recording the Raman spectra at regular time intervals. A final option is based on  

recording several Raman data at the same time which can be achieved by adjusting the 

probehead-design by introducing an extra optical component in the probehead which 

modifies the laser spot into a linear focused light source. The system is combined with a 

linear array of fibese, which is carefully aligned and oriented along the linear laser beam. 

Thus, the Raman signals that hit different fibres originate from different volumes being 

analysed along the laser beam. The linear fibre bundle is projected along the entrance 

slit of the spectrometer and the signal of each fibre hits the 2-dimensional (CCD) in a 

different position, allowing us to record several spectra simultaneously. 

 

However, some limitations of a Raman mapping system cannot be solved and need 

to be kept in mind while performing experiments. For each Raman mapping spectrum 

the acquisition time at each coordinate is the same. The fixed measurement condition is 

set as such to avoid pigment degradation/burning of sample by the laser wavelength and 

detector saturation. Detector saturation is often an issue when good Raman scatterers 

are present but has the disadvantage that weak Raman scatterers are not detected.  
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Chapter 10  
 
Conclusions and future prospects 

  
 

Preservation of cultural heritage is considered important as this reflects the  

historical and present culture. For many years, non-destructive, in situ scientific research 

on historical and archaeological objects was not possible but this is now gaining more 

and more interest. The study of these materials supports restoration/conservation  

processes and, at the same time, historical and visual examination assists in the  

interpretation of scientific data. Close collaboration between different research areas is 

very important for cultural heritage research. In this PhD thesis, we wanted to contribute 

to the spectroscopic investigation of cultural heritage objects with a focus on painted 

artefacts.  

 

Through history, many artists have used paint as a medium for expressing their 

ideas, given its colourful appearance. Paint is a solution, suspension or colloid, and  

consists of three components: a colourant (i.e. dye, pigment or lake), a binder and a 

solvent. It is applied in different ways to a range of substrates such as walls, parchment, 

wooden panels, etc. Pigments are very attractive targets for scientific studies and can be 

studied using a broad range of analytical techniques, which comprise direct methods as 

well as approaches that require destructive sampling. Direct investigation of art objects 

is mostly preferred as it is assumed to be non-destructive. The demand for non- 

destructive, mobile methods has increased significantly; therefore, we have concentrated 

our research on the application of mobile Raman spectroscopy for the investigation of 

art objects. This PhD thesis can be an informative guideline to help the decision as to 

whether a specific Raman spectrometer is an ideal instrument for a specific type of  

research. 

 

In general, we want to improve the possibilities/applicability of portable Raman 

spectrometers for art analysis. Acquiring full knowledge of the in situ approach is  
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regarded as indispensable to making the technique work as efficiently as possible an to 

the best of our knowledge, we were the first to write a protocol on how to fully  

characterise a mobile Raman instrument. The exploration started with delineating which 

aspects need to be considered when selecting a mobile Raman spectrometer for in situ 

art analysis (Chapter 3). The case was made for the adoption of a dual laser (785 and 

532 nm) portable Raman spectrometer, the EZRaman-I-Dual Raman system from which 

it was deduced that a balance has to be found between different parameters, such as 

practical limitations and  spectroscopic characteristics for the specific case of cultural 

heritage objects that forms the focus of the research. 

 

The suitability of a Raman spectrometer is not only dependent upon several  

operational parameters, it is also crucial to examine its versatility of usage as the method 

should be applicable for various types of art objects with different shapes, sizes and 

composition. Thus, characteristics that are important for the appropriate in situ analysis 

were evaluated as well. For this reason, the appropriateness of the introduced Raman 

instrument for different case studies (simple and complex painted materials, gemstones) 

including testing and optimisation where needed (Chapter 4 and 5). Aspects such as 

measurement time (relative to the quality of the Raman spectrum), suitability of the 

type of laser, instrumental stability, beneficial presence of two lasers, etc. were examined. 

Extensive knowledge of these parameters helps to apply the Raman spectrometer in the 

most efficient and rapid way. However, each instrument has its limitations and ad-

vantages (Chapter 6), so it is always important to define a priori which aspects are 

relevant for the type of research being undertaken.  

 

Looking back at the suggested protocol, the success of a Raman instrument in these 

applications is dependent on the research question. However, sometimes the use of a 

single technique is not satisfactory. In the case of complex painted materials, especially 

oil paintings, it has been illustrated that in situ Raman analysis is not always  

straightforward. To achieve a more complete characterisation it is often beneficial to use 

complementary techniques such as X-ray fluorescence spectroscopy (XRF, elemental  

information) or Hirox microscopy (microscopic images), as illustrated in this thesis 
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(Chapter 7). It is noteworthy that the complementary use of the Hirox microscope proved 

its success in improvement of positioning and leading to better interpretation of the data.  

 

During the second part of this thesis, the applicability of portable Raman  

spectrometers for art analysis was further developed. Hitherto, only point  

measurements could be performed in situ. Here, novel steps were undertaken that  

included further optimisation of the Raman system set-up. A first step towards the  

development of in situ Raman mapping system was made with main focus on the data-

treatment, which is important for the creation of a Raman map (Chapter 8). At this 

stage it was not possible to relate microscopic information with the molecular  

distribution of the components. Consequently, in a second step, it was aimed to merge 

the set-up of the portable Raman spectrometer, the EZRaman-I-Dual Raman system, 

with a high-resolution digital microscope (Hirox), to solve this issue (Chapter 9). This  

implementation was not straightforward and still needs improvement but the first  

development steps were successful.  

 

As a final thought, it can be concluded that this research has made significant steps 

forward, but still more work needs to be completed before having a fully operational 

system and protocol. This PhD research has made it clear that no obvious solutions exist 

for the characterisation and optimisation of portable Raman spectrometers for art  

analysis. Further development of the in situ Raman mapping methodology can only be 

established through extensive testing of different applications. Therefore, this thesis may 

not be seen as an end product, but rather as a first step towards several research  

objectives which can be considered three-fold:  

 

1) Improvement of the positioning system: Aspects such as an autofocus system 

and fast scanning should be implemented. The latter would create the advantage 

of reducing measurement time and still create a Raman map of a sufficient 

quality. 
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2) Further optimisation of the combination setup using the Hirox-Raman: As  

mentioned, the set-up is still in a preliminary phase. So far, it has been  

demonstrated that it is possible to record a Raman signal via a combined  

set-up. The system can be extended to map larger areas both at microscopic 

and molecular levels. This can include integration of the portable Raman  

spectrometer and the High-resolution digital microscope on one stage.  

Consequently, a more accurate positioning would be achieved.  

 

3) Auto-identification of the data: In this thesis, we have only explained the  

data-treatment required to create a Raman map, without considering the  

identification of the molecular components. When performing a Raman mapping 

experiment, a large dataset is recorded and thus it is very time consuming to 

identify all the detected material manually. Therefore, if it were possible to 

implement auto-identification software, information about the materials and 

their distribution could be obtained more quickly. 

 

The autor is convinced that through extensive further research this in situ Raman 

mapping system can be very successful for different applications and thereby many  

research questions can be adressed. 
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Chapter 11  
 
Conclusie en toekomstperspectieven  

 
 

Behoud en beheer van cultureel erfgoed is een wereldwijd belangrijk aspect omdat 

het onze geschiedenis en cultuur reflecteert. Sinds enkele jaren vormt niet-destructief, in 

situ wetenschappelijk onderzoek op kunsthistorische objecten een essentieel onderdeel, 

ter ondersteuning van conservatiestudies. Hierdoor wordt belangrijke informatie 

verkregen over de samenstelling van de objecten en terzelfdertijd dragen historisch en 

visueel onderzoek bij tot de interpretatie van deze wetenschappelijke data. Bijgevolg is 

een nauwe samenwerking tussen deze verschillende onderzoeksvelden van groot belang. 

Dit doctoraatswerk situeert zich in deze interdisciplinair context en draagt bij tot het 

spectroscopisch onderzoek van cutureel erfgoed, voornamelijk tot de analyse van 

geschilderde objecten.  

 

Doorheen de tijd gebruikten artiesten verf als hulpmiddel om hun ideeën op een 

kleurrijke manier tot uiting te brengen. Verf bestaat uit drie componenten: de kleurstof 

(pigmenten, lakken of substraatpigmenten) en het bindmiddel, meestal opgelost in een 

solvent. Het kan aangebracht worden op verschillende wijze, op verscheidene  

ondergronden zoals muren, perkament, houten panelen, enzovoort. De kleurende  

eigenschap van verf wordt hoofdzakelijk bepaald door de gebruikte kleurstoffen. Deze 

kunnen geanalyseerd worden via een ruim gamma aan analytische technieken, bestaande 

uit zowel directe analyses als methoden die staalname vereisen. Direct onderzoek op 

kunstobjecten wordt verondersteld niet-destructief te zijn en wordt veel verkozen boven 

andere. De laatste jaren steeg de vraag naar niet-destructief, mobiel onderzoek beduidend. 

Daarom richtte deze thesis zich tot de toepassing van mobiele Ramanspectroscopie voor 

de studie van kunstobjecten. Dit doctoraatswerk dient als richtlijn om het juiste  

Ramaninstrument te selecteren, voor een specifieke onderzoeksvraag. 
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De algemene doelstelling van dit werk omvat de verbetering van de mogelijkheden 

en toepassing van mobiele Raman spectrometers in kunstanalyse. Het is van essentieel 

belang om een volledig inzicht te krijgen in deze in situ methode om zo efficiënt mogelijk 

te opereren. Bijgevolg, werd er een protocol ontwikkeld die een volledige omschrijving 

bevat in hoe een mobiele Ramanspectrometer gekarakteriseerd kan worden. Allereerst, 

werden aspecten aangekaart die belangrijk zijn voor de selectie van een mobiel Raman-

toestel voor in situ kunstanalyse (Hoofdstuk 3). Deze parameters werden uitgelegd aan 

de hand van een draagbare Ramanspectrometer, uitgerust met twee lasers (785 nm en 

532 nm), het EZRaman-I-Dual Raman instrument. De studie toonde aan dat er steeds 

een balans gezocht moet worden tussen verschillende parameters, zoals praktisch  

beperkingen en spectroscopische karakteristieken. 

 

Niet enkel deze parameters zijn belangrijk voor de ultieme geschiktheid van een 

Ramanspectrometer. De veelzijdigheid van een Ramaninstrument is ook van belang: de 

methode moet toegepast kunnen worden op verschillende kunstobjecten met diverse  

afmetingen, vormen en samenstelling. Karakteristieken die belangrijk zijn hiervoor, met 

de nadruk op in situ analyses, dienen daarom ook onderzocht te worden. Dit omvatte 

het evalueren van meettijd (ten opzichte van de kwaliteit van het Ramanspectrum), 

geschiktheid van lasertype, stabiliteit van het toestel, enz. Deze aspecten werden getest, 

op basis van verschillende case studies (eenvoudige en complexe materialen), om de  

bekwaamheid na te gaan van de geïntroduceerde Ramanspectrometer en waar nodig  

werden deze geoptimaliseerd (Hoofdstuk 4, 5 en 6). Maar ieder instrument heeft zijn 

voordelen en beperkingen; het is dus steeds belangrijk om vooraf de aspecten te definiëren 

die belangrijk zijn voor het gewenste onderzoek.  

 

Uit bovenstaande analyses, kan er geconcludeerd worden dat het succes van een  

meetcampagne afhankelijk is van de onderzoeksvraag. Bijkomstig, werd er  

aangetoond dat soms één analyse techniek niet voldoende was om tot de gewenste  

resultaten te komen. In het geval van objecten met een complexe samenstelling, zoals 

olieverfschilderijen, werd het duidelijk dat de interpretatie van in situ Raman- 

spectroscopie niet altijd eenvoudig was. Om een complete karakterisering van materialen 

te verkrijgen is het vaak voordeliger om daarnaast complementaire technieken aan te 
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wenden, zoals X-straal fluorescentie spectroscopie (elementaire informatie) of Hirox  

microscopie (microscopische beelden) (Hoofdstuk 7). De introductie van Hirox  

microscopie heeft duidelijk zijn meerwaarde aangetoond in de verbetering van positione-

ring en interpretatie van data.  

 

In het tweede deel van de doctoraatsthesis, lag de focus op verdere verbetering van 

de toepasbaarheid van mobiele Ramanspectrometers voor de analyse van kunst. In situ 

analyses waren tot nu toe enkel mogelijk via puntmetingen. In dit werk, werden vernieu-

wende stappen ondernomen om de opstelling van de Ramanspectrometer te verbeteren. 

Een eerste belangrijke stap was de ontwikkeling van een in situ Ramanmapping. De focus 

lag de gegevensverwerking, die belangrijk was voor de creatie van een Ramanmap  

(Hoofdstuk 8). In deze fase waren we nog niet in staat om microscopische informatie te 

koppelen met moleculaire verdeling van componenten. Daarom werd er in een volgende 

stap gestreefd naar een opstelling waarbij de mobiele Raman spectrometer, het  

EZRaman-I-Dual Raman system,  en de hoge resolutie, digitale microscoop (Hirox), ver-

enigd werden. Deze koppeling was niet eenvoudig en is nog aan verbetering toe, maar de 

eerste ontwikkelingen zijn veelbelovend.  

 

Om af te sluiten, kunnen we stellen dat dit onderzoek enorme vooruitgang heeft 

geboekt maar dat nog verder ontwikkelingen moeten uitgevoerd worden vooraleer we 

kunnen spreken van een volwaardig, operationeel systeem en protocol. Gedurende de 

thesis werd het duidelijk dat het karakteriseren en optimaliseren van mobiele  

Ramanspectrometers voor kunstanalyse, geen simpele taak was. Voortgang in het gehele 

ontwikkelingsproces van een in situ Ramanmapping methodologie, kan enkel verkregen 

worden door het verder testen op verschillende toepassingen. Daarom beschouwen we 

deze thesis niet als een eindproduct maar eerder als een vertrekpunt naar verschillende 

onderzoeksdoeleinden. Toekomstige studies kunnen onderverdeeld worden in drie:  
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1) Verbetering van positioneringssysteem: Aspecten zoals een autofocus en een fast 

scanning methode zouden geïmplementeerd moeten worden. Deze laatste creëert 

de mogelijkheid om de meettijd te verkorten maar nog steeds een Ramanmap 

te verkrijgen van goede kwaliteit.  

 

2) Optimaliseren van de Hirox-Raman opstelling: Zoals eerder vermeld, is deze  

opstelling slechts in een eerste ontwikkelingsfase. Tot nu toe zijn we erin ge-

slaagd om een Raman signaal te detecteren via de gecombineerde opstelling. 

Het systeem kan nog uitgebreid worden om grotere regio’s te onderzoeken op 

microscopische en moleculair niveau, door de integratie van beide toestellen in 

een opstelling. Dit zou leiden tot een betere en meer accurate positionering.  

 

3) Auto-identificatie van de data: Hoewel, de identificatie van de moleculaire  

componenten een belangrijk aandeel heeft tot de interpretatie van de Raman 

resultaten, richtte deze doctoraatsthesis zich voornamelijk tot de data- 

verwerking om een Ramanmap te creëren. In een verdere ontwikkelingsfase zou 

de aanwezigheid van een auto-identificatie systeem zeker een meerwaarde  

bieden. Door de grote dataset die gecreëerd wordt tijdens een Ramanmapping, 

is een manuele identificatie van alle componenten zeer tijdrovend zijn. Deze 

extra toevoeging kan ervoor zorgen dat terzelfdertijd informatie over de  

gebruikte materialen en hun distributie wordt verkregen en dit op een snelle 

manier.   

 

Ik ben er dus van overtuigd dat verder, intensief onderzoek kan leiden tot een succesvolle 

ontwikkeling van een in situ Ramanmapping system die toegepast kan worden in  

verschillende domeinen en dus resulteren in zeer kwaliteitsvolle analyses.  
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Na veel zwoegen ben ik toegekomen aan het schrijven van de laatste eindjes, mijn 

dankwoord. Je zou denken dat dit het meest eenvoudige onderdeel is van heel het  

doctoraat maar je wil natuurlijk geen mensen vergeten te bedanken. 

 

In eerste instantie wil ik mijn promotor, Prof. Dr. Luc Moens, en co-promotor 

Prof. Dr. Peter Vandenabeele bedanken. Zonder hun hulp had ik nooit de gelegenheid 

gehad om de wereld van onderzoek te ontdekken. Bedankt voor deze leerrijke ervaring 

en alle kansen die ik gekregen heb om mezelf te ontwikkelen, zoals het ontmoeten van 

buitenlandse collega’s via congressen, meettijden op verplaatsing, etc. Dit was natuurlijk 

niet mogelijk zonder de financiele steun van het GOA (geconcerteerde onderzoeksactie 
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nog een speciaal dankwoordje willen toewijzen aan Peter. Bedankt, voor uw deur die 

steeds open stond voor het oplossen van problemen of een gezellige babbel. Ook de kleine  

duwtjes in de rug die u op de gepaste tijden gaf, waren meer dan welkom.  

 

Een doctoraat voer je vanzelfsprekend niet helemaal in je eentje uit: het zou niet 

zo vlot en aangenaam verlopen zijn zonder de dagelijkse steun van mijn collega’s van de 

Ramangroep: Alessia, Anastasia, Jolien, Possum, Mafalda en Sylvia. Zij steunden me 

door een aantal moeilijke perioden en waren altijd in voor een babbeltje, een aperitiefje 

of samen te lunchen. Een extra bedankje wil ik uiten aan Alessia. We zijn min of meer 

samen gestart aan ons doctoraat en dit heeft toch direct een band gecreëerd! We hebben 

samen toffe momenten op conferenties gehad (met aansluitende reisjes) en andere leuke 

momenten. Je was altijd zo lief om voor me in te vallen waar nodig en te dienen als 

luisterend oor wanneer ik het nodig had. Na ons doctoraatavontuur hoop ik nog steeds 

toffe dingen samen te doen, hier of in Italië! 

 

Ook zou ik enkele andere onderzoeksgroepen willen bedanken. Eerst en vooral wil 

ik alle collega’s van S12 (XMI, A&MS en ESA groep) bedanken voor alle toffe momenten 

op onze departementsactiviteiten en in het bijzonder Tine, Kris en Sylvia. Jullie zijn er 
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keer op keer in geslaagd om superactiviteiten te organiseren en deze in goede banen te 

leiden. Daarnaast wil ik ook nog Philip Brondeel en Davy de Pauw bedanken voor hun 

hulp bij de optimalisatie van de mobiele Ramanspectrometer. Zonder hun had ik de 

opstelling en het gebruik van de spectrometer niet kunnen verbeteren. Maar ook de  

medewerking van Nicolas le Thomas (UGent, Faculty of engineering and architecture, 

department of information technology (INTEC), photonics research group) wordt enorm 

geapprecieerd. Dankzij hem zijn we er in geslaagd om onze in situ Raman mapping  

opstelling te koppelen met de Hirox microscoop. Verdere samenwerking kan leiden tot 

enkele mooie toekomstplannen.    

 

Bijkomstig, wil ik nog enkele collega’s van het binnen- en buitenland bedanken. 

Dankzij volgende mensen had ik de kans om enkele unieke stukken te analyseren en zo 

tot interessante resultaten te komen. Bedankt Vincent Cattersel (UA, faculteit ontwerp-

wetenschappen: Conservatie-restauratie) en Ludo Vandamme (Openbare bibliotheek 

Biekorf, Brugge) voor de waardevolle en plezante samenwerking. Dankzij jullie hadden 

we de gelegenheid om enkele bijzondere manuscripten (De Civitate Dei, De kronieken 

van Vlaanderen, Cisterciënzer manuscripten) te analyseren en zo onze mobiele  

Ramaninstrumentatie te verbeteren. Daarnaast wil ik Antonio Candeias (University of 

Evora, Hercules Laboratory) bedanken. Zonder hem hadden we nooit de opportuniteit 

gehad om bij te dragen tot de belangrijke restauratiecampagne van het 16de eeuwse  

altaarstuk, dat te bezichtigen is in de kathedraal van Funchal (Madeira). Als ook de 

mogelijkheid om een spectroscopische bijdrage te leveren omtrent de mooie collectie van 

glyptieken die tentoongesteld zijn in het museum ‘Quinta das Cruzes’ (Funchal, Madeira, 

Portugal). Deze goede collaboratie heeft ervoor gezorgd dat er enkele mooie resultaten 

konden uit voortvloeien. Natuurlijk wil ik ook Germana Barone en Danilo Bersani  

(University of Parma) bedanken voor de ondersteuning tijdens de analyses van muur-

schilderingen van Sala vaccarani (Catania, Sicilië). Finaal wil ik nog mijn dank betuigen 

aan Prof. Dr. Howell Edwards. Dankzij zijn inspanning kan ik trots zijn op de kwaliteit 

van mijn geschreven tekst. 

  

Tenslotte wil ik ook nog de conservators (KIK-IRPA), die instaan voor de  

restauratie van het Lam Gods, bedanken om ons bij te staan gedurende heel het project. 

Helene en Bart, bedankt om iedere meetdag ter onze beschikking te staan voor al onze 
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vragen en ondersteuning, alsook voor de interpretatie van onze data. Ook wil ik de rest 

van het restauratieteam bedanken voor hun vertrouwen en ondersteuning. Maar dit team 

is niets zonder de nauwe samenwerking met laboratoria. Dankzij de goede begeleiding en 

gastvrijheid van Jana Sanyova (KIK, departement labo) hebben we de kans gekregen om 

analyses te mogen uitvoeren op enkele cross-secties van het Lam Gods. Als ook op leer-

school te gaan in het laboratoria van KIK-IRPA. 

 

Ik heb niet alleen enorme steun gehad van mijn collega’s. Mijn vier jaar durende 

doctoraat had ik nooit tot een goed einde kunnen brengen zonder de hulp van mijn 

vrienden en familie. Zij zorgden steeds voor de nodige afleiding naast de werkuren. Mijn 

ouders, zus, broers, schoonbroers en schoonzussen, schoonouders, neefjes dank ik voor 

alle leuke familie-uitstappen, etentjes, etc. Zo’n grote familie, vol met energie, kan niet 

anders dan plezier betekenen.  

Vriendjes van de chemie, super dat we elkaar nog steeds door dik en dun steunen sinds 

ons eerste jaar unief. Ik zou niet weten wat ik zonder jullie zou doen. De ontspannende 

en lekkere etentjes, gezellige avondjes uit, lekker kletsen met de meiden, … (noem maar 

op); mogen we deze traditie nog lang volhouden! 

 

Als laatste maar wel de allerbelangrijkste steun, al voor 6 jaar, is mijn allerliefste 

partner, Olivier. Je was er altijd om mij thuis op te vangen: goed of slecht gezind (en ik 

weet dat is niet altijd eenvoudig). Je hebt me altijd door dik en dun gesteund en toverde 

een lach op mijn gezicht wanneer ik het nodig had. Als ik het minder zag zitten, was jij 

er om mijn doorzettingsvermogen aan te wakkeren en te zorgen dat ik verder deed op 

een succesvolle manier! Zeker in de laatste maanden, met alle stress van onze  

verbouwingen, schrijven van de thesis en het voorbereiden/verwelkomen van onze  

prachtige dochter Lotte. Er zijn onvoldoende woorden om je te bedanken!!   

 

Finaal wil ik nog even vermelden dat ik de afgelopen vier jaar een enorme levens-

ervaring heb opgedaan en dat ik uitkijk naar de volgende mijlpalen in mijn leven, die me 

nog staan te wachten staan. OP NAAR HET VOLGENDE AVONTUUR! 

Debbie 
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