Kunstmatige aanvulling van het grondwaterreservoir in Sint-André (Koksijde - Oostduinkerke)

MER
M.E.R.
Kunstmatige aanvulling van het grondwaterreservoir in Sint-André

Opdrachtgever
I.W.V.A.

Coördinatie: Prof. Dr. W. De Breuck
Prof. Dr. K. Walraevens

Projectnummer: TGO 98/26
Datum: juni 1999
INHOUD

Lijst van figuren
Lijst van tabellen
Lijst van bijlagen

Deel 0 Niet technische samenvatting ... 1
0.1 Inleiding ... 1
0.2 Projectomschrijving ... 1
 0.2.1 Aanlegfase .. 2
 0.2.2 Exploitatiefase en onderhoud ... 3
0.3 Bespreking per discipline .. 4
 0.3.1 Geluid ... 4
 0.3.2 Bodem .. 4
 0.3.3 Water ... 5
 0.3.4 Fauna en Flora ... 6
 0.3.5 Monumenten en landschappen ... 6
0.4 Integratie en eindsynthese .. 7
 0.4.1 Te milderen permanente effecten ... 7
 0.4.2 Te milderen tijdelijke effecten ... 8
 0.4.3 Niet te milderen effecten ... 9

Deel 1 Inleiding ... 11
 1.1 Coördinaten van de initiatiefnemer .. 11
 1.2 Beknopte beschrijving van het project .. 11
 1.3 Doelstelling van het project ... 11
 1.4 Noodzaak van het project ... 11
 1.5 Toetsing aan de m.e.r.-plicht ... 12
 1.6 Samenstelling van het college van deskundigen ... 13

Deel 2 Ruimtelijke, administratieve, juridische en beleidsmatige beschrijving van
 het project ... 15
 2.1 Ruimtelijke situering .. 15
 2.2 Administratieve voorgeschiedenis .. 15
 2.3 Juridische en beleidsmatige randvoorwaarden .. 18
 2.3.1 Juridische randvoorwaarden ... 18
 2.3.2 Beleidsmatige randvoorwaarden ... 29
 2.4 Historiek van het studiegebied ... 35
Deel 3 Milieuverantwoording of resultaten van uitgevoerde voorstudies......... 37
3.1 Inventarisatiestudie..37
3.2 Studieproject voor kunstmatige aanvulling............................... 37
3.3 Ecologische randvoorwaarden...38

Deel 4 Projectbeschrijving... 41
4.1 Vastleggen van de projectgrenzen...41
4.2 Concrete beschrijving van het project..43
4.2.1 De aanlegfase ...43
4.2.2 Exploitati fase en onderhoud..58

Deel 5 Ingreep-effectanalyse.. 69
5.1 Inleiding..69
5.2 Ingreep-effec tschema..70
5.3 Overzicht van de te verwachten positieve milieueffecten..............72
5.3.1 Aanduiding van de milieuknelpunten......................................72
5.3.2 Bodem..73
5.3.3 Water...74
5.3.4 Fauna en flora..74
5.4 Korte bespreking van de aandachtspunten in het MER.................75

Deel 6 Alternatieven... 77
6.1 Plaatsalternatief voor het lozingspunt..77
6.2 Plaatsalternatief voor het behandlingsgebouw............................77
6.3 Plaatsalternatieven voor het infiltratiepand.................................78
6.4 Behandeling infiltratiewater..78
6.5 Diepte-infiltratie..78

Deel 7 Methodologie.. 79
7.1 Geluid..79
7.1.1 Inleiding...79
7.1.2 Evaluatiecriteria en VLAREM II-richtwaarden.......................80
7.1.3 Bijzondere karakteristieken van de luchtmachtabasis van Koksijde.81
7.1.4 Voorspellen van de specifieke emissie....................................81
7.1.5 Meetapparatuur...83
7.1.5.1 Meteostation..83
7.1.5.2 Missiemetingen..83
7.1.5.3 Meting van de emissie van enkele installaties........................83
7.1.6 Ulking van de apparatuur...83
7.2 Bodem...84
7.3 Water...85
7.4 Fauna en flora...86
 7.4.1 Raadplegen van geschreven bronnen..86
 7.4.2 Raadplegen deskundigen..86
 7.4.2.1 Fauna & Flora...86
 7.4.2.2 Natuurbehoud/ontwikkeling..86
 7.4.3 Eigen veldstudie...86
7.5 Monumenten en Landschappen...87
 7.5.1 Algemeen ..87
 7.5.2 Specifiek m.b.t. het project..87
 7.5.2.1 Benadering..87
 7.5.2.2 Methodologie..88
 7.5.2.3 Voornaamste te verwachten milieu-effecten..89

Deel 8 Afbakening van het studiegebied, referentiesituatie en ontwikkelingsscenario's 91
8.1 Geluid..91
 8.1.1 Afbakening van het studiegebied...91
 8.1.2 Referentiesituatie..91
 8.1.2.1 Meetresultaten van de huidige immissie..91
 8.1.2.2 Luchtmachtbasis van Koksijde..95
8.2 Bodem..116
 8.2.1 Afbakening van het studiegebied...116
 8.2.2 Situering van het studiegebied...116
 8.2.3 Topografie...116
 8.2.4 Referentiesituatie...118
 8.2.4.1 Bodemseries en bodemgesteldheid..118
 8.2.4.2 Bodemgeschiktheid..124
 8.2.4.3 Historische evolutie van het terrein..125
 8.2.4.4 Bodemgebruik...125
 8.2.4.5 Bodemkwaliteit...125
 8.2.4.6 Geologie...125
8.3 Water..131
 Oppervlaktewater
 8.3.1 Afbakening van het studiegebied...131
 8.3.2 Referentiesituatie..131
 8.3.2.1 Structurale en hydrodynamische kenmerken van het kanaal Duinkerke - Nieuwpoort 131
 8.3.2.2 Fysisch-chemische karakteristieken van het kanaal Duinkerke - Nieuwpoort 131
 8.3.2.3 Biotische parameters van het kanaal Duinkerke - Nieuwpoort 135
 8.3.2.4 Organische microverontreiniging van het kanaal Duinkerke - Nieuwpoort 135
 8.3.2.5 Conclusies en evaluatie..135
 8.3.3 Ontwikkelingsscenario's (Gestuурde situatie)..136
 Grondwater
 8.3.4 Afbakening van het studiegebied...137
 8.3.5 Referentiesituatie..137
 8.3.5.1 Hydrogeologische bouw..137
 8.3.5.2 Hydraulische parameters..141
 8.3.5.3 Grondwaterkwaliteit..141
 8.3.5.4 Grondwaterstroming...147
 8.3.5.5 Grondwaterkwaliteit..150
 8.3.5.6 Bemalingen en draineringen...150
 8.3.5.7 Watervlakken en/of beschermingszones...150
 8.3.5.8 Verdunde grondwaterwinningen...150
Deel 9 Analyse van de geplande situatie en beoordeling van de milieu-effecten

9.1 Geluid
9.1.1 Analyse van de geplande situatie
9.1.1.1 Aanlegfase
9.1.1.2 Exploitatiefase en onderhoud
9.1.2 Effectenvoorspelling
9.1.3 Beoordeling van de milieu-effecten
9.1.4 Milderende maatregelen

9.2 Bodem
9.2.1 Analyse van de geplande situatie
9.2.1.1 Aanlegfase
9.2.1.2 Exploitatiefase en onderhoud
9.2.1.3 Calamiteiten
9.2.2 Beoordeling van de milieu-effecten
9.2.2.1 Aanlegfase
9.2.2.2 Exploitatiefase en onderhoud
9.2.3 Milderende maatregelen
9.2.3.1 Aanlegfase
9.2.3.2 Exploitatiefase en onderhoud
9.2.3.3 Calamiteiten

9.3 Water
Oppervlaktewater
9.3.1 Analyse van de geplande toestand
9.3.1.1 Kwantiteit en kwaliteit van de geplande aanvoer van infiltratiewater in het infiltratiepand in de Doornpanne
9.3.1.2 Kwantiteit en kwaliteit van de geplande lozingen van afvalwater in het kanaal Duinkerke-Nieuwpoort
9.3.2 Beoordeling van de milieu-effecten
9.3.2.1 Effecten ten gevolge van aanvoer van het infiltraat in het infiltratiepand
9.3.2.2 Effecten ten gevolge van het lozen van het concentraat in het kanaal Duinkerke-Nieuwpoort
9.3.3 Conclusies en milderende maatregelen
9.3.3.1 Aanvoer van het infiltratiewater in het infiltratiepand
9.3.3.2 Lozingen van het concentratiewater in het kanaal Duinkerke-Nieuwpoort

Grondwater
9.3.4 Analyse van de geplande situatie
9.3.4.1 Aanlegfase
9.3.4.2 Exploitatiefase en onderhoud
9.3.4.3 Calamiteiten
9.3.5 Beoordeling van de milieu-effecten
9.3.6 Conclusie en milderende maatregelen
9.4 Fauna en flora
9.4.1 Analyse van de geplande situatie en beoordeling van de milieu-effecten
9.4.1.1 Aanlegfase
9.4.1.2 Exploitatiefase en onderhoud
9.4.2 Milderende maatregelen
9.5 Monumenten en Landschappen
9.5.1 Methode effectbeoordeling
9.5.2 Invloedmatrix

Deel 10 Leemten in de kennis
10.1 Geluid
10.2 Bodem
10.3 Water
10.4 Fauna en flora
10.5 Monumenten en Landschappen

Deel 11 Integratie en eindsynthese
11.1 Te milderen permanente effecten
11.2 Te milderen tijdelijke effecten
11.3 Niet te milderen effecten
LIJST VAN FIGUREN

Figuur 2.1 Eigendom van de I.W.V.A.
Figuur 2.2 Gewestplan met aanduiding van het projectgebied.
Figuur 2.3 Beschermd duinengebied en voor het duingebied belangrijke landbouwgronden (B. Vl. R. 30.11.94).
Figuur 2.4 Ontwerp Groene Hoofdstructuur Vlaanderen (Ministerie van de Vlaamse Gemeenschap, 1993).
Figuur 2.5 Habitatrichtlijngebieden.
Figuur 3.1 Ligging van de geëgaliseerde bodems.
Figuur 3.2 Aanduiding van het infiltratiepand en opslag van vergraven gronden op de vegetatiekaart.
Figuur 4.1 Aanduiding van het projectgebied.
Figuur 4.2 Inrichting van het infiltratiepand.
Figuur 4.3 Huidig reliëf ter hoogte van het geplande infiltratiepand.
Figuur 4.4 Reliëf na de realisatie van het infiltratiepand.
Figuur 4.5 Overzichtsplan wandelpad.
Figuur 4.6 Overzichtsplan bestaande paden.
Figuur 4.7 Inplanting behandelingsgebouw te RWZI-Wulpen.
Figuur 4.8 Ligging van de leidingen en het lozingspunt.
Figuur 4.9 Technische kenmerken van de nieuw te boren putten.
Figuur 4.10 Productieproces in het geval het spoelwater van de microfiltratie verder wordt behandeld.
Figuur 4.11 Productieproces zonder behandeling van het spoelwater van het microfiltraat.
Figuur 4.12 Indeling van het waterwingebied in percelen.
Figuur 7.1.1 Ligging van het studiegebied met aanduiding van de meetpunten.
Figuur 8.1.1 Afbakening van het studiegebied voor de discipline Geluid.
Figuur 8.1.2 Aanduiding van de meetpunten op het Gewestplan.
Figuur 8.1.3 Typisch tijdsverloop – Meetpunt 1: Recreatiegebied Galloper (18/11/98).
Figuur 8.1.5 Typisch tijdsverloop – Meetpunt 1: Recreatiegebied Galloper (27/11/98).
Figuur 8.1.6 Typisch tijdsverloop – Meetpunt 2: Recreatiegebied Galloper (07/11/98).
Figuur 8.1.8 Typisch tijdsverloop – Meetpunt 2: Recreatiegebied Galloper (27/11/98).
Figuur 8.2.1 Aanduiding van het studiegebied voor de discipline bodem.
Figuur 8.2.2 Uittreksel van de bodemkaart 35E Oostduinkerke met aanduiding van het studiegebied.
Figuur 8.2.3 Ligging van de boringen met aanduiding van de lithologische en hydrogeologische profielen.
Figuur 8.2.4 Schematische voorstelling van de aangeboorde lagen in BGD35E142 (Mertooetomo M., 1995).

Figuur 8.2.5 Lithologisch profiel A-A' doorheen het centraal deel van de Doornpanne (Lebbe L. en De Breuck W., 1980).

Figuur 8.2.6 Lithologisch profiel B-B' in het oostelijk deel van de Doornpanne (Van Houtte E., 1993).

Figuur 8.3.1 Aanduiding van het studiegebied voor de discipline water.

Figuur 8.3.2 Hydrogeologische bouw van het ondiepe grondwaterreservoir ter hoogte van profiel A-A' (Lebbe L. et al., 1993).

Figuur 8.3.3 Hydrogeologische bouw van het ondiepe grondwaterreservoir ter hoogte van de Burgweg (profiel B-B') (Lebbe L. et al., 1996).

Figuur 8.3.4 Ligging van de hydrogeologische profielen.

Figuur 8.3.5 Verziltingskaart (De Breuck W. et al., 1974).

Figuur 8.3.6 Huidige grondwaterstroming in de Doornpanne met een onttrekking van 1.800.000 m³/jaar (Van Houtte E., 1996).

Figuur 8.3.7 Verlaging van de grondwatertafel t.o.v. de natuurlijke grondwaterstroming (Van Houtte E., 1996).

Figuur 8.4.1 Aanduiding van het studiegebied voor de discipline fauna en flora.

Figuur 8.4.2 Ligging van de infiltratiepanden, opslag van vergraven gronden, de winputten en de leiding voor de aanvoer van het infiltratiewater geprojecteerd op een verspreidingskaart van de vegetatietypes (naar Provoost S. et al., 1993).

Figuur 8.4.3 Situering in de Doornpanne van de locatie van het oostelijk gedeelte van het infiltratiepand. De hier voorkomende vegetatietypes zijn: vrijwel onbegroeid zand, nitrofiel mos en kruipwilgstruweel.

Figuur 8.4.4 Situering in de Doornpanne van de locatie van het westelijk gedeelte van het infiltratiepand. Ook hier is de vegetatie vrijwel afwezig.

Figuur 8.4.5 Voorbeeld van bestaande verharde wegen in de Doornpanne met randbegroeiing van vooral Duinriet en Kruipwilg waardoor de geplande tracés voor aan- en afvoer van het water zullen lopen. De bestaande verharding wordt vervangen door milieuvriendelijker materiaal (schelpenklei).

Figuur 8.4.6 Voorbeeld van onverharde paden in de Doornpanne waar de randvegetatie van Duinriet en Kruipwilg over een strook van 10 m zal geruimd worden t.g.v. de aanleg van de leidingen.

Figuur 8.4.7 Ruderale grazige vegetatie met Groot hoefblad en Riet langsheen de berm van het Kanaal Duinkerke-Nieuwpoort onmiddellijk stroomafwaarts van het geplande lozingspunt.

Figuur 8.4.8 Monotone grazige bermvegetatie langs het kanaal Duinkerke-Nieuwpoort en schuimspoor van de huidige RWZI- lozingen ter hoogte van het RWZI-Wulpen (op de achtergrond).

Figuur 8.4.9 Ontwikkelingsvisie voor de Doornpanne.
Figuur 8.5.1 Aanduiding van het studiegebied voor de discipline monumenten en landschappen.

Figuur 8.5.2 Uittreksel uit relictienatlas West-Vlaanderen, Koksijde - Oostduinkerke.

Figuur 8.5.3 Overzicht van het actuele landgebruik en de elementen van het bouwkundig erfgoed.

Figuur 9.1.1 MEMCOR-installatie, spectrum opgemeten gedurende het spoelen.

Figuur 9.1.2 Voorspelde specifieke emissie op 200 meter tijdens de verschillende fasen van het aanleggen van de transportleiding.

Figuur 9.1.3 Voorspelde specifieke emissie door de zuiveringsinstallatie.

Figuur 9.2.1 Opslag van de vergraven gronden.

Figuur 9.3.1 Berekende grondwaterstroming na 10 jaar infiltratie (2.500.000 m³/jaar) en netto-grondwaterwinning van 1.700.000 m³/jaar (Van Houtte E., 1997).

Figuur 9.3.2 Stijging van de grondwatertafel t.o.v. de huidige grondwaterstroming in het waterwingebied (Van Houtte E., 1997).

Figuur 9.5.1 Het visuele effect van het infiltratiepand.

Figuur 9.5.2 Visuele impact van het behandlingsgebouw aan het kanaal.

Figuur 9.5.3 Situering foto’s visuele impact van het behandlingsgebouw
LIJST VAN TABELLEN

Tabel 4.1	Afstand tussen winputten en rand van infiltratiepand.
Tabel 4.2	Kwaliteiten infiltratiewater (proefopstelling), maximale waarde infiltratiewater en meetfrequentie.
Tabel 5.1	Ingreep-effectschema.
Tabel 7.1.1	VLAREM II-richtwaarden voor de betreffende gebieden.
Tabel 7.1.2	VLAREM II-richtwaarden voor meetpunt 3.
Tabel 7.5.1	Overzicht van ingreep- en effectgroepen en te verwachten effecten voor de discipline Monumenten en Landschappen.
Tabel 8.1.1	Valabele metingen – LA95.
Tabel 8.1.2	Valabele metingen – LA50
Tabel 8.1.3	Valabele metingen – LA05
Tabel 8.1.4	Valabele metingen – LAn eq
Tabel 8.1.5	Valabele metingen – LA95
Tabel 8.1.6	Valabele metingen – LA50
Tabel 8.1.7	Valabele metingen – LA05
Tabel 8.1.8	Valabele metingen – LAn eq
Tabel 8.1.9	Valabele metingen – LA95
Tabel 8.1.10	Valabele metingen – LA50
Tabel 8.1.11	Valabele metingen – LA05
Tabel 8.1.12	Valabele metingen – LAn eq
Tabel 8.1.14	Overzicht van de gemiddelde dag-, avond- en nachtwaarde voor de gekozen referentiesituatie voor meetpunt 2 – Sint-André.
Tabel 8.1.15	Overzicht van de gemiddelde dag-, avond- en nachtwaarde voor de gekozen referentiesituatie voor meetpunt 3 – RWZI-Wulpen.
Tabel 8.3.1	Overzicht van de voornaamste parameters van het ruwe grondwater gewonnen in zuigput 1 en 2 zoals gemeten bij de jaarlijkse C4-analyse (I.W.V.A., 1998).
Tabel 8.3.2	Vergunde waterwinningen in het Quartair in een straal van 5 km rond het studiegebied (A.M.I.N.A.L., april 1999).
Tabel 8.4.1	Vegetatietypes van de Doornpanne, hun gevoeligheid en biologische waarde (naar Kuijken E. et al, 1993).
Tabel 8.4.2	Lijst van de macroinvertebraten verzameld op de VMM-staalnamepunten op het Kanaal Duinkerke - Nieuwpoort in de periode '96 - '99 en de hieruit berekende BBI scores.* = brakwatersoort (op 09/03/99).
Tabel 9.1.1	Gemiddeld bronvermogen Lw van immissierelevante geluidsbronnen ingedeeld volgens de activiteit.
Tabel 9.1.2	Geluidsverzwakkingsindex per octaafband.
Tabel 9.3.1 Fysisch-chemische eigenschappen van de I.W.V.A.-infiltraatwater (gemiddelde waarden), de door de I.W.V.A. voorgestelde kwaliteitsnormen voor het infiltratiewater, basisqualiteitsnormen voor oppervlaktewateren, kwaliteitsnormen voor drinkwaterproductie en richtwaarden voor stilstaande oppervlaktewateren met hoge ecologische kwaliteit volgens GTE (1994).

Tabel 9.3.2 Procentuele graad van verdunning van de I.W.V.A.-concentraat met RWZI-effluent op jaargrond gebaseerd op de RWZI-debieten van 1998.

Tabel 9.3.3 Gemiddelde concentraties van het geplande I.W.V.A.-effluent, van het huidige RWZI-effluent (periode 01/98 – 02/99) en van het geplande I.W.V.A.-effluent met een debiet van 3.650 m³/d vermengd met 10.000 m³/d RWZI-effluent (i.e. meest voorkomend mengsel).

Tabel 9.3.4 Kwaliteit grondwater, infiltratiewater (proefopstelling), maximale concentratie infiltratiewater, drinkwatertoegezaten kwaliteit volgens Vlarem.

Tabel 9.5.1 Beoordeling van de effecten per ingreep- en effectgroepen.
LIJST VAN BIJLAGEN

Bijlage 2.1 Chronologisch overzicht van de geschiedenis van de I.W.V.A.
Bijlage 2.2 Vergunning.
Bijlage 4.1 Advies van het Instituut voor Natuurbehoud.
Bijlage 4.2 Infiltratiebesluit bodembescherming van 20 april 1993 (Staatsblad van het Koninkrijk der Nederlanden).
Bijlage 4.3 Kwaliteitsgegevens proceswater.
Bijlage 8.2.1 Boorstaten.
Bijlage 8.3.1 Debieten van het effluent te RWZI-Wulpen.
Bijlage 8.3.2 Waterkwaliteit kanaal Duinkerke – Nieuwpoort: meetplaat 680010 en 681000.
Bijlage 8.4.1 Overzicht van de belangrijkste vegetatietypes.
Bijlage 8.4.2 Lijst van plantensoorten van de Doornpanne (Kuijken E. et al., 1993).
Bijlage 8.4.3 Lijst van de vogelsoorten van de Doornpanne (Kuijken E. et al., 1993).
Bijlage 8.4.4 Lijst van planten aangetroffen op de berm van het kanaal Duinkerke - Nieuwpoort.
Bijlage 8.4.5 Specifieke richtlijnen voor de gestuurde natuurontwikkeling van de Doornpanne.
Bijlage 8.4.6 Bijlage 1: Beheersplan Doornpanne: Flora – hoofdstuk ‘Socio-ecologische groepen’ (Kuijken E. et al., 1993).
VERKLAARDE woordenlijst

Abiotisch: behorende tot de niet-levende natuur (lucht, water, bodem)

Avifauna: vogelwereld

Bemaling: ontrekking van grondwater met het oog op de verlaging van de watertafel bij bouwwerken

Biologische Index: index die de diversiteit aan waterleven weergeeft in een waterloop (0 = biologisch dood tot 10 = niet verontreinigd)

Biologische kwaliteit: kwaliteit die wordt vastgelegd op basis van de levende organismen die in de waterloop voorkomen

Biologische milieu: geheel van de levende wezens

Biotisch: van de levende natuur

Biotoop: leefgebied van een soort (omgeving waarin alle voor die soort benodigde omstandigheden aanwezig zijn)

Bodemserie: benaming van een bodemtype, gewoonlijk bestaande uit drie symbolen (textuur, waterhuishouding en profielontwikkeling) maar met de kustzone een afwijkende terminologie

Bodemverdichting: verdichting (bv. door belasting door zwaar materiaal) waarbij de bodemdeeltjes dichter bij elkaar komen en de bodem minder toegankelijk wordt voor lucht, water en plantenwortels.

BPA: Bijzonder Plan van Aanleg, is een bestemmingsplan voor een bepaald gebied opgemaakt door de gemeente

Cumulatief effect: effect dat gedeeltelijk veroorzaakt wordt door het project en gedeeltelijk door andere projecten in de onmiddellijke omgeving van het project die een of meer gemeenschappelijke milieu-effecten hebben.

Direct effect: effect dat rechtstreeks een gevolg van de ingreep is

Diversiteit: aantal soorten dat op een bepaald oppervlak voorkomt

Ecosysteem: samenhangend geheel van elkaar onderling beïnvloedende planten, dieren, mensen en omgeving in een bepaald gebied

Ecotoop: ruimtelijk begrensde eenheid met een karakteristieke homogeniteit (bv. hakhoutbos, droge of natte heide)
Eutroef, eutrofiëring: voedselrijk, het proces van aanrijking van water of bodem met voedingselementen

Ferrariskaart: gedetailleerde topografische kaart opgesteld tussen 1771 en 1778

Freatisch – freatische laag: doorlatende laag bovenaan begrensd door de watertafel en onderaan door een slecht- of zeer slecht doorlatende laag

Frequentie: uitgedrukt in Hz, waarmee de toonhoogte, de scherpte van het geluid wordt aangegeven

Formatie: geologische laag daterend uit een zelfde geologisch tijdvak en gekenmerkt door een vrij uniforme samenstelling

Fysico-chemische kwaliteit: kwaliteit vastgesteld via laboratoriumanalyses

Geologie: studie van de ondergrond

Grondwaterstijghoogte of grondwaterstand: peil tot waarop het grondwater van een bepaalde diepte stijgt in een peilbuis (afhankelijk van de waterdruk in het sediment op die bepaalde diepte en van de luchtdruk); grondwaterstand wordt uitgedrukt t.o.v. een referentiepeil (vb. T.A.W.)

Holocene: geologisch tijdvak (10.000 jaar geleden tot heden)

Hydrogeologie: wetenschap die zich bezighoudt met de studie van het grondwater en van het grondwaterreservoir

Indirect effect: effect dat het gevolg is van een direct effect

Kleischelpen = schelpenklei

L_p: Geluidsdrukniveau: niveau van de akoestische druk, uitgedrukt in dB, dat de luidheid van een geluid beschrijft.

L_w: Geluidsvermogniveau: niveau van het akoestisch vermogen uitgedrukt in dB, dat de sterkte van een geluidsbron beschrijft.

$L_{Aeq,T}$: A-gewogen equivalent geluidsdrukniveau: het constante A-gewogen geluidsdrukniveau dat gedurende het tijdsinterval T dezelfde geluidsenergie zou veroorzaken als het werkelijk gemeten A-gewogen geluidsdrukniveau gedurende hetzelfde tijdsinterval T

$L_{AN,T}$: Het A-gewogen geluidsdrukniveau dat gedurende N% van het tijdsinterval T wordt overschreden

Lijnrelicten: lijnvormige elementen zoals dijken, wegen, waterlopen of complexen ervan en hun onmiddellijk aangrenzende ruimte; ze kunnen beschermd zijn.

Lithologie: studie van de gesteenten

Maaiveld: niveau van het grondoppervlak
Relictzones: gebieden met een grote dichtheid aan punt- of lijnrelicten en zones waarin de connectiviteit tussen de waardevolle landschapselementen belangrijk is voor de gehele landschappelijke waardering; de aanduiding gebeurt maximalistisch doch zonder scherpe grenzen

Reversibel effect: effect waarbij het systeem na stopzetten van de ingreep zal terugkeren naar zijn referentiesituatie

Rooien: het verwijderen van bomen en houtachtige gewassen met inbegrip van hun wortelstelsel

Ruderaal: kwaliteit van een milieu of van de daarin levende soorten of vegetaties dat sterk aan menselijke invloed onderhevig is en een overmaat aan voedingsstoffen bevat (voornamelijk stikstof) zonder dienstbaar te zijn voor economische productie zoals storten, sterk betreden wegbermen, puinhopen

Ruigte: algemene term voor een begroeiing die voornamelijk bestaat uit ruigtekruiden

RWZI: Rool Water Zuiverings Installatie

Specifieke geluid: component van het omgevingsgeluid die kan worden toegeschreven aan een welbepaalde inrichting of aan één of meerdere geluidsbronnen van die inrichting of ten gevolge van een bepaalde verkeersinfrastructuur en die akoestisch kan geïdentificeerd worden

Struweel: dichte begroeiing die voornamelijk bestaat uit struiken die minimaal 1 meter hoog zijn

Spectrum: ontbinding van een geluid in zijn verschillende frequenties

Tertiair: geologisch tijdvak (van 65 miljoen tot 2 miljoen jaar geleden)

Tonaal geluid: een geluid dat duidelijk herkenbare zuivere tonen bevat, populair omschreven als een gefluikt of gebrom

Topografie: de vorm van het aardoppervlak

Vegetatie: ruimtelijke massa van plantenindividuen in samenhang met de plaats waar zij groeien en in de rangschikking die zij spontaan en door onderlinge concurrentie hebben ingenomen

Verdichten: aanstampen van de bodem
MGI-kaart: oude topografische kaart opgesteld door het militair geografisch instituut. Nu worden de topografische kaarten opgesteld door het Nationaal Geografisch Instituut (NGI).

Milderende en remediërende maatregelen: maatregelen die de verwachte effecten als gevolg van de realisatie van het project kunnen milderen of remediëren

Natuurkerngebied: gebied met een hoge natuurwaarde. Natuurkerngebieden hebben een minimumoppervlakte (50 ha) en krijgen natuurbehoud als hoofdfunctie. Dit sluit een medegebruik (bv. landbouw) niet uit indien dit volledig ecologisch inpasbaar is. De grenzen van een kerngebied zijn niet vastgelegd, maar gelden veeleer als een aanwijzing. Ingelogen terreinen met lagere natuurwaarden mogen door hun grondgebruik de omringende natuurterreinen niet negatief beïnvloeden.

Natuurontwikkelingsgebied:
- gebied waar belangrijke natuurwaarden veeleer versnipperd zijn of in kleine oppervlaktes voorkomen;
- gebied waar de milieucondities van die aard zijn dat een ontwikkeling tot belangrijke natuurwaarden mogelijk is;
- gebied waar over grote oppervlakten belangrijke fauna-elementen voorkomen die er alleen kunnen voortbestaan indien het (hoofd)grondgebruik er bepaalde randvoorwaarden in acht neemt

Octaafband: groepering van het gedeelte van een geluid rond een gekozen octaafbandfrequentie; opeenvolgende octaafbandfrequenties corresponderen met de notie octaaf in de muziek.

Omgevingsgeluid: geluid op een gegeven plaats en op een gegeven ogenblik, zowel in open lucht als in een gesloten ruimte

Ontwikkelingsscenario: beschrijven de evolutie van het studiegebied in de toekomst, rekening houdend met de autonome evolutie van het gebied en met de evolutie onder invloed van plannen en beleidsopties.

Peilbuis: buis, voorzien van een filter of een opening, in een boorgat ter hoogte van de zone in het grondwaterreservoir waarvan men de grondwaterstijghoogte, -kwaliteit of andere grondwaterkarakteristieken wenst te bepalen

Prati-Index (PI): een door de VMM gebruikte index die het mogelijk maakt om op basis van een aantal fysico-chemische parameters de kwaliteit van oppervlaktewateren te vergelijken en te evalueren; afhankelijk van de gekozen parameters spreekt men van basis-prati-index of van de uitgebreide index.

Puntrelicten: worden gevormd door monumenten en kleine cultuurhistorische landschapselementen of complexen ervan en hun onmiddellijk aangrenzende omgeving; ze kunnen beschermd zijn.

Quartair: geologisch tijdvak (2 miljoen jaar geleden tot heden)

Ramsar-gebied: gebied voor de watervogels van internationale betekenis

Referentiesituatie: toestand van het studiegebied waarnaar gerefereerd wordt in functie van de effectbeoordeling; het is de situatie waarmee de geplande situatie vergeleken wordt om de milieu-effecten te evalueren
BETROKKEN PARTIJEN

Initiatiefnemer:
Intercommunale Waterleidingsmaatschappij van Veurne-Ambacht c.v. – I.W.V.A.
Doornpanne 1
8670 KOKSIJDE (Oostduinkerke)

College van deskundigen

Overzicht van de interne deskundigen
Ing. Frans Vanlerberghe, directeur-generaal

Emmanuel Van Houtte, geoloog

Overzicht van de externe deskundigen

William De Breuck, coördinator
Universiteit Gent, Laboratorium voor Toegepaste Geologie en Hydrogeologie

Kristine Walraevens, coördinator
Universiteit Gent, Laboratorium voor Toegepaste Geologie en Hydrogeologie

Dick Botteldooren, discipline “geluid”
Universiteit Gent, informatietechnologie

Dirk De Smet, discipline “bodem” en “grondwater”
Universiteit Gent, Laboratorium voor Toegepaste Geologie en Hydrogeologie

Marc Antrop, discipline “monumenten en landschappen”
Universiteit Gent, vakgroep geografie
Niels De Pauw, discipline “fauna en flora” en “oppervlaktewater”
Universiteit Gent, Toegepaste aquatische ecologie

Dirk Van Damme, discipline “fauna en flora”
GCV Van Damme
DEEL 0 NIET TECHNISCHE SAMENVATTING

0.1 INLEIDING

Onderstaand MER is opgesteld voor een project van de kunstmatige aanvulling van het grondwaterreservoir in Sint-André te Koksijde. Deze grondwateraanvulling is m.e.r.-plichtig. De Intercommunale Waterwinningsmaatschappij van Veurne-Ambacht (I.W.V.A.) is de initiatiefnemer. Het MER wordt opgesteld voor het bekomen van de nodige bouwvergunningen ter uitvoering van het project.

De doelstelling van het project is een duurzame drinkwaterproductie uit te bouwen in de duinen van Sint-André en de Westhoek. Daarbij wordt gekozen voor een integrale benadering waarbij verschillende ruwwaterbronnen van relatief goede kwaliteit in het bestaande productieproces worden geïntegreerd.

Dit project moet leiden tot de optimalisatie en de diversificatie van de productiemiddelen, enerzijds om de drinkwaterproductie te verhogen waardoor de steeds stijgende vraag naar drinkwater kan ingevuld worden en anderzijds om winning van natuurlijke freatische grondwater te verminderen waardoor de natuur in deze gebieden zich kan herstellen. Op die manier wordt gestreefd naar een duurzame drinkwaterwinning in de duinen.

Het project past in de vraag om de grondwateronttrekking in de duinen te verminderen.

De aangevraagde waterwinning is volledig binnen het bestaande waterwingebied van Sint-André te Koksijde-Oostduinkerke gelegen.

0.2 PROJECTOMSCHRIJVING

Het project kan opgevat worden in twee fasen: aanlegfase; exploitatiefase en onderhoud.

Deze fasen worden gekenmerkt door hun specifieke activiteiten, waarvan de invloed per discipline uitvoerig behandeld wordt.

Aanlegfase:
- aanleg van een infiltratiepand in het zuidwestelijk deel van de Doornpanne;
- opslag van afgegraven gronden;
- aanleg van bijkomende winputten in het gebied;
- aanleg van het centrale wandelpad tussen de Witte Burg en de Hoge Blekker(laan) en van de lus tussen de zuigput en het bezoekerscentrum;
- bouw van een behandelingsgebouw en ruimte voor opslag van chemicaliën ter hoogte van RWZI-Wulpen;
- aanleg van leidingen:
 - transportleiding van infiltratiewater vanuit het behandelingsgebouw naar het infiltratiepand;
 - distributieleiding voor drinkwater vanuit de bestaande behandelingsinstallaties in Sint-André naar Wulpen;
 - transportleiding van concentrat vanuit het behandelingsgebouw naar het lozingspunt in het Kanaal Duinkerke - Nieuwpoort.

RUG - Laboratorium voor Toegespaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
Intercommunale Waterleidingsmaatschappij van Veurne - Ambacht
MER Kunstmatige aanvulling van het grondwaterreservoir in Sint-André

Exploitatiefase en onderhoud:
- onderhoud van infiltratiepand;
- gebruik en onderhoud waterleiding;
- het filteren van water in het bestaand behandelingsgebouw;
- het oppompen van het geïnfiltrereld water;
- het verminderen van de productie in de overige delen van de waterwinning;
- het meten van de peilen.

0.2.1 Aanlegfase

Aanleg van een infiltratiepand

Binnen het bestaande waterwingebied van Sint-André, gelegen te Koksijde-Oostduinkerke, zal een infiltratiepand worden aangelegd van ca. 500 m lang met een gemiddelde breedte van ca. 40 m.

Het pand bestaat uit een westelijk breder en een oostelijk smaller gedeelde. Beide zullen verbonden zijn via een ondergrondse hevel, zodat het waterniveau gelijk zal zijn.

De ligging van het pand werd gekozen in functie van de bestaande infrastructuur, van de aanwezige vegetatie en werd afgebakend in overleg met het Instituut voor Natuurbebouw. Het infiltratiepand wordt aangelegd op een plaats waar nu een puttenbatterij aanwezig is.

Aanleg van bijkomende winputten en afsluiten van enkele bestaande putten

De filterbatterij, waar het infiltratiepand wordt gepland, zal verdwijnen. Ook de meest zuidelijk gelegen filterbatterij en de meest oostelijk gelegen putten (aangesloten op zuigput 2) worden opgeheven. Deze putten worden niet verwijderd zodat ze eventueel dienst kunnen doen als peilputten. De andere bestaande filterbatterijen, ten noorden en ten zuiden van het geplande infiltratiepand, worden behouden en uitgebreid. Bovendien worden 84 bijkomende putten aangelegd rond het geplande infiltratiepand. Deze zullen zich in de onmiddellijke omgeving van de centrale wandelweg bevinden.

Aanleg wandelpaden

Bouw van behandelingsgebouw en ruimte voor opslag van chemicaliën op het RWZI-Wulpen.

De bouw van de behandelingseenheid wordt voorzien op de terreinen van de Vlaamse Milieumaatschappij (RWZI-Wulpen).

De opslag van chemicaliën wordt voorzien in de kelder en gebeurt conform de Vlarem II voorschriften.
Aanleg van de leidingen

- transportleiding van infiltratiewater vanuit het behandelingsgebouw (RWZI-Wulpen) naar het infiltratiepand;
- distributieleiding voor drinkwater vanuit de bestaande behandelingsinstallaties (St.-André) naar RWZI-Wulpen;
- transportleiding van concentrata vanuit behandelingsgebouw naar lozingspunt.

0.2.2 Exploitatiefase en onderhoud

Infiltratiepand en infiltratiewater

Om aan de kwaliteitsnormen, die gesteld worden aan het infiltratiewater, te kunnen voldoen zal het ruw water een dubbele membraanfiltratie ondergaan.

Kwaliteitsnormen voor infiltratiewater

In de vergunningsaanvraag heeft de I.W.V.A. normen vooropgesteld waaraan het infiltratiewater dient te voldoen. Deze normen zijn grotendeels overgenomen in de verleende vergunning voor kunstmatige aanvulling in Sint-André.

Oppompen van geïnfiltrereld water

Het grondwater zal met behulp van de bestaande zuigputten (hevelwerking) opgepompt worden.

Lozing concentrata

Het concentrata zal geloosd worden in het Kanaal Duinkerke – Nieuwpoort ter hoogte van het RWZI-Wulpen. De hoeveelheid te lozen concentrata zal ongeveer 100 m³/uur bedragen.

Onderhoud infiltratiepand

Doordat het infiltratiewater vooraf gezuiverd wordt, zullen de panden niet onderhouden moeten worden. Indien het toch nodig mocht blijken, wordt de toevoer van het infiltratiewater en de winning stopgezet. Daardoor zal het infiltratiepand droog komen te staan, waardoor het slib kan wegwaaien.

Onderhoud leidingen en pompens

Tijdens het onderhoud worden de leidingen en de pompens ter hoogte van het infiltratiepand schoongeblazen. Het water komt in de duinen terecht.

Maatregelen bij calamiteiten wat betreft de kwaliteit van het infiltratiewater

Indien zou blijken dat het infiltratiewater niet voldoet aan de normen dan wordt de kunstmatige aanvulling onmiddellijk stopgezet. Hervatting zal slechts gebeuren nadat de problemen opgelost zijn.
Beheersplan

De aanleg van alle infrastructuur binnen het waterwingegebied van Sint-André werd opgenomen in het beheersplan.

Controle

Er zullen tijdens de productie van het infiltratiewater regelmatig metingen uitgevoerd worden.

In het infiltratiegebied zal een peilmeetnet worden aangelegd om het grondwaterpeil constant op te volgen.

0.3 BESPREKING PER DISCIPLINE

0.3.1 Geluid

Voor de bepaling van de referentiesituatie werd op drie plaatsen het achtergrondgeluid gemeten gedurende een periode van een aantal dagen. Uit de metingen kan opgemaakt worden dat in het eerste meetpunt (Recreatiegroeve Galloper) de kwaliteit van het huidige geluidsklimaat goed is (het gemeten achtergrondgeluid is veel lager dan de richtwaarde voor dit gebied in VLAREM II). Piekniveaus veroorzaakt door luchtverkeer verstoren de stilte sporadisch. In meetpunt 2 (St. André) correspondeert het achtergrondgeluid met de verwachte waarde op basis van de bestemming op het gewestplan. Lucht- en wegverkeer vormen de belangrijkste bijdragen. Meetpunt 3 (RWZI Wulpen) daar tegen heeft een minder goede kwaliteit: hier worden de VLAREM II-richtwaarden door het achtergrondgeluid overschreden. Deze overschrijding is te wijten aan een combinatie van de RWZI en wegverkeer.

Bij de beoordeling van de invloed van dit project op het geluidsklimaat dient er opgemerkt dat de aanlegfase belangrijker is dan de exploitatiefase, doch dat de geluidsbronnen van tijdelijke aard zijn en bijna uitsluitend tijdens de werkuren zullen optreden. Het gaat hier meer specifiek om het uitgraven van het infiltratiepand, de aanleg van de nieuwe winputten en het centraal wandelpad in de Doompanne, de aanleg van de leidingen tussen het behandingsgebouw in Wulpen en de Doompanne en de bouw van het behandingsgebouw en de opslagruimte in Wulpen. Tijdens de exploitatiefase is de meest relevante geluidsbron de werking van de zuiveringsinstallatie die in het behandingsgebouw in Wulpen voorzien is. Om vermindering van de milieukwaliteit 's avonds en 's nachts te voorkomen wordt als milderende maatregel voorgesteld dat de wanden, het dak, de deuren en de vensters akoestisch voldoende zorgvuldig worden afgewerkt. Hiervoor kan gebruik gemaakt worden van een combinatie van akoestisch absorberende en isolerende materialen en materialen met een verzwakkingsindex.

0.3.2 Bodem

De bodem wordt beschreven aan de hand van de geologische en bodemkundige kennis van het gebied (bodemkaart, boringen,…). Het studiegebied omvat de duin- en de polderstreek. De bodem in het studiegebied bestaat uit quaartaire overwegend zandige afzettingen. In de polderstreek komt nabij het maaiveld een kleilaag voor, namelijk de polderklei.

De diepere ondergrond van het projectgebied bestaat onderaan uit leistenen (de Sokkel), met daarop krijtlagen (het Krijt). Hierop rust de Landen Groep met onderaan groengrijze tot grijsgroene zandhoudende klei tot vaste klei met steenbankjes (Formatie van Hannut) en bovenaan grijsen, schelphoudend fijn zand, waarin laagjes kleihoudend fijn zand kunnen voorkomen (Formatie van Tienen). De Landen Groep is bedekt door een kleilaag (Leper Groep, het vroegere lepierlaan). Op die kleilaag liggen de quaartaire afzettingen.

De aanleg van het infiltratiepand, de leidingen en het behandingsgebouw heeft geen significante effecten op de bodem.
0.3.3 Water

OPPERVLAKTEWATER

Voor het opstellen van de referentiesituatie van het Kanaal Duinkerke-Nieuwpoort werd gebruik gemaakt van meetresultaten van de VMM. Uit deze gegevens blijkt dat de fysisch-chemische kwaliteit van het Kanaal Duinkerke - Nieuwpoort over de ganse lengte slecht is wat betreft de nutriëntenconcentraties (vooral fosfaten), BZV en CZV. Het water is sterk geëutrofieerd.

De hoge nutriëntenvracht en hoge BZV en CZV-concentraties zijn te wijten aan verontreiniging. De hoge zoutgehalten zijn van natuurlijke oorsprong (zout grondwater en intrusie vanuit zee); de uitgesproken schommelingen stemmen overeen met de evolutie van de neerslag (VMM-jaarverslag, 1994).

In het infiltratiepand in de Doornpanne zal een stilstaand oppervlaktewater ontstaan dat, afgaande op de waarden bekomen voor diverse parameters in de proefopstelling, een goede tot zeer goede kwaliteit zou hebben. Voor een aantal belangrijke parameters i.v.m. zuurstoffhuishouding en trofiegraad zijn een aantal concentraties nog niet gekend, wat een definitieve evaluatie niet toelaat. Het is niet uitgesloten dat bij permanente aanvoer van water en dus ook van nutriënten zich een algenbloei zou voordoen.

De lozingen van het IWVA-concentraat in het kanaal Duinkerke - Nieuwpoort zullen een verslechtering van de waterkwaliteit van dit kanaal tot gevolg hebben vooral wat betreft BZV, CZV, stikstof en fosfor. De basiskwaliteitsnorm zal in de toekomst dan ook niet haalbaar zijn in dit kanaal t.g.v. deze lozingen, maar men kan zich de vraag stellen of dit ooit mogelijk zal zijn daar het kanaal van nature brak water draineert.

GRONDWATER

Het hydrogeologisch gedeelte omschrijft de waterhuishouding in het projectgebied en de te verwachten effecten hierop door de aanleg van het infiltratiepand. Hierbij is vooral aandacht besteed aan de hydrogeologische bouw, de hydraulische karakteristieken, de grondwaterstroming en de grondwaterpeilen in de freatische watervoerende laag.

In het duingebied kan men één watervoerende laag beschouwen. Naar de polders toe komt een slecht doorlatende laag voor. Hierdoor bestaan twee watervoerende lagen gescheiden door een slecht doorlatende laag. In de polderstreek wordt het watervoerend pakket bovenaan afgesloten door een slecht doorlatende laag (de polderklei).

De grondwaterstroming in het studiegebied wordt sterk beïnvloed door de huidige waterwinning waardoor zich een afpompingstrechter gevormd heeft. De grondwaterstroming in de duinen is vooral naar de waterwinning gericht.

De grondwaterkwaliteit in de duinen is zoet.

Door de aanleg van het infiltratiepand en de vermindering van de winning van natuurlijk grondwater stijgt het grondwaterpeil. Deze stijging zal vooral ten noorden, noordoosten, oosten en zuidoosten van het voorziene infiltratiepand waar te nemen zijn.

Er worden geen significante effecten verwacht. Er dient erop toegezien te worden dat het geïnfiltreerde water in de mate van het mogelijke overeenkomt met het natuurlijke grondwater.
0.3.4 Fauna en Flora

Het duingebied van de Doornpanne is biologisch zeer waardevol terwijl het kanaal Duinkerke-Nieuwpoort een biologisch weinig gediversifieerd water is. Deze soortenarmoede is deels te wijten aan menselijke (verontreiniging), deels aan natuurlijke invloeden (oligohalien brak water).

De geplande ingrepen in het duingebied van de Doornpanne zullen vrijwel uitsluitend biologisch weinig waardevolle vegetatietypes aantasten (vooropgesteld dat de I.N.-adviezen opgevolgd worden) en mogelijk in een beperkte omgeving tijdelijk de avifauna kunnen verstoren. De positieve effecten voor fauna en flora t.g.v. het aanleggen van een groot oppervlaktewater en t.g.v. het vermindern van waterwinning in de Doornpanne zelf en het stopzetten van waterwinning in andere duingebieden zijn aanzienlijk in vergelijking tot het verlies.

Het lozen van het concentraat van de waterwinning in het Kanaal Duinkerke - Nieuwpoort zal vooral een verarming van de reeds geringe aquatische fauna tot gevolg hebben over een afstand van een drietal kilometer in de omgeving van het lozingspunt. Ook indien er geen lozingen zouden gebeuren zal de fauna van het kanaal van nature altijd armer zijn dan een vergelijkbaar zoetwaterbiotoop omdat het een brak water is met sterk schommelende zoutgehalten.

0.3.5 Monumenten en landschappen

Het voorliggend project veroorzaakt verschillende effecten naargelang van de verschillende segmenten van het tracé en de eigenschappen van de landschappen die doorsneden worden.

Het segment A betreft de omgeving van het nieuwe behandelingsgebouw bij de waterzuivering langs het kanaal. De effecten zijn hier de visuele invloed van het nieuwe gebouw op de omgeving, maar dit blijft zeer beperkt door de aanwezigheid van bermen, dijken en schermen en de omliggende bestaande gebouwen.

Het segment B omvat het leidingtracé doorheen het poldergebied. De zichtbare effecten zijn hier van tijdelijke aard. De belangrijkste mogelijke effecten zijn het eventueel aansnijden en vernietigen van een archeologische site.

Het segment C omvat het leidingtracé langs de openbare wegen doorheen het bebouwde gebied tussen Koksijde en Oostduinkerke. De effecten zijn hier vooral negatief op perceptie en beleving, maar zijn van tijdelijke aard, nl. de duur van de aanleg van de leiding.

Het segment D omvat het tracé door de duinen van de Doornpanne en de aanleg van het infiltratiepand. Dit laatste vooral veroorzaakt een belangrijke permanente wijziging van de geomorfologie, de morphologische processen (functioneren) en de perceptieve eigenschappen. Deze veranderingen zijn niet zomaar positief of negatief te noemen. Belevingskwaliteiten kunnen zelfs potentieel toenemen.
0.4 INTEGRATIE EN EINDSYNTHESE

Dit MER heeft betrekking op de aanleg van een infiltratiepand in de Doornpanne, op initiatief van de I.W.V.A., op het grondgebied Koksijde-Oostduinkerke. Daarbij worden leidingen aangelegd en een behandelingsgebouw opgetrokken. Het behandelingsgebouw wordt voorzien op het RWZI-Wulpen. Het project past in de afbouw van de winning van natuurlijk fretatisch grondwater in de duinen.

Gedurende de ontwerpfase van deze mer werd de ligging van het behandelingsgebouw gewijzigd. Het behandelingsgebouw was oorspronkelijk voorzien in de duinen, maar zal nu worden opgetrokken ter hoogte van RWZI-Wulpen. Deze aanpassing heeft tot gevolg dat de duinen niet verder aangetast worden.

Voor de inrichting van het projectgebied werd rekening gehouden met het beheersplan opgesteld door het I.W.V.A. in overleg met het Instituut voor Natuurbehoud.

Door het Instituut van Natuurbehoud werden reeds adviezen inzake de inrichting van het infiltratiepand, de aanleg van de wandelpaden en de opslag van de afgegraven gronden overgemaakt.

In hetgeen volgt worden de significante permanente en tijdelijke effecten vermeld zoals deze uit de effectenstudie voor de onderzochte disciplines naar voren komen. Het betreft de disciplines geluid, bodem, water, fauna en flora en monumenten en landschappen. Ook de mildereende maatregelen door het college van deskundigen worden voorgesteld. De discipline landschappen ziet geen noodzaak aan mildereende maatregelen. Mits uitvoering van de mildereende maatregelen kan gesteld dat de toekomstige aanleg en exploitatie van de leiding voor het leefmilieu aanvaardbaar is.

Het project veroorzaakt geen grensoverschrijdende effecten.

0.4.1 Te milderen permanente effecten

Geluid

Effect: overschrijding van de VLAREM II-grenswaarde tijdens de nachtperiode.

Milderende maatregel: Akoestisch zorgvuldig afwerken van de gebouwen waarin zich belangrijke geluidsbronnen bevinden (MEMCOR zuiveringsinstallatie) heft het effect volledig op.

Bodem

Effect: structuurwijziging en profielwijziging bij aanleg van de leidingen.

Milderende maatregel: teelaarde gescheiden afgraven en stockeren om naderhand terug bovenaan aan te brengen. Het effect zal gedeeltelijk opgeheven worden.

Effect: inbeslagname bij aanleg van de leidingen.

Effect: bodemverdichting in de duinen (boortoren).

Milderende maatregel: door gebruik te maken van rijplaten wordt de bodemverdichting grotendeels opgeheven.

Effect: bodemverdichting (belasting door vrachtwagens en kranen) bij aanleg van leidingen in polders.

Milderende maatregel: door de akkers te frezen wordt het effect gedeeltelijk opgeheven.

Effect: ondoordringbaar maken van de bodem bij plaatsen van pompputten.

Milderende maatregel: geen additieven of biologisch afbreekbare additieven gebruiken. Het effect wordt volledig geneutraliseerd.
Water

OPPERVLAKTEWATER

Infiltratiepand

Effect: mogelijke algenbloei.

Milderende maatregel: voor alle parameters (vb. BZV,...) die belangrijk zijn voor de zuurstofhuishouding en de troflgraad van het water, een norm vooropstellen die minstens gelijk en bij voorkeur lager is dan de basiskwaliteitsnorm. Neutraliseert volledig de negatieve effecten.

Effect: mogelijk tekort aan zuurstofgehalte.

Milderende maatregel: beluchting van het water. Neutraliseert volledig de negatieve effecten.

Kanaal Duinkerke-Nieuwpoort

Effect: wijziging kwaliteit oppervlakwater.

Milderende maatregel: verdere voorzuivering van het concentrat. Slechts gedeeltelijke opheffing van de negatieve effecten.

GRONDWATER

Effect: mogelijke wijziging van de grondwaterkwaliteit ten gevolge van het infiltratiewater.

Milderende maatregel: kwaliteit van het infiltratiewater dient zoveel mogelijk overeen te komen met de kwaliteit van het grondwater; het onttrokken debiet dient het geïnfiltreerde debiet te overtreffen. Het effect wordt grotendeels opgeheven en beperkt zich tussen het infiltratiepand en de pompputten.

Fauna en Flora

Milderende maatregel: pH van het water in het infiltratiepand hoog houden (pH=8) om de nutriënten zoveel mogelijk onbeschikbaar te maken. Neutraliseert ten dele de negatieve effecten.

0.4.2 Te milderen tijdelijke effecten

Voor de disciplines geluid en oppervlakteswater worden geen milderende maatregelen voorgesteld voor de tijdelijke effecten.

Bodem

Effect: opbrengstderving op de akkers ten gevolge van de aanleg van de leidingen.

Milderende maatregel: werken uitvoeren na de oogst van de gewassen. Neutraliseert volledig de effecten.

Water

GRONDWATER

Effect: wijziging grondwaterkwaliteit door spoelen van leidingen en pompputten.

Milderende maatregelen: spoelwater lozen in infiltratiepand. Dit heft de negatieve effecten volledig op.

Effect: mogelijke wijziging grondwaterkwaliteit door aanleg van kleischelpen.

Milderende maatregelen: kwaliteit van de kleischelpen moeten van die aard zijn, dat bij uitloging geen ongewenste stoffen in grondwater terecht komen.
Fauna en flora

Effect: rustverstoring.

Milderende maatregel: afscherming van de oppervlakte en oevers van het infiltratiepand om watervogels te weren tot zich een vegetatie heeft kunnen ontwikkelen. Neutraliseert volledig de negatieve effecten.

0.4.3 Niet te milderen effecten

Gezien de bouw van het behandelingsgebouw ter hoogte van RWZI-Wulpen, de aanleg van het infiltratiepand en de aanleg van de leidingen zullen evenwel een aantal effecten optreden die niet te milderen zijn.

Bodem

Effect: verstoring bodemprofiel en bodemprocessen bij lokaal ophogen van het maaiveld waar opslag afgegraven gronden voorzien worden.

Effect: bodeminname: aanleg van de leidingen en bouw behandelingsgebouw.

Fauna en Flora

Effect: biotoopverlies door aanleg van infiltratiepand.

Effect: eutrofiëring in kanaal Duinkerke-Nieuwpoort; effect is permanent zolang de lozingen duren.

Monumenten en landschappen

Effect: verlies potentieel erfgoedwaarde bij aanleg van de transportleidingen en bij aanleg van infiltratiepand.

Effect: structuurwijziging wegens vergravingen en ophoping uitgegraven materiaal ten zuiden van infiltratiepand.

RUG – Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
DEEL 1 INLEIDING

1.1 COÖRDIJNATEN VAN DE INITIATIEFNEMER

Intercommunale Waterleidingsmaatschappij van Veurne-Ambacht c.v.
Doornpanne 1
8670 KOKSIJDE
Tel: 058/52.15.55
Fax: 058/52.16.04
e-mail: info.water@publilink.be

1.2 BEKNOPTE BESCHRIJVING VAN HET PROJECT

In de Doornpanne te Koksijde-Oostduinkerke, wordt momenteel grondwater ontgonnen door de Intercommunale Waterwinningsmaatschappij van Veurne-Ambacht. Het project voorziet in een kunstmatige aanvulling van het grondwaterreservoir ten behoeve van de drinkwaterproductie.

1.3 DOELSTELLING VAN HET PROJECT

De doelstelling van het project is een duurzame drinkwaterproductie uit te bouwen in de duinen van Sint-André (Koksijde) en De Panne. Daarbij wordt geopteerd voor een integrale benadering waarbij verschillende ruwwaterbronnen van relatief goede kwaliteit in het bestaande productieproces geïntegreerd worden.

Dit project moet leiden tot de optimalisatie en de diversificatie van de productiemiddelen, enerzijds om de drinkwaterproductie te verhogen waardoor de steeds stijgende vraag naar drinkwater kan ingevuld worden, en anderzijds om de winning van het natuurlijke freatische grondwater te verminderen waardoor de natuur in deze gebieden zich kan herstellen. Op die manier wordt gestreefd naar een duurzame drinkwaterwinning in de duinen. Bijhorende plannen zullen de beheersdoelstellingen en -maatregelen voor de onderscheiden gebieden vastleggen.

Het project kadert in de vraag om de grondwateronttrekking in de duinen te verminderen.

1.4 NOODZAAK VAN HET PROJECT

De vraag naar drinkwater is de laatste jaren min of meer gestabiliseerd. Dat verschijnsel is vooral toe te schrijven aan de inspanningen van de industrie om het water te hergebruiken. Het lijkt er bovendien op dat de toename van het drinkwaterverbruik van de gezinnen is verminderd. Dat kan te maken hebben met de acties voor rationeel gebruik van drinkwater. Voor de I.W.V.A. dient men er echter rekening mee te houden dat de afname vooral gebeurt in het toeristisch seizoen. Het drinkwaterverbruik ten gevolge van de toeristische activiteit is sterk gebonden aan de weersomstandigheden.

Een reserve aan distributiecapaciteit is dus zeker gewenst. Het project stelt de drinkwaterbevoorrading van de I.W.V.A. veilig.

drinkwater de eerste slachtoffers zijn. Het project is een waardevol voorstel van integraal waterbeheer binnen een kustgebied vooral door de introductie van membraanfiltratietechnieken ten behoeve van drinkwaterproductie, een zaak die wereldwijd veel perspectieven biedt. Deze technieken vormen een belangrijke troef, om de onafhankelijkheid van Vlaanderen voor drinkwaterproductie op langere termijn te vrijwaren.

1.5 **TOETSING AAN DE M.E.R.-PLICHT**

Volgens het besluit van de Vlaamse Regering van 23 maart 1989 houdende bepaling voor het Vlaamse Gewest (B.S. 17/05/1989, Art. 2, par. 15°) van bepaalde categorieën van hinderlijke inrichtingen is een MER vereist voor:

- waterhuishoudingsprojecten die het waterregime beïnvloeden in één of meer van de volgende gebieden:
 - ofwel een volgens het gewestplan vastgesteld natuur- en/of reservaatgebied;
 - ofwel een volgens het gewestplan vastgelegd ecologisch waardevol gebied;

- aanleg van een hoofdtransportleiding voor transport van vloeistof of gas, in één of meer van de volgende gebieden:
 - natuur- en/of reservaatgebied (gewestplan);
 - ecologisch waardevol gebied (gewestplan);
 - vogelbeschermingsgebied en/of “Ramsar”-gebied.

Daar de kunstmatige aanvulling in Sint-André het waterregime zal beïnvloeden en bovendien gelegen is in een volgens het gewestplan vastgesteld natuur- en vogelrichtlijngebied (zie deel 2), is het project m.e.r.-plichtig.

Gelet op de aard van de geplande activiteiten zullen volgende disciplines in het MER behandeld worden:

- geluid;
- bodem (pedologie en geologie);
- water (oppervlaktewater en grondwater);
- fauna en flora;
- monumenten en landschappen.
SAMENSTELLING VAN HET COLLEGE VAN DESKUNDIGEN

Het college van deskundigen bestaat uit:

* interne deskundigen:
 - ing. F. Vanlerberghe (directeur-generaal);
 - Lic. E. Van Houtte (geoloog).

* externe deskundigen:
 - Coördinatie:
 Prof. W. De Breuck, Universiteit Gent;
 Prof. K. Walraevens, Universiteit Gent.
 - discipline bodem en grondwater:
 Lic. D. De Smet, Universiteit Gent;
 Lic. K. Martens, Universiteit Gent.
 - discipline fauna en flora, oppervlaktewater.
 Prof. N. De Pauw, Universiteit Gent;
 Prof. D. Van Damme, Universiteit Gent.
 - discipline monumenten en landschappen en materiële goederen in het algemeen:
 Prof. M. Antrop, Universiteit Gent;
 Lic. I. Martens, Universiteit Gent.
 - discipline geluid:
 Prof. D. Botteldooren, Universiteit Gent;
 ir. S. Decloedt, Universiteit Gent.
DEEL 2 RUIMTELIJKE, ADMINISTRATIEVE, JURIDISCHE EN BELEIDSMATIGE BESCHRIJVING VAN HET PROJECT

2.1 RUIMTELIJKE SITUERING

De aangevraagde waterwinning is volledig binnen het bestaande waterwingebied van Sint-André te Koksijde-Oostduinkerke gelegen.

De I.W.V.A. heeft 124 ha 18 a 33 ca eigendom in het gebied, waarvan 37 ha 04 a 22 ca op het grondgebied van de deelgemeente Oostduinkerke en 87 ha 14 a 11 ca op het grondgebied van Koksijde. De eigendom (fig. 2.1) omvat naast het totale waterwingebied, zoals aangeduid op het Gewestplan, ook nog enkele aanpalende percelen.

In het noorden wordt het terrein begrensd door de Koninklijke Baan. In het zuiden vormen de Pylyserlaan en de Jachtwakersstraat de grens. In het oosten en in het westen bakent een woonwijk het gebied af.

2.2 ADMINISTRATIEVE VOORGESCHIEDENIS

De I.W.V.A. werd gesticht op 24 december 1924. De onderneming heeft als doel verschillende gemeenten aan de kust te voorzien van water.

Hieronder wordt chronologisch de geschiedenis van de I.W.V.A. weergegeven:

- 24 dec. 1924: stichting van de I.W.V.A.
- 1933 – 1934: uitvoering van een dertigtal proefboringen en uitbouw van een filterbatterij van 10 putten (26-35) in St.-André te Oostduinkerke;
- 1934: aankoop van een deel van het duingebied St.-André (6ha39a38ca);
- 1940: aankoop van bijkomend duingebied (7ha01a58ca en 18a25ca) in St.-André te Oostduinkerke;
- 1942: aanbesteding pompstation 1 St.-André;
- 1947 - 1948: bouw van een pomp- en filtergebouw in St.-André te Oostduinkerke;
- 1947: start van de waterwinning in St.-André te Oostduinkerke;
- 1951: aanleg van filtrer- en ontijzeringsinstallatie in St.-André te Oostduinkerke;
- 1959 - 1960: bouw van een nieuw pompgebouw en ontijzeringsinstallatie te Oostduinkerke (St.-André);
- 1960: indienststelling van pompstation 2 St.-André te Oostduinkerke;
- 1962: installatie van filter- en ontijzeringsseenheid in oud pompgebouw te Oostduinkerke (St.-André);
- 1976: aflevering van een vergunning voor de uitbating van een grondwaterwinning door 163 winputten met een vergund debiet, dat de 12000 m³/dag niet mag overschrijden;
- sept. 1994: goedkeuring van het beheersplan voor het natuurgebied 'De Doornpanne' te Oostduinkerke;
- 1996: opstarten van proefstation i.v.m. microfiltratie;
- 1997: opstarten van proefstation i.v.m. omgekeerde omstose;
Figuur 2.1 Eigendom van de I.W.V.A.
22 mei 1997: aanvraag tot het bekomen van de vergunning voor het aanvullen en exploiteren van een kunstmatige aanvulling van het grondwater en winning van infiltratiewater te Koksijde (Doornpanne);

20/10 - 20/11/1997: openbaar onderzoek voor het verkrijgen van de vergunning voor het aanvullen en exploiteren van een kunstmatige aanvulling van het grondwater en winning van infiltratiewater in de Doornpanne;

Een volledig chronologisch overzicht is te vinden in bijlage 2.1.

Een beknopt overzicht van de vergunningen, uitgereikt in het kader van de grondwaterwinning:

- vergunning C (75/HD/2502/W.VI 352/1083) voor de winning van grondwater (toekenning van de vergunning: op 22 januari 1976);
- vergunning C voor het exploiteren van een kunstmatige aanvulling van het grondwater en winning van infiltratiewater (bijlage 2.2; toekenning van de vergunning: 2 juni 1998).

De eerstgenoemde vergunning vervalt in 2005; de infiltratievergunning is geldig tot 2018.

Na de m.e.r. zal een bouwvergunningsaanvraag (vervolledigd met het MER) ingediend worden.

Voor de installaties in het behandelingsebouw ter hoogte van het RWZI-Wulpen is een uitbatingsvergunning nodig. Volgende rubrieken uit het VLAREM I zullen deel uitmaken van de vergunningsaanvraag:

- 3.4. lozen van het concentraat;
- 3.6.4. aanvoer en behandeling van het effluent vanuit het RWZI Wulpen;
- 16.3.2. compressoren;
- 17.3.3. opslag van chemicaliën.
2.3 JURIDISCHE EN BELEIDSMATIGE RANDVOORWAARDEN

2.3.1 Juridische randvoorwaarden

Gewestplan

Op het gewestplan Veurne - De Westkust wordt de huidige waterwinning te Sint-André afgebakend als waterwingebied. Het noordelijk deel van de leidingstracés voor het transport van het ruw water en drinkwater zijn gelegen in een waterwingebied en gebied voor verblijfrecreatie. De rest van het doorkruiste gebied, met uitzondering van een klein deel dat uitmaakt van het woonuitbreidingsgebied, is agrarisch.

In een waterwingebied kunnen ten aanzien van de uitvoering van handelingen en werken beperkingen worden opgelegd met het doel de waterwinning te beschermen (drinkwater, industriewater, bronwater).

Het gebied voor verblijfrecreatie is bestemd voor recreatieve en toeristische accommodatie alsmede de verblijfsaccommodatie met inbegrip van de kampeerterreinen, de gegroepeerde chalets, de kampeerverblijfparken en de weekendverblijfparken.

De woonuitbreidingsgebieden zijn uitsluitend bestemd voor groepswoningbouw zolang de bevoegde overheid over de ordening van het gebied niet heeft beslist.

De agrarische gebieden zijn in de ruime zin bestemd voor de landbouw.

De ligging van het projectgebied op het gewestplan wordt weergegeven op figuur 2.2.

Vlarem II

Het Besluit van de Vlaamse Regering van 19 januari 1999 (B.S. 31/03/99) betreffende Vlarem II is van toepassing. Hierbij wordt vooral verwezen naar winning van het grondwater (hoofdstuk 5.53) en kunstmatig aanvullen van het grondwater (hoofdstuk 5.54).

Voor de disciplines bodem, water en geluid gelden de milieukwaliteitsnormen zoals bepaald in het Vlarem II.

Wetgeving wat betreft het grondwater

Het grondwaterdecreet van 24 juni 1984 houdende maatregelen inzake het grondwaterbeheer (B.S. 5 juni 1984) vormt de wettelijke basis voor de bescherming van het grondwater.

Wetgeving betreffende de reglementering en vergunning voor het gebruik van grondwater en de afbakening van waterwingebieden en beschermingszones zijn opgenomen in Vlarem I (B. VI. R. van 12 januari 1999).

Een deel van het projectgebied is gelegen in een waterwingebied en beschermingszone I en II.

Landschapsdecreet

Het decreet van 16 april 1996 houdende bescherming van landschappen vervangt de oude wet van 7 augustus 1931 tot behoud van monumenten en landschappen. Het nieuwe decreet bevat een nieuwe vergunningsprocedure, een beheersluik en algemene beschermingsvoorschriften.
Figuur 2.2 Gewestplan met aanduiding van het projectgebied.
Legende bij figuur 2.2

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Agrarische gebieden</td>
</tr>
<tr>
<td>R</td>
<td>Woongebieden</td>
</tr>
<tr>
<td>N</td>
<td>Woonuitbreidingsgebieden</td>
</tr>
<tr>
<td>N</td>
<td>Groengebieden</td>
</tr>
<tr>
<td>N</td>
<td>Natuurgebieden</td>
</tr>
<tr>
<td>R</td>
<td>Natuurgebieden met wetenschappelijke waarde of</td>
</tr>
<tr>
<td>N</td>
<td>natuurreservaten</td>
</tr>
<tr>
<td>P</td>
<td>Parkgebieden</td>
</tr>
<tr>
<td>D</td>
<td>Gebieden voor milieubelastende industrieën</td>
</tr>
<tr>
<td>D</td>
<td>Gebieden voor dagrecreatie</td>
</tr>
<tr>
<td>D</td>
<td>Gebieden voor verblijfrecreatie</td>
</tr>
<tr>
<td>D</td>
<td>Bestaande waterwegen</td>
</tr>
<tr>
<td>D</td>
<td>Waterwiningsgebieden</td>
</tr>
<tr>
<td>M</td>
<td>Militaire domeinen</td>
</tr>
<tr>
<td>D</td>
<td>Landschappelijk waardevolle gebieden</td>
</tr>
<tr>
<td>D</td>
<td>Reservaties en erfelijkheidsgebieden</td>
</tr>
<tr>
<td>D</td>
<td>Aanduiding van het projectgebied</td>
</tr>
</tbody>
</table>
Beschermde monumenten, stads- en dorpsgezichten en landschappen
Er worden geen beschermde landschappen en dorpsgezichten doorkruist.

Decreet houdende de bescherming van het archeologisch patrimonium
Sinds 20/04/94 is het Decreet van de Vlaamse Regering (B.V.R. 14/07/93, B.S. 19/10/93) van kracht houdende de bescherming van het archeologisch patrimonium. Volgens dit decreet moet bij grondwerken reeds in de planfase contact genomen worden met het Instituut voor het Archeologisch Patrimonium (IAP).

Wetgeving wat betreft oppervlaktewateren
In uitvoering van de Wet van 26.03.1971 op de bescherming van de oppervlaktewateren, tegen verontreiniging zijn thans in hoofdstuk 2.3 van het VLAREM II (Besl. VI. Reg. van 1 juni 1995) de milieukwaliteitsnormen voor de oppervlaktewateren opgenomen.

De basismilieukwaliteitsnormen, geldend voor alle oppervlaktewateren, zijn opgenomen in Bijlage 2.3.1 van het VLAREM II. Daarnaast bevat het VLAREM II ook de bijzondere milieukwaliteitsnormen voor:
- oppervlaktewateren bestemd voor drinkwaterproductie;
- oppervlaktewateren met de bestemming zwemwater;
- oppervlaktewateren met de bestemming viswater;
- oppervlaktewateren bestemd voor schelpdieren.

De oppervlaktewateren waarvoor deze normen gelden zijn aangewezen in het Besluit van de Vlaamse Regering van 21/10/1987.

Het Kanaal Duinkerke - Nieuwpoort is gecatalogeerd als een bevaarbare waterloop en is gekalibreerd voor schepen tot 300 ton.

De waterkwaliteit van het Kanaal Duinkerke - Nieuwpoort dient de volgens het Besluit van de Vlaamse Regering van 21/10/87 op 01/01/95 te beantwoorden aan de basiskwaliteitsnormen voor oppervlaktewater.

Duinendecreet
Door het Decreet van 14/07/1993 werd een hoofdstuk ‘specifieke bepaling voor de maritieme duinstreek’ toegevoegd aan de Natuurbehoudswet. Het B.Vl.R. van 16.11.1994 heeft delen van de maritieme duinstreek als beschermde duingebieden en voor het duingebied belangrijke landbouwgronden aangeduid. In de beschermde duingebieden en voor het duingebied belangrijke landbouwgronden geldt, ongeacht de bodembestemmingsplannen (gewestplan, APA, BPA), een volledig bouwverbod voor werken die vergunningsplichtig zijn overeenkomstig art. 44 van de Wet op de ruimtelijke ordening. Dit bouwverbod geldt niet voor zover het gaat om verbouwing, herbouw en uitbreiding van bestaande landbouwbedrijven en voor zover deze werken geen wijziging van de landbouwbestemming tot gevolg hebben.

De door het B.Vl.R. van 30.11.1994 vastgestelde beschermde gebieden worden weergegeven op figuur 2.3.
Beschermd duinengebied en voor het duingebied belangrijke landbouwgronden (B.Vl.R. 30.11.94)
Wet op het natuurbehoud

Volgende uitvoeringsbesluiten genomen in het kader van de Wet van 12 juli 1973 op het natuurbehoud zijn van belang:

K.B. van 22.09.1980 houdende maatregelen ter bescherming van bepaalde in het wild levende inheemse diersoorten, die niet onder toepassing vallen van de wetten en besluiten op de jacht en de vogelbescherming.

Diersoorten venneld in dit besluit genieten in het Vlaamse Gewest volledige bescherming.

K.B. van 09.09.1981 houdende maatregelen ter bescherming van de in de E.U. in het wild levende vogelsoorten

Voor volledig beschermdes vogels is het doden, vangen, vervoeren, bezitten of verhandelen verboden. Het opzettelijk verstoren, wegnemen of vernietigen van bewoonde of in aanbouw zijnde nesten is eveneens verboden.

B.Vl.R. 27.06.1984 houdende maatregelen inzake natuurbehoud op de bermen beheerd door publiekrechtelijke rechtspersonen (Bermbesluit)

Vogelrichtlijn- en 'Ramsar'-gebieden

De internationale overeenkomst inzake watergebieden die van internationale betekenis zijn in het bijzonder als woongebied voor watervogels (opgemaakt te Ramsar, Iran, op 02/02/71) werd goedgekeurd door België bij wet van 22/02/79. Het K.B. 17.09.1984 duide de gebieden aan. In het Vlaamse Gewest gelden volgende beschermingsregelen voor 'Ramsar'-gebieden:

- voor de aanleg van een hoofdtransportleiding, voor ruilverkavelings- en/of landinrichtingsprojecten en voor waterhuishoudingsprojecten die het waterregime beïnvloeden is een MER vereist;

Altijd en de vegetatiebesluit is van toepassing.

Vogelrichtlijngebieden werden aangeduid in het kader van de richtlijn 79/409/EEG van de Raad van de Europese Gemeenschappen van 2 april 1979 inzake het behoud van de vogelstand (Besluit Vlaamse Executieve 17.10.1988).

Ter hoogte van het studiegebied is een Vogelrichtlijngebied aanwezig, maar geen Ramsargebied (Fig. 2.4).
Figuur 2.4 Ontwerp Groene Hoofdstructuur Vlaanderen (Ministerie van de Vlaamse Gemeenschap, 1993).
Decreet betreffende het natuurbehoud en het natuurlijk milieu

De Vlaamse Regering neemt alle nodige maatregelen ter aanvulling van de bestaande regelgeving om over het gehele grondgebied van het Vlaamse Gewest de milieuwedergezetheid en de natuurlijke omgeving daar door kunnen worden vernietigd of ernstig geschonden, is verplicht om alle maatregelen te nemen die reëel en redelijkwijze van hem kunnen worden gevorderd om de vernietiging of de schade te voorkomen, te beperken of te herstellen.

De overheid dient erop toe te zien dat geen vermijdbare schade aan de natuur kan ontstaan. Hiervoor dienen voorwaarden opgelegd of kan de vergunning of toestemming worden geweigerd.

Er komen geen erkende reservaten noch staatsnatuurreservaten in de onmiddellijke omgeving van de Doornpanne voor.

2.3.2 Beleidsmatige randvoorwaarden

Gewestelijk Milieubeleidsplan 1997-2001: MINA-plan 2

Het MINA-plan 2, in uitvoering van het decreet houdende algemene bepalingen inzake milieubeleid (dd. 05/04/1995), werd op 08/07/1997 door de Vlaamse Regering vastgesteld. In dit plan worden enkele acties vooropgesteld die betrekking hebben op grondwaterwinningen. Deze acties kaderen in het thema verdronking.

Volgende acties zijn voorzien in het MINA-plan 2:

- actie 61: een strategisch plan voor de watervoorziening opmaken;
- actie 66: beleidsinstrumenten voor bodemgebruik ontwikkelen en verbeteren;
- actie 67: een geïntegreerde vergunningsprocedure uitwerken voor waterwinning, kunstmatige aanvulling, watercaptatie en lozing;
- actie 70: herstelprogramma’s uitwerken en uitvoeren om grondwaterwinningen in overeenstemming met de draagkracht te brengen – Herstelprogramma “de duinen”;
- actie 72: infiltratie en lokale berging stimuleren en waterafvoer afremmen;
- actie 110: projecten opstarten voor de realisatie van verweavingsgebieden (inrichting van natuurvriendelijke infiltratievijvers, waterbergingsvijvers, herinrichting en opstuwen van waterlopen,...);
- actie 129: de verlegstructuur op niveau Vlaanderen voor integraal waterbeheer opzetten.
Milieubeleidsplan Provincie West-Vlaanderen
Het provinciaal milieubeleidsplan is in openbaar onderzoek en is aldus nog niet goedgekeurd door het Provinciebestuur.

Milieubeleidsplan gemeente Koksijde
Tot op heden bestaat geen milieubeleidsplan voor de gemeente Koksijde.

Ruimtelijk Structuurplan Vlaanderen

Doelmatig gebruik van grondwater:
- grondwater van goede kwaliteit moet prioritair voorbehouden worden voor drinkwater en voor zeer specifieke industriële of agrarische toepassingen (duurzaam gebruik van eindige grondstoffen).
- het vrijwaren of het bereiken van een goede grondwaterkwaliteit houdt in dat er voorwaarden moeten kunnen gelden ten aanzien van functies en activiteiten die zich in het invloedgebied van de grondwaterwinning situeren (wonen, bedrijvigheid, land- en tuinbouw, ...).

Het RSV stelt dat de infrastructuur voor waterwinning moet worden geoptimaliseerd, rekening houdend met aanwezige natur- en landschapswaarden en landbouwpotentialiteiten.

Voorontwerp Structuurplan Kustzone (februari 1994)
In opdracht van de provincie West-Vlaanderen werd in het kader van het Provinciaal Structuurplan West-Vlaanderen een “Voorontwerp Structuurplan Kustzone” opgesteld. Dit voorontwerp wordt samen met de andere deelstructuurplannen, gebruikt als studiebasis voor de opmaak van het provinciaal ruimtelijk structuurplan.

In het deelstructuurplan is het infiltratiegebied aangeduid als natuurkerngebied waarin een gebied met grondwaterwinning voorzien is. De zone die voorzien wordt voor de aanleg van de leidingen voor de aanvoer van het infiltratiewater is gelegen binnen een homogeen landelijk gebied.

Landinrichtingsproject De Westhoek
De inventarisatie voor de ruiiverkaveling Adinkerke-Oostduinkerke is reeds beëindigd. De uitwerking van de visie en doelstellingen zijn voorzien voor eind 1999.

Regionale landschappen
Er zijn geen regionale landschappen in de nabije omgeving.
Groene Hoofdstructuur

De Vlaamse minister van Leefmilieu en Huisvesting, besliste op 16 februari 1993 deze kaart (Fig. 2.4) te gebruiken als beleidsondersteunend document ten behoeve van het beleid inzake natuurbehoud.

De Groene Hoofdstructuur zal vervangen worden door het Vlaams Ecologisch Netwerk (VEN). Deze planmatige invulling van het gebiedsgericht beleid in vergelijkbare gebiedscategorieën, zal worden ingelast in het decreet inzake natuurbehoud en natuurlijk milieu, dat in het kader van het Ruimtelijk Structuurplan Vlaanderen (RSV) past. Dit betekent dat in de verschillende gebiedscategorieën van het VEN een aantal maatregelen kunnen getroffen worden om de doelstellingen te verwezenlijken. Ook de visie van andere sectoren zoals de Agrarische structuur worden afgewogen in het planproces en geïntegreerd in het RSV.

Er worden vijf gebiedscategorieën afgebakend:

- **natuurkerngebieden**: entiteiten met hoge actuele en toekomstige natuurwaarden
- **natuurontwikkelingsgebieden**: gebieden met actueel lagere natuurwaarden die ontwikkeld kunnen worden tot kerngebieden
- **natuurbuffergebieden**: ondersteunen de doelstellingen van de vorige categorieën door de negatieve omgevingsfactoren op te vangen
- **natuurverwevingsgebieden**: gebieden waarin natuurbehoud een nevenfunctie vervult (naast landbouw, bosbouw, recreatie, ...)
- **natuurverbindingsgebieden**: strook of lijnvormige natuurelementen of landschappen rijk aan kleine landschapselementen (KLE) die een verbindende ecologische functie kunnen vervullen. De KLE's worden ook wel aangeduid met de term “ecologische infrastructuur”.

In het decreet natuurbewerking worden de gebiedscategorieën ondergebracht in het Vlaams Ecologisch Netwerk (VEN) en het Integraal Verwevings- en Ondersteunend Netwerk' (IVON).

Het VEN vormt een geheel van:

1. **Grote Eenheden Natuur (GEN):**

 Dit zijn gebieden die hetzij een hoge natuurwaarde en een goede biotoopontwikkeling over een oppervlakte van minstens de helft van hun oppervlakte bezitten hetzij gebieden waarin een specifieke en belangrijk natuurelement aanwezig is.

2. **Grote Eenheden Natuur in Ontwikkeling (GENO):**

 Gebieden die één van de volgende kenmerken vertonen:

 - Aanwezigheid van hoge natuurwaarden, verspreid over de oppervlakte van het gebied, waarvan de gezamenlijke oppervlakte echter kleiner is dan de helft van het gebied.
 - Aanwezigheid van belangrijke fauna- of flora-elementen waarvan het voortbestaan moet worden ondersteund door de maatregelen inzake het grondgebruik.
 - Terreinen al dan niet door kunstmatige ingrepen tot stand gekomen met belangrijke mogelijkheden voor natuurontwikkeling.

Het Integraal Verwevings- en Ondersteunend Netwerk (IVON) omvat natuurverwevings- en natuurverbindingsgebieden.

Het IVON is een geheel van gebieden waarin de administratieve overheid zorg draagt voor het behoud van de aanwezige natuurwaarden, maatregelen neemt ter bevordering en versterking van de actuele...
natuurwaarden, alsook stimulerende maatregelen neemt ter bevordering van de biologische diversiviteit.

Een gedetailleerde gebiedsgerichte afbakening is thans nog niet voor handen. Het infiltratiegebied dat op het gewestplan bestemd is voor waterwinning wordt op de indicatieve ontwerptekening van de Groene Hoofdstructuur ingetekend als natuurontwikkelingsgebied. Ten noordoosten van het vliegveld is eveneens een gebied voorzien voor natuurontwikkeling.

Ecologisch Impulsgebied
Het projectgebied bevindt zich niet in een ecologisch impulsgebied.

Gemeentelijk Natuurontwikkelingsplan (GNOP) Gemeente Koksijde
Het GNOP van de gemeente Koksijde, dat goedgekeurd werd door het gemeentebestuur, behandelt o.a. het natuurontwikkelingsproject Doornpanne/Guldenzandstraat met daarin het beheersplan Doornpanne (I.W.V.A.).

Beheersplan voor het natuurgebied “De Doornpanne” te Oostduinkerke

Habitatrichtlijngebieden
In Vlaanderen zijn in het kader van de Europese Richtlijn 92/43/EEG een aantal gebieden voorgesteld als speciale beschermingszones. De richtlijn heeft het behoud van de biodiversiteit tot doel en streelt naar de instandhouding van de natuurlijke habitats en de wilde flora en fauna die hiervan deel uitmaken. Hiertoe dienen door elk land speciale beschermingszones te worden aangeduid rekening houden met welomschreven criteria.

Volgens art. 6 van de Richtlijn 92/43/EEG van de Raad van 21.05.1992 inzake de instandhouding van natuurlijke habitats en de wilde flora en fauna, houdt dit in dat voor plannen die significante gevolgen kunnen hebben voor zo’n gebied slechts toestemming kan worden gegeven nadat de bevoegde instanties zekerheid verkregen hebben dat de plannen de natuurlijke kenmerken van het betrokken gebied niet zullen aantasten en nadat zij in voorkomend geval inspraakmogelijkheden hebben geboden.

Indien een plan of project, ondanks negatieve conclusies en beoordelingen van de gevolgen voor het gebied, bij ontstentenis van alternatieve oplossingen, om dwingende redenen van groot openbaar belang toch moet worden gerealiseerd, moet de lidstaat alle nodige compenserende maatregelen nemen om te waarborgen dat de algehele samenhang van natuur en milieu bewaard blijft.

Tot op heden is een voorstel van het habitatrichtlijngebied uitgewerkt door het Instituut voor Natuurbehoud en goedgekeurd door de Vlaamse Regering. Dit voorstel dient nog goedgekeurd te worden door de Europese Gemeenschap. Vervolgens dient de Vlaamse Regering de definitieve gebieden aan te duiden en de uitvoeringsbesluiten te formuleren.

Het studiegebied is gelegen binnen een habitatrichtlijngebied en wordt voorgesteld op figuur 2.5.
Figuur 2.5 Habitatrichtlijngebieden
Ecosysteemvisie van de Vlaamse Kust

Het uitgangspunt van de ecosysteemvisie is het streven naar een volledige afbouw van de winning van natuurlijk freatisch water in de duinen op middellange termijn (10-20 jaar). Dit houdt ook in dat er geen nieuwe gebieden voor grondwaterwinning meer worden toegewezen en dat winningstechnieken die hydrologisch ongestoorde gebieden aantasten eveneens worden afgewezen. Binnen 'begeleid natuurlijke' landschappen is elke vorm van grondwaterwinning uit den boze. De freatische lagen van de duinen worden in het MINA-plan 2 als prioritair te beschermen en te herstellen watervoerend pakket beschouwd wegens het belang voor de biodiversiteit binnen Vlaanderen.

De ecosysteemvisie met betrekking tot drinkwaterwinning duidt het belang aan van een, politiek voldoende ondersteund, beleidskader waarin de volgende elementen worden opgenomen:

- een ecosysteemvisie met o.m. de aanduiding van gebieden waar waterwinning zeker niet mogelijk is en van andere gebieden wel;
- een integraal drinkwaterbeleidsplan voor de regio waarin ecologische draagkracht van de duinecosystemen t.o.v. diverse vormen van drinkwatervoorziening als uitgangspunt wordt genomen. Dit plan dient het ambtsgebied van de verschillende maatschappijen te overstijgen;
- een aanpassing van de beleids- en uitvoerende structuren van de waterleidingsbedrijven aan een evenwaardigheid van de functies natuurbehoud en watervoorziening.

De I.W.V.A. heeft een stappen ondernomen die van toepassing zijn in de ecosysteemvisie: het opstellen van een beheersplan en de vermindering van het winnen van natuurlijk freatisch grondwater door het aanleggen van een infiltratiebekken in het gebied.

In de ecosysteemvisie wordt de toepassing van open infiltratie in de Doornpanne (en uitsluitend in dit gebied) als een mogelijke overgangsmaatregel beschouwd bij de afbouw van de grondwaterwinning (dus niet op lange termijn). Oppervlakte-infiltratie kan in een geomorfologische en hydrologisch verstoorde zone van het gebied zelfs een ecologische meerwaarde met zich meebrengen indien aan een aantal voorwaarden wordt voldaan.

Vanuit de Intercommunale Waterleidingsmaatschappij van Veurne-Ambacht (I.W.V.A.) werd een beheersplan (zie verder) opgesteld en goedgekeurd voor de Doornpanne waarin onder meer een begrazingsproject en de bouw van een bezoekerscentrum zijn opgenomen (en ook reeds gerealiseerd).
2.4 HISTORIEK VAN HET STUDIEGEBIED

De weergave van de historische evolutie van het terrein werd gebaseerd op de tekst in het beheersplan van de Doornpanne (anoniem, 1994).

Het duingebied in de omgeving van de Doornpanne is, in geologische termen, zeer recent ontstaan. Tijdens de "Duinkerke 2 transgressie" (3de - 8de eeuw) werden in die omgeving nog mariene sedimenten afgezet. In de daaropvolgende eeuwen maakten de Doornpanne en omstreken deel uit van een vrij uitgestrekt slikken- en schorrengebied. Afzettingen uit deze periode worden op +3 tot +4 m T.A.W. aangeboord. In de eerste fase van de duinvorming ontstonden waarschijnlijk twee loopduinen. Een eerste en belangrijk loopduin moet het gebied tussen de 9de en 11de eeuw overstoven hebben. Een oude bodem op een hoogte van +4,5 m T.A.W. is daarvan een overblijfsel. Een tweede paleosol wordt op +5,5 tot +6 m T.A.W. teruggevonden en zou een overblijfsel zijn van een loopduin uit de 13 de eeuw.

Deze duinvorming zou geleid hebben tot een licht golvend landschap met een hoogte van +6 tot +7 m T.A.W.. Uit pollenonderzoek blijkt dat onder meer duindoornstruwelen voorkwamen (De Ceunynck, 1992 in anoniem, 1994).

Het huidige duinlandschap werd vooral tussen de 14de en 16de eeuw gevormd. Deze paraboolduinfase was waarschijnlijk de natuurlijke voortzetting van de voorafgaande loopduinfasen. Door windwerking (voornamelijk zuidoosten) ontstonden in het vrij vlakke terrein paraboolvormige uitstuivingen. Aan de kop van de parabolen (lijzijde) gaat dit proces gepaard met duinvorming (5 tot 25 m hoog). De uitgestoven vlakten worden aan de zijkanten begrensd door de "paraboolarmen". Deze duinen zijn overblijfselen van de zijkanten van de paraboolkop en kunnen honderden meters lang worden.

De Doornpanne is het resultaat van zo'n grootschalige uitstuiving. De paraboolkop en restanten van de noordelijke arm zijn nog in het landschap te herkennen. De zuidelijke arm is waarschijnlijk voor een groot deel afgezaaid. De bouwwoede, die de duinen vooral vanaf de jaren dertig teistert, speelt hierbij de belangrijkste rol (De Ceunynck, 1992 in anoniem, 1994).

Meer kleinschalige en secundaire verstuivingen (bv. vanuit de grote paraboolarmen) bepalen het huidige reliëf van de Doornpanne.

De eerste vermelding van de naam "Koksijde" dateert uit 1270. Etymologisch kunnen we de naam verklaren als ronde duin aan het strand "kok". "Yde" betekent vermoedelijk vlak strand of een soort schuilhaven (Termote, 1992 in anoniem, 1994). De invloed van deze vissersnederzetting op het duin was gering. Deze werd trouwens tijdens de paraboolduinfase, samen met eventuele invloeden van de Abdij ter Duinen, onder het zand bedolven.

De oudste bekende kaart ("Ferrariskaart", 1771 – 1778) duidt aan dat het gebied tussen Oostduinkerke en Koksijde bestaat uit moerassige weiden.

Vanaf de eerste helft van de 19de eeuw is er meer intensieve antropogene invloed op het duin. Een deel van het duinenareaal werd in gebruik genomen voor de landbouw door vissers-landbouwers, die daarvoor sommige duinen hebben geëffend. Ze verbouwden rogge en aardappelen in de duinvalleien, maaiden en kapten de vegetatie en lieten er vee grazen. Die begrazing heeft een belangrijke invloed gehad op de vorming van een aantal soortenrijke graslandvegetaties. Overblijfselen van de oude akkers zijn nog altijd duidelijk zichtbaar in het zuiden van de Doornpanne.

Voor de Eerste Wereldoorlog hebben er koeien gegraasd en waren zelfs enkele drinkpoelen aangelegd. Tijdens de Eerste Wereldoorlog werd het gebied als oefenterrein door de geallieerde legers gebruikt. Er zijn overblijfselen van bakstenen waterputten uit die tijd aanwezig.

Tussen 1921 en 1933 bleef het gebied (120 ha) eigendom van de Engelse maatschappij die er de “Saint-André on Sea Golf Course” uitbaatte. Later werd het clubhuis restaurant (Père Omer); de onmiddellijke omgeving was een soort speelruimte. In het gebied lieten landbouwers hun koeien grazen, waarschijnlijk voornamelijk op de plaatsen waar vroeger ‘greens’ aanwezig waren.

In 1947 werd gestart met de waterwinning in het gebied. Na de ingebruikname als waterwinning werden de vroegere ingrepen op de vegetatie (nl. begrazing en kappen) stopgezet. Het gevolg was een algemene uitbreiding van het struweel. De belangrijkste actieve ingrepen op de vegetatie zijn de aanplantingen van populieren langs de wegen en enkele verspreide bosaanplantingen.

De chronologische geschiedenis van de I.W.V.A. in de Doornpanne wordt in voorgaande paragrafen weergegeven.
DEEL 3 MILIEUVERANTWOORDING OF RESULTATEN VAN UITGEVOERDE VOORSTUDIES

3.1 INVENTARISATIESTUDIE

Het project is een uitwerking van de aanbevelingen in de inventarisatie van de waterwinningsmogelijkheden in de Westhoek (Van Houtte E. et al., 1992).

3.2 STUDIEPROJECT VOOR KUNSTMATIGE AANVULLING

Er werden twee infiltratieproeven uitgevoerd met bemalingswater afkomstig van collectorwerken (Zeelaan te Koksijde en Leopold II laan te Oostduinkerke). Vervolgens werd een modelstudie uitgewerkt.

De eerste infiltratieproef gebeurde tussen november 1991 en maart 1992, door het Laboratorium voor Toegepaste Geologie en Hydrogeologie van de Universiteit Gent (Lebbe et al., 1993). Bij de eerste infiltratieproef werden de hydraulische parameters bepaald. Daarbij werd afgeleid dat de hydraulische weerstand van leemhoudende zanden, tussen +3 en +4 m T.A.W.\(^1\), beperkt is tot ca. 14 dagen, waaruit bleek dat kunstmatige aanvulling ter hoogte van dergelijke sedimenten mogelijk is. De horizontale hydraulische dooralatendheid van de zandige afzettingen bedraagt ca. 11 m/d.

De tweede infiltratieproef liep van maart tot juni 1993. Door chemische analyset is de invloed van infiltratie op de kwaliteit van het grondwater bestudeerd (Van Houtte E., 1993). Uit de tweede infiltratieproef werd de minimale afstand tussen winputten en infiltratiepunt berekend, namelijk 40 m voor een verblijftijd van 6 weken. Verder kon geen kwaliteitsverandering vastgesteld worden van het grondwater ten gevolge van de infiltratie (kwaliteit infiltratiewater tweede proef vergelijkbaar met duinwater).

In het kader van de vergunningsaanvraag werd een modelstudie gemaakt van de waterwinning van Sint-André (Van Houtte E., 1997). Deze modelstudie omvat volgende berekeningen:

- permanente grondwaterstroming van het gebied in de veronderstelling dat er geen waterwinning aanwezig was; daarmee wordt de grondwaterstand gereconstrueerd van vóór de aanvang van de waterwinning in 1947;
- de evolutie van de grondwaterstroming vanaf het begin van de waterwinning 1947 tot 1999;
- de evolutie van de grondwaterstroming bij kunstmatige aanvulling in Sint-André.

Resultaten van deze modelstudie worden gebruikt bij het opstellen van de referentiesituatie en de bespreking van de effecten van de geplande situatie t.o.v. van referentiesituatie (zie discipline water).

\(^1\) Alle peilen zijn aangegeven in m t.o.v. het referentielvlak van de Tweede Algemene Waterpassing (T.A.W.) van het Nationaal Geografisch Instituut (NGI), dat overeenkomt met het laag laag waterpeil van de Noordzee.
3.3 **ECOLOGISCHE RANDVOORWAARDEN**

De ecologische haalbaarheid van het infiltratieproject werd in 1993 onderzocht door het Instituut voor Natuurbehoud (Kuijken E., et al., 1993). Hierin concludeerde men dat de infiltratie in het zuidelijk deel van de Doornpanne mogelijk is mits een aantal voorzorgsmaatregelen. Het infiltratieproject beslaat slechts een beperkt deel van het duingebied van de Doornpanne, namelijk 19 ha. Deze plaats werd geadviseerd door het Instituut van Natuurbehoud (Provoost S., et al., 1993) omdat daar "de vegetatie niet tot ecologisch waardevolle systemen heeft geleid". Dit gebied wordt gekenmerkt door de aanwezigheid van grote delen vergraven terrein (meestal uit gebruik genivelleerde landbouwterreinen, fig. 3.1) en door het quasi ontbreken van vergravingsgevoelige vegetaties (fig. 3.2). Om deze redenen zal ook de depositie van zand (afkomstig van het aanleggen van het infiltratiepand) in deze omgeving gebeuren. Daardoor kan ook het transport beperkt worden.

De belangrijkste voorwaarde schref voor dat het infiltratieproject diende gekoppeld te worden aan de "afbouw van de exploitatie van de natuurlijke zoetwatervoorraad in een aantal duincomplexen". In het hier voorliggend project wordt daaraan in belangrijke mate tegemoet gekomen. In de vergunning C die werd verleend voor het aanleggen en exploiteren van een kunstmatige aanvulling in het grondwater en winning van het infiltratiewater in Koksijde (Besluit van 2 juni 1998, BS 05/09/1998) werd de jaarlijkse infiltratie van 2.500.000 m³ gecompenseerd door een verminderd jaarlijks vergund debiet van respectievelijk 300.000 m³ in Koksijde (Sint-André) en 700.000 m³ in De Panne (Westhoek). Hierdoor kan de grondwatertafel zich herstellen in o.a. de Westhoek en in de Witte Burg. Beide gebieden vallen buiten en studiegebied en zullen niet behandeld worden in deze MER.

Verder diende de I.W.V.A. borg te staan voor "een ecologisch verantwoord beheer van haar terreinen".

In de vergunningsaanvraag wordt rekening gehouden met volgende randvoorwaarden:

- De verhoogde drinkwaterproductie in de duinen van Sint-André wordt gecompenseerd door een belangrijke vermindering van de natuurlijke freatische grondwateronttrekking, en dit gespreid over de waterwinningen van Sint-André en de Westhoek. De drinkwaterproductie wordt dus gloaal bekeken voor beide vergunde duinwaterwinningen van de I.W.V.A.

- De kwaliteit van het infiltratiewater voldoet aan strenge normen (zie projectomschrijving).

- Het ecologisch verantwoord beheer van de duinen werd voor de Doornpanne vastgelegd in een beheersplan. Dit zal in de toekomst ook voor de andere gebieden gebeuren.

Er zal ook een uitgebreid controlesysteem worden opgebouwd, waarbij de volgende aspecten intensief zullen gevolgd worden:

- controle van de kwaliteit van het infiltratiewater;
- opvolging van de grondwaterstanden via een meetnet van peilputten;
- regelmatige controle van de grondwaterkwaliteit in het infiltratiegebied en aan de rand ervan;
- opvolging van de evolutie van de vegetatie (door middel van permanente kwadranten (PQ’s)).
Figuur 3.1 Ligging van de geëgaliseerde bodems

- geëgaliseerde bodems
- opslag- en werkterrein IWVA
de vegetatiekaart.

Aanduiding van het infiltratiepand en opslag van vergraven gronden op de vegetatiekaart.

Figuur 3.2
Intercommunale Waterleidingsmaatschappij van Veurne – Ambacht
MER Kustmatige aanvulling van het grondwaterreservoir in Sint-André

DEEL 4 PROJECTBESCHRIJVING

4.1 VASTLEGGEN VAN DE PROJECTGRENZEN

TIJDENS DE AANLEGFASE:
- aanleg van een infiltratiepand in het zuidwestelijk deel van de Doornpanne;
- opslag van afgegraven gronden;
- aanleg van bijkomende winputten in dit gebied;
- aanleg van het centrale wandelpad tussen de Witte Burg en de Hoge Blekker(laan) en van de lus tussen de zuigput en het bezoekerscentrum.
- bouw van behandelsgebouw en ruimte voor opslag van chemicaliën ter hoogte van RWZI-Wulpen;
- aanleg van leidingen:
 - transportleiding van infiltratiewater vanuit het behandelsgebouw naar het infiltratiepand;
 - distributieleiding voor drinkwater vanuit de bestaande behandelsinstallaties in Sint-André naar Wulpen;
 - transportleiding van concentrat vanuit het behandelsgebouw naar het lozingspunt in het kanaal Duinkerke - Nieuwpoort.

TIJDENS DE EXPLOITATIE- EN ONDERHOUDSFASE:
- onderhoud van infiltratienpand;
- gebruik en onderhoud waterleiding;
- het filteren van water in het bestaand behandelsgebouw;
- het oppompen van het geïnfiltreerd water;
- het verminderen van de productie in de overige delen van de waterwinning;
- het opmeten van de peilen.

RUG – Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
Figuur 4.1 Aanduiding van het projectgebied.
4.2 CONCRETE BESCHRIJVING VAN HET PROJECT

4.2.1 De aanlegfase

Aanleg van een infiltratiepand

Binnen het bestaande waterwingebied van Sint-André, gelegen te Koksjde-Oostduinkerke, zal een infiltratiepand worden aangelegd van ca. 500 m lang met een gemiddelde breedte van ca. 40 m (fig. 4.2).

Het pand bestaat uit een westelijk breder en een oostelijk smaller gedeelte. Beide zullen verbonden zijn via een ondergrondse hevel, zodat het waterniveau gelijk zal zijn.

De ligging van het pand werd gekozen in functie van de bestaande infrastructuur en van de aanwezige vegetatie en werd afgebakend in overleg met het Instituut voor Natuurbehoud. Het infiltratiepand wordt aangelegd op een plaats waar nu een puttenbatterij aanwezig is.

Het infiltratiepand wordt, conform recente nieuwe Nederlandse inzichten (Peters J.H. et al., 1992 en 1994), als volgt aangelegd:
- de diepte van het pand zal beperkt worden tot ca. 50 cm;
- de oevers zullen zacht hellen; de oevers zijn niet rechtlijnig en door het plaatselijk inschuiven zullen brede vochtige zones ontstaan met een groter overgangsgebied van nat naar droog; daardoor zal zich een karakteristieke fauna en flora kunnen ontwikkelen;
- op het oostelijk uiteinde van het infiltratiepand wordt een brede baai voorzien;
- middenin het westelijk deel en oostelijk deel van het infiltratiepand wordt een natuurlijk eiland voorzien.

De bodem van het pand zal zich op +6,0 à +6,2 m T.A.W. bevinden. Door de keuze van de plaats van het infiltratiepand (een relatief vlak en reeds vergraven gebied), de beperking van de diepte van het pand en de zacht hellende oevers, zal het grondverzet bij de uitvoering relatief beperkt blijven. De opgedolven hoeveelheid zand zal gebruikt worden in de onmiddellijke omgeving van het infiltratiepand, deels om bestaande relictten op te vullen, deels om bepaalde delen van terrein te verhogen.

In overleg met het Instituut van Natuurbehoud (I.N.) werd de bestemming van de grond overeengekomen. In bijlage 4.1 is het advies van het I.N. terug te vinden.

Op figuur 4.3 wordt het reliëf in de huidige toestand weergegeven. Figuur 4.4 geeft de toestand weer na de vergravingen. Hierbij valt op te merken dat de gronden ten zuiden van het infiltratiepand worden gedeponeerd.

Aanleg van bijkomende winputten en afsluiten van enkele bestaande putten

De filterbatterij, waar het infiltratiepand wordt gepland, zal verdwijnen. Ook de meest zuidelijk gelegen filterbatterij en de meest oostelijk gelegen putten (aangesloten op zuigput 2) worden opgegeven. Deze putten werden niet verwijderd zodat ze eventueel dienst kunnen doen als peilputten. De andere bestaande filterbatterijen, ten noorden en ten zuiden van het geplande infiltratiepand, worden behouden en uitgebreid (fig. 4.2). Bovendien worden 84 bijkomende putten aangelegd rond het geplande infiltratiepand. Deze zullen zich in de onmiddellijke omgeving van de centrale wandelweg bevinden.

Door deze keuze van inplanting van de winputten, uiteindelijk 112 rond het infiltratiepand (aangesloten op zuigput 2), wordt voorkomen dat het aangevuld water zich buiten het infiltratiegebied zou verspreiden (randbronnering).

Elke put zal individueel kunnen worden afgesloten.
Legende:
- Eigendomsgrens I.W.V.A.
- Bestaande winput
- Nieuw aan te boren winput
- Zone voor inplanting infiltratiepand
- Hevelleiding
- Persleiding
- Bestaande peilputten
- Sifon
- Aanvoerleiding infiltratiewater naar infiltratiepand
HOOGTELIJNEN - Bestaande toestand:

"Doornpanne" - KOKSIJDE

LEGENDE:

Parcelatiers eigenaar I.W.V.A. Lijn wegwerving

Hoogte (vb. 7 meter)

Figuur 4.3 Huidig reliëf ter hoogte van het geplande infiltratiepand.
HOOGTELIJNEN – Ontworpen toestand :

Hoogtelijnen volgens T.A.W.

"Doornpanne" – KOKSIJDE

LEGENDE :

- Percetsgrens eigendom I.W.V.A.
- Rand wegverharding
- Deksel
- Kroon
- Hoogtelijn (~ 7 meter)
- Opslag afgegraven gronden

Figuur 4.4 Reliëf na de realisatie van het infiltratiepand.
Intercommunale Waterleidingsmaatschappij van Veurne–Ambacht
MER Kunstmatige aanvulling van/rel grondwaterreservoir in Sint-André

Opdat het water voldoende lang in de grond zou verblijven, waardoor het teruggewonnen water bacteriologisch zuiver zou zijn, bedraagt de minimum afstand tussen het infiltratiepand en de winputten 40 m. Deze afstand wordt ook zoveel mogelijk gespreid (tabel 4.1) om een maximale afvlakking te verkrijgen van eventuele verschillen in kwaliteit van het aangevulde water. De afstand varieert tussen 40 m en 122 m, met een gemiddelde van 56 m.

Tabel 4.1 Afstand tussen winputten en rand van infiltratiepand.

<table>
<thead>
<tr>
<th>Afstand tussen winput en rand infiltratiepand (in m)</th>
<th>Aantal putten</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 40</td>
<td>32</td>
</tr>
<tr>
<td>≤ 45</td>
<td>26</td>
</tr>
<tr>
<td>≤ 50</td>
<td>27</td>
</tr>
<tr>
<td>≤ 60</td>
<td>9</td>
</tr>
<tr>
<td>≤ 70</td>
<td>3</td>
</tr>
<tr>
<td>≤ 80</td>
<td>3</td>
</tr>
<tr>
<td>≤ 90</td>
<td>4</td>
</tr>
<tr>
<td>≥ 90</td>
<td>8</td>
</tr>
<tr>
<td>Totaal</td>
<td>112</td>
</tr>
</tbody>
</table>

Aanleg van paden

Het centrale wandelpad in de Doornpanne zal verhard worden met kleischelpen. Een belangrijk deel van het wandelpad is verhard. Hierop zullen de kleischelpen aangebracht worden. De aanleg van de lus wordt langs bestaande doorgangen voorzien. Deze doorgang zal deels verhard worden met kleischelpen; waar verharding ontbreekt, zal hakselhout aangebracht worden.

Ligging en afwerking van de wandelpaden gebeurden in overleg met het I.N. (bijlage 4.1).
Figuur 4.5 Overzichtsplan wandelpad.
Bouw van behandelingsgebouw en ruimte voor opslag van chemicaliën op het RWZI-Wulpen.

De bouw van de behandelingseenheid wordt voorzien op de terreinen van de Vlaamse Milieumaatschappij (RWZI-Wulpen).

De ligging en de afmetingen van het behandelingsgebouw worden weergegeven op figuur 4.7.

De opslag van chemicaliën wordt voorzien in de kelder en gebeurt conform de Vlarem II voorschriften.

Aanleg van de leidingen

- Transportleiding van infiltratiewater vanuit het behandelingsgebouw (RWZI-Wulpen) naar het infiltratiepand.
 Het tracé van deze transportleiding loopt voor een deel doorheen de polders en volgt daar de openbare weg. In de Doornpanne worden bestaande paden gevolgd.

- Distributieleiding voor drinkwater vanuit het bestaande behandelingsinstallaties (St.-André) naar RWZI-Wulpen.
 Dit tracé in de Doornpanne loopt langs bestaande wegen. In de polders is de ligging van de leiding dezelfde als de leiding met het infiltratiewater vanuit Wulpen naar het infiltratiepand. De buizen bestaan uit PVC en hebben een diameter van 400 mm.

- Transportleiding van concentrat vanuit behandelingsgebouw naar lozingspunt.
 Hiervoor dient men een leiding aan te leggen tussen het behandelingsgebouw en het kanaal Duinkerke - Nieuwpoort. Het lozingspunt wordt voorzien ter hoogte van het lozingspunt van Aquafin. De diameter van de leiding zal vermoedelijk 315 of 400 mm bedragen. De leiding bestaat uit PVC. Dit tracé is zeer kort.

De ligging van de nieuw aan te leggen leidingen wordt voorgesteld op figuur 4.8.

Alle leidingen zullen op een diepte van 1 m geplaatst worden. Normaal zijn geen bemalingen voorzien. De leidingen worden geplaatst in een open sleuf. Ter hoogte van het Langgeleed wordt een gestuurde boring voorzien. De werkstrook over het volledige tracé bedraagt 10 m.

Voor de aanleg van de verschillende leidingen zijn geen onteigningen nodig. In de mate van het mogelijke wordt de aanleg van de leidingen gecombineerd met andere wegeniswerken.
Figuur 4.7 Inplanting behandelingsgebouw te RWZI-Wulpen.

RUG – Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/364.46.47, fax: 09/364.49.88
Figuur 4.8 Ligging van de leidingen en het lozingspunt.

LEGENDE

- leiding lozingswater
- leiding drinkwater
- Lozingspunt
- leiding infiltratiewater
- Projectgebied
- Infiltratiegebied
- Rwei- Wulpen

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 091264.46.47; fax: 091264.49.88
Intercommunale Waterleidingmaatschappij van Veurne-Ambacht
MER Kunstmatige aanvulling van het grondwaterreservoir in Sint-André

Technische gegevens:

Infiltratiepand:
- lengte: ca. 500 m;
- diepte: ca. 50 cm;
- breedte: gemiddeld 40 m;
- oevers: zacht hellend.

Aard van de winning:
- zuigput 1: boorputten;
- zuigput 2: infiltratiepand en boorputten.

Aantal putten:
- zuigput 1: 112 putten (bestaande);
- zuigput 2: 112 putten (28 bestaande, 84 nieuwe).

Technische kenmerken van nieuw te boren putten (fig. 4.9):
- diepte: ca. 11 m;
- filterelement: lengte: 4 m;
 - diameter: 110 à 200 mm;
 - spleetopeningen: 0,5 of 1 mm;
 - omstorting: gekalibreerd zand 1,4 - 2 mm.
- opvoerbuis: lengte: 7 m;
 - diameter: 110 à 200 mm;
 - stop: klei-compactonite.
- doorboorde lagen: quartaire zanden.

Behandelingsgebouw met bureel en ruimte voor opslag van chemicaliën:
- plaats: RWZI-Wulpen;
- oppervlakte behandelingsgebouw: 720 m² (30 x 24 m);
- oppervlakte bureel, laag- en hoogspanningslokaal: ca 100 m² (16 x 7 m);
- hoogte: twee kelderverdiepingen met basis 5,5 m onder maaiveld en gelijkvloers met top dak 7,3 m boven maaiveld.
Figuur 4.9 Technische kenmerken van de nieuw te boren putten.
Installaties in behandelinggebouw:

- kelder verdieping:
 - reservoirs voor opslag van te behandelen ruw water, filtraat van de microfiltratie en filtraat van de omgekeerde osmose;
 - compressor;
 - pompen (LD en HD);
 - doseerpompen;
 - tanks voor chemische reinigingen;
 - ruimte voor opslag chemicaliën.

- bovengrondse verdieping:
 - eenheden voor microfiltratie;
 - eenheden voor omgekeerde osmose;
 - controlepaneel;
 - luchtvat (voor compressor)
 - elektriciteitsvoorzieningen (laag- en hoogspanning).

Chemicaliën die zullen worden gestockeerd:

- chloor (natriumhypochloriet) (10.000 l);
- zwavelzuur (10.000 tot 20.000 l);
- fosforzuur (800 tot 1250 kg);
- natriumhydroxide (10.000 l);
- anti-scalant (800 tot 1250 kg);
- poly-aluminiumchloride of ijzerchloride (800 tot 1250 kg);
- ammoniumchloride (10.000 l).

Leidingen:

- transportleiding infiltratiewater van behandelingsgebouw naar infiltratiepand:
 - diameter: 400 mm;
 - materiaal: PVC.

- transportleiding van concentraat vanuit behandelingsgebouw naar lozingspunt:
 - diameter: 315 of 400 mm;
 - materiaal: PVC.

- transportleiding van drinkwater van bestaande behandelingsinstallatie naar RWZI-Wulpen:
 - diameter: 400 mm;
 - materiaal: PVC.
4.2.2 Exploitatiefase en onderhoud

Infiltratiepand en infiltratiewater

Voor de productie van infiltratiewater, heeft de I.W.V.A. geopteerd voor integraal waterbeheer, wat betekent dat het beschikbaar zout water maximaal wordt geïntegreerd in de drinkwaterproductie voor de streek. Een duurzaam beheer binnen de bestaande duinwaterwinningen vereist een duurzame productie van infiltratiewater.

Om aan de kwaliteitsnormen, die gesteld worden aan het infiltratiewater, te kunnen voldoen zal het ruwe water een dubbele membraanfiltratie ondergaan. Voordelen van membraanfiltratie zijn het geringe chemicaliënverbruik (membraanfiltratie is een fysisch proces) en de beperkte ruimte. Het is een modular systeem dat in de toekomst gemakkelijk kan uitgebreid worden.

Sedert het R.W.Z.I te Wulpen werd uitgebreid met nutriëntenverwijdering is de kwaliteit van het effluent sterk verbeterd. Daardoor kan het nu aangewend worden voor de productie van infiltratiewater.

Verder wordt conform de eerder geciteerde recente Nederlandse inzichten gekozen voor een zo constant mogelijk waterpeil in het infiltratiepand en een verregaande voorzuivering van het infiltratiewater. De grootste aandacht gaat uit naar beperking van de aanvoer aan nutriënten en zwevende stoffen (zie 'Kwaliteitsnormen voor infiltratiewater').

- De aanvoer van nutriënten moet vermeden worden omdat duinen van nature voedselarme milieus zijn en nutriënten tot eutrofiëring van het milieu leiden. Bovendien leidt fosfaatrijk water tot slibvorming in de infiltratiemiddelen;
- De aanvoer van zwevende stoffen wordt beperkt om afzetting van slib in het infiltratiepand te voorkomen.

Sedert men in Nederland midden de jaren zeventig is overgeschakeld op sterk voorgezuiverd (fosfaatarm) water, heeft men geen slib meer verwijderd uit de infiltratietependen (Peters et al., 1992).

Kwaliteitsnormen voor infiltratiewater

In de vergunningsaanvraag heeft de I.W.V.A. normen vooropgesteld waaraan het infiltratiewater dient te voldoen. Deze normen zijn grotendeels overgenomen in de verleende vergunning voor kunstmatige aanvulling in Sint-André. In tabel 4.2 wordt naast de normen en de meetfrequentie die in de vergunning worden opgelegd; ook de kwaliteit van het infiltratiewater weergegeven. Dit is de kwaliteit van het infiltratiewater van de proefopstelling en zal grotendeels overeenkomen met de werkelijke kwaliteit van het infiltratiewater.

- In de tweede proef werd mono-chloramine gedoseerd. Dit is een biocide om bio-fouling op RO-membranen te voorkomen. De dosering gebeurde door afzonderlijk chloor en ammonium toe te voegen. Om de aanwezigheid van vrij chloor in het water te vermijden werd ammonium in overmaat gedoseerd. In de tweede reeks waarden (18/8/97 – 4/2/99) zijn de gehalten aan ammonium hoger dan ze in werkelijkheid zullen zijn. In werkelijkheid wordt veel minder ammonium gedoseerd. De opgelegde maximale
concentraties zullen niet overschreden worden. De concentraties ammonium zonder dosering van mono-chloramine zijn weergegeven voor de periode 30/6/97 -12/12/97. Op grote schaal zal de reactietijd tussen ammonium en vrij chloor veel langer zijn en beter onder controle waardoor ammonium in kleinere overdosis dient toegevoegd te worden.

- Beide proefperioden vertonen nagenoeg dezelfde grootte van concentraties.

Er zal continu infiltratiewater worden geproduceerd, à rato van gemiddeld 285 m³/uur.

Tabel 4.2 Kwaliteiten infiltratiewater (proefopstelling), maximale waarde infiltratiewater en meetfrequentie.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheden</th>
<th>Infiltratie water (30/6/97 - 12/12/97)</th>
<th>Infiltratie water (18/8/98 - 4/2/99)</th>
<th>Maximale waarde infiltratie water</th>
<th>Meetfrequentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blend</td>
<td></td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>2. Temperatuur</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. pH</td>
<td></td>
<td>>6,5</td>
<td></td>
<td>6,5<x<9,2</td>
<td>1</td>
</tr>
<tr>
<td>4. Geleidingsvermogen</td>
<td>µS/cm</td>
<td>217</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Turbiditeit</td>
<td>NTU</td>
<td><0,1</td>
<td><0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Kleur</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. TDS (180°C)</td>
<td>mg/l</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. BOD</td>
<td>mg/l O₂</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. COD</td>
<td>mg/l O₂</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zwevende stoffen</td>
<td>mg/l</td>
<td><0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Totale hardheid</td>
<td>°F</td>
<td></td>
<td></td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>12. Oxydeelbaarheid</td>
<td>mg/l O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Hydroxide</td>
<td>mg/l</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Carboonaat</td>
<td>mg/l</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Bicarbonaat</td>
<td>mg/l</td>
<td>52</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Silicium</td>
<td>mg/l SiO₂</td>
<td>2,24</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Calcium</td>
<td>mg/l</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Kalium</td>
<td>mg/l</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Chloride</td>
<td>mg/l</td>
<td>51</td>
<td>27,4</td>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>20. Sulfaat</td>
<td>mg/l</td>
<td>25</td>
<td>19</td>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>21. Magnesium</td>
<td>mg/l</td>
<td>1</td>
<td>2</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>22. Natrium</td>
<td>mg/l</td>
<td>24</td>
<td>18</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>23. Nitraat</td>
<td>mg/l</td>
<td>4,93</td>
<td>3,74</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>24. Nitriet</td>
<td>mg/l</td>
<td>0,04</td>
<td>0,39</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>25. Ammonium</td>
<td>mg/l</td>
<td>0,09</td>
<td>2,97</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>26. Aluminium</td>
<td>mg/l</td>
<td></td>
<td></td>
<td>0,2</td>
<td>3</td>
</tr>
<tr>
<td>27. IJzer</td>
<td>mg/l</td>
<td></td>
<td></td>
<td>0,2</td>
<td>3</td>
</tr>
<tr>
<td>28. Mangaan</td>
<td>µg/l</td>
<td></td>
<td></td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>29. Koper</td>
<td>µg/l</td>
<td></td>
<td></td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>30. Zink</td>
<td>µg/l</td>
<td></td>
<td></td>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td>31. Totale fosfor</td>
<td>mg/l P</td>
<td>0,41</td>
<td>0,24</td>
<td>0,4</td>
<td>3</td>
</tr>
<tr>
<td>32. Fluor</td>
<td>mg/l</td>
<td>0,06</td>
<td><0,1</td>
<td>1,5</td>
<td>3</td>
</tr>
</tbody>
</table>
De normen die in het Besluit van 20 april 1993 verschenen zijn in het Staatsblad van het Koninkrijk der Nederlanden, zijn in bijlage 4.2 terug te vinden.

Debieten opgepompt en geïnfiltreerd water

In de vergunning wordt voorzien dat het natuurlijk grondwater in zuigput ZP1 1.000.000 - (0,12 * I) m³/j en in ZP2 1.000.000 m³/j onttrokken wordt. De jaarlijkse maximale infiltratie (I) van 2.500.000 m³ wordt integraal teruggewonnen.

Oppompen van geïnfiltreerd water

Het grondwater zal met behulp van de bestaande zuigputten (hevelwerking) opgepompt worden.

Het opgepompte grondwater wordt in de bestaande infrastructuur behandeld:
- borstelbeluchting;
- zandfiltratie.

Het aldus geproduceerde drinkwater wordt gedeeltelijk via bestaande infrastructuur in het waterleidingnet gedistribueerd. Verder kan er ook via de nieuwe verbinding vanuit Sint-André naar Wulpen met de verbindingsleiding water gedistribueerd worden in Veurne (via het opjaagstation Steenkerke) en Nieuwpoort (via het opjaagstation Novus Portus).
Concentraatlozing

Membraanfiltratie heeft 3 waterstromen:
- de ingaande voedingsstroom (ruw water);
- de uitgaande filtraatstroom (eigenlijke nuttige product van het proces);
- de concentratastroom, dit is de stroom waarin alle uit de voedingsstroom verwijderde bestanddelen worden geconcentreerd.

Deze concentratastroom moet uiteraard worden geloosd. Dit zal gebeuren in het kanaal Duinkerke - Nieuwpoort ter hoogte van het RWZI - Wulpen. De hoeveelheid te lozen concentrata zal ongeveer 100 m³/uur bedragen.

Het water dat in het kanaal wordt geloosd bestaat uit 4 componenten:
- concentraat van de omgekeerde osmose (RO) dat continu wordt geproduceerd en het grootste deel van de stroom uitmaakt;
- spoelwater van de microfiltratie. Deze hoeveelheid kan sterk gereduceerd worden indien het spoelwater nogmaals afzonderlijk wordt behandeld met een afzonderlijke eenheid;
- de plaatselijke reiniging (cleaning in place CIP) van de membranen van de voorbehandeling van de microfiltratie (MF);
- de CIP restvloeistoffen van de RO-installatie.

De volumes kunnen niet precies vastgesteld worden omdat ze afhangen van de prestaties van de installaties. Men kan evenwel aannemen dat de minima en maxima er als volgt uitzien:
- concentrat RO: 79 tot 92 m³/h;
- spoelwater: minder dan 20 m³/h (bij hergebruik);
- spoelwater: 72 m³/h tot 77 m³/h (zonder hergebruik);
- CIP-water van microfiltratie: <0,15 m³/h;
- CIP-water van de RO: < 0,1 m³/h.

Kwaliteitsgegevens van het lozingswater, CIP-water van de microfiltratie, CIP-water van de omgekeerde osmose en van het spoelwater staan in bijlage 4.3.

Het productieproces kan als volgt omschreven worden:
- Het effluent wordt te Wulpen (RWZI) ingenomen nadat het eerst een 200 μm trommelzeef is gepasseerd en wordt geborgen in een reservoir. Hierbij wordt ca. 3 mg Cl₂ per liter toegevoegd;
- Het effluent wordt eerst behandeld met microfiltratie (MF1); er worden twee waterstromen geproduceerd: filtraat en concentrata of spoelwater;
- Het spoelwater zal verder behandeld worden. Eerst wordt aluminiumchloride of ijzerchloride toegevoegd (4 tot 5 mg/l Al) waarna het uitgevlokt water nog eens met microfiltratie (MF2) wordt behandeld; er worden weer twee waterstromen geproduceerd waarvan het filtraat wordt samengevoegd met het filtraat van MF1; het spoelwater geproduceerd met MF2 moet geloosd worden;
Figuur 4.10 Productieproces in het geval spoelwater van de microfiltratie verder wordt behandeld.
Productie infiltratiewater uit effluent RWZI Wulpen

Figuur 4.11 Productieproces zonder behandeling van het spoelwater van het microfiltraat.
Alle filtraat dient als voeding voor de omgekeerde osmose; vooraf wordt eerst een neerslagremmer toegevoegd (3 tot 5 mg/l) en zwavelzuur (10 tot 50 mg/l) ter voorkoming van calciumcarbonaat- en silicaneerslag;

Met omgekeerde osmose worden weer twee waterstromen geproduceerd: filtraat en concentraat. Het filtraat zal na bijmenging dienen voor kunstmatige aanvulling in de duinen. Het concentraat dient geoloosd te worden;

De microfiltratie-eenheden dienen regelmatig (om de 4 tot 15 dagen, afhankelijk van de kwaliteit van het effluent) chemisch gereinigd te worden; dit gebeurt eerst door een zure reiniging (CIP-A) op basis van fosforzuur of zwavelzuur en daarna met een basische reiniging (CIP-C) op basis van natriumhydroxide. De oplossingen nodig voor het reinigen van de microfiltratie-eenheden kunnen verschillende keren hergebruikt worden;

De omgekeerde osmose-eenheid (RO) wordt ook gereinigd (om de 1 à twee maanden); ook dit gebeurt door afwisseling van een basische (natriumhydroxide) en een zure (citroenzuur) reiniging. Deze oplossingen worden slechts eenmalig gebruikt.

In de twee productieschema's zijn de grootte van de stromen (bij gemiddelde situaties) opgenomen. Het is belangrijk te vermelden dat de te lozen waterstroom continu is samengesteld door menging van het RO-concentraat en het spoelwater van MF2. Op sommige tijdstippen zal daar dan een hoeveelheid CIP-vloeistoffen worden aan toegevoegd. Deze toevoeging kan over een lange periode gespreid worden zodat een goede verdunning wordt verkregen. Waar vermeld staat dat x kubieke meter CIP-water geproduceerd wordt, bestaat deze uit x/2 kubieke meter zure oplossing en x/2 basische oplossing.

- Geen verdunning: 1 dag
- 0 - 10 % verdunning: 5 dagen
- 10 - 25 % verdunning: 15 dagen
- 25 - 50 % verdunning: 16 dagen
- 50 - 100 % verdunning: 39 dagen
- 100 - 300% verdunning: 199 dagen
- > 300% verdunning: 96 dagen

Hieruit blijkt dat gedurende het grootste deel van het jaar het concentraat van de membraanfiltratie in belangrijke mate wordt verdund door dit deel van het effluent dat niet door de I.W.V.A. gebruikt zal worden. De hoge nutriëntenbelasting, en eventueel verhoogde gehalten aan zware metalen, die in het kanaal zullen geoloosd worden, zullen dus beperkt blijven tot enkele dagen in het jaar.

Daarnaast dient men er rekening mee te houden dat van maart tot en met augustus de minimale verdunning van het concentraat 50 % bedraagt. De dagen met minder verdunning komen voor in de periode september-februari. Dit is de periode waar de afvoer naar zee ook het grootst is.

Onderhoud infiltratiepand

Door de zuivering van het infiltratiewater zal men de panden niet moeten onderhouden. Indien dat toch nodig mocht blijken, zal men de toevoer van het infiltratiewater en de winning stopzetten. Daardoor komt het infiltratiepand droog te staan, waardoor de afgezette deeltjes wegwaaien.
Onderhoud leidingen en pompen

Tijdens het onderhoud worden de leidingen en de pompen ter hoogte van het infiltratiepand schoongeblazen. Het water komt in de duinen terecht.

Maatregelen bij calamiteiten met kwaliteit van het infiltratiewater

Wanneer het infiltratiewater niet voldoet aan de normen wordt de kunstmatige aanvulling onmiddellijk stopgezet. Hervatting zal gebeuren nadat de problemen opgelost zijn.

Beheersplan

De aanleg van alle infrastructuur binnen het waterwingebied van Sint-André is in het beheersplan opgenomen. Het waterwingebied van Sint-André, eigendom van de I.W.V.A., werd in percelen verdeeld waarvan perceel 7 aangeduid wordt als 'perceel rond infiltratiegebied' (fig. 4.12). Hier is de aanleg van het infiltratiepand, van de winputten en van enkele leidingen voorzien. Het type natuurbeheer ingeval van infiltratie werd ook vastgelegd.

De aanleg van leidingen binnen het ganse domein is voorzien in het beheersplan; ze liggen op het tracé van de centrale wandelweg en met voorbehouden dienstzones.

De indeling in percelen gebeurt als volgt (fig. 4.12):
- percelen 1 en 2: maai- en begrazingspercelen (ongeveer 30 ha);
- percelen 3, 4, 5 en 6: percelen met spontane ontwikkeling ;
- perceel 7: infiltratiegebied.

Het beheer voorziet dat de Doornpanne afgesloten wordt.

Ter compensatie van de kaalkappen in het Massart-landschap zullen nieuwe boomkernen in het spontane landschap aangebracht worden. De boomsoorten die hiervoor in aanmerking komen zijn: de eik, de es, de berk, de els en de schietwilg (de laatste drie in mindere mate).

Bij de omvorming van het Pinus-bestand zal men eik, es, en haagbeuk planten.

Het bos in perceel 1 (2,4 ha) is volledig verwijderd. Deze werken werden uitgevoerd in januari en februari van 1998. Abelenbestanden worden gekapt.

Indicatieve vogelsoorten zullen gevolgd worden: Tapuit; Roodborsttapuit; Graspieper; Houtsnip; Nachtegaal;...
Figuur 4.12 Indeling van het waterwingebed in percelen.
Controle

1) Productie infiltratiewater

Volgende metingen zullen gebeuren:

- ingaand debiet ruw water in de microfiltratie;
- geproduceerd debiet filtraat van de microfiltratie;
- ingaand debiet in de omgekeerde osmose;
- geproduceerd debiet filtraat van de omgekeerde osmose;
- debiet dat naar het infiltratiepand wordt gepompt;
- debiet concentraat dat wordt geproduceerd;
- druk-, temperatuur-, geleidbaarheid- en pH-meting op de microfiltratie en omgekeerde osmose;
- troebelheidsmetingen.

2) Peilcontrole

In het infiltratiegebied zal een peilmeetnet worden aangelegd, bestaande uit 20 peilputten waarvan 6 reeksen van drie peilputten loodrecht op de as van het infiltratiepand. De peilen zullen één jaar vóór de start van de infiltratie maandelijks worden opgemeten. Vanaf de aanvang van de infiltratie zullen de peilen wekelijks worden gemeten.

De peilhoogte in het infiltratiepand zal via een rechtsstreekse meting continu worden geregistreerd; de waterstand in het infiltratiepand zal ca. +6,5 à +6,6 m T.A.W. bedragen.

Metingen:

- infiltratiepand: rechtsstreekse meting van de waterstand;
- wekelijkse peilmetingen van:
 - bestaande peilputten;
 - nieuwe peilputten aangelegd in de omgeving van het infiltratiegebied.
DEEL 5 INGREEP-EFFECTANALYSE

5.1 INLEIDING

Het studiegebied is ruimtelijk uitgestrekt en daarom opgesplitst in aandachtsdeelgebieden.

Tijdens de aanlegfase kunnen effecten verwacht worden door de aanleg van het infiltratiepand, aanleg van de leidingen en bouw van het behandelingsgebouw. Typische effecten van de aanleg van het infiltratiepand zijn:

- barrière-effecten en structuurwijzigingen (fauna en flora, landschap);
- direct ruimtebeslag (bodem, fauna en flora, landschap);
- wijzigingen in grondwaterstand en bodemvochtregime (bodem, water, fauna en flora);
- wijzigingen in het bodemprofiel (bodem, fauna en flora);
- wijzigingen in hydraulisch regime door doorsnijden van lagen (water, fauna en flora);
- beïnvloeding van de belevingskwaliteiten en landschapsstructuur (landschap);
- verlies van erfgoedwaarden (landschap).

De effecten die tijdens de exploitatiefase kunnen verwacht worden zijn:

- wijziging in grondwaterstand en bodemvochtregime (bodem, water, fauna en flora);
- mogelijke wijziging in grondwaterkwaliteit (fauna & flora, bodem en water);
- wijziging in plantengemeenschappen (fauna & flora);
- wijziging in oppervlaktewaterkwaliteit (water).
5.2 **INGREEP-EFFECTSCHEMA**

Tabel 5.1 Ingreep-effectschema.

<table>
<thead>
<tr>
<th>AANLEGFASE</th>
<th>Geluid</th>
<th>Bodem</th>
<th>Water</th>
<th>Fauna en Flora</th>
<th>Monumenten en Landschappen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanleg leidingen</td>
<td>Rustverstoring</td>
<td>Bodemverdichting</td>
<td>Bodemminname</td>
<td>Effecten op de ondergrond</td>
<td>nvt</td>
</tr>
<tr>
<td>Beweging voertuigen</td>
<td>Rustverstoring</td>
<td>Bodemverdichting</td>
<td>Bodemminname</td>
<td>nvt</td>
<td>nvt</td>
</tr>
<tr>
<td>Plaatsen bijkomende pomp- en peilputten</td>
<td>Rustverstoring</td>
<td>Bodemverdichting</td>
<td>Bodemminname</td>
<td>nvt</td>
<td>nvt</td>
</tr>
<tr>
<td>Vergravingen voor aanleg infiltratiebekken</td>
<td>Rustverstoring</td>
<td>Wijziging topografie</td>
<td>Structuurwijziging</td>
<td>Profielwijziging</td>
<td>nvt</td>
</tr>
<tr>
<td>Bemalingen (bouw behandelingssgebouw)</td>
<td>nvt</td>
<td>Wijziging bodemvochtregime</td>
<td>Zettingen</td>
<td>Wijziging grondwaterstroming</td>
<td>nvt</td>
</tr>
<tr>
<td>Bouw structuren (behandelingssgebouw)</td>
<td>Rustverstoring</td>
<td>Structuurwijziging</td>
<td>Profielwijziging</td>
<td>Bodemminname</td>
<td>Zettingen</td>
</tr>
<tr>
<td>Opslag vergraven gronden</td>
<td>nvt</td>
<td>Wijziging topografie</td>
<td>Structuurwijziging</td>
<td>Profielwijziging</td>
<td>Bodemminname</td>
</tr>
<tr>
<td>Aanleg wandelpad</td>
<td>Rustverstoring</td>
<td>Bodemverdichting</td>
<td>Bodemminname</td>
<td>Bodemverdichting</td>
<td>nvt</td>
</tr>
</tbody>
</table>

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TOG 9826)
Tel.: 09/264.46.47; Fax: 09/264.49.88
EXPLOITATIEFASE EN ONDERHOUD

<table>
<thead>
<tr>
<th>Geluid</th>
<th>Bodem</th>
<th>Water</th>
<th>Fauna en Flora</th>
<th>Monumenten en Landschappen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Zuivering van het te infiltreren water (bebandelingsgebouw):**
 - Rustverstoring: nvt
 - Geen effect te verwachten: nvt
- **Behandeling opgepompt water in bestaand gebouw:**
 - Geen effect te verwachten: nvt
- **Werking infiltratiepand:**
 - Geen effect te verwachten: nvt
 - Wijziging bodemvochtregime: nvt
 - Grondwaterkwaliteit: nvt
 - Nieuwe oppervlaktewater: nvt
 - Ecotoopwijziging: nvt
 - Perceptie Structuurwijziging: nvt
- **Wandelpad bestaande uit kleischelpen:**
 - nvt
 - Bodemkwaliteit: nvt
 - Grondwaterkwaliteit: nvt
- **Lozen concentraat in kanaal:**
 - nvt
 - Bodemkwaliteit: nvt
 - Grondwaterkwaliteit: nvt
 - Waterkwaliteit: nvt
 - Ecotoopwijziging: nvt
 - Beleving: nvt
- **Accidentele situaties:**
 - nvt
 - Bodemkwaliteit: nvt
 - Grondwaterkwaliteit: nvt
 - Waterkwaliteit: nvt
- **Onderhoud en controle leiding:**
 - nvt
 - Bodemvochtregime: nvt
 - Grondwaterkwaliteit: nvt
 - Waterkwaliteit: nvt
- **Onderhoud pompen:**
 - nvt
 - Bodemvochtregime: nvt
 - Grondwaterkwaliteit: nvt
 - Waterkwaliteit: nvt
- **Peilmetingen:**
 - nvt

Legende: nvt: niet van toepassing
5.2 **OVERZICHT VAN DE TE VERWACHTEN POSITIEVE MILIEUEFFECTEN**

Als onrechtstreeks positief effect stelt men vast dat de uitbreiding van de drinkwaterwinning in de duinen overbodig wordt. Door het beheersplan van de Doornpanne in te voeren zal de biodiversiteit en de natuurwaarde van het gebied toenemen.

5.3 **AANDUIDING VAN DE MILIEUKNELPUNTEN**

5.3.1 **Geluid**

Immissierelevante bronnen

De potentieel immissierelevante geluidsbronnen worden in het MER opgesomd en bij de voorspelling van de specifieke immissie in rekening gebracht. Hierna volgt een eerste opsomming van potentieel immissierelevante activiteiten eigen aan de exploitatie.

Aanlegfase:

Gedurende de aanlegfase kunnen er geluid en trillingen verwacht worden van de volgende activiteiten:

- de aanleg van het infiltratiepand in het zuidwestelijk deel van de Doornpanne en verhogen van bepaalde zones in de omgeving van het infiltratiepand met zand afkomstig van het uitgraven van dit pand (graafwerkzaamheden);
- de aanleg van bijkomende winputten in dit gebied, aangesloten op zuigput II (in het totaal 84 nieuw te boren putten) en de bijkomende verbindingen naar de zuigput (boren van de putten en ingraven van de verbindingenleiding);
- de aanleg van 20 peilputten (boren van de putten);
- de aanleg van leidingen (ingraven):
 - een transportleiding van infiltratiewater vanuit het behandelsingsgebouw naar het infiltratiepand;
 - een distributieleiding voor drinkwater vanuit de bestaande behandelsinstallaties in Sint-André naar Wulpen;
 - een transportleiding voor de lozing van het concentrat in het kanaal Duinkerke-Nieuwpoort, ter hoogte van het huidige lozings punt in Wulpen.
- de aanleg van wandelpaden ten behoeve van het uitvoeren van het beheersplan goedgekeurd voor de Doornpanne;
- bouw van een behandelsgebouw te Wulpen.

Er dient opgemerkt te worden dat deze geluidsbronnen van tijdelijke aard zijn en bijna uitsluitend tijdens de werkuren zullen optreden.
Exploitatiefase en onderhoudsfase

De uitbating bestaat erin dat het waterwingebied van Sint-André kunstmatig aangevuld wordt. In eerste instantie is er een proefperiode vastgelegd van 3 jaar die ingaat op de eerste dag van de ingebruikneming. De vergunning voor de kunstmatige aanvulling op zich loopt tot 1 juni 2018.

Tijdens de exploitatie zullen enkele activiteiten bijdragen tot het specifieke geluid van het infiltratiepand. Een eerste opsomming omvat:

- de behandeling van het effluent: microfiltratie en omgekeerde osmose (kloppen bij het reinigen van de filters, compressoren, pompen);
- de aanvoer van het effluent naar het infiltratiepand (stille uitstroming);
- het werken van de winputten (geen geluid);
- het werken van de zuigputten, winmethoden van het water is gebaseerd op hevelwerking (bestaande installatie, vacuumpompen, stille werking);
- het behandelen (borstelbeluchting en zandfiltratie) en het afvoeren van het opgepompte water via het waterleidingen net (bestaande installatie).

5.3.2 Bodem

Het project heeft een lokaal karakter. Zowel bij de aanleg, de exploitatie als bij calamiteiten zijn er, afhankelijk van genomen maatregelen, milieueffecten te verwachten. Effecten zijn reversibel of irreversibel (herstelbaar of niet herstelbaar) en van tijdelijke of lange duur.

Voor het aspect bodem worden de volgende groepen van effecten verwacht:

Aanlegfase:
- wijziging in topografie
- afgraving voor de aanleg van het infiltratiepand: structuurverlies, profielwijziging, ...
- bodeminname;
- verstoring van bodemstructuur, bodemprofiel, ... langs de verschillende trajecten voor de aanleg van de leidingen;
- opbrengstderging t.g.v. aanleg van de leidingen in de polders
- bodemverdichting.

Exploitatiefase en onderhoudsfase:
- wijziging in grondwaterhuishouding;
- wijziging in bodemkwaliteit.

Calamiteiten:
- mogelijke verontreiniging in geval van lek in de leiding van concentraat.
5.3.3 Water

OPPERVLAKTEWATER

Exploitatiefase en onderhoudsfase
Ongunstig en blijvend (i.e. zolang de lozingen plaatsvinden) effect op de fysisch-chemische waterkwaliteit van het kanaal Duinkerke - Nieuwpoort in de omgeving van het lozingspunt, vooral tijdens perioden van stilstaand water en hogere temperaturen.

GRONDWATER

In eerste instantie wordt de referentiesituatie gekarakteriseerd aan de hand van de beschikbare gegevens. Het betreft zowel puntgegevens als algemene gegevens. Bij de effectvoorspelling zal getracht worden specifiek aandacht te besteden aan de grondwaterkwaliteit en de -kwantiteit die ten gevolge van de geplande ingrepen zullen wijzigen (zie ingreep-effectenschema).

Aanlegfase:
- wijziging grondwaterstand en -stroming.

Exploitatiefase en onderhoud:
- wijziging in grondwaterstand en -stroming;
- mogelijke wijziging in grondwaterkwaliteit.

Calamiteiten:
- mogelijke verontreiniging in geval van lek in de leiding van concentraat.

5.3.4 Fauna en flora

De gevolgde methodologie bestaat voornamelijk uit het raadplegen van bestaande gegevens en personen die nauw betrokken zijn met het ontwerpen en opvolgen van het beheersplan (Provoost S., I.N.). Er werden enkele bezoeken op het terrein gedaan vooral in functie van eventuele suggesties voor remediërende maatregelen.

Aanlegfase:

Infiltratiegebied:
- Definitieve en ongunstige verstoring van bestaande fauna en flora door werfaanleg en vergravingen op de inplantingsplaats (bodem en grondwater).
- Tijdelijke verstoring van fauna in de omgeving van de werkzaamheden (geluid en verhoogde menselijke aanwezigheid).

Lozingsgebied:
- Mogelijk zeer lokale en tijdelijke verstoring van bestaande water- en oeverfauna en oevervegetatie door aanleg van de monding van de afvoerbuis ter hoogte van het kanaal (bodem en grondwater).
Exploitatiefase en onderhoud:

Infiltratiegebied:

- Gunstig en blijvend effect op fauna en flora door aanleg van duinpan op de inplantingsplaats en mogeljik verandering in plantengemeenschappen door wijzigingen in watertafel en grondwaterkwaliteit (bodem en grondwater).
- Kortstondige verstoringen van fauna ten gevolge van o.a. onderhoudswerken (geluid en verhoogde menselijke aanwezigheid).
- Gunstig en blijvend effect op fauna en flora door aanwezigheid van zoet oppervlakte water (oppervlaktewater).

Lozingsgebied:

- De huidige niet geconcentreerde lozingen gebeuren op dezelfde plaats in het kanaal als de toekomstige; er is dus geen verschil in vuilvracht maar enkel in de grad van verdunning van de geloosde stoffen. Dit houdt in dat, rekening houdend met de vrij aanzienlijke hoeveelheden concentraat die zullen geloosd worden, er in de onmiddellijke omgeving van het lozingspunt een beduidende verandering van de fysisch - chemische parameters zal plaatsvinden en dat hier zich een duidelijk ongunstig effect op fauna en flora kan voordoen vooral in warme perioden met stilstaand water.

Het effect op de brakwaterfauna en eventueel op de oever- en de emergente vegetatie (er komt geen aquatische vegetatie sensu stricto voor in het kanaal, wel riet) door het lozen van het concentraat kan slechts ingeschat worden wanneer de samenstelling van de levensgemeenschappen gekend is. Brakke wateren zijn van nature uit nutriëntrijk en onderhevig aan zoutschommelingen. De soortenrijkdom van de faunistische gemeenschappen is derhalve van nature eveneens vrij arm, daar enkel bijzonder resistentere soorten dergelijke abiotische schommelingen kunnen verdragen. Een aanrijking van nutriënten en van zouten t.g.v. de concentraatlozingen zou in principe geen zeer drastische kwaliteits- of kwantitatieve verschuivingen kunnen teweegbrengen in de aquatische levensgemeenschappen tenzij in de nabije omgeving van het lozingspunt.

5.4 KORTE BESPREKING VAN DE AANDACHTSPUNTEN IN HET MER

De belangrijkste aandachtspunten in het MER zijn:

- de invloed van de concentraatlozingen in het kanaal;
- het effect van de geplande drinkwaterproductie op de grondwatertafel en de repercussies voor fauna en flora;
- de tijdelijke milieuoverlast van de werken (geluid, fauna en flora).
6.1 PLAATSALTERNATIEF VOOR HET LOZINGSPUNT

In het kennismakingsdossier werd een lozingspunt in zee aangenomen. Hiervoor waren twee mogelijke plaatsen. Er werd aangenomen dat het lozen van het brakke lozingswater in zee geen problemen met zich mee zou brengen, omdat er enkel zouten en geen schadelijke stoffen in het concentraat te verwachten zijn.

Na contacten met de diensten van het Belgisch Mathematisch Model van de Noordzee (BMM) bleek dat lozen op zee niet mogelijk is (telefonische contacten tussen Mevr. Karien De Cauwer van BMM en E. Van Houtte van I.W.V.A.). Bij het inwinnen van juridisch advies bij Prof. Maes van de RUG werd het standpunt van het BMM verduidelijkt. De Belgische overheid is immers gebonden aan internationale verdragen en deze gaan uit van een algemeen verbod op directe lozingen op zee. Bestaande lozingen dienen stopgezet te worden.

6.2 PLAATSALTERNATIEF VOOR HET BEHANDELINGSGEBOUW

Uitgaande van de lozing op zee was de bouw van het behandelingsgebouw ter hoogte van de bestaande installaties te St.-André te aanvaarden. Voor de afvoer van het concentraat was dan een korte leiding nodig.

Het wijzigen van het lozingspunt betekende echter een complete ommekeer. Bij behoud van de voorziene bouwplaats (zoals beschreven in de startnota) diende veel water heen en weer gepompt te worden:

- effluent vanuit RWZI-Wulpen naar behandelingsgebouw in St.-André;
- infiltratiewater van behandelingsgebouw St.-André naar infiltratiepand;
- lozingswater van behandelingsgebouw St.-André naar RWZI-Wulpen;
- drinkwater van de bestaande behandelingsinstallaties naar Wulpen.

Dit betekende dat over het ganse traject RWZI-Wulpen naar St.-André minimaal 3 leidingen nodig waren met een grote diameter (min. 320 mm).

Door de bouw van het behandelingsgebouw op RWZI-Wulpen wordt de invloed op de duinen tot het minimum gereduceerd. Daarnaast zijn de investeringskosten voor de aanleg van de leidingen veel kleiner.
6.3 PLAATSALTERNATIEVEN VOOR HET INFILTRATIEPAND

Plaatsalternatieven werden niet onderzocht aangezien enkel voor die plaats een bouwvergunning is bekomen.

6.4 BEHANDELING INFILTRATIEWATER

Door het lozingspunt naar het kanaal Duinkerke-Nieuwpoort te plaatsen wordt het productieproces van het infiltratiewater enigszins bijgestuurd. De voorziene volumes in het productieproces worden lichtjes aangepast in vergelijking met het productieproces in de startnota.

Door de keuze van de huidige inplantingplaats wordt hergebruik van spoelwater minder interessant (geen pompkosten voor aanvoer effluent naar behandelingsinstallatie). Dit betekent dus geen gebruik van vlokmiddelen waardoor het chemicaliënverbruik kleiner wordt.

Het RO-filtraat wordt aangelengd met 10% MF-filtraat. Een vroegere denkpiste om spoelwater van de ontijzeringsinstallaties (te Sint-André) te hergebruiken en te mengen met RO-filtraat wordt door de inplanting van het behandelingsgebouw te Wulpen niet langer behouden.

6.5 DIEPTE-INFILTRATIE

Diepte-infiltratie kan niet als uitvoeringsalternatief beschouwd worden wegens:
- de geringe ervaring op lange termijn;
- de hoge kostprijs;
- de technische problemen; in tegenstelling tot Nederland leent de ondergrond te Oostduinkerke zich niet tot een efficiënte toepassing van diepte-infiltratie.
DEEL 7 METHODOLOGIE

Technische disciplines

7.1 GELUID

7.1.1 Inleiding

Om het huidige omgevingsgeluid ter hoogte van het geplande infiltratiepand te bepalen, werd een statistische analyse van de geluidsdrukniveaus (volgens de relevante paragrafen van VLAREM II) op drie meetpunten in de nabije omgeving van de site uitgevoerd.

Bij de keuze van de meetpunten voor het vastleggen van het achtergrondgeluid in de omgeving van het geplande infiltratiepand werd rekening gehouden met de bepalingen opgenomen in VLAREM II met betrekking tot de keuze van immissiemeetpunten voor geluid.

Na verkenning van de omgeving van de toekomstige exploitatie en studie van de gewestplannen werd het volgende vastgesteld:

- de plaats van het infiltratiepand bevindt zich in een waterwingebied gelegen in een groengebied dat erkend is als natuurgebied met wetenschappelijke waarde of natuurreservaat; het groengebied strekt zich uit ten noorden en ten oosten van de site;
- ten noordwesten en ten westen van de plaats bevindt zich een woongebied, namelijk Koksjide-Bad;
- onmiddellijk ten zuiden van het gebied ligt een gebied voor verblijfsrecreatie; verder naar het zuiden bevinden zich een woongebied en een woonuitbreidingsgebied;
- in de omgeving ligt het militaire vliegveld van Koksjide; het is gelegen op een militair domein, omgeven door een agrarisch gebied; metingen in de directe omgeving van dit vliegveld kunnen een vertekend beeld van de situatie geven;
- de inplanting van het behandelingsgebouw voor het infiltratiewater is voorzien ter hoogte van het RWZI - Wulpen; volgens het gewestplan is deze RWZI gelegen in een agrarisch gebied.

Uit de bovenstaande gegevens en de ligging van de verschillende onderdelen van de exploitatie werd opgemaakt dat 3 immissiemeetpunten nodig zijn om de omgeving van het geplande infiltratiepand akoestisch te karakteriseren. De ligging van de meetpunten wordt hieronder besproken.

Meetpunt 1: Recreatiegebied Galloper

Het eerste meetpunt bevindt zich op de grens van een gebied voor verblijfsrecreatie (VLAREM II-gebied 1) en een natuurgebied met wetenschappelijke waarde en waterwingebied (VLAREM II-gebied 1), op een 200 meter van de plaats van het infiltratiepand. De meetresultaten zullen geëvalueerd worden volgens de richtwaarden voor een VLAREM II-gebied 1.

Meetpunt 2: St.-André

Dit meetpunt karakteriseert de geluidsimmisssie ter hoogte van de dichtste woning, gezien vanaf de ligging van de I.W.V.A. De afstand tussen de woning (meetpunt 2) en de perceelsgrens van de plaats bedraagt ongeveer 175 tot 200 meter. Het meetpunt is volgens het gewestplan gelegen binnen een natuurgebied (VLAREM II-gebied 1). De meetresultaten van meetpunt 2 zullen geëvalueerd worden volgens de richtwaarden voor een VLAREM II-gebied 1.
Meetpunt 3: RWZI-Wulpen

Het derde meetpunt werd gekozen ter hoogte van het waterzuiveringsstation in Wulpen, waar de aanleg van het behandelingsgebouw voorzien is. Volgens het gewestplan is dit meetpunt gelegen in een agrarisch gebied (VLAREM II-gebied 1). De evaluatie van de meetresultaten in dit meetpunt zal bijgevolg ook begeuren volgens de richtwaarden voor een VLAREM II-gebied 1.

De ligging van de plaats, het inplantingspunt van het behandelingsgebouw en de drie meetpunten zijn weergegeven in figuur 7.1.1.

7.1.2 Evaluatiecriteria en VLAREM II-richtwaarden

Gelijktijdig met het geluidsniveau werden de windrichting, de windsnelheid en de neerslag geregistreerd. Enkel indien de windsnelheid lager dan 5 meter per seconde was en geen neerslag gedetecteerd werd, is het geregistreerde geluidsniveau als valabel weerhouden.

Van de opgemeten karakteristieke geluidsindices werden de statistische geluidsniveaus $L_{A95,th}$, $L_{A50,th}$, $L_{A95,th}$ en $L_{Aeq,th}$ geselecteerd voor het karakteriseren van het geluidsklimaat zonder de inrichting. Het $L_{A95,th}$-niveau is het geluidsdrukniveau dat gedurende 95% van de observatietijd (1 uur) overschreden wordt. Deze waarde karakteriseert het achtergrondgeluidsniveau of het geluid dat steeds aanwezig is. De $L_{A50,th}$-waarde geeft het geluidsdrukniveau weer dat gedurende de helft van de tijd aanwezig is. Met het $L_{A95,th}$-niveau worden de gebeurtenissen weergegeven die zich gedurende de meetperiode voordoen. Dit komt overeen met het geluidsdrukniveau dat gedurende 5% van de tijd aanwezig is. Het $L_{Aeq,th}$-niveau is het energetisch gemiddeld geluidsdrukniveau over het volledige uur.

Op basis van de metingen over meerdere dagen wordt voor elk uur van het etmaal het rekenkundig gemiddelde bepaald van de meetwaarden bekomen onder gelijkaardige omstandigheden. Van deze gemiddelde meetwaarden wordt zowel voor dag, avond als nacht een gemiddelde waarde vastgelegd. Deze gemiddelde waarde wordt als volgt bepaald:

- **overdag**: het rekenkundig gemiddelde van alle gemiddelde meetwaarden voor elk uur tussen 7 en 19 uur;
- **'s avonds**: het rekenkundig gemiddelde van alle gemiddelde meetwaarden voor elk uur tussen 19 en 22 uur;
- **'s nachts**: het rekenkundig gemiddelde van de laagste vier waarden van alle gemiddelde meetwaarden voor elk uur tussen 22 en 7 uur.

Aan de hand van de gemeten $L_{A95,th}$-niveaus kan men het geluidsklimaat evalueren naar de richtwaarden opgenomen in VLAREM II. Deze richtwaarden (RW) worden in VLAREM II als kwaliteitsdoelstelling voor een bepaald gebied beschouwd en zijn voor de verschillende gebieden opgenomen in tabel 7.1.1. Afhankelijk van de waarden van het gemeten achtergrondgeluidsniveau en de richtwaarde wordt de grenswaarde voor het specifiek geluid van de installaties bepaald.

<table>
<thead>
<tr>
<th>Tabel 7.1.1 VLAREM II-richtwaarden voor de betreffende gebieden:</th>
</tr>
</thead>
<tbody>
<tr>
<td>richtwaarde voor de meetpunten 1, 2 en 3 (VLAREM II-gebied 1)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>40 dBA</td>
</tr>
</tbody>
</table>
Voor het maximale niveau van een impulsachtig geluid wordt in VLAREM II (aangepaste versie uit het Belgisch Staatsblad van 31 maart 1999) de richtwaarden uitgedrukt als $L_{Aeq,1sec}$ in dB(A) en als volgt omschreven: voor nieuwe inrichtingen dient de richtwaarde vermeld in VLAREM II voor het betreffende gebied verminderd te worden met 5. Bij deze toepasselijke waarde wordt een factor opgeteld waaraan het specifieke geluid ter hoogte van het immissiemeetpunt moet voldoen. Onderstaande tabel 7.1.2 geeft de waarden voor het meetpunt 3 (RWZI Wulpen) weer.

Tabel 7.1.2 VLAREM-II richtwaarden voor meetpunt 3

<table>
<thead>
<tr>
<th></th>
<th>richtwaarde</th>
<th>toepasselijke</th>
<th>factor</th>
<th>richtwaarde $L_{Aeq,1s}$ in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dag</td>
<td>40</td>
<td>35</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>avond</td>
<td>35</td>
<td>30</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>nacht</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>40</td>
</tr>
</tbody>
</table>

7.1.3 Bijzondere karakteristieken van de luchtmachtabasis van Koksijde

Tijdens de evaluatie van het huidige omgevingsgeluid wordt de invloed van de aanwezigheid van de luchtmachtabasis van Koksijde in het bijzonder bekeken. Hiervoor worden enkele typische geluidspieken bij het overvliegen van vliegtuigen weergegeven. Bij voldoende frequentie van vluchten komt de invloed van de luchthaven ook tot uiting in statistische geluidsniveaus met lage index, bijvoorbeeld L_A05.

7.1.4 Voorspellen van de specifieke immissie

Voor de verschillende fasen van het project wordt de immissierelevante emissie van de gebruikte apparatuur voorspeld. Voor de geluidsbronnen in de aanlegfase doet men beroep op gegevens uit de literatuur en op eigen metingen. Voor de geluidsbronnen tijdens de exploitatiefase maakt men gebruik van literatuurwaarden en eigen metingen.

Op basis van de immissierelevante bronnen en hun bronvermogen maakt men een schatting van de globale emissie uitgaande van het behandelingsgebouw en de werking van de zuiveringsinstallatie. Aan de hand van het berekende bronvermogen van de zuiveringsinstallatie werd de emissie buiten het behandelinggebouw berekend. Hiervoor werd het niveau ter hoogte van de wand berekend op basis van een statistische benadering (reverberant veld) en uitgaande van de karakteristieken van het materiaal van de muur werd de emissie buiten het gebouw berekend. Aan de hand van deze emissie kan de specifieke immissie in het derde evaluatiemeetpunt geschat worden. Hierbij maakt men gebruik van de ISO9613-norm voor puntbronnen, lijnbronnen en oppervlaktebronnen. Absorberende eigenschappen van de lucht worden overgenomen uit de ISO3891-1978 (omgevingstemperatuur van 10 °C en relatieve vochtigheid van 80 %).

De resulterende specifieke immissie wordt getoetst aan de geldende VLAREM II-normen om de technische haalbaarheid van de voorgestelde exploitatie binnen de geluidswettleiding na te gaan.
Figuur 7.1.1 Ligging van het studiegebied met aanduiding van de meetpunten.
7.1.5 Meetapparatuur

7.1.5.1 Mетеostation

De meteogegevens werden geregistreerd met een windsnelheidmeter, een windrichtingsmeter en een regenmelder van LASTEM. De windsnelheids- en windrichtingsmeter werden op ongeveer 5 meter en de regenmelder op ongeveer 2 meter boven de grond opgesteld.

7.1.5.2 Immissiemetingen

Voor de immissiemetingen werden twee geluidsmeters SIP95 van het merk 01dB met verwerkingssoftware dBTRAIT gebruikt, elk voorzien van een wind- en regenbescherming van Brüel & Kjær, type UA1404. De geluidsmeters werden met een snelle tijdsweging, A-gewogen geluidsniveau en een bereik van 20 tot 100 dB ingesteld. De microfoon werd op ongeveer 3 meter boven het maaiveld opgesteld.

7.1.5.3 Meting van de emissie van enkele installaties

De specifieke emissie werd gemeten met een Dual Channel Real-Time Frequency Analyser type 2144 van Brüel & Kjær en een microfoon type 4155 van Brüel & Kjær.

7.1.6 IJking van de apparatuur

Alle toestellen werden gekalibreerd met een pistonphone 4228 van Brüel & Kjær, kalibratieniveau 124.1 dB bij 250 Hz.
7.2 BODEM

Voor het opmaken van de referentiesituatie wordt gebruik gemaakt van bestaande bodemgegevens. De volgende onderwerpen komen aan bod:

- situering studiegebied;
- topografie;
- bodemseries en bodemgesteldheid;
- bodemgeschiktheid;
- historische evolutie van het terrein;
- huidig bodemgebruik en aanduiding bodemgebruik aangrenzende percelen;
- bodemkwaliteit;
- geologie.

Hiervoor werden de volgende bronnen geraadpleegd:

- Archieven van de Belgische Geologische Dienst;

Deze gegevens laten toe de toestand te karakteriseren die als basis dient voor het onderzoek van de milieu-effecten van de ingreep, zijnde kunstmatige aanvulling van het grondwater, aanleg van de leidingen en bouw van het behandlingsgebouw op RWZI-Wulpen.
7.3 WATER

OPPERVLAKTEWATER

Voor de discipline ‘Oppervlaktewater’ werd een beroep gedaan op bestaande gegevens in verband met de waterhuishouding en waterkwaliteit van het ontvangende oppervlaktewater (Kanaal Duinkerke - Nieuwpoort) verstrekt door de diensten van het AWZ-kust en de VMM-Oostende.

GRONDWATER

Om de referentiesituatie op te stellen en de geplande situatie te evalueren werden de volgende bronnen geraadpleegd:

- AMINAL - Afdeling Water - Team Grondwater (1999). Bestaande vergunde grondwaterwinningen;
- Archieven van de Belgische Geologische Dienst;
- Archieven van het Laboratorium voor Toegepaste Geologie en Hydrogeologie;
- Archieven van het N.G.I.:

Integrerende disciplines

7.4 **FAUNA EN FLORA**

7.4.1 **Raadplegen van geschreven bronnen**

- Bonte D. & Hoffmann M. (in voorb.) Breeding birds in the Flemish coastal dunes: community structure and landscape ecological relationships;

7.4.2 **Raadplegen deskundigen**

7.4.2.1 **Fauna & Flora**

- Bogaert P. (Vlaamse Milieumaatschappij, Buitendienst Oostende);
- Bonte D. (Lab. Ecologie, RUG);
- de Nayer B. (Instituut voor Bosbouw en Wildbeheer).

7.4.2.2 **Natuurbehoud/ontwikkeling**

- Godeeiris W. (AMINAL, Afdeling Natuur, Brugge);
- Herrier J.L. (AMINAL, Afdeling Natuur, Brugge);
- Provoost S. (Instituut voor Natuurbehoud).

7.4.3 **Eigen veldstudie**

- Studie van vegetatie Doornpanne (omgeving infiltratiepand) en van kanaal Duinkerke - Nieuwpoort (omgeving gepland lozingspunt) (maart, 1999);
7.5 MONUMENTEN EN LANDSCHAPPEN

7.5.1 Algemeen

In navolging van het Richtlijnenboek bestaan ingrepen die de landschappelijke situatie veranderen in essentie uit het toevoegen van nieuwe elementen en het wijzigen of verwijderen van bestaande elementen. De aard van wat toegevoegd, gewijzigd of verwijderd wordt, bepaalt verder welke ingreepgroepen onderscheiden kunnen worden.

De verschillende mogelijke effecten worden gegroepeerd volgens de verschillende invalshoeken van de milieudiscipline. Structuurwijziging heeft betrekking op de ruimtelijke schikking van de elementen, hun samenhang en onderlinge relaties en op het functioneren van het geheel. De wijzigingen van de perceptieve kenmerken worden gescheiden van de wijzigingen van de belevingskwaliteiten omdat de eerste groep objectief beschreven kan worden en de tweede groep noodzakelijkerwijze een waardering en interpretatie inhoudt. De erfgoedwaarde, zowel natuurwetenschappelijk als cultuurhistorisch, vormt een aparte groep.

Effectgroepen
- Verlies erfgoedwaarde;
- Structuurwijzigingen;
- Wijziging van de perceptieve kenmerken;
- Wijziging van belevingskwaliteiten.

Ingreepgroepen
- Materiële verandering van de toestand en het voorkomen van objecten;
- Functieverandering;
- Vullen van de open ruimten;
- Versnijden van de Open Ruimte;
- Reliëfswijzigingen.

7.5.2 Specifiek m.b.t. het project

7.5.2.1 Benadering

De discipline "Monumenten, Landschappen en Materiële Goederen in het Algemeen" bestudeert de effecten op het landschap in de geografische omgeving van de geplande activiteit, evenals op alle materiële objecten die hierin voorkomen. Al deze verschijnselen worden als landschappelijke milieucOMPONENTEN gezien. De studie omvat zowel de fysische, materiële als de fysiognomische aspecten ervan en moet relevant zijn met betrekking tot hun natuurwetenschappelijke, (cultuur)historische en esthetische waarden die samen ook de belevingswaarde bepalen.

Algemeen wordt het landschap bestudeerd langs drie invalshoeken, nl. het landschap als erfgoed, het landschap als zintuiglijk en hoofdzakelijk visueel waarneembaar verschijnsel en het landschap als dynamisch relatiestelsel. Hierbij worden zowel de inhoudelijke kenmerken als het voorkomen van de
elementen of objecten beschrijven, evenals hun onderlinge ruimtelijke relaties. Deze beschrijvingen staan in functie van het functioneren van het landschap (het relatiestelsel), van de perceptieve kwaliteiten en van de erfgoedwaarde ervan.

Monumenten, landschappen en materiële goederen worden beschouwd als bestaande uit:

- **open ruimte:** algemeen is dit de niet-bebouwde ruimte waarin de verticale relaties tussen bodem, reliëf en landgebruik slechts in zeer beperkte mate verstoord zijn geworden zodat het bodemarchief er goed bewaard is gebleven;
- **objecten:** meestal duidelijk begrensde entiteiten van zowel biotische als abiotische aard;
- **ensembles:** complexe gehelen samengesteld uit ongelijksoortige elementen, maar die een gemeenschappelijke, organische ontwikkeling hebben gekend en een eigen interne structuur bezitten,
- **structuren:** ruimtelijke organisatie en patronen die relaties uitdrukken tussen objecten en ensembles

Het landschap is een dynamisch verschijnsel dat continu evolueert. De actuele situatie kan men maar begrijpen wanneer men de ontwikkelingsgeschiedenis kent. De ontwikkelingsgeschiedenis en het functioneren van het actuele landschap in zijn bredere ruimtelijke context vormen de basis voor het inschatten van de autonome ontwikkeling in het gebied.

7.5.2.2 Methodologie

Een volledige effectenbeoordeling gebeurt eerst inhoudelijk, dan fysiognomisch waarna men de evaluaties in een impactmatrix synthetiseert.

De inhoudelijke beoordeling maakt eerst een evaluatie van de referentiesituatie t.o.v. ideaaltypische kenmerken vervat in de beschrijving van de traditionele landschappen en gebruikt hiervoor kennis van de landschapsgenese. Hierbij wordt nagegaan in welke mate de actuele situatie oudere landschappelijke kenmerken nog laat zien. Hiervoor worden criteria gehanteerd zoals herkenbaarheid, gaafheid en samenhang, die op een ordinale schaal geëvalueerd worden (Antrop M. & Van Damme S., 1995). Ook significante kwalitatieve veranderingen worden genoteerd. Deze worden beschreven voor de verschillende ingreep- en effectengroepen afzonderlijk en steunt op de gedetailleerde beschrijving van de referentiesituatie.

Voor het beoordelen van veranderingen van perceptieve kenmerken wordt met de terreinfoto's eventueel simulaties gemaakt. De fysiognomische beoordeling gebeurt voor geselecteerde standplaatsen binnen het verwachte gezichtsveld en binnen de kritische kijkafstand van 1200m.
Aangezien het tracé van het project doorheen sterk verschillende landschappen loopt, wordt het studiegebied opgedeeld in 4 segmenten (zie kaart afbakening studiegebied):

- segment A: de omgeving van het behandelingsgebouw;
- segment B: het tracé doorheen het poldergebied tot aan het waterzuiveringsstation;
- segment C: het tracé langs openbare wegen doorheen het bebouwde gebied tussen Koksijde en Oostduinkerke;
- segment D: het tracé door de duinen en Doornpanne in het bijzonder, inclusief aanleg van het infiltratiepand.

Met een impactmatrix wordt de synthese gegeven per ingreep- en effectgroep en per segment. Dit gebeurt met een ordinale schaal in vijf klassen en met kwalitatieve toelichtingen en motivatie indien nodig. De ordinale evaluatie maakt het onderscheid tussen beperkte en belangrijke gunstige en ongunstige effecten en geeft een klasse met geen of geen significante effecten.

7.5.2.3 Voornaamste te verwachten milieu-effecten

Volgende tabel geeft een overzicht van de te verwachten effecten van het voorliggend project, onderverdeeld naar ingreepgroepen en effectgroepen op landschappen, monumenten en materiële goederen.

<table>
<thead>
<tr>
<th>Tabel 7.5.1. Overzicht van ingreep- en effectgroepen en te verwachten effecten voor de discipline Monumenten en Landschappen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingreepgroep</td>
</tr>
<tr>
<td>Verlies erfgoedwaarde</td>
</tr>
<tr>
<td>Structuurwijzigingen</td>
</tr>
<tr>
<td>Wijzigen perceptieve kenmerken</td>
</tr>
<tr>
<td>Wijzigen belevingskwaliteiten</td>
</tr>
</tbody>
</table>

Legende:
- X : de ingreepgroep veroorzaakt weinig of geen effecten op de effectgroep
- XX : de ingreepgroep veroorzaakt waarschijnlijk een beperkt effect op de effectgroep
- XXX : de ingreepgroep veroorzaakt zeer waarschijnlijk belangrijke effecten op de effectgroep

In dit geval betreft het vooral het versnijden van bestaande landschappelijke structuren of objecten, met een tijdelijke perceptieve hinder tijdens het uitvoeren van de werken en een mogelijk verlies van geomorfologische, historische en archeologische erfgoedwaarden.
DEEL 8 AFBAKENING VAN HET STUDIEGEBIED, REFERENTIESITUATIE EN ONTWIKKELINGSSCENARIO'S

Technische disciplines

8.1 GELUID

8.1.1 Afbakening van het studygebied

De geluidsmetingen gebeuren conform VLAREM II. Dit houdt voor de ligging van de meet- en evaluatiepunten en de afbakening van het studygebied het volgende in:

- indien er bewoonde gebouwen aanwezig zijn, vreemd aan de inrichting binnen een straal van 200 meter vanaf de perceelsgrens van de inrichting, dan worden de metingen uitgevoerd in de nabijheid van één of meerdere van deze bewoonde gebouwen.
- indien er geen bewoonde gebouwen zijn binnen een straal van 200 meter vanaf de perceelsgrens van de inrichting, dan worden de metingen uitgevoerd op ongeveer 200 meter afstand van de perceelsgrens van de inrichting.

Bij de afbakening van het studygebied werd er rekening gehouden met deze afstand van 200 meter, in die zin dat de grenzen van het studygebied zich op 200 meter van alle zones waar er iets zal gebeuren tijdens de aanleg- of exploitatiefase bevinden. De afbakening van het studygebied en de ligging van de meetpunten worden weergegeven op figuur 8.1.1. Meetpunt 1 bevindt zich op 200 meter van de perceelsgrens van het infiltratiepand, meetpunten 2 en 3 ter hoogte van de dichtste woning (op ongeveer 150 tot 200 meter).

8.1.2 Referentiesituatie

Voor het vastleggen van de referentiesituatie wordt een keuze gemaakt tussen de huidige of de gewenste situatie. Deze keuze is afhankelijk van de huidige situatie. De gewenste situatie is de akoestische richtwaarde opgenomen in VLAREM II als kwaliteitsdoelstelling gebruikt. Voor meetpunt 1 werd de bestaande situatie als referentiesituatie gekozen en voor de meetpunten 2 en 3 de gewenste situatie. Dit kan afgeleid worden aan de hand van de richtwaarden en meetresultaten die verder voor elk meetpunt afzonderlijk vermeld worden.

8.1.2.1 Meetresultaten van de huidige immissie

In elk van de drie meetpunten werd het achtergrondgeluid gemeten gedurende een periode van een aantal dagen. Zoals in VLAREM II aangegeven is, wordt het L_{A_{95,1h}}-niveau gehanteerd als indicator voor de kwaliteit van het bestaande geluidsclimaat. De geregistreerde geluids niveaus werden vergeleken met de meteogegevens en geselecteerd indien valabel. Een overzicht van de valable metingen per meetpunt wordt weergegeven in de tabellen 8.2.1 tot en met 8.1.12. Samen met de tabellen van de valable metingen is er een grafische weergave van het opgemeten geluids niveau in functie van het tijdstip van de dag en een grafische weergave van het opgemeten geluids niveau in functie van de windrichting voorgesteld.
Figuur 8.1.1 Afbakening van het studiegebied voor de discipline Geluid.
Figuur 8.1.2 Aanduiding van de meetpunten op het Gewestplan.
Per meetpunt kan het volgende opgemerkt worden:

- **Meetpunt 1: Recreatiegebied Galloper (tabel 8.1.1 tot en met tabel 8.1.4)**
 De gemiddelde dag-, avond- en nachtwaarde van het achtergrondgeluid (LAG95,1h-niveau) zijn merkwaardig lager dan de richtwaarden voorgeschreven door VLAREM II. De geregistreerde geluids niveaus zijn niet echt afhankelijk van de windrichting. Sporadisch worden er hogere waarden geregistreerd voor het LAG5,1h-niveau, die waarschijnlijk het gevolg zijn van het overvliegen van helikopters en militaire vliegtuigen afkomstig van de luchtmachtbasis van Koksijde of van grotere vliegtuigen die op het radiogeleidingsstation Koskij flygen.

- **Meetpunt 2: St.-André (tabel 8.1.5 tot en met tabel 8.1.8)**
 In dit meetpunt zijn de gemiddelde dag-, avond- en nachtwaarde van het achtergrondgeluid (LAG95,1h-niveau) iets hoger dan de door VLAREM II voorgeschreven richtwaarden. De meetwaarden blijken licht afhankelijk te zijn van de windrichting in die zin dat er bij noordoostelijke en noordelijke wind hogere waarden geregistreerd worden. De oorzaak hiervan is de verkeersweg in die richting. Gemiddeld gezien worden er voor het LAG5,1h-niveau ook hogere waarden opgetekend, naast de bijdrage van het wegverkeer waarschijnlijk ook ten gevolge van het luchtverkeer (helikopters van de luchtmachtbasis van Koksijde en overvliegende lijnvliegtuigen).

- **Meetpunt 3: RWZI Wulpen (tabel 8.1.9 tot en met tabel 8.1.12)**
 In het derde meetpunt liggen de gemiddelde waarden zowel overdag, 's avonds als 's nachts boven de richtwaarde voorgeschreven door VLAREM II. De oorzaak hiervan kan onder andere de vrij drukke verkeersweg aan de overkant van het kanaal en de aanwezigheid van het waterzuiveringsstation in de nabije omgeving zijn. Ook de geregistreerde LAG5-waarden zijn over de ganse lijn hoger voor dit meetpunt dan voor de andere meetpunten. Af en toe wordt er een verhoging van de LAG5-vaarde waargenomen die kan te wijten zijn aan het overvliegen van helikopters of militaire vliegtuigen afkomstig van het militair vliegveld van Koksijde.

Uit de tabellen en grafieken kan er opgemaakt worden dat de wind hoofdzakelijk uit zuidelijke, oostelijke, zuidoostelijke en noordwestelijke richting waait. De andere windrichtingen zijn ook vertegenwoordigd, zij het in mindere mate.

8.1.2.2 Luchtmachtbasis van Koksijde

Uit de evaluatie van het omgevingsgeluid ter hoogte van het recreatiegebied Galloper kan er opgemaakt worden dat de aanwezigheid van de luchtmachtbasis van Koksijde in de ruime omgeving nagenoeg geen invloed heeft op het achtergrondgeluidsniveau. Dit wordt aangegeven door de LAG5,1h-waarde, zowel de gemiddelde dag-, avond- als nachtwaarde liggen een stuk lager dan de richtwaarden. Het LAG5,1h-niveau geeft de gebeurtenissen weer die zich gedurende de meetperiode voordoen. De gemiddelde LAG5,1h-waarden voor dag, avond en nacht zijn nog steeds vrij laag, maar toch werden er overdag af en toe hogere waarden opgemeten (50 tot 60 dBA). Aangezien de dichtstbijzijnde verkeersweg meer dan 200 meter van het meetpunt verwijderd ligt, worden deze hogere LAG5,1h-niveaus toegeschreven aan overvliegende helikopters of vliegtuigen.

Dit kan eveneens afgeleid worden uit het verloop van LAG5,1sec dat weergegeven wordt in de figuren 8.1.1 tot en met 8.1.6. De figuren 8.1.5 en 8.1.6 geven hetzelfde tijdsverloop voor twee verschillende meetpunten (met twee meetpunten 1 en 2 respectievelijk). Voor beide meetpunten kan op ongeveer hetzelfde tijdstip een dergelijke piek waargenomen worden. Aangezien deze gebeurtenissen in beide meetpunten tegelijk waargenomen worden, zijn het vermoedelijk helikopters of vliegtuigen.
Tabel 8.1.1 : Valubele metingen - LA95

<table>
<thead>
<tr>
<th>Dagwaarde</th>
<th>Avondwaarde</th>
<th>Nachtwarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>23</td>
<td>21</td>
</tr>
</tbody>
</table>

Meetpunt 1: Recreatiegebied Galloper
Tabel 8.1.2: Valabele metingen - LA50

<table>
<thead>
<tr>
<th>Begin uur</th>
<th>Eind uur</th>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-nov-94</td>
<td>8-9-27</td>
<td>16</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>28-nov-94</td>
<td>8-9-28</td>
<td>17</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>29-nov-94</td>
<td>8-9-29</td>
<td>18</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>30-nov-94</td>
<td>8-9-30</td>
<td>19</td>
<td>28</td>
<td>27</td>
</tr>
</tbody>
</table>

Meetpunt 1: Recreatiegebied Galloper
Tabel 8.1.3: Valabele meetingen - LA05

<table>
<thead>
<tr>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin uur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diafragma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dw</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>wo</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>do</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>vr</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>zo</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>diafragma</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Eind uur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diafragma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dw</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>wo</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>do</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>vr</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>zo</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>diafragma</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>Datum</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>59</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>62</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>63</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>69</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>71</td>
</tr>
<tr>
<td>71</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>72</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>73</td>
<td>73</td>
<td>74</td>
</tr>
<tr>
<td>74</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>76</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>77</td>
<td>77</td>
<td>78</td>
</tr>
<tr>
<td>78</td>
<td>78</td>
<td>79</td>
</tr>
<tr>
<td>79</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>81</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>82</td>
<td>82</td>
<td>83</td>
</tr>
<tr>
<td>83</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>84</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>85</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td>87</td>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>88</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>89</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>91</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>92</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>93</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>94</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>99</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

Meetpunt 1: Recreatiegebied Galloper
Meetpunt 1: Recreatiegebied Galloper

Tabel 8.1.4: Valabiele metingen - LAeq

<table>
<thead>
<tr>
<th>LAeq,1h (dB(A))</th>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin uur</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Eind uur</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>di 16-nov-94</td>
<td>35</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td>wo 17-nov-94</td>
<td>31</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>do 18-nov-94</td>
<td>29</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>vr 19-nov-94</td>
<td>31</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>do 25-nov-94</td>
<td>32</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>vr 26-nov-94</td>
<td>41</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>ma 29-nov-94</td>
<td>31</td>
<td>32</td>
<td>39</td>
</tr>
<tr>
<td>di 30-nov-94</td>
<td>30</td>
<td>38</td>
<td>30</td>
</tr>
</tbody>
</table>

Gemiddelde avondwaarde:

- Dag: 31.5 dB(A)
- Avond: 33.0 dB(A)
- Nacht: 37.5 dB(A)

Gemiddelde dagwaarde:

- LAeq,1h (dB(A)):
 - Begin uur: 8 dB(A)
 - Eind uur: 8 dB(A)

Gemiddelde avondwaarde:

- Avondwaarde: 31 dB(A)

Gemiddelde nachtwarde:

- Nachtwarde: 24 dB(A)
Tabel 8.1.5 : Valable metingen - LA95

<table>
<thead>
<tr>
<th>LA95,1h dB(A)</th>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin uur</td>
<td>Eind uur</td>
<td>Begin uur</td>
<td>Eind uur</td>
</tr>
<tr>
<td>vr 5-nov-94</td>
<td>48</td>
<td>49</td>
<td>47</td>
</tr>
<tr>
<td>za 6-nov-94</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>zo 7-nov-94</td>
<td>37</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>ma 8-nov-94</td>
<td>38</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>di 9-nov-94</td>
<td>41</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>wo 10-nov-94</td>
<td>41</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>do 11-nov-94</td>
<td>37</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>vr 12-nov-94</td>
<td>37</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>za 13-nov-94</td>
<td>39</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>zo 14-nov-94</td>
<td>44</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>ma 15-nov-94</td>
<td>41</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>di 16-nov-94</td>
<td>36</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>wo 17-nov-94</td>
<td>41</td>
<td>44</td>
<td>41</td>
</tr>
<tr>
<td>do 18-nov-94</td>
<td>36</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>vr 19-nov-94</td>
<td>37</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>za 20-nov-94</td>
<td>33</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>zo 21-nov-94</td>
<td>30</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>ma 22-nov-94</td>
<td>34</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>di 23-nov-94</td>
<td>30</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>wo 24-nov-94</td>
<td>31</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>do 25-nov-94</td>
<td>38</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>vr 26-nov-94</td>
<td>41</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>za 27-nov-94</td>
<td>43</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>zo 28-nov-94</td>
<td>43</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>ma 29-nov-94</td>
<td>44</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>di 30-nov-94</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>wo 1-dec-94</td>
<td>44</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>do 2-dec-94</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>vr 3-dec-94</td>
<td>40</td>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td>za 4-dec-94</td>
<td>38</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>zo 5-dec-94</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
</tbody>
</table>

Gemiddelde: 37.4 41.0 41.8 42.5 41.0 41.8 42.1 41.8 42.8 42.5 40.3 39.4 38.3 37.1 35.9 35.2 31.8 33.8 33.1 34.0 34.2 34.6 35.6

Spreiding: 3.9 3.3 3.0 3.2 4.6 4.8 4.4 4.2 3.9 3.7 3.6 3.6 4.6 5.0 4.9 4.8 5.3 3.2 6.1 5.4 5.7 5.3 5.1 5.2

Meetpunt 2: Sint-André
Tabel 8.1.5: Valabile metingen - LA95 (vervolg)

Meetpunt 2: Sint-André
<table>
<thead>
<tr>
<th>Dag</th>
<th>Begin uur</th>
<th>Eind uur</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA50,1h dB(A)</td>
<td>7 8 9 10 11 12 13 14 15 16 17 18</td>
<td>19 20 21 22</td>
<td>23 24</td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>vr</td>
<td>5-nov-94</td>
<td>43 44 45</td>
<td>43 42</td>
<td>45 43</td>
</tr>
<tr>
<td>za</td>
<td>6-nov-94</td>
<td>43 44 45</td>
<td>43 42</td>
<td>45 43</td>
</tr>
<tr>
<td>zo</td>
<td>7-nov-94</td>
<td>39 42 45</td>
<td>48 49</td>
<td>49 48</td>
</tr>
<tr>
<td>ma</td>
<td>8-nov-94</td>
<td>39 42 45</td>
<td>51 49</td>
<td>49 48</td>
</tr>
<tr>
<td>di</td>
<td>9-nov-94</td>
<td>42 46 46</td>
<td>53 51</td>
<td>51 49</td>
</tr>
<tr>
<td>wo</td>
<td>10-nov-94</td>
<td>44 45 47</td>
<td>47 46</td>
<td>48 47</td>
</tr>
<tr>
<td>do</td>
<td>11-nov-94</td>
<td>41 45 46</td>
<td>46 47</td>
<td>44 45</td>
</tr>
<tr>
<td>vr</td>
<td>12-nov-94</td>
<td>46 47 47</td>
<td>47 48</td>
<td>48 49</td>
</tr>
<tr>
<td>za</td>
<td>13-nov-94</td>
<td>44 46 48</td>
<td>51 52</td>
<td>52 52</td>
</tr>
<tr>
<td>zo</td>
<td>14-nov-94</td>
<td>44 46 48</td>
<td>50 50</td>
<td>50 50</td>
</tr>
<tr>
<td>ma</td>
<td>15-nov-94</td>
<td>47 46 46</td>
<td>47 49</td>
<td>47 49</td>
</tr>
<tr>
<td>di</td>
<td>16-nov-94</td>
<td>43 44 46</td>
<td>43 46</td>
<td>45 47</td>
</tr>
<tr>
<td>wo</td>
<td>17-nov-94</td>
<td>46 48 49</td>
<td>50 52</td>
<td>52 53</td>
</tr>
<tr>
<td>do</td>
<td>18-nov-94</td>
<td>48 48 46</td>
<td>44 45</td>
<td>45 47</td>
</tr>
<tr>
<td>vr</td>
<td>19-nov-94</td>
<td>42 46 46</td>
<td>43 41</td>
<td>41 43</td>
</tr>
<tr>
<td>za</td>
<td>20-nov-94</td>
<td>37 39 42</td>
<td>42 43</td>
<td>43 44</td>
</tr>
<tr>
<td>zo</td>
<td>21-nov-94</td>
<td>34 37 40</td>
<td>40 40</td>
<td>40 40</td>
</tr>
<tr>
<td>ma</td>
<td>22-nov-94</td>
<td>40 45 42</td>
<td>44 41</td>
<td>41 42</td>
</tr>
<tr>
<td>di</td>
<td>23-nov-94</td>
<td>41 44 44</td>
<td>44 45</td>
<td>45 47</td>
</tr>
<tr>
<td>wo</td>
<td>24-nov-94</td>
<td>46 48 49</td>
<td>50 52</td>
<td>52 53</td>
</tr>
<tr>
<td>do</td>
<td>25-nov-94</td>
<td>48 48 46</td>
<td>44 45</td>
<td>45 47</td>
</tr>
<tr>
<td>vr</td>
<td>26-nov-94</td>
<td>42 46 46</td>
<td>43 41</td>
<td>41 43</td>
</tr>
<tr>
<td>za</td>
<td>27-nov-94</td>
<td>38 41 43</td>
<td>44 44</td>
<td>44 44</td>
</tr>
<tr>
<td>di</td>
<td>29-nov-94</td>
<td>46 48 48</td>
<td>48 49</td>
<td>49 50</td>
</tr>
<tr>
<td>wo</td>
<td>30-nov-94</td>
<td>43 46 46</td>
<td>44 47</td>
<td>47 48</td>
</tr>
<tr>
<td>do</td>
<td>1-dec-94</td>
<td>42 46 47</td>
<td>46 47</td>
<td>46 47</td>
</tr>
<tr>
<td>vr</td>
<td>3-dec-94</td>
<td>47 51 53</td>
<td>53 53</td>
<td>53 54</td>
</tr>
<tr>
<td>za</td>
<td>4-dec-94</td>
<td>48 49 51</td>
<td>51 52</td>
<td>51 52</td>
</tr>
<tr>
<td>zo</td>
<td>5-dec-94</td>
<td>48 49 51</td>
<td>51 52</td>
<td>51 52</td>
</tr>
</tbody>
</table>

Gemiddelde: 42.4 45.0 45.8 46.3 47.0 46.2 46.7 47.1 46.8 47.5 47.6 45.5 44.4 42.7 41.2 39.9 38.9 34.9 36.7 35.5 36.2 36.6 36.9 39.0

Spreding: 3.8 3.4 3.2 3.0 4.1 4.0 3.6 3.6 3.5 3.5 3.5 3.7 4.1 4.7 4.6 4.6 5.1 3.5 6.1 5.6 5.6 5.2 5.0 4.6

Meetpunt 2: Sint-André
Meetpunt 2: Sint-André
Tabel 8.1.7: Valabile metingen - LA05

<table>
<thead>
<tr>
<th>LA05,1h</th>
<th>dB(A)</th>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin uur</td>
<td>7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eind uur</td>
<td>8 9 10 11 12 13 14 15 16 17 18 19 20 21 22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vr</th>
<th>5-nov-94</th>
</tr>
</thead>
<tbody>
<tr>
<td>za</td>
<td>6-nov-94</td>
</tr>
<tr>
<td>zo</td>
<td>7-nov-94</td>
</tr>
<tr>
<td>ma</td>
<td>8-nov-94</td>
</tr>
<tr>
<td>di</td>
<td>9-nov-94</td>
</tr>
<tr>
<td>wo</td>
<td>10-nov-94</td>
</tr>
<tr>
<td>do</td>
<td>11-nov-94</td>
</tr>
<tr>
<td>vr</td>
<td>12-nov-94</td>
</tr>
<tr>
<td>za</td>
<td>13-nov-94</td>
</tr>
<tr>
<td>zo</td>
<td>14-nov-94</td>
</tr>
<tr>
<td>ma</td>
<td>15-nov-94</td>
</tr>
<tr>
<td>di</td>
<td>16-nov-94</td>
</tr>
<tr>
<td>wo</td>
<td>17-nov-94</td>
</tr>
<tr>
<td>do</td>
<td>18-nov-94</td>
</tr>
<tr>
<td>vr</td>
<td>19-nov-94</td>
</tr>
<tr>
<td>za</td>
<td>20-nov-94</td>
</tr>
<tr>
<td>zo</td>
<td>21-nov-94</td>
</tr>
<tr>
<td>ma</td>
<td>22-nov-94</td>
</tr>
<tr>
<td>di</td>
<td>23-nov-94</td>
</tr>
<tr>
<td>wo</td>
<td>24-nov-94</td>
</tr>
<tr>
<td>do</td>
<td>25-nov-94</td>
</tr>
<tr>
<td>vr</td>
<td>26-nov-94</td>
</tr>
<tr>
<td>za</td>
<td>27-nov-94</td>
</tr>
<tr>
<td>zo</td>
<td>28-nov-94</td>
</tr>
<tr>
<td>ma</td>
<td>29-nov-94</td>
</tr>
<tr>
<td>di</td>
<td>30-nov-94</td>
</tr>
<tr>
<td>wo</td>
<td>1-dec-94</td>
</tr>
<tr>
<td>do</td>
<td>2-dec-94</td>
</tr>
<tr>
<td>vr</td>
<td>3-dec-94</td>
</tr>
<tr>
<td>za</td>
<td>4-dec-94</td>
</tr>
<tr>
<td>zo</td>
<td>5-dec-94</td>
</tr>
</tbody>
</table>

| gemiddelde | 51.7 54.8 55.9 58.4 58.8 58.0 58.6 58.9 58.5 57.3 54.3 |
| spreiding | 4.4 3.2 3.2 3.2 2.9 1.9 2.2 2.1 2.1 3.0 3.1 |

Meetpunt 2: Sint-André
Tabel 8.1.7: Valabete metingen - LA05 (vervolg)

Meetpunt 2: Sint-André
Tabel 8.1.8: Valabele metingen - LAeq

<table>
<thead>
<tr>
<th>LAeq,1h dB(A)</th>
<th>Begin uur</th>
<th>Eind uur</th>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>vr 5-nov-94</td>
<td>53</td>
<td>52</td>
<td>48</td>
<td>52</td>
<td>47</td>
</tr>
<tr>
<td>za 6-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>zo 7-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>ma 8-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>di 9-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>wo 10-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>do 11-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>vr 12-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>za 13-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>zo 14-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>ma 15-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>di 16-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>wo 17-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>do 18-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>vr 19-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>za 20-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>zo 21-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>ma 22-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>di 23-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>wo 24-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>do 25-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>vr 26-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>za 27-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>zo 28-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>ma 29-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>di 30-nov-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>wo 1-dec-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>do 2-dec-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>vr 3-dec-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>za 4-dec-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>zo 5-dec-94</td>
<td>61</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>45</td>
</tr>
</tbody>
</table>

| gemiddelde | 50.9 | 54.1 | 54.9 | 55.8 | 56.3 | 55.1 | 55.5 | 56.2 | 56.0 | 56.2 | 55.3 | 53.3 | 52.5 | 51.9 | 49.5 | 48.4 | 47.1 | 43.8 | 44.1 | 42.2 | 40.9 | 41.3 | 40.6 | 47.1 |
| spreiding | 4.2 | 3.2 | 2.5 | 2.1 | 1.8 | 1.9 | 1.4 | 1.7 | 1.3 | 1.7 | 2.2 | 1.8 | 3.0 | 4.1 | 4.4 | 3.9 | 4.4 | 5.1 | 5.5 | 6.6 | 6.0 | 4.9 | 4.9 | 5.5 |

Meetpunt 2: Sint-André
Tabel 8.1.8: Valabiele metingen - Laeq (vervolg)

Meetpunt 2: Sint-André
Tabel 8.1.9: Valabele metingen - LA95

<table>
<thead>
<tr>
<th>LA95,1h (dB(A))</th>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin uur</td>
<td>7</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Eind uur</td>
<td>9</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>ma</td>
<td>18-feb-95</td>
<td>49</td>
<td>46</td>
</tr>
<tr>
<td>di</td>
<td>19-feb-95</td>
<td>43</td>
<td>46</td>
</tr>
<tr>
<td>wo</td>
<td>20-feb-95</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>do</td>
<td>21-feb-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>vr</td>
<td>22-feb-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>za</td>
<td>23-feb-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>zo</td>
<td>24-feb-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>ma</td>
<td>25-feb-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>di</td>
<td>26-feb-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>wo</td>
<td>27-feb-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>do</td>
<td>28-feb-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>vr</td>
<td>1-mrt-95</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>gemiddelde</td>
<td>46.9</td>
<td>48.1</td>
<td>47.4</td>
</tr>
<tr>
<td>spreiding</td>
<td>3.4</td>
<td>3.3</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Meetpunt 3: RWZI-Wulpen
Tabel 8.1.10: Valable metingen - LA50

<table>
<thead>
<tr>
<th>LA50,1h dB(A)</th>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin uur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eind uur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-feb-95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-feb-95</td>
<td>46</td>
<td>55</td>
<td>49</td>
</tr>
<tr>
<td>za</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-feb-95</td>
<td>53</td>
<td>52</td>
<td>49</td>
</tr>
<tr>
<td>zo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-feb-95</td>
<td>54</td>
<td>51</td>
<td>46</td>
</tr>
<tr>
<td>ma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-feb-95</td>
<td>60</td>
<td>55</td>
<td>49</td>
</tr>
<tr>
<td>di</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-feb-95</td>
<td>61</td>
<td>51</td>
<td>42</td>
</tr>
<tr>
<td>wo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-feb-95</td>
<td>60</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td>do</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-feb-95</td>
<td>60</td>
<td>52</td>
<td>41</td>
</tr>
<tr>
<td>vr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-feb-95</td>
<td>60</td>
<td>55</td>
<td>47</td>
</tr>
<tr>
<td>za</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-feb-95</td>
<td>59</td>
<td>59</td>
<td>46</td>
</tr>
<tr>
<td>zo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-feb-95</td>
<td>54</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>ma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-mrt-95</td>
<td>57</td>
<td>57</td>
<td>44</td>
</tr>
</tbody>
</table>

gemiddelde
- 54.0
- 55.4
- 55.3
- 55.7
- 57.2
- 58.0
- 59.0
- 58.0
- 56.5
- 58.8
- 59.0
- 57.3
- 53.6
- 50.5
- 47.9
- 47.2
- 45.9
- 44.1
- 44.8
- 44.3
- 43.9
- 44.2
- 43.8
- 47.3

spreadling
- 6.7
- 5.4
- 3.5
- 4.1
- 3.3
- 3.5
- 0.7
- 0.0
- 1.1
- 0.0
- 0.3
- 1.4
- 1.1
- 0.9
- 1.6
- 2.9
- 3.6
- 2.6
- 1.6
- 2.9
- 4.0
- 2.6
- 3.3

Dagwaarde

Avondwaarde

Nachtwarde

Meetpunt 3: RWZI-Wulpen
Tabel 8.1.11 : Valabele metingen - LA05

<table>
<thead>
<tr>
<th>LA05,1h dB(A)</th>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin uur</td>
<td>7</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Eind uur</td>
<td>8</td>
<td>21</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>do</th>
<th>vr</th>
<th>za</th>
<th>zo</th>
<th>ma</th>
<th>di</th>
<th>wo</th>
<th>do</th>
<th>vr</th>
<th>za</th>
<th>zo</th>
<th>ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eind</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>66</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>65</td>
<td>64</td>
<td>65</td>
<td>65</td>
<td>67</td>
</tr>
</tbody>
</table>

| gemiddelde | 65.0 | 66.2 | 65.3 | 68.7 | 67.5 | 66.8 | 67.8 | 66.5 | 65.0 | 66.3 | 66.6 | 66.3 | 64.8 |
| spreiding | 3.0 | 2.9 | 1.0 | 4.9 | 3.5 | 1.1 | 2.5 | 0.0 | 0.0 | 0.3 | 0.3 | 0.7 | 1.1 |

Gemiddelde dagwaarde 66
Gemiddelde avondwaarde 65
Gemiddelde nachtwaarde 64

Meetpunt 3: RWZI-Wulpen
Tabel 8.1.12 : Valuable metingen - LAeq

<table>
<thead>
<tr>
<th>Dag</th>
<th>Avond</th>
<th>Nacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin uur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eind uur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>18-feb-95</td>
<td>55</td>
</tr>
<tr>
<td>vr</td>
<td>19-feb-95</td>
<td>61</td>
</tr>
<tr>
<td>za</td>
<td>20-feb-95</td>
<td>63</td>
</tr>
<tr>
<td>zo</td>
<td>21-feb-95</td>
<td>66</td>
</tr>
<tr>
<td>ma</td>
<td>22-feb-95</td>
<td>69</td>
</tr>
<tr>
<td>di</td>
<td>23-feb-95</td>
<td>63</td>
</tr>
<tr>
<td>wo</td>
<td>24-feb-95</td>
<td>63</td>
</tr>
<tr>
<td>do</td>
<td>25-feb-95</td>
<td>63</td>
</tr>
<tr>
<td>vr</td>
<td>26-feb-95</td>
<td>63</td>
</tr>
<tr>
<td>za</td>
<td>27-feb-95</td>
<td>63</td>
</tr>
<tr>
<td>zo</td>
<td>28-feb-95</td>
<td>63</td>
</tr>
<tr>
<td>ma</td>
<td>1-mrt-95</td>
<td>63</td>
</tr>
<tr>
<td>gemiddelde</td>
<td>59.7</td>
<td>61.4</td>
</tr>
<tr>
<td>spreiding</td>
<td>4.3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Meetpunt 3: RWZI-Wulpen

Aan de hand van deze evaluatie kan men besluiten dat voor meetpunt 1 als referentiesituatie de huidige situatie gekozen moet worden, aangezien er in de omgeving geen sterke stoorbronnen aanwezig zijn en de kwaliteit van het omgevingsgeluid in de huidige situatie beter is dan door de richtwaarden volgens VLAREM II aangegeven wordt. Voor de meetpunten 2 en 3 wordt de gewenste situatie als richtwaarde gekozen aangezien de richtwaarden volgens VLAREM II overschreden worden. Onderstaande tabellen 8.1.13 t.e.m. 8.1.15 geven een overzicht van de gemiddelde dag-, avond- en nachtwaarden in dB(A) voor elk van de meetpunten.

Tabel 8.1.13 Overzicht van de gemiddelde dag-, avond- en nachtwaarde voor de gekozen referentesituatie voor meetpunt 1 – Recreatiegebied Galloper.

<table>
<thead>
<tr>
<th>meetpunt 1 Recreatiegebied Galloper</th>
<th>dagwaarde in dB(A)</th>
<th>avondwaarde in dB(A)</th>
<th>nachtwaarde in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemeten waarde</td>
<td>27</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Richtwaarde VLAREM II</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Grenswaarde specifiek geluid L_{sp} ≤ L_{95} en L_{sp} ≤ RW-5</td>
<td>27</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabel 8.1.14 Overzicht van de gemiddelde dag-, avond- en nachtwaarde voor de gekozen referentesituatie voor meetpunt 2 – Sint-André.

<table>
<thead>
<tr>
<th>meetpunt 2 Sint André</th>
<th>dagwaarde in dB(A)</th>
<th>avondwaarde in dB(A)</th>
<th>nachtwaarde in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemeten waarde</td>
<td>41</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>richtwaarde VLAREM II</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>grenswaarde specifiek geluid L_{sp} ≤ L_{95-5} en L_{sp} ≤ RW</td>
<td>36</td>
<td>33</td>
<td>28</td>
</tr>
</tbody>
</table>

Tabel 8.1.15 Overzicht van de gemiddelde dag-, avond- en nachtwaarde voor de gekozen referentesituatie voor meetpunt 3 – RWZI-Wulpen.

<table>
<thead>
<tr>
<th>meetpunt 3 RWZI Wulpen</th>
<th>dagwaarde in dB(A)</th>
<th>avondwaarde in dB(A)</th>
<th>nachtwaarde in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemeten waarde</td>
<td>48</td>
<td>44</td>
<td>41</td>
</tr>
<tr>
<td>richtwaarde VLAREM II</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>grenswaarde specifiek geluid L_{sp} ≤ L_{95-5} en L_{sp} ≤ RW</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
</tbody>
</table>
Figuur 8.1.3 Typisch tijdsverloop – Meetpunt 1: Recreatiegebied Galloper (18/11/98).

Figuur 8.1.5 Typisch tijdsverloop – Meetpunt 1: Recreatiegebied Galloper (27/11/98).

Figuur 8.1.6 Typisch tijdsverloop – Meetpunt 2: Recreatiegebied Galloper (07/11/98).

Figuur 8.1.8 Typisch tijdsverloop – Meetpunt 2: Recreatiegebied Galloper (27/11/98).
8.2 BODEM

8.2.1 Afbakening van het studiegebied

Het studiegebied voor de discipline bodem omvat het projectgebied en de onmiddellijk aangrenzende percelen. Daarnaast worden de tracés van de leidingen en de werkstroom ook in beschouwing genomen.

Het studiegebied kan in twee deelgebieden opgesplitst worden. De grens tussen de twee deelgebieden wordt bepaald door de scheiding van de duinstreek en de polderstreek. Op figuur 8.2.1 wordt het studiegebied met de indeling in deelgebieden voorgesteld.

Voor de bespreking van de effecten met betrekking tot bodem worden enkel de quartaire afzettingen beschouwd.

8.2.2 Situering van het studiegebied

Het infiltratiegebied is gelegen in de Duinstreek, terwijl het behandelingsgebouw gelegen is in de polders. Het tracé van de leiding van het behandelingaangebouw tot aan het infiltratiepand gaat door de polders, duin-polderovergangszone en de duinen. De leiding voor het drinkwater vertrekt vanuit de duinen naar de polders. De leiding voor het lozingswater ligt volledig in de polders. Het studiegebied wordt aangesteld op figuur 8.2.1.

8.2.3 Topografie

De Duinstreek heeft een sterk golvend reliëf. Men treft er op korte afstand hoogteverschillen aan. De hoogte varieert tussen +6 m T.A.W. in de laagste delen van de Doornpanne tot +29 m op de Hoge Blekker. De lage gebieden tussen de hoge duinkoppen noemt men pannen. Sommige pannen zijn vlak, andere vertonen kleine verhevenheden (embryonale duinen). De duinen zijn eolische, zandige formaties.

De polderstreek is een zeer vlak gebied. Aan het oppervlak liggen mariene, kleiige afzettingen, met dikwijls een zandige of een venige ondergrond. Volgens de topografische kaart varieert het peil tussen het kanaal Duinkerke - Nieuwpoort en de duin-polderovergangszone van + 3,75 m tot +5 m.

1 Alle peilen zijn aangegeven in m t.o.v. het nulpunt van de Tweede Algemene Waterpassing (T.A.W.) van het Nationaal Geografisch Instituut (NGI), dat overeenkomt met het laag laag water (laag springtij).
Figuur 8.2.1 Aanduiding van het studiegebied voor de discipline bodem.
8.2.4 Referentiesituatie

8.2.4.1 Bodemseries en bodemgesteldheid

De bodemsamenstelling van het studiegebied en de nabije omgeving wordt weergegeven op de Bodemkaart (35E) (Fig. 8.2.2). In de Polderstreek werden per hectare ca. 2 boringen uitgevoerd tot een diepte van ongeveer 125 cm, waardoor men een gedetailleerd beeld van de bodem tot die diepte verkrijgt. In het duingebied, waar een duidelijk verband bestaat tussen de aard van de bodem, de topografie en de natuurlijke plantengroei, werd gemiddeld slechts 1 boring per 5 ha uitgevoerd.

Op figuur 8.2.2 is het studiegebied ingetekend op een uittreksel van de Bodemkaart. In het studiegebied worden de volgende bodemseries aangetroffen:

Deelgebied 1 (Duinstreek):
- A0: hoge duingronden, al of niet gefixeerd;
- B1: droge duingrond;
- B2: middelmatig vochtige duingrond;
- B3: vochtige duingrond;
- C1: geëgaliseerde droge duingrond;
- C2: geëgaliseerde middelmatig vochtige duingrond.
- Da: zand op variërende diepte rustend op polderafzettingen;

Deelgebied 2 (Polderstreek):
- C1: geëgaliseerde droge duingrond;
- C2: geëgaliseerde middelmatig vochtige duingrond;
- A1: lichte klei tot zavel, op minder dan 60 cm diepte overgaand tot zand;
- A2: lichte klei tot zavel, op meer dan 60 cm diepte veelal overgaand tot zand;
- A3: zware klei tot klei, op minder dan 60 cm diepte overgaand tot lichter materiaal; geen zand op minder dan 60 cm;
- A4: zware klei;
- OG1: uitgebrakte gronden, licht profiel.

BODEMGESTELDHEID VAN DE DUINSTREEK

Serie A: Duinen

De gronden bestaan volledig uit jong duinzand en vertonen op korte afstand belangrijke hoogteverschillen.

Subserie A0 omvat hoge al dan niet gefixeerde duingronden. De duinprofielen bestaan geheel uit grof duinzand dat, behalve in de kleine pannen, droog tot zeer droog is. Onder de vegetatie is de bovengrond meestal geelbruin tot lichtbruin ten gevolge van humusaanrijking. In sommige profielen worden humeuze banden aangetroffen. Het zijn vermoedelijk oude overstoven begroeiingsoppervlakken.
Figuur 8.2.2. Uittreksel van de bodemkaart 35E Oostduinkerke met aanduiding van het studiegebied.
I. CUOLAND POLDERS ANCIENS

1. KREEKRUGGRONDEN
SOLS DES CHIFFAUX À RELIEF INVERSÉ

Lichte klei tot zavel, op minder dan 60 cm diepte overgaand tot zand.
Argille légère ou sablon, passant à du sable à moins de 60 cm de profondeur.

Hoge duinen, al of niet gefixeerd.
Dunes élevées, fixées ou mobiles.

Klep, op minder dan 60 cm diepte overgaand tot zand.
Argile passant à du sable à moins de 60 cm de profondeur.

Droge duingrond.
Sol duan sec.

Zware klei tot klei, op meer dan 60 cm diepte overgaand tot zand.
Argile lourde ou argile, passant à du sable à plus de 60 cm de profondeur.

Middelmatig vochtige duingrond.
Sol duan moyennement humide.

Zware klei tot klei, tussen 60 en 100 cm diepte overgaand tot lichmer materiaal; geen zand op minder dan 60 cm.
Argile lourde ou argile, passant à des matériaux plus légers entre 60 et 100 cm de profondeur.

Gesélisserde droge duingrond.
Sol duan égalisé sec.

3. GEGALISERDE DUIGRONDEN
SOLS DUNAUX ÉGALISÉS

Zware klei tot klei, op meer dan 100 cm diepte overgaand tot lichmer materiaal.
Argile lourde ou argile, passant à des matériaux plus légers à plus de 100 cm de profondeur.

Gesélisserde vochtige duingrond.
Sol duan égalisé humide.

KUNSTMATIGE GRONDEN
SOLS ARTIFICIELS

Uitgevende gronden, licht profiel.
Sols déboulonné, à profil léger.

4. OVERGAANSGRONDEN
SOLS 1 È TRANSITION

Opgehoogde gronden. Sols remblayés.

Sterk vergreven gronden.
Sols fortement ramollis.

Drone tussen de Duinstreek en de Polderstreek.
Limit entre la région des dunes et la région des polders.

Projectgebied
Serie B: Duingronden

De profielen van deze typen bestaan geheel uit grof duinzand dat meestal kalkrijk is. Alleen in de B₃ profielen is de bovengrond wel eens ontkalkt. De bovenste humeuzelag van de B₁ profielen is zeer lichtbruin; daarentegen hebben de B₃ profielen niet zelden een meer donkere bovengrond die soms zelfs licht verweerd is. In deze vochtige duingronden worden meestal roestverschijnselen tot in de bovengrond waargenomen.

Serie C: Geëgaliseerde duingronden

Hiertoe behoren de kunstmatig verveende duingronden en de duinzandgronden uit het overgangsgebied tussen Duin- en Polderstreek. De gronden bestaan geheel uit jong duinzand.

Alle geëgaliseerde duingronden vertonen homogene zandprofielen. Het humusgehalte van de bovengrond neemt toe met de vochtigheid. De C₁ profielen hebben een weinig humeuse lichtbruine bovengrond. C₂ omvat de middelmatig vochtige geëgaliseerde duingronden. De gronden zijn eerder droog (watertekort) en vormen veelal de overgang tussen de duingronden en de overgangsgronden.

Serie D: Overgangsgronden

Hiertoe behoren de al of niet slibhoudende duinzandgronden die doorgaans rusten op polderafzettingen. Het bovenprofiel van deze serie is meestal middelmatig tot goed humeus, op vochtige plaatsen zelfs sterk humeus. De dikte van het al of niet slibhoudend dek is zeer verschillend. De textuur van het onderliggend materiaal gaat van vrij grof strandzand tot zware klei. De bovengrond van deze profielen is soms ontkalkt.

Het D₃ type vormt een smalle zone tussen de Duinstreek en het Oudland.

BODEMSTELDHEID VAN DE POLDERSTREEK

Serie A: Kreekruggronden

Dit zijn gronden van de met zand en klei opgevulde getijdekreken. De typen van deze serie worden onderscheiden volgens de dikte van het eventueel aanwezig kleidek en volgens de diepteligging van het grof zand.

De bovenlaag van het A₁ type is meestal lichtbruin tot grijsbruin ten gevolge van humusaanrijking. Onmiddellijk hieronder wordt geelgrijs tot witgrijs los zand aangetroffen dat gedurende een periode van droogte in het geheel geen samenhang vertoont.

Meestal zijn deze profielen kalkhoudend tot in de bovengrond.

Roestverschijnselen komen in de bovenste horizonten weinig of niet voor. Daar in de ondergrond nooit veen aanwezig is, liggen de profielen van dit type altijd hoog.

Ook het A₂ type heeft geen veen in de ondergrond, zodat zijn topografische ligging even hoog is als deze van de A₁ profielen. De bovengrond van de A₂ profielen is meestal lichtbruin tot grijsbruin; naar de diepste toe wordt de kleur van het grondmateriaal geleidelijk geelgrijs. Het niet kleihoudend zand dat dikwijls op meer dan 60 cm diepte voorkomt heeft een witgrijze tint. Tot dit type worden ook de zavelige profielen gerekend.
Roestverschijnselen worden doorgaans onmiddellijk onder de humeuze bovenste horizonten aangetroffen.

In de meeste gevallen zijn de A₂ profielen kalkhoudend tot in de bovengrond.

Doorgaans liggen de profielen van het type A₄ hoog. Slechts in enkele gevallen, nl. aan de randen van de kreekruggen, komt ingeklonken veen in de ondergrond voor.

De humeuze bovengrond is grijsbruin; naar de diepte toe wordt de kleur geleidelijk geelgrijs tot grijs. Ook het lichter materiaal in de ondergrond heeft gewoonlijk een geelgrijze tint.

Roestvlekken komen voor tot in de bovengrond. Ze zijn vooral talrijk op de overgang van zwaar tot licht materiaal.

De bovengrond is meestal kalkhoudend.

Verdroging vindt slechts plaats in zeer droge jaren. Ze is vooral uitgesproken indien grof zand op minder dan 100 cm diepte voorkomt. Daarentegen kunnen de A₄ gronden tamelijk lang nat en moeilijk te bewerken zijn.

De meeste A₃ profielen liggen hoog. Slechts de kleine kreekruggen en de randen van de brede kreekruggen hebben een iets lagere ligging ten gevolge van de inklinking van het veen in de ondergrond.

Meestal bestaat het dek van de A₅ profielen uit lichte grijsbruine tot geelgrijze klei. Veel zwaarder is de klei in de randzone van de grote kreekrug en in de kleine kreekruggen te midden van de poelgronden. Niet zelden vertoont deze klei de kenmerkende grauwgrijze kleur van de klei in de poelgronden. Het onderliggend lichter materiaal kan dan voortdurend nat zijn en een grauwgrijze tint hebben.

De A₂ profielen van de grote kreekrug zijn meestal kalkhoudend tot in de bovengrond. De ingeklonken profielen van de kleine kreekruggen, die vaak onder weide liggen of hebben gelegen, zijn dikwijls oppervlakkig ontkalkt.

Serie O: Kunstmatige gronden

OG₁ zijn gronden waarvan het kleidek geheel of gedeeltelijk werd afgegraven voor het vervaardigen van bakstenen.

8.2.4.2 Bodemgeschiktheid

De bodemgeschiktheid werd afgeleid uit de bodemseries van de bodemkaart:

- A₀: landbouwwaarde onbeduidend;
- B₁: landbouwwaarde onbeduidend;
- B₂: landbouwwaarde onbeduidend;
- B₃: landbouwwaarde onbeduidend;
- C₁: landbouwwaarde is gering; weinig geschikt als weiland;
- C₂: landbouwwaarde is gering; weinig geschikt als weiland; geschikt voor weinig eisende gewassen mits intensieve bewerking en bemesting en goede waterbeheersing;
- Da: landbouwwaarde is gering; geschikt voor tuinbouw mits goede waterbeheersing;
- A₁: landbouwwaarde is gering;
- A₂: matig geschikt voor teelten;
- A₃: geschikt voor alle poldergewassen;
- A₄: hoge landbouwwaarde, geschikt voor poldergewassen;
- OG₃: minder geschikt dan oorspronkelijk profiel, doorgaans alleen te gebruiken als weiland.
De landbouwwaarde van de gronden in de Duinstreek varieert volgens de Bodemkaart van gering tot onbeduidend. Uit de terreinwaarnemingen blijkt dat zij hoofdzakelijk dienst doen als waterwinninggebied, gebieden voor verblijfsrecreatie en woongebieden.

Vanaf de grens van de Polderstreek tot aan het behandelingsgebouw komen langs het tracé voornamelijk geschikte landbouwgronden voor. De akkerbouw primeert er.

Sinds de opname van de Bodemkaart (Moermann F.R., 1951) hebben er zich, althans voor wat betreft de omgeving van het infiltratiepand en het tracé geen noemenswaardige bodemwijzigingen voorgedaan die een invloed zouden hebben op de geschiktheidsevaluatie. Deze dateert evenwel van ca. 48 jaar geleden. Sindsdien hebben er zich wel belangrijke wijzigingen voorgedaan in de agrotechniek die tot een andere kijk op de geschiktheidsevaluatie kunnen leiden.

8.2.4.3 Historische evolutie van het terrein

Voor een uiteenzetting van de historische evolutie wordt verwezen naar §2.4.

8.2.4.4 Bodemgebruik

In de omgeving van het infiltratiepand worden de gronden gebruikt als waterwinningsgebied. Het gebied staat op het gewestplan ingekleurd als natuurgebied en waterwinningsgebied.

8.2.4.5 Bodemkwaliteit

Er zijn geen gegevens bekend i.v.m. mogelijke bodemverontreinigingen. Uit terreinwerk bleek geen aanwijzing met betrekking tot de aanwezigheid van (illegale) stortplaatsen.

8.2.4.6 Geologie

De beschrijving van de algemene geologische bouw van de tertiaire en quartaire afzettingen is afkomstig van bestaande informatie. Op figuur 8.2.3 is de ligging van de boringen weergegeven. Aan de hand van de boorstaten (bijlage 8.2.1) werd een schematisch overzicht van de aanwezige lagen opgesteld (Fig. 8.2.4).

In hetgeen volgt worden de verschillende afzettingen van onderen naar boven besproken, dus van oud naar jong.

Cambrium

Figuur 8.2.3 Ligging van de boringen met aanduiding van de lithologische en hydrogeologische profielen.

RUG – Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
Figuur 8.2.4 Schematische voorstelling van de aangeboorde lagen in BGD35E142 (Mertooetomo M., 1995).

LEGENDE
1. Zand
2. Klei
3. Leem
4. Leemhoudend fijn zand
5. Leemhoudende klei
6. Zandhoudend leem
7. Mergelig krijt
8. Leistenen
9. Schelpen
10. Glaconiet
11. Silex
12. Sokkel
13. Krijt
14. Onder-Landeniaan
15. Boven-Landeniaan
16. Ieperiaan
17. Quartair
18. Doorlatend
19. Slecht doorlatend
20. Zeer slecht doorlatend
21. Ondoorlatend
22. Natuurlijke gammastraling
23. Watertafel
Krijt

Op de Sokkel rust een 84,4 m dikke afzetting van het Krijt. Deze bestaat hoofdzakelijk uit mergel en wit krijt van Turon-ouderdom en bevat over het algemeen onderaan silex.

Het Krijt wordt bedekt door tertiaire afzettingen.

Tertiair

De tertiaire afzettingen in het studiegebied behoren tot de Landen Groep en de Ieper Groep en komen voor tussen -173,5 en -16.

De basis van het Tertiair wordt gevormd door de Landen Groep (vroeger Landeniaan) die zowel continentale als mariene afzettingen omvat. Onderaan komt groengrijs tot grijsgroen zandhoudend klei tot vaste klei met steenbankjes voor. Dit is de Formatie van Hannut. Tussen -148 en -151,3 wordt deze formatie bedekt door de Formatie van Tienen die bestaat uit grijsgroen, schelphoudend fijn zand met daarin laagjes kleihoudend fijn zand.

Boven de Ieper Groep bevinden zich schelphoudende quartaire afzettingen.

Quartair

In het waterwinningsgebied werden de quartaire afzettingen in detail bestudeerd. Het gedeelte van het studiegebied in de polders is minder bestudeerd; daarom werd beroep gedaan op studies in de nabije omgeving van het studiegebied (Lebbe L. et al., 1996).

Het westelijk deel van de Doornpanne wordt gekenmerkt door het voorkomen van een leemhoudende afzetting tussen twee zandige afzettingen (Van Houtte E. et al., 1992). De onderste zandige afzetting bestaat uit middelmatig grof zand, de bovenste uit fijn tot middelmatig zand. Naar de polders wordt dat zand afgedekt door een kleihoudende afzetting, de zogenaamde polderklei. In het zuidelijk deel van de duinen ligt het duinzand op de polderklei. Naar het noorden verdwijnt de polderklei.

Naar het oosten en noorden van de Doornpanne worden de leemhoudende afzettingen geleidelijk zandiger. In het centrale deel van de Doornpanne zijn de leemhoudende afzettingen verdwenen (fig. 8.2.5 en fig. 8.2.6). Op de tertiaire afzettingen boort men soms fijn zand aan. Hierop ligt middelmatig zand met schelpenbanken. Op het zand ligt meestal een schelpenbank en gerolde kleibroeken. Dit zand is veel minder grof van samenstelling in vergelijking met dat in het westelijk en oostelijk deel van de Doornpanne. Fijn duinzand waarin humeuze horizonten kunnen voorkomen, bedekt de onderliggende lagen.

In de polders rust een afzetting van fijn zand of lemig zand op het Tertiair. Hierop komt een laag met middelmatig zand voor. Het pakket wordt afgesloten met een ca. 2 m dikke kleilaag (van +2 tot +4) (Lebbe et al. 1993).
Figuur 8.2.5 Lithologisch profiel A-A' doorheen het centraal deel van de Doornpanne (Lebbe L. en De Breuck W., 1980).
Figuur 8.2.6 Lithologisch profiel B-B' in het oostelijk deel van de Doornpanne (Van Houtte E., 1993).
8.3 WATER

OPPERVLAKTEWATER

8.3.1 Afbakening van het studiegebied

Het studiegebied wordt gevormd door het deel van het kanaal Duinkerke - Nieuwpoort in de omgeving van het lozingspunt van het RWZI te Wulpen waar de concentratstroom van de I.W.V.A. zal geïnjecteerd worden en door het infiltratiepand in de Doornpanne (Fig 8.3.1.).

8.3.2 Referentiesituatie

8.3.2.1 Structurele en hydrodynamische kenmerken van het kanaal Duinkerke - Nieuwpoort

De geplande emissie in het oppervlaktewater zal gebeuren in het Kanaal van Duinkerke naar Nieuwpoort dat in het vak Nieuwpoort - Veurne een diepte heeft van 2,30 m, een gemiddelde bodembreedte van 12 m, een breedte aan het oppervlak variërend van 20 tot 22 m en een maximale taludhelling van 8/4 tot 8/6. Het talud is bekist met betondamplanken.

Ter hoogte van het geplande lozingspunt van de I.W.V.A. is er wel een constante belangrijke lozing van water vanuit het RWZI. Deze schommelt gewoonlijk tussen 15.000 en 25.000 m³/dag met een maximum van ca. 54.000 m³/d (bijlage 8.3.1.).

8.3.2.2 Fysisch-chemische karakteristieken van het kanaal Duinkerke - Nieuwpoort

De hieronder besproken resultaten zijn afkomstig van stalen genomen op VMM-meetplaats 680010 (Voetgangersbrug, Veurnekeiweg, Wulpen) in 1997, (ca. 1 km stroomafwaarts van het huidige RWZI lozingspunt en het toekomstige lozingspunt van de I.W.V.A.-concentratie (bijlage 8.3.2.). De fysisch-chemische samenstelling van het kanaalwater is hier dus voor een groot deel bepaald door de lozing van het RWZI-water. Van de door de VMM meegedeelde informatie werden de resultaten van het staal, genomen op 10 oktober 1997 als referentie gebruikt voor de kwaliteitstoestand van het kanaalwater gedurende perioden van weinig neerslag (nuldebiet van het kanaal) en dus van hoge concentraties.

De resultaten van de stalen, genomen op VMM-meetplaats 681000 (Konterdijk, Militair vliegveld, Wulpen), gelegen ca. 500 m stroomopwaarts van het huidige RWZI lozingspunt, verschillen voor geen enkele parameter op een significante wijze van de resultaten van het stroomafwaartse punt (bijl. 8.3.2.). Ze worden dan ook verder niet meer besproken.

Daar het kanaal een oppervlaktewater is dat hoort te voldoen aan de basiskwaliteitsnormen worden deze in onderstaande tekst per parameter besproken.

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TG0 98/36)
Tel.: 09/264.46.47; fax: 09/264.49.88
Figuur 8.3.1 Aanduiding van het studiegebied voor de discipline water.
Meetresultaten VMM-meetplaats 680010:

Water- en luchttemperatuur
De temperaturen schommelden in 1997 tussen 8,3°C in februari en 18,6°C in september. Gelijkaardige temperaturen werden op andere plaatsen in het kanaal gemeten.

pH
De hoogste gemeten pH-waarde was 8,6 (september), de laagste 7,8 (november). De pH vertoont geen uitgesproken schommelingen en ligt aan de hoge kant, soms lichtelijk de maximumnorm (pH = 6,5 ≤ x ≤ 8,5) overschrijdend. De hogere waarden zijn waarschijnlijk te wijten aan planktonbloeiens, wat betekent dat het kanaal sterk geëutrofiseerd is.

Zwevende stof
Het gehalte aan zwevende stof schommelde in 1997 tussen 9 mg/l (februari) en 42 mg/l (juli) en ligt over het algemeen lager dan 25 mg/l. Het gehalte is dus laag tot zeer laag en ligt gewoonlijk beduidend onder de norm (x < 50 mg/l).

Zuurstofgehalte
Het zuurstofgehalte (mg/l) schommelde tussen 3,60 mg/l (oktober) en 10,60 mg/l (april). De norm (5,00 mg/l ≤ x) werd enkel in oktober niet gehaald alhoewel ook in november een lage waarde (5 mg/l) werd genoteerd (emissies van suikerbietsilo’s?). De hoogste waarden wijzen op oververzadiging als gevolg van algenbloeien; de laagste in oktober kunnen het gevolg zijn van het afsterven van de algenbloeien.

Biologisch Zuurstof Verbruik (BZV)
Het biologisch zuurstofverbruik (BZV_{20°C}) schommelde tussen 5 mg O_{2}/l in februari en 14 mg O_{2}/l in juli. Begin oktober gedurende een periode van geringe neerslag werd een waarde van 8 mg O_{2}/l gemeten. De norm van x ≤ 6 mg O_{2}/l werd vrijwel het ganse jaar door overschreden.

Chemisch Zuurstof Verbruik (CZV)
Het CZV gehalte schommelde tussen 42 mg O_{2}/l (november) en 66 mg O_{2}/l (mei). In oktober gedurende de periode met geringe neerslag bedroeg het CZV 58 mg O_{2}/l. De basiskwaliteitsnorm van x < 30 mg O_{2}/l werd het ganse jaar ernstig overschreden, wat in overeenstemming is met de normoverschrijdingen voor BZV.

Conductiviteit
De conductiviteit schommelde tussen 2,060 µS/cm (juli) en 11.720 µS/cm (oktober). Alle waarden liggen dus hoger dan de basiskwaliteitsnorm i.e. 1.000 µS/cm, die hier echter niet van toepassing is, aangezien het kanaal een brak water is (zie chloridegehalte).
Intercommunale Waterleidingsmaatschappij van Veurne-Ambacht
MER Kunstmatige aanvulling van het grondwaterreservoir in Sint-André

Chloridegehalte
Het chloridegehalte schommelde tussen 315 mg/l (november) en 3.480 mg/l (oktober, droge periode). Alle waarden overschreden de basiskwaliteitsnorm van $x < 200$ mg/l. Het water van het kanaal schommelt dus volgens het Venice system tussen oligo- en β-mesohalien (> 300 mg Cl/l - 5.500 mg Cl/l). Daar het water brak is, valt de wettelijke norm voor chloriden weg.

Ammoniakale stikstof
Het ammoniakaal stikstofgehalte schommelde van 0,009 mg N-NH$_3$/l (februari) tot 0,035 mg/l (juli) met een waarde van 0,014 in de droge periode in oktober. De basiskwaliteitsnorm van $x < 0,020$ mg/l wordt regelmatig maar nooit significant overschreden.

Ammonium
Het gehalte aan ammonium schommelde tussen een waarde die onder de detectiegrens i.e. $x < 0,10$ mg/l (september) lag en 0,63 mg N-NH$_4^+$/l (juli). In oktober, gedurende de droge periode, bedroeg de concentratie 0,34 mg/l.
De basiskwaliteitsnorm voor ammonium is < 50 mg NH$_4^+$ - N/l. Deze werd het ganse jaar door niet overschreden.

Nitraatgehalte
Het nitraatgehalte schommelde van 1,04 NO$_3^-$N mg/l (mei) tot 9,37 mg/l (februari). In de droge periode, begin oktober, bedroeg het gehalte 1,27 mg/l. Er is geen basiskwaliteitsnorm voor nitraten afzonderlijk.

Nitrietgehalte
De laagste concentratie aan nitrieten bedroeg 0,120 mg NO$_2^-$ N/l (februari); de hoogste was 0,230 mg/l (juli). In oktober, gedurende de droge periode, bedroeg het gehalte 0,130 mg/l. Er bestaat geen norm voor nitrieten afzonderlijk.

Nitriet + Nitraat
Het nitriet + nitraatgehalte schommelde tussen 1,22 mg N/l (mei) en 9,49 mg N/l (februari). De norm $x \leq 10$ mg N/l werd geen enkele maal overschreden.

Kjeldahl stikstof
Niet onderzocht.

Orthofosfaat
Het orthofosfaat-gehalte schommelde tussen 0,34 mg PO$_4^-$ P/l (juli) en 1,47 mg/l (droge periode, oktober). De basiskwaliteitsnorm voor stilstaand water is $< 0,05$ mg/l en voor stromend water $< 0,3$ mg/l. Zelfs indien wordt aangenomen dat het kanaal een stromend water is (zoals de VMM doet) dan is ook deze norm continu en vrijwel altijd significant overschreden, wat betekent dat het kanaalwater sterk geëutrofieerd is.

RUG – Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
Totaal fosfaat

Het gehalte aan totaal fosfaat schommelde van 0,63 mgP-tot/l (februari) tot 2,18 mg/l (oktober, droge periode). De basiskwaliteitsnorm van x < 1 mg/l wordt vrijwel continu en significant overschreden.

Zware metalen

Cadmium (Cd): het gehalte aan cadmium was maximaal 0,17 µg Cd/l en lag meestal onder de detectiegrens. De basiskwaliteitsnorm is ≤ 1,0 µg Cd/l.

Chroom (Cr): het maximale gehalte aan chroom was 2,66 µg Cr/l (oktober) wat beduidend lager is dan de norm (x ≤ 50 µg Cr/l).

Koper (Cu): het maximaal kopergehalte was 8,96 µg Cu/l in oktober (basiskwaliteitsnorm ≤ 50 µg Cu/l).

Lood (Pb): het maximaal gehalte aan lood was 5,80 µg Pb/l in juli (basiskwaliteitsnorm ≤ 50 µg Pb/l).

Nikkel (Ni): de maximale concentratie van dit zware metaal was 15,22 µg Ni/l in november (basiskwaliteitsnorm ≤ 50 µg Ni/l).

Zink (Zn): het gehalte aan zink lag tussen 32,64 en 124,83 µg Zn/l en bleef dus altijd beduidend beneden de norm (x ≤ 200 µg Zn/l).

Kwik (Hg): niet gemeten.

8.3.2.3 Biotische parameters van het kanaal Duinkerke - Nieuwpoort

De Belgische Biotische Index (BBI-index), gebaseerd op de samenstelling van de macroinvertebratenfauna, bedroeg 4 - 5 over gans het kanaal op Belgisch grondgebied (zie discipline Fauna & Flora). Dit valt onder de kwaliteitsklasse ‘matig tot slecht’ en ligt beduidend beneden de basiskwaliteitsnorm van x ≥ 7. Er moet op gewezen worden dat de BBI-index, ontwikkeld voor stromend zoet water, eigenlijk niet kan toegepast worden op brakwatergemeenschappen (zie discipline Fauna & Flora).

Chlorofiel a werd niet bepaald.

8.3.2.4 Organische microverontreiniging van het kanaal Duinkerke - Nieuwpoort

Er bestaan geen gegevens over de microbiologische verontreiniging van het kanaal. De basiskwaliteitsnorm is ≤ 2.000 fecale coliformen/100ml.

8.3.2.5 Conclusies en evaluatie

Uit de VMM gegevens (bijlage 8.3.2.), waarvan de meetresultaten van het staalnamepunt onmiddellijk stroomafwaarts van het geplande lozingspunt hierboven in detail werden besproken, kan geconcludeerd worden dat de fysisch-chemische kwaliteit van het kanaal Duinkerke - Nieuwpoort over de ganse lengte wat betreft de nutriëntenconcentraties (vooral fosfaten), BZV en CZV slecht is. Het water kan als sterk geëutrofieerd worden beschouwd.

De hoge nutriëntenvracht en hoge BZV en CZV-concentraties zijn te wijten aan verontreiniging. De hoge zoutgehaltes zijn een natuurlijk verschijnsel (zout grondwater en intrusie vanuit zee), de uitgesproken schommelingen zijn gecorreleerd met regenval (VMM-jaarverslag, 1994).

8.3.3 Ontwikkelingsscenario's (Gestuurde situatie)

Het oppervlaktewater van het kanaal Duinkerke - Nieuwpoort moet beantwoorden aan de wettelijk vastgelegde normen voor basiskwaliteit (zie juridische randvoorwaarden) met uitzondering van geleidbaarheid, chloriden en sulfaten daar het water van nature brak is. Opgemerkt dient te worden dat brakke wateren in Vlaanderen, Nederland en het Duitse Waddengebied van nature uit tevens nutriëntrijk zijn (organisch rijke slibafzettingen tijdens de mariene transgressies) en het daarom helemaal niet zeker is of de normen voor ammonium, nitraat, nitriet, Kjeldahl-stikstof, fosfaat en orthofosfaat ooit in dit kanaal zullen worden gehaald.

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGU 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
8.3.4 Afbakening van het studiegebied

Het studiegebied wordt omwille van de grondwaterwinningen en de grondwaterstroming in een ruimere omgeving bestudeerd. Het studiegebied wordt voorgesteld op figuur 8.3.1. De grondwaterwinningen worden in een ruimere omgeving besproken (maximaal 5 km).

8.3.5 Referentiesituatie

De hydrogeologische bouw is kenmerkend voor het gedrag en de kwaliteit van het grondwater. De doorlatendheid bepaalt de grondwaterstroming. De stromingsrichting leidt men af uit de gradiënt van de stijghoogte. De grondwaterkwetsbaarheid hangt samen met de aard en de doorlatendheid van de afzettingen.

8.3.5.1 Hydrogeologische bouw

De lithologische samenstelling van de lagen is bepalend voor de hydrogeologie. Deze werd uitvoerig uiteengezet in discipline bodem (alinea 8.2.1).

Figuur 8.2.4 toont schematisch de hydrogeologische bouw van het projectgebied. Lagen die overwegend bestaan uit zand zijn doorlatend, terwijl de lagen die voornamelijk bestaan uit klei, slecht doorlatend zijn.

In het studiegebied komen 3 belangrijke watervoerende lagen voor die iedere keer gescheiden worden door een tussenliggende slecht doorlatende laag. De watervoerende lagen zijn:
- de Sokkel en het Krijt; tot ca. -173,5;
- Groep van Landen (Formatie van Tienen), tussen -148 en -151,3 tot -132;
- het Quartair, van ca. -29 tot het maaiveld.

Enkel het ondiepe watervoerende pakket, het Quartair is relevant binnen dit MER en zal uitvoeriger besproken worden.

De quatraire afzettingen rusten op een zeer slecht doorlatende laag, de Formatie van Kortrijk. Deze vormt de basis van het ondiepe grondwaterreservoir. In het westelijk deel van de Doornpanne wordt één slecht doorlatende laag beschouwd die twee doorlatende lagen scheidt. Deze hydrogeologische bouw is weergegeven in figuur 8.3.2.

Naar het oosten toe neemt de slecht doorlatende laag af in dikte en verdwijnt verderop volledig. Het grondwaterreservoir kan als één watervoerende laag beschouwd worden. In de polders wordt het grondwaterreservoir bovenaan afgesloten door een slecht doorlatende laag, namelijk de polderklei (fig. 8.3.3). De ligging van de hydrogeologische profielen wordt weergegeven op figuur 8.3.4.
Figuur 8.3.2 Hydrogeologische bouw van het ondiepe grondwaterreservoir ter hoogte van profiel A-A' (Lebbe L. et al., 1993).
Figuur 8.3.3 Hydrogeologische bouw van het ondiepe grondwaterreservoir ter hoogte van de Burgweg (profiel B-B') (Lebbe L. et al., 1996).
Figuur 8.3.4 Ligging van de hydrogeologische profielen.

RUG – Laboratorium voor Toegepaste Geologie en Hydrogeologie (TCO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
8.3.5.2 Hydraulische parameters

De heterogeniteit van de quadratie afzettingen maakt dat de hydraulische parameters op korte afstand sterk kunnen variëren.

Door pomp- en infiltratieproeven werden de voornaamste hydraulische parameters voor de verschillende lagen bepaald. Deze proeven werden uitgevoerd in en in de nabije omgeving van het studiegebied.

Infiltratieproeven

In de duinen van St.-André werden twee infiltratieproeven uitgevoerd (Lébbe L. et al., 1993; Van Houtte E., 1993). De eerste infiltratieproef dateert van november 1991 tot maart 1992 en werd uitgevoerd naar aanleiding van de rioleringswerken in de Zeelaan (Lébbe L. et al., 1993). Het infiltratiebekken werd voorzien ten noordoosten van de Hoge Blekker. De hydrogeologische bouw wordt voorgesteld op figuur 8.3.2. Tijdens deze infiltratieproef werd de doorlatendheid van de watervoerende afzettingen en de weerstand van de slecht doorlatende laag bepaald. De doorlatendheid van de doorlatende afzettingen bedroeg 11 m/d. De hydraulische weerstand van de slecht doorlatende laag werd berekend op 14 d voor een dikte van 1 m.

Een tweede infiltratieproef (Van Houtte E., 1993) vond plaats van maart tot juni 1993. Deze infiltratieproef werd uitgevoerd tijdens de aanleg van collector in de Leopold II-laan te Oostduinkerke. Het bemalingswater afkomstig van deze werken werd in de duinen, ten noordwesten van de Witte Burg, geïnfiltreerd. Bij de interpretatie van deze proef werd aangenomen dat er slecht één enkele watervoerende laag aanwezig was. De effectieve grondwatersnelheid werd berekend voor een effectieve porositeit van het duinzand tussen 0,35 en 0,4.

Pompproeven

De hydrogeologische bouw en de doorlatendheid van de verschillende lagen (Lebbe L. et al., 1996) in het poldergebied ter hoogte van de Burgweg wordt voorgesteld op figuur 8.3.3. Hieruit kan men afleiden dat de doorlatendheid van de basis van het Quar tair tot een peil van -5 m/d bedraagt. Het hierop liggend pakket heeft een doorlatendheid van 14 m/d, hetgeen overeenkomt met de doorlatendheid van het watervoerend pakket in de duinen. In het poldergebied wordt het grondwaterreservoir afgesloten met de slecht doorlatende polderklei. De hydraulische weerstand wordt gelijk gesteld aan 275 d.

8.3.5.3 Grondwaterkwaliteit

Volgens de verzilttingskaart (De Breuck W. et al., 1974) (fig. 8.3.5) kan het studiegebied in twee zones ingedeeld worden: een zone met zoet grondwater en een zone waarbij het zoet/zoutwatergrensvlak ondiep voorkomt. Een grondwater wordt als zout omschreven wanneer het zoutgehalte ervan hoger is dan 1500 mg/l (De Breuck W. et al., 1974). De diepte van het zoet/zoutwatergrensvlak varieert sterk. Het totaal gehalte aan opgeloste stoffen (TOS of TDS) is afhankelijk van de plaats en van de diepte. Deze variatie in samenstelling en distributie (zoet/zout) van het grondwater in de kustvlakte houdt verband met de geologische evolutie van het gebied. Na de definitieve terugtrekking van de zee waren de quadratie sedimenten verzadigd met zeewater (dominante ionen Cl, Na, Mg en SO₄). Infiltrerend zoet neerslagwater heeft, vooral in de hoger gelegen zones, het zoute water geleidelijk verdrongen.
Duinen

Onder de duinen is een zoetwaterlens ontstaan door de infiltratie van neerslagoverschot. Dit neerslagwater heeft het zoute grondwater verdrongen. Door de hogere grondwaterstand in de duinen is er een natuurlijke grondwaterstroming in de richting van de zee en de polders. Hierdoor kan de zoetwaterlens zich uitbreiden in de richting van zee en polders.

Polders

In de polders bepaalt het kreekruggenpatroon de distributie van zoet en zout grondwater. Over het algemeen komt onder de poelgronden brak of zout grondwater zeer ondiep voor, terwijl zich onder de kreekruggen een zoetwaterlens heeft gevormd. De kreekruggen, met een relatief hoge topografische ligging en hoofdzakelijk zandige samenstelling, vormen een geschikt milieu voor de infiltratie van zoet neerslagwater. Dit infiltrerend water verdringt het zout grondwater naar de diepere delen tot een evenwicht is bereikt. Het infiltrerend neerslagoverschot dat de grondwatertafel bereikt, stroomt ondergronds weg. In poelgebieden wordt de infiltratie bemoeilijkt door de lage ligging, de intensieve onttwatering en de geringe doorlatendheid van de sedimenten. Het aanwezige zoete water is het gevolg van het ondergronds wegstromen van zout water uit de kreekgebieden. Tussen zee en zout grondwater bevindt zich een overgangszone die van enkele decimeters tot meters gaat.

De verziltingskaart geeft voor het studiegebied duidelijk aan waar het infiltratiegebied voorkomt, namelijk ter hoogte van de Doompanne. In deze zone is door infiltratie van zoet neerslagwater het zoute grondwater volledig verdrongen (tot de top van het tertiair kleisubstraat). Geleidelijk neemt de diepte af in de richting van het kanaal Duinkerke - Nieuwpoort. Het geplande tracé loopt voor het grootste deel door zones waar het grensvlak diep ligt: van 25 m (duin/polder overgangszone) tot 10 m diep aan het kanaal.

Jaarlijks laat de I.W.V.A. het onttrokken grondwater uit de duinen uit zuigput 1 en 2 analyseren. Tabel 8.3.7 geeft een overzicht van de gemeten concentraties in het grondwater van 1993 tot en met 1998 (met uitzondering van 1994).

In 1993 werden de grondwaterstalen geanalyseerd door de Vlaamse Milieu Maatschappij (VMW), van 1995 tot en met 1997 gebeurden de analysen door Envirotox (Oostkamp). Chemiphar (Brugge) voerde de kwaliteitsbepaling in 1998 uit.

Volgens de classificatie van Stuyfzand (1986) is het grondwater ter hoogte van de waterwinning van Sint-André hard en zoet. Het behoort tot het $F_2 - CaHCO_3$ 0 type.

Het grondwater onttrokken via zuigput 2 is iets meer gemineraliseerd in vergelijking met dit gewonnen in zuigput 1. De geleidbaarheid varieert tussen ca. 700 en 800 µS/cm (bij 11 à 12 °C). Het chloridengehalte bedraagt ca. 60 mg/l. De pH van het ruwwater varieert van 6,8 tot 7,7. De nutriëntenbelasting van het grondwater ter hoogte van de Doornpanne is gering.

De analyseresultaten tonen aan dat het grondwater in de duinen zoet is, wat in overeenstemming is met de verziltingskaart. Er zijn geen kwaliteitsgegevens van het grondwater in de polders voor het studiegebied.
Figuur 8.3.5 Verziltingskaart (De Breuck W. et al., 1974).
Legende bij de verziltingskaart.

VERKLARING - LÉGENDE - LEGEND

Zout water (> 1500 ppm) op een diepte van:
Eau salée (> 1500 ppm) à une profondeur de:
Salt water (> 1500 ppm) at a depth of:

< 2 m
2 - 5 m
5 - 10 m
10 - 15 m
15 - 20 m
20 - 25 m
25 - 30 m
30 - 35 m

Gebied zonder zout grondwater
Zone sans nappe saline
Area without salt ground water

UITGEGEVEN MET DE STEUN VAN HET FONDS VOR KOLLEKTLIEF FUNDAMENTEEL ONDERZOEK

GEDRUKT DOOR HET MILITAIR GEGRAFISCH INSTITUUT - Brussel 1974
Tabel 8.3.1 Overzicht van de voornaamste parameters van het ruwe grondwater gewonnen in zuigput 1 en 2 zoals gemeten bij de jaarlijkse C4-analyse (I.W.V.A., 1998).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7,46</td>
<td>7,10</td>
<td>7,72</td>
<td>7,39</td>
<td>6,8</td>
<td>7,40</td>
<td>7,08</td>
<td>7,56</td>
<td>7,27</td>
<td>7,2</td>
</tr>
<tr>
<td>Geleidbaarheid</td>
<td>µS/cm</td>
<td>770</td>
<td>709</td>
<td>696</td>
<td>675</td>
<td>780</td>
<td>834</td>
<td>805</td>
<td>816</td>
<td>775</td>
<td>922</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg Cl/l</td>
<td>61</td>
<td>65</td>
<td>58</td>
<td>53</td>
<td>57</td>
<td>64</td>
<td>68</td>
<td>70</td>
<td>94</td>
<td>62</td>
</tr>
<tr>
<td>Sulfaten</td>
<td>mg SO₄/l</td>
<td>62</td>
<td>86</td>
<td>148</td>
<td>55</td>
<td>57</td>
<td>83</td>
<td>106</td>
<td>175</td>
<td>110</td>
<td>76</td>
</tr>
<tr>
<td>Silicium</td>
<td>mg SO₄/l</td>
<td>33</td>
<td>26</td>
<td>30</td>
<td>22</td>
<td>10</td>
<td>40</td>
<td>31</td>
<td>31</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg Ca/l</td>
<td>120</td>
<td>137</td>
<td>86</td>
<td>80</td>
<td>130</td>
<td>134</td>
<td>133</td>
<td>96</td>
<td>103</td>
<td>139</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg mg/l</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Natrium</td>
<td>mg Na/l</td>
<td>31</td>
<td>54</td>
<td>38</td>
<td>43</td>
<td>60</td>
<td>37</td>
<td>57</td>
<td>53</td>
<td>52</td>
<td>21</td>
</tr>
<tr>
<td>Kalium</td>
<td>mg K/l</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>TH</td>
<td>*F</td>
<td>32</td>
<td>36</td>
<td>28</td>
<td>34</td>
<td>34</td>
<td>37</td>
<td>36</td>
<td>33</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Nitraat</td>
<td>mg NO₃/l</td>
<td>0</td>
<td>1,7</td>
<td>3,53</td>
<td>3,54</td>
<td><6</td>
<td>0</td>
<td>5,8</td>
<td>4,96</td>
<td>3,98</td>
<td><6</td>
</tr>
<tr>
<td>Nitriet</td>
<td>mg NO₃/l</td>
<td>0</td>
<td>0,08</td>
<td>0,5</td>
<td><0,01</td>
<td><0,1</td>
<td>0</td>
<td>0,09</td>
<td>0,14</td>
<td><0,01</td>
<td><0,1</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg NH₄/l</td>
<td>0,53</td>
<td>0,44</td>
<td>1,22</td>
<td>0,53</td>
<td>0,6</td>
<td>0,93</td>
<td>0,98</td>
<td>1,65</td>
<td>1,22</td>
<td>1,1</td>
</tr>
<tr>
<td>IJzer</td>
<td>mg Fe/l</td>
<td>6,0</td>
<td>7,3</td>
<td>4,6</td>
<td>2,1</td>
<td>3,3</td>
<td>4,2</td>
<td>8,9</td>
<td>5,2</td>
<td>3,3</td>
<td>4,4</td>
</tr>
<tr>
<td>Manganese</td>
<td>mg Mn/l</td>
<td>0,13</td>
<td>0,13</td>
<td>0,15</td>
<td>0,08</td>
<td>0,06</td>
<td>0,15</td>
<td>0,16</td>
<td>0,16</td>
<td>0,11</td>
<td>0,08</td>
</tr>
</tbody>
</table>

8.3.5.4 Grondwaterstroming

De bespreking van de grondwaterstroming in het studiegebied, voornamelijk in de duinen, is gebaseerd op de resultaten van een mathematische modellering uitgevoerd door VanHoutte E. (1997). In deze modelstudie wordt o.a. de huidige grondwaterstroming, de verlaging ten gevolge van de winning, de invloed van een infiltratiebekken berekend. De grondwaterstroming in de polders wordt afgeleid uit de modelstudie uitgevoerd op het vliegveld van Koksijde (Lebbe L. et al., 1996).

Voor de berekening van de huidige grondwaterstroming in de duinen werd rekening gehouden met het opgepompte debiet in de putten. Er wordt aangenomen dat de huidige gemiddelde onttrekking 1.800.000 m³/jaar bedraagt. Dit debiet wordt verdeeld over de 168 winputten.

Figuur 8.3.6 geeft de huidige grondwaterstroming weer in het noordelijk deel van het studiegebied. Hieruit blijkt dat de waterwinning in de duinen een afpompingskegel veroorzaakt waarvan het laagste punt voorkomt ter hoogte van de puttenbatterij die aangesloten is op ZP2. Het grondwaterpeil komt voor op +2.

Uit de figuur kan tevens afgeleid worden dat de putten aangesloten op zuigput 1 voornamelijk grondwater aantrekken uit het noordelijke deel van het studiegebied. De stroming is hier overwegend vanuit westelijke, noordelijke en oostelijke richting. De putten aangesloten op zuigput 2 trekken voornamelijk grondwater aan uit het zuidelijk deel van het duingebied. Hier is de stroming vanuit westelijke en oostelijke richting.

De grondwaterstroming in de duinen is vooral naar de waterwinning gericht.

In figuur 8.3.7 wordt de grondwatertafelverlaging weergegeven door de waterwinning. Deze verlaging werd berekend t.o.v. van de situatie zonder waterwinning in het gebied. De grootste verlaging (4 m) komt voor ter hoogte van zuigput ZP 2. In het studiegebied bedraagt de verlaging minimaal 1 m.
MER Kunstmatige aanvulling van het grondwaterreservoir in Sint-André

Figuur 8.3.6 Huidige grondwaterstroming in de Doornpauw met een onttrekking van 1.800.000 m³/jaar (Van Houte E., 1996).
Figuur 8.3.7. Verlaging van de grondwaterelag (Van Houcke E., 1996).
8.3.5.5 Grondwaterkwetsbaarheid

De kaart van de kwetsbaarheid van het grondwater voor de provincie West-Vlaanderen wordt gedefinieerd als: een kaart voor de risicograad van verontreiniging van het grondwater in de bovenste watervoorziende laag door stoffen, die van op de bodem in de grond dringen, enkel rekening houdend met statische parameters.

Het studiegebied staat op de kwetsbaarheidskaart als zeer kwetsbaar (Cal) aangeduid, d.w.z. dat de watervoorziende laag uit zand bestaat waarbij de deklaag dunner is dan 5 m en/of zandig is. De dikte van de onverzadigde zone bedraagt ten hoogste 10 m.

Ter hoogte van het projectgebied is in de duinen geen deklaag aanwezig. In de polders bedraagt de dikte van de deklaag ongeveer 2 m. De deklaag bestaat uit de polderklei.

De watertafel komt voor tussen +2 en +5,5 in de duinen, in de polders komt de watertafel voor op ongeveer +2,5.

Rekening houdend met bovenstaande bevindingen, kan besloten worden dat de watervoorziende laag zeer kwetsbaar is.

Het grondwater ter hoogte van het kanaal Duinkerke-Nieuwpoort is verzilt.

8.3.5.6 Bemalingen en draineringen

Er zijn geen bemalingen voor wegeniswerken bekend die het studiegebied kunnen beïnvloeden.

In de duinen zijn geen draineringen aanwezig. In de polders zorgen poldergrachten voor de drainering van het poldergebied. Hierbij zijn vooral de Langgeleed en de Parlementsgracht van belang.

8.3.5.7 Waterwingebieden en/of beschermingszones

De quartaire winning van de I.W.V.A. is vergund als categorie C. De winning heeft haar vergunning als categorie C en in het gewestplan is een waterwingebied rondom de winning ingekleurd.

Hierbij dient men rekening te houden dat men het water in de duinen wint uit een zeer kwetsbaar freatisch reservoir, tussen twee bebouwde kommen (Koksijde en Oostduinkerke).

8.3.5.8 Vergunde grondwaterwinningen

Volgens de archieven van de A.M.I.N.A.L., afdeling water (West-Vlaanderen) zijn 17 waterwinningen vergund in het Quartair binnen een straal van 5 km rond het studiegebied. Tabel 8.3.2 geeft een overzicht van de ligging, het aantal elementen, de klasse, het vergunde debiet en het einde van de vergunning weer. Op figuur 8.3.8 worden de winningen weergegeven.
Tabel 8.3.2 Vergunde waterwinningen in het Quartair in een straal van 5 km rond het studiegebied (A.M.I.N.A.L., april 1999)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Dorp</th>
<th>x-coörd.</th>
<th>y-coörd.</th>
<th>Aantal elementen</th>
<th>klasse</th>
<th>Vergund debiet (m³/j)</th>
<th>einde vergunning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KOKSIJDE</td>
<td>30000</td>
<td>202400</td>
<td>168</td>
<td>C</td>
<td>0</td>
<td>01/01/2000</td>
</tr>
<tr>
<td>2</td>
<td>DE PAN E</td>
<td>26190</td>
<td>200920</td>
<td>1</td>
<td>O</td>
<td>0</td>
<td>01/01/2000</td>
</tr>
<tr>
<td>3</td>
<td>OOSTDUINKERKE</td>
<td>32430</td>
<td>204040</td>
<td>1</td>
<td>O</td>
<td>0</td>
<td>01/01/2000</td>
</tr>
<tr>
<td>4</td>
<td>DE PAN E</td>
<td>26800</td>
<td>199940</td>
<td>1</td>
<td>A</td>
<td>2400</td>
<td>20/08/2005</td>
</tr>
<tr>
<td>5</td>
<td>DE PAN E</td>
<td>27200</td>
<td>199510</td>
<td>1</td>
<td>A</td>
<td>2400</td>
<td>20/08/2005</td>
</tr>
<tr>
<td>6</td>
<td>Koksijde</td>
<td>29457</td>
<td>200022</td>
<td>1</td>
<td>A</td>
<td>2500</td>
<td>05/03/2017</td>
</tr>
<tr>
<td>7</td>
<td>NIEUWPOORT</td>
<td>34500</td>
<td>204400</td>
<td>1</td>
<td>A</td>
<td>18250</td>
<td>20/08/2005</td>
</tr>
<tr>
<td>8</td>
<td>NIEUWPOORT</td>
<td>34202</td>
<td>204062</td>
<td>5</td>
<td>O</td>
<td>0</td>
<td>01/01/2000</td>
</tr>
<tr>
<td>9</td>
<td>NIEUWPOORT</td>
<td>34050</td>
<td>203800</td>
<td>2</td>
<td>O</td>
<td>0</td>
<td>01/01/2000</td>
</tr>
<tr>
<td>10</td>
<td>NIEUWPOORT</td>
<td>34350</td>
<td>204495</td>
<td>1</td>
<td>A</td>
<td>3000</td>
<td>24/08/1990</td>
</tr>
<tr>
<td>11</td>
<td>OOSTENDE</td>
<td>34640</td>
<td>204520</td>
<td>1</td>
<td>A</td>
<td>5000</td>
<td>20/08/2005</td>
</tr>
<tr>
<td>12</td>
<td>NIEUWPOORT</td>
<td>34608</td>
<td>203450</td>
<td>1</td>
<td>A</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>KOKSIJDE</td>
<td>32212</td>
<td>201053</td>
<td>1</td>
<td>A</td>
<td>1200</td>
<td>16/10/2017</td>
</tr>
<tr>
<td>14</td>
<td>VEURNE</td>
<td>29218</td>
<td>198628</td>
<td>1</td>
<td>A</td>
<td>200</td>
<td>15/05/2017</td>
</tr>
<tr>
<td>15</td>
<td>VEURNE</td>
<td>31537</td>
<td>198562</td>
<td>1</td>
<td>A</td>
<td>2000</td>
<td>24/07/2017</td>
</tr>
<tr>
<td>16</td>
<td>KOKSIJDE</td>
<td>32925</td>
<td>200297</td>
<td>1</td>
<td>A</td>
<td>3000</td>
<td>04/02/2018</td>
</tr>
<tr>
<td>17</td>
<td>DE PANNE</td>
<td>26521</td>
<td>198604</td>
<td>1</td>
<td>A</td>
<td>800</td>
<td>15/03/2018</td>
</tr>
</tbody>
</table>

Legende:
- **Klasse A:** vergund debiet ≤ 96.000 m³/jaar
- **Klasse B:** vergund debiet > 96.000 m³/jaar
- **Klasse C:** vergunningen voor waterwinning maatschappijen
- **Klasse O:** ongunstig advies (vergund debiet werd niet vermeld)
Figuur 8.3.8 Verandering waterinlaying in het Quarair (A.M.T.N.A.L. april 1999).
De integrerende disciplines

8.4 FAUNA EN FLORA

8.4.1 Afbakening van het studiegebied

Het studiegebied bestaat uit twee deelgebieden (fig. 8.4.1.):

Deelgebied A (duingebied van de Doornpanne)

Dit is het waterwingebied in het duingebied van de Doornpanne waar op basis van verschil in effecten op fauna en flora een verdere onderverdeling kan gemaakt worden in drie zones:

Zone I: dit is de zone waar vooral ten gevolge van werfwerkzaamheden tijdens de aanlegfase de bestaande terrestrische fauna en flora zal verdwijnen of grondig verstoord worden. De zone omvat het gebied van het infiltratiepand, de aan te leggen winputten, de tracés van de leidingen gelegen in de Doornpanne, de inplantingplaats van de nieuwe I.W.V.A.-gebouwen en van de nieuwe wandelpaden in het duingebied (fig. 8.4.1).

Zone II: deze omvat het gebied waar ten gevolge van geluidsemisssies en verhoogde menselijke aanwezigheid tijdens de aanleg- en exploitatiefase de avifauna zou kunnen beïnvloed worden.

Gezien de dichte begroeiing, het uitgesproken reliëf en de reeds bestaande menselijke aanwezigheid in en rond de Doornpanne wordt de maximale extensie van deze zone geschat op 500 m rond Zone I (fig. 8.4.1).

Zone III: deze omvat het totale waterwingebied i.e. het gebied waar ten gevolge van veranderingen in de watertafel verschuivingen zouden kunnen optreden in de vegetaties (fig. 8.4.1).

Deelgebied B (Kanaal Duinkerke-Nieuwpoort, partim)

Dit is het gebied waar t.g.v. het lozen van de concentratstroom de aquatische fauna en de aquatische en semi-aquatische flora van het ontvangende oppervlaktewater kan beïnvloed worden.
Figuur 8.4.1 Aanduiding van het studiegebied voor de discipline fauna en flora.

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
8.4.2 Referentiesituatie

8.4.2.1 Deelgebied A (Doornpanne)

FLORA

Plantensoorten van de Doornpanne s.l. (= Zone III)

Van de huidige Doornpanneflora kunnen 72 soorten (22 %) als zeldzaam tot uiterst zeldzaam voor Vlaanderen worden beschouwd en 64 soorten behoren tot de oorspronkelijke indigene flora, hetgeen een, naar Vlaamse normen, hoog aantal is dat enkel in de belangrijkste natuurgebieden wordt overtroffen. Tien indigene soorten (3%) zijn uiterst zeldzaam tot marginaal in Vlaanderen (bijlage 8.4.1, zeldzaamheidsklasse 1 - 2) en hun voortbestaan in het Vlaams Gewest is direct mede afhankelijk van hun overlevingskansen in de Doornpanne. Wat socio-ecologische groepen betreft blijken de halfnatuurlijke mesofiele schraallanden en dwergstruikvegetaties de meeste van de zeldzame soorten te herbergen.

Uit een vergelijking met de toestand van vóór 1952 blijkt dat der belangrijke veranderingen in de samenstelling van de flora hebben plaatsgevonden. De voornaamste oorzaken ervan zijn de verdroging t.g.v. waterwinning, de verstruweling t.g.v. bosaanplanten en Doornstruikwoekering en de aamijning met nutriënten. Dit heeft respectievelijk als gevolg het verdwijnen van vochtminnende soorten, de toename van schaduwsoorten en de toename van nitrofiele soorten.

Vegetatietypes van de Doornpanne s.l. (= Zone III van het studiegebied)

Door Kuijken E., et al. (1993) worden in de Doornpanne 10 vegetatietypes onderscheiden, namelijk:

1. **(Vrijwel) onbegroeid zand (O)**

 Een verder onderscheid wordt gemaakt in:
 - Oa: deflatiezone van meestal natuurlijke verstuivingskernen in paraboolduinen of stuifkuilen, soms van vegraven duinzones;
 - Ok: meer gestabiliseerd zand met verspreide eenjarige kruiden of met Zandzegge;
 - Ot: meestal kleinschalige, door recreatie of vergraving gestoorde zandplekken of stroken, veelal met wat nitrofiele éénjarigen als Kleine brandnetel.

2. **Helmvegetaties (A)**

 - Ao: typisch stuivend helmduin;
 - Ak: meer gestabiliseerd helmduin met verspreide mosduinelementen
 - Ah en As: Helmvegetatie met relictten van Duindoorn- of Kruipwilgvegetatie.
(3) Mosduinen (K)
- Ko: typische open Duinsterretjesvegetatie met verspreide open plekken;
- Ka: id., met relictten van Helmvegetatie;
- Kc: oudere, meer beschutte mosduinen, dikwijls op humeuze bodems, met lichenen, Klauwtjesmos en elementen van het droog duingrasland;
- Kt: mosduin met nitrofiele inslag, dikwijls op sterk betreden of vergraven plaatsen.

(4) Kruipwilgvegetaties (S)
- So: in stuivende duinen, met weinig of geen ondergroei;
- Sa: id., met Helm;
- Sk: droge Kruipwilgvegetaties in min of meer gestabiliseerde, veelal kleinschalige stuifduingebieden, met mosduinelementen;
- Sd: met de basiselementen van de duingraslanden, zonder bijzondere soorten. Meestal enigszins gedeg degradeerd of nog onvoldoende ontwikkeld duinkalkgrasland (Sm), dikwijls gedomineerd door grassen;
- Su: id., met bloemrijke droge duingraslandvegetaties die typisch zijn voor licht overstuivende milieu;
- Sm: id., met soorten van het duinkalkgrasland;
- Se: id., met duin(kalk)graslandelementen die typisch zijn voor het zgn. 'zeedorpenlandschap', d.i. het sinds lange tijd intensiever door de mens beïnvloede duinlandschap in de buurt van oude bewoning;
- Sg: Kruipwilgvegetatie met dominantie van Duinriet of Zandzegge, vnl. in uitgedroogde valleien;
- St: nitrofiele Kruipwilgvegetaties, met mineraliserende bodem t.g.v. bodemverstoring, verdroging e.d.

(5) Duinroosjesheiden (I)
- Id: met de basiselementen van de duingraslanden, zonder bijzondere soorten; meestal gedeg degradeerde of onvoldoende ontwikkeld vorm van duinkalkgraslandvegetaties (Im), soms vergrast;
- Im: id., met duinkalkgraslandelementen, waarschijnlijk ontstaan uit Sm;
- Ie: id., met duinkalkgraslandelementen uit het 'zeedorpenlandschap';
- Ik: met mosduinelementen. Ontstaan door extreme degradatie van Kruipwilgvegetaties of door vegetatieve uitbreiding van Duinroos in Kc-vegetaties;
- It: nitrofiele duinroosvegetatie, vermoedelijk ontstaan door sterke mineralisatie van de organische bodecomponenten na een verstruwelingsfase of na degradatie van Kruipwilg/graslandmozaïeken.

(6) Antropogene ruigten (R)
- Re: ruigte met Bastaardkweek op sinds lang extensief menselijk beïnvloede droge duinen ("zeedorpenlandschap").
(7) Duindoornstruwelen (H)
- **H₁:** jonge Duindoornstruwelen, vaak een zoom vormend naast oudere struwelen door vegetatieve vermenigvuldiging;
- **H₂:** Vlierstruweel;
- **H₀(t):** soortenarme Duindoornstruwelen, veelal in relatief jonge droge situaties;
- **H₀(o):** in stuivende duincomplexen. Ontstaan door sterke overstuiving van bestaande struwelen of door vegetatieve uitbreiding van Duindoorn in kale verstuivingzones;
- **H₀(k):** jonge droge Duindoornstruwelen met mosduinrelicten;
- **Hᵈ:** met een aantal van de gewone duingraslandelementen en een veelal open structuur;
- **H₀(g):** met Duinriet en/of Zandzegge; vnl. in uitgedroogde oude duinvalleien;
- **H₀(y):** hoog, voldoende gesloten en luchtvochtig. Duindoorn/Vlierstruweel met varens en/of bramen.

(8) Gemengde duinstruwelen (P)
- **P₁:** soortenrijke gemengde struwelen;
- **P₂:** door Wilde liguster gedomineerde struwelen, meestal geëvolueerd uit oude mesofiele Kruiwpiligrasland-types of Duinroosvegetaties; meestal nog met oude, humeuze graslandbodems en elementen van de vroegere types in de randen;
- **P₃:** Eglantier-struwelen. Waarschijnlijk ontstaan uit gunstig gelegen Duindoornstruwelen, dikwijls op hellingen;
- **P₄,₆:** aangeplante struwelen (Grauwe wilg, Seringen, Rimpelroos). De eerste twee op walletjes van voormalig akkerland.

(9) Spontane struweelbossen met berken (B₁)
- **B₁:** spontane Berkenbossen in voormalig vochtige valleien, soms nog met relictten van grondwaterafhankelijke flora;
- **B₁d:** id., met graslandelementen;
- **B₁g:** id., met Duinriet en/of Zandzegge en dikwijls nog relictten van het Duindoornstruweel.

(10) Bosaanplantingen (B₂₉)
- **B₂₉:** diverse types met dominantie van één of meer aangeplante boomsoorten; gedeeltelijk op voormalige akkerjes, deels in voormalig (matig) vochtige valleien, minder op droge duinruggen. Samenstelling en ondergroei zeer variabel, afhankelijk van de aangeplante boomsoort en de uitgangssituatie;
- **B₂:** betreft deels ook door vegetatieve opslag vanuit aangeplante bomen ontstane bosjes van Grauwe abeel; zij vertonen enige overeenkomsten met de natuurlijke berkenbossen.

Deze vegetatietypen en hun respectievelijke gevoeligheid voor veranderingen in de watertafel en voor sterke bodemverstoring net als hun biologische waarde worden verder uitgebreid besproken in bijlage 8.4.2 en samengevat in tabel 8.4.1.
Tabel 8.4.1 Vegetatietypes van de Doornpanne, hun gevoeligheid en biologische waarde (naar Kuijken E. et al, 1993).

<table>
<thead>
<tr>
<th>Vegetatietype</th>
<th>Code</th>
<th>gevoeligheid voor</th>
<th>biologische waardering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>vergraving</td>
<td>verdroging</td>
</tr>
<tr>
<td>vrijwel onbegroeide zand</td>
<td>O</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- verstuivingszones</td>
<td>Oa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- zwak gestabiliseerd</td>
<td>Ok</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- nitrofiele eenjarigen</td>
<td>Ot</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Helmvegetaties</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- stuiwend</td>
<td>Ao</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- meer gestabiliseerd</td>
<td>Ak</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- met Duindoorn</td>
<td>Ah</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- met Kruipwilg</td>
<td>As</td>
<td>xx</td>
<td>-</td>
</tr>
<tr>
<td>Mosduinten</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- typische Duinsterrejetvegetatie</td>
<td>Ko</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- idem met Helm</td>
<td>Ka</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- mosduiten op humeuze bodem</td>
<td>Kc</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>- nitrofieel</td>
<td>Kt</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kruipwilgvegetaties</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- in stuiwend duin</td>
<td>So</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>- in stuiwend duin met Helm</td>
<td>Sa</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>- met mosduinelementen</td>
<td>Sk</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>- met dusgraslandelementen</td>
<td>Sd</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>- id. verstuivend</td>
<td>Su</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>- id. met duinkalkgrasland-elementen</td>
<td>Sm</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>- id. met zeedorpen-elementen</td>
<td>Sc</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>- met dominante van Duinriet of Zandzegge</td>
<td>Sg</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>- nitrofieel</td>
<td>St</td>
<td>xxx</td>
<td>xx</td>
</tr>
<tr>
<td>Duinroosjesheiden</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- met mosduinelementen</td>
<td>Ik</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>- met graslandelementen</td>
<td>Id</td>
<td>xx</td>
<td>x</td>
</tr>
<tr>
<td>- id. met duinkalkgrasland-elementen</td>
<td>Im</td>
<td>xxx</td>
<td>x</td>
</tr>
<tr>
<td>- id. met zeedorpen-elementen</td>
<td>Ie</td>
<td>xx</td>
<td>x</td>
</tr>
<tr>
<td>- nitrofieel</td>
<td>ä</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Antropogene ruigten</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duindoornruigen</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- jong</td>
<td>H1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- nitrofieel (typisch)</td>
<td>H</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- in stuiwend duin</td>
<td>Ho</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- met mosduinelementen</td>
<td>Hk</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- met graslandelementen</td>
<td>Hd</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>- met Duinriet en/of Zandzegge</td>
<td>Hg</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- oud, luchtvochtig met varrens/bramen</td>
<td>Hb</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>- Vlierstruweel</td>
<td>H3</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Gemengde struweelen</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- soortenrijk</td>
<td>P</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>- Liguster dominant</td>
<td>P2</td>
<td>xx</td>
<td>x</td>
</tr>
<tr>
<td>- Eglantier dominant</td>
<td>P3</td>
<td>xx</td>
<td>x</td>
</tr>
<tr>
<td>- aamplant</td>
<td>P4</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Spontane struweelbomen met Berken</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- met graslandelementen</td>
<td>Bd</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>- met Duinriet en/of Zandzegge</td>
<td>B1g</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Bosaanplantelingen</td>
<td>B2</td>
<td>xx</td>
<td>-</td>
</tr>
</tbody>
</table>
Plantensoorten en vegetatietypes van het infiltratiegebied (= Zone I van het studiegebied)

Op figuur 8.4.2. wordt de ligging van de infiltratiepanden, opslag van de vergraven gronden, de winputten en de leiding voor de aanvoer van het infiltratiewater geprojecteerd op een verspreidingskaart van de vegetatietypes (Provoost S. et al., 1993). Uit deze figuur, begeleidende teksten (Kuijken E. et al., 1993, I.W.V.A., 1994) en uit eigen terreinwerk uitgevoerd in februari 1999 blijkt dat in Zone I van het studiegebied (i.e. waar de bestaande vegetatie grondig door de geplande werkzaamheden zal verstoord worden of volledig zal verdwijnen) de vegetatie in het algemeen weinig waardevol is (fig. 8.4.3. tot 8.4.6).

Op het terrein waar de infiltratiepanden (ca. 4,5 - 5,5 ha) worden gegraven (fig. 8.4.3. & 8.4.4) komen de volgende vegetatietypes voor:

1. onbegroeid zand (O): ca. 1 ha;
2. aanplant van Populier en Abeel (B): ca. 2 ha, waarvan 1 ha gelegen op de plaats waar het pand komt en ca. 1 ha gesitueerd in de 30 m-zone rond het pand die boomvrij zal worden gehouden (vermijden van bladafval);
3. nitrofiele mosvegetaties (Kt): ca. 1 ha;
4. antropogene ruigten (R): ca. 0,5 ha;
5. duindoornstruweel (H): ca. 1 ha; kruipwilg met duingraslandelementen (Sd): 1.000 m²;
6. grasland met duinroosjesheiden met graslandelementen (Id): 500 m²;
7. mosduin op humusrijke bodem (Kc): 500 m².

Enkel de drie laatste vegetatietypes zijn biologisch waardevol tot zeer waardevol.

Ook de meeste nieuwe winputten en de aan te leggen tracés liggen eveneens in weinig waardevolle vegetaties (meestal onbegroeid zand, bosaanplantingen en nitrofiele mosvegetaties) (fig. 8.4.5. & 8.4.6).
Figuur 8.4.2 Ligging van de infiltratiepanden, de winputten en de leiding voor de aanvoer van het infiltratiewater geprojecteerd op een verspreidingskaart van de vegetatietypen (naar Provoost et al., 1993).

Figuur 8.4.4. Fauna & Flora: Situering in de Doornpanne van de locatie van het westelijk gedeelte van het infiltratiepand. Ook hier is de vegetatie vrijwel afwezig.

Figuur 8.4.6. Fauna & Flora: Voorbeeld van onverharde paden in de Doornpanne waar de randvegetatie van Duinriet en Kruipwilg over een strook van 10 m zal geruimd worden t.g.v. de aanleg van het tracé.
FAUNA (PARTIM AVIFAUNA)

De avifauna van de Doornpanne werd exhaustief bestudeerd. Een soortenlijst van vogelwaarnemingen tot 1993 wordt weergegeven in bijlage 8.4.3. Van de 54 vermelde broedvogels zijn er 9 soorten waarvan de broedgevallen ecologisch belangrijk zijn voor Vlaanderen, namelijk Barmsijs, Gekraagde roodstaart, Groene specht, Nachtegaal, Putter, Roodborsttapuit, Sprinkhaanrietzanger, Tapuit, en Wielewaal (Kuijken E. et al., 1993). Uit recente waarnemingen (1998) (Bonte D et al., in voorbereiding) bleek ook de Braamsluiper hier te broeden. Uit dezelfde studie blijkt dat het enige in 1998 waargenomen broedgeval van Wielewaal zich situeert in Zone II van het studiegebied i.e. waar t.g.v. geluid de (broed)vogels zouden kunnen verstoord worden. Volgens Kuijken E. et al. (1993) berust de avifaunistische waarde van het infiltratiegebied in de huidige toestand vooral in het regelmatig voorkomen van tapuiten in deze zone. Deze dieren komen t.g.v. verstoring echter niet tot broeden.

Uit een andere recente studie (Bonte D. & Hoffmann M., in voorber.) blijkt dat in vergelijking met Nederlandse duingebieden de diversiteit van broedvogels in de Vlaamse duinen relatief laag is ten gevolge van het gebrek aan vochtige biotopen zoals duinpannen, goed ontwikkelde bossen/gemengde struweelen en onverstoorde duinen. Ten gevolge van recreatie, toename van duindoornvegetaties en verstoring van de grondwatertafel blijkt het totaal aantal soorten van gemengd struweel, vochtig grasland en grijze duinen te zijn achteruitgegaan.

8.4.2.2 Deelgebied B (Kanaal Duinkerke - Nieuwpoort)

FLORA

De taludbegroeiing van het pand gelegen tussen de Nieuwe Wulpenbrug en de monding van de Parlementsgracht werd geïnventariseerd begin maart 1999. Dominante soorten zijn Glanshaver (Arrhenatherum elatius), Grote Brandnetel (Urtica dioica) en Riet (Phragmites australis) (Fig. 8.4.7 & 8.4.8). Verder werden tijdens de inventarisatie enkel nog algemene tot zeer algemene soorten aangetroffen (bijlage 8.4.4.). Deze vegetatie is sterk geruderaliseerd. Er komt geen aquatische vegetatie voor.

FAUNA

Tabel 8.4.2 Lijst van de macro-invertebraten verzameld op de VMM-staalnamepunten op het kanaal Duinkerke - Nieuwpoort in de periode '96 - '99 en de hieruit berekende BBI scores. * = brakwatersoort (op 09/03/99).

<table>
<thead>
<tr>
<th>Taxon</th>
<th>VMM-staalnamepunt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>683000 De Panne</td>
</tr>
<tr>
<td></td>
<td>11/10/96</td>
</tr>
<tr>
<td>Enchytraeidae indet</td>
<td>x</td>
</tr>
<tr>
<td>Lumbriculidae indet</td>
<td>x</td>
</tr>
<tr>
<td>Naididae indet</td>
<td>x</td>
</tr>
<tr>
<td>Tubificidae indet</td>
<td></td>
</tr>
<tr>
<td>Helobdella stagnalis</td>
<td></td>
</tr>
<tr>
<td>Physa heterostropha</td>
<td></td>
</tr>
<tr>
<td>Physa acuta</td>
<td></td>
</tr>
<tr>
<td>Planorbis planorbis</td>
<td>x</td>
</tr>
<tr>
<td>Potamopyrgus jenkinsi*</td>
<td>x</td>
</tr>
<tr>
<td>Sphaeroma rugcauda*</td>
<td></td>
</tr>
<tr>
<td>Gammarus zaddachi*</td>
<td></td>
</tr>
<tr>
<td>Palaeomidae indet*</td>
<td>x</td>
</tr>
<tr>
<td>Neomysis integer*</td>
<td></td>
</tr>
<tr>
<td>Ischnura sp</td>
<td></td>
</tr>
<tr>
<td>Chironomidae thum.-plum.</td>
<td></td>
</tr>
<tr>
<td>Chironomidae non thum.-plum.</td>
<td></td>
</tr>
<tr>
<td>Copepoda indet*</td>
<td></td>
</tr>
<tr>
<td>Polychaeta indet*</td>
<td></td>
</tr>
<tr>
<td>BBI-score</td>
<td>x</td>
</tr>
</tbody>
</table>

Uit de tabel blijkt dat de invertebratenfauna weinig gediversifieerd is en samengesteld uit taxa die weinig gevoelig zijn voor waterverontreiniging. Dominant zijn het wadslakje *P. jenkinsi* en de kreeftachtige *G. zaddachi*, soorten typisch voor brakwater. Ook de aanwezigheid van andere brakwatertaxa, gemerkt in de tabel met een *, tonen duidelijk aan dat het Kanaal over gans zijn lengte op Belgisch grondgebied biologisch als een brak water moet beschouwd worden en dat derhalve de berekening van de BBI (enkel toepasbaar op stromend zoet water) hier niet opgaat.

Ook de densiteiten van de vispopulaties blijken laag te liggen (20 kg/ha bij de afvissing te Adinkerke) maar zouden toch stijgen sinds '94 afgaande op de viswedstrijdigegevens (B. De Nayer, IBW, pers.meded., 1999)

De avifauna is weinig gevarieerd. Het jaar door zijn o.a. volgende soorten frequent aanwezig: Blauwe reiger, Aalscholver, Zilvermeeuw, Waterhoen, Meerkoet en Wilde eend (met bastaardvormen).

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
8.4.3 Ontwikkelingsscenario’s (Gestuurde ontwikkeling)

8.4.3.1 Deelgebied A (Doornpanne)

Het duingebied van de Doornpanne maakt deel uit van een aanzienlijk aantal plannen en visies waar de gestuurde ontwikkeling van de natuurwaarden centraal staan:

- het duingebied heeft een bestemming op het gewestplan als R-gebied (natuurgebied met wetenschappelijke waarde);
- in de vroegere Groene Hoofdstructuur (die zal vervangen worden door het VEN), staat het gebied aangeduid als natuuronwikkelingsgebied i.e. een gebied dat moet evolueren naar een natuurkerngebied, waar natuur de voornaamste functie vormt;
- in het recentere Voorontwerp van het Structuurplan Kustzone is het echter aangeduid als natuurkerngebied, i.e. waar behoud en ontwikkeling van de natuur centraal staat;
- in de Ecosysteemvisie Van de Vlaamse Kust behoort de Doornpanne tot het gebied duinen, stranden slikken en schorren en aangrenzende polders waarvoor ter voorkoming van verder biodiversiteitverlies (actie 105) en de uitvoering van het Milieubeleidsplan 1997 – 2001 een beleidsplan wordt uitgetekend waarin het duinecosysteem maximaal gevrijwaard wordt van de voornaamste oorzaken van biodiversiteitverlies (verdroging, verstoring door recreatie, aanrijking door nutriënten, bebouwing); in de ecosysteemvisie wordt de toepassing van open filtratie in de Doornpanne als een mogelijke overgangsmaatregel beschouwd bij de afbouw van de grondwaterwinning;
- de Doornpanne is één van de Habitatrichtlijngebieden;
- de Doornpanne is aangewezen als speciale beschermingszone in uitvoering van de EG-vogelrichtlijn 79/409 (BVE 17.10.88);

De gestuurde ontwikkelingsvisie in het Beheersplan Doornpanne kan als volgt worden samengevat:

naargelang van het beoogde streefbeeld wordt het duingebied onderverdeeld in drie deelgebieden (fig. 8.4.9):

- **Deelgebied I** (rood) omvat het noordelijk en noordwestelijk gedeelte van de Doornpanne waar het beheer erop gericht is om te streven naar de ontwikkeling van een zogenaamd Massart landschap i.e. een cultuurlandschap dat bestond in het begin van deze eeuw en het gevolg was van een kleinschalig en intensief beheer (o.a. begrazing). De aanleg van de leidingen werd eveneens voorzien in het beleidsplan en valt samen met het tracé van de centrale wandelweg en met voorbehouden dienstzones.
- **Deelgebied II** (oranje) omvat het ganse oostelijke, centrale en zuidelijke gedeelte waar voor een spontane vegetatieontwikkeling van de natuur werd geopteerd.
- **Deelgebied III** (blauw) is het zuidwestelijk gedeelte, in het beheersplan vermeld als het infiltratiegebied i.e. het gebied dat overeenkomt met Zone 1 van het in dit MER omschreven Deelgebied A. Het beheersplan voorziet dat in dit gebied de gestuurde ontwikkeling voor fauna en flora samenvalt met ingrepen m.b.t. waterwinning, i.e. de aanleg van een infiltratiepand, waterwinputten en leidingen.
Figuur 8.4.9 Ontwikkelingsvisie voor de Doornpanne.
De gestuurde ontwikkeling voorzien voor het deel van het kanaal Duinkerke - Nieuwpoort, hier als studiegebied beschouwd, is dat van natuurverbindingsgebied. Een dergelijke bestemming hebben alle grote rivieren en kanalen en natuurontwikkeling is in deze gebieden van ondergeschikt belang. Verder stroomafwaarts op het gebied van de gemeente Nieuwpoort behoren delen van het kanaal tot natuurontwikkelingsgebieden.

Het water van het kanaal moet de normen voor basiskwaliteit halen (gewenste situatie). Dit is, wat fauna en flora betreft, eveneens een gestuurde ontwikkeling want dit houdt in dat de aquatische invertebratenfauna dusdanig gevarieerd moet zijn dat een BBI-score (Belgisch Biotische Index-score) van minstens 7 behaald wordt. Deze vereiste is echter moeilijk haalbaar daar het wateroligohalien is en de invertebratengemeenschap van nature uit een geringe diversiteit zal hebben, ook bij verbetering van de waterkwaliteit, wegens de schommelende zoutgehaltes.

8.4.4 Conclusies

In conclusie kan gesteld worden dat het duingebied van de Doornpanne biologisch zeer waardevol is terwijl het kanaal Duinkerke - Nieuwpoort een biologisch weinig gediversifieerd water is. De soortenarmoede is deels te wijten aan menselijke invloeden (verontreiniging) deels aan natuurlijke (oligohalien brak water).

8.4.5 Ontwikkelingsscenario's (Gestuurde ontwikkeling)

Voor het duingebied van de Doornpanne, inclusief het projectgebied, is de gestuurde ontwikkeling zeer intensief daar een in detail uitgewerkt concreet ontwikkelingsscenario werd voorzien dat door het IN zal gesuperviseerd worden. De werkzaamheden die door het I.W.V.A. uitgevoerd zullen worden in het kader van het hier besproken project werden in dit scenario geïncorporeerd. Het is evident dat de opvolging door het IN en de verdere praktische stapsgewijze invulling van het scenario zouden moeten leiden tot een verhoging van de reeds hoge biologische waarde van de Doornpanne en dat dit derhalve een bijzonder gunstige zaak is wat betreft fauna en flora.

Voor het kanaal Duinkerke - Nieuwpoort is de gestuurde ontwikkeling wat fauna en flora betreft zeer extensief, namelijk: verbindingsgebied en basiskwaliteitsnorm voor de macroinvertebratendiversiteit (BBI minstens 7). Dit laatste scenario is zelfs niet realistisch daar het water brak is en de BBI nooit hoger dan 5 - 6 zal zijn.
8.5 MONUMENTEN EN LANDSCHAPPEN

8.5.1 Afbakening van het studiegebied

De afbakening van het studiegebied wordt bepaald door de invloedssfeer van de te verwachten effecten en dit voor verschillende fazen van het project (voorbereiding, aanleg, exploitatie en onderhoud). Aangezien de effecten erg verschillende reikwijdten kunnen hebben naargelang van hun aard en het landschappelijk aspect, kunnen verschillende invloedssferen aangegeven worden. Het is wenselijk naast de begrenzing van het studiegebied ook een projectgebied te definiëren.

Het projectgebied omvat het terrein waar de effecten verticaal inwerken op de landschappelijke componenten. In dit geval valt het projectgebied samen met de werkzone. Het studiegebied is ruimer en omvat ook de invloedssfeer van de effecten die horizontaal of lateraal inwerken. In dit geval wordt het studiegebied hoofdzakelijk beperkt tot de toegangswegen naar het projectgebied en omvat het gehele gebied gevormd door het duinengebied van Sint-André, Doornpanne en een strook van 500 m langs het leidingstracé tussen Sint-André en RWZI Wulpen.

Het studiegebied wordt voorgesteld op figuur 8.5.1.

8.5.2 Referentiesituatie

8.5.2.1 Definitie

In deze studie wordt de referentiesituatie gedefinieerd als de actuele huidige toestand van het landschap in het gebied, zowel op het vlak van inhoudelijke kenmerken als fysiognomische (of landschapsbeeld-) kenmerken. De studie van de referentiesituatie houdt een beschrijvende en interpretatiefase in. De beschrijving bestaat uit een inventarisatie van alle relevante gegevens. De interpretatie van deze inventarisatie beoogt het detecteren van landschappelijke structuurrekenmerken en landschapsgenese, waarmee beoordelingscriteria kunnen worden gedefinieerd en een beoordeling kan worden uitgevoerd per ingreep- en effectgroep.

Voor de beschrijving is hier geopteerd voor een overzichtskartering op basis van stereoscopische luchtfoto's (NGI – 1994). Een gedetailleerde en volledig gebiedsdekkende terreinkartering van het hele studiegebied is in dit geval weinig zinvol gezien de aard van het project en het erg gelokaliseerde karakter. De terreinkartering beperkt zich enkel tot die plaatsen in het projectgebied waar een verstoring of een verlies van erfgoedwaarden in verband met geomorfologie en bodemgesteldheid verwacht wordt.
LEGENDE

Projectgebied

Studiegebied

Segmenten

segment A: de omgeving van het behandelingsgebouw;
segment B: het tracé doorheen het poldergebied tot aan het waterzuiveringsstation;
segment C: het tracé langs openbare wegen doorheen het bebouwde gebied tussen Koksijde en Oostduinkerke;
segment D: het tracé door de duinen en Doornpanne in het bijzonder, inclusief aanleg van het infiltratiepand.

Figuur 8.5.1 Aanduiding van het studiegebied voor de discipline monumenten en landschappen.
8.5.2.2 Beschrijving

De geografisch-landschappelijke situering gebeurt op basis van de indeling van de traditionele landschappen en aan de hand van de atlas van de reliëfen van de traditionele landschappen, die de situatie op de orthofoto's van 1990 als referentiebasis gebruikt (Antrop M. & Van Eetvelde V., 1998).

In het studiegebied of de onmiddellijke omgeving van dit studiegebied komen geen beschermde monumenten en landschappen voor. Wel zijn enkele belangrijke bouwkundige erfgoedelementen te onderscheiden (fig. 8.5.3), waarvan een drietal pal naast het projectgebied gelegen zijn.

Landschappelijk zijn drie delen te onderscheiden:

- het morfologisch herkenbaar duinengebied van de Doornpanne;
- de bebouwde zuidrand van de kustduinen op de overgang naar de polders;
- het poldergebied tot aan en net voorbij het kanaal Veurne-Nieuwpoort.

Het duinengebied van de Doornpanne

De Doornpanne vormt het meest oostelijke uitgestrekte duinpanne van het paraboolduinencomplex Oostduinkerke-Oostduinkerke dat deel uitmaakt van de Duinen van de Westkust. Dit landschap wordt gekenmerkt door een opeenvolging van uitgestrekte pannen en paraboolduinen, waarvan het huidige uitzicht vooral tussen de 14de en 16de eeuw gevormd is. De Doornpanne is het resultaat van een grootschalige uitstuiving. De paraboolkop en restanten van de noordelijke arm zijn nog in het landschap te herkennen. De zuidelijke arm is waarschijnlijk voor een -groot deel afgezand. De bouwwoede die de duinen vooral vanaf de jaren ’30 teistert, speelt hierbij een belangrijke rol (De Ceunynck, 1992). Meer kleinschalige en secundaire verstuiwingen (bv. vanuit de grote paraboolduinen) bepalen het huidige reliëf van de Doornpanne. De Hoge Blekker is de hoogste duintop en tevens relict van een actief hoogduinlandschap. De Doornpanne vormt een uitgestrekte vlakte die vroeger veel vochtiger was en een buitengewoon gediversifieerde begroeiing kende.

Ten tijde van Ferraris (ca. 1770-1775) bestond het gebied ten noorden en direct palend aan de verbindingsweg van Oostduinkerke naar Kokstijde uit moerassige weiden. Verder naar het strand toe overheerste het duin, met slechts sporadisch vleken moerassig weiland.

Vanaf de eerste helft van de 19de eeuw is er meer intensieve antropogene invloed op het duin. Een deel van het duinareaal werd in gebruik genomen door vissers-landbouwers, die voor hun landbouwdoeleinden sommige duinen hebben geëffend. Op de Vandermaelenkaart (ca. 1845) situeren deze akkertjes zich hoofdzakelijk in de zone tussen de verbindingsweg Oostduinkerke - Kokstijde en de Hoge Blekker. Overblijfselen van deze oude akkers zijn nog op het terrein zichtbaar in het zuiden van de Doornpanne.

Actueel bestaat de Doornpanne uit een mozaïek van duinkalkgrasland, dwergruikvegetaties en gevarieerd doornstruweel, wat zorgt voor een grote floristische en faunistische waarde.
Figuur 8.5.2 Uittreksel uit relictentatlas West-Vlaanderen, Koksjde - Oostduinkerke.
Figuur 8.5.3 Overzicht van het actuele landgebruik en de elementen van het bouwkundig erfgoed.
De Doornpanne vormt momenteel een open-ruimte verbinding tussen de stedelijke kernen van Koksijde en Oostduinkerke. De Doornpanne ligt nagenoeg volledig ingesloten door bebouwing. De overgang kustreef met strand en duinengordel wordt verstoord door de Albertlaan; deze van het duinengebied met de open polders door bebouwing tussen de Pylselaan-Vanmaldegemstraat en Galloperstraat-Koksijdeesteenweg.

De Doornpanne is een gebied met archeologisch potentieel belang. In het verleden zijn reeds verschillende losse vondsten gedaan, die echter niet konden gelokaliseerd worden (Bauwens-Lesenne, 1963).

Bebouwde zuidrand van de kustduinen op overgang naar de polders

Deze zone is sedert Ferraris' tijd geleidelijk aan sterk bebouwd geraakt.

Bij Ferraris komen vooral akkers, weiland en verspreide bebouwing langs de verbindingsweg Koksijde - Oostduinkerke voor. Deze toestand is bij Vandermaelen amper gewijzigd. Einde 19e eeuw, begin 20e eeuw is de bebouwing langsheen de verbindingsweg drastisch toegenomen en werden talrijke nieuwe ontsluitingswegen net ten noorden hiervan aangelegd (cf. MGI-kaart 1/20.000 van 1933). De huidige wegenstructuur kent zijn oorsprong in deze periode. De zuidelijke bebouwde rand omvat ook talrijke campings. Belangrijk te noteren is dat de kortste wandelwegen naar het strand voor deze bewoning en recreatie in belangrijke mate gebruik maken van de paden van de Doornpanne. Deze zijn echter geen openbare wegen.

De zone net ten noorden van de weg Koksijde – Oostduinkerke is een archeologisch potentieel belangrijk gebied. Landschappelijk gaat het hier over een overgangszone polders-duingebied en het duingebied zelf. De zuidrand van het duingebied is potentieel zeer waardevol omdat hier in de volle Middelleeuwen de eerste vestigingen aan de rand van het poldergebied ontstonden. Deze vestigingen waren stichtingen die op initiatief van de graaf op regelmatige afstanden van elkaar op de rand van het poldergebied ingeplant werden. In de late Middelleeuwen en daarna werd het gebied in sommige periodes geplagd door overstuivingen, die verantwoordelijk waren voor het verlaten van sommige van deze nederzettingen. Dit overstuiven heeft ertoe geleid dat de bebouwingssporen potentieel zeer goed bewaard zijn.

Het poldergebied

Dit deel van het studiegebied (ten zuiden van de Galloperstraat en Koksijdeesteenweg) strekt zich uit in de polders van het Middelland. Het wordt doorsneden door het Langgeleed, de Noorruimengeleed, de Parlementsgracht en het kanaal Duinkerke-Nieuwpoort. Slechts enkele wegen doorkruisen het (Ganzestraat, Burgweg, Langeleed en Conterweg). De bewoning bestaat momenteel nog uit enkele geïsoleerde hoeven en de uitlopers van het gehucht aan de Nieuwe Wulpenrug.

Archeologisch gezien heeft dit poldergebied enige waarde. Figuur 8.5.2 toont deze archeologisch belangrijke elementen en/of zones binnen het afgebakende studiegebied.
DEEL 9 ANALYSE VAN DE GEPLANEDE SITUATIE EN BEOORDELING VAN DE MILIEU-EFFECTEN

Technische disciplines

9.1 GELUID

9.1.1 Analyse van de geplande situatie

9.1.1.1 Aanlegfase

Immissierelevante bronnen en bronvermogens

Aanleg van het infiltratiepand

In het zuidwestelijk deel van de Doornpanne zal een infiltratiepand met een lengte van ongeveer 500 meter, een gemiddelde breedte van 40 meter en een diepte van ongeveer 50 centimeter uitgegraven worden. Bepaalde zones in de directe omgeving zullen verhoogd worden met zand afkomstig van het uitgraven van dit infiltratiepand. Bij de uitvoering van de graafwerkzaamheden zal gebruik gemaakt worden van een hydraulische graafmachine (wiellader) en een of meerdere vrachtwagens. Het bronvermogen van een typische wiellader en vrachtwagen is weergegeven in tabel 9.1.1.

Aanleg van bijkomende winputten en afsluiting van bestaande putten

Ten noordwesten van het geplande infiltratiepand wordt de aanleg van 84 bijkomende winputten voorzien en 20 nieuwe peilputten. Bij het aanleggen van de winputten wordt een put geboord met totale diepte van 11 meter en worden een filterelement (lengte 4 meter) en een opvoerbuis (lengte 7 meter) ingebracht. Elk van deze putten wordt aangesloten op zuigput II, zodat er ook verbindingsleidingen naar de zuigput aangelegd zullen worden. Voor het boren van deze putten wordt gebruik gemaakt van een boormachine die aangedreven wordt door een dieselmotor voorzien van een omkasting. Het geluidsniveau dat een dergelijke boormachine veroorzaakt, is te vergelijken met dat van een stilstaand draaiend dieselvoertuig.

Daarnaast worden een aantal van de bestaande putten afgesloten om later eventueel nog als peilput gebruikt te kunnen worden. Hierbij wordt er geen extra geluidsbelasting verwacht.

Aanleg van een centraal wandelpad

In de Doornpanne zelf zal een centrale verharde weg aangelegd worden. Overblijfselen van een vroegere verharde weg zullen ofwel verwijderd, ofwel overdekt worden met zand en houthaksel. Hierbij wordt gebruik gemaakt van een hydraulische graafmachine en een vrachtwagen. De immissierelevante bronnen worden vermeld in tabel 9.1.1.
Aanleg van transportleidingen

In het kader van dit project zullen 2 nieuwe leidingen aangelegd worden: een transportleiding van het infiltratiewater van het behandelingsgebouw in Wulpen naar het infiltratiepand zelf en een distributieleiding voor drinkwater vanuit de bestaande behandelingsinstallaties in St.-André naar Wulpen. Deze beide leidingen volgen grotendeels hetzelfde traject en zullen tegelijkertijd aangelegd worden. De werkstrook die voor het volledige tracé voorzien is, bedraagt 10 meter. Voor het openen van de werkstrook wordt gebruik gemaakt van een hydraulische kraan en een hydraulische graafmachine. De leidingen worden aangevoerd met vrachtwagens. Alle leidingen zullen op een diepte van 1 meter in een open sleuf geplaatst worden. Normaal zijn er geen bemalingen voorzien. Er zal wel een gestuurde boring uitgevoerd worden ter hoogte van het Langgeeleed. In tabel 9.1.1 is een overzicht weergegeven van de bronvermogens van alle immissierelevante bronnen.

Bouw behandelingsgebouw en opslagruimte

In Wulpen is de bouw van een behandelingsgebouw met een oppervlakte van 720 m² (30 bij 24 meter) en een hoogte van 7,3 meter voorzien. Dit gebouw zal bestaan uit een kelderverdieping en een gelijkvloerse verdieping. Bij dit behandelingsgebouw zal ook een bureel en faciliteiten voor elektriciteitsvoorziening gebouwd worden met een totale oppervlakte van ca 100 m². Daarnaast is de bouw van een opslagruimte voor chemicaliën voorzien. Deze opslagruimte zal een oppervlakte van 252 m² (14 bij 18 meter) en een hoogte van 7 meter hebben.

Aan de hand van vroegere metingen werden waarden vastgelegd voor typische geluidsimmissie in de buurt van een bouwwerf voor private woningbouw en voor metselwerk in het algemeen. Deze waarden zijn weergegeven in tabel 9.1.1, samen met het bronvermogen van een aantal toestellen die doorgaans bij de woningbouw gebruikt worden.

9.1.1.2 Exploitatiefase en onderhoud

Werking infiltratiepand

De uitbating bestaat erin dat het waterwingebied van Sint-André kunstmatig aangevuld wordt.

De werking van het infiltratiepand bestaat uit de aanvoer van water, de werking van de winputten en de werking van de zuigputten. Het werken van de winputten is gebaseerd op een hevelwerking (stille werking). Bij de werking van de zuigputten wordt er een vacuumpomp gebruikt. Met de bestaande pomp wordt het water opgepompt. Deze pomp is ondergebracht in een gebouwtje in de Doornpanne en het geluid van de werking van de pomp is buiten dit gebouw niet waarneembaar. Voor de uitstroom van het water in het infiltratiepand wordt aangenomen dat slechts een beperkte valhoogte voorzien is zonder overstort.

Werking installatie in behandelingsgebouw: bronvermogen en specifieke emissie van de MEMCOR zuiveringsinstallatie

In het RWZI in Wulpen staat er momenteel een pilootinstallatie op kleinere schaal opgesteld. De uiteindelijke zuiveringsinstallatie voor de behandeling van het infiltratiewater zal in het behandelingsgebouw komen. De werking van de zuiveringsinstallatie is gebaseerd op microfiltratie en omgekeerde osmose en verloopt in cycli. Eén cyclus bestaat uit het filteren van het water en het spoelen van de filter. Tijdens deze spoelbeurt wordt er geluid geproduceerd onder de vorm van kloppen. In de pilootinstallatie zijn er 3 modules opgesteld, de uiteindelijke zuiveringsinstallatie zal bestaan uit 5 keer 90 modules en het spoelen zal gebeuren per eenheid van 90 modules.

Deze MEMCOR-zuiveringsinstallatie zal zich in het toekomstige behandelingsgebouw bovengronds bevinden. Een deel van de installatie is echter voorzien om ondergronds (in de kelder) opgesteld te worden. Het gaat hier meer specifiek om de pompen en de compressoren die voor een groot deel van het geproduceerde geluid instaan.

Figuur 9.1.1 MEMCOR-installatie, spectrum opgemeten gedurende het spoelen

Behandeling van het opgepompte water

Het opgepompte grondwater zal in de bestaande infrastructuur behandeld worden door borstelbeluchting en zandfiltratie. Dit zorgt niet voor een extra geluidsbelasting aangezien deze behandelingsinstallatie reeds in bedrijf is. Bovendien is de installatie op het tijdstip van de immissiemetingen ter hoogte van Sint-André reeds in werking, waardoor de lage specifieke emissie van de behandelingseenheid aangetoond wordt.
Tabel 9.1.1 Gemiddeld bronvermogen L_w van immissierelevante geluidsbronnen ingedeeld volgens de activiteit.

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>toestel</th>
<th>L_w (dBA)</th>
<th>oorsprong brongegevens</th>
</tr>
</thead>
<tbody>
<tr>
<td>aanleg infiltratiepand</td>
<td>wiellader, vrachtwagen</td>
<td>104 - 106</td>
<td>eigen meting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103</td>
<td>gemiddelde literatuurgegevens</td>
</tr>
<tr>
<td>aanleg wandelpad</td>
<td>hydraulische graafmachine, vrachtwagen</td>
<td>106, 103</td>
<td>gemiddelde literatuurgegevens</td>
</tr>
<tr>
<td>aanleg transportleidingen</td>
<td>hydraulische kraan, hydraulische graafmachine, vrachtwagen</td>
<td>100, 106, 103</td>
<td>gemiddelde literatuurgegevens, fiche kranen, gemiddelde literatuurgegevens</td>
</tr>
<tr>
<td>gestuurde boring Langgeleed</td>
<td>boormachine</td>
<td>110 - 115</td>
<td>eigen database</td>
</tr>
<tr>
<td>bouw behandelinggebouw algemeen</td>
<td></td>
<td>62 - 75</td>
<td>eigen meting</td>
</tr>
<tr>
<td>algemeen metselwerk</td>
<td>compressor</td>
<td>62</td>
<td>eigen meting</td>
</tr>
<tr>
<td></td>
<td>driilboor</td>
<td>96 - 104</td>
<td>gemiddelde literatuurgegevens</td>
</tr>
<tr>
<td></td>
<td>torenkraan</td>
<td>107 - 113</td>
<td>gemiddelde literatuurgegevens</td>
</tr>
<tr>
<td></td>
<td>lasaggregaat</td>
<td>95 - 100</td>
<td>gemiddelde literatuurgegevens</td>
</tr>
<tr>
<td></td>
<td>betonnenger</td>
<td>95 - 105</td>
<td>gemiddelde literatuurgegevens</td>
</tr>
<tr>
<td>MEMCOR zuiveringsinstallatie</td>
<td>equivalent niveau</td>
<td>99</td>
<td>metingen proefinstallatie</td>
</tr>
<tr>
<td></td>
<td>maximaal niveau</td>
<td>109</td>
<td>metingen proefinstallatie</td>
</tr>
</tbody>
</table>

9.1.2 Effectenvoorspelling

In de aanlegfase kunnen er drie grote groepen activiteiten onderscheiden worden:
- de werkzaamheden in de Doorpanne zelf (aanleg infiltratiepand, boren winputten, aanleg centraal wandelpad);
- het aanleggen van de transportleidingen tussen Sint-André en Wulpen;
- de bouw van het behandelinggebouw in Wulpen.

Als maat voor het specifiek geluid wordt gekozen voor een A-gewogen equivalent geluidsdrukniveau. Om rekening te houden met het impulssachtig karakter wordt eveneens de maximale $L_{A_{eq,10}}$ beschouwd. Elk van de bovenstaande activiteiten zal een verhoging van het specifiek geluid met zich meebrengen, doch deze invloed zal enkel overdag merkbaar zijn. De eerste en de derde groep zijn plaatselijke activiteiten, voor de tweede groep is er een verandering in de specifieke emissie naargelang de werkzaamheden zich verder langs het traject verderzetten. Het traject zelf loopt een kort stuk door woongebied en voor het grootste deel door landelijk gebied. Voor de dichtste woningen langs het traject kunnen zeer kort equivalente geluidsniveaus tot 80 dB verwacht worden. Voor de meeste woningen echter blijft het equivalent geluidsniveau bij het voorbij komen van de graafwerken beperkt tot ongeveer 50 dB.

Gedurende de exploitatiefase is enkel het effect van de werking van de zuiveringsinstallatie in het behandelinggebouw te Wulpen van belang. Deze installatie zal in principe op elk moment van de dag in werking zijn. De geluidsimmissie die door deze exploitatie in de omgeving ontstaat, zal vrij
constant zijn. Berekeningen worden gedaan op basis van gemiddelde geluidsniveaus (L_{eq}). Vermits de onderdelen van de zuiveringsinstallatie echter 60 minuten per uur ongeveer hetzelfde geluid produceren, is de L_{Aeq} theoretisch gelijk aan de $L_{A95,1h}$ (indien geen belangrijke atmosferische invloeden op de propagatie worden ondersteld). Deze laatste grootheid is het best als controlegrootheid te gebruiken, vermits het opmeten ervan niet verstoord wordt door sporadisch optredende geluiden, zoals voorbijrijdende auto’s. In tabel 8.1.15 worden de grenswaarden voor het specifiek geluid van deze installatie ter hoogte van het derde meetpunt weergegeven. Hieruit blijkt dat de nachtwaarde de meest kritische grenswaarde is. Aan de hand van het berekende bronvermogen van de zuiveringsinstallatie werd de emissie buiten het behandingsgebouw berekend (zie 7.1.4). Hiervoor werd aangenomen dat de wanden van dit gebouw vervaardigd zijn uit materiaal met een geluidsverzwakkingsindex $R2$ en met lage absorptiecoëfficiënt. In tabel 9.1.2 wordt deze geluidsreductiecoëfficiënt per octaafband weergegeven. Figuur 9.1.2 geeft de contouren van gelijk geluidsdrukniveau in de omgeving van het behandingsgebouw weer. Ter hoogte van meetpunt 3 (RWZI Wulpen) werd het specifieke geluid van de installatie berekend (zie 7.1.4). Zowel voor overdag als ’s avonds en ’s nachts werd een waarde van 36 dBA bekomen.

Aan de hand van de uitgevoerde metingen werd eveneens een maximale waarde van het bronvermogen van de zuiveringsinstallatie bepaald. Hieruit werd de emissie buiten het behandingsgebouw berekend, eveneens uitgaande van wanden met een geluidsverzwakkingsindex $R2$ en een lage absorptiecoëfficiënt. Ter hoogte van meetpunt 3 (RWZI Wulpen) kunnen maximale waarden van rond 46 dBA verwacht worden.

9.1.3 Beoordeling van de milieu-effecten

De richtwaarden die in VLAREM II voorgeschreven worden, zijn enkel geldig voor de inrichting op zich en niet voor de eigenlijke bouw- en sloopectiviteiten van bouw- en infrastructuurwerken. Toch zullen deze richtwaarden hier voor de evaluatie gebruikt worden. De geluidsbronnen tijdens de aanlegfase zullen voor een overschrijding van de richtwaarden zorgen, doch deze geluidsbronnen zijn slechts tijdelijk en enkel gedurende de werkuren aanwezig. Een deel van deze activiteiten zal in een natuurgebied plaatsvinden, zodat de fauna verstoord kan worden. Het effect van een geluidsverstorende activiteit op de fauna is de volgende: zolang het geluid een min of meer constant karakter heeft is enkel een invloed aangetoond voor bepaalde soorten en bij hoge niveaus (Reijnen R., 1995). Intermitterende en fluctuerende geluiden kunnen echter voor een grotere verstoring zorgen. Voor de activiteiten die in de Doornpanne plaatsvinden kan er dus gesteld worden dat er tijdens de aanlegfase sprake zal zijn van een verstoring van de fauna, maar gedurende de exploitatiefase zal deze verstoring verdwijnen.

Hetzelfde kan gezegd worden voor het aanleggen van de transportleidingen tussen Sint-André en Wulpen. Tijdens het aanleggen zal er plaatselijk een overschrijding van de richtwaarden optreden, naargelang van de werkzaamheden die op dat punt uitgevoerd werden. Naarmate de werkzaamheden zich verder langs het traject verplaatsen zal de verstoring ook terug verdwijnen. Gedurende de exploitatiefase wordt er geen extra geluidsbelasting verwacht.

De activiteiten ter hoogte van het waterzuiveringsstation in Wulpen zijn tweeërlei: enerzijds is er het bouwen van een behandlingsgebouw en een opslagruimte, anderzijds is er de werking van de zuiveringsinstallatie tijdens de exploitatiefase. Tijdens de bouwwerken is er opnieuw een tijdelijke overschrijding van de richtwaarden te verwachten, die na het beëindigen van de werkzaamheden terug zullen verdwijnen. Gezien de continue aard van de werking van de zuiveringsinstallatie kan er ter hoogte van het derde meetpunt een specifiek geluidsniveau van ongeveer 36 dB(A) verwacht worden. Hiermee wordt de voorgestelde grenswaarde voor overdag niet overschreden, die voor de avond- en nachtperiode geldt. Voor de te verwachten maximale geluidsniveaus doet zich hetzelfde voor: overdag en ’s avonds wordt de richtwaarde niet overschreden en ’s nachts wel. Daarom is het noodzakelijk om mildere maatregelen voor te stellen zodat de grenswaarden voor het specifieke geluid gerespecteerd worden.
Figuur 9.1.2 Voorspelde specifieke emissie door de zuiveringsinstallatie.

Company: RUG - INTEC
Handled by: Groep akoestiek
Project: MER IWVA Koksijde
9.1.4 Milderende maatregelen

Volgens de vooropgestelde grenswaarden voor het meetpunt in Wulpen worden zowel de grenswaarden voor het specifieke geluid als de richtwaarde voor de maximale waarde bij impulsachtig geluid overschreden. Om een specifiek geluid te bekomen dat voor elk tijdstip van de dag lager is dan de grenswaarde (30 dBA), dienen milderende maatregelen getroffen te worden:

- Voor de wanden van het behandelingsgebouw moet minimum materiaal met een geluidsverzwakkingsindex R4 gebruikt worden. De geluidsverzwakkingsindex is in tabel 9.1.2 weergegeven per octaafband. Aan het dak, de deuren en de vensters wordt eenzelfde karakteristiek opgelegd.

- Het spreekt vanzelf dat elke combinatie van absorberend en isolerend materiaal, die voor eenzelfde vermindering van de immissierelevante emissie zorgen buiten het behandelingsgebouw, eveneens aanvaardbaar is.

Met de voorgestelde milderende maatregelen werd de waarde van het specifieke geluid ter hoogte van het derde meetpunt opnieuw berekend. Onder dergelijke omstandigheden werd een waarde van 30 dBA voor het specifieke geluid en van 40 dBA voor het maximale niveau bekomen.

Tabel 9.1.2 Geluidsverzwakkingsindex per octaafband.

<table>
<thead>
<tr>
<th>Frequentie (Hz)</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2 (dB)</td>
<td>12</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>R4 (dB)</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
9.2 BODEM

9.2.1 Analyse van de geplande situatie

In wat volgt worden de mogelijke effecten op de bodem besproken ten gevolge van de uitvoering van het project. De effecten zullen voor de verschillende fasen afzonderlijk uiteengezet worden.

9.2.1.1 Aanlegfase

Wijziging topografie

Voor de aanleg van het infiltratiepand zullen graafwerken nodig zijn. De bodem van het pand wordt voorzien op +6,0 tot +6,2. Het zand zal gebruikt worden om bestaande relictten op te vullen en deels om bepaalde delen van het terrein te verhogen. Op figuur 9.2.1 wordt de plaats waar de opslag van de gronden weergegeven.

Structuurwijziging, profielwijziging

Er zullen belangrijke vergravingen nodig zijn voor de aanleg van het infiltratiepand, de leidingen en de bouw van het behandelingsgebouw.

Alle leidingen, voor het infiltratie-, drink- en lozingswater, zullen in een open sleuf op een diepte van 1 m geplaatst worden. Het uitgraven en opnieuw vullen van de sleuf en de werken rondom de werven verstoren het bodemprofiel en de bodemstructuur. Na de aanleg voorziet het project in het herstel van de oorspronkelijke staat. Dit gaat gepaard met een zekere profielverstoring.

Voor de aanleg van het infiltratiepand en de bouw van het behandelingsgebouw wordt de bodem ter plaatse afgegraven. Door deze werken wordt het bodemprofiel blijvend gewijzigd, aangezien al de oorspronkelijke specifieke structuren (kleilaagjes, veenlaagjes, ...) worden doorbroken tijdens het uitgraven en niet terug aangebracht worden. Dit is eveneens zo voor de uitloog- en aanrijkingshorizonten.

Op de plaats waar de vergraven gronden opgeslagen worden, zal de structuur en het profiel van de bodem volledig wijzigen omdat er nieuw materiaal wordt aangebracht. Er zal na verloop van tijd een nieuw profiel en structuur ontstaan.

Wijziging waterhuishouding

Voor de aanleg in open sleuf is een lage grondwatertafel gewenst. Uit de grondwaterstandswezingen (zie discipline water) en het ontwerp tracé blijkt dat bemaling niet noodzakelijk zal zijn, waardoor geen wijziging in de waterhuishouding zal gebeuren.

Er zal een bemaling nodig zijn voor de bouw van het behandelingsgebouw. Hierdoor zal lokaal de waterhuishouding gewijzigd worden.
Figuur 9.2.1 Opslag van de vergraven gronden.

Legende:
- Infiltratiegebied
- Opslag vergraven gronden

Intercommunale Waterleidingsmaatschappij van Veurne-Ambacht

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98126)

Tel: 09/264.46.47; fax: 09/264.49.88
Bodeminnname

Voor de aanleg van de leidingen wordt een bepaalde zone (de werkstrook) ingenomen door de werf. De breedte van de werkstrook bedraagt 10 m; de inbeslagname bedraagt aldus 10 m. De relatief geringe breedte van de werkstrook en de geringe werktermijn beperken grotendeels de hinder.

De afgegraven gronden voor de aanleg van het infiltratiepand worden opgeslagen ten zuiden van het infiltratiepand. Hierdoor is er inbeslagname van de bodem.

Voor de bouw van het behandelingsgebouw wordt een oppervlakte ingenomen. De inbeslagname is gelijk aan de oppervlakte van het gebouw.

De bodem wordt ingenomen ter hoogte van de pomp- en peilputten. In het boorgat wordt een pomp- of peilput geplaatst.

Opbrengstderving

Tijdens de werken in de polders wordt een bepaalde zone (de werkstrook) ingenomen door de werf. Dit kan gepaard gaan met hinder en schade aan gewassen, vegetatie of eigendommen. De breedte van de werkstrook bedraagt 10 m. Deze relatief geringe breedte en de geringe werktermijn beperken grotendeels de hinder. De opbrengstderving op de akkers is afhankelijk van de uitvoeringstermijn. Zij staat in verhouding tot de ingenomen oppervlakte.

Bodemverdichting

De belasting, voor de aanleg van de leidingen en het uitvoeren van de boringen, veroorzaakt een bodemverdichting die in de hand gewerkt wordt door trillingen. De bodemcompactie kan de penetratiecapaciteit van de wortels verminderen of de waterhuishouding wijzigen.

Door afgegraven gronden tijdelijk op te slaan, zal in de voorziene zone verdichting van de bodem optreden. Het gebied waarin deze effecten voorkomen, is beperkt tot deze zone.

Zetting

In de projectomschrijving wordt geen bemaling voorzien voor de aanleg van de leidingen. Indien door omstandigheden toch bemalingen nodig zouden zijn, zal het debiet, de tijd en de oppervlakte beperkt blijven.

Voor de bouw van het behandelingsgebouw zullen wel bemalingen noodzakelijk zijn. Hierbij kunnen zettingen optreden. De omvang van de zetting werd niet berekend.

Wijziging in de bodemkwaliteit

Een wijziging van de bodemkwaliteit ten gevolge van de werken zelf wordt niet verwacht bij normale werking van de machines.

Effecten op de ondergrond

De aanleg van de leidingen in open sleuf heeft wegens de geringe diepte, de korte werktermijn en de geringe verstoring (bovenste meters) geen invloed op de diepere ondergrond.
De techniek van de gerichte boring veroorzaakt een verstoring van de diepere ondergrond (beperkt tot de diepte van de leiding) over de volledige lengte van de boring. Door de aanleg wordt de grond in het boorgat vervangen door de productvoerende leiding (diameter 400 mm) en de bentonietvloeiistof. Een deel van de spoeling zal in de boorgatwand infiltreren en een minder doorlatende zone creëren. Daar bentoniet een natuurlijk materiaal is en de infiltratiezone beperkt is tot enkele cm heeft dit geen relevant effect.

In het geval gewerkt wordt met een persing in plaats van een gerichte boring is de verstoring belangrijker. In dit geval wordt een relatief grote vertrek- en ontvangstput geplakt. De verstoring (profielwijziging, lithologische bouw, ...) ter hoogte van deze putten is belangrijk. De verstoring ter hoogte van de eigenlijke persing is te vergelijken met die van een gerichte boring en bijgevolg verwaarloosbaar.

De boringen uitgevoerd voor de plaatsing van de pomp- en peilputten veroorzaken een gelijkenaardige verstoring als beschreven bij de gerichte boring.

9.2.1.2 Exploitatiefase en onderhoud

Wijsziging waterhuishouding

De werking van het infiltratiepand en de vermindering in het oppompen van het natuurlijk grondwater verhogen de grondwatertafel. Hierdoor wijzigt de waterhuishouding in de nabije omgeving van het infiltratiepand. Vooral in de nabije omgeving van het infiltratiepand, in noordelijke, oostelijke en zuidoostelijke richting zal vernatting van de bodem optreden (zie ook subdiscipline grondwater).

Wijsziging bodemkwaliteit

Het infiltratiepand wordt aangevuld met vooraf behandeld water. Deze behandeling zorgt er o.a. voor dat de zweevende stoffen uit het infiltratiewater verwijderd zijn. Indien het water onvoldoende gezuiverd wordt, is de kans groot dat zich in het infiltratiepand een sliblaag vormt. Deze sliblaag hindert de infiltratie van het water.

Door de kunstmatige aanvulling van de grondwatertafel zullen talrijke fysische en fysico-chemische processen tussen de bodem en het geïnfiltreerde water plaatsvinden.

De voorziene zuivering van het infiltratiewater zal vermoedelijk voldoende zijn om slibafzetting te voorkomen.

Voor de aanleg van het wandelpad worden kleischelpen als bodembedekking gebruikt. Dit kan lokaal een bodemkwaliteitswijziging veroorzaken bij uitzetting van de kleischelpen.

9.2.1.3 Calamiteiten

Bij eventuele lekken in de leidingen zijn de gevolgen voor bodem beperkt en grotendeels verwaarloosbaar. Mogelijke lekken in de leiding met het drinkwater en infiltratiewater zijn in het duinengebied en in de polders te verwaarlozen.

Gezien het korte traject van de leiding van het lozingswater, worden de effecten bij een lek in deze leiding beperkt tot het tracé tussen het behandelingsebouw en het lozingspunt. Bij mogelijke lekken in deze leiding kan de bodem verontreinigd worden.
9.2.2 Beoordeling van de milieu-effecten

9.2.2.1 Aanlegfase

De wijziging in topografie door de aanleg van het infiltratiepand en de opslag van de vergraven gronden is definitief maar verwaarloosbaar, omdat dit gebeurt op weinig waardevolle gebieden (zie discipline Fauna en Flora).

De wijziging van de structuur en profiel van de bodem door de aanleg van het infiltratiepand is definitief.

Door de aanleg van de leidingen is de wijziging van het bodemprofiel en bodemstructuur definitief. Na de werkzaamheden kan zich langzaam een nieuw bodemprofiel vormen. Dit geldt ook voor de structuur van de bodem. De effecten zijn evenwel beperkt.

Er is geen effect op de waterhuishouding tijdens de aanleg van de leidingen.

Het effect op de waterhuishouding ten gevolge van de bemalingen voor het behandelingsgebouw is tijdelijk en vermoedelijk verwaarloosbaar.

De inbeslagname gedurende de aanleg van de leidingen is tijdelijk en verwaarloosbaar.

De bodeminname door de opslag van de afgegraven gronden ten zuiden van het infiltratiepand is blijvend, maar verwaarloosbaar.

De bodeminname ten gevolge van de bouw van het behandelingsgebouw is blijvend, maar verwaarloosbaar. Dit geldt ook voor de bodeminname ten gevolge van de plaatsing van de pomp- en peilputten.

De opbrengstderving is afhankelijk van de uitvoeringsperiode en is dus tijdelijk. Indien de werken voor de aanleg van de leidingen uitgevoerd worden vooraleer de gewassen geoogst zijn, kan de berokkende schade oplopen.

De bodemverdichting ten gevolge van de aanleg van het wandelpad is blijvend maar verwaarloosbaar. De vermindering van de penetratiecapaciteit van de wortels is positief ter hoogte van het wandelpad. Hierdoor blijft het langer toegankelijk zonder bijkomende onderhoudswerken.

De bodemverdichting in de polders, ten gevolge van de werken voor de aanleg van de leidingen is belangrijk en blijvend, maar kan door bewerking deels teniet gedaan worden.

De boortoren kan een lokale verdichting veroorzaken. Gezien de beperkte duur is deze verwaarloosbaar.

De milieueffecten van de gerichte boring en persing zijn wat betreft het aspect diepe ondergrond verwaarloosbaar. Zij blijven beperkt tot:

- het boorgat waar het sediment vervangen wordt door de leiding of buis en de boorvloeistof;
- de geringe zone rondom het boorgat waar een deel van de boorvloeistof in het sediment doordringt.
9.2.2.2 Exploitatiefase en onderhoud

De kunstmatige aanvulling van het grondwater in het infiltratiepand heeft een belangrijk positief effect op de waterhuishouding in het gebied.

De reiniging van de pompputten en de zuigledingen veroorzaken een tijdelijk effect op de waterhuishouding. Dit effect is positief.

De mogelijke vorming van een sliblaag op de bodem heeft een negatieve invloed op de infiltratiecapaciteit en zal de positieve effecten van de infiltratie doen afnemen.

Indien de kleischelpen verontreinigd zijn, kan lokaal door uitloging van het materiaal de bodem verontreinigd worden.

9.2.3 Milderende maatregelen

9.2.3.1 Aanlegfase

Om de daling van de watertafel, ten gevolge van de bemalingen voor de bouw van het behandelingsgebouw, te beperken kan men zij toevlucht nemen tot een retourbemaling.

Bij de aanleg van de leidingen dient de werkstrook tot het minimum beperkt te worden. De werken dienen over een zo kort mogelijke termijn uitgevoerd te worden.

Om de opbrengstderving tot het minimum te beperken, is het aangeraden de werken uit te voeren in het najaar, na de oogst.

De bodemverdichting in de polders kan hersteld worden door de akkers te frezen vooraleer er landbouwactiviteiten uitgevoerd worden.

De verdichting die kan veroorzaakt worden door de plaatsing van de boortoren kan opgevangen worden door gebruik te maken van rijplaten.

De kleischelpen dienen van zo’n kwaliteit te zijn dat bij uitloging geen ongewenste stoffen in de bodem zullen komen.

Aangezien de pomp- en peilputten in het waterwinningsgebied gelegen zijn, wordt aangeraden geen additieven te gebruiken in het spoelwater. Bovendien veroorzaakt bentoniet een verlaging in de doorlatendheid van de boorgatwand waardoor de capaciteit van de pompput verkleind kan worden. Indien het om technische redenen toch noodzakelijk is additieven te gebruiken, is het aanbevolen dat deze biologisch afbreekbaar zijn.

9.2.3.2 Exploitatiefase en onderhoud

Er worden geen milderende maatregelen voorgesteld voor de exploitatiefase en onderhoud.

9.2.3.3 Calamiteiten

Er worden debietsmeters voorgesteld ter hoogte van het behandelingsgebouw en ter hoogte van het lozingspunt.
9.3 WATER

OPPERVLAKTEWATER

9.3.1 Analyse van de geplande toestand

9.3.1.1 Kwantiteit en kwaliteit van de geplande aanvoer van infiltraatwater in het infiltratiepand in de Doornpanne

De kwantiteit infiltratiewater bedraagt gemiddeld 285 m³/uur. De verblijftijd van het water in de bodem zou ca. 4 weken bedragen.

De kwaliteit van het toekomstige infiltratiewater, gebaseerd op de resultaten van de I.W.V.A.-proefopstelling (gemiddelden voor de periode 18/8/98 - 4/2/99) (Van Houtte E., intern I.W.V.A.-rapport ten behoeve van dit MER, 1999), wordt opgegeven in tabel 9.3.1. evenals de kwaliteitsnormen voor het infiltratiewater voorgesteld door de I.W.V.A. (MER, Startnota). Om de kwaliteit van het infiltratiewater te evalueren werd het vergeleken met de wettelijke normen voor drinkwaterkwaliteit van oppervlaktewateren en met de door GTE (1994) voorgestelde richtwaarden voor hoge ecologische kwaliteit van stilstaande wateren (tabel 9.3.1.). Deze laatste hebben geen kracht van wet.
Tabel 9.3.1

Fysisch-chemische eigenschappen van de I.W.V.A.-infiltratiewater (gemiddelde waarden), de door de I.W.V.A. voorgestelde kwaliteitsnormen voor het infiltratiewater, basiskwaliteitsnormen voor oppervlaktewateren, kwaliteitsnormen voor drinkwaterproductie en richtwaarden voor stilstaande oppervlaktewateren met hoge ecologische kwaliteit volgens GTE (1994).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gemiddelde kwaliteit I.W.V.A.-infiltratiewater</th>
<th>Kwaliteitsnorm voor I.W.V.A.-infiltratiewater</th>
<th>Norm voor stilstaand water met basiskwaliteit</th>
<th>Norm voor drinkwaterproductie-kwaliteit</th>
<th>Norm voor hoge ecologische kwaliteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatuur (°C)</td>
<td>-</td>
<td>25</td>
<td>≤ 25</td>
<td>≤ 25</td>
<td>-</td>
</tr>
<tr>
<td>pH</td>
<td>> 6,5</td>
<td>6,5 ≤ pH ≤ 9,2</td>
<td>6,5 ≤ pH ≤ 8,5</td>
<td>5,5 ≤ pH ≤ 9</td>
<td>7 - 8</td>
</tr>
<tr>
<td>TDS (mg/l)</td>
<td>145</td>
<td>geen norm</td>
<td>geen norm</td>
<td>geen norm</td>
<td>geen norm</td>
</tr>
<tr>
<td>Oppoloste zuurstof (mg/l)</td>
<td>≥ 2</td>
<td>geen norm</td>
<td>≥ 5</td>
<td>> 30%</td>
<td>8 - 11</td>
</tr>
<tr>
<td>BZV (mg/l)</td>
<td>> 2</td>
<td>geen norm</td>
<td>≤ 6</td>
<td>≤ 7</td>
<td>-</td>
</tr>
<tr>
<td>CZV (mg/l)</td>
<td>> 7,5</td>
<td>geen norm</td>
<td>≤ 30</td>
<td>> 30</td>
<td>-</td>
</tr>
<tr>
<td>Zwevende stoffen (mg/l)</td>
<td>< 0,1</td>
<td>geen norm</td>
<td>< 30</td>
<td>< 30</td>
<td>-</td>
</tr>
<tr>
<td>Geleidelbaarheid (µS/cm)</td>
<td>136</td>
<td>1000</td>
<td>< 1.000</td>
<td>< 1.000</td>
<td>-</td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td>27,4</td>
<td>250</td>
<td>< 200</td>
<td>< 200</td>
<td>10 - 40</td>
</tr>
<tr>
<td>Sulfat (mg/l)</td>
<td>19</td>
<td>250</td>
<td>< 250</td>
<td>< 250</td>
<td>0 - 40</td>
</tr>
<tr>
<td>Ammonium (mgN/l)</td>
<td>2,97</td>
<td>1,5</td>
<td>< 5</td>
<td>≤ 1,5</td>
<td>-</td>
</tr>
<tr>
<td>Ammoniak (mgN/l)</td>
<td>?</td>
<td>geen norm</td>
<td>< 0,02</td>
<td>geen norm</td>
<td>-</td>
</tr>
<tr>
<td>Nitraat (mg NO3/l)</td>
<td>3,74</td>
<td>15</td>
<td>geen norm</td>
<td>geen norm</td>
<td>< 1</td>
</tr>
<tr>
<td>Nitriet (mg NO3/l)</td>
<td>0,39</td>
<td>0,1</td>
<td>geen norm</td>
<td>≤ 1,13</td>
<td>-</td>
</tr>
<tr>
<td>Nitraat + Nitriet (mgN/l)</td>
<td></td>
<td>geen norm</td>
<td>≤ 10</td>
<td>geen norm</td>
<td>-</td>
</tr>
<tr>
<td>Kj-stikstof (mgN/l)</td>
<td></td>
<td>geen norm</td>
<td>≤ 6</td>
<td>≤ 3</td>
<td>-</td>
</tr>
<tr>
<td>Orthofosfaat (mgP/l)</td>
<td></td>
<td>geen norm</td>
<td>< 0,3</td>
<td>geen norm</td>
<td>< 0,1</td>
</tr>
<tr>
<td>Totaal fosfaat (mgP/l)</td>
<td>0,24</td>
<td>0,4</td>
<td>< 1</td>
<td>≤ 0,3</td>
<td>-</td>
</tr>
<tr>
<td>Calcium (mg/l)</td>
<td>15</td>
<td>geen norm</td>
<td>geen norm</td>
<td>geen norm</td>
<td>0 - 60</td>
</tr>
<tr>
<td>Fluoride (mg/l)</td>
<td>< 0,1</td>
<td>1,5</td>
<td>≤ 1,5</td>
<td>≤ 0,7/1,7</td>
<td>-</td>
</tr>
<tr>
<td>Arseen (µg/l)</td>
<td></td>
<td>geen norm</td>
<td>≤ 30</td>
<td>≤ 100</td>
<td>-</td>
</tr>
<tr>
<td>Cadmium (µg/l)</td>
<td></td>
<td>geen norm</td>
<td>≤ 1</td>
<td>≤ 5</td>
<td>-</td>
</tr>
<tr>
<td>Chroom (µg/l)</td>
<td></td>
<td>50</td>
<td>≤ 50</td>
<td>≤ 50</td>
<td>-</td>
</tr>
<tr>
<td>Koper (µg/l)</td>
<td></td>
<td>100</td>
<td>≤ 50</td>
<td>≤ 1.000</td>
<td>-</td>
</tr>
<tr>
<td>Lod (µg/l)</td>
<td></td>
<td>20</td>
<td>≤ 50</td>
<td>≤ 50</td>
<td>-</td>
</tr>
<tr>
<td>Nikkel (µg/l)</td>
<td></td>
<td>50</td>
<td>≤ 50</td>
<td>≤ 50</td>
<td>-</td>
</tr>
<tr>
<td>Zink (µg/l)</td>
<td></td>
<td>200</td>
<td>≤ 200</td>
<td>≤ 5.000</td>
<td>-</td>
</tr>
<tr>
<td>Kwik (µg/l)</td>
<td></td>
<td>1</td>
<td>≤ 0,5</td>
<td>≤ 1</td>
<td>-</td>
</tr>
<tr>
<td>Mangan (µg/l)</td>
<td></td>
<td>50</td>
<td>< 200</td>
<td>< 1.000</td>
<td>-</td>
</tr>
<tr>
<td>Ijzer (µg/l)</td>
<td></td>
<td>200</td>
<td>< 200</td>
<td>< 200</td>
<td>-</td>
</tr>
<tr>
<td>Selenium (µg/l)</td>
<td></td>
<td>10</td>
<td>< 10</td>
<td>< 10</td>
<td>-</td>
</tr>
<tr>
<td>Trihalomethanen (µg/l)</td>
<td></td>
<td>200</td>
<td>≤ 200</td>
<td>≤ 200</td>
<td>-</td>
</tr>
<tr>
<td>PAKs (ng/l)</td>
<td></td>
<td>200</td>
<td>≤ 100</td>
<td>≤ 1.000</td>
<td>-</td>
</tr>
<tr>
<td>Oppoloste KWS (ng/l)</td>
<td></td>
<td>5</td>
<td>geen norm</td>
<td>1.000</td>
<td>-</td>
</tr>
<tr>
<td>Pesticiden-tot (ng/l)</td>
<td></td>
<td>20</td>
<td>≤ 20</td>
<td>≤ 5.000</td>
<td>-</td>
</tr>
<tr>
<td>Chlorofyl a (µg/l)</td>
<td></td>
<td>-</td>
<td>< 100</td>
<td>geen norm</td>
<td>≤ 8</td>
</tr>
<tr>
<td>Tot. ecoliorme (n/100 ml)</td>
<td></td>
<td>0</td>
<td>geen norm</td>
<td>≤ 50.000/100 ml</td>
<td>-</td>
</tr>
</tbody>
</table>

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
9.3.1.2 Kwantiteit en kwaliteit van de geplande lozingen van afvalwater in het kanaal Duinkerke-Nieuwpoort

Tabel 9.3.2 en de cursieve tekst m.b.t. de aangenomen lozingsnormen werden opgegeven door de initiatiefnemer:

De totale te lozen volumes bedragen gemiddeld 152,5 m³/h of 3.650 m³/d. Dit volume wordt samengesteld uit iets meer dan 40 % Back Wash-water en iets minder dan 60 % concentrant van de omgekeerde osmose. De kwaliteit van het uiteindelijk effluent werd dan ook berekend op basis van deze verhouding waarbij rekening werd gehouden met gemiddelde waarden omdat er van uitgegaan wordt dat het door de I.W.V.A. geloosde effluent zal verdunnd worden met het deel van het RWZI-effluent dat niet door de I.W.V.A. wordt behandeld. Zeker wat betreft de tijdelijke lozingen van de restvloeistoffen van de reinigingen is dit een belangrijk gegeven aangezien dit moment en deel van de installaties niet in werking zal zijn en aldus de verdunning naar zuiver effluent groter is dan normaal.

In tabel 9.4.2 staat het aantal dagen aangegeven (voor 1998) waarvan de I.W.V.A.-lozingswater procentueel wordt verdunnd met RWZI-effluent (inname van 10.500 m³/d RWZI-effluent; lozing van 3.650 m³/d concentrant).

Uit deze gegevens blijkt dat gedurende het grootste gedeelte van het jaar het concentrant van de membranaanfiltratie in belangrijke mate wordt verdunnd door dit deel van het RWZI-effluent dat niet door de I.W.V.A. zal gebruikt worden. De hoge nutriëntenbelasting en eventueel verhoogde gehaltes aan zware metalen die in het kanaal zullen worden geloosd zullen dus beperkt blijven tot enkele dagen per jaar.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 % verdunning</td>
<td>1 dag</td>
<td>0 % verdunning: 1 dag</td>
</tr>
<tr>
<td>0 - 10 % verdunning</td>
<td>5 dagen</td>
<td>0 - 10 % verdunning: 5 dagen</td>
</tr>
<tr>
<td>10 - 25 % verdunning</td>
<td>15 dagen</td>
<td>10 - 25 % verdunning: 15 dagen</td>
</tr>
<tr>
<td>25 - 50 % verdunning</td>
<td>16 dagen</td>
<td>25 - 50 % verdunning: 16 dagen</td>
</tr>
<tr>
<td>50 - 100 % verdunning</td>
<td>39 dagen</td>
<td>50 - 100 % verdunning: 39 dagen</td>
</tr>
<tr>
<td>> 100 % verdunning</td>
<td>295 dagen</td>
<td>> 100 % verdunning: 295 dagen waarvan 96 dagen met meer dan 300 % verdunning.</td>
</tr>
</tbody>
</table>

Op te merken valt dat vanaf maart tot en met augustus de minimale verdunning van het concentrant 50 % bedraagt. De dagen met mindere verdunning komen voor in de periode september - februari. Dit is de periode waar de afvoer naar zee het grootst is (Van Houtte, intern I.W.V.A.-rapport ten behoeve van de huidige MER-studie, 1999).

Voor de evaluatie van de kwaliteitsveranderingen van de fysisch-chemische parameters van het oppervlaktewater in het kanaal Duinkerke-Nieuwpoort werd uitgegaan van:

(1) een extreem ongunstige toestand ('extreme worst case') scenario i.e. wanneer de lozingen gebeuren tijdens een periode zonder neerslag en dus wanneer het debiet van het kanaalwater nul is en de I.W.V.A.-effluent of het concentrant onverdunnd met RWZI-effluent wordt geleegd.

RUG- Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
een gemiddeld ongunstige toestand ('mean worst case') scenario i.e. wanneer de lozingen gebeuren tijdens een periode zonder of met weinig neerslag en dus eveneens bij nuldebiet van het kanaal maar met een gemiddelde verdunning van deI.W.V.A.-concentraat met het RWZI-effluent.

Bij lozing in een stilstand water (i.e. tijdens perioden van nuldebiet in het kanaal) wordt aangenomen dat de watermassa ter hoogte van een lozingspunt dezelfde samenstelling heeft als het effluent dat geloosd wordt (zie verder).

Het effluent dat in de toekomst zou geloosd worden in het kanaal Duinkerke-Nieuwpoort bestaat uit 2 componenten:

- het lozingswater van de I.W.V.A. namelijk ca. 3.650 m³/d concentrata.
- het lozingswater van het RWZI dat niet door de I.W.V.A. wordt gebruikt; de I.W.V.A. betrekt ongeveer 10.500 m³/d van het RWZI effluent waarvan een gedeelte, na verwerking, als onderdeel van het concentrata wordt geloosd; de resterende hoeveelheden RWZI effluent worden rechtstreeks, samen met het concentrata, geloosd in het kanaal; deze debieten kunnen sterk schommelen naargelang van de weersomstandigheden; bij afwezigheid van neerslag eventueel gecombineerd met hoge evaporation bedraagt het debiet van het RWZI ca. 10.500 m³/d, in een dergelijk geval is de uiteindelijke bijdrage van het RWZI tot het effluent dat rechtstreeks in het kanaal wordt geloosd nul daar het gehele RWZI-debiet door de I.W.V.A. wordt onttrokken.

Uit de in bijlage gevoegde gegevens over de dagelijkse RWZI-debieten in 1998 (Bijlage 8.3.1) en uit onderstaande tabel blijkt dat een dergelijke situatie zich slechts één dag per jaar voordoed.

Dit is de extreem ongunstige toestand waarbij dus het concentrata van de I.W.V.A. in zijn zuivere vorm wordt geloosd in het kanaal met nuldebiet. De concentraties van de diverse parameters ter hoogte van het lozingspunt zijn dus gelijk aan de concentraties opgegeven voor de I.W.V.A.-effluent.

Rekening houdend met het feit dat een dergelijke combinatie van bovenvermelde factoren slechts één dag per jaar voorkomt zal de lengte van het kanaal waar zich deze fysisch-chemische concentraties voordoen. 96 m bedragen (geloosde debiet (3650 m³) gedeeld door de oppervlakte van de doorsnede van het kanaal (38 m²)).

Uit de debietgegevens van 1998 (bijl. 8.3.1.) blijkt dat het gemiddelde debiet van het RWZI 20.500 m³/d bedroeg. Een tweede berekening werd derhalve uitgevoerd waarbij uitgegaan wordt van de veronderstelling dat de directe bijdrage van de lozing van het RWZI in het kanaal gelijk is aan: 20.500 (totaal geloosd) - 10.500 (onttrokken door I.W.V.A.) = 10.000 m³. Aangenomen kan worden dat dit samengesteld effluent, bestaande uit 28 % I.W.V.A.-concentratia (3650 m³/d) en 72 % RWZI-effluent (10.000 m³/d), de fysisch-chemische kwaliteit zal bepalen van het oppervlaktewater in het kanaal ter hoogte van het lozingspunt bij nuldebiet van dit kanaal.

Om de resulterende concentraties te berekenen werd uitgegaan van gemiddelde concentraties van het RWZI-effluent en niet van maxima daar deze laatste samenvallen met de laagste debieten van het RWZI (i.e. wanneer al het RWZI-effluent betrokken wordt door de I.W.V.A.).

De resulterende concentraties (Cr) van de diverse parameters werden berekend volgens de volgende formule:

$$Cr = \left(C_o \times Q_o + C_i \times Q_i \right) / (Q_o + Q_i)$$
De berekende concentraties worden weergegeven in tabel 9.3.3.

Tabel 9.3.3 Gemiddelde concentraties van het geplande I.W.V.A.-effluent, van het huidige RWZI-effluent (periode 01/98 – 02/99) en van het geplande I.W.V.A.-effluent met een debiet van 3.650 m³/d vermengd met 10.000 m³/d RWZI-effluent (i.e. meest voorkomend mengsel).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>I.W.V.A.-effluent</th>
<th>RWZI-effluent</th>
<th>I.W.V.A. + RWZI-effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3.650 m³/d</td>
<td>10.000 m³/d</td>
<td>13.650 m³/d</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>7,3</td>
<td>7,6</td>
<td>7,4</td>
</tr>
<tr>
<td>Zweevende stoffen</td>
<td>mg/l</td>
<td>106**</td>
<td>5,5</td>
<td>32,4</td>
</tr>
<tr>
<td>BZV</td>
<td>mg O₂/l</td>
<td>28**</td>
<td>5</td>
<td>11,2**</td>
</tr>
<tr>
<td>CZV</td>
<td>mg O₂/l</td>
<td>127**</td>
<td>42*</td>
<td>37*</td>
</tr>
<tr>
<td>Geleidbaarheid</td>
<td>µS/cm</td>
<td>3.652</td>
<td>1.691</td>
<td>2181</td>
</tr>
<tr>
<td>Nitriet + Nitraat</td>
<td>mg N/l</td>
<td>64,5**</td>
<td>29,0**</td>
<td>19,7**</td>
</tr>
<tr>
<td>Nitriet</td>
<td>mg NO₃/l</td>
<td>2,0</td>
<td>0,66</td>
<td>1,0</td>
</tr>
<tr>
<td>Nitraat</td>
<td>mg NO₂/l</td>
<td>62,5</td>
<td>28,3</td>
<td>18,7</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg NH₄/l</td>
<td>34,9**</td>
<td>2,0</td>
<td>10,8**</td>
</tr>
<tr>
<td>Kj-stikstof</td>
<td>mg P/l</td>
<td>60,6**</td>
<td>?</td>
<td>18,2**</td>
</tr>
<tr>
<td>Totaal fosfaat</td>
<td>mg P/l</td>
<td>2,1</td>
<td>1,4</td>
<td>1,6</td>
</tr>
<tr>
<td>SO₄-totaal</td>
<td>mg SO₄/l</td>
<td>440</td>
<td>143</td>
<td>222</td>
</tr>
<tr>
<td>Cl-</td>
<td>mg Cl/l</td>
<td>728</td>
<td>310</td>
<td>421</td>
</tr>
<tr>
<td>Vrije chloor</td>
<td>mg/l</td>
<td><0,1**</td>
<td>0,02**</td>
<td>0,04**</td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/l</td>
<td>0,64</td>
<td>0,32</td>
<td>0,4</td>
</tr>
<tr>
<td>TDS(180°C)</td>
<td>mg/l</td>
<td>2879</td>
<td>1178</td>
<td>1632</td>
</tr>
<tr>
<td>Zware metalen (max)</td>
<td>µg Cu/l</td>
<td>50</td>
<td>15</td>
<td>24,3</td>
</tr>
<tr>
<td></td>
<td>µg Pb/l</td>
<td>59*</td>
<td>18</td>
<td>28,9</td>
</tr>
<tr>
<td></td>
<td>µg Zn/l</td>
<td>203*</td>
<td>62</td>
<td>99,7</td>
</tr>
<tr>
<td></td>
<td>µg Cr/l</td>
<td>20</td>
<td>6</td>
<td>9,7</td>
</tr>
<tr>
<td></td>
<td>µg Ni/l</td>
<td>75*</td>
<td>21</td>
<td>35,4</td>
</tr>
<tr>
<td></td>
<td>µg As/l</td>
<td>16</td>
<td>5</td>
<td>7,9</td>
</tr>
<tr>
<td></td>
<td>µg Hg/l</td>
<td>1,3*</td>
<td>0,4</td>
<td>0,6*</td>
</tr>
<tr>
<td></td>
<td>µg Cd/l</td>
<td>16**</td>
<td>5**</td>
<td>7,9**</td>
</tr>
<tr>
<td></td>
<td>µg Ag/l</td>
<td>16</td>
<td>5</td>
<td>7,9</td>
</tr>
<tr>
<td>Totale colibacteriën 37°C</td>
<td>n/100 ml</td>
<td>269.162</td>
<td>68.803</td>
<td>122.000</td>
</tr>
<tr>
<td>Fecale colibacteriën</td>
<td>n/100ml</td>
<td>31.231**</td>
<td>17.612**</td>
<td>21.000**</td>
</tr>
<tr>
<td>Fecale streptokokken</td>
<td>n/100 ml</td>
<td>15.795</td>
<td>8.870</td>
<td>11.000</td>
</tr>
</tbody>
</table>

*: basiskwaliteitsniveau overschreden; ** basiskwaliteitsniveau significant overschreden.

Dit is de gemiddeld ongunstige toestand scenario'. Men mag dus aannemen dat een toestand waarbij de I.W.V.A. + RWZI-effluent van 13.650 m3/d geloosd te Wulpen vrijwel de enige debietsbijdrage vormt van het kanaal een maand lang kan aanhouden. Het totaal geloosde volume in augustus 1998 bedroeg 506.966 m3. m.a.w. in perioden van geringe neerslag en bij een nulldebiet of gering debiet van het kanaal bedraagt de lengte van het kanaal waar het water sterk zal beïnvloed worden door het effluent en deels dezelfde samenstelling zal hebben als het effluent (variërend naargelang de neerslag) 13 km i.e. het volume (506.966 m3/maand) gedeeld door de oppervlakte van de doorsnede van het kanaal (38 m2).

9.3.2 Beoordeling van de milieu-effecten

9.3.2.1 Effecten ten gevolge van aanvoer van het infiltraat in het infiltratiepand

Voor de gestuurde ontwikkeling van het oppervlaktewater dat door de aanleg van het infiltratiepand zal gecreëerd worden in de Doornpanne verwijzen wij naar het ontwikkelingsscenario 'Beheersplan Doornpanne' dat in de discipline 'Fauna en Flora' uitgebreid besproken wordt.

Door de aanvoer van het infiltratiewater in het infiltratiepand zal er een oppervlaktewater ontstaan dat bestemd is voor de productie van drinkwater. Dit water moet derhalve aan de wettelijke normen voor drinkwaterproductie voldoen (Besl. Vl. Reg. dd 1/06/95). In de onderstaande tekst wordt niet alleen de fysisch-chemische samenstelling van dit toekomstige water (gebaseerd op de resultaten van de I.W.V.A.-proefopstelling en de voorgestelde maximale concentraties in het infiltratiewater) getoetst aan de wettelijk vereiste normen maar ook, gezien het ecologisch belang, aan minimale ecologische normen (= basiskwaliteitsnormen) en hoge ecologische normen sensu GTE (1994) (tabel 9.3.1.).

\textbf{pH}

Uit tabel 9.3.1. blijkt dat de gemiddelde pH (>$6,5$) van het infiltratiewater vrij hoog ligt maar voldoet aan de norm. De maximum pH (9,2) opgegeven als infiltraatwaternorm is echter iets hoger dan de maximum norm voor drinkwaterproductiekwaliteit (pH 9) en voor de basiskwaliteit (pH 8,5). Volgens de studie van GTE (1994) zou voor een ecologische hoge kwaliteit de pH niet hoger dan 8 mogen zijn.

\textbf{Zwevende stof}

De concentratie aan zwevende stof in het infiltratiewater is gemiddeld $<0,1$ mg/l; er is geen norm voor infiltratiewater voorzien. De concentratie in de proefopstelling voldoet aan de norm voor drinkwaterproductie ($x < 50$ mg/l) en de basiskwaliteitsnorm ($x < 50$ mg/l).

\textbf{Opgeloste zuurstof}

Het gehalte aan opgeloste zuurstof in het infiltratiewater is onbekend alhoewel dit biologisch van essentieel belang is. Gezien echter het opgeloste zuurstofgehalte rechtstreeks in verband staat met het BZV, dat laag is, mag men verwachten dat het zuurstofgehalte voldoende hoog zal zijn.
Intercommunale Waterleidingmaatschappij van Veurne - Ambacht
MER Kunstmolitige aanvulling van het grondwaterreservoir in Sint-André

Biologisch Zuurstofverbruik

Volgens de resultaten van de proefopstelling is de concentratie lager dan 2 mgO₂/l. Er werd geen norm voor infiltraatwater voorzien. De huidige concentratie voldoet aan de norm voor drinkwaterproductie (x < 7 mg O₂/l) en de basiskwaliteitsnorm (x ≤ 6 O₂ mg/l).

Chemisch Zuurstof Verbruik (CZV)

Volgens de resultaten van de proefopstelling zou de gemiddelde concentratie in het infiltratiewater 7,5 mg O₂/l bedragen. Er werd geen norm voor het infiltratiewater voorzien. De huidige concentratie voldoet aan de norm voor drinkwaterproductie (x < 30 mg O₂/l) en basiskwaliteitsnorm (x ≤ 30 mg O₂/l).

Conductiviteit

Volgens de resultaten van de proefopstelling zou de gemiddelde concentratie in het infiltratiewater 136 µS/cm bedragen. Er werd een norm van 1.000 µS/cm voor het infiltratiewater voorzien. De concentratie van de proefopstelling voldoet aan de norm voor drinkwaterproductie en de basiskwaliteitsnorm (beide: x < 1.000 µS/cm).

Chloridegehalte

Volgens de resultaten van de proefopstelling zou de gemiddelde concentratie in het infiltratiewater 27,4 mg Cl/l bedragen. Er werd een norm van 250 mg Cl/l voor het infiltratiewater voorzien. De concentratie van de proefopstelling voldoet aan de norm voor drinkwaterproductie en de basiskwaliteitsnorm (beide: x < 200 mg Cl/l).

Ammonium

Volgens de resultaten van de proefopstelling zou de gemiddelde concentratie in het infiltratiewater 2,97 mg NH₄⁺ - N/l bedragen. Er werd een norm van 1,5 mg NH₄⁺ - N/l voor het infiltratiewater voorzien (de Nederlandse infiltratienorm is 2,5 mg/l-N). De gemiddelde concentratie van de proefopstelling ligt zeer dicht bij de norm voor drinkwaterproductie (x ≤ 3,1 mg NH₄⁺ - N/l) (er treden dus geringe overschrijdingen op) maar voldoet aan de basiskwaliteitsnorm (x < 5 mgNH₄⁺ - N/l).

Nitratgehalte

Volgens de resultaten van de proefopstelling zou de gemiddelde concentratie in het infiltratiewater 3,74 mg NO₃/l bedragen. Er werd een norm van 15 mg NO₃/l voor het infiltratiewater voorzien (de Nederlandse infiltratienorm is 5,6 mg/l-N). Er bestaat geen basiskwaliteits- of drinkwaterproductienorm voor nitraten.

Nitrietgehalte

Volgens de resultaten van de proefopstelling zou de gemiddelde concentratie in het infiltratiewater 0,39 mg/l NO₂ bedragen. Er werd een norm van 0,1 mg/l NO₂ voor het infiltratiewater voorzien. Beide waarden voldoen aan de norm voor drinkwaterproductie (x ≤ 11,3 N mg/l). Er bestaat geen basiskwaliteitsnorm voor nitriet.
Nitriet + Nitraat

Uit bovenstaande blijkt dat de som van beide parameters in de proefopstelling evenals de som van de voorgestelde infiltraatwaternormen voldoen aan de basiskwaliteitsnorm ($x \leq 10 \text{ mg N/l}$). Er is geen specifieke norm voor drinkwaterproductie.

Kjeldahl stikstof

Geen gegevens.

Totaal fosfaat

Volgens de resultaten van de proefopstelling zou de gemiddelde concentratie in het infiltratiewater 0,24 mg P/l bedragen. Er werd een norm van 0,4 mg P/l voor het infiltraatwater voorzien. De gemiddelde concentratie van de proefopstelling voldoet aan de norm voor drinkwaterproductie ($x \leq 0,3 \text{ mg P/l}$) en aan de basiskwaliteitsnorm ($x < 1 \text{ mg P/l}$). De voorgestelde infiltraatwaternorm voldoet niet aan de drinkwaterproductienorm, maar is wel conform met de norm van het Nederlands infiltratiebesluit.

Orthofosfaat

Er zijn geen concentraties voor orthofosfaat in het infiltratiewater bekend, noch werd er een infiltraatwaternorm voor opgegeven. Er bestaat geen specifieke norm voor drinkwaterproductie. Indien echter zou blijken dat de bovenstaande concentratie opgegeven voor totaal fosfaat vrijwel uitsluitend bestaat uit orthofosfaat dan wordt de basiskwaliteitsnorm voor stilstaande wateren ($x < 0,05 \text{ mg P/l}$) ernstig overschreden.

Zware metalen

Er zijn geen waarden van de concentraties van zware metalen in de proefopstelling bekend. De voorgestelde normen voor infiltratiewater zijn beduidend lager of gelijk aan de normen voor drinkwaterproductie en lager of gelijk aan de basiskwaliteitsnorm met uitzondering voor koper en kwik waar deze norm voor infiltraatwater tweemaal hoger ligt dan deze voor de basiskwaliteit. Voor arseen en cadmium werden geen normen voor het infiltratiewater opgegeven (tabel 9.3.1.).

Organische microverontreinigingen

Er zijn geen waarden van de concentraties in de huidige proefopstelling gekend. De voorgestelde normen voor het infiltratiewater komen overeen met of zijn lager dan de normen voor de basiskwaliteit en veel lager dan de waarden voor de normen van drinkwaterproductie.
9.3.2.2 Effecten ten gevolge van het lozen van het concentraat in het kanaal Duinkerke-Nieuwpoort

Waternetemperatuur

De temperatuur van het water in het kanaal zal niet of slechts in een geringe mate worden beïnvloed door de lozingen en deze zullen voor wat betreft deze fysische factor geen normoverschrijdingen veroorzaken.

pH

De pH van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, is gemiddeld 7,3, de pH van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden is ca. 7,4. Geen van beide zijn normoverschrijdend (basiskwaliteitsnorm: 6,5 ≤ x ≤ 8,5).

Het effect van het eerste scenario (lozing gedurende één dag per jaar) is verwaarloosbaar. Het tweede scenario (lozing gedurende één maand per jaar) zou wellicht een lichte daling van de huidige relatief hoge waarden (7,8 - 8,6) die nu in het kanaal worden opgemeten stroomafwaarts van het RWZI, tot gevolg kunnen hebben. Ze kunnen niet leiden tot normoverschrijdingen.

Zwevende stof

De concentratie aan zwevende stof in het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 106 mg/l, de concentratie in de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt ca. 32,4 mg/l. Het effect van het eerste scenario (lozing gedurende één dag per jaar) is significant normoverschrijdend maar verwaarloosbaar qua tijd en oppervlakte. Het tweede scenario zou een lichte stijging van de huidige concentratie (gemiddelde huidige concentratie: 21 mg/l) tot gevolg hebben stroomaf- en opwaarts het RWZI over een vrij belangrijke afstand (13 km), maar leidt niet tot overschrijdingen van de norm. (x < 50 mg/l).

Zuurstofgehalte

In perioden met nuldebiet daalt de zuurstofconcentratie zowel stroomafwaarts als stroomopwaarts van het huidige lozingspunt beduidend onder de norm (cf. referentiesituatie). Aangenomen mag worden dat, gezien de hoge BZV- (respectievelijk 28 en 11,2 mg/l) en CZV- (respectievelijk 127 en 64,7 mg/l) waarden zowel in de I.W.V.A.-effluent als in de I.W.V.A. + RWZI-effluent, de zuurstofconcentratie in de omgeving van het lozingspunt onder de norm van 5,0 mg/l ≤ x zal dalen ten gevolge van de lozingen. In het tweede scenario zal dit effect zich over kilometers uitstrekken. Ook indien de kwaliteit van het kanaalwater verder zou verbeteren en overal theoretisch de norm voor zuurstof zou gehaald kunnen worden zal bij nuldebiet van het kanaal en hogere watertemperaturen de geplande lozingen tot gevolg hebben dat normoverschrijdingen zullen optreden over een aanzienlijke lengte van het kanaal. Ook kan zuurstofoververzadiging optreden tijdens perioden van gering debiet in het kanaal ten gevolge van algenbloeiën.

Biologisch Zuurstof Verbruik (BZV)

Het BZV van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 28 mg/l, het BZV van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 11,2 mg/l. Beide zijn significat normoverschrijdend (basiskwaliteitsnorm: x ≤ 6 mg O2/l). Deze norm is in het huidige water van het kanaal vrijwel het ganse jaar door overschreden, alhoewel de gemiddelde concentratie van het huidige RWZI-effluent niet normoverschrijdend is (5 mg/l). Emissies van zowel zuiver I.W.V.A.-effluent als van de I.W.V.A. + RWZI effluent zullen dus de huidige slechte toestand nog verslechteren en dit, in het tweede scenario, over een aanzienlijke afstand. Ook bij een toekomstige verbetering van de waterkwaliteit van het kanaal zullen overduidelijk de effluenten zullen blijven optreden in het kanaal rond dezelfde waarden als de huidige louter ten gevolge van de lozing van het effluent en dit over aanzienlijke afstanden.
Chemisch Zuurstof Verbruik (CZV)

Het CZV van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 127 mg/l, het CZV van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 64,7 mg/l. Beide zijn significant normoverschrijdend (basiskwaliteitsnorm: x ≤ 30 mg O₂/l). Deze norm is in het huidige water van het kanaal het ganse jaar door ernstig overschreden. De gemiddelde concentratie van het huidige RWZI-effluent is eveneens normoverschrijdend (42 mg/l) en ongeveer dezelfde als de concentratie in het oppervlaktewater gemeten in het kanaal stroomafwaarts het RWZI-lozingspunt.

Bovenvermelde geplande effluentlozingen in het kanaalwater met de huidige kwaliteit zullen de toestand nog verslechteren. Bij verbetering van de kwaliteit van het kanaalwater in de toekomst zal de geplande lozing tot gevolg hebben dat de norm niet gehaald wordt over een aanzienlijke lengte van dit kanaal. Rekening dient echter gehouden met het feit dat de CZV-norm in de toekomst waarschijnlijk zal komen te vervallen en in feite niet van toepassing zou mogen zijn op brakke wateren.

Conductiviteit

De conductiviteit van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 3.652 µS/cm, het BZV van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 2.181 µS/cm. Beide zijn significant normoverschrijdend (basiskwaliteitsnorm: x < 1.000 µS/cm). Deze norm is in het huidige water van het kanaal evenals in het huidige RWZI-effluent ook het ganse jaar door overschreden maar is niet van toepassing daar het kanaal een brak water is. Bij lozingen van de I.W.V.A. + RWZI-effluent zou in de toekomst de conductiviteit licht moeten afnemen in een deel van het kanaal.

Chloridegehalte

De chlorideconcentratie van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 728 mg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 421 mg/l. Beide zijn normoverschrijdend (basiskwaliteitsnorm: x < 200 mg/l). Deze norm is in het huidige water van het kanaal het ganse jaar door overschreden en de gemiddelde concentratie van het huidige RWZI-effluent is eveneens normoverschrijdend (310 mg/l). De norm is echter niet van toepassing (brak water). De geplande lozing van het zuiver I.W.V.A.-effluent (eerste scenario) zou zeer lokaal (ca. 90 m in de omgeving van het lozingspunt) een stijging van het chloridegehalte teweegbrengen. De lozing van de I.W.V.A. + RWZI-effluent (tweede scenario) zou geen significante verandering teweegbrengen.

Ammonium

Het ammoniumgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 34,9 mg NH₄/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 10,8 mg NH₄/l. Beide zijn significant normoverschrijdend (basiskwaliteitsnorm: x < 5 mg NH₄⁺ - N/l). De norm werd niet overschreden het ganse jaar door in het kanaal of in het huidige RWZI. In beide gevallen zou in de toekomst de lozing van het effluent normoverschrijdingsen tot gevolg hebben bij nuldebit van het kanaalwater. Zelfs indien de I.W.V.A.-effluent verdund is met het RWZI-effluent zou dit het geval zijn over een aanzienlijke afstand, ook bij verdere verbetering van de kwaliteit van het kanaalwater.
Nitratgehalte
Het nitratgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 62,5 mg NO₃/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 18,7 mg NO₃/l (zie nitraat + nitriet).

Nitrietgehalte
Het nitrietgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 2,0 mg NO₂/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 1,0 mg NO₂/l (zie nitraat + nitriet).

Nitriet + Nitraat
Het nitraat + nitrietgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 64,5 mg N/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 19,7 mg N/l. Beide zijn significat normoverschrijdend (basiswaarde: x < 10 mg N/l). Deze norm is constant overschreden in het huidige kanaalwater evenals in het huidige RWZI effluent (29,0 mg N/l). De geplande lozingen kunnen enkel de huidige toestand verder verslechteren. Ook bij een toekomstige verbetering van de waterkwaliteit van dit kanaal zullen zich ten gevolge van de lozing van het effluent significant normoverschrijdingen blijven voordoen. Het is echter de vraag of dit oppervlaktewater ooit aan de basiswaarde voor nitraat + nitriet zal voldoen omdat brakke wateren van nature nutriëntrijk zijn en de (zoetwater)norm hier in feite niet zou mogen van toepassing zijn.

Kjeldahl stikstof
Het KjN-gehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 60,6 mg N/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt waarschijnlijk ca. 18,2 mg N/l. Beide zijn significat normoverschrijdend (basiswaarde: x < 6 mg N/l). De concentratie in het huidige kanaal is niet bekend maar het is duidelijk dat de toekomstige lozingen ook voor deze parameter normoverschrijdingen zullen teweegbrengen bij nuldebiet van het kanaalwater. Dezelfde opmerking m.b.t. brakke wateren geldt hier ook als geformuleerd onder nitraat + nitriet.

Totaal fosfaat
Het totaal fosfaatgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 2,1 mg P/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 1,6 mg P/l. Beide zijn normoverschrijdend (basiswaarde: x < 1 mg P/l). Ook in het huidige kanaalwater en in het huidige RWZI effluent wordt de norm vrijwel continu overschreden. De lozing van het effluent in het huidige oppervlaktewater kan de kwaliteit met deze parameter enkel verslechteren. Ook bij verbetering van de kwaliteit in de toekomst zouden de lozingen normoverschrijdingen tot gevolg hebben. Het is echter de vraag of het kanaalwater in de toekomst de basiswaarde voor fosfaat zal kunnen behalen.
Zware metalen

- **Cadmium (Cd):** Het cadmiumgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 16 µg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 7,9 µg/l. Beide zijn beduidend normoverschrijdend (basiskwaliteitsnorm: x ≤ 1,0 µg Cd/l) Ook het huidige RWZI-effluent heeft een te hoge concentratie (5 µg/l). In de toekomst zou ten gevolge van de lozingen van het effluent de norm voor cadmium overschreden worden in het kanaal over een aanzienlijke afstand tijdens perioden van nuldebet.

- **Chroom (Cr):** Het chroomgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 20 µg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 9,7 µg/l. Beide zijn niet normoverschrijdend (basiskwaliteitsnorm: x ≤ 50 µg Cr/l).

- **Koper (Cu):** Het kopergehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 50 µg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 24,3 µg/l. Beide zijn niet normoverschrijdend (basiskwaliteitsnorm: x ≤ 50 µg Cu/l).

- **Lood (Pb):** Het loodgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 59 µg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 28,9 µg/l. Enkel de eerste concentratie is licht normoverschrijdend (basiskwaliteitsnorm: x ≤ 50 µg Pb/l). Ten gevolge van de lozingen zou in de toekomst in de onmiddellijke omgeving van het lozings punt de norm voor lood overschreden worden gedurende één dag per jaar als gevolg van de lozingen.

- **Nikkel (Ni):** Het nikkelgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 75 µg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 35,4 µg/l. Enkel het eerste is normoverschrijdend (basiskwaliteitsnorm: x ≤ 50 µg Ni/l). De lozingen zouden dezelfde effecten veroorzaken als voor lood beschreven.

- **Zink (Zn):** Het zinkgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 203 µg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 99,7 µg/l. Enkel het eerste is zeer licht normoverschrijdend (basiskwaliteitsnorm: x ≤ 200 µg Zn/l). Rekening houdend met de huidige lage concentratie in het kanaalwater zou de norm ten gevolge van de lozingen slechts één dag per jaar licht overschreden worden.

Organische microverontreinigingen

- **Vrij chloor:** Het vrij chloorgehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld < 0,1 mg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 0,04 mg/l. Beide zijn significant normoverschrijdend (basiskwaliteitsnorm: x < 0,004 mg/l). Ook het huidige RWZI-effluent heeft een te hoog gehalte (0,02 mg/l) om te mogen geloosd worden in een oppervlaktewater bij nuldebet.

- **Fluoride:** Het fluoridegehalte van het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 0,64 mg/l, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 0,40 mg/l. Beide zijn niet normoverschrijdend (basiskwaliteitsnorm: x < 1,5 mg/l).

- **Bacteriën:** enkel voor fecale colibacteriën bestaat er een mediane norm voor wateren met als doelstelling basiskwaliteit, namelijk x ≤ 2000/100 ml. De concentratie aan fecale bacteriën in het zuiver I.W.V.A.-effluent, dat één dag per jaar zou worden geloosd, bedraagt gemiddeld 31.231 fecale coli/100 ml, het gehalte van de I.W.V.A. + RWZI-effluent dat één maand per jaar zou geloosd worden bedraagt 21.000 fecale coli/100 ml. Beide zijn normoverschrijdend met een factor 10. Ook het gehalte aan bacteriën in het huidige RWZI-effluent is veel te hoog (17.612 fec.coli/100 ml). Bij lozing van het effluent zal in de toekomst de norm voor fecale colibacteriën significant overschreden worden in het kanaal over een aanzienlijke afstand tijdens perioden van nuldebet.
9.3.3 Conclusies en milderende maatregelen

9.3.3.1 Aanvoer van het infiltraatwater in het infiltratiepand

Door de aanvoer van het infiltraatwater in het infiltratiepand zal er zich een ondiep stilstaand zoet water ontwikkelen met een over het algemeen zeer goede fysisch-chemische waterkwaliteit, althans afgaande op de gemiddelde concentraties bekomen in de proefopstelling. Een onbekende is echter het opgeloste zuurstofgehalte. Indien dit onvoldoende is, zou men het water kunnen beluchten.

Voorbehoud met betrekking tot deze evaluatie dient echter gemaakt zolang de concentraties van ammoniak en orthofosfaat niet bekend zijn.

Het permanent aanvullen van het water in het infiltratiepand kan, wat de primaire productie betreft, tot gevolg hebben dat de nutriëntenvoorraad steeds opnieuw wordt aangevuld en dus aanleiding geeft tot hoge gehalten aan chlorofyl a (algenbloei).

Als milderende maatregel, rekening houdend met het feit dat een oppervlaktewater met een minder goede waterkwaliteit niet verenigbaar is met de ecologische streefbeelden van het gebied, wordt aangeraden dat voor alle parameters (dus ook voor degene hoger vermeld) die belangrijk zijn voor de zuurstofhuishouding en de trofiegraad van het water een norm wordt vooropgesteld en dat deze minstens gelijk en bij voorkeur lager is dan de basiskwaliteitsnorm (naarmate de technieken verbeteren).

9.3.3.2 Lozingen van het concentraatwater in het kanaal Duinkerke-Nieuwpoort

Wat de effecten van de lozingen betreft op de kwaliteit van het oppervlaktewater in het kanaal Duinkerke-Nieuwpoort maakt het weinig uit of men vertrekt van het scenario waarbij de geplande lozingen zullen plaatsvinden bij dezelfde waterkwaliteit van het kanaal als de huidige of vanuit het scenario dat deze zullen plaatsvinden wanneer het water hier de basiskwaliteitsnorm heeft bereikt. In beide gevallen wordt bij geringe debieten het kanaalwater, ongeacht zijn samenstelling, plaatselijk vervangen door het water van het effluent van de I.W.V.A. en het RWZI. De verhouding van beide afvalwaterstroomen en van de vuilvracht fluctueert echter sterk naargelang van de neerslag. Zowel wanneer het effluent dat in het kanaal terechtkomt zou bestaan uit onverdund I.W.V.A.-afvalwater als wanneer dit afvalwater verdund is met RWZI-afvalwater in een verhouding van ca. 1 op 3 (hetgeen de meest voorkomende verhouding zou zijn) zullen de basiskwaliteitsnormen voor BZV, CZV, stikstof (nitraat + nitriet, ammonium en KjN) en fosfaat op een significante wijze overschreden worden in een deel van dit kanaal ten gevolge van de lozing van de I.W.V.A.-effluent. Het gevolg van de lozingen, zowel van de I.W.V.A. als van het RWZI, is dat het kanaalwater wat betreft de geciteerde parameters in de toekomst niet aan de wettelijke norm zal voldoen. Of deze fysisch-chemische normen wel degelijk kunnen gehaald worden is echter zeer de vraag gezien brakke wateren van nature aangerijk zijn met allerlei stoffen o.a. met nutriënten en de basiskwaliteitsnormen voor zoete wateren in feite niet toepasbaar zijn op dit brak water. Naarmate betere technieken werden ontwikkeld dienen die te worden toegepast. Hieruit volgt logischerwijze de conclusie dat voor brakke wateren specifieke normen zouden moeten worden opgesteld. Dit is echter niet zo voor de hand liggend daar er zeer verschillende types bestaan. In Nederland is men voor het ogenblik een typologie aan het opstellen van brakke polderwateren die via grondwater worden gevoed.
GRONDWATER

9.3.4 Analyse van de geplande situatie

In wat volgt worden de mogelijke effecten wat betreft het grondwater besproken ten gevolge van de uitvoering van het project. De effecten zullen voor de verschillende fasen afzonderlijk uiteengezet worden.

9.3.4.1 Aanlegfase

Grondwaterkwantiteit

Voor de aanleg in open sleuf is een lage grondwatertafel gewenst. Indien de grondwatertafel onvoldoende diep is, wordt de sleuf via bemaling voor de duur van de aanleg (sectiegewijs) droog gehouden. Uit de grondwaterstandsmetingen en het ontwerp traceert blijkt dat bemaling niet noodzakelijk zal zijn. Er worden dus geen wijzigingen verwacht aangaande de grondwaterkwantiteit. Indien bemalingen noodzakelijk zullen zijn, zal een verandering in de grondwaterstroming in de omgeving van de werken te verwachten zijn.

Tijdens de bouw van het behandelingsgebouw zullen bemalingswerken noodzakelijk zijn. Hierdoor zal de grondwatertafel verlaagd worden. Er zal lokaal een afpompingstrechter gevormd worden, waardoor het grondwater in de richting van de bemaling zal stromen.

9.3.4.2 Exploitatiefase en onderhoud

Grondwaterkwantiteit

De invloed van de werking van het infiltratiepand werd door Van Houtte E. (1997) mathematisch gmodelleerd. In de vergunning wordt voorzien dat het natuurlijk grondwater in zuigput ZP1 1.000.000 - (0,12 * I) m³/j en in ZP2 1.000.000 m³/j onttrokken wordt. De jaarlijkse maximale infiltratie (I) van

2.500.000 m³/j wordt integraal teruggewonnen. Van Houtte E. (1997) heeft de situatie gmodelleerd waarbij in ZP1 700.000 m³/jaar en in ZP2 3.500.000 m³/jaar wordt onttrokken.

Bij grondwaterwinning in combinatie met infiltratie blijkt dat de grondwatertafel stijgt. Deze stijging doet zich voornamelijk voor in het waterwaringebied en strekt zich voornamelijk uit in noordelijke, oostelijke en zuidoostelijke richting. Ook de afstroming van het grondwater naar zee neemt toe, terwijl deze naar de polders nagenoeg gelijk blijft. Volgens de berekeningen wordt snel een evenwicht bereikt (na minder dan 4 jaar). Op figuur 9.3.1 wordt de grondwaterstroming na 10 jaar infiltratie (2.500.000 m³/j) en winning van 1.700.000 m³/j natuurlijk grondwater in de duinen weergegeven.

Figuur 9.3.2 stelt de stijging van de grondwatertafel t.o.v. de huidige toestand voor. De stijging van de grondwatertafel neemt snel af met de afstand tot het infiltratiepand. De watertafel stijgt vooral in noordelijke, noordoostelijke en zuidoostelijke richting.

Ter hoogte van zuigput ZP2 stijgt de grondwatertafel met 1,25 m, waardoor de nettoverlaging nog 2,75 m bedraagt. Aan de kantoren van de I.W.V.A. kan een stijging van 25 cm waargenomen worden. Dit is een nettoverlaging van 2,25 m.

Om de evolutie van het peil van het grondwater op te volgen, wordt op regelmatige tijdstippen (1 meting/maand) het grondwaterpeil in verschillende nieuwe peilbuizen gemeten zodat tijdig ingegrepen kan worden. Deze maatregel werd reeds vastgelegd in de vergunning en is voldoende.
Figuur 9.3.1 Berekende grondwaterstroming na 10 jaar infiltratie (2.500.000 m³/jaar) en netto grondwatervinding van 1.700.000 m³/jaar (Van Houthe E., 1997).

Figuur 9.3.2 Berken de grondwaterstroming na 10 jaar infiltratie (2.500.000 m³/jaar) en netto grondwatervinding van 1.700.000 m³/jaar (Van Houthe E., 1997).
Figuur 9.3.2 Stijging van de grondwatertafel t.o.v. de huidige grondwaterstroming in het waterveld (Van Houtte E., 1997).

LEGENDE

Koksjde-Dorp
Koksjde-Bad
Hoge Blikker
ZP 2
ZP 4
Witte Burg
Oostduinkerke-Dorp
Oostduinkerke-Bad

Lijnen van gelijke verlaging t.o.v. natuurlijke grondwaterstroming (m)
Zuigput
Filterafwateren
Grondwaterkwaliteit

Het geïnfiltrerde water zal de grondwaterkwaliteit beïnvloeden. De wijziging in grondwaterkwaliteit treedt alleen op tussen het infiltratiepand en de winningsputten.

Onderstaande tabel geeft een overzicht van de kwaliteit van het grondwater, het infiltratiewater (proefopstelling) en de maximale toegelaten concentraties van het infiltratiewater (bepaald in de vergunning). Daarnaast wordt de drinkwaternorm en de maximaal toegelaten concentratie volgens het Vlarem eveneens opgenomen.

Tabel 9.3.4 Kwaliteit grondwater, infiltratiewater (proefopstelling), maximale concentratie infiltratiewater, drinkwaternorm en maximaal toegelaten concentratie volgens Vlarem.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>Max. gemeten concentraties grondwater</th>
<th>Kwaliteit infiltratiewater (proefopstelling)</th>
<th>MTC</th>
<th>Vlarem (MTC)</th>
<th>Infiltratie-norm Ned.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Temperatuur</td>
<td>°C</td>
<td>7,56</td>
<td>>6,5</td>
<td>25</td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>2. pH</td>
<td></td>
<td>7,56</td>
<td>>6,5</td>
<td>25</td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>3. Geleidingsvermogen</td>
<td>μS/cm</td>
<td>922</td>
<td>136</td>
<td>1000</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>4. Totale hardheid</td>
<td>°F</td>
<td>38</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5. Oxideerbaarheid</td>
<td>mg O2/l</td>
<td>94</td>
<td>27,4</td>
<td>250</td>
<td>350</td>
<td>25 (RN)</td>
</tr>
<tr>
<td>6. Chloride</td>
<td>mg/l</td>
<td>175</td>
<td>19</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>7. Sulfat</td>
<td>mg/l</td>
<td>11</td>
<td>2</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>8. Magnesium</td>
<td>mg/l</td>
<td>60</td>
<td>15</td>
<td>150</td>
<td>150</td>
<td>120</td>
</tr>
<tr>
<td>9. Natrium</td>
<td>mg/l</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>2,5</td>
</tr>
<tr>
<td>10. Nitraat</td>
<td>mg/l</td>
<td>1,65</td>
<td>2,97</td>
<td>1,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>11. Nitriet</td>
<td>mg/l</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>0,2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>12. Ammonium</td>
<td>mg/l</td>
<td>0,89</td>
<td></td>
<td>0,2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>13. Aluminium</td>
<td>mg/l</td>
<td>16</td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>14. IJzer</td>
<td>mg/l</td>
<td>16</td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>15. Mangaan</td>
<td>mg/l</td>
<td>16</td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>16. Koper</td>
<td>μg/l</td>
<td>100</td>
<td></td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17. Zink</td>
<td>μg/l</td>
<td>200</td>
<td></td>
<td>65</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>18. Fosfor</td>
<td>mg/l</td>
<td>0,24</td>
<td>0,4</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>19. Fluor</td>
<td>mg/l</td>
<td>< 0,1</td>
<td>1,5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20. Cyanide</td>
<td>µg/l</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>21. Chroom</td>
<td>µg/l</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>22. Kwik</td>
<td>μg/l</td>
<td>1</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>23. Nikkel</td>
<td>μg/l</td>
<td>50</td>
<td></td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>24. Loed</td>
<td>μg/l</td>
<td>50</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>25. Antimon</td>
<td>µg/l</td>
<td>10</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>26. Selenium</td>
<td>µg/l</td>
<td>10</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>27. Trihalomethan</td>
<td>µg/l</td>
<td>200</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>28. Som PAK (fluorante, benzol 3,4 fluorante, benzol 11,12 fluorante, benzol 3,4 pyreen, benzol 1,12 pyreen en indeno(1,2,3 cd))</td>
<td>µg/l</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>29. Som gemulgerde of opgeloste KWS en minerale oliën</td>
<td>µg/l</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>30. De pesticiden atrazine, simazine, diuron, individueel isoproturon en actief chloortoluuron product</td>
<td>µg/l</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Legende: KWS: kooldwaterstoffen; RN: richtnorm; MTC: maximaal toegelaten concentratie
Als milieukwaliteitsnormen voor het grondwater wordt de maximaal toegelaten concentratie volgens Vlarem II beschouwd. Volgens art. 2.4.1 §2 van het Vlarem II geldt als milieukwaliteitsnorm de natuurlijke voorkomende grondwaterkwaliteit, eigen aan de geologische formatie van de watervoorzende laag zonder beïnvloeding van lozingen.

Tabel 9.3.4 toont aan dat de maximaal toegelaten concentratie voor het infiltratiewater gebaseerd is op de norm voor het drinkwater. Voor de parameters waarvoor geen drinkwaternorm bestaat, werd gebaseerd op de maximaal toegelaten concentratie voor grondwater volgens het Vlarem II. Deze tabel toont aan dat de concentraties in het infiltratiewater beduidend lager zijn dan de maximale concentratie volgens de vergunning en ook lager dan de maximaal toegelaten concentratie volgens het Vlarem II. Ook de maximale gemeten concentratie van het grondwater is lager dan de maximaal toegelaten concentratie volgens het Vlarem II. Er dient tevens opgemerkt te worden dat de natuurlijke concentratie voor ammonium en nitriet reeds verhoogd zijn. De gemeten concentratie voor ammonium en nitriet in het infiltratiewater voldoet momenteel niet aan de voorgestelde eisen. Zoals reeds in de projectomschrijving vermeld is, werd hier ammonium in overmaat gedoseerd opdat geen vrij chloor aanwezig zou zijn in het water. Volgens de projectomschrijving zullen de opgelegde maximaal toegelaten concentraties niet overschreden worden. Bij vergelijking van de normen in de vergunning met de Nederlandse infiltratieregeling (zie ook bijlage 4.2) blijkt dat de normen in Nederland strenger zijn dan gehanteerd in de vergunning. Er dient ook opgemerkt te worden dat de gemeten concentraties van het infiltratiewater tijdens de proefopstelling beduidend lager zijn dan de vooropgestelde normen in Nederland, met uitzondering van ammonium. Voor deze parameter geldt de norm van 2,5 mg/l, wat hoger is dan deze vastgelegd in de vergunning.

Door de infiltratie en de vermindering van onttrekking van natuurlijk grondwater neemt de uitstroming van het grondwater naar zee toe. Hierdoor kan de zoetwaterlens onder de duinen zich uitbreiden.

Het centrale wandelpad wordt voorzien van kleischelpen. Door uitloging van deze kleischelpen kan lokaal de grondwaterkwaliteit wijzigen.

Bij reiniging van de zuigleidingen en de pompputten wordt het gebruikte spoelwater in de duinen geloosd. Hierdoor kan het spoelwater, bestaande uit een mengsel van natuurlijk grondwater en het geïnfiltreerde water terug naar de ondergrond infiltreren en wordt het grondwater gevoed. Indien het spoelwater buiten de zone van het infiltratiepand en de pompputten geloosd wordt, kan een wijziging van de grondwaterkwaliteit ontstaan.

Om de beïnvloeding van de kwaliteit van het natuurlijke grondwater te beperken, wordt het geïnfiltreerde water behandeld (zie projectomschrijving). Deze behandeling zal toelaten om de zwevende stoffen uit het water te halen. Hierdoor zal geen of zeer weinig slib in het infiltratiepand afgezet worden.

Door de winningsputten op zodanige wijze te spreiden wordt het geïnfiltreerde water volledig onttrokken. De spreiding van de winningsputten moet toelaten het geïnfiltreerde water te onttrekken, waardoor geen geïnfiltreerd water kan ontsnappen en zich verdelen in het natuurlijke grondwater.

Deze voorgestelde maatregelen lijken voldoende.

Waterhuishouding

Noch tijdens de uitvoeringsfase, noch tijdens de exploitatiefase zullen de aanwezige vergunde waterwinningen beïnvloed worden.
9.3.4.3 Calamiteiten

Bij eventuele lekken in de leidingen zijn de gevolgen voor water beperkt en grotendeels verwaarloosbaar. Mogelijke lekken in de leiding met het drinkwater en infiltratiewater zijn in het duinengebied en in de polders verwaarloosbaar.

Gezien het korte traject van de leiding van het lozingswater, worden de effecten bij een lek in deze leiding beperkt tot het traject tussen het behandelinggebouw en het lozingspunt. Bij mogelijke lekken in deze leiding kan het grondwater aangerijkt worden.

9.3.5 Beoordeling van de milieu-effecten

Gezien geen bemalingen voorzien worden voor de aanleg van de leidingen, zijn geen effecten te verwachten.

De bemalingen tijdens de bouw van het behandelinggebouw, zijn tijdelijk, waardoor de effecten ook tijdelijk en verwaarloosbaar zijn. Na de bemalingen kan het grondwaterpeil zich herstellen.

Door de kunstmatige aanvulling kan de grondwatertafel stijgen. Dit is een positief effect. Na 4 jaar is reeds een evenwicht bereikt.

De concentraties voor de verschillende parameters in het infiltratiewater volgens de proefopstelling zijn lager dan deze in het natuurlijke grondwater, behalve voor ammonium en nitriet. Gezien de wijziging van de grondwaterkwaliteit, als gevolg van de infiltratie, zich beperkt tot de zone tussen het infiltratiepand en de winningsputten, is dit effect verwaarloosbaar.

De uitbreiding van de zoetwaterlens naar zee heeft een gunstige invloed, omdat de verziling teruggedrongen wordt.

De wijziging van de grondwaterkwaliteit ten gevolge van de kleischelpen zal zich vooral situeren ter hoogte van het centrale wandelpad en zal zich uitbreiden in de richting van de pomppputten.

De wijziging van het grondwaterkwaliteit ten gevolge van de spoeiling van de putten en leidingen is tijdelijk en verwaarloosbaar.

9.3.6 Conclusie en milderende maatregelen

Gezien het verschil in kwaliteit van het natuurlijke grondwater en het infiltratiewater is het aangewezen de kwaliteit van het infiltratiewater af te stemmen op die van het natuurlijke grondwater. Bovendien is het aangewezen steeds een groter volume dan dat van het geïnfiltreerde water te onttrekken. Dit belet mogelijke wijziging van de kwaliteit van het natuurlijke grondwater.

Om de toestand van de grondwaterkwaliteit in de nabije omgeving van het infiltratiepand na te gaan worden regelmatig grondwaterstalen in de nieuw te plaatsen peilbuizen geanalyseerd. Het onttrokken debiet en het debiet van infiltratie kunnen zo nodig tijdig aangepast worden.

De kleischelpen waarvan het centrale wandelpad voorzien wordt, dienen van zo'n kwaliteit te zijn dat bij uitingen geen ongewenste stoffen in het grondwater terecht kunnen komen.

Om de wijziging van de kwaliteit van het grondwater door spoeilwater tegen te gaan, kan het spoeilwater in het infiltratiepand geloosd worden.

Men dient een controlesysteem te voorzien om lekken in de leiding van het lozingswater op te sporen. Hiervoor dienen debietsmeters geplaatst te worden ter hoogte van het behandelinggebouw en het lozingspunt.
De integrerende disciplines

9.4 Fauna en Flora

9.4.1 Analyse van de geplande situatie en beoordeling van de milieu-effecten

9.4.1.1 Aanlegfase

Deelgebied A (Doornpanne)

Biotoopverlies ten gevolge van vergravingen en bodemverstoring

In de aanlegfase zal fauna en flora in Zone I grondig verstoord worden en definitief verdwijnen waar het infiltratiepand wordt aangelegd. Uit de beschrijving van de referentiesituatie (zie aldaar) en uit figuur 8.4.2. blijkt dat het grootste gedeelte van het weg te graven oppervlakte bedekt is met biologisch weinig waardevolle vegetaties. Ook de boomstanden die definitief zullen verdwijnen in een radius van 30 m rond het pand hebben een geringe biologische waarde. Dit effect is derhalve negatief, permanent en significant als ingreep in se maar heeft een geringe significantie m.b.t. aantasting van waardevolle biotopen op voorwaarde dat de zeer kwetsbare graslandvegetatie ten noordoosten van het infiltratiepand (fig. 1 in bijlage 4.1.) gespaard blijft.

Ook bij de aanleg of heraanleg van de onderhoudswegen en het wandelpad, bij de aanleg van de begeleidende tracés en bij het boren van nieuwe winputten treden bodemverstoringen op die echter beperkt blijven tot vegetaties met een (relatief) geringe waarde. Dit effect is negatief maar overwegend tijdelijk en weinig significant aangezien het hier gaat over vooral heraanleg op onbegroeid zanden/ of in populier- en abeelbestanden.

De beheersplanrichtlijnen (ontwikkelingsscenario) m.b.t. de inrichting van het infiltratiepand, wegen en wandelpad (bijl. 4.1) neutraliseren en compenseren de negatieve effecten ten gevolge van bodemverstoring op voorwaarde dat zij strikt worden opgevolgd b.v. dat geen vergravingsgevoelige waardevolle vegetaties (fig. 8.4.2.) onnodig worden weggegraven.

Effecten ten gevolge van bodemverdichting

Door de bewegingen van de voertuigen op het terrein en het stapelen van materiaal treden bodemverdichting en reliëfwijzigingen op. Volgens de gegevens van de discipline ‘Bodem’ is de verdichting slechts tijdelijk van aard. Gezien de meeste vegetaties in Zone I weinig vergravingsgevoelig zijn, zijn ze in de regel eveneens weinig gevoelig voor een tijdelijke bodemverdichting. Het effect is derhalve niet permanent en niet significant en heeft derhalve geen grote invloed op het ontwikkelingsscenario.

Effecten ten gevolge van grondverzet

Waar aarde tijdelijk wordt opgestapeld ontstaat bodemverdichting en treedt in vele gevallen ruderalisatie van de vegetatie op doordat de plaatselijke vegetatie die afsterft ten gevolge van het stapelen de bodem heeft aangerijkt en er eveneens aantasting kan komen van de opgestapelde aarde zelf wanneer deze gemengd is met organisch materiaal (toplaag). Deze ingreep kan derhalve zeer negatieve en langdurige effecten hebben op mesotrofe of oligotrofe vegetaties. Volgens de interne deskundige E. Van Houtte (pers. meded, 1999) zou de afgegraven aarde permanent gestapeld worden ten zuiden van het infiltratiepand om als scherm te functioneren voor de aanpalende bebouwing. Deze aanleg zou gebeuren op twee plaatsen met een biologisch weinig waardevolle vegetatie (zie lokatie zanddepositie op Fig. 8.4.2.). In het ontwikkelingsscenario wordt het grondverzet als een belangrijk element beschouwd en wordt een verdere uitwerking van de locaties in samenspraak met het IN voorzien (zie bijlage 8.4.5 paragraaf 2.2).
Rustverstoring ten gevolge van geluidsemisssies en visuele effecten
Uit de ons door Lic. D. Bonte ter beschikking gestelde ongepubliceerde gegevens over de locaties van broedgevallen van zangvogels in de Doornpanne in 1998 blijkt dat in theorie ten gevolge van de geluidsemisssies van de werkzaamheden en verhoogde menselijke aanwezigheid vrijwel alle geciteerde broedvogels van de Doornpanne kunnen verstoord worden, daar er broedgevallen genoteerd werden in de radius vastgelegd voor Zone II. Niet zozeer de menselijke aanwezigheid en het geluid van machines op zichzelf veroorzaakt het voornaamste rustverstorend effect, aangezien dit in zekere zin hoort bij de dagelijkse omgevingsserving van de dieren maar wel de vegetatievernieuwing en in het bijzonder ingrepen zoals het vellen van bomen die drastische en plotse veranderingen in de dieren hun leefomgeving teweegbrengen.

Effecten ten gevolge van veranderingen in de grondwatertafel
Er zijn geen effecten te verwachten

Deelgebied B (kanaal Duinkerke-Nieuwpoort)
Er worden geen ingrepen voorzien in het kanaal Duinkerke – Nieuwpoort waardoor ook geen effecten te verwachten zijn.

9.4.1.2 Exploitatiefase en onderhoud

Deelgebied A (Doornpanne)
Biotoopverlies ten gevolge van vergravingen en bodemverstoring
De exploitatie brengt geen ingrepen van bovenstaande aard teweeg. De effecten ten gevolge van bodemverstoring door onderhoudswerken kunnen enkel zeer lokaal en accidenteel zijn en derhalve weinig significant. Ook hier geldt als veiligheidsregel dat het beheer van het ganse gebied blijft gestuurd worden in samenspraak met het I.N.

Effecten ten gevolge van bodemverdichting
Tijdens de onderhoud is het effect zeer beperkt.

Rustverstoring ten gevolge van geluidsemisssies en visuele effecten
Dit effect zou tijdens deze fase weinig uitgesproken moeten zijn.

Effecten ten gevolge van veranderingen in de grondwatertafel
Het verminderen en stopzetten van waterwinning in andere duingebieden ten gevolge van de geplande uitbreiding in de omgeving van de Doornpanne heeft voor de fauna en flora van de betrokken duingebieden ongetwijfeld een positief effect. De significante effecten van de geplande uitbreiding van de grondwaterwinning in de Doornpanne zelf zal waarschijnlijk gering zijn. Afgaande op het feit dat het grondwaterpeil toch nog 2,75 m onder het maaiveld blijft op de laagste punten i.p.v. 4 m (zie Discipline Bodem en Grondwater) zullen waarschijnlijk geen belangrijke vegetatieveranderingen optreden in de hoger gelegen delen van de Doornpanne. De effecten in de Doornpanne zelf ten gevolge van deze ingreep zijn derhalve matig positief. Uit de opmerkingen van Kuijken et al (1993) i.v.m. vegetatieverschuivingen ten gevolge van watertafelveranderingen blijkt eveneens dat de causaliteit niet zo evident is (zie bijlage 8.4.6).
Effecten ten gevolge van het creëren van een ondiep stilstaand oppervlaktewater met zwak glooiende oevers.

Het creëren van een vrij groot oppervlaktewater met een grazige vegetatie eromheen zou in de sterk verdroogde duinen voor fauna en flora een zeer positief en significant effect kunnen hebben vooropgesteld dat:

1. de waterkwaliteit geschikt is voor de ontwikkeling van een gediversifieerde aquatische gemeenschap;
2. de aanwezigheid van grote hoeveelheden watervogels niet verhindert dat de water- en randvegetatie en de invertebratenfauna de kans krijgen zich te ontwikkelen.

Wat het eerste betreft rijzen vragen over de mogelijkheden tot de ontwikkeling van een gevarieerde gemeenschap wanneer de kwaliteitsnormen voor het infiltratiewater vooropgesteld door de I.W.V.A. vergeleken worden met de normen voor basiskwaliteit (zie discipline Water). De relatief hoge gehalten aan voedingsstoffen (nitraat en fosfaat) zouden kunnen eutrofiëring en algenbloeien veroorzaken en derhalve de ontwikkeling van de aquatische fauna en flora sterk beperken en verruigen van de vochtige graslanden bevorderen.

Het reeds aangerijkte infiltratiepand kan nog verder eutrofiëren ten gevolge van bladaccumulatie en bemestiging door watervogels. Alhoewel een zone van 30 m wordt vrijgemaakt van bomen rond het pand zelf zal dit niet verhinderen dat hier in de herfst bladaccumulatie plaatsvindt tenzij zich een dichte rietkraag heeft ontwikkeld. Om bladaccumulatie te vermijden zou het pand tijdelijk worden drooggelegd zodat het kan ‘uitwaaien’ (E. Van Houtte, pers. meded., 1999). Deze oplossing verhindert echter de ontwikkeling van een meer permanente aquatische gemeenschap.

Een zeer ernstige bedreiging vormen echter de watervogels. Zo leidde de aanleg van luwten en ondiepe plasbermen in verschillende wateren (o.a. in de Leuvense Vaart) door AMINAL Afdeling Bos en Groen niet tot de verhoopte verbetering (ontwikkeling van een weelderige aquatische en emergente plantengroei) maar tot een verslechtering (vernield oevervegetatie, omgewoelde vegetatiedoem bodem, sterk verontreinigd water) ten gevolge van de voorliefde van watervogels om zich te concentreren op dergelijke plaatsen. Indien geen gepaste beschermingsmaatregelen genomen worden (zie milderende maatregelen) bestaat er veel kans dat dit ook in het infiltratiepand het geval zal zijn.

Wat de relatie van deze ingreep met het ontwikkelingsscenario betreft kan gesteld worden dat de aanleg van het infiltratiepand van dit scenario een integraal deel uitmaakt en dat dit als een positieve ingreep wordt beschouwd (verhoging van biotoopdiversiteit) alhoewel dit water geen natuurlijk element is (zie uitgebreide bespreking in bijlage 8.4.5)

Deelgebied B (kanaal Duinkerke-Nieuwpoort)

Effecten ten gevolge van het lozen van afvalwater

Het lozen van het concentraat in het kanaal Duinkerke-Nieuwpoort zal vooral een effect op fauna en flora hebben door het feit dat het water aangerijkt wordt met nutriënten en minder zuurstof zal bevatten in het gebied weergegeven op figuur 8.4.1. De reeds arme aquatische fauna zal hierdoor nog verder verarmen en het is niet uitgesloten dat in het deel Wulpen - Nieuwpoort occasioneel vissterften zullen optreden tijdens warme perioden. Ook algenbloeien kunnen voorkomen ten gevolge van de aanrijking terwijl de bermvegetatie hierdoor verder zal verruigen. Het effect van de lozingen is negatief, significant en permanent (zolang de lozingen duren) en staat haaks op de gestuurde ontwikkeling.
Effecten ten gevolge van calamiteiten

In principe zou het effect ten gevolge van lozingen bij calamiteiten beperkt in omvang en duur moeten zijn en derhalve een geringe invloed hebben.

9.4.2 Milderende maatregelen

Grote delen van de richtlijnen voor de aanleg van het infiltratiepand, wandelpaden en onderhoudswegen, vastgelegd in het Beheersplan (zie tabel 8.4.6.) en in I.N.-Advies 99.36, zijn in feite milderende maatregelen en er wordt dan ook expliciet naar deze documenten verwezen.

In additie worden de volgende aanbevelingen gegeven:

- geen werken uitvoeren tijdens het broedseizoen;
- de oppervlakte van het infiltratiepand en van de oevers zou moeten afgeschermd worden met netten of draden om watervogels te weren tot zich een vegetatie heeft kunnen ontwikkelen;
- de pH van het water in het pand zou hoog moeten gehouden worden (pH = 8) om de nutriënten zoveel mogelijk onbeschikbaar te maken.
9.5 MONUMENTEN EN LANDSCHAPPEN

De geplande situatie impliceert de aanleg van een infiltratiepand in het waterwinningengebied van Sint-André (ten zuidwesten van de bestaande waterwinning) en van een aantal leidingen en voorziet in de bouw van een behandelingsgebouw ter hoogte van RWZI, langsheen het kanaal Duinkerke-Nieuwpoort.

Om het infiltratiewater aan te voeren zal een nieuwe leiding aangelegd worden vanaf het behandelingsgebouw bij RWZI Wulpen tot aan het uitlaatpunt van het infiltratiepand. Er wordt slechts één lozingspunt behouden, nl. het lozingspunt in het kanaal Duinkerke-Nieuwpoort.

De aan te leggen leiding doornijdt een open ruimtegebied vanaf de site van RWZI tot aan het kruispunt van de Ganzestraat en Burgweg. Tot in de Doornpanne volgt het tracé verder de bestaande wegen.

9.5.1 Methode effectbeoordeling

Aangezien het project zich situeert in landschappelijke gebieden met belangrijke wetenschappelijke waarden (geomorfologisch, bodemkundig, ecologisch) en cultuurhistorische waarden (historisch-geografische relictten en archeologica), kregen deze elementen bijzondere aandacht bij de effectbeoordeling en waardering.

De effectenbeoordeling gebeurde eerst inhoudelijk, dan fysiognomisch en tenslotte werden de evaluaties gesynthetiseerd in een impactmatrix.

Inhoudelijke effecten per ingreepgroep

1. Materiële verandering van de toestand en het voorkomen van objecten: dit omvat alle veranderingen aan discrete objecten zoals gebouwen, constructies, afsluitingen, rijbeplanting, enz. Deze ingrepen geven directe effecten die onmiddellijk zichtbaar worden in het landschap. In voorliggend project betreft het in hoofdzaak: de wijziging van de duinpanne tot een infiltratiegebied, verandering van wegen en paden en de bouw van een behandelingsegebouw nabij het kanaal Duinkerke-Nieuwpoort.

2. Functieverandering: bestaande objecten kunnen een nieuwe functie toegemeten krijgen, waardoor hun betekenis in de ruimtelijke context en dus hun relatie met de omgeving kan veranderen, hetgeen tot indirecte effecten op langere termijn kan leiden. Ookvlakvormige verschijnselen (percelen, struwelen,..) kunnen van functie veranderen door een nieuwe bestemming of bodembezettings. Dit is het geval voor het infiltratiegebied, waarbij de effecten van de functiewijziging zich in hoofdzaak beperken tot wijzigingen in de geomorfologische processen in het gebied.

3. Vullen van de open ruimten: de open ruimten worden begrensd door massa’s of schermen. Massa’s en schermen kunnen van abiotische aard zijn (gebouwen, muren, bermen) of biotisch van aard (bos, houtkanten, bomenrijen). Het toevoegen van nieuwe massa’s en schermen vullen en versnijden de bestaande open ruimten waardoor het landschap kleinschaliger wordt en een nieuwe skyline gevormd wordt. In voorliggend project betreft het hier de bouw van het nieuwe behandelingsegebouw bij het kanaal Duinkerke-Nieuwpoort.

4. Versnijden van de Open Ruimte: de Open Ruimte omvat het landelijke gebied dat gekenmerkt wordt door het ontbreken van uitgestrekte aaneengesloten bebouwde oppervlakten. Deze gebieden kunnen versneden worden waarbij dit 'Open Ruimte'- karakter verloren gaat door elementen die de ruimten verkleinen. Dit kan zowel
fysiognomisch (visuele massa's en schermen), als functioneel (barrières die de toegankelijkheid beperken). Effecten slaan o.m. op verstoring, isolement, toegankelijkheid. Effecten van versnijding zijn voor dit project van tijdelijke aard, nl. tijdens de aanleg van de nieuwe leidingen.

5. Reliëfswijzigingen slaan op vergravingen, ontgrondingen, ophogingen, storten, enz. Effecten die hiervan het gevolg zijn kunnen bijzonder gevarieerd zijn. Relevant in dit project zijn de vergravingen tijdens de aanleg van de leidingen doorheen de niet-bebouwde gronden, waardoor vernietiging van het archeopatrimonium mogelijk is. In en rond het studiegebied zijn archeologische vindplaatsen bekend, zodat het aansnijden van nieuwe archeologische sites niet onwaarschijnlijk is.

Inhoud effectgroepen

1. Verlies erfgoedwaarde: de kern van het landschappelijke erfgoed is de landschappelijke structuur die gegroeid is uit een eeuwenlange organisatie en herinrichting door de mens van zijn leefmilieu. Deze basisstructuren zijn soms nog duidelijk bewaard gebleven in het landschap, alhoewel het gebruik en de invulling van de ruimten en het gebruik of de functie van de constituerende elementen in de loop van de tijd veranderd zijn geworden. Zowel deze structuren als elementen vormen het landschappelijk erfgoed. Behalve deze zichtbare relicten, zijn er nog heel wat getuigenissen van ons erfgoed onzichtbaar en niet bekend, maar potentieel aanwezig onder ieder materiële laag van het huidige landschap. De bodem en iedere constructie vormt een waar archief van ons natuurlijk en cultuurhistorisch erfgoed. Voorliggend project brengt geen significante verstoringen aan zichtbare en structurele erfgoedwaarden. Vernietiging van archeologische erfgoedwaarden is daarentegen mogelijk.

2. Structuurwijzigingen: verschillende types van landschappelijke structuren kunnen gedefinieerd worden. Structuurwijzigingen vormen een uitgebreide en gevarieerde groep van effecten die zich vooral situeren rond de problematiek van de versnippering (zie MIRA-1, 2 en T). In dit project is de versnijding van de open ruimte in de polders te beschouwen als een niet significante versnippering. De aanleg van het infiltratiepand is een morfologische structuurwijziging die nieuwe ecotonen en grenseffecten doet ontstaan. Deze zijn vooral landschapsecolgisch van aard.

4. Wijziging van belevingskwaliteiten: de beleveniswaarde van een landschap is niet alleen afhankelijk van landschappelijke kenmerken, maar ook van individuele en maatschappelijke factoren. Belevingswaarde is tijd-, maatschappij- en cultuurgebonden. Waarnemingskenmerken en cognitieve ervaringen van de waarnemer zijn eveneens van invloed. Ten behoeve van m.e.r. is het niet noodzakelijk om in de eerste plaats te
onderzoeken hoe de belevingswaarde is bij de potentiële gebruikers van het landschap (bewoners, recreanten,..) en hoe zij tegen de geplande ingrepen aankijken (dit hoort o.m. bij de milieudiscipline ‘mens’). Het domein van de Doornpanne is privaat gebied en de gewijzigde belevingskwaliteiten in het duinengebied voor buitenstaanders zijn bijgevolg niet relevant te noemen. Voor de delen in de bebouwde zone en de polder veroorzaken de werken een tijdelijke hinder en tijdelijk verlies van belevingskwaliteiten. De inplanting van het nieuwe behandelingsgebouw geeft wat massa, vorm en architectuur geen bijkomende en significante negatieve veranderingen in belevingswaarden van het omliggende landschap omwille van het reeds bestaan van de waterzuiveringsinstallaties, bestaande bermen en schermen. Ook de bestaande bebouwing (o.m. loodsen en schuren) en de dijk van het kanaal bufferen de visuele invloed.

9.5.2 Invloedmatrix

Volgende tabellen geven een overzicht van de te verwachten effecten per segment van het voorliggende project, onderverdeeld naar ingreepgroepen en effectgroepen op landschappen, monumenten en materiële goederen met hun beoordeling na de terreinstudie. De hoofdletters verwijzen naar de verschillende segmenten van het leidingtracé, nl.:

- segment A: de omgeving van het behandelingsgebouw;
- segment B: het tracé doorheen het poldergebied tot aan het waterzuiveringsstation;
- segment C: het tracé langs openbare wegen doorheen het bebouwde gebied tussen Koksiëde en Oostduinkerke;
- segment D: het tracé door de duinen en Doornpanne in het bijzonder, inclusief aanleg van het infiltratiepand.

Tabel 9.5.1 Beoordeling van de effecten per ingreep- en effectgroepen.

<table>
<thead>
<tr>
<th>Ingreepgroep > Effectgroep</th>
<th>Segment</th>
<th>Materiële verandering van de toestand en het voorkomen van objecten</th>
<th>Functieverandering</th>
<th>Vulle van de Open Ruimte</th>
<th>Versnijden van de Open Ruimte</th>
<th>Reliëfs-wijzigingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verlies erfgoedwaarde</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>= 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-</td>
<td>-t</td>
<td>0</td>
<td>0</td>
<td>-t</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-</td>
<td>-t</td>
<td>0</td>
<td>0</td>
<td>-t</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>-3</td>
<td>=</td>
<td>0</td>
<td>=7</td>
<td>=3</td>
</tr>
<tr>
<td>Structuurwijzigingen</td>
<td>A</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td>=t</td>
<td>0</td>
<td>0</td>
<td>-t</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>=4</td>
</tr>
<tr>
<td>Wijzigen perceptieve kenmerken</td>
<td>A</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-</td>
<td>-t</td>
<td>0</td>
<td>0</td>
<td>-t</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-</td>
<td>-t</td>
<td>0</td>
<td>0</td>
<td>-t</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>X5</td>
<td>X5</td>
<td>0</td>
<td>0</td>
<td>X5</td>
</tr>
<tr>
<td>Wijzigen belevingskwaliteiten</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-</td>
<td>-t</td>
<td>0</td>
<td>-t</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>O6</td>
<td>+6</td>
<td>0</td>
<td>+6</td>
<td>0</td>
</tr>
</tbody>
</table>

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26) Tel.: 09/264.46.47; fax: 09/264.49.88
Legende:

Beoordingsschaal:
- : de ingreepgroep veroorzaakt belangrijke negatieve effecten op de effectgroep
- : de ingreepgroep veroorzaakt beperkte negatieve effecten op de effectgroep
O : de ingreepgroep veroorzaakt weinig of geen significante effecten op de effectgroep
+ : de ingreepgroep veroorzaakt beperkte positieve effecten op de effectgroep
++ : de ingreepgroep veroorzaakt belangrijke positieve effecten op de effectgroep
X : de ingreepgroep veroorzaakt een wijziging op de effectgroep waarvan het negatieve of positieve effect afhankelijk is van de waardennormen.
() : voorwaardelijk effect
. t : tijdelijk effect

Toelichtingen:

1. het behandelingsegebouw wordt ingeplant op een reeds bebouwd terrein, naast een boerderij met hangar;
2. zeer beperkt negatief effect gezien het reeds voorkomen van andere bebouwing in de buurt en bestaande bermen en dijken;
3. het betreft hier een mogelijk verlies van archeologisch potentieel belangrijke elementen en dit zowel bij de aanleg van de transportleidingen, als bij de aanleg van het infiltratiepand;
4. een aanzienlijke structuurwijziging bij de aanleg van het infiltratiepand wegens vergravingen en ophoping uitgegraven materiaal ten zuiden van dit infiltratiepand;
5. de aanleg van een infiltratiepand zorgt voor andere perceptieve kenmerken in het duinengebied; de aanleg van een nieuw wandelpad bovenop het tracé van de transportleidingen zorgt ervoor dat het duinengebied op een andere manier zal waargenomen worden;
6. de toegankelijkheid van het duinengebied wordt verhoogd met de aanleg van het nieuwe wandelpad dat voor een hogere belevingskwaliteit van het gebied zorgt;
7. het betreft hier een mogelijk verlies van archeologisch potentieel belangrijke elementen bij de aanleg van de transportleidingen en het wandelpad.

In het kader van dit projectvoorstel is het uitwerken van een grondige visuele invloed voor het hele studiegebied weinig relevant, aangezien de zichtbare effecten op het landschap hoofdzakelijk van tijdelijke aard zijn, nl. bij de aanleg van het project. Wel wordt aandacht besteed aan een blijvende visuele invloed van het infiltratiepand en het voorziene behandelingsegebouw aan het kanaal.
Figuur 9.5.1 Het visueel effect van het infiltratiepand
Zicht op de inplantingplaats van het behandingsgebouw aan het kanaal. Het gebouw zal een oppervlakte van 30mx24m innemen (actueel slibbekken) en een hoogte hebben van 6m. Tussen het gebouw en het kanaal met aanpalende weg staat een groenscherm, dat de constructie visueel gedeeltelijk zal afschermen.

Zicht in noordoostelijke richting op de Conterdijk, het kanaal en de Dijk met aanpalende huizen. De inplantingplaats van het behandingsgebouw ligt achter de opgaande begroeiing.

Zicht op de inplantingplaats vanaf de Dijk (overkant kanaal). Rechts hiervan staat een opvallend grote hangar van een aanpalende boerderij. Het gebouw zal grotendeels afgeschermd zijn door de opgaande begroeiing, waardoor de visuele hinder vanop de Dijk gedeeltelijk wordt gemilderd.
Zicht op de inplantingsite van het behandelingsgebouw vanaf de Torreelhoek, net ten noordwesten van het Torreelhof. Kijkafstand ca. 875m. Vanaf deze standplaats zou het behandelingsgebouw niet tot nauwelijks waarneembaar zijn.

Zicht op de inplantingsite vanaf de Torreelhoek. Kijkafstand ca. 625m. Vanaf hier gezien zou het behandelingsgebouw slechts een kleine en moeilijk te onderscheiden massa zijn tussen de overige bebouwingselementen.

Zicht op de inplantingsite vanaf een aardeweg ten noorden van Hoeve Torrele. Kijkafstand ca. 1000m. Het behandelingsgebouw zou vanaf deze plaats niet meer te onderscheiden zijn van zijn omgeving.
Figuur 9.5.3 Situering foto's visuele impact van het behandelingsgebouw.

LEGENDE

N Richting foto met volgnummer

Inplantingplaats behandelingsgebouw

RUG – Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)
Tel.: 09/264.46.47; fax: 09/264.49.88
DEEL 10 LEEMTEN IN DE KENNIS

Technische discipline

10.1 GELUID

Door het vroege stadium van het ontwerp zijn geen voldoend nauwkeurige technische gegevens over de toestellen die zullen gebruikt worden, en over de lay-out van de gebouwen beschikbaar om een accuraat akoestisch ontwerp uit te voeren. Er kan enkel een ruwe haalbaarheidsstudie, gebaseerd op equivalente installaties uitgevoerd worden. Milderende maatregelen kunnen door deze leemte enkel in algemene termen geformuleerd worden. Mits er bij eventuele aanpassingen in het ontwerp voldoende aandacht besteed wordt aan de geluidsemisie, zal deze leemte geen invloed hebben op de conclusies van dit rapport. Ook het schatten van de akoestische hardheid van de bodem in de omgeving blijft een mogelijke bron van onnauwkeurigheden bij de immissieberekeningen. Veranderlijke atmosferische omstandigheden worden in rekening gebracht voor een matig belastende situatie: de werkelijke immissie zal soms hoger of lager zijn.

10.2 BODEM

De mogelijke zettingen ten gevolge van de bemalingen voor de bouw van het behandelingsgebouw werden niet berekend, omdat onvoldoende gegevens voorhanden zijn. Gezien de aanwezigheid van het RWZI dient rekening gehouden te worden met zettingen.

10.3 WATER

OPPERVLAKTEWATER
De concentraties van een aantal parameters (o.a. ammoniak en Orthofosfaat) in het I.W.V.A.-infiltratiewater, het I.W.V.A.-concentraat en het water van het kanaal Duinkerke-Nieuwpoort zijn niet bekend, derhalve kan de effectenbeoordeling niet volledig worden uitgevoerd. Toch moet gesteld worden dat met de gekende concentraties een goed globaal inzicht qua effecten kan verkregen worden.

GRONDWATER
De grondwaterkwaliteit ter hoogte van het behandelingsgebouw is niet bekend. Indien er een verontreiniging aanwezig is, kan deze zich verplaatsen door de bemalingen die nodig zijn voor de bouw van het behandelingsgebouw. Er wordt een oriënterend bodemonderzoek voorzien. In dit onderzoek zal bepaald kunnen worden welke de gevolgen zullen zijn van de bemalingen.

De kwaliteit van de kleischelpen is niet gekend. Deze dienen van zo'n kwaliteit te zijn dat door uitlegging geen ongewenste stoffen in het grondwater terecht kunnen komen. Gezien de mogelijke gevolgen plaatselijk zijn, zal deze leemte in de kennis geen invloed hebben op de conclusies van het rapport.
De integrerende disciplines

10.4 Fauna en flora

Er zijn geen leemten in de kennis voor wat betreft de discipline fauna en flora.

10.5 Monumenten en landschappen

Er zijn geen leemten in de kennis tenzij de mogelijkheid van het aansnijden van een archeologische site die niet aan het oppervlak of vanuit de lucht detecteerbaar was.
DEEL 11 INTEGRATIE EN EINDSYNTHESE

Dit MER heeft betrekking op de aanleg van een infiltratiepand in de Doornpanne, op initiatief van de I.W.V.A., op het grondgebied Koksijde-Oostduinkerke. Daarbij worden leidingen aangelegd en een behandelingsgebouw opgetrokken. Het behandelingsgebouw wordt voorzien op het RWZI-Wulpen. Het project past in de afbouw van de winning van natuurlijk fretatisch grondwater in de duinen.

Gedurende de ontwerpfase van deze m.e.r. werd de ligging van het behandelingsgebouw gewijzigd. Het behandelingsgebouw was oorspronkelijk voorzien in de duinen, maar zal nu worden opgetrokken ter hoogte van RWZI-Wulpen. Deze aanpassing heeft tot gevolg dat de duinen niet verder aangetast worden.

Voor de inrichting van het projectgebied werd rekening gehouden met het beheersplan opgesteld door het I.W.V.A. in overleg met het Instituut voor Natuurbehoud.

Door het Instituut van Natuurbehoud werden reeds adviezen inzake de inrichting van het infiltratiepand, de aanleg van de wandelpaden en de opslag van de afgegraven gronden overgemaakt.

In hetgeen volgt worden de significante permanente en tijdelijke effecten vermeld zoals deze uit de effectenstudie voor de onderzochte disciplines naar voren komen. Het betreft de disciplines geluid, bodem, water, fauna en flora en monumenten en landschappen. Ook de milderende maatregelen door het college van deskundigen worden voorgesteld. De discipline landschappen ziet geen noodzaak aan milderende maatregelen. Mits uitvoering van de milderende maatregelen kan gesteld dat de toekomstige aanleg en exploitatie van de leiding voor het leefmilieu aanvaardbaar is.

Het project veroorzaakt geen grensoverschrijdende effecten.

11.1 TE MINDEREN PERMANENTE EFFECTEN

GELUID

Effect: overschrijding van de VLAREM II-grenswaarde tijdens de nachtperiode.

Milderende maatregel: Akoestisch zorgvuldig afwerken van de gebouwen waarin zich belangrijke geluidsbronnen bevinden (MEMCOR zuiveringsinstallatie) heft het effect volledig op.

BODEM

Effect: structuurwijziging en profielwijziging bij aanleg van de leidingen.

Milderende maatregel: teelaarde gescheiden afgraven en stockeren om naderhand terug bovenaan aan te brengen. Het effect zal gedeeltelijk opgeheven worden.

Effect: inbeschamme bij aanleg van de leidingen.

Effect: bodemverdichting in de duinen (boortoren).

Minderende maatregel: door gebruik te maken van rijplaten wordt de bodemverdichting grotendeels opgeheven.
Intercommunale Waterleidingsmaatschappij van Veurne-Ambacht

Kunstmatige aarvuiling van het grondwaterreservoir in Sint-André

Effect: bodemverdichting (belasting door vrachtwagens en kranen) bij aanleg van leidingen in polders.

Milderende maatregel: door de akkers te frezen wordt het effect gedeeltelijk opgeheven.

Effect: ondoordringbaar maken van de bodem bij plaatsen van pompputten.

Milderende maatregel: geen additieven of biologisch afbreekbare additieven gebruiken. Het effect wordt volledig geneutraliseerd.

WATER

OPPERVLAKTEWATER

Infiltratiepand

Effect: mogelijke algenbloei.

Milderende maatregel: voor alle parameters (vb. BZV,...) die belangrijk zijn voor de zuurstofhuishouding en de trofiegraad van het water, een norm vooropstellen die minstens gelijk en bij voorkeur lager is dan de basiskwaliteitsnorm. Neutraliseert volledig de negatieve effecten.

Effect: mogelijk tekort aan zuurstofgehalte.

Milderende maatregel: beluchting van het water. Neutraliseert volledig de negatieve effecten.

Kanaal Duinkerke-Nieuwpoort

Effect: wijziging kwaliteit oppervlaktewater.

Milderende maatregel: verdere voorzuivering van het concentrat. Slechts gedeeltelijke opheffing van de negatieve effecten.

GRONDWATER

Effect: mogelijke wijziging van de grondwaterkwaliteit ten gevolge van het infiltratiewater.

Milderende maatregel: kwaliteit van het infiltratiewater dient zoveel mogelijk overeen te komen met de kwaliteit van het grondwater; het onttrokken debiet dient het geïnfiltrereerde debiet te overtreffen. Het effect wordt grotendeels opgeheven en beperkt zich tussen het infiltratiepand en de pompputten.

FAUNA EN FLORA

Milderende maatregel: pH van het water in het infiltratiepand hoog houden (pH=8) om de nutriënten zoveel mogelijk onbeschikbaar te maken. Neutraliseert ten dele de negatieve effecten.

RUG - Laboratorium voor Toegepaste Geologie en Hydrogeologie (TGO 98/26)

Tel.: 09/264.45.47; fax: 09/264.49.88
11.2 TE MILDEREN TIJDELIJKE EFFECTEN

Voor de disciplines geluid en oppervlaktewater worden geen milderende maatregelen voorgesteld voor de tijdelijke effecten.

BODEM

Effect: opbrengstderving op de akkers ten gevolge van de aanleg van de leidingen.

Milderende maatregel: werken uitvoeren na de oogst van de gewassen. Neutraliseert volledig de effecten.

WATER

Grondwater

Effect: wijziging grondwaterkwaliteit door spoelen van leidingen en pompputten.

Milderende maatregelen: spoelwater lozen in infiltratiepand. Dit heft de negatieve effecten volledig op.

Effect: mogelijke wijziging grondwaterkwaliteit door aanleg van kleischelpen.

Milderende maatregelen: kwaliteit van de kleischelpen moeten van die aard zijn, dat bij uitloging geen ongewenste stoffen in grondwater terecht komen.

FAUNA EN FLORA

Effect: rustverstoring.

Milderende maatregel: afscherming van de oppervlakte en oevers van het infiltratiepand om watervogels te weren tot zich een vegetatie heeft kunnen ontwikkelen. Neutraliseert volledig de negatieve effecten.

11.3 NIET TE MILDEREN EFFECTEN

Gezien de bouw van het behandelingsgebouw ter hoogte van RWZI-Wulpen, de aanleg van het infiltratiepand en de aanleg van de leidingen zullen evenwel een aantal effecten optreden die niet te milderen zijn.

BODEM

Effect: verstoring bodemprofiel en bodemprocessen bij lokaal ophogen van het maaiveld waar opslag afgegraven gronden voorzien worden.

Effect: bodemminname: aanleg van de leidingen en bouw behandelingsgebouw.
FAUNA EN FLORA

Effect: biotoopverlies door aanleg van infiltratiepand.

Effect: eutrofiëring in kanaal Duinkerke-Nieuwpoort; effect is permanent zolang de lozingen duren.

MONUMENTEN EN LANDSCHAPPEN

Effect: verlies potentieel erfgoedwaarde bij aanleg van de transportleidingen en bij aanleg van infiltratiepand.

Effect: structuurwijziging wegens vergravingen en ophoping uitgegraven materiaal ten zuiden van infiltratiepand.
BIBLIOGRAFIE

AMINAL – Afdeling Water – Team Grondwater.

Archieven van de Belgische Geologische Dienst.

Archieven van het Laboratorium voor Toegepaste Geologie en Hydrogeologie.

Archieven van het N.G.I.

Bonte D. & Hoffmann M. (in voorb.) Breeding birds in the Flemish coastal dunes: community structure and landscape ecological relationships.

BIJLAGEN
Bijlage 2.1
Chronologisch overzicht
van de geschiedenis
van de I.W.V.A.
Bijlage 2.1. Chronologisch overzicht van de geschiedenis van de I.W.V.A.

<table>
<thead>
<tr>
<th>Jaar</th>
<th>Gebeurtenis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1914-18</td>
<td>Oprichting waterwinning Cabour door het Belgisch Leger op het Staatsdomein</td>
</tr>
<tr>
<td>1918-24</td>
<td>Waterbedeling via de bestaande installaties door het Koninklijk Hoog Commissariaat van de Kust</td>
</tr>
<tr>
<td>1924</td>
<td>27 aug. Afstaan door de staat aan de gemeente Adinkerke, De Panne, Nieuwpoort, Oostduinkerke en Veurne van 5 ha 45 a 13 ca, met gebouwen en uitrusting en erfdienstbaarheid op de rest van de domeinen.</td>
</tr>
<tr>
<td>1924</td>
<td>24 dec. Stichting van de I.W.V.A.</td>
</tr>
<tr>
<td>1927</td>
<td>Bouwen van de watertoren 'Moeder Lambik' te Adinkerke</td>
</tr>
<tr>
<td>1929</td>
<td>Aanleg van de eerste reeks filterputten in Cabour</td>
</tr>
<tr>
<td>1933-34</td>
<td>Uitvoering van een dertigtal proefboringen en uitbouw van een filterbatterij met 10 putten (26-35) St.-André te Oostduinkerke.</td>
</tr>
<tr>
<td>1934</td>
<td>Aankoop van een deel van het duingebied St.-André (6ha39a38ca)</td>
</tr>
<tr>
<td>1938-39</td>
<td>Aanleg van nieuwe filterbatterij met 8 putten (18-25) te St.-André te Oostduinkerke.</td>
</tr>
<tr>
<td>1940</td>
<td>Aankoop van bijkomend duingebied (7ha01a58ca en 18a25ca) in St.-André te Oostduinkerke</td>
</tr>
<tr>
<td>1942</td>
<td>Aanbesteding pompstation 1 St-André</td>
</tr>
<tr>
<td>1944</td>
<td>Watertoren 'Moeder Lambik' te Adinkerke wordt door de Duitsers vernietigd.</td>
</tr>
<tr>
<td>1947-48</td>
<td>Bouw van een pomp- en filtergebouw in St.-André te Oostduinkerke.</td>
</tr>
<tr>
<td>1947</td>
<td>Start van de waterwinning in St.-André te Oostduinkerke.</td>
</tr>
<tr>
<td>1949</td>
<td>Nieuwe watertoren 'Moeder Lambik' te Adinkerke</td>
</tr>
<tr>
<td>1950</td>
<td>Aanleg van 5 nieuw winputten (36-40) in St.-André te Oostduinkerke.</td>
</tr>
<tr>
<td>1951</td>
<td>Aanleg van filtreer- en ontijzeringsinstallatie in St.-André te Oostduinkerke</td>
</tr>
<tr>
<td>1953</td>
<td>Beslissing voor de aankoop van bijkomend duingebied (circa 30ha) te Oostduinkerke (St.-André)</td>
</tr>
<tr>
<td>1955</td>
<td>Aanleg van een nieuwe filterbatterij met 30 putten (1-17 en 41-53) te Oostduinkerke (St.-André)</td>
</tr>
<tr>
<td>1956</td>
<td>Beslissing voor de aankoop van bijkomend duingebied (circa 66ha) te Oostduinkerke (St.-André)</td>
</tr>
<tr>
<td>1959-60</td>
<td>Bouw van een nieuw pompgebouw en ontijzeringsinstallatie te Oostduinkerke (St.-André)</td>
</tr>
<tr>
<td>1960</td>
<td>In dienststelling van pompstation 2 St-André te Oostduinkerke</td>
</tr>
<tr>
<td>1961</td>
<td>Aankoop staatsgronden Cabourduinen</td>
</tr>
<tr>
<td>1962</td>
<td>Installatie van filter- en ontijzeringleenheid in oud pompgebouw te Oostduinkerke (St.-André)</td>
</tr>
<tr>
<td>1963</td>
<td>Aankoop van de duinen Westhoek te De Panne</td>
</tr>
<tr>
<td>Jaar</td>
<td>Beschrijving</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1965-66</td>
<td>Bouw van nieuwe zuigput aan de voet van de Hoge Blekker te Koksijde nl. zuigput 2 + in dienst nemen van zuigput 2</td>
</tr>
<tr>
<td>1965-67</td>
<td>Aanleg van 40 nieuw filterputten (110-149) in St.-André te Oostduinkerke</td>
</tr>
<tr>
<td>1967</td>
<td>In dienst nemen van het pompstation Westhoek te De Panne</td>
</tr>
<tr>
<td>1969</td>
<td>Het bouwen van de watertoren 'Groenendijk'</td>
</tr>
<tr>
<td>1972</td>
<td>Aanleg van 14 nieuwe winputten (150-163) in St.-André te Oostduinkerke</td>
</tr>
<tr>
<td>1976</td>
<td>Aflevering van een vergunning voor de uitbating van een grondwaterwinning met 163 winputten met een vergund debiet dat de 12000 m³/dag niet mag overschrijden.</td>
</tr>
<tr>
<td>1978</td>
<td>Aanleg van 5 nieuwe winputten (164-168) te Oostduinkerke, St.-André</td>
</tr>
<tr>
<td>1991</td>
<td>Bouwen van het opjaagstation Novus Portus te Nieuwpoort</td>
</tr>
<tr>
<td>1992</td>
<td>Bouwen van het opjaagstation Graeyaert te Houtem (Veurne)</td>
</tr>
<tr>
<td>1994</td>
<td>Bouwen van opjaagstation Steenkerke te Veurne</td>
</tr>
<tr>
<td>1994</td>
<td>sept. Het goedkeuren van het beheersplan voor het natuurgebied 'De Doornpanne' te Oostduinkerke</td>
</tr>
<tr>
<td>1996</td>
<td>12 juli Opening van het toegangscentrum 'Doornpanne' door de Minister van leefmilieu Theo Kelchtermans te Oostduinkerke</td>
</tr>
<tr>
<td>1996</td>
<td>Opstarten van een proefstation i.v.m. microfiltratie.</td>
</tr>
<tr>
<td>1997</td>
<td>Het inrichten van de nieuwe parking voor ons bezoekerscentrum 'Doornpanne'</td>
</tr>
<tr>
<td>1997</td>
<td>Opstarten van proefstation i.v.m. omgekeerde osmose</td>
</tr>
<tr>
<td>1997</td>
<td>20 okt. tot 20 nov. Openbaar onderzoek voor het verkrijgen van de vergunning voor het aanvullen en exploiteren van en kunstmatige aanvulling in grondwater en winning van infiltratiewater in de Doornpanne.</td>
</tr>
<tr>
<td>1997</td>
<td>22 mei Aanvraag tot het bekomen van de vergunning voor het aanvullen en exploiteren van een kunstmatige aanvulling in grondwater en winning van infiltratiewater te Koksijde (Doornpanne)</td>
</tr>
<tr>
<td>1997</td>
<td>2 febr. Tot 17 febr. Studiereis naar de Verenigde Staten en Australië met voorstelling van ons project: “Infiltreren van water in de Doornpanne”</td>
</tr>
<tr>
<td>1998</td>
<td>8 mei Geboorte van een Shetlandpony Birgit van De Doornpanne dochter van Julie en Milo</td>
</tr>
<tr>
<td>1998</td>
<td>25 mei Prins Laurent van België brengt een bezoek aan het natuurgebied de Doornpanne.</td>
</tr>
<tr>
<td>1998</td>
<td>2 juni Minister Kelchtermans verleent de vergunning voor het aanvullen en exploiteren van een kunstmatige aanvulling in grondwater en winning van infiltratiewater in de Doornpanne.</td>
</tr>
</tbody>
</table>
Bijlage 2.2

Vergunning
MINISTERIEEL BESLUIT HOUDENDE VERGUNNING AAN DE INTERCOMMUNALE WATERLEIDINGMAATSCHAPPIJ VAN VEURNE-AMBACHT C.V. (IWVA) VOOR HET AANLEGGEN EN EXPLOITEREN VAN EEN KUNSTMATIGE AANVULLING IN GRONDWATER EN WINNING VAN INFILTRATIEWATER TE KOKSIJDE

DE VLAAMSE MINISTER VAN LEEFMILIEU EN TEWERKSTELLING,

Gelet op het decreet van 24 januari 1984 houdende maatregelen inzake het grondwaterbeheer, inzonderheid op artikel 9, 1°;

Gelet op het besluit van de Vlaamse regering van 27 maart 1985 houdende reglementering en vergunning voor het gebruik van grondwater en de afbakening van waterwingebedden en beschermingszones, inzonderheid op artikel 2.3° en artikel 5.4.;

Gelet op het besluit van de Vlaamse regering van 19 december 1997 tot bepaling van de bevoegdheden van de leden van de Vlaamse regering;

Gelet op de aanvraag van 22/5/1997 van de intercommunale waterleidingmaatschappij van Veurne–Ambacht (IWVA) tot het bekomen van een vergunning voor de aanleg en exploitatie van een kunstmatige aanvulling en winning van grondwater en de afbakening van het waterwingebed en de beschermingszones in Koksijde (Sint André);

Gelet op het advies van de afdeling Water van AMINAL, gegeven op 27 augustus 1997;

Gelet op het openbaar onderzoek gehouden in Koksijde van 20/10/1997 tot 20/11/1997;

Gelet op het advies van het college van burgemeester en schepenen van de gemeente Koksijde, gegeven op 17/12/1997;

Gelet op het advies van de bestendige deputatie van de provincie West-Vlaanderen, gegeven op 3 juli 1997;
Gelet op het besluit van de staatssecretaris voor leefmilieu, toegevoegd aan de eerste minister en aan de minister van Vlaamse aangelegenheden van 22/01/1976 waarbij aan de IWVA vergunning wordt verleend voor de aanleg en exploitatie van een grondwaterwinning op het grondgebied van de gemeenten Oostduinkerke en Kokstijde;

Gelet op het besluit van de staatssecretaris voor bossen, jacht en visvangst, toegevoegd aan de minister van Vlaamse aangelegenheden van 13 januari 1977, waarbij aan de IWVA vergunning werd verleend voor de aanleg en exploitatie van een grondwaterwinning op het grondgebied van de gemeente De Panne;

Gelet op het besluit van de minister van Vlaamse aangelegenheden van 13 september 1978 waarbij aan de IWVA vergunning werd verleend voor de aanleg en exploitatie van een grondwaterwinning op het grondgebied van de gemeente De Panne;

Overwegende dat in zijn gunstig advies gegeven op 26/6/1997 de Belgische Geologische Dienst wijst op de noodzaak van regelmatige kwaliteitsanalyses van het geïnfiltreerde water en het uitvoeren van regelmatige peilmetingen in een aantal goed gekozen peilbuizen (o.a. daar waar vernattingsproblemen dreigen); voorstelt om de uitbouw van de infiltratie-eenheid en de gelijktijdige vermindering van de grondwaterwinning in fasen te laten gebeuren ten einde de invloed van elke fase te evalueren;

Overwegende dat in zijn voorwaardelijk gunstig advies gegeven op 18/8/1997 de afdeling Natuur wijst op de noodzaak van de medewerking van de IWVA aan de realisatie van een integraal drinkwatervoorzienings- en natuurontwikkelingsplan met op langere termijn de volledige afbouw van de grondwaterwinningen “Westhoek-Calmeynbus” en “Cavour”; op de noodzaak dat de IWVA voor haar domeinen “Westhoek-Calmeynbus”, “Cavour”, “Doompanne” en “Ter Yde” het wettelijk statuut van erkend natuurreservaat moet aanvragen; dat het tracé van de aanvoerleidingen van ruw water naar Sint André over de volledige lengte de bestaande wegenis en leidingenbundels moet volgen en het perceel 543c niet vergraven mag worden;

Overwegende dat in zijn advies gegeven op 26/8/1997 de afdeling ROHM-West-Vlaanderen stelt dat gelet op de overdrubbestemming “waterwingebied” op bestemming “natuurgebied met wetenschappelijke waarde of natuurreservaat” op het gewestplan Veurne-Westkust (KB 6/12/1976) de aanleg en exploitatie van het infiltratiebeken met inbegrip van alle installatie en leidingen geen enkele schade mag berokkenen aan de plaatselijke ecologische waarden en de natuurbestemming 100% in acht moet genomen worden;
Overwegende dat in zijn advies gegeven op 19/6/1997 het Instituut voor Natuurbehoud wijst op het ontbreken van een visie op een duurzame drinkwatervoorziening en de oppervlakte-infiltratie als een middellange termijn oplossing beschouwt; dat de mogelijkheid moet onderzocht worden om minstens het principe van volledige afbouw van grondwaterwinningen in de duinen in de vergunning te laten opnemen;

Overwegende dat blijkt uit het proces-verbaal van het openbaar onderzoek van 21/11/1997 dat acht schriftelijke bezwaren (waaronder één met 306 handtekeningen) en geen enkel mondeling bezwaar werden ingediend; dat de bezwaren betrekking hebben op de onoverenigbaarheid van het project met de gewestplanbestemming “natuurreservaat”, de nadelige effecten op fauna en flora, de nadelige effecten op de landbouw in de streek van de Avekapellekreek (waar mogelijk het noodzakelijke infiltratiewater gewonnen zou worden), dat een structurele oplossing voor de drinkwatervoorziening aan de kust noodzakelijk is, de speciale bescherming van de Doornpanne ingevolge de EU-vogelrichtlijn, het niet gebruiken van alternatieven waarbij infiltratie overbodig wordt;

Overwegende dat in het advies van het college van burgemeester en schepenen van Koksijde stelt dat het project van de IWVA slechts een korte termijn oplossing biedt en niet tegemoet kan komen aan de totaal verwachte vraag, dat het project geen voorstellen inhoudt inzake rationeel watergebruik, dat het rendement van de investering in vraag kan gesteld worden, dat het project voorbarig is omdat de studies inzake de captatie van oppervlaktewater in de Avekapellekreek niet afgerond zijn, de aanvraag voor gunstig geadviseerd wordt;

Overwegende dat in zijn advies de bestendige deputatie van de provincie West-Vlaanderen stelt dat de aanvraag gemotiveerd is door de stijgende behoefte aan drinkwater en de vraag om grondwaterwinningen af te bouwen, dat de kunstmatige aanvulling toelaat om de winning van grondwater afkomstig van de natuurlijke voeding af te bouwen, dat het project een meerwaarde kan bieden voor de aanwezige natuurwaarden, dat het infiltratiewater verregaand gezuiverd zal zijn en als voorwaarden stelt dat de kwaliteit van het infiltratiewater minstens moet voldoen aan de waarden in de tabel gevoegd bij de aanvraag, dat eutrofiëring dient opgevolgd te worden en desgevallend verdere nutriëntverwijdering moet opgelegd worden, dat de aanvrager verder acties moet ontwikkelen inzake rationeel watergebruik, dat de IWVA op langere termijn moet streven naar een volledige afbouw van netto grondwaterwinningen in de duingebieden, dat de bestaande vergunningen moeten aangepast worden in functie van de uiteindelijke verdeling van de verminderde oppomping;

Overwegende dat in verband met de ingediende bezwaren en het ongunstig advies van het college van burgemeester en schepen kan gesteld worden dat de IWVA niet verantwoordelijk gesteld kan worden voor het ontbreken van een integraal drinkwatervoorzieningsplan en haar medewerking aan het opstellen ervan nooit heeft geweigerd, dat lange termijn oplossingen weliswaar noodzakelijk zijn doch niet op korte termijn realiserbaar, dat elke prognose inzake te verwachten vraag naar drinkwater een grote mate van onzekerheden omvat doch dat gelet op het belang van een veilige drinkwatervoorziening met het oog op de bescherming van de volksgezondheid de productiecapaciteit vrijwaard moet blijven, dat het rendement van de investering door de aanvrager zelf dient geëvalueerd, dat de infiltratie van voorgezuiverd
water de realisatie van de volledige afbouw van grondwaterwinningen in de duinen niet in de weg staat en bij ontmanteling van de installaties een natuurlijke ontwikkeling terug volledig mogelijk is, dat het project nu reeds mogelijkheden inhoud om de natuurwaarden te vermeerderen in het bijzonder door de verwachte gemiddelde stijging van het grondwaterpeil, dat het mogelijk is om voldoende voorwaarden op te leggen om de effecten op de kwaliteit en de kwantiteit van het grondwater en de daaraan verbonden levensgemeenschappen en landgebruik op te volgen en waar nodig bij te sturen, dat de aanleg van het infiltratiepand kan gebeuren op een natuur en milieuvriendelijke wijze met integraal respect voor de gewestplanbestemming “natuurreservaat”, dat het aan de inzake bouwvergunning bevoegde overheid toekomt om hierop toe te zien en de nodige voorwaarden op te leggen, dat de bezwaren die verband houden met de afbakening van de beschermingszones in het afzonderlijk besluit behandeld zullen worden;

Overwegende dat het geïnfiltreerde water integraal teruggewonnen moet worden en de onttrekking van grondwater afkomstig van de natuurlijke voeding in het intrekgebied moet gereduceerd worden, dat bij de onttrekking geen onderscheid meer kan gemaakt worden tussen het water afkomstig van de kunstmatige infiltratie en dat van de natuurlijke voeding binnen het intrekgebied en derhalve de vergunning inzake het onttrekken van grondwater herzien moet worden;

Overwegende dat het infiltratieproject kan bijdragen tot het kortsluiten van de waterkringloop en dus tegemoetkomt aan de milieudoelstelling inzake duurzaam watergebruik;

Overwegende dat bij een aanvoer van 2.500.000 m³ water naar het infiltratiepand een reductie met 1.000.000 m³ van de onttrekking van endogene grondwater dient gepaard te gaan; dat deze reductie verdeeld wordt als volgt: 300.000 m³ voor de winning gelegen in Koksijde (Sint André) en 700.000 m³ voor de winning gelegen in de Panne (Westhoek); dat in het geval van een lagere aanvoer van te infiltreren water de reductie pro rata dient toegepast te worden;

Overwegende dat de effecten van de te verwachten gemiddelde grondwaterstandverhogingen opgevolgd moeten worden door middel van een peilmeetnet;

Overwegende dat het grondwater dient voor de openbare drinkwatervoorziening;

BESLUIT:

Artikel 1. §1 Aan Intercommunale Waterleidingmaatschappij Van Veurne-Ambacht C.V. (IWVA), Doornpanne 1, 8670 Koksijde wordt vergunning verleend voor de kunstmatige aanvulling van grondwater (verder “infiltratie” genoemd) door middel van een infiltratiepand van 500 meter lengte en een gemiddelde breedte van 40 meter en de winning van het
geïnfiltreerde water via 112 putten aangesloten op het pompstation ZP2, zoals aangeduid op het plan nr. 9702, gevoegd bij dit besluit. De vergunning wordt verleend voor een periode van twintig jaar (waarvan de eerste drie jaar na de ingebruikneming op proef) te rekenen vanaf de datum van inwerkingtreding van dit besluit.

Art.2.§ 1. Het jaarlijks te infiltreren volume water mag niet groter zijn dan 2.500.000 m³. Het volume aangevoerd water wordt continu gemeten ter plaatse van de infiltratie. Maandelijkse wordt de stand van de meter(s) geregistreerd.

§2 Per kalenderjaar is het jaarlijks volume opgemopt infiltratiewater via het pompstation ZP2 gelijk aan het volume aangevoerd water in het infiltratiepand. Alvorens de winning van infiltratiewater aan te vangen, moet er een optimale voorraad infiltratiewater in de grondwaterlaag worden opgebouwd die minstens 100.000 m³ bedraagt, zodat een optimaal peilherstel in de grondwaterlaag verkregen wordt.

§3 De infiltratie en winning wordt zodanig gestuurd dat het peil in het infiltratiepand constant wordt gehouden.

Art.3. §1 Rond de infiltratie-eenheid wordt een peilmeetnet aangelegd, bestaande uit 20 peilputten waarvan 6 reeksen van drie peilputten loodrecht op de as van het infiltratiepand. De precieze locatie van de peilputten wordt in overleg met de afdeling water bepaald.

§2 Alvorens de infiltratie in dienst genomen wordt, worden de peilen in het meetnet gedurende één jaar maandelijkse gemeten.

§3 Het eerste jaar dat de infiltratie in dienst wordt gesteld, worden wekelijks peilmetingen uitgevoerd in de peilputten met vermelding van volume onttrokken tijdens de 24 uren vóór de metingen. Tevens wordt het peil in het infiltratiepand genoteerd.

§4 De volgende jaren worden maandelijkse peilmetingen uitgevoerd in de peilputten met vermelding van volume onttrokken tijdens de 24 uren vóór de metingen. Tevens wordt het peil in het infiltratiepand genoteerd.

§5 Peilmetingen in rust worden uitgevoerd in bovenvermelde in de peilputten, wanneer gedurende minstens 8 uur geen grondwater onttrokken werd.

Art.4. Voor het einde van het derde jaar na de ingebruikneming van het infiltratiepand (volgens de datum van melding van ingebruikname) wordt aan de afdeling Water een rapport voorgelegd met:

1° de ontwikkelingen van grondwaterpeilen en -kwaliteit;
2° een rapport over de invloed van de winning m.b.t. de vernatting.

Art.5. De Vlaamse minister, bevoegd voor het waterbeleid, kan op gemotiveerd voorstel van de directeur-generaal van AMINAL, na evaluatie van het rapport bedoeld in artikel 4 en de metingen tijdens de proefperiode en de vastgestelde effecten, de maximale hoeveelheid te infiltreren water en de verdeling van de af te bouwen hoeveelheid van 1.000.000 m³ grondwater over de winningen in Koksijde en De Panne aanpassen.
Art.6. De maandelijks aangevoerde te infiltreren hoeveelheid water alsook de peilgegevens, worden bijgehouden in een register, dat door de toezichthoudende ambtenaren kan worden ingezien.

De gegevens worden op uiterlijk 15 maart van elk jaar volgend op het jaar waarop de gegevens betrekking hebben, meegedeeld aan AMINAL, afdeling Water.

Art.7. De kwaliteit van het infiltratiewater dient te voldoen aan onderstaande waarden in onderstaande tabel en gemeten te worden volgens de daarin vermelde frequentie. Indien een van de gemeten waarden de onderstaande maximale waarden overschrijdt, wordt de infiltratie stopgezet tot het water aan alle paramaters voldoet (drie opeenvolgende metingen met een tussenpaauze van telkens minstens één week).

1° Temperatuur: 25°C, continu;
2° pH: min. 6,5 en max. 9,2, continu;
3° Geleidingsvermogen: 1000 µS/cm, continu;
4° Chloride: 250 mg/l, maandelijks;
5° Sulfate: 250 mg/l, maandelijks;
6° Magnesium: 50 mg/l, maandelijks;
7° Natrium: 150 mg/l, maandelijks;
8° Totale hardheid: 40°F, maandelijks;
9° Nitraat: 15 mg/l, maandelijks;
10° Nitriet: 0,1 mg/l, maandelijks;
11° Ammonium: 1,5 mg/l, maandelijks;
12° Oxydeerbaarheid: 5 mg mg/l O₂, maandelijks;
13° Aluminium: 0,2 mg/l, driemaandelijks;
14° IJzer: 0,2 mg/l, driemaandelijks;
15° Mangaan: 50 µg/l, driemaandelijks;
16° Koper: 100 µg/l, driemaandelijks;
17° Zink: 200 µg/l, driemaandelijks;
18° Fosfor: 0,4 mg/l, driemaandelijks;
19° Fluor: 1,5 mg/l, driemaandelijks;
20° Cyanide: 10 µg/l, driemaandelijks;
21° Chroom: 50 µg/l, driemaandelijks;
22° Kwik: 1 µg/l, driemaandelijks;
23° Nikkel: 50 µg/l, driemaandelijks;
24° Lood: 20 µg/l, driemaandelijks;
25° Antimoon: 10 µg/l, driemaandelijks;
26° Selenium: 10 µg/l, driemaandelijks;
27° Trihalomethanen: 200 µg/l, driemaandelijks;
28° Som PAK's (fluorantven, benzo 3,4 fluorantven; benzo 11,12 fluorantven; benzo 3,4 pyreven; benzo 1,12 peryleen en indeno-pyreen (1,2,3 cd)): 0,020 µg/l, driemaandelijks;
29° Som geëmulsgeerde of opgeloste koolwaterstoffen en minerale oliën: 5 µg/l, driemaandelijks;
30° De pesticiden atrazine, simazine, diuron, isoprotron en chloortoluron: 0,020 µg/l per individueel actief product, driemaandelijks;

Er worden minstens drie analyses uitgevoerd op het te infiltreren water met een tussenpaauze van minstens één week Alvorens de infiltratie mag gestart worden. Deze analyses worden
 tegelijkertijd met de melding bedoeld in artikel 8 meegedeeld. Het te infiltreren water dient te voldoen aan al de bovenvermelde parameters.

De analyses dienen te gebeuren in een erkend laboratorium als bedoeld in artikel 2 van het besluit van de Vlaamse regering van 29 juni 1994 tot vaststelling van de voorwaarden voor de erkenning van laboratoria.

De resultaten van die analyses worden bijgehouden en jaarlijks aan de afdeling Water van AMINAL toegezonden.

Art.8. Uiterlijk dertig dagen voor de infiltratie-eenheid in dienst wordt gesteld, wordt de directeur-generaal van AMINAL per aangetekend schrijven van de precieze datum op de hoogte gebracht.

Art.9. Artikel 2 van het besluit van de staatsecretaris voor leefmilieu, toegevoegd aan de eerste minister en aan de minister van Vlaamse aangelegenheden (winning te Koksijsde) van 22 januari 1976 wordt vervangen door:

“De waterwinning bestaat uit twee batterijen van 112 putten van ongeveer 12 meter diepe, aangesloten op respectievelijk twee pompstations ZP1 en ZP2, zoals aangegeven op het plan 9702 gevoegd bij de aanvraag van 22 mei 1997 van de IWVA van een vergunning voor aanleg en exploitatie van kunstmatige aanvulling en winning van grondwater en de afbakening van beschermingszones van de waterwinning “Sint André” te Koksijsde.

Het volume onttrokken grondwater via het pompstation en batterij ZP1 mag (1.000.000 - 0,12*I) m³ per jaar niet overschrijden waarbij I gelijk is aan het volume aangevoerd water in het infiltratiepand gedurende het betreffende kalenderjaar.

Via het pompstation en batterij ZP2 mag maximaal 1.000.000 m³ grondwater per jaar onttrokken worden.

Het maximaal volume onttrokken grondwater per dag mag 12.000 m³ niet overschrijden.”.

Art.10. Aan het artikel 2 van het besluit van de staatssecretaris voor bossen, jacht en visvangst toegevoegd aan de minister van Vlaamse aangelegenheden van 13/11/1977 (waterwinning Westhoek) wordt de volgende zin toegevoegd:

“Vanaf de ingebruikname van de winning van infiltratiewater mag maximaal (1.200.000 - 0,2*I) m³ per jaar opgepompt worden, waarbij I gelijk is aan het volume aangevoerd water naar het infiltratiepand te Koksijsde gedurende het betreffende kalenderjaar.”.

Art.11. De laatste zin van artikel 2 van het besluit van de minister van Vlaamse aangelegenheden van 13-9-1978 (waterwinning Westhoek) wordt vervangen door:

“Het mag ook niet (500.000 - 0,08*I) m³ per jaar overschrijden, waarbij I gelijk is aan het volume aangevoerd water naar het infiltratiepand te Koksijsde gedurende het betreffende kalenderjaar.”.

Art.12. Deze vergunning doet geen afbreuk aan de rechten van derden.
Art.13. De vergunning kan steeds door de Vlaamse minister, bevoegd voor het waterbeleid, bij een met reden omklede beslissing herzien worden als de opgelegde voorwaarden niet worden nageleefd.

Art.14. De vergunninghouder neemt alle maatregelen om schade ten gevolge van de verhoging van de grondwaterstanden te voorkomen en past de volumes water die geïnfiltreerd worden desgevallend aan.

Art.15. Afschrift van dit besluit wordt toegezonden aan:

1° het gemeentebestuur van Koksijde;
2° de bestendige deputatie van de provincie West-Vlaanderen;
3° de afdeling Milieuvergunningen;
4° de afdeling Milieu-inspectie;
5° de afdeling Water;
6° de Belgische Geologische Dienst.

Art.16. Dit besluit treedt in werking op de datum van de ondertekening.

Art.17. Dit besluit wordt bij uittreksel bekendgemaakt in het Belgisch Staatsblad.

Brussel, 02 JUNI 1998

De Vlaamse minister van Leefmilieu en Tewerkstelling,

Theo KELCHTERMANS

VOOR EENSLUIDEND AFSCHRIFT

kr. P. THOMAS
afdelingshoofd

H.P. Deutscher
adv. i.d. directeur
Bijlage 4.1
Advies van het Instituut voor Natuurbehoud
Instituut voor Natuurbehoud

Aan de heer F. Vanlerberghe
Directeur-Generaal IWVA
Doornpanne 1
8670 Koksijde

Betrek: Advies M.E.R. infiltratieproject Doornpanne

Geachte heer Vanlerberghe,

Naar aanleiding van het opstarten van de M.E.R.-procedure in verband met het oppervlakte-infiltratieproject voor de Doornpanne brengen wij u het in bijlage gevoegd advies uit.

Wij hopen u hiermee van dienst te zijn geweest en kijken uit naar een verdere uitbouw van het natuurbehoud binnen de maatschappelijke opdracht van de IWVA.

Met de meeste hoogachting,

Prof. Dr. E. Kuijken
Directeur

Sam Provoost
Wetenschappelijk attaché

cc. G. Pillu, AMINAL, afdeling Algemeen Milieu- en Natuurbeleid
J.-L. Herrier, AMINAL, afdeling Natuur
K. De Smet, afdelingshoofd AMINAL, afdeling Natuur
J.-P. Heirman, directeur-generaal AMINAL
M. Buyssse, kabinet van de Vlaamse minister van Leefmilieu en Tewerkstelling
P. Van Huffel, AMINAL, afdeling Water
Kunstmatige aanvulling van het grondwaterreservoir in de Doornpanne (Koksijde): advies in het kader van de MER procedure

Het Instituut voor Natuurbehoud is reeds sinds 1992 nauw betrokken bij de voorbereidende ecologische studies omtrent het infiltratieproject voor de Doornpanne. Gezien de meeste aspecten reeds uitvoerig aan bod gekomen zijn in voorgaande adviezen (zie bijlage), wordt hier een eerder globale evaluatie gemaakt van de samenwerking tussen de IWVA en het Instituut voor Natuurbehoud.

1. Algemeen

De meervoudige gewestplanbestemming — natuur en waterwinning — van de terreinen van de IWVA impliceert ook een meervoudige maatschappelijke opdracht voor het bedrijf. Het debat rond de recente projectvoorstellen voor de Doornpanne hebben geleid tot een verhoogde aandacht voor de ‘zwakkere’ sectoren, met name door de inspanningen voor natuurbeheer en recreatieve voorzieningen in het gebied. In die zin is reeds een belangrijke weg afgelegd. Toch wordt natuurbehoud ons inziens door de IWVA nog niet als een volwaardig onderdeel van haar doelstellingen gezien maar eerder als een van buitenaf opgelegde taak. Er wordt daarom gepleit voor de toepassing van het Nederlands model (cf. PWN, GWA of DZH) waarin natuurbehoud en waterwinning als evenwaardige partners worden behandeld. Weliswaar kan de lokale context daarbij niet uit het oog verloren worden.

Dit impliceert voor eerst dat een globale lange termijnvisie wordt onderschreven waarin gestreefd wordt naar duurzame vormen van drinkwaterproductie. Het infiltratieproject levert daartoe een belangrijke bijdrage maar vormt op zich geen totaalvisie. De IWVA heeft nog steeds de volledige afbouw van de exploitatie van de natuurlijk freatische lagen (eventuele technische of maatschappelijke randvoorwaarden in acht genomen) niet expliciet als principieel streefdoel gesteld, hoewel dit vanuit natuurbehoud steeds het uitgangspunt voor de samenwerking is geweest.

Een tweede belangrijk aspect dat in het beleid van de IWVA ontbreekt, is het engagement om haar ruim 300 ha als natuurgebied of -reservaat bestemde duinterreinen in functie van natuurbehoud te beheren. Momenteel worden in dit verband enkel voor de Doornpanne inspanningen geleverd.

2. Oppervlakte-infiltratie

De ecologische impactstudie van het infiltratie-project vormde de kern van de samenwerking tussen IWVA en het Instituut voor Natuurbehoud. In onderling overleg werden randvoorwaarden afgesproken in verband met de inplanting en vormgeving van de infiltratiebekkens, de kwaliteit van het te infiltreren water en de aanleg van extra infrastructuren. Wij kunnen het concrete project dan ook globaal positief adviseren.

Figuur 1 geeft de contouren weer van de infiltratieplassen zoals zij op het terrein werden afgepaald in functie van kwetsbaarheid van vegetaties en technische vereisten. Ook het voorgestelde profiel beantwoordt aan de voorwaarden voor optimale natuurontwikkelingsmogelijkheden in het water en ter hoogte van de oevers. Op figuur 1
worden ook locaties aangeduid waar depositie van zand in de onmiddellijke nabijheid van de infiltratiesnelheid mogelijk wordt geacht. Bijkomende mogelijkheden daartoe worden in volgende punt besproken. Ten slotte dient bij de werkzaamheden een zone met uiterst kwesties graslandvegetaties herkenbaar te worden afgespaard ten einde verstering ervan te vermijden. We willen nogmaals het belang benadrukken van een nauwgezette opvolging van de werkzaamheden.

![Diagram](image)

Figuur 1. Infiltretiegebied

3. Inrichtings- en beheersmaatregelen voor de Doornpanne

a. De belangrijkste doelstelling inzake natuurontwikkeling voor de Doornpanne is het ontwikkelen van een structuurvolle gevarieerd landschap. In de praktijk betekent dit dat een toename van de oppervlakte aan duingraslanden en mosduin moet gerealiseerd worden ten koste van struweel, vervliegende vegetaties en aanplanten van uithoornse houtige gewassen. Beplanting - eventueel na kappen - wordt daartoe als meest geschikte beheersvorm gezien. Het begrazingsexperiment in een ca. 30 ha groot terreindeel lijkt voelbelovend maar dient verder wetenschappelijk geëvalueerd te worden (zie verder).

b. Andere aspecten van de beheersdoelstellingen kregen tot nu toe minder aandacht. Het betreft vooral het opruimen van o.m. voor verstoring storende betonpuinresten. Op figuur 2 zijn de meest prioriter te verwijderen puinresten aangeduid.

c. De verdere inrichting van de recreatieve infrastructuur hangt samen met de bouwvoorwaarden, voor de infiltratiesnelheid. De afgesproken ligging van de paden wordt aangeduid op figuur 2. Daarbij wordt onderscheid gemaakt tussen het belangrijkste centrale pad en een bijkomend traject. Het hoofdpad wordt bij voorkeur met schelpenklei verhard. De eigenschappen van dit materiaal sluiten immers nauw aan bij de karakteristieken van het duinacossysteem terwijl het ook technisch hoge kwaliteiten heeft. Voor het gedeelte Hoge Blekker-Doornpanne is een breedte van ongeveer 3,5 m wenselijk, het resterend gedeelte tot aan de Witte hong mag smaller (± 2m). Het bijkomend pad mag niet verhard worden, maar kan waar nodig met houtplank worden bedekt. Een breedte van ± 2m is hier voldoende. Op verschillende plaatsen is het noodzakelijk om betonpuinresten uit te breken of te bedekken met zand. Op die manier
kan dus ook een gedeelte van het grondverzet van de infiltratieplassen lokaal hergebruikt worden. Verder dienen alle resten van asfaltwegen ter hoogte van de filterbatterijen uit het terrein verwijderd te worden.

Het traceé van het oost-west georiënteerd ruiterpad werd in samenspraak met IWVA, IN en gemeente Koksdijk besproken. Voor een aantal knelpunten, o.m. ter hoogte van de Witte Burg, dienen oplossingen te worden gezocht. Een scheiding van de toegang voor wandelaars en ruikers is daar van belang.

Inplanting van begeleidende infrastructuur (toegangssluis, infoborden, ...) ter hoogte van de ingangen aan de Visserstraat en de Witte Burg is wenselijk. Hierover kunnen afspraken gemaakt worden met de Westvlaamse Vereniging voor de Vrije Tijd.

3. Ecologische opvolging en natuurreduceatie

Het educatief centrum de Doornpanne lovert een belangrijke bijdrage tot natuurreduceatie aan de Westkust en kan dan ook zeer gunstig geëvalueerd worden. Kanttekenen hierbij is het feit dat de aangeworven verantwoordelijke te weinig energie kan besteden in de opvolging van het eigenlijke terreinbeheer en daartoe noodzakelijke biologische monitoring. Zo is van het voorgestelde opvolgingsschema voor het begraardingsbeheer enkel het installeren van de detail-pq's gerealiseerd. Voor bijkomende initiatieven inzake beheer en opvolging wordt onvoldoende ruimte geboden. Wij willen nogmaals benadrukken dat het beheer van een natuurgebied een dynamisch gegeven is dat evaluatie en geregeld bijsturing vergt.

Sam Provoost & Eckhart Kuijken

Brussel, 19 maart 1999
Advies A 99.36
Bijlage 4.2
Infiltratiebesluit bodembescherming
van 20 april 1993
(Staatsblad van het Koninkrijk der Nederlanden)
Besluit van 20 april 1993, houdende regels met betrekking tot infiltratie van uit oppervlaktewater verkregen water in de bodem (Infiltratiebesluit bodembescherming)

Wij Beatrix, bij de gratie Gods, Koningin der Nederlanden, Prinses van Oranje-Nassau, enz. enz. enz.

Op de voordracht van Onze Minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer van 28 oktober 1992, nr. MJZ 28092008, Centrale Directie Juridische Zaken, afdeling Wetgeving:
Gelet op artikel 13a van de Wet bodembescherming;
Gehoord de Centrale raad voor de milieuhygiëne, de Raad voor de Drinkwatervoorziening en de Technische commissie bodembescherming;
De Raad van State gehoord (advies van 14 januari 1993, nr. WO8.92.0517);
Gezien het nader rapport van Onze Minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer van 14 april 1993, nr. MJZ14493045, Centrale Directie Juridische Zaken, afdeling Wetgeving:

Hebben goedgevonden en verstaan:

Artikel 1

In dit besluit en de daarop berustende bepalingen wordt verstaan onder:

a. infiltreren van water: infiltreren van water als bedoeld in artikel 1, eerste lid, van de Grondwaterwet;

b. oppervlaktewater: oppervlaktewater in de zin van de Wet verontreiniging oppervlaktewateren;

c. vergunning: vergunning als bedoeld in artikel 14 van de Grondwaterwet.

Artikel 2

Dit besluit is uitsluitend van toepassing op het infiltreren van water dat afkomstig is uit oppervlaktewater.

Artikel 3

1. Van gevaar voor verontreiniging van het grondwater als bedoeld in artikel 14a, eerste lid, van de Grondwaterwet is sprake, indien in het te infiltreren water stoffen voorkomen in hogere concentraties dan in bijlage 1 voor die stoffen is aangegeven, met dien verstande dat
gedeputeerde staten bij de vergunningverlening voor een of meer stoffen hogere concentraties kunnen toestaan in een door hen aan te geven tijdvak, indien:

a. de bodemgesteldheid of de bodemsoort zodanig is dat er geen gevaar is voor verontreiniging van het grondwater, indien water geïnfiltrererd wordt waarin die stoffen voorkomen in die hogere concentraties of

b. gedeputeerde staten aan de vergunning zodanige voorschriften verbinden dat het gevaar voor verontreiniging van het grondwater, dat ontstaat door infiltratie van water waarin die stoffen voorkomen in die hogere concentraties, wordt opgeheven.

2. Van gevaar voor verontreiniging van het grondwater is eveneens sprake, indien in het te infiltreren water stoffen voorkomen als bedoeld in bijlage 2, voorzover deze stoffen niet zijn genoemd in bijlage 1, en gedeputeerde staten constateren dat deze stoffen niet in zodanig geringe hoeveelheden en concentraties aanwezig zijn dat gevaar voor verslechtering van de kwaliteit van het grondwater is uitgesloten.

Artikel 4

1. Gedeputeerde staten verbinden aan de vergunning in ieder geval voorschriften ten aanzien van:

a. de kwaliteit van het te infiltreren water;

b. de beheersing van de hydrologische situatie;

c. de beëindiging van het infiltreren.

2. Ten aanzien van de kwaliteit van het te infiltreren water worden ten minste zodanige voorschriften aan de vergunning verbonden dat geen gevaar bestaat voor verontreiniging van het grondwater.

3. Ten aanzien van de beheersing van de hydrologische situatie worden ten minste zodanige voorschriften aan de vergunning verbonden dat verspreiding van het te infiltreren water zo veel mogelijk wordt beheerst, opdat het te infiltreren water grotendeels weer wordt onttrokken.

4. Ten aanzien van de beëindiging van het infiltreren worden ten minste voorschriften aan de vergunning verbonden, inhoudende dat een evaluatie van de gevolgen van het infiltreren voor de kwaliteit van de bodem dient plaats te vinden, gevolgd door een planmatige aanpak van de beëindiging waarvan het opheffen van eventuele nadelige gevolgen deel uitmaakt.

Artikel 5

Dit besluit treedt in werking met ingang van de eerste dag van de tweede kalendermaand na de datum van uitgifte van het Staatsblad waarin het wordt geplaatst.

Artikel 6

Dit besluit kan worden aangehaald als: Infiltratiebesluit bodembe- scherming.
Het advies van de Raad van State is openbaar gemaakt door terzagelegging bij het Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer. Tegenaan het advies met de daarbij terzage gelegde stukken worden opgenomen in het bijvoegsel bij de Nederlandse Staatscourant van 11 mai 1993, nr. 88.

Lasten en bevelen dat dit besluit met de daarbij behorende nota van toelichting in het Staatsblad zal worden geplaatst.

's-Gravenhage, 20 april 1993

Beatrix

De Minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer,
J. G. M. Alders

Uitgegeven de negenentwintigste april 1993

De Minister van Justitie,
E. M. H. Hirsch Ballin
<table>
<thead>
<tr>
<th>nr.</th>
<th>stof</th>
<th>eenheid</th>
<th>toelatingwaarde (opgelegd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zuurgraad (pH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>zwev. stof</td>
<td>mg/l</td>
<td>0,5</td>
</tr>
<tr>
<td>3</td>
<td>calcium (Ca<sup>2+</sup>)</td>
<td>mg/l</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>chloride (Cl<sup>-</sup>)</td>
<td>mg/l</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>watersuccaraboom (HCO<sub>3</sub>^{-})</td>
<td>mg/l</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>natrium (Na<sup>+</sup>)</td>
<td>mg/l-N</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>ammonium (NH<sub>4</sub>^+)</td>
<td>mg/l-N</td>
<td>2,8</td>
</tr>
<tr>
<td>8</td>
<td>nitraat (NO<sub>3</sub>^{-})</td>
<td>mg/l-N</td>
<td>6,0</td>
</tr>
<tr>
<td>9</td>
<td>totaal fosfaat (PO<sub>4</sub>tot)</td>
<td>mg/l-P</td>
<td>0,4</td>
</tr>
<tr>
<td>10</td>
<td>sulfat (SO<sub>4</sub>^{2-})</td>
<td>mg/l-N</td>
<td>150</td>
</tr>
<tr>
<td>11</td>
<td>fluoride (F<sup>-</sup>)</td>
<td>mg/l</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>cyaniden totaal (CN [tot])</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>zwaar metaal (ZM)</td>
<td>µg/l</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>arsen (As)</td>
<td>µg/l</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>cadmium (Cd)</td>
<td>µg/l</td>
<td>0,4</td>
</tr>
<tr>
<td>16</td>
<td>kobalt (Co)</td>
<td>µg/l</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>chroom (Cr)</td>
<td>µg/l</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>koper (Cu)</td>
<td>µg/l</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>kwik (Hg)</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>20</td>
<td>nikkel (Ni)</td>
<td>µg/l</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>lood (Pb)</td>
<td>µg/l</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>zink (Zn)</td>
<td>µg/l</td>
<td>0,5</td>
</tr>
<tr>
<td>23</td>
<td>som van de bestrijdingsmiddelen</td>
<td>µg/l</td>
<td>0,5</td>
</tr>
<tr>
<td>24</td>
<td>organoschoor-bestrijdingsmiddelen</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>25</td>
<td>endosulfan</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>26</td>
<td>α-HCH</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>27</td>
<td>-HCH (Linda)</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>28</td>
<td>DDT (incl. DDD en DDE)</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>29</td>
<td>dichloopropen</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>30</td>
<td>aldrin</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>31</td>
<td>dieldrin</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>32</td>
<td>endrin</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>33</td>
<td>heptachloor</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>34</td>
<td>heptachloorspoxide</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>35</td>
<td>hexachloor butadien</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>36</td>
<td>hexachloorenbenzeen</td>
<td>µg/l</td>
<td>0,05</td>
</tr>
<tr>
<td>37</td>
<td>organofosfor-bestrijdingsmiddelen</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>38</td>
<td>atinos-methyl</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>39</td>
<td>dichloorvos</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>40</td>
<td>dimethoat</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>41</td>
<td>mevinlos</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>42</td>
<td>parathion</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>43</td>
<td>trifrazines/triazinonen/aniliden</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>44</td>
<td>atrazine</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>45</td>
<td>simazine</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>46</td>
<td>metachloor</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>47</td>
<td>chlorofenoxyherbiciden</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>48</td>
<td>2-methyl-4-chlooroxyazinurum (MCFA)</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>49</td>
<td>mecoprop</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>50</td>
<td>2,4-dichlooroxyazinurum [2,4 D]</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>51</td>
<td>uracilherbiciden</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>52</td>
<td>chlorotriburon</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>53</td>
<td>isoproturon</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>54</td>
<td>metriburon</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>55</td>
<td>temuron</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Verzekering

(behooft bij artikel 3, eerste lid, van het infiltratiebesluit bodembescherming)
<table>
<thead>
<tr>
<th>nr.</th>
<th>stof</th>
<th>eenheid</th>
<th>toezettingswaarde [opgelost]</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>trichloofenolen</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>53</td>
<td>tetra- en chlorofenol</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>54</td>
<td>pentachloofenol</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>55</td>
<td>diosab</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>56</td>
<td>2,4-dinitrofenol</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>57</td>
<td>benzo(a)anthracene</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>58</td>
<td>OLIE</td>
<td>µg/l</td>
<td>200</td>
</tr>
<tr>
<td>59</td>
<td>naftalene</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>60</td>
<td>anthracene</td>
<td>µg/l</td>
<td>0,02</td>
</tr>
<tr>
<td>61</td>
<td>fenanthrazen</td>
<td>µg/l</td>
<td>0,02</td>
</tr>
<tr>
<td>62</td>
<td>cyananen</td>
<td>µg/l</td>
<td>0,02</td>
</tr>
<tr>
<td>63</td>
<td>fluoranthene</td>
<td>µg/l</td>
<td>0,02</td>
</tr>
<tr>
<td>64</td>
<td>benzol[a]anthracene</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>65</td>
<td>benzol[b]fluoranthene</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>66</td>
<td>benzol[e]pyrafen</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>67</td>
<td>benzol[ghi]pyrafen</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
<tr>
<td>68</td>
<td>indeno[123cd]pyrafen</td>
<td>µg/l</td>
<td>0,1</td>
</tr>
</tbody>
</table>

POLYCYCLISCHE AROMATISCHE KOOLWATERSTOFFEN (PAK's)

<table>
<thead>
<tr>
<th>nr.</th>
<th>stof</th>
<th>eenheid</th>
<th>toezettingswaarde [opgelost]</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>trichloorebene</td>
<td>µg/l</td>
<td>0,5</td>
</tr>
<tr>
<td>70</td>
<td>tetrachloorebene</td>
<td>µg/l</td>
<td>0,5</td>
</tr>
<tr>
<td>71</td>
<td>trihalomethane [THM's]</td>
<td>µg/l</td>
<td>2 *</td>
</tr>
<tr>
<td>72</td>
<td>dichloofenolen</td>
<td>µg/l</td>
<td>0,5</td>
</tr>
<tr>
<td>73</td>
<td>adsorbeerbare organische halogeenvverbindingen (AOX) µg/l</td>
<td>30 *</td>
<td></td>
</tr>
</tbody>
</table>

1 De toezettingswaarde voor zwevende stof betreft de niet opgeloste hoeveelheid materiaal.
2 Punt van aandacht bij de vergroeiing van afval of v.m. lokale situatie.
3 In het infiltratiewater mag 70 dagen per jaar een concentratie aanwezig zijn boven de hier genoemde waarde, waarbij de volgende maxima niet overschreden mogen worden:
 zwevende stof 2 mg/l; Cl⁻ 300 mg/l; Na⁺ 180 mg/l en NO₃⁻ 11,2 mgN/l; Ba 300 µg/l.
4 Dit betreft de som van de concentraties van de in deze lijst genoemde bestrijdingsmiddelen, waarbij de bepalingen waarvan het meetresultaat < detectiergevoeligheid zijn, een meetresultaat = 0 wordt toegerekend.
5 THM te bepalen als som van de concentraties van chloroform, bromo(chlo)form, dibromo(chlo)form en bromo(chlo)form. Als een transportchlooring wordt toegepast, is het toegestane maximum 70 µg/l.
6 Als een transportchlooring wordt toegepast, is het toegestane maximum 100 µg/l.

*staatsblad 1993. 233
BIJLAGE Z (behoort bij artikel 3, tweede lid, van het Infiltratiebesluit bodembescherming)

LIJST I. Families en groepen van stoffen

1. Organische halogeenverbindingen en stoffen waaruit dergelijke verbindingen kunnen ontstaan.
2. Organische fosforverbindingen.
3. Organische tinverbindingen.
4. Stoffen die een kankerverwekkende, mutagene of teratogene werking hebben.
5. Minerale oliën en koolwaterstoffen.
6. Cyaniden.
7. De volgende metalloïden en metalen alsmede verbindingen daarvan:
 - kwik
 - cadmium
 - lood
 - arsenicum
 - antimoon
 - tin

LIJST II. Families en groepen van stoffen

1. De volgende metalloïden en metalen alsmede verbindingen daarvan:
 - zink
 - koper
 - nikkel
 - chroom
 - selenium
 - molybdeen

2. Biociden en derivate daarvan, die niet onder lijst I vallen.
3. Stoffen met een schadelijke werking op de smaak of geur van het grondwater alsmede verbindingen waaruit dergelijke stoffen in het water kunnen ontstaan en die het water ongeschikt voor menselijke consumptie maken.
4. Organische siliciumverbindingen die toxisch of persistent zijn en stoffen waaruit dergelijke verbindingen kunnen ontstaan, met uitzondering van die welke biologisch onschadelijk zijn of die snel worden omgezet in onschadelijke stoffen.
5. Anorganische fosforverbindingen en elementair fosfor.
6. Ammoniak, nitrieten en nitraten.
7. Chloriden, bromiden, fluoriden.
8. Sulfaten.
NOTA VAN TOELICHTING

§ 1. Inleiding

Ter uitvoering van het gedeelte van de EG-Großtwaterrichtlijn (PbEG L20/43), dat betrekking heeft op het infiltreren van water, zijn bij wet van 14 november 1991 (Stb. 636) de Großtwaterwet en de Wet bodembescherming gewijzigd.

Op grond van het nieuwe artikel 14a van de Großtwaterwet mogen gedeputeerde staten voor het infiltreren van water alleen een vergunning, krachtens die wet verfieren indien geen gevaar bestaat voor verontreiniging van het grondwater. Bij het beoordelen van dat gevaar dienen gedeputeerde staten de regels in acht te nemen, die daaromtrent worden gesteld bij algemene maatregel van bestuur krachtens artikel 13a van de Wet bodembescherming. Ook dienen gedeputeerde staten de vertaling van het grondwater, dan wel anderszins ter bescherming van de bodem aan de vergunning voorschriften te verbinden volgens regels, eveneens gesteld bij algemene maatregel van bestuur krachtens dat artikel.

Het onderhavige besluit is gebaseerd op artikel 13a van de Wet bodembescherming. Hierbij worden voor bepaalde stoffen concentratiewaarden aangegeven, die bij de beoordeling van het gevaar voor verontreiniging van het grondwater door gedeputeerde staten in acht moeten worden genomen. Voorts wordt het besluit aangegeven welke voorschriften door gedeputeerde staten in ieder geval aan de vergunningen voor het infiltreren van uit oppervlaktewater verkregen water dienen te worden verbonden.

In deze nota van toelichting komen met betrekking tot het infiltreren echter voorgesteld aan de orde:
- een aantal algemene aspecten van dit besluit (§ 2);
- de inspraak en advisering (§ 3);
- een uiteenzetting over het bodembeschermingsbeleid (§ 4);
- de vertaling van het bodembeschermingsbeleid in de gegeven instructies (§ 5);
- de financiën (§ 6);
- de deregulering (§ 7).

§ 2. Algemeen

De meest bekende vorm van infiltratie, die in omvang meer dan 90% van de totale infiltratie uitmaakt, is het infiltreren van oppervlaktewater ten behoeve van de drinkwatervoorziening voor ca. twee miljoen inwoners en ten behoeve van een industrieinvestiging.

Sinds het midden van de vijftiger jaren wordt de techniek van oppervlakte-infiltratie toegepast. Hierbij wordt er van elders, meestal vanuit de grote rivieren, oppervlaktewater aangevoerd, dat, na voorzuivering, in vijvers of kanalen wordt gebracht en van daaruit wegstijgt in de ondergrond. Na een bodempassage wordt dit water vervolgens teruggewonnen om daarna tot drinkwater te worden gezuiverd. Recentelijk is de techniek van diep-infiltratie ontwikkeld, waarbij het van elders aangevoerde oppervlaktewater door middel van putten in diepere grondlagen wordt gebracht. Ook hier wordt het water na een bodempassage weer teruggewonnen en tot drinkwater gezuiverd.

Het besluit heeft alleen betrekking op infiltraties die onder het vergunningstelsel van de Großtwaterwet vallen, dat wil zeggen het in de bodem...
bringen van water ter aanvulling van het grondwater, met het oog op het onttrekken van grondwater.

Naast de infiltratie van oppervlaktewater bestaan er andere vormen van infiltratie, zoals het in de ondergrond opnemen van regenwater ten behoeve van gebruik in de glastuinbouw. Deze andere, meer diverse vormen van infiltratie vallen buiten het kader van dit besluit, omdat er nog geen algemene regels voor zijn te geven. Zo zullen zoals dit mogelijk is met eventueel daarvoor geldende specifieke voorschriften, alsnog onder de werking van het onderhavige besluit worden gebracht, of bijvoorbeeld voor wet betreft de regenwaterinfiltraties door de tuinders zo mogelijk in een integrale algemene maatregel van bestuur voor de glastuinbouw, gebaseerd op de Wet milieubeheer, worden opgenomen.

§ 3. Inspraak en advies

Ter voorbereiding van dit besluit zijn vertegenwoordigers van het inter-provinciaal Overleg, van de Vereniging van Exploitanten van Waterleidingbedrijven in Nederland (VEWIN) en andere desbetreffende over een conceptontwerp gehoord. Advies over het ontwerp zijn ontvangen van de Technische commissie bodembescherming, de Technische commissie grondwaterbeheer en de Raad voor de Drinkwatervoorziening. De Centrale raad voor de milieuhygiëne heeft tenbaar gemaakt af te zien van adviesgering over dit ontwerp-besluit.

Naar aanleiding van de voorpublikatie in de Staatscourant (Stor. 1982. 67) is commentaar ontvangen van de Stichting Natuur en Milieu, de Stichting Dunbehouw, de VEWIN, de gemeente Groningen, Delta Nutsbedrijven, de Nederlandse Stichting voor Pysiological en het Landbouwraad. De commentaren bevatten zowel verzoeken tot aanscherping als verzoeken tot verroeping van de in het besluit opgenomen voorschriften. De gemaakte opmerkingen hebben geleid tot enige aanpassingen in de nota van toelichting. Zo is, geleid op het commentaar van het Landbouwraad, aan § 2 een passage toegevoegd om duidelijk te maken dat voor andere vormen van infiltratie eventueel in een later stadium specifieke voorschriften ontwikkeld kunnen worden.

Het advies van de Technische commissie bodembescherming gs onder meer aanleiding om in § 5 te vermelden dat met betrekking tot de beïndiging van de infiltratie voorschriften kunnen worden gesteld ten aanzien van het verwijderen van slik uit de infiltratiewerken als onderdeel van het herstel van de multifunctionaliteit van de bodem.

Veel van het commentaar had betrekking op het feit dat deze regeling zich beperkt tot de infiltratie van oppervlaktewater, terwijl behoort tot de infiltratie met andere soorten water (regenwater, afvalwater) net zo bodemverontreinigend kan zijn.

 Dit commentaar is op zichzelf terecht; er is echter bij de opstelling van dit besluit gekozen voor een besluit dat zich voornamelijk beperkt tot de infiltratie van oppervlaktewater. De infiltratie van oppervlaktewater is zo uniform dat daar algemene regels voor te stellen zijn, hetgeen voor de andere vormen van infiltratie niet het geval is. Voorts zijn er voldoende gegevens over de infiltratie van oppervlaktewater bekend om de basis van regels te kunnen opstellen. De Raad voor de Drinkwatervoorziening wijst er verder op dat sommige in het besluit gestelde eisen zelfs strenger zijn dan de eisen die aan drinkwater worden gesteld en dat zelfs het regenwater, dat van nature in de bodem infiltrert, vaak niet aan de gestelde eisen voldoet.

Hetgeen de Raad ten aanzien van het drinkwater opmerkt, is op zichzelf juist. Nietsin blijkt van de bescherming van de bodem nodig zijn strengere of andere eisen te stellen dan aan drinkwater
worden gesteld. De eisen, gesteld aan drinkwater, worden daaraan verbonden uit een oogpunt van volksgezondheid. De gevoeligheid van de mens voor bepaalde stoffen in drinkwater en de wijze van contact met die stoffen, voornamelijk via inname door de mond, is bepalend voor de normstelling ter zake. De mens is voor een aantal van de in drinkwater voorkomende stoffen minder gevoelig dan de op of in de bodem voorkomende organismen/ecosystemen. Daarom is het fel dat te infiltreren water aan de kwastiteits-eisen die aan drinkwater worden gesteld, voldoet, nog geen garantie voor een goede bodembescherming. Voor te infiltreren water gelden derhalve andere — soms strengere — eisen dan voor drinkwater. Dat het regenwater soms niet aan de in dit besluit genoemde eisen zou voldoen, is uit een oogpunt van bodembescherming betreurenswaardig. Deze problematiek valt echter buiten de reikwijdte van dit besluit; verwezen mag worden dat het milieubeleid dat gericht is op het terugdringen van emissies naar de lucht, hierin verbetering zal brengen.

§ 4. Doelstellingen van het bodembeschermingsbeleid

Het behoud van de multifunctionaliteit van de bodem, de vaste bodemfase en het zich daarin bevindende grondwater, vormt het uitgangspunt van het bodembeschermingsbeleid. Dat wil zeggen dat het huidige gebruik van de bodem de voor de verschillende functies wezenlijke eigenschappen van de bodem niet onomkeerbaar mag aantasten. Voor het in de bodem brengen van vloeistoffen betekent dit dat geen enkel milieuobject zodoende als bedreigd wordt. Doelstellingen van het bodembeheer besluit worden gesteld. De eisen aan de drinkwaterverbindingen worden gebaseerd op de kwastiteitseisen die aan drinkwater worden gesteld, voldoet, nog geen garantie voor een goede bodembescherming. Voor te infiltreren water gelden derhalve andere — soms strengere — eisen dan voor drinkwater. Dat het regenwater soms niet aan de in dit besluit genoemde eisen zou voldoen, is uit een oogpunt van bodembescherming betreurenswaardig. Deze problematiek valt echter buiten de reikwijdte van dit besluit; verwezen mag worden dat het milieubeleid dat gericht is op het terugdringen van emissies naar de lucht, hierin verbetering zal brengen.

§ 5. De inhoud van het onderhavige besluit

In het onderhavige besluit wordt invulling gegeven aan het begrip gevaar voor verontreiniging van het grondwater, bij de Infiltratie van (voorgezuiverd) oppervlaktewater. Daartoe wordt de algemene beleidslijn, beschreven in § 4, hieronder nader uitgewerkt.

Vanwege de kwaliteit van het oppervlaktewater en de technische mogelijkheden tot zuivering van dit water alvorens het tot infiltratie wordt gebracht, kan niet gegarandeerd worden dat dit infiltratieowater zodanig gereguleerd kan worden, dat voldaan kan worden aan de streefwaarden voor grondwater zoals die zijn vastgelegd in het beleidsstandpunt van de notitie "Milieukwaliteitsdoelstellingen bodem en waters" (Milbowa).

Indien niet voldaan kan worden, dient met behulp van IBC-maatregelen (Isoleren, Beheersen en Controleren) verontreiniging van de bodem te worden voorkomen. Indien met een pakket maatregelen in de IBC-sfeer de activiteit niet zodanig gereguleerd kan worden, dat voldaan kan worden aan de streefwaarden voor grondwater, dan dient een afweging plaats te vinden of het maatschappelijk belang van de activiteit het rechtvaardigt een overschrijding van de streefwaarden tijdelijk aanvaardbaar te achten.

Staatsblad 1993 233
Door deze beheersing van het stromingspatroon is er sprake van isolatie van het infiltratiewater; het wordt geïsoleerd in het infiltratiegebied. Deze isolatie is met behulp van grondwaterstandsmetingen en de meting van waterpeilen in de infiltratie- en winningsmiddelen te controleren.

Op grond hiervan kan gesteld worden dat door beheersing en controle van de waterpeilen de infiltratie geïsoleerd en gecontroleerd plaatsvindt, waardoor verontreiniging van de bodem buiten het infiltratiegebied wordt voorkomen. Hier is dus sprake van toepassing van de IBC-maatregelen.

Binnen het infiltratiegebied zal de kwaliteit van het infiltratiewater de bodemkwaliteit echter wel beïnvloeden, zolang de kwaliteit van het infiltratiewater nog niet voldoet aan de streefwaarden voor grondwater. Een van de criteria voor het tijdelijk aanvaardbaar zijn van overschrijding van de streefwaarden, is de mogelijkheid van herstel van de multifunctionaliteit na beëindiging van de infiltratie. Infiltratie van water dat voldoet aan de toetsingswaarden, genoemd in bijlage 1 bij dit besluit, zal het herstel van de multifunctionaliteit van de bodem niet onmogelijk maken, waardoor het geen gevaar voor verontreiniging van het grondwater oplevert in de zin van artikel 14a van de Grondwaterwet.

Uit het voorgaande volgt dat, als er bij een infiltratie-activiteit sprake is van een hydrologisch beheerst en gecontroleerd systeem, er geen gevaar is voor verontreiniging van het grondwater buiten het infiltratiegebied. In de praktijk kunnen zich echter situaties voordoen waarin het gewenst is de hydrologische isolatie te beperken, hetgeen betekent dat er permanent vanuit het infiltratiegebied water afstromt. Dit kan gebeuren als gevolg van de toestroming van verontreinigd grondwater naar het infiltratiegebied tegen te gaan of om verdroging aan de randen van het infiltratiegebied te voorkomen.

De beoordeling van de hydrologische situatie, inclusief de beoordeling of een zekere mate van overinfiltratie gewenst en uit een oogpunt van bodembescherming acceptabel is, moet per infiltratiegebied plaatsvinden, zodat de voorschriften die hieromtrent in dit besluit worden gegeven slechts algemeen van aard kunnen zijn. Zij beperken zich derhalve tot de verplichting voorschriften aan de vergunning te verbinden met betrekking tot de beheersing van de hydrologische situatie.

Daarnaast geeft het besluit aan, aan welke eisen het te infiltreren water moet voldoen om binnen het infiltratiegebied geen gevaar voor verontreiniging van het grondwater te verorraden. Daartoe is als onderdeel van het besluit een lijst van parameters opgesteld (bijlage 1 bij dit besluit) die als toetsingswaarden dienen te worden gehanteerd door gedeputeerde staten bij vergunningverlening voor het infiltreren krachtens de Grondwaterwet. Dit neemt niet weg dat, evenals de hydrologische beoordeling, de beoordeling van het gevaar voor verontreiniging van het grondwater afhankelijk is van de lokale situatie. De beoordeling vindt plaats bij de vergunningverlening. In het besluit is daarom aan gedeputeerde staten een bevoegdheid gegeven om bij de vergunningverlening af te wijken van het bepaalde in bijlage 1 bij dit besluit. Het zou bijvoorbeeld nodig kunnen zijn om, vanwege de continuïteit van de drinkwatervoorziening, de infiltratie met een te hoog zoutgehalte tijdelijk toe te staan. Ook kan de lokale situatie het nodig maken om, op grond van het criterium geen gevaar voor verontreiniging van het grondwater in artikel 14a, strengere eisen te stellen dan de in dit besluit genoemde; het onderhavige besluit laat dit toe.

Het herstel van de multifunctionaliteit van de bodem na beëindiging van de infiltratie wordt enerzijds gegarandeerd door de eisen die gesteld
worden aan de kwaliteit van het te infiltreren water, anderzijds door de voorschriften die met betrekking tot het beëindigen van de infiltratie in de vergunning worden opgenomen, waartoe een evaluatie van de gevolgen van de infiltratie voor de kwaliteit van de bodem behoort. Op grond van het onderhavige besluit kan er in worden voordien dat, als uit deze evaluatie blijkt dat het alibi uit de infiltratieterwonen zou moeten worden verwijderd, dit ook daadwerkelijk dient te geschieden.

De hydrologische isolatie, de kwaliteit van het te infiltreren water, het herstel van de multifunctionaliteit van de bodem na beëindiging van de infiltratie en de bevoegdheid tot het maken van uitzonderingen vormen de essentie van dit besluit. In het navolgende wordt nog uiteengezet:

1. hoe de lijst van parameters tot stand is gekomen,
2. welke overwegingen in beschouwing zijn genomen bij de vaststelling van de toelatingswaarden.

ad 1

Bij het opstellen van de in bijlage 1 bij dit besluit opgenomen lijst van parameters heeft de EG-grondwaterrichtlijn als randvoorwaarde gediend. Gelet op artikel 2 van de EG-grondwaterrichtlijn zijn in bijlage 1 alleen die stoffen genoemd, waarvan verwacht wordt dat zij in het uit oppervlaktewater afkomstige infiltratiewater in zodanige concentraties kunnen voorkomen dat zij een gevaar voor verontreiniging van het grondwater kunnen vormen. De in bijlage 1 voor die stoffen aangegeven concentratiewaarden zijn zodanig gekozen dat bij de aanwezigheid van de stoffen in concentraties die deze waarden niet te boven gaan, in combinatie met het treffen van de op grond van artikel 4 voorgeschreven maatregelen, geen gevaar voor verontreiniging van het grondwater bestaat.

Bij het opstellen van de lijst in de bijlage zijn tevens in beschouwing genomen de parameterlijsten van het Besluit kwaliteitsdoelstellingen en metingen oppervlaktewateren en de parameterlijsten, genoemd in eerder genoemd beleidsstandpunt over de Notitie Milieu kwaliteitsdoelstellingen bodem en water.

Vervolgens zijn voor het opstellen van deze lijst de volgende uitgangspunten geformuleerd:

- in principe zullen in dit besluit alleen die parameters worden opgenomen die ook reeds zijn vermeld in bovengenoemd beleidsstandpunt.
- de lijst van parameters moet als basis dienen voor een (beperkt doch) verantwoord controleprogramma.

Bovengenoemde documenten kennen globaal een indeling in drie categorieën stoffen: de macro-parameters, de zware metalen en de organische micro-verontreinigingen. Deze laatste zijn onder te verdelen in bestrijdingsmiddelen, poly-cyclische aromaten (PAK's) en overige.

De in de lijst opgenomen macroparameters zijn de parameters genoemd in bovengenoemd beleidsstandpunt, vermeerderd met de hardheidsparameters en die voor zwevende stof.

De in de lijst opgenomen zware metalen zijn de in tabel 1 van bovengenoemd beleidsstandpunt genoemde, hetgeen betekent dat voor deze zware metalen een risico-evaluatie heeft plaatsgevonden. Daarnaast zijn nog barium en cobalt aan de lijst van bijlage 1 toegevoegd.

Voor de organische micro-verontreinigingen is de lijst onderverdeeld in bestrijdingsmiddelen, PAK's en overige.

De lijst van bestrijdingsmiddelen is als volgt tot stand gekomen:

Als eerste is de lijst van organochloorbestrijdingsmiddelen uit het Besluit kwaliteitsdoelstellingen en metingen oppervlakte wateren.
overgenomen. Afgezien van kleine verschillen in terminologie komt deze lijst ook overeen met de tabellen uit bovengenoemd beleidsstandpunt. Uit de overige in dit beleidsstandpunt genoemde bestrijdingsmiddelen is op basis van een inventariserend onderzoek\(^a\) een selectie gemaakt op basis van de volgende criteria:

- omzet in tonnen per jaar;
- gebruik van het middel in Nederland;
- produktie van het middel langs de Rijn of de Maas;
- gebruik van het middel in het stroomgebied van Rijn en Maas;
- oplosbaarheid;
- halflaardelijk bij aerobe afbraak;
- het beschikbaar zijn van een meetmethode.

Op grond van deze criteria is de groep overige bestrijdingsmiddelen in de lijst opgenomen.

De lijst van PAK's komt overeen met de 10 PAK's waarvoor een risicoevaluatie is uitgevoerd (zie tabel 1 van bovengenoemd beleidsstandpunt).

De lijst met overige organische micro-verontreinigingen bevat een aantal in het oppervlaktewater regelmatig voorkomende organohalogeenverbindingen, alsmede een tweetal somparameters als evangena voor de overige, niet genoemde, gehalogeneerde organische micro-verontreinigingen.

ad 2

Bij de vaststelling van de toetsingswaarden hebben de volgende uitgangspunten gehouden:

- het oppervlaktewaterbeleid, met name het Besluit kwaliteitsdoelstellingen en metingen oppervlaktewateren;
- het bestrijdingsmiddelenbeleid, dat er op gericht is de emissies naar het grondwater tot 0,1 μg/l per afzonderlijke stof en 0,5 μg/l voor alle middelen tezamen terug te dringen, te bereiken in het jaar 2000;
- het drinkwaterbeleid waarbij grote waarde wordt gehecht aan het gebruik van infiltratietachnieken bij de drinkwaterbereiding;
- de op de lijst voorkomende parameters moeten op het niveau van de toetsingswaarden meetbaar zijn, d.w.z. dat zij een detectiegrens moeten hebben, die lager is dan de toetsingswaarde.

Op grond hiervan is bij de vaststelling van de toetsingswaarden als volgt te werk gegaan. Voor stoffen in het infiltratiewater, waarvoor het thans reeds mogelijk is eisen te stellen op het niveau van de streefwaarden grondwater uit bovengenoemd beleidsstandpunt, worden de eisen daadwerkelijk op dit niveau vastgelegd. Voor stoffen in het infiltratiewater, waarvoor het thans nog niet mogelijk is de eisen op het niveau van de streefwaarden grondwater uit bovengenoemd beleidsstandpunt vast te leggen, wordt in dit besluit aangegeven welke concentraties in het te infiltreren water aanwezig mogen zijn.

Het oppervlaktewater voldoet voor wat betreft de macro-parameters het grootste deel van de tijd aan de streefwaarden. In het besluit zijn de toetsingswaarden daarom op dit niveau vastgelegd, zij het dat een overschrijding gedurende een beperkte periode tot een zeker maximum is toegestaan (zie de voetnoten bij de lijst van parameters).

Voor de zware metalen geldt dat het voorkomen in het oppervlaktewater in combinatie met de toegepaste voorzuiveringstechnieken het mogelijk maakt voor de meeste zware metalen de toetsingswaarde op het niveau van de streefwaarde vast te leggen.

\(^a\) KIWA mededeling 113, bestrijdingsmiddelen en drinkwatervoorziening in Nederland.
Voor de organische micro-verontreinigingen geldt dit helaas niet. Het grootste knelpunt in dit opzicht vormen de bestrijdingsmiddelen. Rekening houdend met het bestrijdingsmiddelenbeleid worden voor het te infiltreren water de eisen 0,1 µg/l per afzonderlijke stof en 0,5 µg/l voor alle middelen tezamen gehanteerd, met uitzondering van de organochloorpestciden, waarvoor de in het Besluit kwaliteitsdoelstellingen en metingen oppervlaktewateren genoemde getalswaarden (0,05 µg/l) zijn overgenomen.

Van de tien in de lijst opgenomen PAK's zijn de waarden voor de eerste vier vastgelegd op het niveau van de streefwaarde, de overige zes (de zes van Bornef) op het niveau dat nog goed meetbaar is. Voor de overige organische micro-verontreinigingen zijn op overeenkomstige wijze getalswaarden voor de toetsingswaarden vastgesteld.

Deze toetsingswaarden zijn geformuleerd als maximaal toelaatbare concentraties. Er is dus bewust niet gekozen voor de zg. percentielbepaling, waarbij men geacht wordt aan de eisen te voldoen als bijvoorbeeld 90% van de (periodiek uitgevoerde) metingen onder het voorgeschreven maximum blijft. In dit voorbeeld zou het dan immers mogelijk zijn, dat er gedurende 10% van de tijd water wordt geïnfiltrerend met een niet acceptabele concentratie van een bepaalde stof. Van overschrijding is sprake als in een monster water een concentratie is vastgesteld boven de in bijlage I genoemde concentraties en duidelijk is dat er geen sprake is van een meet- of analysefout.

Samenvattend kan worden gesteld dat met het in artikel 3, eerste lid, gegeven criterium en de daarbij behorende in bijlage I gegeven lijst van parameters in vrijwel alle gevallen een juiste beoordeling van het gevaar voor verontreiniging van het grondwater in het kader van de vergunningverlening mogelijk is.

Tenslotte is, omdat de lijsten I en II van de EG-grondwaterrichtlijn werken met families of groepen van stoffen en zodoende geen uitputtend karakter hebben, in onderhavig besluit naast bijlage I ook de bepaling van artikel 3, tweede lid, en de daarbij behorende bijlage 2 opgenomen, waardoor ook deze lijsten I en II als toetsingskader voor de vergunningverlening dienen.

Deze bijlage 2 moet worden gezien als een evangnet. De toevoeging is bedoeld om het bevoegd gezag alert te doen zijn op aanwijzingen waaruit zou kunnen blijken dat het infiltratiewater in zodanige concentraties stoffen, genoemd in deze bijlage, bevattende dat gevaar oplevert voor verontreiniging van het grondwater en te bewerkstelligen dat daar in het kader van de vergunningverlening aandacht aan wordt besteed.

Dit besluit bevat geen overgangsregeling voor bestaande infiltraties. Artikel 11 van de wet van 14 november 1991 bepaalt dat bestaande vergunningen krachtens de Grondwaterwet gelden als vergunningen die zijn verleend met inachtneming van de gewijzigde wet. Het besluit heeft formeel dus slechts betrekking op de verlening van vergunningen na de datum van inwerkingtreding ervan (nieuwe vergunningen). Gedeputeerde staten zullen het echter ook als toetsingskader voor reeds verleende vergunningen (bestaande vergunningen) kunnen gebruiken. Ingevolge artikel 24 van de Grondwaterwet kunnen gedeputeerde staten nieuwe of verder strekkende voorzchriften aan een vergunning verbinden, indien de bescherming van de bij het grondwaterbeheer betrokken belangen zulks vordert. Om dezelfde reden kan ingevolge artikel 28 van de Grondwaterwet een vergunning ook geheel of gedeeltelijk worden ingetrokken.

Het onderhavige besluit houdt een concreetiserings in van één van de bij het grondwaterbeheer betrokken belangen, het belang van het voorkomen van gevaar voor verontreiniging van het grondwater. Dit is een zodanig zwaarwegend belang dat ingevolge artikel 14a van de
Grondwaterwet een vergunning krachtens die wet uitsluitend mag worden verleend indien geen gevaar bestaat voor verontreiniging van het grondwater. Tegen deze achtergrond behoort het tot de verantwoordelijkheid van gedeputeerde staten om binnen een redelijke termijn na de inwerkingtreding van dit besluit na te gaan of dit besluit eenlelding geeft om gebruik te maken van de in de artikelen 24 en 26 van de Grondwaterwet gegeven bevoegdheden.

§ 6. Financiële aspecten

Hoewel dit besluit op zichzelf geen financiële consequenties voor de waterleidingbedrijven heeft, zullen deze bedrijven op termijn kosten moeten maken om een voldoende kwaliteit van het te infiltreren water te garanderen. De eisen met betrekking tot de kwaliteit van het grondwater, waarmee deze kosten voortvloeien, worden gesteld in de voorschriften die aan de vergunning voor het infiltreren krachtens de Grondwaterwet worden verbonden. De omvang van deze kosten is niet eenvoudig aan te geven, omdat zij in hoge mate afhankelijk zijn van de kwaliteit van het oppervlaktewater. Daarnaast zijn ook andere zaken op de kosten van invloed zoals:
- de hoeveelheid te behandelen infiltratiewater,
- de in de vergunningvoorschriften gestelde eisen,
- andere (bedrijfstechnische) redenen om voorzichtig toe te passen.

Het onderhavige besluit geeft aan gedeputeerde staten het toetsingskader om te bepalen of er sprake is van gevaar voor verontreiniging van het grondwater.

Kosten voor het vergunningverlenend gezag vloeien niet voort uit dit besluit. De vergunningverlening in het kader van de Grondwaterwet zal door het aangereikte toetsingskader iets eenvoudiger worden.

§ 7. Deregulering

 Het besluit is getoetst aan de Aanwijzingen inzake de toetsing van ontwerpen van wet en van algemene maatregel van bestuur, vastgesteld bij besluit van de minister-president van 16 januari 1985 (Stcr. 1985, 18).

Het doel van de regeling is in paragraaf 1 van deze toelichting uitgezet. De financiële gevolgen van de regeling zijn in paragraaf 6 vermeld. Het besluit roept geen nieuwe publiekrechtelijke of privatrechtelijke organen in het leven en evenmin nieuwe bestuursinstrumenten. Wel wordt gebruik gemaakt van een betrekkelijk nieuw bestuursinstrument: de instructie-a.m.v.b. Artikel 13a van de Wet bodembescherming, bij Wet van 14 november 1991, Stb. 636, in de wet opgenomen, maakt dat mogelijk. Ook in artikel 8.45 van de Wet milieubeheer is een dergelijke mogelijkheid opgenomen; het Stortbesluit, dat op 1 maart 1993 in werking is getreden, is op dat artikel gebaseerd.

- Afbakening met andere bodembeschermingsbesluiten.

Het Lozingenbesluit bodembescherming regelt het definitief in de bodem brengen van vloeistoffen. Dit besluit heeft betrekking op het niet definitief in de bodem brengen van vloeistoffen, zodat het Lozingenbesluit bodembescherming niet van toepassing is op infiltraties die onder de werking van onderhavig besluit vallen.

- Afbakening met de Wet milieubeheer

Het inrichtingenregime van de Wet milieubeheer (hoofdstuk 8 van die wet) is niet van toepassing op inrichtingen voor zover daarvoor een vergunning op grond van de Grondwaterwet is vereist.

De Minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer,
J. G. M. Aiders

Staatsblad 1993 233
Bijlage 4.3
Kwaliteitsgegevens proceswater
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>19/08/98</th>
<th>28/08/98</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pH})</td>
<td>BW-water m3/jaar</td>
<td>(7.45)</td>
<td>(7.38)</td>
</tr>
<tr>
<td>Goldraarkield</td>
<td>(\mu \text{S/cm})</td>
<td>(74.60)</td>
<td>(80.82)</td>
</tr>
<tr>
<td>Vrijchlorine</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(23.70)</td>
</tr>
<tr>
<td>TDS (BoC)</td>
<td>mg/l</td>
<td>(13.18%)</td>
<td>(210.5)</td>
</tr>
<tr>
<td>BOD</td>
<td>mg O2/l</td>
<td>(3.5)</td>
<td>(2.2)</td>
</tr>
<tr>
<td>COD</td>
<td>mg O2/l</td>
<td>(16.00)</td>
<td>(6.1)</td>
</tr>
<tr>
<td>Zuurde stoffen</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(1.75)</td>
</tr>
<tr>
<td>Zuurde stoffen</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(1.75)</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(1.75)</td>
</tr>
<tr>
<td>Kalium</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(1.75)</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(1.75)</td>
</tr>
<tr>
<td>Natrium</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(1.75)</td>
</tr>
<tr>
<td>Strontium</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(1.75)</td>
</tr>
<tr>
<td>Totale fosfor</td>
<td>mg P/l</td>
<td>(10.69)</td>
<td>(11.7)</td>
</tr>
<tr>
<td>Fosfaat</td>
<td>mg P/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Nitriet</td>
<td>mg NO3/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Nitraat</td>
<td>mg NO3/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Kjeldahl stikstof</td>
<td>mg NO3/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>TAM</td>
<td>mmol/l</td>
<td>(23.48)</td>
<td>(3.23)</td>
</tr>
<tr>
<td>Tap</td>
<td>mmol/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Hydraulie</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Carbonsaat</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Bakkarbont</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Sulfat</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Chlooride</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Fluoraat</td>
<td>mg/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Silicaat</td>
<td>mg SiO2/l</td>
<td>(107.65)</td>
<td>(106.16)</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>(3.59)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>TOC</td>
<td>mg C/l</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Totale alif.ferm.</td>
<td>mmol/m</td>
<td>(1.0)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Fasale alif.ferm.</td>
<td>mmol/m</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Fasale strepton.</td>
<td>mmol/m</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Fasale strepton.</td>
<td>mmol/m</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Totale bieren 22°</td>
<td>mmol/m</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Totale bieren 37°</td>
<td>mmol/m</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Alkaloïde (224 cm)</td>
<td>(1.3524)</td>
<td>(1.3629)</td>
<td>(1.3783)</td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens lozingwater
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7,58</td>
<td>7,40</td>
<td>7,40</td>
<td>7,45</td>
</tr>
<tr>
<td>Goldraehheit</td>
<td>µSlm</td>
<td>2549</td>
<td>2604</td>
<td>4606</td>
<td>5273</td>
</tr>
<tr>
<td>Vgl. zuvor</td>
<td>mg/l</td>
<td>6</td>
<td>19</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>TDS (18°C)</td>
<td>mg/l</td>
<td>88</td>
<td>130</td>
<td>140</td>
<td>147</td>
</tr>
<tr>
<td>Ammonium</td>
<td>µg/l</td>
<td>0,42</td>
<td>0,49</td>
<td>1,67</td>
<td>17,28</td>
</tr>
<tr>
<td>Barium</td>
<td>µg/l</td>
<td>403</td>
<td>616</td>
<td>612</td>
<td>673</td>
</tr>
<tr>
<td>Calcium</td>
<td>µg/l</td>
<td>7,31</td>
<td>20,50</td>
<td>3,06</td>
<td>16,42</td>
</tr>
<tr>
<td>Cadmium</td>
<td>µg/l</td>
<td>2,09</td>
<td>2,38</td>
<td>11,81</td>
<td>12,01</td>
</tr>
<tr>
<td>Calcium</td>
<td>µg/l</td>
<td>61,87</td>
<td>81,41</td>
<td>80,85</td>
<td>80,39</td>
</tr>
<tr>
<td>Chlordioxid</td>
<td>mg/l</td>
<td>425</td>
<td>425</td>
<td>1309</td>
<td>1300</td>
</tr>
<tr>
<td>Fluorid</td>
<td>mg/l</td>
<td>3,48</td>
<td>4,78</td>
<td>4,78</td>
<td>4,78</td>
</tr>
<tr>
<td>Silikum</td>
<td>mg/l</td>
<td>38,53</td>
<td>38,44</td>
<td>34,08</td>
<td>34,08</td>
</tr>
<tr>
<td>TOC</td>
<td>mg CR</td>
<td>268485</td>
<td>268532</td>
<td>322952</td>
<td>319754</td>
</tr>
<tr>
<td>Totaal kliniken + interplan.</td>
<td>mmol/l</td>
<td>9</td>
<td>9</td>
<td>84</td>
<td>83</td>
</tr>
<tr>
<td>Totaal interplan.</td>
<td>mmol/l</td>
<td>129612</td>
<td>128341</td>
<td>96920</td>
<td>95961</td>
</tr>
<tr>
<td>Totaal kliniken nijlen</td>
<td>mmol/l</td>
<td>20388</td>
<td>20188</td>
<td>6618</td>
<td>6532</td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>mg/l</td>
<td>0,6827</td>
<td>0,6996</td>
<td>1,0313</td>
<td>1,0452</td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens lozingswater
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>3/10/98</th>
<th>22/10/98</th>
<th>27/10/98</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schadelijkheid</td>
<td>µS/cm</td>
<td>5337</td>
<td>3696</td>
<td>3741</td>
</tr>
<tr>
<td>Vrijk chloor</td>
<td>mg/l</td>
<td>4373</td>
<td>4410</td>
<td>6494</td>
</tr>
<tr>
<td>TDS (180°C)</td>
<td>mg/l</td>
<td>6310</td>
<td>7140</td>
<td>7153</td>
</tr>
<tr>
<td>BOD</td>
<td>mgO₂/l</td>
<td>2957</td>
<td>2989</td>
<td>3621</td>
</tr>
<tr>
<td>COD</td>
<td>mgO₂/l</td>
<td>13</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Zuurzout stoffen</td>
<td>mg/l</td>
<td>0,31</td>
<td>0,04</td>
<td>0,11</td>
</tr>
<tr>
<td>Barium</td>
<td>mg/l</td>
<td>1055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caolium</td>
<td>mg/l</td>
<td>1089</td>
<td>1080</td>
<td>1143</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/l</td>
<td>1134</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>Natrum</td>
<td>mg/l</td>
<td>15,20</td>
<td>3,92</td>
<td>17,27</td>
</tr>
<tr>
<td>Stretonium</td>
<td>mg/l</td>
<td>117,22</td>
<td>0,59</td>
<td>13,98</td>
</tr>
<tr>
<td>Totale foer</td>
<td>mgP/l</td>
<td>24,60</td>
<td>15,83</td>
<td>2,55</td>
</tr>
<tr>
<td>Nitraat</td>
<td>mg/l</td>
<td>114,80</td>
<td>114,49</td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/l</td>
<td>13,91</td>
<td>38,70</td>
<td>38,65</td>
</tr>
<tr>
<td>Kjeldahl stoffen</td>
<td>mgN/1</td>
<td>115,90</td>
<td>114,75</td>
<td>115,63</td>
</tr>
<tr>
<td>TAM</td>
<td>mmol/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAP</td>
<td>mmol/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrate</td>
<td>mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonaat</td>
<td>mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bkarkwaat</td>
<td>mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfat</td>
<td>mg/l</td>
<td>85,56</td>
<td>85,05</td>
<td>84,96</td>
</tr>
<tr>
<td>Chloëde</td>
<td>mg/l</td>
<td>1055</td>
<td>965</td>
<td>960</td>
</tr>
<tr>
<td>Kalsioate</td>
<td>mg/l</td>
<td>1055</td>
<td>965</td>
<td>960</td>
</tr>
<tr>
<td>Turbiditeit</td>
<td>NTU</td>
<td>10,35</td>
<td>39,17</td>
<td>39,07</td>
</tr>
<tr>
<td>TOC</td>
<td>mgC</td>
<td>39,07</td>
<td>44,47</td>
<td>44,32</td>
</tr>
<tr>
<td>Total algenaam</td>
<td>aant/100 ml</td>
<td>39,76</td>
<td>99,16</td>
<td>98,47</td>
</tr>
<tr>
<td>Female algenaam</td>
<td>aant/100 ml</td>
<td>38,38</td>
<td>38,49</td>
<td>43,89</td>
</tr>
<tr>
<td>Totaal holen 27°</td>
<td>aant/ml</td>
<td>13762</td>
<td>2347</td>
<td>2323</td>
</tr>
<tr>
<td>Totaal holen 37°</td>
<td>aant/ml</td>
<td>13762</td>
<td>2347</td>
<td>2323</td>
</tr>
<tr>
<td>Schoorheid (354 nm)</td>
<td></td>
<td>1,005</td>
<td>0,090</td>
<td>0,9239</td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens rozingswater
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>1607/98</th>
<th>29/07/98</th>
<th>15/09/98</th>
<th>31/12/98</th>
<th>Gemiddeld</th>
<th>Min</th>
<th>Max</th>
<th>807/98</th>
<th>1607/98</th>
<th>15/09/98</th>
<th>30/12/98</th>
<th>Gemiddeld</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>1,83</td>
<td>1,89</td>
<td>1,98</td>
<td></td>
<td>1,83</td>
<td>1,96</td>
<td>1,96</td>
<td>3</td>
<td>13,50</td>
<td>13,55</td>
<td>13,43</td>
<td>13,34</td>
<td>13,34</td>
</tr>
<tr>
<td>Gluconebacter</td>
<td>µg/ml</td>
<td>10140</td>
<td>8310</td>
<td>9910</td>
<td>9154</td>
<td>8800</td>
<td>8210</td>
<td>7870</td>
<td>3</td>
<td>67200</td>
<td>74000</td>
<td>72300</td>
<td>61900</td>
<td>72007</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mgO2/l</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td>1,80</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>338</td>
<td>406</td>
<td>337</td>
<td>230</td>
<td>453</td>
</tr>
<tr>
<td>COD</td>
<td>mgO2/l</td>
<td>77</td>
<td>68</td>
<td>20</td>
<td></td>
<td>20</td>
<td>77</td>
<td>77</td>
<td>3</td>
<td>1190</td>
<td>1190</td>
<td>1260</td>
<td>1260</td>
<td>1198</td>
</tr>
<tr>
<td>Littens calcium</td>
<td>mg/l</td>
<td>4,0</td>
<td>14,0</td>
<td>5,3</td>
<td></td>
<td>10,0</td>
<td>10,0</td>
<td>10,0</td>
<td>3</td>
<td>13,50</td>
<td>13,50</td>
<td>13,50</td>
<td>13,50</td>
<td>13,50</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l</td>
<td>196</td>
<td>149</td>
<td>115</td>
<td></td>
<td>155</td>
<td>155</td>
<td>155</td>
<td>3</td>
<td>1158</td>
<td>1590</td>
<td>1590</td>
<td>1590</td>
<td>1590</td>
</tr>
<tr>
<td>Nitrit</td>
<td>mgNO2/l</td>
<td>0,10</td>
<td>0,16</td>
<td>0,03</td>
<td></td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>3</td>
<td>1,71</td>
<td>1,84</td>
<td>3,71</td>
<td>0,43</td>
<td>0,43</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mgNO2/l</td>
<td>38,53</td>
<td>39,24</td>
<td>22,81</td>
<td></td>
<td>33,53</td>
<td>32,8</td>
<td>32,8</td>
<td>3</td>
<td>26,68</td>
<td>20,07</td>
<td>25,93</td>
<td>14,92</td>
<td>14,92</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/l</td>
<td>14,60</td>
<td>14,50</td>
<td>6,12</td>
<td></td>
<td>14,60</td>
<td>10,2</td>
<td>10,2</td>
<td>3</td>
<td>2,40</td>
<td>17,09</td>
<td>2,33</td>
<td>2,48</td>
<td>2,48</td>
</tr>
<tr>
<td>Gluconebacter</td>
<td>µg/ml</td>
<td>10140</td>
<td>8310</td>
<td>9910</td>
<td>9154</td>
<td>8800</td>
<td>8210</td>
<td>7870</td>
<td>3</td>
<td>67200</td>
<td>74000</td>
<td>72300</td>
<td>61900</td>
<td>72007</td>
</tr>
<tr>
<td>TAM</td>
<td>µg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>TAP</td>
<td>µg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Hydrazine</td>
<td>µg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Cdsmust</td>
<td>µg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Baarsmust</td>
<td>µg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Sulfat</td>
<td>µg/l</td>
<td>122</td>
<td>117</td>
<td>76</td>
<td></td>
<td>105</td>
<td>76</td>
<td>76</td>
<td>3</td>
<td>151</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>Chloride</td>
<td>µg/l</td>
<td>788</td>
<td>420</td>
<td>180</td>
<td></td>
<td>466</td>
<td>180</td>
<td>180</td>
<td>3</td>
<td>246</td>
<td>312</td>
<td>303</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Fluoride</td>
<td>µg/l</td>
<td>0,770</td>
<td>0,280</td>
<td>0,250</td>
<td></td>
<td>0,25</td>
<td>0,77</td>
<td>0,77</td>
<td>3</td>
<td>0,310</td>
<td>0,350</td>
<td>0,200</td>
<td>0,160</td>
<td>0,26</td>
</tr>
<tr>
<td>Silica</td>
<td>mgSiO2/l</td>
<td>23,45</td>
<td>0,14</td>
<td>0,07</td>
<td></td>
<td>0,07</td>
<td>23,45</td>
<td>23,45</td>
<td>3</td>
<td>31,64</td>
<td>23,72</td>
<td>27,75</td>
<td>15,44</td>
<td>24,64</td>
</tr>
<tr>
<td>Nitril</td>
<td>mg/l</td>
<td>0,27</td>
<td>1,08</td>
<td><0,01</td>
<td></td>
<td>0,27</td>
<td>1,08</td>
<td>1,08</td>
<td>2</td>
<td><0,01</td>
<td>0,93</td>
<td><0,01</td>
<td>0,15</td>
<td>0,54</td>
</tr>
<tr>
<td>TOC</td>
<td>mg/l</td>
<td>35,0</td>
<td>31,9</td>
<td>20,6</td>
<td></td>
<td>29,2</td>
<td>20,6</td>
<td>20,6</td>
<td>3</td>
<td>64,0</td>
<td>59,2</td>
<td>53,6</td>
<td>53,6</td>
<td>53,6</td>
</tr>
<tr>
<td>Total sulfernen</td>
<td>mg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Female sulfernen</td>
<td>mg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Para trophaenium</td>
<td>mg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Total kolen 22%</td>
<td>mg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Total kolen 37%</td>
<td>mg/l</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Chlor</td>
<td>mg/l</td>
<td>150</td>
<td>150</td>
<td>50</td>
<td></td>
<td>600</td>
<td>650</td>
<td>600</td>
<td>3</td>
<td>600</td>
<td>650</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Absorbcie (254 nm)</td>
<td>mg/l</td>
<td>3,0291</td>
<td>2,6768</td>
<td>1,5328</td>
<td></td>
<td>2,4159</td>
<td>1,5328</td>
<td>1,5328</td>
<td>3</td>
<td>3,3878</td>
<td>2,9141</td>
<td>3,2166</td>
<td>2,4424</td>
<td>2,9907</td>
</tr>
</tbody>
</table>

Kwaliteitseigenschappen CJP-water
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>Max</th>
<th>Aantal</th>
<th>8/10/98</th>
<th>31/12/98</th>
<th>Gemiddeld</th>
<th>Min</th>
<th>Max</th>
<th>7/10/98</th>
<th>30/12/98</th>
<th>Gemiddeld</th>
<th>Min</th>
<th>Max</th>
<th>Aantal</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>µH</td>
<td>13,55</td>
<td>4</td>
<td>2,65</td>
<td>2,65</td>
<td>2,65</td>
<td>1</td>
<td>12,29</td>
<td>12,29</td>
<td>12,29</td>
<td>12,29</td>
<td>1</td>
<td>12,29</td>
<td>1</td>
</tr>
<tr>
<td>Geelheidseigenschap</td>
<td>µg/l</td>
<td>76200</td>
<td>4</td>
<td>16,55</td>
<td>16,55</td>
<td>16,55</td>
<td>1</td>
<td>2490</td>
<td>2490</td>
<td>2490</td>
<td>2490</td>
<td>1</td>
<td>2490</td>
<td>1</td>
</tr>
<tr>
<td>Vrij chloor</td>
<td>mg/l</td>
<td>0,00</td>
<td>0</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TDS (180°C)</td>
<td>mg/l</td>
<td>40038</td>
<td>4</td>
<td>13,873</td>
<td>13,873</td>
<td>13,873</td>
<td>1</td>
<td>1096</td>
<td>1096</td>
<td>1096</td>
<td>1096</td>
<td>1</td>
<td>1096</td>
<td>1</td>
</tr>
<tr>
<td>BOD</td>
<td>mg O2/l</td>
<td>337</td>
<td>4</td>
<td>5824</td>
<td><2</td>
<td>2</td>
<td>2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COD</td>
<td>mg O2/l</td>
<td>1260</td>
<td>4</td>
<td>9970</td>
<td>9570</td>
<td>9570</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Zuurde stoffen</td>
<td>mg/l</td>
<td>66,00</td>
<td>4</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>1</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
</tr>
<tr>
<td>Barium</td>
<td>µg/l</td>
<td>2,9</td>
<td>4</td>
<td>4,0</td>
<td>2,4</td>
<td>2,4</td>
<td>1</td>
<td>2,1</td>
<td>2,1</td>
<td>2,1</td>
<td>2,1</td>
<td>2,1</td>
<td>2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l</td>
<td>18</td>
<td>4</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
<td>1</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Manganese</td>
<td>mg/l</td>
<td>81</td>
<td>4</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Natrium</td>
<td>mg/l</td>
<td>10800</td>
<td>4</td>
<td>221</td>
<td>221</td>
<td>221</td>
<td>1</td>
<td>357</td>
<td>357</td>
<td>357</td>
<td>357</td>
<td>357</td>
<td>357</td>
<td>357</td>
</tr>
<tr>
<td>Strontium</td>
<td>µg/l</td>
<td>117</td>
<td>4</td>
<td>263</td>
<td>263</td>
<td>263</td>
<td>1</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Totaal fluor</td>
<td>mg/l</td>
<td>21,10</td>
<td>4</td>
<td><0,1</td>
<td>DEEL01</td>
<td>0,00</td>
<td>0</td>
<td>0,62</td>
<td>0,62</td>
<td>0,62</td>
<td>0,62</td>
<td>0,62</td>
<td>0,62</td>
<td>0,62</td>
</tr>
<tr>
<td>Totaal zink</td>
<td>mg/l</td>
<td>3,71</td>
<td>4</td>
<td><0,03</td>
<td>DEEL01</td>
<td>0,00</td>
<td>0</td>
<td>0,23</td>
<td>0,23</td>
<td>0,23</td>
<td>0,23</td>
<td>0,23</td>
<td>0,23</td>
<td>0,23</td>
</tr>
<tr>
<td>Nitraten</td>
<td>mg NO3/l</td>
<td>30,07</td>
<td>4</td>
<td>10,27</td>
<td>10,27</td>
<td>10,27</td>
<td>1</td>
<td>7,44</td>
<td>7,44</td>
<td>7,44</td>
<td>7,44</td>
<td>7,44</td>
<td>7,44</td>
<td>7,44</td>
</tr>
<tr>
<td>Ammonium</td>
<td>µg/l</td>
<td>17,06</td>
<td>4</td>
<td>4,32</td>
<td>4,32</td>
<td>4,32</td>
<td>1</td>
<td>17,02</td>
<td>17,02</td>
<td>17,02</td>
<td>17,02</td>
<td>17,02</td>
<td>17,02</td>
<td>17,02</td>
</tr>
<tr>
<td>Kijkstof</td>
<td>mg/l</td>
<td>3,14</td>
<td>4</td>
<td>3,14</td>
<td>3,14</td>
<td>3,14</td>
<td>1</td>
<td>3,14</td>
<td>3,14</td>
<td>3,14</td>
<td>3,14</td>
<td>3,14</td>
<td>3,14</td>
<td>3,14</td>
</tr>
<tr>
<td>TAM</td>
<td>mg/m³</td>
<td>0,00</td>
<td>4</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>18,35</td>
<td>18,35</td>
<td>18,35</td>
<td>18,35</td>
<td>18,35</td>
<td>18,35</td>
<td>18,35</td>
</tr>
<tr>
<td>TAP</td>
<td>mg/m³</td>
<td>0,00</td>
<td>4</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>13,18</td>
<td>13,18</td>
<td>13,18</td>
<td>13,18</td>
<td>13,18</td>
<td>13,18</td>
<td>13,18</td>
</tr>
<tr>
<td>Hydrostof</td>
<td>mg/l</td>
<td>0,00</td>
<td>4</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>Carbonat</td>
<td>mg/l</td>
<td>0,00</td>
<td>4</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td>Boronzoet</td>
<td>mg/l</td>
<td>0,00</td>
<td>4</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Sulfat</td>
<td>mg/l</td>
<td>160</td>
<td>4</td>
<td><10</td>
<td>DEEL01</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/l</td>
<td>312</td>
<td>4</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>1</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/l</td>
<td>0,35</td>
<td>4</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>1</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Silicium</td>
<td>mg SiO2/l</td>
<td>31,64</td>
<td>4</td>
<td><0,01</td>
<td>DEEL01</td>
<td>0,00</td>
<td>0</td>
<td>5,48</td>
<td>5,48</td>
<td>5,48</td>
<td>5,48</td>
<td>5,48</td>
<td>5,48</td>
<td>5,48</td>
</tr>
<tr>
<td>Turboalan</td>
<td>TRY</td>
<td>0,93</td>
<td>4</td>
<td><0,01</td>
<td>DEEL01</td>
<td>0,00</td>
<td>0</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOC</td>
<td>mg C/lt</td>
<td>644,00</td>
<td>4</td>
<td>8000,0</td>
<td>8000,0</td>
<td>8000,0</td>
<td>1</td>
<td>13,0</td>
<td>13,0</td>
<td>13,0</td>
<td>13,0</td>
<td>13,0</td>
<td>13,0</td>
<td>13,0</td>
</tr>
<tr>
<td>Totaal alfaffen</td>
<td>aant/100 ml</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaal alfaffen</td>
<td>aant/100 ml</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaal alfaffen</td>
<td>aant/100 ml</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaal alfaffen</td>
<td>aant/100 ml</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chlorer</td>
<td>mg/l</td>
<td>3,387</td>
<td>4</td>
<td>0,1703</td>
<td>0,1703</td>
<td>0,1703</td>
<td>1,000</td>
<td>0,1382</td>
<td>0,1382</td>
<td>0,1382</td>
<td>0,1382</td>
<td>0,1382</td>
<td>0,1382</td>
<td>0,1382</td>
</tr>
</tbody>
</table>

Kwaliteitagegevens CP-water
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>04-07-97 ROCI</th>
<th>09-07-97 ROCI</th>
<th>16-07-97 ROCI</th>
<th>18-07-97 ROCI</th>
<th>22-07-97 ROCI</th>
<th>24-07-97 ROCI</th>
<th>28-07-97 ROCI</th>
<th>30-07-97 ROCI</th>
<th>01-08-97 ROCI</th>
<th>05-08-97 ROCI</th>
<th>08-08-97 ROCI</th>
<th>08-08-97 ROCI</th>
<th>11-08-97 ROCI</th>
<th>14-08-97 ROCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuurstofgehalte</td>
<td>mgO2/l</td>
<td>7,52</td>
<td>7,62</td>
<td>7,5</td>
<td>7,48</td>
<td>7,55</td>
<td>7,35</td>
<td>7,41</td>
<td>7,41</td>
<td>7,42</td>
<td>7,41</td>
<td>7,27</td>
<td>7,35</td>
<td>7,29</td>
<td>7,22</td>
</tr>
<tr>
<td>Zuurstofgehalte</td>
<td>mgFe/l</td>
<td></td>
</tr>
<tr>
<td>SDI</td>
<td>µS/cm</td>
<td>4720</td>
<td>6000</td>
<td>6610</td>
<td>5880</td>
<td>6110</td>
<td>6720</td>
<td>6070</td>
<td>6420</td>
<td>6830</td>
<td>6480</td>
<td>6850</td>
<td>6810</td>
<td>6430</td>
<td>6740</td>
</tr>
<tr>
<td>Vrije chloor</td>
<td>mg/l</td>
<td>-0,01</td>
<td></td>
</tr>
<tr>
<td>H2S (180°C)</td>
<td>mg/l</td>
<td>4607</td>
<td>4803</td>
<td>4280</td>
<td>4609</td>
<td>5045</td>
<td>4591</td>
<td>4736</td>
<td>4991</td>
<td>4793</td>
<td>5144</td>
<td>4911</td>
<td>4758</td>
<td>5151</td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>mgO2/l</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>mgO2/l</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Zwevende stoffen</td>
<td>mg/l</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Baryum</td>
<td>µg/l</td>
<td>0,025</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>Kalium</td>
<td>mg/l</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/l</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Natrium</td>
<td>mg/l</td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>mg/l</td>
<td>1,664</td>
<td></td>
</tr>
<tr>
<td>Totale fosfor</td>
<td>mgP/l</td>
<td>6,49</td>
<td></td>
</tr>
<tr>
<td>Nitriët</td>
<td>mgNO2/l</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>Nitraat</td>
<td>mgNO3/l</td>
<td>12,84</td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/l</td>
<td>3,68</td>
<td></td>
</tr>
<tr>
<td>Kjeldahl stikstof</td>
<td>mgN/l</td>
<td>7,3</td>
<td></td>
</tr>
<tr>
<td>TAM</td>
<td>mmol/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TAP</td>
<td>mmol/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydroxide</td>
<td>mg/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Karbonaat</td>
<td>mg/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bikarbonaat</td>
<td>mg/l</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Sulfat</td>
<td>mg/l</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/l</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/l</td>
<td>0,86</td>
<td></td>
</tr>
<tr>
<td>Silicium</td>
<td>mg SiO2/l</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>Turbiditeit</td>
<td>NTU</td>
<td>42,6</td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>mgO2/l</td>
<td>42,6</td>
<td></td>
</tr>
<tr>
<td>Total coliformen</td>
<td>ant/100ml</td>
<td>270</td>
<td>150</td>
<td>430</td>
<td>570</td>
<td>1350</td>
<td>4400</td>
<td>300</td>
<td>140</td>
<td>70</td>
<td>390</td>
<td>1350</td>
<td>66000</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Faceale coliformen</td>
<td>ant/100ml</td>
<td>34000</td>
<td>102400</td>
<td>102400</td>
<td>259200</td>
<td>261400</td>
<td>35750</td>
<td>18100</td>
<td>4010</td>
<td>204000</td>
<td>66000</td>
<td>26900</td>
<td>24800</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Faceale streptococen</td>
<td>ant/100ml</td>
<td>7000</td>
<td>48800</td>
<td>14230</td>
<td>176800</td>
<td>145800</td>
<td>74000</td>
<td>2485</td>
<td>95</td>
<td>68400</td>
<td>5300</td>
<td>4280</td>
<td>8145</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Totaal kiemen 22°</td>
<td>ant/ml</td>
<td></td>
</tr>
<tr>
<td>Totaal kiemen 37°</td>
<td>ant/ml</td>
<td></td>
</tr>
<tr>
<td>Kloor</td>
<td>µg/l</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Absorptie (254 nm)</td>
<td></td>
<td>1,3332</td>
<td></td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens omgekeerde osmose
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Embeld</th>
<th>18-08-97</th>
<th>21-08-97</th>
<th>25-08-97</th>
<th>28-08-97</th>
<th>01-09-97</th>
<th>04-09-97</th>
<th>09-09-97</th>
<th>12-09-97</th>
<th>16-09-97</th>
<th>19-09-97</th>
<th>22-09-97</th>
<th>25-09-97</th>
<th>30-09-97</th>
<th>03-10-97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuurstofgehalte (mgO₂/l)</td>
<td>ROCO</td>
<td>7,32</td>
<td>7,54</td>
<td>7,28</td>
<td>7,32</td>
<td>7,85</td>
<td>7,33</td>
<td>7,29</td>
<td>7,4</td>
<td>7,23</td>
<td>7,33</td>
<td>7,8</td>
<td>7,23</td>
<td>7,2</td>
<td>7,14</td>
</tr>
<tr>
<td>ijzergehalte (mg Fe/l)</td>
<td>ROCO</td>
<td></td>
</tr>
<tr>
<td>SDI</td>
<td>6580</td>
<td>7040</td>
<td>6840</td>
<td>3650</td>
<td>4350</td>
<td>7570</td>
<td>7810</td>
<td>7580</td>
<td>7290</td>
<td>7800</td>
<td>7280</td>
<td>7370</td>
<td>6970</td>
<td>7330</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td><0,01</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Geschildaarheid (µS/cm)</td>
<td>ROCO</td>
<td>5113</td>
<td>5240</td>
<td>4669</td>
<td>2603</td>
<td>3072</td>
<td>5400</td>
<td>5934</td>
<td>5622</td>
<td>5288</td>
<td>5690</td>
<td>5276</td>
<td>5338</td>
<td>5175</td>
<td>5331</td>
</tr>
<tr>
<td>Vrije chloor (mg/l)</td>
<td>ROCO</td>
<td></td>
</tr>
<tr>
<td>TDS (180°C) (mg/l)</td>
<td>ROCO</td>
<td></td>
</tr>
<tr>
<td>BOD (mgO₂/l)</td>
<td>ROCO</td>
<td></td>
</tr>
<tr>
<td>COD (mgO₂/l)</td>
<td>ROCO</td>
<td></td>
</tr>
<tr>
<td>Zweevene stoffen (mg/l)</td>
<td>ROCO</td>
<td>6,3</td>
<td></td>
</tr>
<tr>
<td>Barium (µg/l)</td>
<td>ROCO</td>
<td></td>
</tr>
<tr>
<td>Calcium (mg/l)</td>
<td>ROCO</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>Kalium (mg/l)</td>
<td>ROCO</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Magnesium (mg/l)</td>
<td>ROCO</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Natium (mg/l)</td>
<td>ROCO</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>Strontium (µg/l)</td>
<td>ROCO</td>
<td>0,205</td>
<td></td>
</tr>
<tr>
<td>Totale fosfor (mg P/l)</td>
<td>ROCO</td>
<td>5,49</td>
<td></td>
</tr>
<tr>
<td>Totale stikstof (mg N/l)</td>
<td>ROCO</td>
<td></td>
</tr>
<tr>
<td>Nitriet (mgNO₂/l)</td>
<td>ROCO</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Nitraat (mg NO₃/l)</td>
<td>ROCO</td>
<td>29,27</td>
<td></td>
</tr>
<tr>
<td>Ammonium (mg/l)</td>
<td>ROCO</td>
<td>1,59</td>
<td></td>
</tr>
<tr>
<td>Kjeldahl stikstof (mg N/l)</td>
<td>ROCO</td>
<td></td>
</tr>
<tr>
<td>TAM (mmol/l)</td>
<td>ROCO</td>
<td>22,7</td>
<td></td>
</tr>
<tr>
<td>TAP (mmol/l)</td>
<td>ROCO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydroxide (mg/l)</td>
<td>ROCO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbonaat (mg/l)</td>
<td>ROCO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bicarbonaat (mg/l)</td>
<td>ROCO</td>
<td>1385</td>
<td></td>
</tr>
<tr>
<td>Sulfat (mg/l)</td>
<td>ROCO</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>Chloride (mg/l)</td>
<td>ROCO</td>
<td>635</td>
<td></td>
</tr>
<tr>
<td>Fluoride (mg/l)</td>
<td>ROCO</td>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>Silicium (mg SiO₂/l)</td>
<td>ROCO</td>
<td>98,47</td>
<td></td>
</tr>
<tr>
<td>Turbiditeit (NTU)</td>
<td>ROCO</td>
<td>1,94</td>
<td></td>
</tr>
<tr>
<td>TOC (mg C/l)</td>
<td>ROCO</td>
<td>12,24</td>
<td></td>
</tr>
<tr>
<td>Total colifismen <100ml</td>
<td>ROCO</td>
<td>1000000</td>
<td>1700</td>
<td>13200</td>
<td>129000</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>13700</td>
<td>143000</td>
<td>58000</td>
<td>27000</td>
<td>7000</td>
<td>740</td>
<td>440000</td>
</tr>
<tr>
<td>Faasale colifismen <100ml</td>
<td>ROCO</td>
<td>500000</td>
<td>88000</td>
<td>208000</td>
<td>127500</td>
<td>8</td>
<td>152500</td>
<td>192500</td>
<td>127500</td>
<td>167500</td>
<td>0</td>
<td>103200</td>
<td>102500</td>
<td>55000</td>
<td>520000</td>
</tr>
<tr>
<td>Faasale streptococcen <100ml</td>
<td>ROCO</td>
<td>392500</td>
<td>54400</td>
<td>320000</td>
<td>68400</td>
<td>0</td>
<td>90400</td>
<td>22800</td>
<td>20400</td>
<td>82500</td>
<td>0</td>
<td>50750</td>
<td>40400</td>
<td>192</td>
<td>107500</td>
</tr>
<tr>
<td>Total kiemen 22°< 100ml</td>
<td>ROCO</td>
<td>1,1311</td>
<td></td>
</tr>
<tr>
<td>Total kiemen 37°< 100ml</td>
<td>ROCO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kleur (mg C/l)</td>
<td>ROCO</td>
<td></td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens omgekeerde osmose
Kwaliteitsgegevens omgekeerde osmose

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuurstofgehalte</td>
<td>mg O2/l</td>
<td></td>
</tr>
<tr>
<td>Ijzergehalte</td>
<td>mg Fe/l</td>
<td></td>
</tr>
<tr>
<td>SDI</td>
<td></td>
<td>7,11</td>
<td>7,19</td>
<td>7,19</td>
<td>7,32</td>
<td>7,57</td>
<td>7,17</td>
<td>7,02</td>
<td>7,22</td>
<td>7,38</td>
<td>7,2</td>
<td>7,2</td>
<td>7,07</td>
<td>7,10</td>
<td>7,28</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>6960</td>
<td>2910</td>
<td>3320</td>
<td>3510</td>
<td>6730</td>
<td>7040</td>
<td>6940</td>
<td>6720</td>
<td>7330</td>
<td>5900</td>
<td>3740</td>
<td>4960</td>
<td>4600</td>
<td>4950</td>
</tr>
<tr>
<td>Geleidbaarheid</td>
<td>µS/cm</td>
<td></td>
</tr>
<tr>
<td>Vrije chloor</td>
<td>mg/l</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDS (180°C)</td>
<td>mg/l</td>
<td>5434</td>
<td>2298</td>
<td>2386</td>
<td>2543</td>
<td>4934</td>
<td>5207</td>
<td>5142</td>
<td>4967</td>
<td>5363</td>
<td>4351</td>
<td>2630</td>
<td>3580</td>
<td>3258</td>
<td>3437</td>
</tr>
<tr>
<td>BOD</td>
<td>mg O2/l</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>mg O2/l</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Zoeweervende stoffen</td>
<td>mg/l</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>mg/l</td>
<td>0,033</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>Kaliüm</td>
<td>mg/l</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/l</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Natrium</td>
<td>mg/l</td>
<td>1770</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>mg/l</td>
<td>1,12</td>
<td></td>
</tr>
<tr>
<td>Totale fosfor</td>
<td>mg P/l</td>
<td>9,33</td>
<td></td>
</tr>
<tr>
<td>Totale stikstof</td>
<td>mg N/l</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Nitraat</td>
<td>mg NO3/l</td>
<td>133,42</td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/l</td>
<td>3,95</td>
<td></td>
</tr>
<tr>
<td>Kjeldahl stikstof</td>
<td>mg N/l</td>
<td>19,95</td>
<td></td>
</tr>
<tr>
<td>TAM</td>
<td>mmol/l</td>
<td>19,95</td>
<td></td>
</tr>
<tr>
<td>TAP</td>
<td>mmol/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydroxide</td>
<td>mg/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbonat</td>
<td>mg/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bicarbonaat</td>
<td>mg/l</td>
<td>1217</td>
<td></td>
</tr>
<tr>
<td>Sulfat</td>
<td>mg/l</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Chlooride</td>
<td>mg/l</td>
<td>2230</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/l</td>
<td>1,04</td>
<td></td>
</tr>
<tr>
<td>Silicium</td>
<td>mg SiO2/l</td>
<td>111,79</td>
<td></td>
</tr>
<tr>
<td>Turbiditeit</td>
<td>NTU</td>
<td>1,04</td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>mg C/l</td>
<td>76,4</td>
<td></td>
</tr>
<tr>
<td>Total cellaferen</td>
<td>aant/100 ml</td>
<td>990000</td>
<td>44000</td>
<td>520</td>
<td>10000</td>
<td>3000</td>
<td>14300</td>
<td>132000</td>
<td>700</td>
<td>350</td>
<td>0</td>
<td>100</td>
<td>220</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>Faecale cellaferen</td>
<td>aant/100 ml</td>
<td>300000</td>
<td>12000</td>
<td>4400</td>
<td>192000</td>
<td>260000</td>
<td>600000</td>
<td>350000</td>
<td>440000</td>
<td>348000</td>
<td>580000</td>
<td>212500</td>
<td>410000</td>
<td>130</td>
<td>9500</td>
</tr>
<tr>
<td>Faecale streptococen</td>
<td>aant/100 ml</td>
<td>360000</td>
<td>95000</td>
<td>850</td>
<td>160000</td>
<td>9800</td>
<td>240000</td>
<td>488000</td>
<td>36000</td>
<td>920</td>
<td>110000</td>
<td>7900</td>
<td>340000</td>
<td>95</td>
<td>4300</td>
</tr>
<tr>
<td>Totaal kleiën 22°</td>
<td>aant/ml</td>
<td></td>
</tr>
<tr>
<td>Totaal kleiên 37°</td>
<td>aant/ml</td>
<td></td>
</tr>
<tr>
<td>Keur</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Absorptiviteit (254 nm)</td>
<td></td>
<td>1,2304</td>
<td>1,2656</td>
<td></td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens omgekeerde osmose
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>24-11-97 ROCO</th>
<th>27-11-97 ROCO</th>
<th>01-12-97 ROCO</th>
<th>04-12-97 ROCO</th>
<th>09-12-97 ROCO</th>
<th>12-12-97 ROCO</th>
<th>14-03-98 ROCO</th>
<th>18-08-98 ROCO</th>
<th>03-09-98 ROCO</th>
<th>10-09-98 ROCO</th>
<th>17-09-98 ROCO</th>
<th>25-09-98 ROCO</th>
<th>05-10-98 ROCO</th>
<th>13-10-98 ROCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuurstofhalte</td>
<td>mgO₂/l</td>
<td>7,68</td>
<td>7,12</td>
<td>7,16</td>
<td>7,01</td>
<td>7,05</td>
<td>6,98</td>
<td>8,2</td>
<td>7,45</td>
<td>7,38</td>
<td>7,34</td>
<td>7,54</td>
<td>7,4</td>
<td>7,45</td>
<td>6,92</td>
</tr>
<tr>
<td>Bijzondere halte</td>
<td>mgO₂/l</td>
<td>4810</td>
<td>6470</td>
<td>3550</td>
<td>5520</td>
<td>1764</td>
<td>1283</td>
<td>3480</td>
<td>7450</td>
<td>2310</td>
<td>1856</td>
<td>4610</td>
<td>5660</td>
<td>4850</td>
<td>5700</td>
</tr>
<tr>
<td>Staal</td>
<td>mg/l</td>
<td>3450</td>
<td>4689</td>
<td>2631</td>
<td>3851</td>
<td>6263</td>
<td>4611</td>
<td>2518</td>
<td>6113</td>
<td>2105</td>
<td>1750</td>
<td>3994</td>
<td>5390</td>
<td>4295</td>
<td>3447</td>
</tr>
<tr>
<td>COD</td>
<td>mgO₂/l</td>
<td>20</td>
<td>35</td>
<td>22</td>
<td>1,8</td>
<td>19</td>
<td>6</td>
<td>36</td>
<td>6</td>
<td>123</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>mg O₂/l</td>
<td>148</td>
<td>160</td>
<td>61</td>
<td>77</td>
<td>130</td>
<td>147</td>
<td>123</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwaarwichtige stoffen</td>
<td>mg/l</td>
<td>1,9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>µg/l</td>
<td>0,33</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l</td>
<td>362</td>
<td>362</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>Kalium</td>
<td>mg/l</td>
<td>173</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/l</td>
<td>23</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Natrium</td>
<td>mg/l</td>
<td>773</td>
<td>785</td>
<td>242</td>
<td>341</td>
<td>617</td>
<td>1150</td>
<td>1010</td>
<td>513</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>µg/l</td>
<td>1,44</td>
<td>2850</td>
<td></td>
</tr>
<tr>
<td>Totale fosfor</td>
<td>mg P/l</td>
<td>2,01</td>
<td></td>
</tr>
<tr>
<td>Nitriet</td>
<td>mgNO₂/l</td>
<td>2,23</td>
<td></td>
</tr>
<tr>
<td>Nitraat</td>
<td>mg NO₃/l</td>
<td>103,63</td>
<td></td>
</tr>
<tr>
<td>Ammoniumpiket</td>
<td>mg/l</td>
<td>0,83</td>
<td></td>
</tr>
<tr>
<td>Kalie dinitriet</td>
<td>mg N/l</td>
<td></td>
</tr>
<tr>
<td>TAM</td>
<td>mmol/l</td>
<td>13,34</td>
<td></td>
</tr>
<tr>
<td>TAP</td>
<td>mmol/l</td>
<td></td>
</tr>
<tr>
<td>Hydroxide</td>
<td>mg/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbonaat</td>
<td>mg/l</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bicarbonaat</td>
<td>mg/l</td>
<td>814</td>
<td></td>
</tr>
<tr>
<td>Polyazuur</td>
<td>mg/l</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>Chloorid</td>
<td>mg/l</td>
<td>1270</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/l</td>
<td>0,96</td>
<td></td>
</tr>
<tr>
<td>Silicium</td>
<td>mg SiO₂/l</td>
<td>86,29</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>1,69</td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>mg C/l</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Totaal coliormen</td>
<td>aant/100ml</td>
<td>150</td>
<td>30000</td>
<td>60</td>
<td>58</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>12300</td>
<td>20000</td>
<td>271000</td>
<td>320000</td>
<td>0</td>
<td>0</td>
<td>1400</td>
</tr>
<tr>
<td>Faciale coliormen</td>
<td>aant/100ml</td>
<td>390000</td>
<td>1500</td>
<td>20800</td>
<td>310</td>
<td>1400</td>
<td>6800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Faciale streptococci</td>
<td>aant/100ml</td>
<td>130000</td>
<td>160</td>
<td>1700</td>
<td>140</td>
<td>350</td>
<td>1240</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaal kien en 22°</td>
<td>aant/ml</td>
<td>59</td>
<td>17200</td>
<td>44800</td>
<td>130400</td>
<td>96800</td>
<td>43600</td>
<td>400000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaal kien en 37°</td>
<td>aant/ml</td>
<td>0</td>
<td>3800</td>
<td>24200</td>
<td>20020</td>
<td>6500</td>
<td>14000</td>
<td>14000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kleur</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Absorbatie (254 nm)</td>
<td></td>
<td>0,9897</td>
<td></td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens omgekeerde osmose
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eenheid</th>
<th>22-10-98</th>
<th>27-10-98</th>
<th>03-11-98</th>
<th>12-11-98</th>
<th>Gemiddeld</th>
<th>Losingsnorm</th>
<th>Min</th>
<th>Max</th>
<th>Aantal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuurstofgehalte</td>
<td>mgO₂/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>ijzergehalte</td>
<td>mgFe/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7,16</td>
<td>7,18</td>
<td>7,01</td>
<td>7,15</td>
<td>7,270909</td>
<td>6,92</td>
<td>7,54</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Geselde basheid</td>
<td>µS/cm</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>Vrije chloor</td>
<td>mg/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>TDS (180°C)</td>
<td>mg/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>BOD</td>
<td>mgO₂/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>COD</td>
<td>mgO₂/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>Zuurstofgehalte</td>
<td>mgO₂/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>ijzergehalte</td>
<td>mgFe/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7,16</td>
<td>7,18</td>
<td>7,01</td>
<td>7,15</td>
<td>7,270909</td>
<td>6,92</td>
<td>7,54</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Geselde basheid</td>
<td>µS/cm</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>Vrije chloor</td>
<td>mg/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>TDS (180°C)</td>
<td>mg/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>BOD</td>
<td>mgO₂/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
<tr>
<td>COD</td>
<td>mgO₂/l</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
<td>ROCO</td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens omgekeerde osmose
Kwaliteitsgegevens spoelwater

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7,69</td>
<td></td>
</tr>
<tr>
<td>Voetloosheid</td>
<td>µS/cm</td>
<td></td>
</tr>
<tr>
<td>TDS (180°C)</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>mg O₂/l</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>mg O₂/l</td>
<td></td>
</tr>
<tr>
<td>Zuren en esters</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Caliënum</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Kaliënum</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Natriënum</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Steenzuur</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Totaal fosfor</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Bifosfor</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Totaal stikstof</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Nitraten</td>
<td>mg NO₂/l</td>
<td></td>
</tr>
<tr>
<td>Ammoniak</td>
<td>mg NH₄/l</td>
<td></td>
</tr>
<tr>
<td>Krijtvormige stikstof</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>TAM</td>
<td>mmol/l</td>
<td></td>
</tr>
<tr>
<td>TAP</td>
<td>mmol/l</td>
<td></td>
</tr>
<tr>
<td>Hydraal 100ml*</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Carbonaat 100ml</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Bikarbonaat 100ml</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Zout 100ml</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Chloride 100ml</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Fluoride 100ml</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Silicium 100ml</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Turbiditeit NTU</td>
<td></td>
<td>0,3581</td>
<td></td>
<td>0,4243</td>
<td></td>
<td>0,3899</td>
<td>0,5316</td>
<td>0,3649</td>
<td></td>
<td>0,0597</td>
<td>1,5932</td>
<td>0,8593</td>
<td>1,5487</td>
<td>0,7318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pagina 1
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0,01</td>
<td>0,05</td>
</tr>
<tr>
<td>GdMbiUIThtl pSjrm</td>
<td>0,01</td>
</tr>
<tr>
<td>Vlffecllotn-</td>
<td>0,01</td>
</tr>
<tr>
<td>TDS (°C)</td>
<td>0,01</td>
</tr>
<tr>
<td>COD</td>
<td>0,01</td>
</tr>
<tr>
<td>Zwartvntltltstoffen</td>
<td>0,01</td>
</tr>
<tr>
<td>Barium</td>
<td>0,01</td>
</tr>
<tr>
<td>Calcium</td>
<td>0,01</td>
</tr>
<tr>
<td>Eisen</td>
<td>0,01</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0,01</td>
</tr>
<tr>
<td>Natrium</td>
<td>0,01</td>
</tr>
<tr>
<td>Silicium</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Kwaliteitsgegevens spoelwater.

Pagina 2
Bijlage 8.2.1

Boorstaten
Waterwinning Sint-André

Boorbeschrijving L1

Waterwinning:
St-André

X-Coord:
202,600

Y-Coord:
186 m

Hoogte maasiv:
6,73 m TAW

Datum:
17-25/11/1992

Nummer boring: L1

Boortijd: 186 m

Boordiert: Van Deynse

Hoogte meetpt: 6,90 m TAW

Boorbeschrijv: E. Van Houtte

Type watervoerende laag: Landenlaan (sand)

Methode: gespoeld

Type put: pompput

Diameter:
- 0 - 28 m diam. 350 mm
- 28 - 138 m diam 300 mm
- 138 - 174 m diam 200 mm
- 174 - 186 m diam 140 mm

Verbulzing:
- 0 - 138 m PVC diam 225/202 mm
- 138 - 158 m PVC diam 125/92 mm

Filter:
- 0,7 - 1,25 mm

Omstorting:
- gekalibreerd zand

Stop:
- cement

Boorgatmetingen: gamma

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Bruinzwart humushoudend zand met wortels</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 3,0</td>
<td>Geel schelp houdend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,0 - 4,0</td>
<td>Iedem maar weinig leemhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 9,0</td>
<td>Donkergrijs schelp- en glimmerhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>9,0 - 14,0</td>
<td>Grijze schelp houdend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>14,0 - 26,0</td>
<td>Grijze schelp houdend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>26,0 - 27,2</td>
<td>Basisgrind bestaande uit grof zand mit veel schelpfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>27,2 - 27,8</td>
<td>Grijze Slippe leem</td>
<td>Yc</td>
</tr>
<tr>
<td>27,8 - 140,2</td>
<td>Grijzblauwe stijve klei</td>
<td>Yc</td>
</tr>
<tr>
<td>140,2 - 150,0</td>
<td>Groen grijs sterk schelp houdend fijn zand</td>
<td>Lld</td>
</tr>
<tr>
<td>150,0 - 150,9</td>
<td>Groen grijs schelp houdend kleihoudend fijn zand</td>
<td>Lld</td>
</tr>
<tr>
<td>150,9 - 158,0</td>
<td>Groen grijs weinig schelp houdend fijn zand met schaar stijve vene fragmenten</td>
<td>Lld</td>
</tr>
<tr>
<td>158,0 - 159,5</td>
<td>Groen grijs kleihoudend fijn zand tot zandhoudende klei</td>
<td>Llc</td>
</tr>
<tr>
<td>157,0 - 185,0</td>
<td>Groen grijs weinig zandhoudende halfstijve</td>
<td>Llc</td>
</tr>
<tr>
<td>185,0 - 186,0</td>
<td>Krijt</td>
<td>Kr</td>
</tr>
</tbody>
</table>

Opmerking: De overgang tussen de Landenlaanklei en het Krijt werd niet gevoeld bij het booromdat deze grens niet éénvoudig kan vastgesteld werden.
Waterwinning Sint-André

Boorboring L2

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Dia.</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>225</td>
<td>Bruin zwart humushoudend zand met wortels</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 3,0</td>
<td>202</td>
<td>Geel schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,0 - 10,0</td>
<td>125</td>
<td>Grijs schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>10,0 - 14,0</td>
<td>9,2</td>
<td>Grijs sterk schelphoudend middelmatig tot grof zand</td>
<td>Q</td>
</tr>
<tr>
<td>14,0 - 20,0</td>
<td>7,0</td>
<td>Idem maar met sporadisch kleine veenfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>20,0 - 27,0</td>
<td>5,0</td>
<td>Grijs middelmatig tot grof zand</td>
<td>Q</td>
</tr>
<tr>
<td>27,0 - 140,2</td>
<td>200</td>
<td>Grijsblauwe stijve klei</td>
<td>Yc</td>
</tr>
<tr>
<td>140,2 - 156,5</td>
<td>125</td>
<td>Groengrijs schelphoudend fijn zand</td>
<td>Lid</td>
</tr>
<tr>
<td>156,5 - 160,0</td>
<td>90</td>
<td>Groengrijs kleihoudend fijn zand tot zandhoudende klei</td>
<td>Llc</td>
</tr>
</tbody>
</table>

Type watervoerende laag : Landaniaan (zand)

Methode gespoeld

Diameter

- 0 - 28 m diam. 350 mm
- 28 - 138 m diam. 300 mm
- 138 - 174 m diam. 200 mm
- 174 - 160 m diam. 140 mm

Verbazing

- 0 - 138 m PVC diam 225/202 mm
- 138 - 158 m PVC diam 125/9,2 mm

Filter

- gekalibreerd zand 0,7 - 1,25 mm

Stop
- cement

Bij schoonpompen is de put toegeslaan (dichtklappen PVC buizen) waardoor de dompelpomp vast kwam te zitten en deze put compleet verloren was, ook als peilbuis, want deze put reageerde niet zoals verwacht tijdens de pompproef.

Boorgatmetingen : geen
INTERCOMMUNALE WATERLEIDINGSMAATSCHAPPIJ VAN VEURNE-AMBACH

Doornpanne 1, 8670 Koksijde tel (058) 521555 fax (058) 521604

<table>
<thead>
<tr>
<th>Waterwinning</th>
<th>St-André</th>
<th>Nummer boring</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Coörd</td>
<td>10,670</td>
<td>Diepte</td>
<td>160 m</td>
</tr>
<tr>
<td>Y-Coörd</td>
<td>202,610</td>
<td>Boor firma</td>
<td>Van Deynze</td>
</tr>
<tr>
<td>Hoogte maasiv</td>
<td>+ 6,65 mTAW</td>
<td>Hoogte meetpt</td>
<td>+ 6,96 mTAW</td>
</tr>
<tr>
<td>Datum</td>
<td>10-18/12/1992</td>
<td>Boorbeschrijv</td>
<td>E. Van Houtte</td>
</tr>
</tbody>
</table>

Type watervoerende laag : Landenlaan (zand)

<table>
<thead>
<tr>
<th>Diameter</th>
<th>0 - 28 m</th>
<th>350 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28 - 138 m</td>
<td>300 mm</td>
</tr>
<tr>
<td></td>
<td>138 - 160 m</td>
<td>200 mm</td>
</tr>
<tr>
<td></td>
<td>160 m - 160 m</td>
<td>160 m</td>
</tr>
</tbody>
</table>

tussen 138 en 160 m diepte werd boorgat uitgeruimd (diam 350 mm) vooraleer de filter te plaatsen

Verbuizing : 0 - 138 m PVC diam 225/202 mm 12,5 bar

Filter : 138 - 158 m PVC diam 125/9,2 mm filteropeningen 0,5 mm

Omstorting : gekalibreerd zand 0,7 - 1,45 mm
diameter filter openingen 0,5 mm

Stop : cement
diameter filter openingen 0,5 mm

Schoonpompen methode : doppelpomp
datum - duur | 8/01/1993 - 150 min en 26-28/04/1993 - 2 dagen
debiet | 6 m³/uur

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Bruinzwart humushoudend zand met wortels</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 4,0</td>
<td>Geel schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 8,0</td>
<td>Donkergeel schelp- en glimmerhoudend fijn tot</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>middelmatig zand</td>
<td></td>
</tr>
<tr>
<td>8,0 - 12,0</td>
<td>Grijze sterk schelphoudend en veenhoudend fijn tot</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>middelmatig zand</td>
<td></td>
</tr>
<tr>
<td>12,0 - 15,0</td>
<td>Grijze schelphoudend en veenhoudend middelmatig</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>tot grof zand</td>
<td></td>
</tr>
<tr>
<td>15,0 - 25,5</td>
<td>Grijze schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>25,5 - 26,0</td>
<td>Grijze zandhoudende klei</td>
<td>Q</td>
</tr>
<tr>
<td>26,0 - 28,0</td>
<td>Grijze schelphoudend grof zand</td>
<td>Q</td>
</tr>
<tr>
<td>28,0 - 140,2</td>
<td>Grijzeblauwe stijve klei</td>
<td>Yc</td>
</tr>
<tr>
<td>140,2 - 158,0</td>
<td>Groengrijze schelphoudend fijn zand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>afwisselend met laagjes kleihoudend fijn zand</td>
<td></td>
</tr>
<tr>
<td>158,0 - 160,0</td>
<td>Groengrijze kleihoudend fijn zand tot</td>
<td>Yd</td>
</tr>
<tr>
<td></td>
<td>zandhoudende klei</td>
<td></td>
</tr>
</tbody>
</table>

WATERWINNING SINT-ANDRE

BOORBESCHRIJVING L3
Waterwinning: St-André
Nummer boring: L4
X-Coörd: 30.670
Diepte: 160 m
Y-Coörd: 202.610
Boorfirma: Van Deynse
Hoogte maai: + 6.94 mTAW
Hoogte meetpt: + 6.94 mTAW
Datum: 20/04 - 04/05/1993
Boorbeschrijv: E. Van Houtte

Type watervoerende laag: Landenaan (zand)

Methode: gespoeld
Type put: winput

Diameter:
- 0 - 28 m diam. 350 mm
- 28 - 138 m diam 300 mm
- 138 - 160 m diam 200 mm
(tussen 138 en 160 m diepte werd boorgat uitgeruimd
(diam 350 mm) vooraleer de filter te plaatsen)

Verbuizing:
- 0 - 100 m PVC diam 225/202 mm 12,5 bar
- 100 - 138 m PVC diam 225/202 mm 16 bar

Filter:
- 138 - 158 m PVC diam 125/9,2 mm filteropeningen 0,5 mm

Omstorting:
- gekalibreerd zand 0,7 - 1,25 mm

Stop:
- cement

** Schoonpompen methode:** domelpomp
** datum - duur:** mei 1993 - 150 min
** debiet:** 6 m³/uur

Boorgatmetingen:
- geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 1,5</td>
<td>Geel tot roestgeel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,5 - 2,5</td>
<td>Idem maar weinig veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>2,5 - 3,5</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,5 - 4,2</td>
<td>Geel schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,2 - 4,8</td>
<td>Grijst sterk schelphoudend en veenhoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,8 - 9,0</td>
<td>Grijst weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>9,0 - 10,0</td>
<td>Idem maar sterk veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>10,0 - 15,0</td>
<td>Grijst weinig schelphoudend fijn zand dat naar onder toe</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>geledelijk overgaat in middelmatig zand</td>
<td></td>
</tr>
<tr>
<td>15,0 - 22,0</td>
<td>Grijst schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>22,0 - 27,0</td>
<td>Grijst schelphoudend fijn tot middelmatig zand;</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>onderste meter grover zand met meer schelpen</td>
<td></td>
</tr>
<tr>
<td>27,0 - 138,5</td>
<td>Grijlsblauwe stijve klei</td>
<td>Yc</td>
</tr>
<tr>
<td>138,5 - 139,5</td>
<td>Groene sterk schelphoudend fijn zand</td>
<td>L2</td>
</tr>
<tr>
<td>139,5 - 140,0</td>
<td>Groene zandhoudende klei</td>
<td>L2</td>
</tr>
<tr>
<td>140,0 - 145,0</td>
<td>Groene sterk schelphoudend fijn zand; in bovenste</td>
<td>L2</td>
</tr>
<tr>
<td></td>
<td>zone weinig kleihoudend</td>
<td></td>
</tr>
<tr>
<td>145,0 - 147,5</td>
<td>Grijst fijn zand afwisselend met laagjes groene</td>
<td>L2</td>
</tr>
<tr>
<td></td>
<td>slappe schelp- en zandhoudende klei</td>
<td></td>
</tr>
<tr>
<td>147,5 - 151,0</td>
<td>Grijst weinig veenhoudend fijn zand</td>
<td>L2</td>
</tr>
<tr>
<td>151,0 - 154,5</td>
<td>Grijst schelphoudend fijn zand afwisselend groene</td>
<td>L2</td>
</tr>
<tr>
<td></td>
<td>slappe zandhoudende klei</td>
<td></td>
</tr>
<tr>
<td>154,5 - 160,0</td>
<td>Groene zandhoudende klei; tussen 157 en 157,5 iets zandiger</td>
<td>L1c</td>
</tr>
</tbody>
</table>

WATERWINNING SINT-ANDRE
BOORBESCHRIJVING L4
Waterwinning : St-André
X-Coörd :
Y-Coörd :
Hoogte maaiv : + 7,65 mTAW
Datum : 17/12/1992

Boordatum : WP1.2
Diepte : 8 m
Boorfirma : IWVA
Hoogte meetpt : + 8,135 mTAW
Boorbeschrijf : E. Van Houtte

Type watervoerende laag : Kwartaire freatische laag

Methode : gespoeld
Diameter : 0 - 8 m diam. 125 mm
Filter : 5,8 - 6,8 m PVC diam 63/58 mm filteropeningen 0,3 mm
Omstorting : geKalibreerd zand 0,7 - 1,25 mm
Stop : geen

Schoonpompen methode : centrifugaalpomp
datum - duur : 17/12/92 - 30 minuten

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Bruin humushoudend zand met wortels</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 4,0</td>
<td>Geel schelphoudend middelmatig zand met onderaan een dun kleilensje</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 6,0</td>
<td>Geel middelmatig zand met sporadisch veenfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>6,0 - 8,0</td>
<td>Grijs middelmatig schelphoudend zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
Waterwinning:

St-André

- **X-Coörd:**
- **Y-Coörd:**
- **Hoogte maaiv:** + 6,40 m TAW
- **Datum:** 25/02/1993

Type watervoerende laag:
Kwartaire freatische laag

Methode:
gespoeld (PREMPOLU)

Diameter:
0 - 10 m, diam. 125 mm

Filter:
9,0 - 10,0 m PVC diam 63/58 mm, filteropeningen 0,3 mm

Omstorting:
gekalibreerd zand 0,7 - 1,25 mm

Stop:
geen

Schoonpompen methode:
centrifugaalpomp

datum - duur: 03/03/93 - 15 minuten

Boorgatmetingen:

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,2</td>
<td>Bruin humushoudend zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,2 - 2,0</td>
<td>Bruingeel schelphoudend weinig veenhoudekn middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 4,0</td>
<td>Bruingeel meer schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 7,0</td>
<td>Bruingeel schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,0 - 10,0</td>
<td>Grijs weinig veenhoudekn schelphoudend fijn zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
Waterwinning : St-André
X-Coörd :
Y-Coörd :
Hoogte maaiv : + 6,40 mTAW
Datum :

Nummer boring : WP2.3
Diepte : 5,5 m
Boorfirma : IWVA
Hoogte meetpt : + 7,345 mTAW
Boorbeschrijv : E. Van Houtte

Type watervoeren de laag : Kwartaire freatische laag

Methode : gespoeld (FREMPOLU)
Diameter : 0 - 5,5 m diam. 125 mm

Type put : peilbuis

Dia. : 4,0 - 5,0 m PVC diam 63/58 mm filteropeningen 0,3 mm
Omstorting : gekalibreerd zand 0,7 - 1,25 mm
Stop : geen

Schoonpompen methode : centrifugaalpomp
datum - duur : 03/03/93 - 15 minuten

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,2</td>
<td>Bruin humushoudend zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,2 - 2,0</td>
<td>Bruingeel schelphoudend weinig veenhoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 4,0</td>
<td>Bruingeel meer schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 5,5</td>
<td>Bruingeel schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
Waterwinning : St-André
X-Coörd :
Y-Coörd :
Hoogte maaiv : + 7,50 m TAW
Datum : 25/03/1993

Type watervoerende laag : Kwartaire freatische laag

Methode : gespoeld (FREMPOLU)
Diameter : 0 - 11,0 m diam. 125 mm

Filter : 10,0 - 11,0 m PVC diam 63/58 mm filteropeningen 0,3 mm

Omstorting : gekalibreerd zand 0,7 - 1,25 mm

Stop : klei-compactionite van 9 - 9,5 m

Schoonpompen methode : centrifugaalpomp

datum - duur : 26/03/92 - 15 minuten

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Geelbruin humushoudend en sterk schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 5,7</td>
<td>Geel schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>5,7 - 5,8</td>
<td>Grijs zandhoudende slappe leem</td>
<td>Q</td>
</tr>
<tr>
<td>5,8 - 7,0</td>
<td>Geel schelphoudend fijn zand met bovenaan een dun schelplaagje</td>
<td>Q</td>
</tr>
<tr>
<td>7,0 - 7,1</td>
<td>Veenlaagje</td>
<td>Q</td>
</tr>
<tr>
<td>7,1 - 7,8</td>
<td>Bleekgrijs schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,8 - 8,0</td>
<td>Schelplaagje</td>
<td>Q</td>
</tr>
<tr>
<td>8,0 - 9,0</td>
<td>Bleekgrijs fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>9,0 - 11,0</td>
<td>Grijs schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
Waterwinning : St-André
X-Coörd :
Y-Coörd :
Hoogte maaiv : + 7,50 mTAW
Datum : 25/03/1993

Nummer boring : WP3.3
Diepte : 5 m
Boorfirma : IWVA
Hoogte meetpt : + 8,365 mTAW
Boorbeschrijf : E. Van Houtte

Type watervoerende laag : Kwartaire fretische laag

Methode	gespoeld (PREMPOLU)	Type put	peilbuis
Diameter	0 - 5 m	diam. 125 mm	
Filter	4,0 - 5,0 m PVC diam 63/58 mm filteropeningen 0,3 mm		
Omstorting	gekalibreerd zand 0,7 - 1,25 mm		
Stop	geen		
Schoonpompen methode	centrifugaalpomp		
datum - duur	26/03/92 - 15 minuten		

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Geelbruin humushoudend en sterk schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 5,0</td>
<td>Geel schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
Waterwinning: St-André
Nummer boring: WP4.2
Diepte: 10,3 m
Boorfirma: IWVA
Hoogte meetpt: + 7,475 mTAW
Datum: 25/03/1993
Boorbeschrijv: E. Van Houtte

Type watervoerende laag: Kwartaire freatische laag

Methode: gespoeld (FREMPOLU)
Type put: peilbuis
Diameter: 0 – 10,3 m diam. 125 mm

Filter: 9,3 – 10,3 m PVC diam 63/58 mm filteropeningen 0,3 mm
Omstorting: gekalibreerd zand 0,7 – 1,25 mm
Stop: klei-compactonite van 8,5 – 9,0 m

Schoonpompen methode: centrifugaalpomp
datum - duur: 26/03/92 – 15 minuten

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 – 0,3</td>
<td>Bruin humushoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,3 – 2,75</td>
<td>Geel schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,75 – 2,8</td>
<td>Schelplaagje</td>
<td>Q</td>
</tr>
<tr>
<td>2,8 – 3,9</td>
<td>Geel schelphoudend fijn zand schelplaagje</td>
<td>Q</td>
</tr>
<tr>
<td>3,9 – 4,0</td>
<td>Idem maar veenhouwend</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 – 5,5</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>5,5 – 7,0</td>
<td>Bleekgrijs sterk schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,0 – 9,0</td>
<td>Bleekgrijs weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>9,0 – 9,5</td>
<td>Idem maar weinig veenhouwend</td>
<td>Q</td>
</tr>
<tr>
<td>9,5 – 10,3</td>
<td>Bleekgrijs schelphoudend middelmatig zand met veenhouwende leembrokjes</td>
<td>Q</td>
</tr>
</tbody>
</table>
Waterwinning : St-André
X-Coörd :
Y-Coörd :
Hoogte maaiv : + 6,58 mTAW
Datum : 25/03/1993

NUMMER BORING : WP4.3
DIEPTE : 5 m
BOORFIRMA : IWVA
HOOGTE MEETPT : + 7,455 mTAW
BOORBESCHRIJV : E. Van Houtte

Type watervoerende laag : Kwartaire freatische laag

Methode : gespoeld (FREMPOLU)
Diameter : 0 - 5,0 m diam. 125 mm
Type put : peilbuis

Filter : 4,0 - 5,0 m PVC diam 63/58 mm
Filteropeningen : 0,3 mm

Omstorting : gekalibreerd zand 0,7 - 1,25 mm
Stop : geen

Schoonpompen methode : centrifugaal pomp
Datum - duur : 26/03/92 - 15 minuten

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,3</td>
<td>Bruin humushoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,3 - 2,75</td>
<td>Geel schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,75 - 2,8</td>
<td>Schelplaagje</td>
<td>Q</td>
</tr>
<tr>
<td>2,8 - 3,9</td>
<td>Geel schelphoudend fijn zand schelplaagje</td>
<td>Q</td>
</tr>
<tr>
<td>3,9 - 4,0</td>
<td>Idem maar veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 5,0</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
INTERCOMMUNALE WATERLEIDINGSMAATSCHAPPIJ VAN VEURNE-AMBACHT
Doornpanne 1, 8670 Koksijde tel (058) 521555 fax (058) 521604

Waterwinning : St-André
X-Coörd :
Y-Coörd :
Hoogte maaiv : + 6,80 mTAW
Datum : 26/03/1993

Nummer boring : WP5.2
Diepte : 10,2 m
Boorfirma : IWVA
Hoogte meetpt : + 7,760 mTAW
Boorbeschrijv : E. Van Houtte

Type watervoerende laag : Kwartaire freatische laag
Methode gespoeld (FREMPOLU)
Type put : peilbuis
Diameter : 0 - 10,2 m diam. 125 mm

Filter : 9,2 - 10,2 m PVC diam 63/58 mm filteropeningen 0,3 mm
Omstorting : gekalibreerd zand 0,7 - 1,25 mm
Stop : klei-compactonite van 8,5 - 9,0 m

Schoonpompen methode : centrifugaalpomp
datum - duur : 26/03/92 - 15 minuten

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Bruin humushoudend en schelp houdend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 1,0</td>
<td>Geelbruin schelp houdend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,0 - 2,0</td>
<td>Geel schelp houdend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 3,0</td>
<td>Geel schelp houdend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 3,0</td>
<td>Geel schelp houdend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,0 - 4,0</td>
<td>Geel weinig schelp- en veenhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 5,0</td>
<td>Geel weinig schelp houdend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>5,0 - 7,0</td>
<td>Geel schelp houdend en weinig veenhoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,0 - 9,7</td>
<td>Bleekgrijs weinig schelp- en veenhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>9,7 - 10,2</td>
<td>Grijs weinig schelp houdend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
INTERCOMMUNALE WATERLEIDINGSMAATSCHAPPIJ VAN VEURNE-AMBACHT

Doornpanne 1, 8670 Koksijde tel (058) 521555 fax (058) 521604

<table>
<thead>
<tr>
<th>Waterwinning : St-André</th>
<th>Nummer boring : WP5.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Coörd :</td>
<td>Diepte : 5,5 m</td>
</tr>
<tr>
<td>Y-Coörd :</td>
<td>Boorfirma : IWVA</td>
</tr>
<tr>
<td>Hoogte maaiv : + 6,80 mTAW</td>
<td>Hoogte meetpt : + 7,655 mTAW</td>
</tr>
<tr>
<td>Datum : 26/03/1993</td>
<td>Boorbeschrijv : E. Van Houtte</td>
</tr>
</tbody>
</table>

Type watervoerende laag : Kwartaire fretatische laag

<table>
<thead>
<tr>
<th>Methode : gespoeld (FREMPOLU)</th>
<th>Type put : peilbuis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter : 0 - 5,5 m diam. 125 mm</td>
<td>Filter : 4,5 - 5,5 m PVC diam 63/58 mm filteropeningen 0,3 mm</td>
</tr>
<tr>
<td>Omstorting : gekalibreerd zand 0,7 - 1,25 mm</td>
<td>Stop : geen</td>
</tr>
<tr>
<td>Schoonpompen methode : centrifugaalpomp</td>
<td>datum - duur : 26/03/92 - 15 minuten</td>
</tr>
</tbody>
</table>

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Bruin humushoudend en schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 1,0</td>
<td>Geelbruin schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,0 - 2,0</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 3,0</td>
<td>Geel schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 3,0</td>
<td>Geel schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,0 - 4,0</td>
<td>Geel weinig schelp- en veenhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 5,0</td>
<td>Geel weinig schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>5,0 - 5,5</td>
<td>Geel schelphoudend en weini veenhoudend middelmatig zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
INTERCOMMUNALE WATERLEIDINGSMAATSCHAPPIJ VAN VEURNE-AMBACHT

Doornpanne 1, 8670 Koksijde
tel (058) 521555
fax (058) 521604

Waterwinning: St-André
X-Coörd:
Y-Coörd:
Hoogte maalv: + 6,68 mTAW
Datum: 25/10/1993

Type watervoorziening laag: Kwartaire freatische laag

Nummer boring: WP6.1
Boorfirma: IWVA (MH-PM)
Hoogte meetpt: + 7,600 mTAW
Boorbeschrijver: E. Van Houtte

Diameter
0 - 32,2 m diam. 110 mm

Filter
25,5 - 27,9 m PVC diam 63/58 mm filteropeningen 0,3 mm

Omfuising
gekalibreerd zand 0,7 - 1,25 mm

Stop
klei-compactonite

Schoonpompen methode
centrifugaalpomp
datum - duur: 17/12/92 - 30 minuten

Boorgatmetingen: KN en LN

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Geel fijn zand met roestbrokken</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 1,0</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,0 - 2,0</td>
<td>Geel weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 2,2</td>
<td>Idem maar weinig veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>2,2 - 3,0</td>
<td>Geel weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,0 - 4,5</td>
<td>Idem maar met weinig leembrokkjes</td>
<td>Q</td>
</tr>
<tr>
<td>4,5 - 5,5</td>
<td>Geel weinig schelphoudend fijn zand met zeer weinig leembrokkjes en roestfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>5,5 - 6,2</td>
<td>Grijsbruin weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>6,6 - 7,5</td>
<td>Donkergrijs weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,5 - 10,0</td>
<td>Grijs schelphoudend middelmatig zand met brokken</td>
<td>Q</td>
</tr>
<tr>
<td>10,0 - 11,5</td>
<td>Idem maar weinig veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>11,5 - 13,0</td>
<td>Grijs schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>13,0 - 13,7</td>
<td>Grijs sterk schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>13,7 - 15,5</td>
<td>Grijs sterk leemhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>15,5 - 18,0</td>
<td>Grijs sterk leemhoudend fijn zand tot zandhoudende leem</td>
<td>Q</td>
</tr>
<tr>
<td>18,0 - 21,5</td>
<td>Grijs sterk leemhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>21,5 - 22,0</td>
<td>Grijs schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>22,0 - 24,5</td>
<td>Grijs sterk schelphoudend grof zand</td>
<td>Q</td>
</tr>
<tr>
<td>24,5 - 25,5</td>
<td>Grijs leemhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>25,5 - 26,2</td>
<td>Grijs weinig schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>26,2 - 27,9</td>
<td>Grijs weinig schelphoudend fijn zand met bovenaan</td>
<td>Q</td>
</tr>
<tr>
<td>27,9 - 28,2</td>
<td>Grijs schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>28,2 - 32,2</td>
<td>Grijs leemhoudend fijn zand tot zandhoudende leem</td>
<td>Q</td>
</tr>
</tbody>
</table>
Waterwinning: St-André

Nummer boring: WP6.2

X-Coörd

Diepte: 14 m

Y-Coörd

Boorfirma: IWVA (MH-PM)

Hoogte maaiw: +6,70 mTAW

Hoogte meetpt: +7,645 mTAW

Datum: 25/10/1993

Boorbeschrijv: E. Van Houtte

Type watervoerende laag: Kwartaire freatische laag

Methode: gespoeld (FREMPOLU)

Type put: peilbuis

Diameter: 0 - 14 m diam. 110 mm

Filter: 11,1 - 13,5 m PVC diam 63/58 mm

filteropeningen: 0,3 mm

Omstoring: gekalibreerd zand 0,7 - 1,25 mm

Stop: klei-compactonite

Schoonpompen methode: centrifugaalpomp
datum - duur: 17/12/92 - 30 minuten

Boorgatmetingen: geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,5</td>
<td>Geel fijn zand met roestbrokken</td>
<td>Q</td>
</tr>
<tr>
<td>0,5 - 1,0</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,0 - 2,0</td>
<td>Geel weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 2,2</td>
<td>Idem maar weinig veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>2,2 - 3,0</td>
<td>Geel weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,0 - 4,5</td>
<td>Idem maar met weinig leembroeks</td>
<td>Q</td>
</tr>
<tr>
<td>4,5 - 5,5</td>
<td>Geel weinig schelphoudend fijn zand met zeer weinig leembroeks en roestfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>5,5 - 6,2</td>
<td>Grijsbruin weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>6,6 - 7,5</td>
<td>Donkergrijs weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,5 - 10,0</td>
<td>Grijs schelphoudend middelmatig zand met brokken zwarte veenhoudende leem</td>
<td>Q</td>
</tr>
<tr>
<td>10,0 - 11,5</td>
<td>Idem maar weinig veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>11,5 - 13,0</td>
<td>Grijs schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>13,0 - 13,7</td>
<td>Grijs sterk schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>13,7 - 14,0</td>
<td>Grijs sterk leemhoudend fijn zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
INTERCOMMUNALE WATERLEIDINGSMAATSCHAPPIJ VAN VEURNE-AMBACHT
Doornpanne 1, 8670 Koksijde tel (058) 521555 fax (058) 521604

Waterwinning : St-André
X-Coörd :
Y-Coörd :
Hoogte maaiw : + 7,54 mTAW
Datum : 26/10/1993
Boorbeschrijv : E. Van Houtte

Type watervoerende laag : Kwartaire freatische laag
Type put : peilbuis

Diameter : 0 - 34,2 m
Filter : 27,75 - 29,5 m PVC diam 63/58 mm
Omstorting : gekalibreerd zand 0,7 - 1,25 mm

Schoonpompen methode : centrifugaalpomp
datum - duur : 17/12/92 - 30 minuten

Boorgatmetingen : KN en LN

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 1,3</td>
<td>Roestbruin schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,3 - 1,5</td>
<td>Bruin weinig veen- en weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,5 - 2,2</td>
<td>Roestbruin tot geelbruin zeer weinig veen- en zeer weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,2 - 3,7</td>
<td>Geelbruin weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,7 - 4,0</td>
<td>Idem maar met weinig bruine leemfragmentjes</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 5,0</td>
<td>Geelbruin weinig schelphoudend fijn zand met veel blauw-grijze leembrokken; naar onderen toe minder leembrokken</td>
<td>Q</td>
</tr>
<tr>
<td>5,0 - 6,7</td>
<td>Grijzegeel weinig schelphoudend fijn zand met zeer weinig leembrokken</td>
<td>Q</td>
</tr>
<tr>
<td>6,7 - 7,0</td>
<td>Bruin veenhoudend en weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,0 - 7,5</td>
<td>Grijzegeel weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,5 - 7,9</td>
<td>Grijze schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,9 - 8,2</td>
<td>Grijze schelpl- en veenhoudend fijn zand met weinig grijske leembrokken en zwarte veenhoudende leem</td>
<td>Q</td>
</tr>
<tr>
<td>8,2 - 10,5</td>
<td>Grijze weinig schelphoudend fijn zand met sporadisch leembrokjes en zwarte veenhoudende leem</td>
<td>Q</td>
</tr>
<tr>
<td>10,5 - 12,2</td>
<td>Grijse schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>12,2 - 12,7</td>
<td>Grijse weinig schelphoudend fijn zand met sporadisch leembrokken</td>
<td>Q</td>
</tr>
<tr>
<td>12,7 - 13,2</td>
<td>Grijse leem- en veenhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>13,2 - 15,0</td>
<td>Grijze weinig schelphoudend fijn zand; vanaf 14 m veel grijske en zwarte leemfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>15,0 - 16,0</td>
<td>Grijss sterk schelpl- en weinig veenhoudend grof zand</td>
<td>Q</td>
</tr>
<tr>
<td>16,0 - 16,2</td>
<td>Grijje fijn zand met veel leemfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>16,2 - 17,0</td>
<td>Grijse leemhoudend fijn zand overgaand naar sterk leemhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>17,0 - 20,0</td>
<td>Grijss sterk leemhoudend fijn zand tot zandhoudende leem</td>
<td>Q</td>
</tr>
<tr>
<td>20,0 - 22,0</td>
<td>Grijss leemhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>22,0 - 22,2</td>
<td>Grijss schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>22,2 - 23,0</td>
<td>Grijss leemhoudend en weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>23,0 - 24,2</td>
<td>Grijss schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>24,2 - 26,5</td>
<td>Grijss sterk schelphoudend grof zand</td>
<td>Q</td>
</tr>
<tr>
<td>26,5 - 27,5</td>
<td>Grijss weinig schelphoudend grof zand; bovenaan weinig leemhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>27,5 - 28,5</td>
<td>Grijss chelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>28,5 - 29,5</td>
<td>Grijss sterk schelphoudend grof zand</td>
<td>Q</td>
</tr>
<tr>
<td>29,5 - 31,0</td>
<td>Grijss schelphoudend middelmatig zand overgaand naar fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>31,0 - 34,2</td>
<td>Grijss leemhoudend fijn zand</td>
<td>Q</td>
</tr>
</tbody>
</table>

WATERWINNING SINT-ANDRE
BOORBESCHRIJVING WP7.1
INTERCOMMUNALE WATERLEIDINGSMAAATSCHAPPIJ VAN VEURNE-AMBACHT

Doornpanne 1, 8670 Koksijde tel (058) 521555 fax (058) 521604

Waterwinning : St-André

<table>
<thead>
<tr>
<th>X-Coörd</th>
<th>Y-Coörd</th>
<th>Hoogte maaiv</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+ 7,58 mTAW</td>
<td>26/10/1993</td>
</tr>
</tbody>
</table>

Nummer boring : WP7.2

Boorfirma : IWVA (PH-LC)

Hoogte meetpt : + 8,410 mTAW

Boorbeschrijv : E. Van Houtte

Type watervoerende laag : Kwartaire freatische laag

Methode : gespoeld (FREMPOLU)

Diameter : 0 - 7,5 m diam. 110 mm

Filter : 5,5 - 7,3 m PVC diam 63/58 mm filteropeningen 0,3 mm

Omstorting : gekalibreerd zand 0,7 - 1,25 mm

Stop : klei-compactonite

Schoonpompen methode : centrifugaalpomp

datum - duur : 17/12/92 - 30 minuten

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 1,3</td>
<td>Roestbruin schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,3 - 1,5</td>
<td>Bruin weinig veen- en weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>1,5 - 2,2</td>
<td>Roestbruin tot geelbruin zeer weinig veen- en zeer weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,2 - 3,7</td>
<td>Geelbruin weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>3,7 - 4,0</td>
<td>Idem maar met weinig bruine leemfragmentjes</td>
<td>Q</td>
</tr>
<tr>
<td>4,0 - 5,0</td>
<td>Geelbruin weinig schelphoudend fijn zand met veel blauw-grijze leembroeken; naar onderen toe minder leembroeken</td>
<td>Q</td>
</tr>
<tr>
<td>5,0 - 6,7</td>
<td>Grijsgroen weinig schelphoudend fijn zand met zeer weinig leembroeken</td>
<td>Q</td>
</tr>
<tr>
<td>6,7 - 7,0</td>
<td>Bruin veenhoudend en weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,0 - 7,5</td>
<td>Grijsgroen weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
INTERCOMMUNALE WATERLEIDINGSMAATSCHAPPIJ VAN VEURNE-AMBACHT
Doornpanne 1, 8670 Koksijde tel (058) 521555 fax (058) 521604

Waterwinning : St-André
X-Coörd :
Y-Coörd :
Hoogte maaiv : + 6,52 mTAW
Datum : 28/12/1993

Nummer boring : WP8.3
Diepte : 9,5 m
Boorfirma : IWVA (LC/EVH)
Hoogte meetpt : + 7,455 mTAW
Boorbeschrijv : E. Van Houtte

Type watervoerende laag : Kwartaire fretische laag

Methode : gespoeld
Diameter : 0 - 9,5 m diam. 125 mm

Filter : 8,25 - 9,25 m PVC diam 63/58 mm filteropeningen 0,3 mm
Omstorting : gekalibreerd zand 0,7 - 1,25 mm
Stop : geen

Schoonpompen methode : centrifugaalpomp
datum - duur : 28/12/93 - 15 minuten

Boorgatmetingen : geen

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 6,0</td>
<td>Geel tot roestgeel weinig schelphoudend middelmatig zand; rond 5,5 komt weinig veen voor</td>
<td>Q</td>
</tr>
<tr>
<td>6,0 - 7,0</td>
<td>Grijs weinig schelphoudend middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>7,0 - 9,5</td>
<td>Grijs weinig schelphoudend fijn zand; rond 9,0 komt weinig veen voor</td>
<td>Q</td>
</tr>
</tbody>
</table>
INTERCOMMUNALE WATERLEIDINGSMAATSCHAPPIJ VAN VEURNE-AMBACHT
Doornpanne 1, 8670 Koksijde tel (058) 521555 fax (058) 521604

Waterwinning : St-André
Nummer boring : WP9.1
X-Coörd :
Diepte : 29,4 m
Y-Coörd :
Boor firma : IWVA (MH-PM)
Hoogte maaiv : + 6,71 mTAW
Hoogte meetpt : + 7,385 mTAW
Datum : 12/10/1994
Boorbeschrijv : E. Van Houtte

Type watervoerende laag : Kwartaire freatische laag

Method : gespoeld (FREMPOLU)
Type put : peilbuis
Diameter : 0 - 29,4 m diam. 110 mm

Filter : 25,6 - 28,0 m PVC diam 63/58 mm
filteropeningen 0,3 mm
Oorstoring : gekalibreerd zand 0,7 - 1,25 mm
Stop : klei-compactionite

Schoonpompen methode : centrifugaalpomp
datum - duur : 18/10/94 - 90 minuten (zeer klein debiet)

Boorgatmetingen : KN en LN

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,2</td>
<td>Bruin humushoudend weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,2 - 2,0</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 2,2</td>
<td>Idem maar veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>2,2 - 4,2</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,2 - 8,0</td>
<td>Donkergr ijs weinig schelphoudend fijn zand met sporadisch leembrokjes</td>
<td>Q</td>
</tr>
<tr>
<td>8,0 - 8,2</td>
<td>Grijs weinig schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>8,2 - 11,2</td>
<td>Grijs schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>11,2 - 13,5</td>
<td>Grijs schelphoudend middelmatig zand; vanaf 12,5 m met weinig leembroken</td>
<td>Q</td>
</tr>
<tr>
<td>13,5 - 15,5</td>
<td>Grijs schelphoudend middelmatig zand met sporadisch veenfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>15,5 - 16,2</td>
<td>Grijs schelphoudend middelmatig zand met veel leemfragmenten</td>
<td>Q</td>
</tr>
<tr>
<td>16,2 - 18,2</td>
<td>Grijs leemhoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>18,2 - 20,2</td>
<td>Grijs weinig schelphoudend fijn zand met sporadisch leembroeken</td>
<td>Q</td>
</tr>
<tr>
<td>20,2 - 21,2</td>
<td>Idem maar meer leemhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>21,2 - 22,2</td>
<td>Grijs weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>22,2 - 23,5</td>
<td>Idem maar weinig leemhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>23,5 - 26,5</td>
<td>Grijs sterk schelphoudend middelmatig tot grof zand</td>
<td>Q</td>
</tr>
<tr>
<td>26,5 - 29,4</td>
<td>Grijze slappe klei overgaand in grijlsblauwe stijve klei</td>
<td>Q</td>
</tr>
</tbody>
</table>

Opmerking : De filter werd te diep geplaatst door foutief bijhouden van boordiepte.
INTERCOMMUNALE WATERLEIDINGSMAATSCHAPPIJ VAN VEURNE-AMBACHT
Doornpanne 1, 8670 Koksijde tel (058) 521555 fax (058) 521604

Waterwinning: St-André
Nummer boring: WP9.2
X-Coörd:
Diepte: 12,0 m
Y-Coörd:
Boorfirma: IWVA (MH-PM)
Hoogte maaiv: + 6,75 mTAW
Hoogte meetpt: + 7,47 mTAW
Datum: 12/10/1994
Boorbeschrijv: E. Van Houtte

<table>
<thead>
<tr>
<th>Type watervoerende laag : Kwartaire fretatische laag</th>
</tr>
</thead>
</table>
| Methode : gespoeld (FREMPOLU)
Diameter: 0 - 12,0 m diam. 110 mm
Filter: 10,0 - 12,0 m PVC diam 63/58 mm filteropeningen 0,3 mm
Omstorting: gekalibreerd zand 0,7 - 1,25 mm
Stop: klei-compactonite
Type put: peilbuis
Schoonpompen methode: centrifugaal pomp
datum - duur: 18/10/94 - 15 minuten
| **Boorgatmetingen:** geen |

<table>
<thead>
<tr>
<th>Diepte</th>
<th>Beschrijving</th>
<th>Strat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,2</td>
<td>Bruin humushoudend weinig schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>0,2 - 2,0</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>2,0 - 2,2</td>
<td>Idem maar veenhoudend</td>
<td>Q</td>
</tr>
<tr>
<td>2,2 - 4,2</td>
<td>Geel schelphoudend fijn zand</td>
<td>Q</td>
</tr>
<tr>
<td>4,2 - 8,0</td>
<td>Donkergrijs weinig schelphoudend fijn zand met sporadisch leemrestjes</td>
<td>Q</td>
</tr>
<tr>
<td>8,0 - 8,2</td>
<td>Grijs weinig schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
<tr>
<td>8,2 - 10,0</td>
<td>Grijs schelphoudend fijn tot middelmatig zand</td>
<td>Q</td>
</tr>
</tbody>
</table>
Bijlage 8.3.1

Debieten van het effluent te RWZI-Wulpen
\

l­
a
..._
c
c...

Dagelijks debiet van effluent te Wulpen (1998)

Cl:
Cl:

...
c.

'I·

c.
0
.,

:.
:..

'
c

Totaal

794185

Totaal 1998 :

384771

678447

61 8474

51 5755

582624

553447

506966

628073

I

7487708

Dagdebiet in m3/d

,

627461

859581

I

737924

ff

c
(
(


Hoeveelheid effluent dat wordt meegeloosd t.o.v. hoeveelheid te lozen concentraten van IWVA (in %)

<table>
<thead>
<tr>
<th>Datum</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>86</td>
<td>560</td>
<td>277</td>
<td>150</td>
<td>155</td>
<td>201</td>
<td>140</td>
<td>30</td>
<td>-3</td>
<td>1332</td>
<td>154</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>80</td>
<td>387</td>
<td>277</td>
<td>184</td>
<td>255</td>
<td>201</td>
<td>134</td>
<td>223</td>
<td>22</td>
<td>405</td>
<td>149</td>
</tr>
<tr>
<td>3</td>
<td>732</td>
<td>55</td>
<td>737</td>
<td>277</td>
<td>177</td>
<td>127</td>
<td>62</td>
<td>141</td>
<td>1413</td>
<td>23</td>
<td>1163</td>
<td>144</td>
</tr>
<tr>
<td>4</td>
<td>452</td>
<td>35</td>
<td>548</td>
<td>277</td>
<td>104</td>
<td>89</td>
<td>79</td>
<td>283</td>
<td>313</td>
<td>47</td>
<td>867</td>
<td>279</td>
</tr>
<tr>
<td>5</td>
<td>923</td>
<td>44</td>
<td>237</td>
<td>277</td>
<td>110</td>
<td>427</td>
<td>116</td>
<td>171</td>
<td>500</td>
<td>30</td>
<td>514</td>
<td>172</td>
</tr>
<tr>
<td>6</td>
<td>881</td>
<td>52</td>
<td>1233</td>
<td>277</td>
<td>154</td>
<td>947</td>
<td>167</td>
<td>183</td>
<td>428</td>
<td>12</td>
<td>274</td>
<td>123</td>
</tr>
<tr>
<td>7</td>
<td>465</td>
<td>133</td>
<td>1091</td>
<td>277</td>
<td>112</td>
<td>559</td>
<td>174</td>
<td>187</td>
<td>107</td>
<td>7</td>
<td>231</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>1184</td>
<td>62</td>
<td>269</td>
<td>269</td>
<td>120</td>
<td>75</td>
<td>303</td>
<td>206</td>
<td>251</td>
<td>1004</td>
<td>618</td>
<td>199</td>
</tr>
<tr>
<td>9</td>
<td>487</td>
<td>35</td>
<td>267</td>
<td>407</td>
<td>111</td>
<td>173</td>
<td>159</td>
<td>206</td>
<td>1062</td>
<td>222</td>
<td>357</td>
<td>919</td>
</tr>
<tr>
<td>10</td>
<td>350</td>
<td>44</td>
<td>208</td>
<td>271</td>
<td>127</td>
<td>403</td>
<td>171</td>
<td>197</td>
<td>312</td>
<td>1054</td>
<td>272</td>
<td>219</td>
</tr>
<tr>
<td>11</td>
<td>312</td>
<td>53</td>
<td>555</td>
<td>277</td>
<td>110</td>
<td>189</td>
<td>186</td>
<td>192</td>
<td>112</td>
<td>531</td>
<td>138</td>
<td>706</td>
</tr>
<tr>
<td>12</td>
<td>281</td>
<td>32</td>
<td>302</td>
<td>277</td>
<td>77</td>
<td>171</td>
<td>936</td>
<td>185</td>
<td>659</td>
<td>97</td>
<td>194</td>
<td>641</td>
</tr>
<tr>
<td>13</td>
<td>246</td>
<td>50</td>
<td>149</td>
<td>277</td>
<td>99</td>
<td>145</td>
<td>321</td>
<td>165</td>
<td>1213</td>
<td>58</td>
<td>318</td>
<td>498</td>
</tr>
<tr>
<td>14</td>
<td>335</td>
<td>67</td>
<td>149</td>
<td>344</td>
<td>90</td>
<td>791</td>
<td>201</td>
<td>166</td>
<td>219</td>
<td>83</td>
<td>1305</td>
<td>389</td>
</tr>
<tr>
<td>15</td>
<td>294</td>
<td>64</td>
<td>149</td>
<td>677</td>
<td>89</td>
<td>195</td>
<td>148</td>
<td>176</td>
<td>76</td>
<td>15</td>
<td>981</td>
<td>292</td>
</tr>
<tr>
<td>16</td>
<td>938</td>
<td>68</td>
<td>149</td>
<td>270</td>
<td>96</td>
<td>156</td>
<td>122</td>
<td>167</td>
<td>37</td>
<td>44</td>
<td>1077</td>
<td>754</td>
</tr>
<tr>
<td>17</td>
<td>414</td>
<td>23</td>
<td>149</td>
<td>581</td>
<td>113</td>
<td>70</td>
<td>131</td>
<td>156</td>
<td>36</td>
<td>125</td>
<td>476</td>
<td>262</td>
</tr>
<tr>
<td>18</td>
<td>414</td>
<td>5</td>
<td>149</td>
<td>238</td>
<td>110</td>
<td>101</td>
<td>149</td>
<td>140</td>
<td>45</td>
<td>38</td>
<td>324</td>
<td>230</td>
</tr>
<tr>
<td>19</td>
<td>414</td>
<td>49</td>
<td>149</td>
<td>190</td>
<td>81</td>
<td>99</td>
<td>191</td>
<td>160</td>
<td>42</td>
<td>9</td>
<td>597</td>
<td>215</td>
</tr>
<tr>
<td>20</td>
<td>414</td>
<td>81</td>
<td>149</td>
<td>447</td>
<td>89</td>
<td>113</td>
<td>201</td>
<td>160</td>
<td>25</td>
<td>76</td>
<td>223</td>
<td>217</td>
</tr>
<tr>
<td>21</td>
<td>334</td>
<td>260</td>
<td>149</td>
<td>148</td>
<td>107</td>
<td>143</td>
<td>201</td>
<td>160</td>
<td>25</td>
<td>76</td>
<td>223</td>
<td>217</td>
</tr>
<tr>
<td>22</td>
<td>281</td>
<td>395</td>
<td>149</td>
<td>115</td>
<td>140</td>
<td>163</td>
<td>201</td>
<td>160</td>
<td>23</td>
<td>25</td>
<td>212</td>
<td>247</td>
</tr>
<tr>
<td>23</td>
<td>234</td>
<td>137</td>
<td>149</td>
<td>179</td>
<td>177</td>
<td>125</td>
<td>201</td>
<td>160</td>
<td>10</td>
<td>240</td>
<td>150</td>
<td>319</td>
</tr>
<tr>
<td>24</td>
<td>209</td>
<td>125</td>
<td>144</td>
<td>228</td>
<td>182</td>
<td>105</td>
<td>175</td>
<td>160</td>
<td>15</td>
<td>552</td>
<td>132</td>
<td>761</td>
</tr>
<tr>
<td>25</td>
<td>169</td>
<td>94</td>
<td>124</td>
<td>279</td>
<td>128</td>
<td>335</td>
<td>177</td>
<td>160</td>
<td>13</td>
<td>801</td>
<td>634</td>
<td>205</td>
</tr>
<tr>
<td>26</td>
<td>169</td>
<td>89</td>
<td>145</td>
<td>167</td>
<td>389</td>
<td>120</td>
<td>178</td>
<td>305</td>
<td>115</td>
<td>498</td>
<td>412</td>
<td>649</td>
</tr>
<tr>
<td>27</td>
<td>137</td>
<td>82</td>
<td>432</td>
<td>121</td>
<td>634</td>
<td>368</td>
<td>446</td>
<td>86</td>
<td>751</td>
<td>971</td>
<td>307</td>
<td>619</td>
</tr>
<tr>
<td>28</td>
<td>131</td>
<td>166</td>
<td>215</td>
<td>301</td>
<td>471</td>
<td>244</td>
<td>136</td>
<td>79</td>
<td>162</td>
<td>785</td>
<td>255</td>
<td>735</td>
</tr>
<tr>
<td>29</td>
<td>113</td>
<td>215</td>
<td>181</td>
<td>395</td>
<td>244</td>
<td>219</td>
<td>69</td>
<td>101</td>
<td>138</td>
<td>649</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>126</td>
<td>215</td>
<td>131</td>
<td>135</td>
<td>244</td>
<td>269</td>
<td>61</td>
<td>229</td>
<td>191</td>
<td>242</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>98</td>
<td>143</td>
<td>146</td>
<td>130</td>
<td>56</td>
<td>72</td>
<td>572</td>
<td>282</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>414</td>
<td>89</td>
<td>312</td>
<td>277</td>
<td>168</td>
<td>244</td>
<td>201</td>
<td>160</td>
<td>286</td>
<td>267</td>
<td>497</td>
<td>364</td>
</tr>
<tr>
<td>Totaal 1998:</td>
<td>273</td>
<td></td>
</tr>
</tbody>
</table>
Bijlage 8.3.2
Waterkwaliteit
Kanaal Duinkerke-Nieuwpoort
Meetplaats 680010 en 681000
<table>
<thead>
<tr>
<th></th>
<th>DATUM</th>
<th>24-02</th>
<th>07-04</th>
<th>26-05</th>
<th>04-07</th>
<th>03-09</th>
<th>25-09</th>
<th>08-10</th>
<th>19-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>8,3</td>
<td>8,6</td>
<td>8,5</td>
<td>8,1</td>
<td>8,6</td>
<td>8,0</td>
<td>7,8</td>
<td></td>
</tr>
<tr>
<td>T °C</td>
<td></td>
<td>8,4</td>
<td>8,9</td>
<td>16,3</td>
<td>17,4</td>
<td>18,6</td>
<td>16,0</td>
<td>9,6</td>
<td></td>
</tr>
<tr>
<td>O₂ mg/L</td>
<td></td>
<td>9,90</td>
<td>10,60</td>
<td>9,20</td>
<td>5,60</td>
<td>8,10</td>
<td>3,60</td>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td>BZV mgO₂/L</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZV mgO₂/L</td>
<td>43</td>
<td>52</td>
<td>66</td>
<td>60</td>
<td>43</td>
<td>58</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC μS/cm</td>
<td>2850</td>
<td>6860</td>
<td>5460</td>
<td>2060</td>
<td>5320</td>
<td>11720</td>
<td>1790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1- mg/L</td>
<td>574</td>
<td>1845</td>
<td>1420</td>
<td>415</td>
<td>1721</td>
<td>3480</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₃ mgN/L</td>
<td>0,009</td>
<td>0,026</td>
<td>0,013</td>
<td>0,035</td>
<td>0,017</td>
<td>0,014</td>
<td>0,022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄+ mgN/L</td>
<td>0,13</td>
<td>0,19</td>
<td>0,10</td>
<td>0,63</td>
<td><0,10</td>
<td>0,34</td>
<td>0,98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂- mgN/L</td>
<td>0,120</td>
<td>0,160</td>
<td>0,180</td>
<td>0,230</td>
<td>0,150</td>
<td>0,130</td>
<td>0,220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₃- mgN/L</td>
<td>9,37</td>
<td>3,83</td>
<td>1,04</td>
<td>3,19</td>
<td>1,74</td>
<td>1,27</td>
<td>3,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄ mgN/L</td>
<td>9,49</td>
<td>3,99</td>
<td>1,22</td>
<td>3,42</td>
<td>1,89</td>
<td>1,40</td>
<td>3,79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P mgP/L</td>
<td>0,63</td>
<td>1,17</td>
<td>1,44</td>
<td>0,93</td>
<td>1,51</td>
<td>2,18</td>
<td>1,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₃ mgN/L</td>
<td>0,52</td>
<td>0,99</td>
<td>0,98</td>
<td>0,34</td>
<td>1,24</td>
<td>1,47</td>
<td>1,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZS mg/L</td>
<td>9</td>
<td>15</td>
<td>26</td>
<td>42</td>
<td>17</td>
<td>16</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi μg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd μg/L</td>
<td><0,14</td>
<td><0,14</td>
<td><0,12</td>
<td><0,12</td>
<td><0,12</td>
<td><0,12</td>
<td><0,12</td>
<td><0,12</td>
<td></td>
</tr>
<tr>
<td>Cr μg/L</td>
<td>1,16</td>
<td>0,99</td>
<td>1,43</td>
<td>1,72</td>
<td>1,73</td>
<td>2,66</td>
<td>1,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu μg/L</td>
<td>1,58</td>
<td>1,78</td>
<td>2,10</td>
<td>7,07</td>
<td>2,86</td>
<td>8,96</td>
<td>5,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb μg/L</td>
<td>1,79</td>
<td>2,01</td>
<td>2,04</td>
<td>5,80</td>
<td>1,02</td>
<td>2,46</td>
<td>6,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni μg/L</td>
<td>5,26</td>
<td>5,14</td>
<td>11,75</td>
<td>12,14</td>
<td>4,76</td>
<td>14,02</td>
<td>15,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn μg/L</td>
<td>79,96</td>
<td>124,83</td>
<td>32,64</td>
<td>42,98</td>
<td>34,94</td>
<td>74,84</td>
<td>51,91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Meetplek: 680010
Waterloop: Kanaal van Dunkerque naar Nieuwpoort
Gemeente: Koksijde
Stafkaart: 117-8
Funktie(s): (brak water)

EVALUATIE ALGEMEEN

<table>
<thead>
<tr>
<th></th>
<th>NH</th>
<th>NH4</th>
<th>NOX</th>
<th>GEH</th>
<th>GGEH</th>
<th>HED</th>
<th>PAHT</th>
<th>GEH</th>
<th>PAHT</th>
<th>HED</th>
<th>RH</th>
<th>GER</th>
<th>VRI</th>
<th>GER</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7</td>
<td>7.8</td>
<td>8.6</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>1.70</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>7</td>
<td>8.4</td>
<td>18.6</td>
<td>13.6</td>
<td>12.9</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>7</td>
<td>3.60</td>
<td>10.6</td>
<td>7.43</td>
<td>6.96</td>
<td>8.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 %</td>
<td>7</td>
<td>34</td>
<td>90</td>
<td>67</td>
<td>63</td>
<td>77</td>
<td>2.74</td>
<td>1.82</td>
<td>2.57</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2V5</td>
<td>7</td>
<td>5</td>
<td>14</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>5.81</td>
<td>5.33</td>
<td>3.29</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2V</td>
<td>7</td>
<td>42</td>
<td>66</td>
<td>52</td>
<td>51</td>
<td>52</td>
<td>5.20</td>
<td>5.20</td>
<td>3.29</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 20</td>
<td>7</td>
<td>1790</td>
<td>11720</td>
<td>5151</td>
<td>4238</td>
<td>5320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl-</td>
<td>7</td>
<td>315</td>
<td>3480</td>
<td>1396</td>
<td>1024</td>
<td>1420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH3</td>
<td>7</td>
<td>0.009</td>
<td>0.035</td>
<td>0.019</td>
<td>0.018</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH4+</td>
<td>7</td>
<td>0.10</td>
<td>0.98</td>
<td>0.35</td>
<td>0.24</td>
<td>0.19</td>
<td>2.29</td>
<td>1.60</td>
<td>1.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO2-</td>
<td>7</td>
<td>0.120</td>
<td>0.230</td>
<td>0.170</td>
<td>0.166</td>
<td>0.160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3-</td>
<td>7</td>
<td>1.04</td>
<td>9.37</td>
<td>3.43</td>
<td>2.66</td>
<td>3.19</td>
<td>2.20</td>
<td>2.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H+</td>
<td>7</td>
<td>1.22</td>
<td>9.49</td>
<td>3.60</td>
<td>2.86</td>
<td>3.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>7</td>
<td>0.63</td>
<td>2.18</td>
<td>1.34</td>
<td>1.26</td>
<td>1.44</td>
<td>4.29</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td>7</td>
<td>9</td>
<td>42</td>
<td>21</td>
<td>19</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Cd t</td>
<td>7</td>
<td><0.12</td>
<td>0.17</td>
<td>0.13</td>
<td>0.13</td>
<td><0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr t</td>
<td>7</td>
<td>0.99</td>
<td>2.66</td>
<td>1.62</td>
<td>1.55</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu t</td>
<td>7</td>
<td>1.58</td>
<td>8.96</td>
<td>4.22</td>
<td>3.43</td>
<td>2.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb t</td>
<td>7</td>
<td>1.02</td>
<td>6.53</td>
<td>3.09</td>
<td>2.55</td>
<td>2.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni t</td>
<td>7</td>
<td>4.76</td>
<td>15.22</td>
<td>9.76</td>
<td>8.75</td>
<td>11.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn t</td>
<td>7</td>
<td>32.64</td>
<td>124.83</td>
<td>63.16</td>
<td>56.77</td>
<td>51.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basis-Prati (PtB): 3.41
Totaal-Prati (Pit): 4.74
VRI-index: 2.94
Meetplaats: 680010
Waterloop: Kanaal van Dunkerque naar Nieuwpoort
Gemeente: Koksijde
Funktie(s): (brak water)

BASISKWALITEIT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HORN</th>
<th>24-02</th>
<th>07-04</th>
<th>26-05</th>
<th>04-07</th>
<th>03-09</th>
<th>25-09</th>
<th>08-10</th>
<th>19-11</th>
<th>TOTALISATIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>6.5</td>
<td>8.5</td>
<td>8.6</td>
<td>8.6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T</td>
<td>°C</td>
<td>28.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>100 % OK</td>
</tr>
<tr>
<td>O2</td>
<td>mgO2/L</td>
<td>5.00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>85 % OK</td>
</tr>
<tr>
<td>BZV5</td>
<td>mgO2/L</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>-14 % OK</td>
<td></td>
</tr>
<tr>
<td>C2V</td>
<td>mgO2/L</td>
<td>X< 30</td>
<td>43</td>
<td>52</td>
<td>66</td>
<td>60</td>
<td>43</td>
<td>58</td>
<td>42</td>
<td>0 % OK</td>
</tr>
<tr>
<td>EC 20</td>
<td>µS/cm</td>
<td>n.v.t.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>100 % OK</td>
</tr>
<tr>
<td>Cl-</td>
<td>mg/L</td>
<td>n.v.t.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>100 % OK</td>
</tr>
<tr>
<td>NH3</td>
<td>mg/L</td>
<td>X< 0,020</td>
<td>+</td>
<td>0,026</td>
<td>+</td>
<td>0,035</td>
<td>+</td>
<td>+</td>
<td>0,022</td>
<td>57 % OK</td>
</tr>
<tr>
<td>H2N4</td>
<td>mg/L</td>
<td>X< 5,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H2N</td>
<td>mg/L</td>
<td>X< 10,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pt</td>
<td>mg/P/l</td>
<td>X< 1,00</td>
<td>+</td>
<td>1,17</td>
<td>1,44</td>
<td>+</td>
<td>1,51</td>
<td>2,18</td>
<td>1,54</td>
<td>28 % OK</td>
</tr>
<tr>
<td>oPO4</td>
<td>mg/P/l</td>
<td>X< 0,30</td>
<td>0,52</td>
<td>0,99</td>
<td>0,98</td>
<td>0,34</td>
<td>1,24</td>
<td>1,47</td>
<td>1,02</td>
<td>0 % OK</td>
</tr>
<tr>
<td>BI</td>
<td>-</td>
<td>7</td>
<td>SX</td>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>100 % OK</td>
</tr>
<tr>
<td>ZS</td>
<td>mg/L</td>
<td>X< 50</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cd t</td>
<td>μg/L</td>
<td>X< 1,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cr t</td>
<td>μg/L</td>
<td>X< 50,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cu t</td>
<td>μg/L</td>
<td>X< 50,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pb t</td>
<td>μg/L</td>
<td>X< 50,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ni t</td>
<td>μg/L</td>
<td>X< 50,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zn t</td>
<td>μg/L</td>
<td>X< 200,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

MONSTER
Meetresultaten

<table>
<thead>
<tr>
<th>Datum</th>
<th>24-02</th>
<th>07-04</th>
<th>26-05</th>
<th>04-07</th>
<th>03-09</th>
<th>08-10</th>
<th>19-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.3</td>
<td>8.5</td>
<td>8.5</td>
<td>7.9</td>
<td>7.5</td>
<td>8.1</td>
<td>7.9</td>
</tr>
<tr>
<td>T</td>
<td>7.9</td>
<td>9.9</td>
<td>16.7</td>
<td>17.0</td>
<td>18.7</td>
<td>16.0</td>
<td>8.6</td>
</tr>
<tr>
<td>O2 mg/L</td>
<td>10.00</td>
<td>11.30</td>
<td>11.20</td>
<td>6.40</td>
<td>9.20</td>
<td>3.50</td>
<td>4.20</td>
</tr>
<tr>
<td>SO2 ppm</td>
<td>83</td>
<td>98</td>
<td>106</td>
<td>61</td>
<td>88</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>BEV mgO2/L</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>CZV mgO2/L</td>
<td>49</td>
<td>54</td>
<td>67</td>
<td>62</td>
<td>55</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>EC 20 μS/cm</td>
<td>2210</td>
<td>6590</td>
<td>4330</td>
<td>1640</td>
<td>6230</td>
<td>12160</td>
<td>1717</td>
</tr>
<tr>
<td>Cl- mg/L</td>
<td>379</td>
<td>1736</td>
<td>1051</td>
<td>286</td>
<td>1661</td>
<td>3573</td>
<td>272</td>
</tr>
<tr>
<td>NH3 mg/L</td>
<td>0.030</td>
<td>0.027</td>
<td>0.013</td>
<td>0.013</td>
<td>0.004</td>
<td>0.039</td>
<td>0.034</td>
</tr>
<tr>
<td>NH4+ mg/L</td>
<td>0.44</td>
<td>0.24</td>
<td>0.10</td>
<td>0.36</td>
<td>0.31</td>
<td>0.72</td>
<td>1.23</td>
</tr>
<tr>
<td>NO2- mg/L</td>
<td>0.130</td>
<td>0.170</td>
<td>0.170</td>
<td>0.210</td>
<td>0.130</td>
<td>0.100</td>
<td>0.200</td>
</tr>
<tr>
<td>NO3- mg/L</td>
<td>10.27</td>
<td>3.99</td>
<td>2.43</td>
<td>1.86</td>
<td>0.22</td>
<td>0.41</td>
<td>3.22</td>
</tr>
<tr>
<td>NO2+ mg/L</td>
<td>10.40</td>
<td>4.16</td>
<td>2.60</td>
<td>2.07</td>
<td>0.35</td>
<td>0.51</td>
<td>3.42</td>
</tr>
<tr>
<td>PO4 mg/L</td>
<td>0.74</td>
<td>1.14</td>
<td>1.15</td>
<td>0.71</td>
<td>1.62</td>
<td>1.49</td>
<td>0.73</td>
</tr>
<tr>
<td>OP04 mg/L</td>
<td>0.38</td>
<td>1.01</td>
<td>0.83</td>
<td>0.19</td>
<td>1.39</td>
<td>0.95</td>
<td>0.26</td>
</tr>
<tr>
<td>Zn mg/L</td>
<td>14</td>
<td>10</td>
<td>19</td>
<td>38</td>
<td>22</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Cd μg/L</td>
<td>0.20</td>
<td><0.14</td>
<td><0.12</td>
<td><0.12</td>
<td><0.12</td>
<td><0.12</td>
<td><0.12</td>
</tr>
<tr>
<td>Cr μg/L</td>
<td>1.60</td>
<td>4.42</td>
<td>1.27</td>
<td>1.43</td>
<td>1.85</td>
<td>2.64</td>
<td>1.45</td>
</tr>
<tr>
<td>Cu μg/L</td>
<td>3.70</td>
<td>2.00</td>
<td>1.90</td>
<td>5.30</td>
<td>2.42</td>
<td>9.90</td>
<td>3.34</td>
</tr>
<tr>
<td>Hg μg/L</td>
<td>2.64</td>
<td>2.21</td>
<td>3.56</td>
<td>5.32</td>
<td>1.52</td>
<td>2.36</td>
<td>6.53</td>
</tr>
<tr>
<td>Pb μg/L</td>
<td>8.46</td>
<td>17.35</td>
<td>15.70</td>
<td>5.41</td>
<td>4.05</td>
<td>7.38</td>
<td>5.42</td>
</tr>
<tr>
<td>Zn μg/L</td>
<td>90.94</td>
<td>136.72</td>
<td>40.47</td>
<td>35.97</td>
<td>27.41</td>
<td>73.66</td>
<td>40.65</td>
</tr>
</tbody>
</table>
EVALUATIE ALGEMEEN

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>NH4+</th>
<th>NAX</th>
<th>GEN</th>
<th>GGH</th>
<th>HED</th>
<th>Prati</th>
<th>GHI</th>
<th>Prati</th>
<th>HED</th>
<th>VNM</th>
<th>GHI</th>
<th>VHM</th>
<th>HED</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7</td>
<td>7,5</td>
<td>8,5</td>
<td>8,1</td>
<td>8,1</td>
<td>8,1</td>
<td>1,32</td>
<td>1,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T°C</td>
<td>7</td>
<td>7,9</td>
<td>18,7</td>
<td>13,5</td>
<td>12,8</td>
<td>16,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 mg/L</td>
<td>7</td>
<td>3,50</td>
<td>11,30</td>
<td>7,97</td>
<td>7,29</td>
<td>9,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 %</td>
<td>7</td>
<td>33</td>
<td>106</td>
<td>72</td>
<td>66</td>
<td>83</td>
<td>2,51</td>
<td>1,34</td>
<td>2,43</td>
<td>2,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BZV5 mgO2/L</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>5,43</td>
<td>6,00</td>
<td>3,43</td>
<td>4,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2V mgO2/L</td>
<td>7</td>
<td>41</td>
<td>67</td>
<td>55</td>
<td>54</td>
<td>55</td>
<td>5,50</td>
<td>5,50</td>
<td>3,29</td>
<td>3,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC µS/cm</td>
<td>7</td>
<td>1640</td>
<td>12160</td>
<td>4982</td>
<td>3889</td>
<td>4330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl- mg/L</td>
<td>7</td>
<td>272</td>
<td>3573</td>
<td>1280</td>
<td>849</td>
<td>1051</td>
<td>12,04</td>
<td>11,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH3 mgH/L</td>
<td>7</td>
<td>0,004</td>
<td>0,039</td>
<td>0,023</td>
<td>0,019</td>
<td>0,027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH4+ mgN/L</td>
<td>7</td>
<td>0,10</td>
<td>1,23</td>
<td>0,49</td>
<td>0,38</td>
<td>0,36</td>
<td>2,88</td>
<td>2,52</td>
<td>1,43</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO2- mgN/L</td>
<td>7</td>
<td>0,100</td>
<td>0,210</td>
<td>0,159</td>
<td>0,154</td>
<td>0,170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3- mgN/L</td>
<td>7</td>
<td>0,22</td>
<td>10,27</td>
<td>3,20</td>
<td>1,77</td>
<td>2,43</td>
<td>1,99</td>
<td>1,87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H+ mg/L</td>
<td>7</td>
<td>0,35</td>
<td>10,40</td>
<td>3,36</td>
<td>2,03</td>
<td>2,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P mg/L</td>
<td>7</td>
<td>0,71</td>
<td>1,62</td>
<td>1,08</td>
<td>1,03</td>
<td>1,14</td>
<td>3,71</td>
<td>4,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO4 mg/L</td>
<td>7</td>
<td>0,19</td>
<td>1,39</td>
<td>0,72</td>
<td>0,57</td>
<td>0,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZS mg/L</td>
<td>7</td>
<td>10</td>
<td>38</td>
<td>21</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd µg/L</td>
<td>7</td>
<td><0,12</td>
<td>0,20</td>
<td>0,13</td>
<td>0,13</td>
<td><0,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr µg/L</td>
<td>7</td>
<td>1,27</td>
<td>4,42</td>
<td>2,09</td>
<td>1,91</td>
<td>1,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu µg/L</td>
<td>7</td>
<td>1,90</td>
<td>9,90</td>
<td>4,08</td>
<td>3,46</td>
<td>3,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb µg/L</td>
<td>7</td>
<td>1,52</td>
<td>6,53</td>
<td>3,45</td>
<td>3,07</td>
<td>2,64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni µg/L</td>
<td>7</td>
<td>4,85</td>
<td>17,35</td>
<td>9,22</td>
<td>8,16</td>
<td>7,38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn µg/L</td>
<td>7</td>
<td>27,41</td>
<td>136,72</td>
<td>61,69</td>
<td>54,81</td>
<td>40,65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basis-Prati (PIb): 3,63
Totaal-Prati (PIt): 4,52
VNM-index: 2,86
Bijlage 8.4.1
Overzicht van de belangrijkste vegetatietypos
BIJLAGE 8.4.1.

Kort overzicht van de belangrijkste vegetatietypes

(Vrijwel) onbegroeid zand (O)
Oa: Deflatiezzone van meestal natuurlijke verstuiwingskernen in paraboolduinen of stuifkuilen, soms van vegraven duinzones.
Ok: meer gestabiliseerd zand met verspreide eenjarige kruiden of met Zandzegge.
Ot: meestal kleinschalige, door recreatie of vergraving gestoorde zandplekken of stroken, veelal met wat nitrofiele éénjarigen als Kleine brandnetel.

Kwetsbaarheid
- Hydrologisch: meestal (ver) boven het natuurlijke grondwater niveau en dus weinig beïnvloedbaar door hydrologische veranderingen. Grote stuifkuilen of paraboolduinen stuiven in natuurlijke omstandigheden wel uit tot op het grondwater en het behoud van ongestoorde, vrij grootschalige verstuiwingsprocessen is van groot belang voor de ecologische herstelpotenties van een gebied.
- Geomorfologisch: deze dynamische duinelementen kunnen zich in principe goed herstellen van diverse vormen van vergraving of bodemverstoring. Afgraving of vastlegging van het zand betekenen echter het einde van de stuifduincomplexen; sterke recreatie veroorzaakt dikwijls ruderalisatie. Ook de geomorfologische waarde van zich van een natuurlijk patroon van paraboolduinen en stuifkuilen wordt uiteraard aangetast door alle menselijke ingrepen.
- Biologisch: van belang voor diverse gespecialiseerde, dikwijls verstoringsgevoelige organismen, zoals Zandloopkevers.

Helmvegegaties (A)
Helm is, buiten de zeereep, de belangrijkste natuurlijke stabilisator van sterk stuivende duinen aan de Belgische kust. Door het sterk uitgebouwde rhizoomstelsel is de soort in staat om zich zowel verticaal als horizontaal aan sterke zandverplaatsingen aan te passen. Buiten de zeereep is de soort voor haar kieming echter afhankelijk van grondwaterbeïnvloede zones, voedselrijker oude humushorizonten, enz. in het kale stuifduin. Bij stabilisatie van het duin gaat de soort achteruit, o.a. door voedselgebrek en aantasting door pathogene aaltjes.

Ao: typisch stuivend helmduin
Ak: meer gestabiliseerd helmduin met verspreide mosduinelementen
Ah en As: Helmvegetatie met relieten van Duindoorn- of Kruipwilgvegetatie.

Kwetsbaarheid
- Hydrologisch: gezien de ligging is er geen effect van een verhoging van de grondwaterstand. In stuifduingebieden met een natuurlijke grondwaterstand vormen de zgn. partisatiale helmduinjtes in jonge natte uitsstuivingsvalleien wel een belangrijke bron van bodem- en reliëfdifferentiatie. In natuurlijke stuifduinen is nieuwvestiging van helm dikwijls wel afhankelijk van de grondwaterbeïnvloede situaties. Daartegenover staat dat de hoeveelheid zand die beschikbaar is voor verstuiwing in verdroogde duinen groter is dan in gebieden met een natuurlijke waterstand.
• Geomorfologisch: in principe herstelbaar (zie onder O), maar Helm kijkt niet gemakkelijk in droge, voedselarme stuifzanden en vergraving riskeert dus grotere oppervlakten kaal stuivend zand te creëren. Aanplant van Helm is mogelijk en kan gebruikt worden om hele zones te stabiliseren maar veroorzaakt gemakkelijk onnatuurlijke situaties met nitrofielen en is niet wenselijk waar men een natuurlijke duinontwikkeling vooropstelt.

• Biologisch: van belang voor o.a. diverse gespecialiseerde insecten en enkele bijzondere paddenstoelen.

Mosduinen (K)

Ontstaan door stabilisatie van Helmduin (A) of kaal zand (O), met oppervlakke en beperkte bodemvorming. Structuurvormende elementen zijn het nog vrij overstuivingstolerante Duinsterretjie in de jonge fases en deze met een extremer microklimaat, en meer gevoelige soorten als lichenen, Klauwtjesmos, e.a. in de sterker gestabiliseerde zones. In niet verstoorde landschappen blijven zij lang stabiel, kunnen zij evolueren naar meer gesloten droge duingraslanden of naar zeer kwetsbare korstmossteppen. Momenteel worden zij meestal door Duindoornstruweel (HtK en Htt) overwoekerd.

Ko: typische open Duinsterretjesvegetatie met verspreide open plekken.
Ka: id., met reliënten van Helmvegetatie.
Kc: oudere, meer beschutte mosduinen, dikwijls op humeuze bodems, met lichenen, Klauwtjesmos en elementen van het droog duingrasland. Ontstaan uit open Duinsterretjesvegetatie op meer beschutte plaatsen of door overbegrazing, verdroging of degradatie uit mesofiele duingraslanden. Een verwant type is door overbetreding verdwenen uit de Doornpanne: het betrof het oppervlakkig verzuurde, vrijwel uitsluitend uit (bijzondere) lichenen bestaande eindstadium van de ontwikkeling van de Duinsterretjesvegetatie.
Kt: mosduin met nitrofiele inslag, dikwijls op sterk betredden of vergraven plaatsen.

Kwetsbaarheid

• Hydrologisch: vernatting of verdroging heeft in de meeste gevallen geen invloed op deze types. De Kc-vegetaties uit verdroogde valleien vormen bij een herstel van een natuurlijke grondwaterstand vermoedelijk wel een zeer goed uitgangspunt voor de ontwikkeling van mesofiele tot natte duinvalleivegetaties. Hoewel dit het einde betekent van de mosduinvegetatie op zich, is in elk geval de waarde van deze nieuwigemachte duinvalleivegetaties veel groter dan die van wat verloren gaat.

• Geomorfologisch: in principe zijn deze vegetaties, op Kc na, herstelbaar na vergraving of sterke bodemverstoring, al is dit niet vanzelfsprekend. In dergelijke gevallen of bij kunstmatige fixatie met takkebossen e.d. treden wel gemakkelijk nitrofiele invloeden op; herstel gebeurt dus best via een hernieuwde verstuivingfas. Kc is niet (op de oude bodems van gedegradeerde graslanden) of veel moeilijker herstelbaar en vergt in elk geval een lange ongestoord ontwikkelingstijd. Het verdwenen maar in principe herstelbare, aan Kc verwante type van sinds lang gestabiliseerde, licht verzuurde en absoluut onverstoorde mosduinen, is uiterst betredingsgevoelig en verdraagt geen enkele vorm van bodemverstoring.

• Biologisch: diverse, veelal in de duinen minder maar in Vlaanderen als geheel wel zeldzame en typische plantensoorten zijn gebonden aan dit milieu. De (uit de Doornpanne verdwenen) lichenensteppen bevatten een aantal zeer kwetsbare en bijzondere terrestrische
lichenen. Vooral op faunistisch vlak zijn deze begroeiingen zeer belangrijk en kwetsbaar (vele zeer typische insecten, Tapuit, …)

Kruipwilgvegetaties (S)

De S-vegetaties zijn alle ontstaan in de jonge, vochtige tot natte duinvalleien van een actief stuivend duinlandschap. Diversificatie treedt op door de mate en de duur van de overstuiving, door bodemvorming, begrazingsintensiteit, -aard en -duur, enz. Kruipwilg speelt een essentiële rol in de bodemopbouw en het behoud van een minder extreem microklimaat van deze types. Zij bestaan dikwijls uit een mozaïek van Kruipwilgeilandjes en grasland of mosduin. Een apart grasland-hoofdtype (D) wordt echter in de Doornpanne nog niet onderscheiden al is het aandeel van Kruipwilg in dit type soms nog slechts relictueel (S’). De grazige, gesloten duinkalkgraslandvegetaties (Dm) en andere graslandtypes uit het zgn. *vroeg-middeleeuwse kopjesduinlandschap* (Leten 1992) zijn vermoedelijk door meer langdurige en intensievere begrazing met vee uit de S-vegetaties ontstaan.

So: in stuivende duinen, met weinig of geen ondergroei
Sa: id., met Helm
Sk: droge Kruipwilgvegetaties in min of meer gestabiliseerde, veelal kleinschalige stuifduingebieden, met mosduinelementen.
Sd: met de basiselementen van de duinbraslanden, zonder bijzondere soorten. Meestal enigszins gedegradeerd of nog onvoldoende ontwikkeld duinkalkgrasland (Sm), dikwijls gedomineerd door grassen.
Su: id., met bloemrijke droge duinbraslandvegetaties die typisch zijn voor licht overstuivende milieus.
Sm: id., met soorten van het duinkalkgrasland.
Se: id., met duin(kalk)braslandelementen die typisch zijn voor het zgn. ‘zeedorpenlandschap’, d.i. het sinds lange tijd intensiever door de mens beïnvloede duinlandschap in de buurt van oude bewoning.
Sg: Kruipwilgvegetatie met dominantie van Duinriet of Zandzegge, vnl. in uitgedroogde valleien.
St: nitrofiele Kruipwilgvegetaties, met mineraliserende bodem t.g.v. bodemverstoring, verdroging e.d.

Kwetsbaarheid:

- Hydrologisch: deze types danken hun ontstaan (soms reeds zeer lang geleden) aan vochtige, jonge duinvalleien en een meer of minder grote mate van natuurlijke overstuiving. Kruipwilg kijkt vrijwel uitsluitend in vochtige pionierssituaties. Tot voor de waterwinning stonden een deel van deze types ook nog direct onder grondwaterinvoel (een deel van de Sd en Sm, sommige St, veel van Sg, …). Voor deze betekent een stijging van de grondwaterstand tot een natuurlijk niveau, dus een terugkeer naar de vroegere situatie; op de andere heeft de hydrologie weinig of geen invloed op de bodemprocessen en beschikbaarheid van nutriënten. Het valt dus te verwachten dat, indien deze vegetaties momenteel weer onder invloed van het grondwater komen, de produktie zal toenemen, waarschijnlijk ten koste van de floristische diversiteit en de zeldzaamste soorten. Een natuurtechnisch omschakelingsbeheer (begrazen, maaien) zal in dit geval dus noodzakelijk zijn. Vooral sterke grondwaterschommelingen kunnen de huidige of potentiële waarde van deze types sterk hypothekeren. Gezien de, op zijn minst historische band met het
Grondwater, zal een verdere verdroging op lange termijn resulteren in het verlies van veel van de momenteel dikwijls nog slechts als relict aanwezige ecologische waarden. Op korte termijn stellen zich op dit vlak echter geen problemen.

- Geomorfologisch: vanwege het belang van de dikwijls op een zeer specifieke manier en gedurende een lange tijd opgebouwde bodem van vele van de S-types, is elke bodemverstoring of vergraving een zware aantasting van deze types en hun ecologische waarde. Kleinschalige vergraving (bv. door konijnen, ...) kan leiden tot Duinroosheiden (soms nog met relict van de duinkalkgraslandflora), meestal betekent het echter een algehele mineralisatie van de organische bodemcomponent met als resultaat een nitrofiele en uiteindelijk Kruipwilgvrije storingsvegetatie, al dan niet gevolgd door relatief soortarme mosvegetaties (Kc, bv.). Voor de instandhouding van sommige droge types (So, Sk, Su) is een zekere mate van overstuiving met kalkrijk zand noodzakelijk. Ook in de ontwikkelingsgeschiedenis van de mesofiele tot vochtige types (vnl. Sm en de door wateronttrekking verdwenen Sj) speelt lichte overstuiving een rol. Zowel voor het behoud van de actuele diversiteit als voor het opnieuw ontwikkelen en het herstellen van de vroeger aanwezige, nog veel grotere diversiteit binnen de Kruipwilgvegetaties, is een natuurlijke verstuivingsdynamiek dus noodzakelijk.

Duinroosjesheiden (I)

De duinroosjesheiden zijn waarschijnlijk voortgekomen uit door degradatie en lichte verzuring, gedegradeerde Kruipwilg/grasland-mozaïeken of ontstaan na een verstruwelingsfase in oorspronkelijk Kruipwilg-landschap. In een aantal gevallen kan de soort ook vegetatief andere types (K, ...) zijn binnengedrongen. Duinroos geeft met haar ondergronds rhizomennet en stekelige stengels een zekere stabiliteit aan de vegetatie maar kan waarschijnlijk veel minder bodemkundige stabiliteit, laat staan opbouw, garanderen dan de S-types.

Id: met de basiselementen van de duingraslanden, zonder bijzondere soorten. Meestal gedegradeerde of onvoldoende ontwikkelde vorm van duinkalkgraslandvegetaties (Im), soms vergrast.

Im: id., met duinkalkgraslandelementen, waarschijnlijk ontstaan uit Sm.

Ie: id., met duinkalkgraslandelementen uit het 'zeedorpenlandschap'.

Ik: met mosduinelementen. Ontstaan door extreme degradatie van Kruipwilgvegetaties of door vegetatieve uitbreiding van Duinroos in Kc-vegetaties.

It: nitrofiele duinroosvegetatie, vermoedelijk ontstaan door sterke mineralisatie van de organische bodemcomponenten na een verstruwelingsfase of na degradatie van Kruipwilg/graslandmozaïeken.

Kwetsbaarheid:

- Hydrologisch: steeds boven de natuurlijke invloedssfeer van het grondwater gelegen en daarom niet rechtstreeks beïnvloed door veranderingen in de hydrologie.
Onrechtstreeks is dit, op zeer lange termijn, vermoedelijk wel het geval, gezien hun band met de Kruipwilgtypes.

Geomorfologisch: de Duinroosheiden kunnen worden beschouwd als oudere stadia van het mesofiele tot droge Kruipwilg/graslandcomplex op humeuze, licht ontkalkte bodem. Vooral na een zekere vorm van bodemverstoring kan Duinroosje in deze omstandigheden tot dominantie komen en de vegetatie behoeden voor algehele degradatie. Ook na een verstruwelingsfase (Duindoorn, Liguster, ...) in het Kruipwilg/graslandcomplex kan deze evolutie zich voordoen. Duinroosheiden zijn vermoedelijk minder gevoelig voor bodemdegradatie en verstoring dan de equivalenten Kruipwilgtypes, maar grootschalige vergraving is even nefaast.

Biologisch: naast Duinroosje zelf (meestal dominant aanwezig in de I-types) zijn soms nog enkele bijzondere duinkalkgrasland-soorten aanwezig. Overigens zijn de I-types dikwijls soortenarmer en banaler dan de S-types. Ook de insectenfauna is, gezien de veel meer eenvormige structuur, waarschijnlijk minder specifiek.

Anthropogene ruigten

Vegetaties van eenjarige of overblijvende nitrofiele planten, ontstaan door anthropogene aanrijking, vergraving, ... Alle ruigten zijn nitrofiel: de t-code is inbegrepen in het hoofdtype. In diverse vormen, van belang is enkel:

Re: ruigte met Bastaardkweek op sinds lang extensief menselijk beïnvloede droge duinen (“zeedorpenslandschap”).

Duindoornstruwelen (H)

Duindoorn is een relatief kortlevende struiksoort met uitgesproken mogelijkheden voor horizontale vegetatieve uitbreiding via rhizomen en met een symbiontische relatie met een stikstofbindende bacterie. Het is de belangrijkste en minst standplaatspecifieke struweelpionierssoort van kalkrijke standplaatsen in de duinen. Alle Duindoornstruwelen zijn nitrofiel: de t-code is inbegrepen in het hoofdtype.

H₁: jonge Duindoornstruwelen, vaak een zoom vormend naast oudere struwelen door vegetatieve vermenigvuldiging.

H₂: Vlierstruweel
H₃₁: soortenarme Duindoornstruwelen, veelal in relatief jonge droge situaties.
H₃₁₀: in stuivende duincomplexen. Ontstaan door sterke overstuiving van bestaande struwelen of door vegetatieve uitbreiding van Duindoorn in kale verstuivingszones.
H₃₁₅: jonge droge Duindoornstruwelen met mosduinrelicten.
H₄: met een aantal van de gewone duingraslandelementen en een veelal open structuur.
H₅₁: met Duinriet en/of Zandzegge; vnl. in uitgedroogde oude duinvalleien.
H₅₁₅: hoog, voldoende gesloten en luchtvochtig. Duindoorn/Vlierstruweel met varens en/of bramen. Ouderdomsstadion op beschutte noord- en westhellingen, voormalige stuifkuilen e.d. waar een voortdurende aanvoer van nutriënten (langs de hellingen naar beneden) plaatsvindt; soms gevolgd door algehele degradatie van het struweel, soms met een ontwikkeling naar spontaan bos of gemengd struweel.

Kwetsbaarheid
Hydrologisch: verdere verdroging heeft zeker geen enkel effect. In de door een herstel (stijging) van een natuurlijker grondwaterregime gecreëerde situatie kunnen de Duindoorn-types zeer verdeeld reageren. De hooggelegen types ondervinden geen enkele last of nut hiervan. Duindoorn reageert wel positief op een grondwaterstijging in de mesofiele zones die niet gedurende langere tijd onder water kornen te staan. Zijn vitaliteit zal hier allicht nog toename, vermoedelijk zonder een specifieke toename van ecologische waarde, tenzij eventueel een evolutie naar type Hy. In de sterkst vernattende zones (juist in die zones heeft Duindoorn een sterke uitbreiding genomen) zal zijn vitaliteit eerder achteruitgaan en kunnen vochtsorten zich vestigen (Hj). Verdwijnen doet de soort slechts wanneer het water echt regelmatig zeer lang boven het maaiveld blijft staan. Dan wordt hij waarschijnlijk vervangen door ruige Duinriet-, Padderus- of Hemegrasvegetaties (cf. Westhoek), eventueel ook door Grauwe wilg-stuwelen. Zowel in de meso- als hygrosfeer liggen de potentiële waarden van vernattende duinvalleien echter niet in een spontane ontwikkeling van de aanwezige Duindoornstuwelen maar in door radicaal natuurtechnisch beheer (plagggen, maaien, ...) herstelde laaggestructureerde 'klassieke' duinvalleivegetaties.

Geomorfologisch: Duindoorn koloniseert meestal vrij gemakkelijk gebieden met een gestoorde of vergraven bodem. Na een tussenfase van bv. Ot evolueren dergelijke kleinschalige vergravingen vermoedelijk al vrij snel terug naar H(11) of Hg. Minder waarschijnlijk is dat vegetaties van de types Hd of Hy zich even snel zullen kunnen herstellen. Type Hy is daarentboven aangewezen op een relatief hoge luchtvochtigheid en een constante aanvoer van nieuwe nutriënten. Nivellering van het reliëf of openingen in het vegetatiedek maken de ontwikkeling van dit type onmogelijk.

Biologisch: hoewel Duindoorn bij ons niet buiten de duinen voorkomt en Duindoornstuwelen in West-Europese verband zeker tot de zeldzame vegetatietypes behoren, kunnen zij binnen onze duingebieden zeker niet tot de meest bedreigde of kwetsbare vegetatietypes gerekend worden. Een specifieke waarde van de oudere stuwelen (vnl. H(2)1) betreft de rijkdom aan epifytische lichen en mossen op Vlierstammetjes. Ook ornithologisch hebben zij een zekere waarde, vnl. voor doorsnekkende vogels. Daarnaast kunnen de Duindoornstuwelen in de (voormalig natte) valleien het voorstadium vormen voor spontane berkenbosontwikkeling (B1).

Gemengde duinstruwelen (P)

De structuurvormende soorten van het oudere, min of meer gemengde duinstruwel zijn Eenstitjlig meidoorn, Wilde liguster, Eglantier enz., naast Duindoorn en Vlier en de verspreide spontane boomopslag. Zij hebben hun optimum in geomorfologisch oudere en gediversifieerde landschappen en in van oorspronkelijk vochtige tot droge valleien en duinruggen. Alle types zijn in meer of mindere mate nitrofiel: de t-code is inbegrepen in het hoofdtype.

P: soortenrijke gemengde struwelen.
P2: door Wilde liguster gedomineerde struwelen, meestal geëvolueerd uit oude mesofiele Kruipwilg/grasland-types of Duinroosvegetaties. Meestal nog met oude, humeuze graslandbodems en elementen van de vroegere types in de randen.
P4-6: aangeplante struwelen (Grauwe wilg, Seringen, Rimpelroos). De eerste twee op walletjes van voormalig akkerland.
Kwetsbaarheid

- **Hydrologisch:** goed ontwikkelde gemengde struwelen lijken vnl. te liggen in voormalig matig vochtige terreindelen, soms aan de rand van de vroegere vochtige pannen. Een herstel van een natuurlijke grondwaterstand zal deze types wel beïnvloeden, maar waarschijnlijk enkel ten goede. In elk geval is er geen reden om deze struwelen in een dergelijk geval specifiek te gaan beheren of te vervangen door laaggestructureerde duinvalleivegetaties. Verdere dalning van de grondwatertafel heeft geen verdere invloed meer op hun samenstelling of ontwikkeling.

- **Geomorfologisch:** de rijkere en niet aangeplante struwelen van het P-type zijn steeds te vinden in geomorfologisch ongestoorde zones van de Doompanne. Hoogstwaarschijnlijk worden zij ook gekenmerkt door specifieke ‘oudere’ bodems, soms misschien nog door de oorspronkelijke Kraaiwilg/grasland-bodems. Vergravingen zijn hier dus uit den boze.

- **Biologisch:** de spontane gemengde struwelen herbergen een aantal zeer zeldzame kalkminnende plantensoorten en zijn overigens wat dit betreft nog in volle ontwikkeling. Zij zijn soms ook zeer structuurrijk wat voor diverse insecten en vogelsoorten van groot belang is. Zij behoren mee tot de waardevolle vegetatietypes van de Doompanne.

Spontane struweelbossen met berken (B₁)

B₁: spontane Berkenbossen in voormalig vochtige valleien, soms nog met relict van grondwaterafhankelijke flora
B₁d: id., met graslandelementen
B₁g: id., met Duinriet en/of Zandzegge en dikwijls nog relict van het Duindoornstruweel.

Kwetsbaarheid

- **Hydrologisch:** hoewel er een nat equivalent van de spontane duinberkenbossen beschreven wordt in de Nederlandse literatuur, is het vrijwel zeker dat de huidige berkenbossen een (abrupte) stijging van het grondwater niet zullen overleven. In dergelijke gevallen wordt het bos vervangen door Duinrietvegetaties (tenzij door natuurrechtmatig beheer wordt ingegrepen). Een vernatting maakt elders of, mits ingrepen tegen de Duinrietdominantie, op dezelfde plaats nieuwe berkenbosontwikkeling nog wel mogelijk en is misschien zelfs gunstig.

- **Geomorfologisch:** vergravingen vernielen onherroepelijk de bosbodem-in-ontwikkeling en ten dele ook het specifiek bosmicroklimaat. Elke vorm van vergraving of ernstige bodemverzuring zet de ontwikkelingen dus mintens een halve eeuw terug. Zeker in blijvend verdroogde omstandigheden is het zelfs waarschijnlijk dat hiermee de spontane bosvorming voor nog veel langere tijd wordt teruggeset.

- **Biologisch:** dit bostype bevat weinig zeldzame of op Vlaamse schaal kwetsbare plantensoorten. Als vegetatietype is het echter wel het enige voorbeeld van spontaan
duinberkenbos (Crataego-Betuletum) in België, met hoge potenties voor verdere natuurontwikkeling.

Bosaanplantingen (B2,9)

Aangeplante bomen of, in enkele gevallen, spontane vegetatieve opslag vanuit aanplantingen bepalen de structuur van dit hoofdtype. Deze aanplantingen staan ecologisch grontendeels los van het (half-) natuurlijke duinlandschap van de Doompanne. Steeds met nitrofiele elementen (veel meer dan in de natuurlijke berkenbossen). De t-code is inbegrepen in het hoofdtype.

Kwetsbaarheid:

- Hydrologisch: deze plantages bevinden zich meestal te hoog boven het natuurlijke grondwaterniveau om enige serieuze invloed van hydrologische veranderingen te ondervinden. Waar zij zich in voormalige valleien bevinden kan sterfte van bomen worden verwacht bij stijgen van de grondwatertafel.
- Biologisch: de natuurwaarde en de biologische kwetsbaarheid van deze plantages is relatief beperkt en in elk geval bijna steeds herstelbaar of opnieuw te creëren. In enkele gevallen (van types B2,7) zijn er wel potenties voor natuurontwikkeling naarmate meer natuurlijke processen en patronen zich ontwikkelen. Ornithologisch kan de actuele waarde en kwetsbaarheid groter zijn, o.a. vanwege de broedgelegenheid in holten van oude bomen (Draaihals, ...) of in afgesloten bosgedeelten (Ransuil, Torenvalk, ...)
Bijlage 8.4.2
Lijst van plantensoorten van de Doornpanne
(Kuijken E. et al., 1993)
<table>
<thead>
<tr>
<th>Wetenschappelijke naam</th>
<th>pr</th>
<th>pa</th>
<th>AFK</th>
<th>L</th>
<th>R</th>
<th>N</th>
<th>LONDO</th>
<th>V</th>
<th>S</th>
<th>E</th>
<th>status</th>
<th>Nederlandse naam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer negundo L.</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>A</td>
<td>9</td>
<td>G</td>
<td>A</td>
<td>Vederesdoorn</td>
<td></td>
</tr>
<tr>
<td>Acer platanoides L.</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>A</td>
<td>9</td>
<td>G</td>
<td>N/A</td>
<td>Noorwachse esdoorn</td>
<td></td>
</tr>
<tr>
<td>Acer pseudoplatanus L.</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>A</td>
<td>5</td>
<td>A</td>
<td>I</td>
<td>Gewoon esdoorn</td>
<td></td>
</tr>
<tr>
<td>Actinidia kolomikta L.</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>A</td>
<td>8</td>
<td>B</td>
<td>I</td>
<td>Gewoon duizendblad</td>
<td></td>
</tr>
<tr>
<td>Actinidia arguta L.</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>A</td>
<td>1</td>
<td>A</td>
<td>A</td>
<td>Zevenblad</td>
<td></td>
</tr>
<tr>
<td>Agrostis capillaris L.</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>A</td>
<td>6</td>
<td>E</td>
<td>I</td>
<td>Gewoon struisgras</td>
<td></td>
</tr>
<tr>
<td>Agrostis gigantea Roth.</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>V</td>
<td>1</td>
<td>F</td>
<td>I</td>
<td>Hoog struisgras</td>
<td></td>
</tr>
<tr>
<td>Agrimonia pilosa L.</td>
<td>1</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>A</td>
<td>6</td>
<td>E</td>
<td>I</td>
<td>Fijngras</td>
<td></td>
</tr>
<tr>
<td>Alaria praeacos L.</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>A</td>
<td>6</td>
<td>E</td>
<td>I</td>
<td>Vroegkever</td>
<td></td>
</tr>
<tr>
<td>Alisma plantago-aquatica L.</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td>8</td>
<td>W</td>
<td>3</td>
<td>4</td>
<td>I</td>
<td>Duit</td>
</tr>
<tr>
<td>Allaria petiolata (Bieb.) Cav. et Grand</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>A</td>
<td>8</td>
<td>B</td>
<td>I</td>
<td>Look-zonder-look</td>
<td></td>
</tr>
<tr>
<td>Allium ursinum L.</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>A</td>
<td>1</td>
<td>9</td>
<td>I/A</td>
<td>Kraal</td>
<td>Zwarteluis</td>
</tr>
<tr>
<td>Anagallis arvensis (L.)</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>A</td>
<td>1</td>
<td>9</td>
<td>I/A</td>
<td>Duif</td>
<td>Duit</td>
</tr>
<tr>
<td>Anacampsis pyramidalis L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>F</td>
<td>4</td>
<td>E</td>
<td>I</td>
<td>Echte-windmolen</td>
<td></td>
</tr>
<tr>
<td>Anaphalis acaulis L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>F</td>
<td>4</td>
<td>E</td>
<td>I</td>
<td>Papageai</td>
<td>Kerskruid</td>
</tr>
<tr>
<td>Anemone nemorosa L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>F</td>
<td>4</td>
<td>E</td>
<td>I</td>
<td>Hel</td>
<td>Hel</td>
</tr>
<tr>
<td>Anemone pulsatilla L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>F</td>
<td>4</td>
<td>E</td>
<td>I</td>
<td>Roos</td>
<td>Koekoekskroes</td>
</tr>
<tr>
<td>Anemone ranunculoides (L.)</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>F</td>
<td>4</td>
<td>E</td>
<td>I</td>
<td>Zijde</td>
<td>Zijdelijke kruid</td>
</tr>
<tr>
<td>Ballota nigra L.</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>A</td>
<td>1</td>
<td>9</td>
<td>I/A</td>
<td>Zilveren eekhoorn</td>
<td></td>
</tr>
<tr>
<td>Barberta vulgaris R. Br.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>5</td>
<td>A</td>
<td>I</td>
<td>Zilveren koolkruid</td>
<td></td>
</tr>
<tr>
<td>Bellis perennis L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Betula pendula Roth.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Zilveren koolkruid</td>
<td></td>
</tr>
<tr>
<td>Betula utilis var. albosinensis (Duham.)</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Bidens tripartita L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Zijde</td>
<td>Zijdelijke kruid</td>
</tr>
<tr>
<td>Blackstonia perfoliata L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Blysmus compressus (L.) Panzer ex Link</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Buxus sempervirens L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Callistemon elegans L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Cardamine pratensis L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Cardarica nigra L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Carcharocalyx mollis L.</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>I</td>
<td>Rood</td>
<td>Koolkruid</td>
</tr>
<tr>
<td>Carex arenaria L.</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>A</td>
<td>6</td>
<td>B</td>
<td>I</td>
<td>Groene koolkruid</td>
<td></td>
</tr>
<tr>
<td>Carex carrii (Sandor ex Heuffel) Wendl</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>A</td>
<td>6</td>
<td>B</td>
<td>I</td>
<td>Groene koolkruid</td>
<td></td>
</tr>
<tr>
<td>Carex curvula (Sandor ex Heuffel) Wendl</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>A</td>
<td>6</td>
<td>B</td>
<td>I</td>
<td>Groene koolkruid</td>
<td></td>
</tr>
<tr>
<td>Carex disticha (Bieb.) Huds.</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>A</td>
<td>6</td>
<td>B</td>
<td>I</td>
<td>Groene koolkruid</td>
<td></td>
</tr>
<tr>
<td>Carex elata All.</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>W</td>
<td>3</td>
<td>4</td>
<td>C</td>
<td>Stijve</td>
<td>Zegge</td>
</tr>
<tr>
<td>Carex extensa Good.</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>A</td>
<td>3</td>
<td>C</td>
<td>I</td>
<td>Stijve</td>
<td>Zegge</td>
</tr>
</tbody>
</table>

Bijlage 8.4.2 Lijst van plantensoorten van de Doompanne (Kuijken E. et al., 1993).
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Scientific Name</th>
<th>Classification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex flacca Schreb.</td>
<td>1 1 5 7 6 8 4 K 2 6 C I</td>
<td></td>
<td>Zeegegroene zegge</td>
</tr>
<tr>
<td>Carex hirta L.</td>
<td>1 1 5 7 6 6 5 A 2 A</td>
<td></td>
<td>Ruige zegge</td>
</tr>
<tr>
<td>Carex nigra (L.) Reichard</td>
<td>1 1 6 7 6 8 2 E 4 2 6</td>
<td></td>
<td>Zwarte zegge</td>
</tr>
<tr>
<td>Carex paniculata L.</td>
<td>1 1 5 8 8 4 x 4 V 1 7 C</td>
<td></td>
<td>Blauwe zegge</td>
</tr>
<tr>
<td>Carex pseudocyperus L.</td>
<td>1 1 5 7 9 6 5 V 2 4 C</td>
<td></td>
<td>Koge cyperzegge</td>
</tr>
<tr>
<td>Carex riparia Curt.</td>
<td>1 1 6 7 9 8 7 W 1 6 C</td>
<td></td>
<td>Govergezegge</td>
</tr>
<tr>
<td>Carex spicata L.</td>
<td>1 1 5 7 6 6 4 V</td>
<td></td>
<td>Eerstgezegge</td>
</tr>
<tr>
<td>Carex trinervis Oegl.</td>
<td>1 1 3 9 9 3 2 V 1 7 B</td>
<td></td>
<td>Olieriviere zegge</td>
</tr>
<tr>
<td>Carex viridula Michaux s.l.</td>
<td>1 1 5 8 9 2 x 2 W 3 7 C</td>
<td></td>
<td>Dwerzegge</td>
</tr>
<tr>
<td>Carlina vulgaris L.</td>
<td>1 1 10 7 5 6 3 A</td>
<td></td>
<td>Driedistel</td>
</tr>
<tr>
<td>Centaurea sudeticana</td>
<td>1 1 6 8 5 6 D 2 8 A</td>
<td></td>
<td>Knooppaard</td>
</tr>
<tr>
<td>Centaurea erythraea Rafn</td>
<td>1 1 6 5 6 5 V 2 3 5 A</td>
<td></td>
<td>Echt duizendzeggenkruik</td>
</tr>
<tr>
<td>Centaurea minus Moench</td>
<td>1 1 3 9 7 8 3 F 3 2 8 C</td>
<td></td>
<td>Strandduizendzeggenkruik</td>
</tr>
<tr>
<td>Centaurea pulcherrima (Sw.) Druce</td>
<td>1 1 7 8 4 6 4 A</td>
<td></td>
<td>Kleinzeggenkruik</td>
</tr>
<tr>
<td>Echium vulgare (Savi) Ten.</td>
<td>1 1 6 8 5 6 V</td>
<td></td>
<td>Scheve hoornbloem</td>
</tr>
<tr>
<td>Echium arvense</td>
<td>1 1 6 8 3 6 x A</td>
<td></td>
<td>Knolzeggenkruik</td>
</tr>
<tr>
<td>Elymus arenarius L.</td>
<td>1 1 4 9 6 7 6 A 3 A</td>
<td></td>
<td>Dandurant</td>
</tr>
<tr>
<td>Elymus farctus C.viv.) Runemark ex Melder</td>
<td>1 1 3 8 4 7 7 A 3 A</td>
<td></td>
<td>Bies tegras</td>
</tr>
<tr>
<td>Erodium cicutarium</td>
<td>1 1 8 4 7 7 A 3 A</td>
<td></td>
<td>Veldkruisbloem</td>
</tr>
<tr>
<td>Erodium lebelii Jord.</td>
<td>3 8 4 7 2 A 6 B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Gewoon bi ggekruid | Donderkruid | Donderkruido
<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veronica persica Poir.</td>
<td>1 1 8 6 5 7 7 A 1 A</td>
<td>Grote ereprijs</td>
</tr>
<tr>
<td>Veronica scutellata L.</td>
<td>1 5 8 9 3 3 W 3 7 A</td>
<td>Schildereprijs</td>
</tr>
<tr>
<td>Veronica serpyllifolia L.</td>
<td>1 6 x 5 5 5 D 2 A</td>
<td>Tijmereprijs</td>
</tr>
<tr>
<td>Viburnum lantana L.</td>
<td>1 7 4 8 4 B 8 D A</td>
<td>Wollige sneeuwbloem</td>
</tr>
<tr>
<td>Viburnum opulus L.</td>
<td>1 1 8 6 x 7 6 V 2 9 F</td>
<td>Gelderse roos</td>
</tr>
<tr>
<td>Vicia cracca L.</td>
<td>1 1 9 7 6 x x A 1 5 A</td>
<td>Vogelwikke</td>
</tr>
<tr>
<td>Vicia hirsuta (L.) S. F. Gray</td>
<td>1 1 8 7 4 x 4 A 1 A</td>
<td>Ringelwikke</td>
</tr>
<tr>
<td>Vicia lathyroides L.</td>
<td>1 1 4 8 2 3 2 A 6 B A</td>
<td>Lathyruswikke</td>
</tr>
<tr>
<td>Vicia sativa L. subsp. nigra (L.) Ehrh.</td>
<td>1 1 9 5 x x x A 6 B A</td>
<td>Smalle wikke s.s.</td>
</tr>
<tr>
<td>Vinca major L.</td>
<td>1 1 8 8 B A</td>
<td>Grote maagdepalm</td>
</tr>
<tr>
<td>Viola arvensis Murray</td>
<td>1 1 8 6 x x x A 1 C A</td>
<td>Akkerviooltje</td>
</tr>
<tr>
<td>Viola canina L.</td>
<td>1 1 4 7 4 3 2 P 7 F A</td>
<td>Hondsviooltje</td>
</tr>
<tr>
<td>Viola curtisii E. Forster</td>
<td>1 1 3 8 3 6 3 A 6 B A</td>
<td>Dufvinvioletje</td>
</tr>
<tr>
<td>Viola hirta L.</td>
<td>1 1 3 6 3 8 3 A 8 C A</td>
<td>Ruig viooltje</td>
</tr>
<tr>
<td>Vulpia bromoides (L.) S.F. Gray</td>
<td>1 1 3 9 3 4 1 A 6 E A</td>
<td>Eekhoorngras</td>
</tr>
<tr>
<td>Vulpia myuros (L.) C.C. Gmel.</td>
<td>1 5 8 2 5 1 A 1 E A</td>
<td>Gewoon langbeardgras</td>
</tr>
</tbody>
</table>
Bijlage 8.4.3
Lijst van vogelsoorten van de Doornpanne
(Kuijken E. et al., 1993)
Bijlage 8.4.3 Lijst van de vogelsoorten van de Doornpanne (Kuijken E. et al., 1993).

<table>
<thead>
<tr>
<th>broedvogels</th>
<th>doortrekkers/overwinteraars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barmsijs *</td>
<td>Beflijster *</td>
</tr>
<tr>
<td>Bergeend</td>
<td>Blauwe kiekendief</td>
</tr>
<tr>
<td>Boomkruiper</td>
<td>Buzerd</td>
</tr>
<tr>
<td>Braamsluiper</td>
<td>Europese kanarie *</td>
</tr>
<tr>
<td>Ekster</td>
<td>Groenlandse tapuit *</td>
</tr>
<tr>
<td>Fazant</td>
<td>Hauvik</td>
</tr>
<tr>
<td>Fitis</td>
<td>Houtsnip</td>
</tr>
<tr>
<td>Gekraagde roodstaart *</td>
<td>Kleine bonte specht</td>
</tr>
<tr>
<td>Grasimus</td>
<td>Koperwiek</td>
</tr>
<tr>
<td>Graspieper</td>
<td>Kramsvogel</td>
</tr>
<tr>
<td>Grauwe vliegenvanger</td>
<td>Groene specht *</td>
</tr>
<tr>
<td>Groene specht *</td>
<td>Kuifmees</td>
</tr>
<tr>
<td>Groening</td>
<td>Mandarijneend</td>
</tr>
<tr>
<td>Grote bonte specht</td>
<td>Paapje *</td>
</tr>
<tr>
<td>Grote lijster</td>
<td>Rode wouw *</td>
</tr>
<tr>
<td>Hegemus</td>
<td>Slechttvark *</td>
</tr>
<tr>
<td>Holeduif</td>
<td>Sperwer</td>
</tr>
<tr>
<td>Houtduif</td>
<td>Staartmees</td>
</tr>
<tr>
<td>Kauw</td>
<td>Veldui *</td>
</tr>
<tr>
<td>Kneu</td>
<td>Vink</td>
</tr>
<tr>
<td>Koekoek</td>
<td>Vuurgoedhaantje</td>
</tr>
<tr>
<td>Koolmees</td>
<td>Wespendingel</td>
</tr>
<tr>
<td>Matkopmees</td>
<td>Zwarte mees</td>
</tr>
<tr>
<td>Merel</td>
<td></td>
</tr>
<tr>
<td>Nachtegaal *</td>
<td></td>
</tr>
<tr>
<td>Patijs</td>
<td></td>
</tr>
<tr>
<td>Pimpelmees</td>
<td></td>
</tr>
<tr>
<td>Putter *</td>
<td></td>
</tr>
<tr>
<td>Ransuil</td>
<td></td>
</tr>
<tr>
<td>Rietgors</td>
<td></td>
</tr>
<tr>
<td>Ringmus</td>
<td></td>
</tr>
<tr>
<td>Roodborst</td>
<td></td>
</tr>
<tr>
<td>Roodborsttapuit *</td>
<td></td>
</tr>
<tr>
<td>Spotvogel</td>
<td></td>
</tr>
<tr>
<td>Spreuw</td>
<td></td>
</tr>
<tr>
<td>Sprinkhaanrietzanger *</td>
<td></td>
</tr>
<tr>
<td>Steenuil</td>
<td></td>
</tr>
<tr>
<td>Tapuit *</td>
<td></td>
</tr>
<tr>
<td>Tjiftjaf</td>
<td></td>
</tr>
<tr>
<td>Torenlvank</td>
<td></td>
</tr>
<tr>
<td>Tordelduif</td>
<td></td>
</tr>
<tr>
<td>Tuinfuiteer</td>
<td></td>
</tr>
<tr>
<td>Turkse tortel</td>
<td></td>
</tr>
<tr>
<td>Vlaamse gaal</td>
<td></td>
</tr>
<tr>
<td>Waterhoen</td>
<td></td>
</tr>
<tr>
<td>Wielewaal *</td>
<td></td>
</tr>
<tr>
<td>Wilde eend</td>
<td></td>
</tr>
<tr>
<td>Winterkoning</td>
<td></td>
</tr>
<tr>
<td>Witte kwikstaart</td>
<td></td>
</tr>
<tr>
<td>Zwarte kraai</td>
<td></td>
</tr>
<tr>
<td>Zwarte roodstaart</td>
<td></td>
</tr>
<tr>
<td>Zwartkop</td>
<td></td>
</tr>
<tr>
<td>Zwartkopgrasmus</td>
<td></td>
</tr>
<tr>
<td>Zangliester</td>
<td></td>
</tr>
</tbody>
</table>

Vogelwaarnemingen in de Doornpanne
A zeer zeldzaam (1-3 individuen), B zeldzaam (3-10 individuen),
C algemeen (>10 individuen), * ecologisch belangrijk in Vlaams
verband, ! mogelijk broedgeval (BONTE 1993, GAYTART 1978 & 1979,
DEVIAREY 1973).
Bijlage 8.4.4 Fauna & Flora: Soortenlijst van de planten aangetroffen op de berm van het Kanaal Duinkerke - Nieuwpoort in de omgeving van het geplande losingspunt in maart 1999

<table>
<thead>
<tr>
<th>Wetenschappelijke naam</th>
<th>Nederlandse naam</th>
<th>Juridisch statuut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer pseudoplanatus</td>
<td>Gewone esdoorn</td>
<td></td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>Gewoon duizendblad</td>
<td></td>
</tr>
<tr>
<td>Aegopodium podagria</td>
<td>Zeventenblad</td>
<td></td>
</tr>
<tr>
<td>Agropyron repens</td>
<td>Kweek</td>
<td></td>
</tr>
<tr>
<td>Agrostis vinealis</td>
<td>Zandstruisgras</td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>Zwarde els</td>
<td></td>
</tr>
<tr>
<td>Anthriscus sylvestris</td>
<td>Fluitekruid</td>
<td></td>
</tr>
<tr>
<td>Arrhenatherum elatius</td>
<td>Gewone glanshaver</td>
<td></td>
</tr>
<tr>
<td>Artemisia vulgaris</td>
<td>Bijvoet</td>
<td></td>
</tr>
<tr>
<td>Bellis perennis</td>
<td>Madeliefje</td>
<td></td>
</tr>
<tr>
<td>Capsella bursa-pastoris</td>
<td>Herderstasje</td>
<td></td>
</tr>
<tr>
<td>Centaurea pratensis</td>
<td>Gewoon knoopskruid</td>
<td></td>
</tr>
<tr>
<td>Cirsiurn arvense</td>
<td>Akkerdistel</td>
<td>schadelijk</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>Akkerwinde</td>
<td></td>
</tr>
<tr>
<td>Corynephorus canescens</td>
<td>Buntgras</td>
<td></td>
</tr>
<tr>
<td>Crepis biennis</td>
<td>Wildestreepzaad</td>
<td></td>
</tr>
<tr>
<td>Daucus carota</td>
<td>Wilde peen</td>
<td></td>
</tr>
<tr>
<td>Erophila vera</td>
<td>Vroegeling</td>
<td></td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td>Es</td>
<td></td>
</tr>
<tr>
<td>Galeopsis tetrahit</td>
<td>Hennepnetel</td>
<td></td>
</tr>
<tr>
<td>Galium aparine</td>
<td>Kleefkruid</td>
<td></td>
</tr>
<tr>
<td>Geranium molle</td>
<td>Zachte oioevaarsbek</td>
<td></td>
</tr>
<tr>
<td>Geranium robertianum</td>
<td>Robertskruid</td>
<td></td>
</tr>
<tr>
<td>Glechoma hederacea</td>
<td>Hondsdraaf</td>
<td></td>
</tr>
<tr>
<td>Heracleum spodyllum</td>
<td>Bereklauw</td>
<td></td>
</tr>
<tr>
<td>Holcus mollis</td>
<td>Zachte witbol</td>
<td></td>
</tr>
<tr>
<td>Lamium album</td>
<td>Witte dovenetel</td>
<td></td>
</tr>
<tr>
<td>Lamium purpureum</td>
<td>Paarse dovenetel</td>
<td></td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>Engels raaiagras</td>
<td></td>
</tr>
<tr>
<td>Lythrum salicaria</td>
<td>Kattestaart</td>
<td></td>
</tr>
<tr>
<td>Matricaria maritima inodora</td>
<td>Reukloze kamille</td>
<td></td>
</tr>
<tr>
<td>Melilotus ? alba</td>
<td>Witte honigklaver</td>
<td></td>
</tr>
<tr>
<td>Petasites officinalis</td>
<td>Groot hoefblad</td>
<td></td>
</tr>
<tr>
<td>Phragmites australis</td>
<td>Riet</td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>Smalle weegbree</td>
<td></td>
</tr>
<tr>
<td>Plantago major</td>
<td>Grote weegbree</td>
<td></td>
</tr>
<tr>
<td>Poa annua</td>
<td>Straagrass</td>
<td></td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>Beemdgras</td>
<td></td>
</tr>
<tr>
<td>Polygonum persicaria</td>
<td>Perzikkruid</td>
<td></td>
</tr>
<tr>
<td>Populus x canadensis</td>
<td>Canadapopulier</td>
<td></td>
</tr>
<tr>
<td>Potentilla reptans</td>
<td>Vijfvingerkruide</td>
<td></td>
</tr>
<tr>
<td>Ranunculus acer</td>
<td>Scherpe boterbloem</td>
<td></td>
</tr>
<tr>
<td>Ranunculus bulbosus</td>
<td>Knolboterbloem</td>
<td></td>
</tr>
<tr>
<td>Rubus sp</td>
<td>Braam</td>
<td></td>
</tr>
<tr>
<td>Rumex acetosa</td>
<td>Veldzuring</td>
<td></td>
</tr>
<tr>
<td>Rumex obtusifolius</td>
<td>Ridderzuring</td>
<td></td>
</tr>
<tr>
<td>Salix alba x</td>
<td>Schietwilg</td>
<td></td>
</tr>
<tr>
<td>Salix viminalis</td>
<td>Katwilg</td>
<td></td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>Zwarde vlier</td>
<td></td>
</tr>
<tr>
<td>Senecio vulgaris</td>
<td>Klein kruiskruid</td>
<td></td>
</tr>
<tr>
<td>Sisymbrium officinale</td>
<td>Raket</td>
<td></td>
</tr>
<tr>
<td>Latin Name</td>
<td>Dutch Name</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Stellaria media</td>
<td>Vogelmuur</td>
<td></td>
</tr>
<tr>
<td>Taraxacum sectio taraxacum</td>
<td>Paardebloem</td>
<td></td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>Witte klaver</td>
<td></td>
</tr>
<tr>
<td>Urtica dioica</td>
<td>Gewone brandnetel</td>
<td></td>
</tr>
<tr>
<td>Veronica arvensis</td>
<td>Veldereprijs</td>
<td></td>
</tr>
<tr>
<td>Vicia cracca</td>
<td>Vogelwikke</td>
<td></td>
</tr>
</tbody>
</table>
Bijlage 8.4.5
Specifieke richtlijnen
voor de gestuurde natuurontwikkeling
van de Doornpanne
Bijlage 8.4.5. Specifieke richtlijnen voor de gestuurde natuurontwikkeling van de Doornpanne i.f.v. de waterwinning.

BEHEERSPLAN DOORNPANNE; BIJLAGE 5: INRICHTING VAN HET INFILTRATIEGEBIED, deel 1-4

1. Inleiding

De verdere uitwerking van het infiltratiegebied (in het voorgestelde gedeelte aan de Doornpanne) wordt hieronder verder besproken. De definitieve inrichting zal na goedkeuring van het project verder door de IWVA, in samenspraak met het Instituut voor Natuurbehoud, worden uitgewerkt.

2. Aanleg van de infrastructuur

2.1. Lokalisatie

Bij de lokalisatie van de infiltratiekanalen en de winningsputten is rekening gehouden met de vergravingsgevoeligheid van de vegetatie.

In het terrein zouden twee (onderling verbonden) kanalen worden gegraven die een totale oppervlakte van 4,3 ha beslaan. Daarvoor zouden vooral aanplant van Populier en Abeel (ca. 1,1 ha), moosbegroeiingen (ca 1 ha) en vrijwel onbegroeid zand (ca 1,1 ha) moeten verdwijnen. De te ontginnen oppervlakte bos zal in de praktijk een stuk groter zijn (ongeveer 1 ha) dan de zone die sterk door het kanaal wordt ingenomen. Rond de infiltratiepanden moet immers een boomvrije zone van minimum 30 m voorzien worden om bladafval in het open water zoveel mogelijk te vermijden. Ook ongeveer 0,7 ha duindoornstruweel en 0,3 ha ruigten moeten voor die werken worden vergraven. Zeer kwetsbare begroeiingen worden door aangepaste vormgeving zoveel mogelijk gespaard. Een kleine oppervlakte met Kruipwilg (890 m²) en met Duinroosje (550 m²) geassocieerd grasland en 660 m² mosduin op humusrijke bodem zouden door de huidige plannen moest verdwijnen. Door begeleiding van de werken op het terrein kunnen deze laatste oppervlakten wellicht nog verkleind worden en secundaire effecten (verstorend door machines e.d.) geminimaliseerd.

Nota m.b.t. deze MER-studie: de oorspronkelijk voorziene twee parallelle panden werden vervangen door één pand (zie figuren). De te ontginnen zones blijven ca. dezelfde wat betreft oppervlakte en vegetatietypes.

2.2. Zanddepositie

Een tweede factor is de potentiële voor de laagstgelegen terreindelen voor de ontwikkeling van vochtige duinvalleivegetaties. Ophogen van deze zones zou die mogelijke ontwikkelingen verhinderen.

Het bepalen van de geschikte zones voor zanddepositie vereist dus kennis van topografie en hydrologie (verhanglijn van het water tussen kanalen en pompen) naast gebruik van de vegetatiekaart. Dit moet in samenspraak met het Instituut voor Natuurbehoud nog verder worden uitgewerkt.
2.3. Vormgeving van de kanalen

De huidige vorm van de geplande infiltratiekanalen kwam tot stand als compromis tussen waterwinning en natuurbehoud.

Twee onderling verbonden oost-west verlopende kanalen hebben een totale lengte van 1160 m en een gemiddelde breedte van 37 m (variërend tussen 15 en 50 m). Het verloop van de oever (2394 m in lengte) is vrij grillig zodat de omtrekoppervlakteverhouding 6.4 m²/100 m² bedraagt. Bij een rechthoekige vorm (1160 x 37 m) zou deze verhouding 5.6 m²/100 m² bedragen. Deze oeverstructuur komt zowel de waterwinning (grote inzijgboord) als het natuurbehoud (meer natuurlijk karakter) ten goede.

De optimale diepte van de bekken moet uit een compromis tussen relatieve verdamping en infiltratie in de bodem worden gevonden. In de meest efficiënte Nederlandse systemen bedraagt de waterdiepte enkele decimeter.

Belangrijk bij het inrichten van de kanalen is het voorzien van diepere plaatsen (ca. 1.5 m). Deze dragen bij tot de abiotische diversiteit en kunnen dienen als refugium voor planten en dieren bij het droogleggen van de panden ten behoeve van onderhoudswerken.

Nota m.b.t deze MER-studie: zie nota in 2.2.

2.4. Fasering

De inbreng van infiltratiewater zal (moeten) gefaseerd verlopen. Aanvankelijk kan enkel met ontijserd grondwater van het vliegveld worden bevloeid. In een later stadium zou daar voorgesuiverd oppervlaktewater uit de Avekapellekreek aan toegevoegd worden. Bij de aanleg van de infrastructuur moet daarmee rekening gehouden worden. Aanvankelijk zou bijvoorbeeld enkel de noordelijke helft van het kanaal worden gebruikt. Dit betekent dat zowel voor de infiltratiekanalen als voor aanvoer- en afpompgeleidingen een compartimentering met afzonderlijke funtionering wordt voorzien.

3. Beheer van het infiltratiegebied

3.2. Open water

De fauna en flora van de infiltratiepanden moet zich spontaan kunnen vestigen. In de Nederlandse situatie heeft introductie (van voornamelijk vissoorten) meestal zeer nadelige gevolgen gehad voor het ecosysteem. Algenbloei of dominantie van bepaalde dier- of plantensoorten zullen vermoedelijk optreden als tijdelijk pionierstadium in de successie binnen het systeem. Eventueel kan wel worden ingegrepen als deze verschijnselen over te lange periode blijven aan te houden.

3.2.1. Oevers

Waar schijnlijk is na vernatting een vrij snelle (shock)reactie van de begroeiing te verwachten. De beschikbaarheid van de nutrienten in de bodem wordt inners verhoogd. Een daarmee gepaard gaande eventuele ruderalisatie kan door maarbeheer worden bestreden. Gehoopt wordt dat zich vrij spoedig een pioniersvegetatie van vochtige duinvalleien vestigt. Onderzoek naar de lokale mogelijkheden (onder meer met betrekking tot de zaadvoorraad in de bodem) is niet gebeurd.

De breedte van de te maaien zone is afhankelijk van de vochtigheid van de bodem en dus van de verhanglijn van het infiltratiewater tussen kanalen en pompputten.

Ook dient rekening gehouden te worden met de eventueel aangetrokken watervogelpopulaties. Beheers- of onderhoudswerken mogen dan in de broedperiode niet worden uitgevoerd.

3.2.2. Het infiltratiegebied

Eventuele effecten van de vernatting op grotere afstanden van de kanalen hangen af van de hydrologische ontwikkelingen. Een mogelijke effect op termijn is het afsterven van diep wortelende bomen. Overige effecten op de verder afgelegen vegetaties worden door de beperkte stijging van de grondwatertafel niet verwacht.
Bij het in de verdere toekomst aanwenden van water uit de Avekapellekreek is een maximale bijkomende voorzuivering aan te raden. Daartoe zou het water (voor het wordt ingebracht in de Doornpanne) door een aangelegde rietvegetatie kunnen stromen waarin o.a. de bezinking van slibdeeltjes wordt bevorderd.

Opvolging van de evolutie van fauna en flora is zeer belangrijk om een eventuele tijdige bijsturing van het beheer te kunnen voorzien.

4. Hydrologisch beheer

De winningsputten zijn per arm te bedienen. Zo kan de terugwinning in principe voldoende geregeld worden, mede afhankelijk van de beschikbare hoeveelheid infiltratiewater.

Verder wordt een ongeveer constante inlaat en terugwinning van infiltratiewater voorzien. Bijgevolg kunnen de schommelingen van het waterpeil een min of meer natuurlijk karakter krijgen, wat een noodzaak is voor de gewenste ecologische ontwikkelingen

(Provoost et al., 1993a)

BEHEERSPLAN DOORNPANNE BIJLAGE 6: INRICHTING DOORNPANNE, deel 1 (partim), deel 3 & deel 4.2

1. Toegankelijkheid

1.1. Algemeen

Vanuit een aantal verschillende oogpunten wordt het wenselijk geacht het gebied - met uitzondering van een aantal voorzieningen voor recreatie- volledig voor het publiek af te sluiten. De inrichting van een infiltratiegebied, overrecreatie en de wenselijkheid voor introductie van grote grazers ten behoeve van het natuurbeheer zijn de belangrijkste motivaties.

1.2. Uitvoering

Uit hygienisch en veiligheidsoogpunt geldt een streng toegangsverbod voor het infiltratiepand.

3. Inrichting ten behoeve van de waterwinning (= richtlijnen m.b.t. aanleg en onderhoud van dienststroken)

4. Recreatieve Inrichting

4.2. Wandelpaden

Zie Bijlage 8.4.2. van deze MER

(Provoost et al., 1993b)
Bijlage 8.4.4
Lijst van planten
aangetroffen op de berm
van het kanaal Duinkerke – Nieuwpoort
Bijlage 8.4.4 Fauna & Flora: Soortenlijst van de planten aangetroffen op de berm van het Kanaal Duinkerke - Nieuwpoort in de omgeving van het geplande looingspunt in maart 1999

<table>
<thead>
<tr>
<th>Wetenschappelijke naam</th>
<th>Nederlandse naam</th>
<th>Juridisch statuut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer pseudoplatanus</td>
<td>Gewone esdoorn</td>
<td></td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>Gewoon duizendblad</td>
<td></td>
</tr>
<tr>
<td>Aegopodium podagria</td>
<td>Zevenblad</td>
<td></td>
</tr>
<tr>
<td>Agropyron repens</td>
<td>Kweek</td>
<td></td>
</tr>
<tr>
<td>Agrostis vinealis</td>
<td>Zandstruisgras</td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>Zwarte els</td>
<td></td>
</tr>
<tr>
<td>Anthriscus sylvestris</td>
<td>Fluitekruid</td>
<td></td>
</tr>
<tr>
<td>Arrhenatherum elatius</td>
<td>Gewone glanshaver</td>
<td></td>
</tr>
<tr>
<td>Artemisia vulgaris</td>
<td>Bijvoet</td>
<td></td>
</tr>
<tr>
<td>Bellis perennis</td>
<td>Madeliefje</td>
<td></td>
</tr>
<tr>
<td>Capsella bursa-pastoris</td>
<td>Herderstasje</td>
<td></td>
</tr>
<tr>
<td>Centaurea pratensis</td>
<td>Gewoon knoopskruid</td>
<td></td>
</tr>
<tr>
<td>Cirsium arvense</td>
<td>Akkerdistel</td>
<td>schadelijk</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>Akkerwinde</td>
<td></td>
</tr>
<tr>
<td>Corynephorus canescens</td>
<td>Buntgras</td>
<td></td>
</tr>
<tr>
<td>Crepis biennis</td>
<td>Wilde streepzaad</td>
<td></td>
</tr>
<tr>
<td>Daucus carota</td>
<td>Wilde peen</td>
<td></td>
</tr>
<tr>
<td>Erophila vera</td>
<td>Vroegeling</td>
<td></td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td>Es</td>
<td></td>
</tr>
<tr>
<td>Galeopsis tetrahit</td>
<td>Hennepeetel</td>
<td></td>
</tr>
<tr>
<td>Galium aparine</td>
<td>Kleefkruid</td>
<td></td>
</tr>
<tr>
<td>Geranium molle</td>
<td>Zachte ooievaarsbek</td>
<td></td>
</tr>
<tr>
<td>Geranium robertianum</td>
<td>Robertskruid</td>
<td></td>
</tr>
<tr>
<td>Glechoma hederacea</td>
<td>Hondsdraf</td>
<td></td>
</tr>
<tr>
<td>Heracleum spondyllum</td>
<td>Bereklauw</td>
<td></td>
</tr>
<tr>
<td>Holcus mollis</td>
<td>Zachte witbol</td>
<td></td>
</tr>
<tr>
<td>Lamium album</td>
<td>Witte dovenetel</td>
<td></td>
</tr>
<tr>
<td>Lamium purpureum</td>
<td>Paarse dovenetel</td>
<td></td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>Engels raagras</td>
<td></td>
</tr>
<tr>
<td>Lythrum salicaria</td>
<td>Kattestaart</td>
<td></td>
</tr>
<tr>
<td>Matricaria maritima inodora</td>
<td>Reukloze kamille</td>
<td></td>
</tr>
<tr>
<td>Melilotus ? alba</td>
<td>Witte honigklaver</td>
<td></td>
</tr>
<tr>
<td>Petasites officinalis</td>
<td>Groot hoefblad</td>
<td></td>
</tr>
<tr>
<td>Phragmites australis</td>
<td>Riet</td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>Smalle weegbree</td>
<td></td>
</tr>
<tr>
<td>Plantago major</td>
<td>Grote weegbree</td>
<td></td>
</tr>
<tr>
<td>Poa annua</td>
<td>Straatgras</td>
<td></td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>Beemdgras</td>
<td></td>
</tr>
<tr>
<td>Polygonum persicaria</td>
<td>Perzikkruid</td>
<td></td>
</tr>
<tr>
<td>Populus x canadensis</td>
<td>Canadapopulier</td>
<td></td>
</tr>
<tr>
<td>Potentilla reptans</td>
<td>Vijfvingerkruid</td>
<td></td>
</tr>
<tr>
<td>Ranunculus acer</td>
<td>Scherpe boterbloem</td>
<td></td>
</tr>
<tr>
<td>Ranunculus bulbosus</td>
<td>Knoalboterbloem</td>
<td></td>
</tr>
<tr>
<td>Rubus sp</td>
<td>Braam</td>
<td></td>
</tr>
<tr>
<td>Rumex acetosa</td>
<td>Veldzuring</td>
<td></td>
</tr>
<tr>
<td>Rumex obtusifolius</td>
<td>Ridderzuring</td>
<td></td>
</tr>
<tr>
<td>Salix alba x</td>
<td>Schietwilg</td>
<td></td>
</tr>
<tr>
<td>Salix viminalis</td>
<td>Katwilg</td>
<td></td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>Zwarte vlier</td>
<td></td>
</tr>
<tr>
<td>Senecio vulgaris</td>
<td>Klein kruiskruid</td>
<td></td>
</tr>
<tr>
<td>Silymbrium officinale</td>
<td>Raket</td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Dutch Name</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Stellaria media</td>
<td>Vogelmuur</td>
<td></td>
</tr>
<tr>
<td>Taraxacum sectio taraxacum</td>
<td>Paardenbloem</td>
<td></td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>Witte klaver</td>
<td></td>
</tr>
<tr>
<td>Urtica dioica</td>
<td>Gewone brandnetel</td>
<td></td>
</tr>
<tr>
<td>Veronica arvensis</td>
<td>Veldereprijs</td>
<td></td>
</tr>
<tr>
<td>Vicia cracca</td>
<td>Vogelwikke</td>
<td></td>
</tr>
</tbody>
</table>
Bijlage 8.4.6

Bijlage 1: Beheersplan Doornpanne:
Flora – hoofdstuk ‘Socio-ecologische groepen’
(Kuijken E. et al., 1993)
Socio-ecologische groepen (Tabel 1.8., legende 1 en 2 zie B24 e.v.)

Voor een interpretatie van de vegetatiekundige aspecten van de soortenlijst werden de gestandaardiseerde socio-ecologische groepen van STIEFELAERE & FRANSEN (1982) op een voor een duingebied relevantere wijze samengevat in 9 nieuwe hoofdgroepen. Ook werden een beperkt aantal soorten in een andere, meer met de duinsituatie overeenstemmende groep geplaatst.

De kwantitatief belangrijkste soortengroepen zijn deze van de 'anthropogene pioniervegetaties en ruigten (labcdef)' en deze van de'natte tot droge (half-) natuurlijke ruigten, zomen en struwwelen'(4e8abed)', gevolgd door de '(half-) natuurlijke pioniervegetaties en open graslanden van (zeer) droge, minerale bodems (3a6bde)', de halfnatuurlijke en cultuurgraslanden van voedselrijke, periodiek natte tot vochthoudende bodems (2a5ab)' en, in mindere mate de soorten van '(half-) natuurlijke en cultuurbossen (9abcdefg)' en '(half-) natuurlijke schraallanden van vochtige tot vochthoudende, humeuzodems (6c7cdef)'.

In vergelijking met de referentieperiode valt vooral een achteruitgang op van de soorten van 'zilte graslanden (3c)', 'water- en moerasvegetaties (4abcd7ab)' en '(half-) natuurlijke pioniervegetaties van vochtige tot natte bodem (2bc)', m.a.w. de vegetaties uit de hydro- en hygrosfeer. Dit sluit aan bij de resultaten van de analyse naar vochtafhankelijkheid en verdrogingsgevoeligheid. De hoofdzakelijk mesofiele graslandvegetaties ('2ab5ab' en '6c7cdef') vertonen een significant meer geringere verarming, terwijl de open vegetaties van (zeer) droge milieu's hun soorten konden behouden. Het soortenassortiment van halfnatuurlijke ruigten, zomen, struwwelen en vooral bossen is daarentegen sterk uitgebred. Dit ligt in de lijn van de, op basis van luchtfoto-analyse en
evaluatie van landschapsfoto's (MASSART 1908), sinds het interbellum waargenomen verstruwing en verbossing van de Doornpanne en de duinen in het algemeen. Deze tendens kan in verband worden gebracht met het wegvallen van het agro-pastorale gebruik van de duinen, de aanplant van cultuurbossen en met het grotere soortenaanbod vanuit tuinen e.d. (LETEN 1992). De afname van het aantal soorten van anthropogene pioniersvegetaties en ruigten is waarschijnlijk te wijten aan een betere inventarisatie van de (nog halfopen) villaverkavelingen en cultuurgroonden uit het 'Doornpanne s.l.'-gebied tijdens de referentieperiode.

| Tabel 1.8. Socio-ecologische groep (STIEFERMÆE & FRANSEN 1982). |
|---|---|---|---|---|---|---|
| x | % | pr | % | pa | % | pr/pa |
| - | 15 | 3 | 15 | 5 | 1 | 0 | 15,00 |
| 1abcdefg | 104 | 22 | 67 | 21 | 93 | 25 | 0,72 |
| 3c | 5 | 1 | 1 | 0 | 5 | 1 | 0,20 |
| 4abcd7ab | 50 | 11 | 15 | 5 | 47 | 13 | 0,32 |
| 2bc | 13 | 3 | 15 | 5 | 12 | 3 | 0,33 |
| 3a6bde | 58 | 13 | 50 | 16 | 52 | 14 | 0,96 |
| 2a5ab | 73 | 16 | 50 | 16 | 65 | 17 | 0,77 |
| 6c7cef | 42 | 9 | 25 | 8 | 39 | 10 | 0,64 |
| 4e8abcd | 67 | 14 | 62 | 19 | 47 | 13 | 1,32 |
| 9abcdefg | 36 | 8 | 33 | 10 | 11 | 3 | 3,00 |
| som | 463 | 100 | 322 | 100 | 372 | 100 | 0,87 |

Het is verleidelijk de afname van vochtafhankelijke vegetaties en de toename van zomen, struweelen en bossen te koppelen en te interpreteren als een vervanging van de eerste door de tweede. Uit het veldwerk en de vegetatiekaart blijkt echter dat de voormalig nattere zones weliswaar relatief het sterkst verstruwd of verbost zijn, maar dat de nieuw gevestigde soorten van deze laatste vegetatiertypes eerder in de oorspronkelijk mesofiele zone en in de bosaanplanten op voormalig akkerland te vinden zijn. Een eventueel opnieuw natter worden van het gebied, al dan gepaard aan beheerswerken, betekent dus geenszins dat de hoger gestructureerde vegetaties beduidend in soortenaantal zullen afnemen. Ook in het sterk verstruweelde Westhoekreservaat valt trouwens op dat de soortenrijkste struweelen en de zeldzaamste zoom- en struweelsoorten eerder in de relatief hooggelegen droge sfeer, buiten zowel de vochtige als de verdroogde valleien, te vinden zijn. De grotere geomorfologische, bodemkundige en microclimatologische diversiteit van de duinruggen en kopjesduinen speelt hierbij waarschijnlijk een doorslaggevende rol.