Advanced search
1 file | 790.41 KB

bayesQR : a Bayesian approach to quantile regression

Dries Benoit (UGent) and Dirk Van den Poel (UGent)
Author
Organization

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 790.41 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Benoit, Dries, and Dirk Van den Poel. 2017. “bayesQR : a Bayesian Approach to Quantile Regression.” Journal of Statistical Software  76 (7): 1–32.
APA
Benoit, Dries, & Van den Poel, D. (2017). bayesQR : a Bayesian approach to quantile regression. JOURNAL OF STATISTICAL SOFTWARE  , 76(7), 1–32.
Vancouver
1.
Benoit D, Van den Poel D. bayesQR : a Bayesian approach to quantile regression. JOURNAL OF STATISTICAL SOFTWARE  . Foundation for Open Access Statistic; 2017;76(7):1–32.
MLA
Benoit, Dries, and Dirk Van den Poel. “bayesQR : a Bayesian Approach to Quantile Regression.” JOURNAL OF STATISTICAL SOFTWARE  76.7 (2017): 1–32. Print.
@article{8506477,
  author       = {Benoit, Dries and Van den Poel, Dirk},
  issn         = {1548-7660},
  journal      = {JOURNAL OF STATISTICAL SOFTWARE  },
  language     = {eng},
  number       = {7},
  pages        = {1--32},
  publisher    = {Foundation for Open Access Statistic},
  title        = {bayesQR : a Bayesian approach to quantile regression},
  url          = {http://dx.doi.org/10.18637/jss.v076.i07},
  volume       = {76},
  year         = {2017},
}

Altmetric
View in Altmetric