
 

 

 

 

 

 

 

 

 

 

 

MUSCLE CARNOSINE HOMEOSTASIS:  

A UNIQUE SET OF REGULATORY 

MECHANISMS 

 

Laura BLANCQUAERT 

 

 

 

 

 

 

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Health Sciences 

GHENT 2016 



 
 

  



 
 

Supervisor:  

Prof. Dr. Wim Derave (UGent) 

Co-supervisor:  

Dr. Inge Everaert (Ugent) 

Supervisory board:  

Prof. Dr. Wim Derave 

Prof. Dr. Jan Bourgois  

Prof. Dr. Martine Thomis 

Examination board: 

Prof. Dr. Stefaan De Smet (UGent) 

Dr. Nathalie Michels (UGent) 

Prof. Dr. Jan Boone (UGent) 

Dr. Maria Veiga-da-Cunha (Université catholique de Louvain) 

Prof. Dr. Giancarlo Aldini (University of Milan) 

Prof. Dr. Dirk De Clercq (UGent) 

 

Acknowledgement: 

The research reported in this thesis was supported by Research Foundation Flanders 

(FWO) (promotor W. Derave). 

 

Department of Movement and Sports Sciences, Watersportlaan 2, 9000 Ghent, Belgium. 

Printed by University Press. 

All rights reserved. No part of this book may be reproduced, or published, in any form or 

in any way, by print, photo print, microfilm, or any other means without prior permission 

from the author.





 

Dankwoord - Acknowledgements 
Met een klein hartje, zo begon ik aan mijn eerste werkervaring in het HILO. Geen idee wat 

ik moest verwachten, maar vanaf dag één werd ik er ingesmeten. Een overmaat aan 

informatie en tal van vragen en onzekerheden kwamen de eerste maanden op me af. 

Vandaag, een dikke 4 jaar later, kan ik met volle overtuiging zeggen dat het een heel 

leerrijke en plezierige periode is geweest. Al verliep het niet altijd van een leien dakje en 

was het een proces van vallen en opstaan. Ik ben dan ook heel blij dat ik hier nu sta en de 

kans krijg om alle mensen te bedanken die me gedurende deze periode gesteund of 

geholpen hebben op eender welk manier. 

Eerst en vooral wil ik graag de jury bedanken. Thank you for reading my thesis and 

providing your valuable suggestions and critical insights. Your feedback definitely helped 

to improve my thesis. 

Wim, zonder jou had ik hier natuurlijk niet gestaan. Na mijn studies heb je me de kans 

gegeven om 3 maand te proeven van wat een doctoraat juist inhoudt en ik ben blij dat ik 

daarna definitief deel kon uitmaken van TeamDerave. Met jouw laaiend enthousiasme en 

onnoemlijk grote kennis slaagde je er telkens opnieuw in om me te boeien en nieuwe 

inzichten bij te brengen. Maar naast onze big boss ben jij ook iemand die graag eens een 

stapje in de wereld zet en ontspanning perfect weet te combineren met inspanning. Ik 

ben er rotsvast van overtuigd dat deze combinatie de drijvende kracht is achter het team. 

Ik heb de voorbije jaren enorm veel van jou geleerd, zowel op als naast het werk. Ik ben 

blij dat ik je op z’n minst iets kon bijbrengen over het gebruik van whatsapp en snapchat 

 Dank je wel voor je begeleiding, je schouderklopjes als het eens nodig was, en je geloof 

in mijn kunnen.  

De bureau zou natuurlijk de bureau niet zijn zonder mijn lieftallige collega’s. Toen ik 

startte, was de eerste generatie van TeamDerave nog aanwezig in het HILO. Sanne, 

Audrey en Inge, jullie hebben er voor gezorgd dat ik me direct thuis voelde in het team. 

Sanne, jouw enthousiasme werkte zo aanstekelijk en je gedrevenheid is enorm. Audrey, je 

nauwkeurigheid en efficiëntie zijn onnavolgbaar. Ik heb veel van jou geleerd en 

opgestoken. Bedankt voor je eindeloze hulp en steun. Sanne en Audrey, jullie worden 

gemist op de bureau! Inge, miniboss, als er iemand is die me alle kneepjes van het vak 

geleerd heeft, ben jij het wel. Van HPLC tot PCR en het vastnemen van mijn eerste muis, 

jij was steeds mijn coach van het eerste uur. Ik heb je geduld meer dan eens op de proef 

gesteld met mijn soms ietwat tragere handelingen of getreuzel, maar je hebt steeds met 

een glimlach al mijn vragen beantwoord. Je nuchtere kijk op dingen in combinatie met je 

bereidwilligheid om overal te helpen maken van jou de ideale coach. Bedankt voor al je 

hulp, of je het nu leuk vindt of niet, voor mij ben en blijf je de enige echte miniboss. 

Helene, ook jij was er bij vanaf het eerste uur. Een bezoekje aan het UZ was altijd 

aangenamer met een gezellige babbel bij jou. Ik heb enorm veel respect voor de manier 



vi   
 

waarop jij je doctoraat hebt afgewerkt. Bedankt voor je vele labotips en leuke HILO 

bezoekjes.  

Toen ik aan het HILO begon, was mijn thesispartner al een jaar deel van TeamDerave. 

Tine, over onze vriendschap kan ik een doctoraat op zich schrijven. Het is dus onmogelijk 

om in enkele zinnetjes te verwoorden wat jouw steun voor mij betekent. Je was altijd 

bereid om me raad te geven en je tips & tricks kwamen altijd van pas. Maar ook naast het 

werk kan ik met alles bij jou terecht. Ik zal je echt missen in de komende maanden op het 

HILO, maar ik weet nu al met 100% zekerheid dat je het er uitstekend zal vanaf brengen in 

je nieuwe uitdagingen. Jan, onze eerste man in TeamDerave, onze vreemde eend in de 

bijt  Je enthousiasme en passie voor onderzoek sieren je en ik heb veel bewondering 

voor wie je bent. Onze dagelijkse tête-à-têtes en gezellige babbels op de bureau zijn altijd 

heel ontspannend. Ik ben er zeker van dat je een mooi doctoraat zal afleggen en 

belangrijker nog, een fantastische papa zal zijn voor je zoon. Eline en Maxime, jullie zijn 

de laatste aanwinsten in ons team. Eline, je gedrevenheid om alles goed te doen en je 

vastberadenheid om je doelen te bereiken, getuige daarvan de marathon die je met glans 

hebt uitgelopen, kenmerken je. Maar daarnaast ben jij ook een heel joviaal en sociaal 

iemand met zin voor avontuur. Ik kan alvast niet wachten om samen te vertrekken naar 

Nieuw-Zeeland! Maxime, ook jou wil ik graag bedanken voor de toffe bureaumomenten 

en je opgewektheid. Je leergierigheid en analytische kennis zullen je zeker en vast ver 

brengen. Anneke, ook jou wil ik bedanken voor de vele hulp bij analyses en labotesten. 

Ik wil ook heel wat andere collega’s bedanken die mijn tijd aan het HILO verrijkt hebben. 

Bert, Margot, Sofie en Sara, bedankt voor de leuke bureaumomenten tijdens de 

beginperiode van mijn doctoraat. Bert, jou wil ik ernaast ook bedanken voor je 

begeleiding tijdens onze thesis. Je enthousiasme voor het onderzoek heeft deels 

bijgedragen aan mijn keuze om te starten met een doctoraat. Lieze en Jasmien, het is leuk 

dat jullie als ex-studiegenoten ook het HILO kwamen vervoegen en we zo collega-

vrienden werden. Bedankt voor alle leuke loopjes en babbels. Ook de jonge HILO garde 

wil ik graag bedanken voor hun frisse (en soms iets minder frisse) wind op onze gang. 

Kevin, Kobe, Janne, Senne, Maarten en Rud, bedankt voor jullie jeugdig enthousiasme en 

de ontspannende uitjes in de laatste en soms wat stresserende periode van mijn 

doctoraat. Ten slotte wil ik ook graag alle andere collega’s bedanken voor de spetterende 

HILOweekends, zalige middagloopjes, lekkere traktaties en topafterworks. Alle collega’s 

dragen bij aan de fantastische werkplek die het HILO is, bedankt daarvoor. 

Daarnaast ook een grote dankjewel aan alle vrienden en vriendinnen die me steunen en 

de ontspannende momenten zo leuk maken. Stien, Jolien, Geraldine en Berdien, na meer 

dan 20 jaar vriendschap kunnen we zeggen dat we elkaar door en door kennen. Ook al 

zijn we nu elk onze eigen weg ingeslaan, onze uitjes blijven altijd op en top leuk en 

gezellig. Jullie liggen me heel nauw aan het hart en ik hoop dat onze levenslange 

vriendschap ons nog mooie momenten mag bezorgen. Ook de LO ladies en LO boys wil ik 



  vii 
 

 
 

graag bedanken voor de onvergetelijke studententijd die we samen hebben beleefd. Onze 

jaarlijkse reünie op de proclamatie is al 5 jaar een traditie en ik hoop dat er nog vele jaren 

volgen. Mijn favoriete voetbalvrouwen, Tiffany en Liesbeth, ook jullie bedankt voor de 

gezellige etentjes en knusse uitjes. Verder wil ik nog de girls-‘squad’ bedanken voor de 

vele avondjes uit, de gezellige verjaardagsdrinks die steevast eindigen in een feestje, de 

hilarische Ardennenweekendjes, en ja, zelfs de chaotische verkleed en themafeestjes. Al 

deze momenten vormden de ideale ontspanning en uitlaatklep tijdens mijn 

doctoraatsperiode. Julie, ik ben blij dat je naast een vriendin, nu ook een collega bent 

geworden. Een speciaal woordje van dank voor Eline en Eveline, my happy two friends. 

Bedankt voor jullie vriendschap en de keer op keer leuke uitjes. Eveline, je creativiteit is 

bewonderenswaardig, getuige daarvan de mooie tekening op de cover van mijn boekje. Ik 

wil je dan ook enorm bedanken om dit te maken. Eline, ik ben blij dat we na de LO jaren 

dichter naar elkaar zijn toegegroeid. Een leuke shopnamiddag, een gezellig loopje, een 

topfeestje, we kunnen alles delen en ik hoop dat we dat nog lang kunnen doen.  

Naast al deze vrienden wil ik ook heel graag mijn familie bedanken. In de eerste plaats 

mijn schoonfamilie, Paul, Els, Laurens en Jeannine. Bedankt voor jullie steun en interesse 

in alles wat ik doe. Jullie warme karakters en eindeloze steun zorgen ervoor dat ik me 

helemaal thuis voel bij jullie. Ik wil jullie dan ook enorm bedanken voor alles wat jullie al 

voor ons gedaan hebben.  

Kenneth, Elien en kleine Remi, ook jullie bedankt voor jullie steun. Kenneth, we kunnen 

zeggen dat we twee uiteenlopende karakters zijn. In iedere familie is er ten slotte wel een 

brave en iets minder brave zoon of dochter  Maar ondanks onze verschillende levens zal 

ja altijd mijn grote broer zijn en ik ben heel fier op wat je doet. Samen met Elien en Remi 

vormen jullie een heel mooi gezinnetje. 

Mama en papa, bedankt voor jullie onvoorwaardelijke steun. Als kind hebben jullie me 

steeds alle kansen gegeven, inclusief alle sporten die ik wou uitproberen en de vele ritjes 

die daarmee gepaard gingen. En dat heeft er mede voor gezorgd dat ik hier nu sta. 

Bedankt om telkens klaar te staan waar nodig en me de volle 100% te steunen in al mijn 

keuzes.  

Dan rest er me nog één speciaal iemand. Lieverd, waar zal ik beginnen? Jij staat altijd voor 

me klaar en steunt me door dik en dun. Nog even wat stalen oppikken in het labo, snel 

eens passeren in het UZ of me in het weekend vergezellen naar Merelbeke, niets was jou 

te veel gevraagd, ook al kwamen we daardoor vaak al eens ergens te laat  Ik zou niet 

weten waar te beginnen zonder jou en kan niet wachten om samen onze toekomst verder 

uit te bouwen.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table of contents 
 

English summary xv 

Nederlandse samenvatting xix 

 

I. General introduction 1 

1. Introduction ........................................................................................................................ 3 

2. Basic information on carnosine .......................................................................................... 5 

2.1. Carnosine and related compounds .......................................................................... 5 

2.2. Physiological pathways and metabolism .................................................................. 7 

2.3. Biochemical properties of carnosine ........................................................................ 9 

2.3.1. pH buffer ...................................................................................................... 9 

2.3.2. Ca2+-regulator ............................................................................................ 10 

2.3.3. Anti-oxidant and anti-glycation ................................................................. 12 

3. Set point of carnosine ....................................................................................................... 13 

3.1. Homeostatic set point and normal range ............................................................... 13 

3.2. Inter-individual and inter-fiber differences in the carnosine set point .................. 14 

3.3. Why do we need a high muscle carnosine set point? ............................................ 17 

3.4. Tissue differences ................................................................................................... 17 

4. Potential effectors in the control of carnosine homeostasis ........................................... 20 

4.1. Intracellular beta-alanine availability ..................................................................... 20 

4.1.1. Beta-alanine transport ............................................................................... 21 

4.1.2. Beta-alanine synthesis and degradation ................................................... 22 

4.2. Intracellular L-histidine availability ......................................................................... 24 

4.2.1. L-histidine transport .................................................................................. 25 

4.2.2. L-histidine synthesis and degradation ....................................................... 25 

4.3. Carnosine metabolism ............................................................................................ 26 

4.3.1. Carnosine synthesis ................................................................................... 26 

4.3.2. Carnosine degradation .............................................................................. 26 

4.4. Tissue carnosine homeostasis versus plasma beta-alanine homeostasis? ............ 28 

5. Evidence supporting the existence of tissue carnosine homeostasis .............................. 30 



x   
 

5.1. Increasing carnosine synthesis ............................................................................... 30 

5.2. Decreasing carnosine and beta-alanine degradation ............................................. 30 

5.2.1. Beta-alanine degradation .......................................................................... 30 

5.2.2. Carnosine degradation............................................................................... 31 

6. Evidence supporting the existence of plasma beta-alanine homeostasis ........................ 33 

6.1. Whole body beta-alanine synthesis ....................................................................... 33 

6.2. Whole body beta-alanine degradation ................................................................... 33 

6.3. Predominance of plasma beta-alanine vs tissue carnosine homeostasis? ............ 35 

7. Homeostatic failure by beta-alanine supplementation .................................................... 37 

7.1.1. Beta-alanine supplementation protocol .................................................... 37 

7.1.2. Metabolic fate on ingested beta-alanine................................................... 38 

7.1.3. Determinants of carnosine loading ........................................................... 40 

8. Experimental aims and outline of the thesis .................................................................... 43 

 

II. Original Research 47 

Study 1. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by 

beta-alanine transamination .................................................................................................... 49 

Study 2. Effects of histidine and beta-alanine supplementation on human muscle carnosine 

storage ...................................................................................................................................... 83 

Study 3. Body creatine, but not carnitine and carnosine stores, decline by a 6-month 

vegetarian diet in omnivorous wom ...................................................................................... 107 

Study 4. Gene-expession of carnosine-red enzymes and transporters in human skeletal 

muscle: influence of chronic beta-alanine supplementation ................................................. 135 

 

III. General Discussion 149 

1. Carnosine homeostatic set point .................................................................................... 151 

1.1. Homeostatic set point and normal range ............................................................. 151 

1.2. Updated view on determinants of muscle carnosine set point ........................... 154 

2. Carnosine loading protocol ............................................................................................. 156 

2.1. Muscle carnosine homeostasis vs plasma beta-alanine homeostasis ................. 156 

2.2. L-histidine homeostasis ........................................................................................ 160 

2.3. Updated view on efficiency of beta-alanine supplementation ............................ 164 



  xi 
 

 
 

3. Limitations ...................................................................................................................... 167 

4. Practical applications ...................................................................................................... 169 

5. Future directions ............................................................................................................. 170 

6. General conclusions ........................................................................................................ 173 

 

IV. References 175 

V. Publications 193 

VI. Appendices 199 

 



 

 



 

List of abbreviations 

AGXT2 alanine-glyoxylate 
transaminase 

HDC Histidine decarboxylase enzyme 

AOA aminooxyacetate HIS histidine 
ANS anserine 1H-MRS proton magnetic resonance 

spectroscopy 
BA beta-alanine HPLC  high-performance liquid 

chromatography 
BAIBA beta-aminoisobutyric acid mRNA  messenger RNA 
BW body weight MSA malonate semi-aldehyde 
Ca2+ calcium PAT1 proton-coupled amino acid 

transporter 1 
CARN  carnosine PBS phosphate buffered saline 
CARNS  carnosine synthase enzyme PCR polymerase chain reaction 
CNDP1 gene encoding human serum 

carnosinase enzyme 
PEPT1 peptide transporter 1 

CNDP2 gene encoding cytosolic non-
specific dipeptidase 

PEPT2 peptide transporter 2 

CN1 human serum carnosinase or 
carnosine dipeptidase 1 

PHT1 peptide/histidine transporter 1 

CN2 cytosolic non-specific 
dipeptidase or carnosine 
dipeptidase 2 

PHT2 peptide/histidine transporter 2 

DW drinking water POT proton coupled oligopeptide 
transporters 

GABA gamma-aminobutyric acid SAL saline 
GABA-T 4-aminobutyrate-2-

oxoglutarate transaminase 
SSA succinate semi-aldehyde 

GADL1 glutamate decarboxylase like 
protein 1 

TA tibialis anterior 

GASTR gastrocnemius TauT taurine transporter 
H+ proton TTE time to exhaustion 
HCD  histidine-containing dipeptide VIG vigabatrin 
    
    
  



 

  



 

 

English summary 
 

In the past decades, dietary supplements have gained in popularity worldwide. Athletes 

are a specific population that constantly search for strategies to improve performance. In 

this population, supplements can support the body during and after the hard periods of 

training and thereby increase exercise performance. However, the efficacy of only a few 

supplements is supported by well substantiated evidence, and one such supplement is 

beta-alanine. Beta-alanine is able to increase intramuscular carnosine concentrations. 

This carnosine loading may thereby augment fatigue threshold and improve high-intensity 

exercise performance, as several physiological roles are ascribed to the dipeptide (pH-

buffering, calcium regulation, antioxidant capacities). Because of the range of functions 

carnosine exerts, it is also a promising dipeptide for some health-related issues. 

Carnosine is a naturally occurring dipeptide with a high concentration in mammalian 

skeletal muscle. It is synthesized by carnosine synthase from the amino acids L-histidine 

and beta-alanine. Muscle carnosine concentrations are shown to be highly stable over 

time, suggesting that carnosine is subject to a strong homeostatic regulation keeping 

carnosine levels within a certain normal range. However, as mentioned, one condition in 

which muscle carnosine homeostasis is greatly disrupted is beta-alanine supplementation. 

Several studies demonstrated that chronic oral ingestion of beta-alanine can substantially 

elevate the carnosine content by 40-80%, which subsequently leads to improved 

performance in high intensity exercise in both trained and untrained individuals. Because 

of the popularity of beta-alanine as a supplement and the beneficial effects of high 

muscle carnosine levels, it is important to have a full understanding of the carnosine 

metabolism and the regulation of muscle carnosine homeostasis.  

Although beta-alanine is a frequently used dietary supplement, it was recently 

demonstrated that only 2-3% of the total ingested amount of beta-alanine is actually 

incorporated into muscle carnosine. This indicates that the major part of ingested beta-

alanine has an unknown metabolic fate, signifying that the beta-alanine and carnosine 
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metabolism are not yet fully unraveled and may include a complex regulation of a set of 

enzymes and transporters.  

Study 1 of this thesis mainly focused on the role of beta-alanine transaminases in the 

regulation of muscle carnosine levels upon beta-alanine supplementation. Because most 

chronically ingested beta-alanine has an unknown metabolic fate, a possible pathway is 

transamination by GABA-T and AGXT2 in either liver and/or kidney or inside myocytes. 

GABA-T and AGXT2 were shown to be mainly expressed in kidney and liver and to a much 

smaller extent in myocytes, suggesting that beta-alanine transamination mainly takes 

place in these organs. By inactivating the beta-alanine transaminase pathways, both 

higher circulating beta-alanine levels and higher muscle carnosine loading could be 

evoked. Thus, muscle carnosine homeostasis is shown to be dependent on the circulating 

availability of beta-alanine, which is in turn dependent on the degradation of beta-alanine 

in liver and kidney. These findings partly explain the low efficiency of chronically ingested 

beta-alanine because beta-alanine is primarily routed toward oxidation. Only upon 

saturation of this pathway, beta-alanine is incorporated in muscle carnosine.   

In study 2, focus was shifted to the other amino acid involved in carnosine synthesis. As 

the efficiency of beta-alanine supplementation is low, it can be questioned whether beta-

alanine is indeed the one and only rate-limiting factor for carnosine synthesis and 

whether carnosine loading efficiency can be enhanced by L-histidine supplementation 

(alone or combined with beta-alanine). The results indicated that muscle carnosine is not 

enhanced by L-histidine supplementation, confirming the rate-limiting role of beta-

alanine in the carnosine synthesis process. However, chronic beta-alanine 

supplementation was shown to reduce plasma and muscle histidine levels, demonstrating 

that, although not rate-limiting, L-histidine availability is not unlimited either. The decline 

is body histidine levels could be prevented by co-supplementing L-histidine alongside 

beta-alanine. Further research on the effect of the depletion of histidine levels by beta-

alanine supplementation on physiological processes such as carnosine loading of longer 

duration or protein synthesis in an anabolic state is necessary. 

To investigate whether muscle carnosine homeostasis is equally disrupted by the absence 

of any dietary beta-alanine, study 3 was performed. Because meat and fish are the main 



SUMMARY  xvii 
 

 

exogenous source of carnosine, the effect of a 6-month vegetarian diet in previous 

omnivorous subjects on the carnosine homeostasis was examined. Next to carnosine, 

creatine and carnitine were also monitored in this study. It was demonstrated that body 

creatine, but not carnosine and carnitine homeostasis was affected by the 6-month 

vegetarian diet. These findings suggest that carnosine and carnitine homeostasis can be 

effectively maintained by endogenous synthesis of these compounds or their precursors. 

Lastly, study 4 explored the transcriptional events of carnosine-related enzymes and 

transporters in human skeletal muscles in response to beta-alanine supplementation in 

order to further elucidate how muscle carnosine homeostasis is disturbed. We found that 

both beta-alanine transporters and carnosine synthase were greatly upregulated, 

indicating that the mRNA expression of these effectors is enhanced by increased 

circulating beta-alanine levels. Thus, increased transsarcolemmal beta-alanine uptake and 

muscle carnosine synthesis can be seen as a way to maintain plasma beta-alanine 

homeostasis, thereby disturbing muscle carnosine homeostasis.  

Altogether, this thesis provided more insights in the regulation of plasma beta-alanine 

and muscle carnosine homeostasis. As beta-alanine is a popular dietary supplement, a 

better understanding of its metabolism can lead to clearer guidelines for 

supplementation.     

 

 

 

 

 

 

 

 



 



 

Nederlandse samenvatting 
 

Voedingssupplementen hebben de laatste jaren enorm aan populariteit gewonnen. Een 

specifieke populatie die constant op zoek is naar strategieën om hun prestatie te 

verbeteren zijn atleten. Voor hen kunnen supplementen belangrijk zijn om het lichaam te 

ondersteunen tijdens en na de zware trainingsperiodes, en op die manier prestaties tot 

een hoger niveau te tillen. Slechts weinig supplementen hebben een grondig 

wetenschappelijk onderbouwde werking. Een supplement dat wel wetenschappelijk 

onderbouwd is, is beta-alanine. Beta-alanine is in staat om de intramusculaire 

concentratie van het metaboliet carnosine te verhogen. Deze carnosine oplading kan op 

zijn beurt prestatiebevorderende effecten uitoefenen, wat kan worden toegeschreven 

aan de verschillende functies die carnosine bezit (pH-buffering, calcium regulatie, 

antioxidante capaciteiten). Door deze veelheid aan functies heeft carnosine ook 

veelbelovende klinische toepassingen. 

Carnosine is een natuurlijk voorkomend dipeptide waarvan hoge concentraties worden 

gevonden in de skeletspieren van zoogdieren. Carnosine wordt gesynthetiseerd door het 

enzyme carnosine synthase uit de aminozuren L-histidine en beta-alanine. Het is reeds 

aangetoond dat spiercarnosine concentraties stabiel zijn overheen de tijd, wat doet 

vermoeden dat carnosine onderhevig is aan een sterk homeostatisch systeem, dat de 

carnosine concentraties binnen een bepaalde range houdt. Een situatie waarin spier 

carnosine homeostase danig verstoord is, is chronische beta-alanine supplementatie. 

Verschillende studies toonden reeds aan dat de chronische inname van beta-alanine de 

hoeveelheid spiercarnosine kan verhogen met 40-80%, wat op zijn beurt leidt tot een 

verhoogd prestatievermogen bij inspanningen aan hoge intensiteit in zowel getrainde als 

ongetrainde individuen. Omwille van de populariteit van beta-alanine en de gunstige 

effecten van verhoogde spiercarnosine concentraties is het belangrijk om een goed beeld 

te hebben van het carnosine metabolisme en de regulatie van de spiercarnosine 

homeostase.  

Alhoewel beta-alanine op de dag van vandaag een veel gebruikt voedingssupplement is, 

werd recent pas aangetoond dat slechts 2-3% van de totale ingenomen beta-alanine 
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werkelijk wordt omgezet in spiercarnosine. Dit toont aan dat het grootste deel een tot nu 

toe ongekend metabolisch lot heeft in het menselijk lichaam, wat doet vermoeden dat 

het beta-alanine en carnosine metabolisme nog niet volledig gekend is en het een 

complexe regulatie omvat waarin verschillende enzymes and transporters betrokken zijn.  

Studie 1 van deze thesis focuste op de rol van beta-alanine transaminases in de regulatie 

van spiercarnosine concentraties na beta-alanine supplementatie. Aangezien het grootste 

deel van de chronisch gesupplementeerde beta-alanine een nog ongekend metabolisch 

lot heeft, is transaminatie door de enzymes GABA-T en AGXT2 in lever, nier of spiercellen 

een mogelijke alternatieve reactieweg. GABA-T en AGXT2 expressie werd voornamelijk 

gevonden in de nier en lever en in kleinere mate in de spiercellen, wat doet vermoeden 

dat beta-alanine transaminatie voornamelijk in deze organen plaatsvindt. Door het 

inhiberen van de beta-alanine transaminase reactieweg werden verhoogde circulerende 

beta-alanine concentraties en een verhoogde mate van spiercarnosine oplading 

gevonden. Het is dus aangetoond dat homeostase van carnosine afhankelijk is van de 

beschikbaarheid van beta-alanine in de circulatie, wat op zijn beurt wordt bepaald door 

de afbraak van beta-alanine in de lever en nieren. Deze bevindingen bieden deels een 

verklaring voor de lage efficiëntie van chronisch ingenomen beta-alanine, aangezien beta-

alanine eerst door de transaminases wordt gemetaboliseerd. Enkel wanneer deze 

reactieweg gesatureerd is, wordt beta-alanine gebruikt voor carnosine synthese.  

In studie 2 werd de focus verlegd naar het andere aminozuur dat betrokken is bij de 

synthesis van carnosine, zijnde histidine. Aangezien de efficiëntie van beta-alanine 

supplementatie laag is, kan het immers in vraag worden gesteld of beta-alanine wel 

degelijk de enige snelheidsbepalende factor is van het carnosine synthese proces en of de 

efficiëntie van carnosine oplading verhoogd kan worden door L-histidine supplementatie 

(alleen of gecombineerd met beta-alanine). L-histidine supplementatie leidde echter niet 

tot verhoogde spiercarnosine, wat de snelheidslimiterende rol van beta-alanine bevestigt. 

Chronische beta-alanine supplementatie leidde echter wel tot een daling van de plasma 

en spier histidine concentraties, wat aantoont dat de L-histidine beschikbaarheid niet 

ongelimiteerd is. Deze daling in histidine concentraties werd tegengegaan door de co-

supplementatie van beta-alanine met L-histidine, maar verder onderzoek is nodig om het 

effect van gedepleteerde histidine reservoirs door beta-alanine supplementatie op 
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fysiologische processen zoals spiercarnosine oplading van langere duur en eiwitsynthese 

uit te spitten.  

Om na te gaan of spiercarnosine homeostase in eenzelfde mate verstoord kan worden 

door de afwezigheid van exogene beta-alanine, werd studie 3 uitgevoerd. Aangezien 

vlees en vis de belangrijkste exogene bron zijn van carnosine, werd het effect van een 6 

maand vegetarisch dieet in omnivore personen onderzocht op de homeostase van 3 

zogenaamde carninutriënten, zijnde carnosine, carnitine en creatine. Deze studie toonde 

aan dat creatine homeostase, maar niet carnosine en carnitine homeostase, verstoord 

wordt door een 6 maand vegetarisch dieet. Deze bevindingen geven aan dat carnosine en 

carnitine homeostase vermoedelijk behouden blijven door voldoende endogene synthese 

van deze metabolieten of hun precursoren.  

Tenslotte onderzocht studie 4 de transcriptionele gebeurtenissen van carnosine 

gerelateerde enzymes en transporters in de humane skeletspier na beta-alanine 

supplementatie om zo te achterhalen hoe de spiercarnosine homeostase verstoord wordt. 

Zowel beta-alanine transporters als carnosine synthese is in grote mate opgereguleerd 

wat aantoont dat de mRNA expressie van deze effectoren verhoogd is door verhoogde 

circulerende beta-alanine concentraties. Verhoogde beta-alanine opname in de spier en 

carnosine synthese kan dus gezien worden als een manier om circulerende beta-alanine 

homeostase te behouden, wat op zijn beurt leidt tot verstoorde spiercarnosine 

homeostase. 

Samenvattend kunnen we stellen dat dit doctoraat bijgedragen heeft aan een verhoogde 

kennis van de regulatie van circulerend beta-alanine en spier carnosine. Door de 

populariteit van beta-alanine als een voedingssupplement kan deze verhoogde kennis 

bijdragen aan betere richtlijnen voor supplementatie.  

 



 

 



 

 
 
 
 
 
 

I 
General introduction

Parts of the introduction are based on the review of Blancquaert et al. (2015)  
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1. Introduction 

The human body is a complex system with many interacting parts controlled by a set of 

regulatory mechanisms. In a constantly changing external environment, regulatory 

mechanisms support the body to adapt to these changes and thereby maintain constancy 

of the internal environment (milieu intérieur). The originator of this concept is the French 

physiologist Claude Bernard. Shortly after, the American physiologist Walter Cannon 

coined the term homeostasis (homeo: unchanging + stasis: standing) to describe this 

process of internal constancy (Cannon, 1929). 

Countless processes in the human body are subject to homeostatic regulation, such as the 

core body temperature, blood pressure, blood glucose concentrations, blood pH, the 

volume of body water,…  and any homeostatic imbalance can result in disease. The 

internal environment is never absolutely constant, making homeostasis a dynamic 

equilibrium in which conditions are stabilized within a normal range above and below a 

certain set point. Sensors are able to detect deviations from this set point, which is then 

relayed to an integrating center and ultimately activate effectors that reverse the 

detected deviation from the set point. This process is also defined as negative feedback 

loops (Fig 1).  

 

Figure 1: Graphical overview of the concept of homeostasis. Negative feedback loops (indicated by the dashed arrow) 

maintain a state of dynamic constancy of the internal environment 
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One system that was developed in the course of evolution and is under homeostatic 

control is the carnosine system, a complex and energy-consuming molecular system. 

Carnosine is a pleiotropic molecule  and one of the most abundant metabolites in muscle 

cells. Different biochemical, physiological and therapeutic properties are ascribed to 

carnosine, making it an intriguing metabolite to investigate. This thesis will attempt to 

unravel body and more specifically muscle carnosine metabolism thereby helping to 

understand carnosine’s complex homeostatic regulation.  
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2. Basic information on carnosine 

Carnosine is the main molecule investigated in the papers of this thesis. Although 

carnosine has been discovered more than a century ago, this molecule gained popularity 

in scientific research during the past decades. In this first section, carnosine and related 

compounds will be described and their main physiological pathways and biochemical 

properties will be clarified.  

 

2.1. Carnosine and related compounds 

Carnosine was discovered in the early 1900s by the quest of the Russian chemist Vladimir 

Gulewitch for nitrogen-containing non-protein compounds in meat extract. Gulewitch 

identified two of these unknown substances that were present in rather high amounts as 

carnosine and carnitine (from the latin carnis – meat) and further focused his research on 

carnosine as it is one of the most abundant intramuscular molecular compounds 

(Boldyrev, 2012). 

Carnosine is a cytoplasmic dipeptide combining the proteinogenic amino acid L-histidine 

with the non-proteinogenic beta-amino acid beta-alanine. Different carnosine derivatives 

are known of which the methylated analogs anserine and ophidine (balenine) are the 

most common ones. Methylation on either the pi or tau nitrogen of the imidazole ring of 

L-histidine forms anserine (beta-alanyl-Nπ-methylhistidine) or ophidine (beta-alanyl-Nτ-

methylhistidine), respectively. Carnosine, anserine and ophidine are collectively called 

histidine-containing dipeptides (HCDs). HCDs are mainly present in mammalian skeletal 

muscle and neuronal tissue and to a smaller extent in the heart, liver and kidney 

(Boldyrev et al., 2013). Carnosine is the only HCD present in human skeletal muscle (5-

8mmol/l wet weight), whereas the muscles of almost all other mammals contain both 

carnosine along with one of the methylated analogs (anserine or ophidine). Next to the 

methylated analogs, homocarnosine is another HCD which is predominantly present in 

brain structures and originates from the substitution of beta-alanine by ɣ-aminobutyric 

acid (GABA). GABA is a non-proteinogenic amino acid and an inhibitory neurotransmitter 

in the brain, of wich the metabolism closely resembles beta-alanine (Boldyrev & Severin, 

1990) (Fig 2).  
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Another non-proteinogenic compound that is somewhat related to carnosine metabolism 

is taurine. Taurine is often wrongly labeled as an amino acid but since it contains a 

sulphonate group instead of a carboxylgroup, it is strictly taken an amino sulfon acid. 

Taurine and beta-alanine have very similar molecular structures and their metabolism is 

intimately linked, as they share the same transporter (taurine transporter, TauT) for 

transsarcolemmal uptake (Harris et al., 2006). Taurine is abundant in the cells of many 

tissues, including heart and skeletal muscles and taurine is believed to be involved in 

many cellular processes but in skeletal muscle its main roles are to facilitate Ca2+ 

dependent excitation-contraction processes and aid in antioxidant defense from stress 

responses (Spriet & Whitfield, 2015). Although it is the most abundant free amino 

compound in skeletal muscle, taurine is, alike beta-alanine, not incorporated into protein.  

 

Figure 2: Carnosine and related compounds 
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2.2. Physiological pathways and metabolism  

Numerous enzymes and transporters are involved in the carnosine metabolism, 

demonstrating that the carnosine system is subject to a complex homeostatic regulation. 

As carnosine and anserine are highly present in skeletal muscles of mammals and fish, 

omnivorous subjects have a daily consumption of these dipeptides with the ingestion of 

meat and fish. Interestingly, HCDs are the only source of beta-alanine in an omnivorous 

diet, while L-histidine is present in most protein-rich foods, such as meat and fish, but 

also dairy and grain products.  

The main pathways involved in the regulation of tissue carnosine levels are synthesis from 

its precursor amino acids, which is catalyzed by carnosine synthase (CARNS), and 

hydrolysis into its constituents by carnosinases (CN). Carnosine synthesis mainly takes 

place in skeletal muscles, whereas 2 forms of carnosinase exists in humans: serum 

carnosinase (CN1) and tissue carnosinase (CN2). CN1 is highly active in humans, meaning 

that only negligible levels of carnosine are detectable in the blood, whereas CN2 is 

present in many tissues such as liver, kidney and small intestine (Lenney et al., 1985). 

These enzymes will be further described in the following sections.  

 

Figure 3: Possible pathways of intestinal absorption of carnosine. BA: beta-alanine. CARN: carnosine; CARNS: carnosine 

synthase; CN1: serum carnosinase; CN2: tissue carnosinase; HIS: histidine. 
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Thus, following HCD ingestion through meat or fish, the presence of CN2 in the 

enterocytes hydrolyzes carnosine into beta-alanine and L-histidine before reaching the 

blood stream. However, since the CN2 activity in rather low (Sadikali et al., 1975), it is 

very likely that part of the ingested carnosine reaches the blood stream intactly, 

whereupon it is rapidly hydrolyzed in plasma due to the high activity of CN1 (Fig 3). The 

constituent amino acids beta-alanine and L-histidine are then transported in the muscle 

cells by their respective amino acid transporters, where CARNS is present to synthesize 

carnosine (Bakardjiev & Bauer, 1994; Drozak et al., 2010). The metabolic pathways in 

which beta-alanine and L-histidine are incorporated as well as the enzymes and 

transporters for these amino acids will be discussed in detail in section 4. 

As mentioned, carnosine is the only HCD found in human muscle. However, in rodents, as 

in most animals, the methylated form, in this case anserine, is more abundant than the 

non-methylated carnosine. There are two possible pathways for the synthesis of the 

methylated carnosine analog anserine. Firstly, carnosine-N-methyltransferase (CMT) 

catalyzes the transfer of a methyl group on carnosine to form anserine and secondly, 

direct enzymatic condensation of beta-alanine with methylhistidine can be catalyzed by 

CARNS.  Up to now, it is not yet fully understood which pathway is the main source of 

methylated analogs. Recent findings consistently found methyl-L-histidine to be a poorer 

substrate for CARNS than nonmethylated L-histidine (Drozak et al., 2010). Furthermore, 

using radiolabeled beta-alanine in primary culture myocytes, carnosine synthesis was 

shown to be the first and major pathway, followed by methylation to form anserine 

(Bauer & Schulz, 1994). Together, these findings suggest that CMT is the major enzyme 

responsible for anserine synthesis. Interestingly, Drozak et al. (2015) recently molecularly 

identified UPF0586 protein C9orf41 as the mammalian carnosine-N-methyltransferase, 

responsible for anserine formation in rat muscle. Moreover, the authors demonstrated a 

low CMT mRNA expression in human muscle, confirming the absence of anserine in 

human myocytes, but an unexpectedly high expression of UPF0586 mRNA was found in 

human kidney, suggesting that the enzyme may be active, leading to the accumulation of 

anserine in renal tissue (Fig 4). Indeed, the presence of anserine in human renal tissue 

was very recently confirmed by Peters et al. (2015). 
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Figure 4: Relative mRNA expression for rat and human UPF0586 protein determined in brain, skeletal muscle and kidney 

tissues, as demonstrated by Drozak et al. (2015) 

 

One decade ago, Harris and coworkers (2006) demonstrated for the first time that 

chronic oral beta-alanine supplementation is able to enhance muscle carnosine levels 

and thus disturb carnosine homeostasis, thereby marking beta-alanine as the rate-

limiting precursor for carnosine synthesis. As it was subsequently shown that elevated 

muscle carnosine levels lead to increased performance in various high-intensity exercise 

models (Hill et al., 2007), this opened up perspectives for the carnosine research topic. 

The enzymes involved in beta-alanine metabolism will be discussed in section 4. Failure to 

maintain carnosine homeostasis upon beta-alanine supplementation and the course of a 

beta-alanine supplementation protocol will be further elucidated in section 5.  

2.3. Biochemical properties of carnosine 

Although carnosine is one of the most abundant metabolites in skeletal muscles, it is not 

involved in any energy delivering pathways. However, several physiological properties of 

carnosine are relevant to muscular function and homeostatic processes, such as pH 

buffering, increasing Ca2+ sensitivity, antioxidant capacity and inhibiting protein glycation. 

Below, these functions will be further clarified.  

2.3.1. pH buffer 

The role of carnosine as a physiologically relevant pH buffer was the first function of the 

dipeptide to be discovered. During high-intensity exercise, anaerobic glycolysis is the 

major energy providing pathway, resulting in the intramyocellular production of lactic 
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acid, which dissociates to lactate and protons (H+). Due to the accumulation of H+ ions, a 

fall in the pH from 7.1 in rest up to 6.3 during exercise occurs, disturbing intramuscular 

acid-base homeostasis. To counteract or delay this process, different metabolites are able 

to accept H+, thereby functioning as proton buffers to restore homeostasis. The most 

important intramuscular proton buffers are inorganic phosphate, bicarbonate and 

proteins and dipeptides. The imidazole ring of L-histidine is capable to accept one proton, 

suggesting that free L-histidine can act as a proton buffer. However, the pKa value (acid 

dissociation constant) of L-histidine is 6.1, which is close to but not exactly in the 

physiological pH range of contracting and fatigued myocytes. Thus, in actual practice, the 

contribution of free L-histidine to the buffering capacity is rather limited. Yet, by 

combining L-histidine with beta-alanine, the pKa of the imidazole ring alters to 6.83, 

making carnosine an ideal intracellular buffer, although the imidazole of L-histidine 

regulates the buffering activity of carnosine. 

The relative buffering capacity in the human vastus lateralis muscle was determined to be 

at least 4.5 and 9.4% in type I and type II fibers, respectively (Mannion et al., 1995). Since 

carnosine is a mobile buffer, freely dissolved in the cytoplasma of myocytes, its 

contribution to pH homeostasis is probably even greater than previously calculated 

(Boldyrev et al., 2013). Moreover, increasing muscle carnosine concentrations by beta-

alanine supplementation enhances the buffering capacity of muscles, demonstrated by an 

attenuated decline in blood pH during a 6-minute high-intensity cycling exercise test 

(Baguet et al., 2010b). 

2.3.2. Ca2+-regulator 

During the excitation-contraction coupling in skeletal muscle cells, release of calcium 

from the sarcoplasmic reticulum and binding of calcium to troponin are key steps to 

induce contraction of myocytes. Both in rat and in human skinned muscle fibers (Dutka & 

Lamb, 2004; Dutka et al., 2012), raised cytoplasmic carnosine concentrations increase 

Ca2+ sensitivity of the contractile apparatus in a concentration-dependent manner. In 

addition, these observations were also replicated in whole incubated skeletal muscles of 

mice (Everaert et al., 2013b). Up to now, enhanced calcium handling by carnosine loading 

could only be demonstrated by in vitro studies or by in vivo beta-alanine administration 
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and ex vivo effect measurements. Experiments using in vivo models are necessary to 

further fortify the role of enhanced carnosine levels for increasing calcium sensitivity in 

muscle fibers.  

Recently, the two functions of carnosine as described above, were united in one concept, 

named the carnosine shuttle (Fig 5). This concept is based on recent findings in cardiac 

myocytes demonstrated by Swietach et al. (2013, 2014) and holds that carnosine can act 

as a diffusible Ca2+/H+ exchanger. On the one hand, H+ accumulation at the sarcomere site 

occurs as a result of anaerobic glycolysis. These ions need to be transported to the 

sarcolemma to drive trans-sarcolemmal H+ export. On the other hand, Ca2+ needs to 

diffuse in the opposite direction i.e. from the sarcoplasmic reticulum to the sarcomeres, 

to promote cross-bridge formation. As both H+ and Ca2+ can competitively bind to 

carnosine and carnosine is a mobile buffer, it can improve calcium delivery to and proton 

removal from the sarcomere site.  

 

Figure 5: Current hypothesis on the ergogenic mechanism of carnosine in skeletal muscle, based on the findings of 

Swietach et al. (2013, 2014). It poses that carnosine can act as a shuttle by transporting both Ca
2+

 and H
+
 between 

sarcomere region and the subsarcolemmal region. Molecular structure of carnosine is shown with indication (arrow) to 

the competitive binding site of H
+
 and Ca

2+
 (reviewed by Blancquaert et al. (2015)). SR: sarcoplasmic reticulum 
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2.3.3. Anti-oxidant and anti-glycation 

Reactive oxygen species (ROS) are a naturally occurring byproduct of mitochondrial 

respiration and have an important role in cell signaling and homeostasis. However, when 

ROS levels reach high concentrations, damage to cell structures such as DNA and proteins 

may occur, which is known as oxidative stress. To protect from this stress, our body 

possesses both enzymatic (such as catalase and superoxide dismutase) and non-

enzymatic (vitamins) anti-oxidants, capable of disarming ROS. Carnosine is demonstrated 

to be a non-enzymatic natural antioxidant as its imidazole moiety can interact with singlet 

oxygen and scanvenge peroxyl radicals and superoxide radicals (Kohen & Yamamoto, 

1988). Furthermore, in vitro studies have shown that carnosine can inhibit glycation and 

protein-protein cross-linking, thereby interfering the formation of advanced glycation 

end-products (Hipkiss, 2005). Based on these properties, carnosine has been suggested to 

be a potential therapeutic compound in a number of pathologies.    
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3. Set point of carnosine 

As mentioned, carnosine is one of the most abundant molecules in skeletal muscle. In the 

following section, different factors determining the carnosine set point and normal range 

as well as the importance of this high set point is discussed.  

 
3.1. Homeostatic set point and normal range 

Carnosine has a high homeostatic set point in human muscles. Based on a database of 

proton MRS carnosine measurements in calf muscles that were collected over the past 

years in our lab, it can be concluded that the set point amounts to 4.11 mM in soleus 

muscle and 6.96 mM in gastrocnemius muscle. This database includes both males and 

females and subjects of all age classes (ranging from 8 to 83 years). Repeated 

measurements of muscle carnosine levels over time in the same people displays only 

small fluctuations, demonstrating a low intra-individual variation and a high stability of 

the carnosine set point. For soleus and gastrocnemius muscle, variation coefficients over 

a 3 month period were calculated to be 9% and 15%, respectively (Baguet et al., 2009). 

The methodological variation of the MRS has been previously determined to be 4.3% for 

soleus and 7.6% for gastrocnemius muscle, when subjects are measured twice on the 

same day (Ozdemir et al., 2007). Thus the biological variation of muscle carnosine content 

over a 3 month period is as low as ~6% (Baguet et al., 2009). This variation coefficient 

resembles the normal range of the carnosine set point and illustrates that carnosine 

homeostatis is a dynamic process, subject to feedback processes to keep carnosine 

between certain fixed limits (Fig 6).  

 

Figure 6: Graphical presentation of proposed dynamic homeostatic regulation over time of the carnosine set point in 

soleus muscle 
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3.2. Inter-individual and inter-fiber differences in the carnosine set point 

Although the carnosine set point only minimally fluctuates over time (low intra-individual 

variability), there is a large inter-individual variation in this set point in human skeletal 

muscle. Three- to fourfold differences have been demonstrated between the lowest and 

the highest reported levels in humans. The concentration of muscle carnosine in a set of 

humans follows a Gaussian distribution, with variation coefficients of 27% in soleus and 

gastrocnemius muscle (Derave et al., 2010). A histogram of the current data from the 

carnosine measurements of our database, showing the Gaussian distribution, is depicted 

in figure 7. Some determinants are known to influence this set point, such as age, gender, 

diet and muscle fiber type composition (Fig 8).  

 

Figure 7: Gaussian distribution of the carnosine content of the soleus muscle in a general population (both males and 

females, age 8-83years, n=316) 

 

In general, the muscle carnosine set point is higher in men compared to women. In our 

database, the mean soleus carnosine concentration is 3.68 mM in women and 4.47 mM in 

men. This is in accordance with the data of Mannion and colleagues (1995) who showed 

that men have approximately 20-25% higher carnosine levels in the vastus lateralis 

muscle compared to age-matched women. Baguet and colleagues (2012) measured 

muscle carnosine levels cross-sectionally on different timepoints during the human 
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lifespan to obtain a clear understanding of the impact of puberty and aging on human 

muscle carnosine concentration. They found that the carnosine set point is upregulated 

(reaching a higher homeostatic set point) during puberty in males, but not in females. 

Alternatively, in both males and females, an age-related downregulation (reaching a 

lower homeostatic set point) of the carnosine set point was found mainly during early 

adulthood, but not from adulthood to elderly.  

As mentioned, HCDs are present in meat and fish and omnivores thus have a daily dietary 

ingestion of these metabolites. Interesting to note is that there is no correlation between 

dietary beta-alanine ingestion (within the normal range of 200–400 mg per day (Everaert 

et al., 2011)) and baseline muscle carnosine concentrations (Baguet et al., 2009; 

Stellingwerff et al., 2012a), suggesting that normal variations in the dietary HCD intake 

are not greatly affecting muscle carnosine homeostasis. Yet, cross-sectional data on long-

term vegetarians, who have a complete restriction of dietary HCDs and thus also beta-

alanine (Table 1), suggests that they have a somewhat lower muscle carnosine set point 

compared to omnivorous subjects (Harris et al., 2007; Everaert et al., 2011). However, the 

currently available cross-sectional data are not very convincing. The study of Harris et al. 

(2007) included only 6 vegetarians and was not gender- and age-matched, although these 

are important determinants of the carnosine set point, as described above. The study of 

Everaert et al. (2011) only found significant lower muscle carnosine content in the 

gastrocnemius of 12 vegetarians compared to omnivores, while no significants effects 

were noted in soleus and tibialis anterior muscles. Human long-term intervention studies 

investigating the effects of transiently switching omnivores onto a vegetarian diet are 

necessary to confirm these cross-sectional findings.  

Table 1: Overview of the amount of beta-alanine, carnosine and histidine in omnivorous and vegetarian diets. Beta-

alanine is only present in the form of carnosine or anserine (1g of carnosine contains 400mg of beta-alanine), while 

histidine is present is all protein-rich foods. 

 Beta-alanine Carnosine or anserine Histidine 

Omnivorous diet 300-600mg1 800-1600mg 1.5-2.5g2 

Vegetarian diet / / 1.5-2g ?3 

1 Everaert et al (2011), Saunders et al (unpublished data) 
2 Reeves et al (1977), Okubo et al (2005) 
3 No data available. Because fish and meat contain the highest histidine to protein ratio, dietary histidine intake might 
be somewhat lower in vegetarians 
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A last determinant which is known to influence the muscle carnosine set point is muscle 

fiber type composition. Fast-twitch muscle fibers (type II fibers) are shown to contain 

twice as much carnosine compared to slow-twitch muscle fibers (type I fibers) (Harris et 

al., 1998; Hill et al., 2007). Accordingly, carnosine homeostatic set point is significantly 

higher in the fast-twitch gastrocnemius than the more slow-twitch tibialis anterior and 

soleus (Baguet et al., 2009; Derave et al., 2010). In our database, set point of 

gastrocnemius amounts to 6.76 mM, which is 60% higher than the homeostatic set point 

is soleus (4.06 mM).  

 

Figure 8: Putative determinants of the human muscle carnosine content, as depicted by Derave et al. (2010). DW: dry 

weight; suppl: supplementation 

 

Aims: Age, gender, diet and muscle fiber type composition are generally shown to be 

the main determinants of the carnosine set point. Evidence for the determinant diet is 

based on cross-sectional data demonstrating somewhat lower muscle carnosine levels 

in long-term vegetarians compared to omnivores. Similarly, cross-sectional studies 

suggested that the homeostasis of plasma and muscle creatine and carnitine, two other 

compounds that are almost solely found in tissues of animals (carninutrients), is 

negatively affected by long-term vegetarianism (Delanghe et al., 1989; Burke et al., 

2003; Stephens et al., 2011). The effect of switching omnivores onto a long-term 

vegetarian diet is until now unexplored. Therefore, an aim of this PhD thesis is to 

explore the effect of long-term vegetarianism in previously omnivorous subjects on the 

homeostasis of different carninutrients such as carnosine, creatine and carnitine. 
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3.3. Why do we need a high muscle carnosine set point? 

As already described above, several physiological functions are ascribed to carnosine. 

Based on its biochemical properties, it can be stated that the carnosine system has 

evolved as a pluripotent solution to a number of homeostatic challenges.  

When carnosine is discussed or reviewed, beta-alanine commonly draws most attention 

as it is mainly regulating the carnosine synthesis. However, most bioactive functions of 

carnosine relate to L-histidine and more specifically its imidazole moiety (Fig 9). Based on 

this, it can be questioned what the advantages of a L-histidine containing dipeptide are, 

compared to free L-histidine. The reason for the development of the carnosine system 

probably relates to improvement of the functional activities (i.e pKA values of carnosine is 

closer to the physiological range than the pKA of free L-histidine) and guaranteeing a 

stable tissue concentration. L-histidine is, next to incorporation in carnosine, also involved 

in many other pathways such as protein synthesis and histamine formation. As carnosine 

is mainly stored in muscle, and carnosinase is considered not to be active in muscle cells, 

carnosine and thus also L-histidine content is highly stable.  

 

Figure 9: Structure-activity relationship of carnosine (Boldyrev et al., 2013) 

 

3.4. Tissue differences 

With muscle concentrations as high as in the millimolar range, 99% of the total body 

carnosine in an organism is found in skeletal muscle tissue. Accordingly, the highest rate 

of CARNS activity is found in mammalian skeletal muscle tissue (Abe, 2000) and the 

enzyme was shown to be highly expressed on mRNA level in human skeletal muscle 

(Everaert et al., 2013a). Next to a high concentration in muscle, carnosine is present in 
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excitable neuronal tissues and different parts of the brain, with the highest content 

found in the olfactory bulb, which displays very high CARNS expression (Horinishi et al., 

1978). In other brain structures, however, homocarnosine rather than carnosine is the 

main dipeptide. 

Carnosine along with mRNA expression of CARNS was also recently detected in liver, 

kidney, retina and spleen rat tissues (Kamal et al., 2009; Mong et al., 2011; Pfister et al., 

2011; Riedl et al., 2011), but in concentrations 10- to 1,000-fold lower than in muscle 

(Boldyrev et al., 2013) (Table 2). Mammalian cardiac muscle is also shown to have only a 

relatively low concentration of carnosine (~0.1 mmol/kg wet tissue) (O’Dowd et al., 1988). 

However, the total content of carnosine derivatives (acetylated carnosine, anserine and 

homocarnosine) is high and in the order of 2–10 mmol/kg wet tissue.  

Carnosine is undetectable in fasted human plasma as it is readily degraded by the very 

active serum carnosinase enzymes (CN1). In contrast to humans, CN1 is only present in 

the kidneys and not in the circulation of rodents (Peters et al., 2012). Interestingly, a 

recent study demonstrated the presence of carnosine and anserine in human renal tissue 

(Peters et al., 2015). Moreover, the authors demonstrated mRNA expression of CARNS, 

CNDP1 (gene encoding CN1) and taurine transporter (=transporter for beta-alanine) in 

distinct compartments within the nephron, indicating that the kidney has an intrinsic 

capacity to metabolize carnosine (Table 2). Literature on profiling of carnosine content 

and CARNS mRNA expression in human tissues other than skeletal muscle and kidney is 

currently lacking due to the inconvenience to sample these tissues.  

Carnosinase is also present in tissues as non-specific dipeptidase or tissue carnosinase 

(CN2, encoded by the gene CNDP2), which has been demonstrated in kidney, liver, spleen 

and small intestine (Lenney et al., 1985). Moreover, mRNA expression was also found in 

skeletal muscle (Lenney et al., 1985; Everaert et al., 2013a) (Table 2). Yet, the catalytical 

rate of CN2 in tissues is markedly lower than the catalytical rate of CN1 in serum (Pandya 

et al., 2011). Furthermore, CN2 was shown to have a broader substrate specificity than 

CN1 and the optimum pH for CN2 to degrade carnosine is 9.5, which is not in the 

physiological pH range (Teufel et al., 2003). It thus remains doubtful whether CN2 can 

degrade carnosine in vivo. It is shown however that Dug1, the yeast orthologue of 
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mammalian CN2, is a highly specific Cysteine-Glycine (Cys-Gly) dipeptidase. Furthermore, 

CNDP2 has been shown to have Cys-Gly dipeptidase activity in vitro and moreover, 

CNDP2 can complement the defective utilization of Cys-Gly of a Dug1-deficient mutant 

(Kaur et al., 2009). 

Table 2: Current belief on the presence of the most important enzymes in the metabolism of carnosine in several 

tissues of both rodents and humans  

RODENT Blood Skeletal muscle & heart Brain/CNS Other organs 

CARNS - ++ ++          +              ++  
         Kidney                Spleen 

          Liver 

         Retina 

CN1 - - -          +              ++ 

          Small                   Kidney 

        intestine 

CN2 - + +        +              ++ 
         Liver         Small intestine 

                                     Kidney 

HUMAN Blood Skeletal muscle & heart Brain/CNS Other organs 

CARNS - ++ ++    + 
   Kidney 

CN1 ++ - +    + 
   Liver 

   Kidney 

CN2 - + +    +               ++ 
        Lung                      Kidney 

      Spleen           Small intestine  

        Liver          
- Absent, + little present, ++ abundantly present. CN1: serum carnosinase; CN2: tissue carnosinase, CARNS: carnosine 

synthase; CNS: central nervous system. Based on information from the online databases biogps and gtexportal. 
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4. Potential effectors in the control of carnosine homeostasis 

The regulation of body and more specifically muscle carnosine homeostasis is until now 

poorly understood and involves a complex set of enzymes and transporters. The 

availability of the rate-limiting precursor beta-alanine and the enzyme catalyzing the 

dipeptide synthesis (CARNS) are believed to be key steps. Several of the enzymes and 

transporters which regulate carnosine homeostasis have only recently been molecularly 

identified which contributes to a better understanding of the regulation of carnosine 

homeostasis. Figure 10 gives an overview of the several steps and their respective 

enzymes and transporters that are possibly involved in the carnosine metabolism. These 

steps include: beta-alanine transport (TauT, PAT1), beta-alanine availability regulated by 

beta-alanine synthesis (GADL1 and uracil degradation) on the one hand, and beta-

alanine degradation (GABA-T and AGXT2) on the other hand, histidine transport (PHT1, 

PHT2), histidine degradation (HDC) and carnosine synthesis (CARNS) and degradation 

(CN1 and CN2).  

 

Figure 10: Enzymes (with their respective EC number)  and transporters  possibly involved in the carnosine metabolism 

 

This section will discuss the presence of the carnosine-related enzymes and transporters 

in different parts of the body to demonstrate how body carnosine homeostasis is 

regulated. For each of the enzymes and transporters, the presence in muscle will be 

discussed more in detail, as the following sections will focus specifically on regulation of 

muscle carnosine homeostasis. 

4.1. Intracellular beta-alanine availability 

Beta-alanine is a rather unusual amino acid. It is not used in the biosynthesis of proteins 

(nonproteinogenic) but is a naturally occurring free beta-amino acid. Below, the most 
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important proteins that play a role in beta-alanine transport, namely TauT and PAT1, are 

defined. Moreover, pathways for beta-alanine synthesis, including uracil degradation and 

aspartate decarboxylation by the GADL1 enzyme, and pathways for beta-alanine 

degradation (GABA-T and AGXT2) are clarified.   

4.1.1. Beta-alanine transport 

The first and crucial step for intramyocellular carnosine synthesis is uptake of beta-

alanine from the plasma into the muscle cells. The intramyocellular beta-alanine 

concentration is very low (< 10µmol/kg wet weight) and Harris et al. (2006) demonstrated 

that the synthesis of carnosine is limited by the availability of beta-alanine, making this 

step indispensable in the muscle carnosine synthesis process (Artioli et al., 2010). Three 

transporters capable of transferring beta-alanine across the sarcolemma are known, 

namely PAT1, Taurine transporter (TauT) and ATB0,+.  

PAT1 (proton-coupled amino acid transporter 1) is a protein, encoded by the SLC36A1 

gene in humans (Metzner et al., 2006). PAT1 is a proton driven, pH-dependent 

transporter characterized as a high-capacity, low-affinity transporter. The substrate and 

the proton are translocated at a coupling stoichiometry of 1:1 (Boll et al., 2002). PAT1 is 

able to transport both beta-alanine and taurine (Anderson et al., 2009). TauT is encoded 

by the SLC6A6 gene in humans (Anderson et al., 2009). Contrary to PAT1, TauT is a high-

affinity, low-capacity transporter and is Na+- and Cl- dependent (2Na+ : 1Cl- : 1 taurine) 

(Bakardjiev & Bauer, 1994; Han et al., 2006). Similar to PAT1, both beta-alanine and 

taurine are suitable substrates for this transporter (Anderson et al., 2009). As both 

transporters are able to use beta-alanine and taurine as substrates, it can be suggested 

that these substrates competitively bind to the transporters for transsarcolemmal uptake. 

The evidence that plasma taurine levels are elevated after acute beta-alanine 

supplementation (Harris et al., 2006) subscribes this notion. ATB0,1 (encoded by the 

human SLC6A14 gene) is a transporter with similar characteristics as TauT, although it 

only accepts beta-alanine but not taurine (Anderson et al., 2009). 

Expression of the PAT1 and TauT carrier proteins was already detected in the intestine, 

brain and liver (Metzner et al., 2006) and all three transporters are shown to be 

expressed in human duodenum and ileum (Anderson et al., 2009). Moreover, expression 
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of TauT and PAT1 has been demonstrated in skeletal muscle of rodents (Pierno et al., 

2012) and humans (Drummond et al., 2010, 2011). Recently, Everaert et al. (2013a) 

confirmed the mRNA expression of TauT and PAT1 in skeletal muscle of both adult mice 

and humans, whereas no mRNA expression of ATB0,1 was found in both species, 

suggesting this transporter is less or not important in the regulation of muscle carnosine 

homeostasis.  

4.1.2. Beta-alanine synthesis and degradation 

Until now, the only known endogenous pathway to synthesize beta-alanine in humans is 

the three-step uracil degradation in liver (Matthews et al., 1987; Traut, 2000). 

Furthermore, Liu et al. (2012a) demonstrated that insects have a more straightforward 

enzymatic pathway to produce beta-alanine, namely through aspartate decarboxylation 

catalyzed by the aspartate 1-decarboxylase enzyme (ADC). In mammals, ADC is not found, 

but it has been proposed that there is a specific enzyme in mammalian muscle, namely 

glutamate decarboxylase-like protein 1 (GADL1; EC 4.1.1.29 ), directly synthesizing beta-

alanine from aspartate by a similar decarboxylation reaction as occurs in insects (Liu et al., 

2012a). Despite its name, GADL1 has no detectable glutamate decarboxylase activity. 

GADL1 mRNA expression was found in mouse and cattle skeletal muscles and also in 

mouse kidneys. Western blot analysis verified the presence of GADL1 in mouse muscles 

and kidneys. Until now, mRNA expression of GADL1 in human muscle cells is 

uninvestigated. Using recombinant DNA technology, beta-alanine-producing activity of 

GADL1 could not yet be detected in the supernatant of tissue protein extracts. Yet, the 

potential role of GADL1 in beta-alanine synthesis cannot be excluded (Liu et al., 2012a). 

Interestingly, this enzyme was also suggested to be involved in taurine biosynthesis by 

cysteine sulfinic acid decarboxylase activity, which might indicate that beta-alanine and 

taurine biosynthesis may involve the same enzyme. 

A third pathway related to beta-alanine metabolism encloses the transaminase enzymes, 

a group of enzymes that may be involved in both beta-alanine synthesis and degradation. 

As the name implies, transamination refers to the exchange of an aminegroup (NH2) of 

one molecule with the ketogroup (=O) of another molecule (Fig 11). Transamination 

reactions are known to be readily reversible. The direction is determined by which of the 

reactants are in excess. Transaminases are pyridoxal-5’-phosphate (PLP) dependent 
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enzymes, indicating that PLP, the active form of vitamin B6, is a necessary co-factor to 

complete the reactions.  

 

Figure 11. Schematic overview of transamination reactions 

 

Pihl & Fritzson (1955) reported that more than 90% of the injected C14-labelled beta-

alanine in rats was recovered in the expired CO2 in 5h, suggesting that beta-alanine can be 

metabolized elsewhere, most probably as a carbon source for energy provision through 

oxidation. Indeed, the amine group of beta-alanine can be removed through a 

transamination resulting in the formation of the keto-acid malonate semi-aldehyde (MSA), 

which can subsequently enter the citric acid cycle and provide energy. Mostly based on 

enzymatic assays in cell extracts, two mitochondrial enzymes are known to catalyze this 

reaction: 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19; also known as 

GABA-T or β-alanine-2-oxoglutarate transaminase) (Ito et al., 2001) and alanine-

glyoxylate transaminase (EC 2.6.1.44; also known as AGXT2 or β-alanine-pyruvate 

transaminase) (Hayaishi et al., 1961; Rodionov et al., 2014) (Fig 12). Until now, GABA-T 

and AGXT2 are, to our knowledge, the only known mammalian enzymes that can 

transaminate beta-alanine. 

Jeon et al. (2000) investigated the tissue distribution of GABA-T mRNA and found highest 

expression in liver, brain, pancreas and kidney, whereas low expression was found in 

heart and reproductive organs, and only trace amounts of expression or no clear signal in 

other tissues, for example skeletal muscle and lung. Yet, Everaert et al. (2013a) were able 

to identify GABA-T mRNA expression in mice skeletal muscle. Alike GABA-T, AGXT2 is 

primarily expressed in kidney and liver and to a much smaller extent in skeletal muscle 

(Lee et al., 1999; Rodionov et al., 2014). 
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Transaminases are known to work in two directions, suggesting that GABA-T and AGXT2 

transaminases are also capable to synthesize beta-alanine from malonate semi-aldehyde. 

Until now, this possible beta-alanine synthesizing pathway upon malonate semi-aldehyde 

administration is poorly investigated in mammals. Very recently, Wilson and colleagues 

presented a conference poster (2016) demonstrating that, when perfusing rat liver with 

3-hydroxypropionate (a precursor of MSA), beta-alanine was synthesized. This is the first 

in situ evidence for the beta-alanine synthesizing capacity of beta-alanine transaminases 

GABA-T and/or AGXT2. 

 

Figure 12: Reaction scheme for the beta-alanine synthesis and degradation pathways. Uracil degradation is a three-step 

pathway of which only the last enzyme is mentioned in this figure. 

 

4.2. Intracellular L-histidine availability 

Next to beta-alanine, carnosine synthesis also requires the availability of the second 

precursor of the dipeptide, namely L-histidine. L-histidine is a proteinogenic alfa-amino 

acid. It is generally believed that the magnitude of carnosine synthesis is more dependent 

upon the availability of beta-alanine compared to L-histidine, although the effect of 

elevated histidine availability on muscle carnosine loading is until now never explored. 
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The histidine-related transporters (PHT1 and PHT2) and enzymes (HDC) are discussed 

below. 

4.2.1. L-histidine transport 

Two proteins, PHT1 and PHT2, are known to transport L-histidine. PHT1 and PHT2 are 

members of the proton-coupled oligopeptide transporters (POT-family or SLC15). The 

members of the POT family are PEPT1 and PEPT2 (oligopeptide transporter 1 and 2) and 

PHT1 and PHT2 (peptide/histidine transporter 1 and 2). All of these POTs are able to 

transfer di- and tripeptides (including carnosine and its methylated analogs) across 

biological membranes. PHT1 and PHT2 differ from the PEPTs as PHTs also recognize, in 

addition to di/tripeptides, the amino acid L-histidine as a substrate (Daniel, 2004). 

Everaert et al. (2013a) recently demonstrated the mRNA expression of PHT1 and PHT2 in 

mouse and human skeletal muscle samples, but it is currently unclear what their 

physiological function is in muscle and whether inward or outward transport is the main 

direction (Boldyrev et al., 2013). 

4.2.2. L-histidine synthesis and degradation 

L-histidine is a semi-essential and proteinogenic amino acid. Histidine is categorized as a 

semi-essential amino acid because it can not be synthesized de novo in mammals and is 

only indispensable in certain populations or situations, in which ingestion of histidine 

through the diet is thus essential. Generally, children need to consume L-histidine in their 

diet, while this is no longer essential in adults (Stifel & Herman, 1972). L-histidine 

biosynthesis is an ancient metabolic pathway present in bacteria and plants but not or 

only minimally present in mammals. Under normal physiological conditions, the histidine 

concentration in biological tissues is sufficiently present. 

Furthermore, histidine decarboxylase (HDC, EC: 4.1.1.22) catalyzes the formation of 

histamine from L-histidine. Histamine is an organic compound involved in a series of 

physiological processes, such as local immune responses and inflammatory responses. 

Interestingly, also some beneficial exercise-related roles are ascribed to histamine such as 

the vasodilating effect of histamine on arterioles in (post-)exercise hyperaemia (Jones, 

2016). HDC is shown to be expressed in both mouse (Everaert et al., 2013a) and human 

skeletal muscle and is upregulated following exercise (Niijima-Yaoita et al., 2012; Romero 

http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Essential_amino_acid
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et al., 2016), suggesting that histidine might be degraded in muscle cells, especially during 

exercise.  

4.3. Carnosine metabolism 

4.3.1. Carnosine synthesis  

In the 1950s, the biochemical properties of the carnosine synthesis reaction were 

established by in vitro experiments on partially purified enzyme preparations of chicken 

muscle, and the enzyme was called carnosine synthase (CARNS; 6.3.2.11). It became clear 

that, in addition to the constituent amino acids beta-alanine and L-histidine, Mg2+  and 

ATP are required to synthesize carnosine, making carnosine synthesis an energy-

consuming molecular process (Fig 13) (Kalyankar & Meister, 1959). 

 

Figure 13: Carnosine formation scheme 

 

The gene encoding this enzyme has been molecularly identified by Jakub Drozak and 

coworkers (2010). The gene encoding carnosine synthase is ATPGD1, a member of the 

ATP-grasp superfamily. As mentioned, CARNS is a cytosolic enzyme and is mainly present 

in skeletal and heart muscle and certain brain regions. Next to carnosine synthesis, CARNS 

is also the responsible enzyme for homocarnosine synthesis from GABA and L-histidine.  

4.3.2. Carnosine degradation 

As beta-alanine is a rare, non-proteinogenic amino acid, carnosine and related 

compounds have a low affinity towards hydrolysis by regular (di)peptidases. Therefore, 

carnosine is characterized by its own, separately regulated hydrolytic enzymes, named 

carnosinases. Two forms of carnosinase have been molecularly identified as CN1 or serum 

carnosinase (3.4.13.20) and CN2 or tissue carnosinase (3.4.13.18). The genes of these 

carnosinases are CNDP1 and CNDP2, respectively.  

CNDP1 is expressed in human liver and the carnosinase enzyme is subsequently secreted 

in the circulation. Thus, serum carnosinase activity is high in the adult human, leading to 
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almost undetectable levels of circulating carnosine in the postabsorptive state (Gardner 

et al., 1991). The activity of CN1 varies greatly between individuals and mostly reaches 

higher levels in females compared to males (Peters et al., 2010). CN1 activity is much 

lower for anserine and homocarnosine compared to carnosine. In rodents, CNDP1 is 

exclusively expressed in the kidney (Teufel et al., 2003) and CN1 is, in contrast to humans, 

absent in the circulation. CNDP2 is widely distributed in central and peripheral human 

tissues such as liver, kidney, spleen, small intestine and even muscle (Lenney et al., 1985; 

Everaert et al., 2013a). It is hypothesized that CNDP2 is not active in human skeletal 

muscle since Lenney and coworkers (1985) demonstrated that the optimum pH for CN2 is 

9.5, whereas the pH of muscle does not exeed 7.4 (as described in section 3.4).  

Figure 14 gives an overview of the expression of the different enzymes and transporters 

in the different organs. Enzymes and transporters that are shown to be expressed in 

human tissue are depicted in red, the ones that are until now only proven in rodents are 

depicted in dark red.  

 

Figure 14: Schematic overview of the current understanding of the carnosine metabolism. The expression of enzymes 

and transporters in red is demonstrated in humans, the ones in dark red are demonstrated in rodents but either not 

present or not investigated in humans. Dashed lines: less important, thick lines: important reactions. ANS: anserine, ASP: 

aspartate, BA: beta-alanine, CARN: carnosine, HIS: L-histidine, HIST: histamine, MSA: malonate semi-aldehyde. 
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4.4. Tissue carnosine homeostasis versus plasma beta-alanine homeostasis?  

As already mentioned, chronic oral beta-alanine supplementation has been shown to 

increase muscle carnosine levels, thus disturbing tissue carnosine homeostasis. In this 

respect, one can assume that plasma beta-alanine levels, which are enhanced by beta-

alanine supplementation, are also under homeostatic control. Increased tissue carnosine 

levels can thus be an attempt to maintain the plasma beta-alanine set point. This rises the 

question which homeostasis predominates, tissue carnosine or plasma beta-alanine?  

In section 5 and 6, we will discuss the available literature on how the above described 

enzymes and transporters contribute to the regulation of tissue carnosine homeostasis or 

plasma beta-alanine homeostasis, respectively. Because this thesis focuses on muscle 

metabolism, we will mainly concentrate on the effectors that are shown to be expressed 

inside myocytes. However, when discussing plasma beta-alanine homeostasis, other 

organs are assumed to also be involved in this process.  

 

Figure 15: Graphical overview of the concept of homeostasis, applied to the regulation of tissue carnosine homeostasis 

and plasma beta-alanine homeostasis. Both homeostatic regulations are closely connected with each other. Disturbed 

homeostasis will be detected by sensors and will activate effectors to either restore carnosine or beta-alanine 

homeostasis, thereby antagonizing the detected disturbance. Negative feedback loops are indicated by the dashed 

arrow. 
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First, we will elaborate on how the described effectors can maintain muscle carnosine 

homeostasis when a fall in muscle carnosine occurs, for example after orchidectomy. 

Orchidectomy is the removal of the gonads (primary reproductive organs), e.g. castration 

of testicles in males, which leads to a dramatic fall in sex hormones (e.g. testosterone). If 

effectors are able to antagonize a fall in muscle carnosine, this supports the theory of 

predominance of tissue carnosine homeostasis. In section 6, available information 

supporting the theory of plasma beta-alanine homeostasis will be explored. In this 

context, we will discuss if and how the above mentioned effectors are influenced by 

increased plasma beta-alanine levels after chronic beta-alanine supplementation as an 

example (Fig 15).   
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5. Evidence supporting the existence of tissue carnosine homeostasis 

In the previous section, enzymes and transporters involved in the carnosine metabolism 

are clarified. The following section will discuss if and how these effectors can effectively 

antagonize a fall in muscle carnosine, emphasizing the importance of muscle carnosine 

homeostasis. To antagonize a fall, increased carnosine synthesis and/or decreased  

carnosine degradation should be evoked. Orchidectomy in male mice is an example of a 

condition in which rodent muscle carnosine content is decreased (Peñafiel et al., 2004). 

Interestingly, the study of Everaert et al. (2013a) investigated the mRNA expression of 

carnosine-related enzymes and transporters in mice tibialis anterior at 7 and 30 days after 

orchidectomy. Muscle carnosine and anserine levels were non-significantly decreased at 7 

days following castration, and a significant decrease was found at 30 days, compared to 

control mice.  

5.1. Increasing carnosine synthesis 

In case a fall in muscle carnosine occurs, an upregulation of CARNS is necessary to 

compensate for the reduced intramyocellular carnosine levels and thus maintain 

carnosine homeostasis. Indeed, Everaert et al. (2013a) demonstrated that CARNS mRNA 

expression was significantly higher at 7 days (+43%) and 30 days (+57%) following 

orchidectomy. This clearly indicates that carnosine synthesis is stimulated in case a fall in 

muscle carnosine occurs and thus supports the importance of muscle carnosine 

homeostasis (Fig 15).   

5.2. Decreasing carnosine and beta-alanine degradation 

Next to increased carnosine synthesis, decreased carnosine and beta-alanine degradation 

should occur to antagonize a fall in muscle carnosine. This can be established by a 

downregulation of the beta-alanine degrading enzymes GABA-T and AGXT2 and tissue 

carnosinase (CNDP2).  

5.2.1. Beta-alanine degradation 

In view of maintaining muscle carnosine homeostasis, beta-alanine degradation should be 

downregulated since more beta-alanine is needed to increase the degree of carnosine 

synthesis. GABA-T mRNA expression was indeed lower 7 days following orchidectomy in 
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male mice (Fig 13) (Everaert et al., 2013a), suggesting that the priority role of beta-

alanine is to serve as precursor of carnosine synthesis, rather than its role as a fuel in the 

citric acid cycle. Whether AGXT2 mRNA expression is also influenced in this condition, was 

not investigated in the study of Everaert et al. (2013a) and thus remains to be established. 

5.2.2. Carnosine degradation 

If carnosine degradation would occur inside muscle cells (which is still doubtful), a 

decrease in the degradation rate would be expected in case of decreased carnosine levels. 

Indeed, Everaert et al. (2013a) found lower expression of CNDP2 at 7 days following 

orchidectomy compared to control mice, but this effect was not longer present at 30 days 

(Fig 16). 

 

 

Figure 16: Summary on how tissue carnosine homeostasis is maintained following a stimulus that evokes a fall in tissue 

carnosine. Colors display how the expression of the enzymes and transporters is affected by the stimulus 

(=orchidectomy) in order to maintain tissue carnosine homeostasis (red: downregulation; green: upregulation)  
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In summary, the increased mRNA expression of CARNS and the decreased mRNA 

expression of CNDP2 and GABA-T are an indication that the muscle aims to prevent 

carnosine concentrations to decrease in the 7 days following orchidectomy. The altered 

expression of these enzymes illustrates the importance of maintaining muscle carnosine 

homeostasis. If the body would not consider the muscle carnosine homeostasis as an 

important factor, the expression of the effectors would not be affected by a fall in 

muscle carnosine.  
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6. Evidence supporting the existence of plasma beta-alanine homeostasis 

The previous section demonstrated that the carnosine-related effectors expressed in 

myocytes can contribute to maintaining muscle carnosine homeostasis in case a fall of 

muscle carnosine occurs. However, since beta-alanine supplementation induces a rise in 

muscle carnosine, this might suggest that plasma beta-alanine homeostasis is even more 

important compared to muscle carnosine homeostasis. The following section will discuss 

if and how effectors can effectively antagonize a rise in plasma beta-alanine. If priority is 

given to maintaining plasma beta-alanine homeostasis, this suggests a whole body 

regulation rather than a pheripheral regulation on muscle level. The liver can be an 

important point of regulation in this process, as the hepatic portal vein carries nutrient-

rich blood from the gastrointestinal tract and spleen to the liver, ensuring that ingested 

substances are first processed by the liver before reaching the systemic circulation. Thus, 

as a consequence of elevated plasma beta-alanine levels, it can be hypothesized that 

whole body (and especially liver) beta-alanine synthesis is decreased and beta-alanine 

degradation is increased.   

6.1. Whole body beta-alanine synthesis 

Until now, the only known endogenous pathway to synthesize beta-alanine is uracil 

degradation in liver. However, it is currently unclear how this pathway is regulated and 

whether it is affected by increased beta-alanine availability. Moreover, as described, 

GADL1, a specific enzyme for beta-alanine synthesis from aspartate in mammalian muscle, 

is only recently proposed by Liu et al. (2012a). GADL1 mRNA expression was found in 

mouse kidney and in mouse and cattle skeletal muscles, but its presence in human tissues 

is until now not established. Furthermore, it is currently uninvestigated whether the 

GADL1 expression profile is affected by increased plasma beta-alanine availability 

following beta-alanine supplementation. The existence of this pathway and a possible 

downregulation in case of increased plasma beta-alanine levels could be a demonstration 

that plasma beta-alanine availability controls whole body beta-alanine-related pathways. 

6.2. Whole body beta-alanine degradation 

Both beta-alanine transaminating enzymes GABA-T and AGXT2 are known to be highly 

expressed in kidney and liver, and GABA-T mRNA expression was also found, although at 
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a lower level, in mice skeletal muscle (Everaert et al., 2013a), suggesting that beta-alanine 

might also be peripherally degraded (inside muscle cells), next to more central 

degradation in liver and kidney. Until now, the expression of AGXT2 in liver and kidney 

following beta-alanine supplementation is not yet investigated, but beta-alanine 

supplementation in rats resulted in increased mRNA expression of GABA-T in kidney (Ito 

et al., 2001). Similarly, muscle GABA-T mRNA expression was shown to be upregulated 

(+40%) in mice supplemented with beta-alanine supplementation (Everaert et al., 2013a). 

These observations demonstrate that increased plasma beta-alanine availability is 

antagonized by a higher degree of beta-alanine degradation in different tissues of the 

body (Fig 17). 

 

 

Figure 17: Summary on how plasma beta-alanine homeostasis is maintained following a stimulus that evokes a rise in 

plasma beta-alanine levels. Colors display how the expression of the enzymes and transporters is affected by the 

stimulus (=beta-alanine supplementation) in order to maintain plasma beta-alanine homeostasis (red: downregulation; 

green: upregulation)  
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In summary, the high expression of beta-alanine degrading enzymes GABA-T and AGXT2 

in the central organs (liver and kidney) suggest that these enzymes are responsible for 

the regulation of plasma beta-alanine homeostasis. Moreover, the upregulation of 

GABA-T mRNA levels after beta-alanine supplementation in both kidney and muscle 

illustrates that increased plasma beta-alanine levels are antagonized by this pathway. 

6.3. Predominance of plasma beta-alanine vs tissue carnosine homeostasis? 

Based on the observations described in the previous sections, we can currently define 

two working hypothesis which can shortly be defined as ‘tissue carnosine homeostasis’ vs 

‘plasma beta-alanine homeostasis’. Although both homeostatic systems probably exist, 

no direct evidence currently exists on which of these homeostatic systems is the most 

important one. However, some findings may suggest that plasma beta-alanine 

homeostasis is the predominant one. As an example, TauT and PAT1 are shown to be 

expressed in skeletal muscle of both rodents and humans. Interestingly, TauT mRNA 

levels were higher in beta-alanine and carnosine supplemented mice (+28% and +21%, 

respectively) (Everaert et al., 2013a). Because increased circulating beta-alanine 

concentrations stimulate the gene expression of TauT, this signifies that the large muscle 

organ helps to eliminate beta-alanine from the blood, which is in line with maintaining 

plasma beta-alanine homeostasis. If muscle carnosine homeostasis would be the main 

concern, transsarcolemmal beta-alanine uptake would be decreased to antagonize a rise 

in muscle carnosine upon beta-alanine supplementation. Moreover, in accordance with 

TauT, CARNS mRNA content was significantly higher in chronically beta-alanine 

supplemented mice and after the ingestion of one acute dose of beta-alanine (Miyaji et 

al., 2012; Everaert et al., 2013a). Thus, both transsarcolemmal beta-alanine uptake and 

intramyocellular carnosine synthesis seem to be stimulated by increased plasma beta-

alanine levels, suggesting that plasma beta-alanine homeostasis predominates over tissue 

carnosine homeostasis. Up until now, it remains to be investigated whether TauT and 

CARNS are also upregulated in human skeletal muscle following beta-alanine 

supplementation.   

Aims: the mRNA expression of all carnosine-related enzymes and transporters is already 

investigated in both mice and human skeletal muscle, but the effect of beta-alanine 

supplementation on the expression profiles are until now only explored in rodents. In 
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order to get a better understanding of the human plasma beta-alanine and tissue 

carnosine homeostatic regulation, this thesis aims to unravel the expression profiles of 

carnosine-related enzymes and transporters following chronic ingestion of beta-alanine.  
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7. Homeostatic failure by beta-alanine supplementation 

Although the above described information suggests that tissue carnosine homeostasis 

and plasma beta-alanine homeostasis is kept as stable as possible by a complex interplay 

of the different effectors, there is a specific situation in which both homeostatic 

processes are disturbed, i.e beta-alanine supplementation. As mentioned, chronic beta-

alanine supplementation was shown to increase intramuscular carnosine concentrations 

above the normal range. Shortly thereafter, carnosine loading was demonstrated to 

augment fatigue threshold and improve high-intensity exercise performance (Hill et al., 

2007; Hobson et al., 2012; Bellinger, 2014). These findings led to a fast-growing interest 

for beta-alanine as a nutritional supplement for competitive athletes participating in a 

range of sports. A recent meta-analysis bundled all studies investigating beta-alanine 

supplementation and exercise performance, providing evidence that exercise of 0.5-

10min in duration is the time frame in which beta-alanine supplementation is the most 

beneficial (Saunders et al., 2016). The currently used beta-alanine supplementation 

protocol will be discussed together with the available information on determinants of this 

loading process. Interestingly, supplemented beta-alanine was shown to have a low 

incorporation efficiency into muscle carnosine, demonstrating that the body is equipped 

with other pathways for beta-alanine and thus to a certain extent tries to keep muscle 

carnosine between homeostatic limits. Increased muscle carnosine concentrations by 

chronic beta-alanine supplementation can thus be seen as failure of the body to maintain 

plasma beta-alanine homeostasis, and thus subsequently also a failure to keep muscle 

carnosine within the normal range.  

7.1.1. Beta-alanine supplementation protocol 

Based on different supplementation studies, it was already shown that 4 - 6.4g beta-

alanine per day during 4-10 weeks increases carnosine concentrations by 40-80% in both 

trained and untrained individuals (Baguet et al., 2009; Stellingwerff et al., 2012a). 

Stellingwerf et al. (2012a) identified a linear dose–response relationship between beta-

alanine intake and carnosine loading, suggesting that the total amount of supplemented 

beta-alanine is an important determinant of the degree of muscle carnosine loading. This 

finding would appear to make the prescriptive application of beta-alanine quite simple. 

However, the daily dose of beta-alanine was limited in the first supplementation studies 
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because doses larger than 800mg (10mg/kg body weight) were accompanied by 

moderate to severe parasthesia symptoms (prickly sensation on the skin) (Harris et al., 

2006). To circumvent these undesirable symptoms, multiple beta-alanine doses (maximal 

800mg) are supplemented throughout the day to achieve the desired total beta-alanine 

dose daily. More recently, a slow-release beta-alanine tablet form has become 

commercially available as another strategy to circumvent parasthesia symptoms. The 

slow-release beta-alanine tablet was shown to result in slower absorption kinetics, 

making it possible to ingest 1.6g of slow-release beta-alanine without perceiving side-

effects (Décombaz et al., 2012). This allows for larger daily doses (up to 6.4g) to be 

ingested throughout a supplementation period. Daily doses larger than 6.4 g/day are yet 

to be examined, as well as prolonged beta-alanine supplemention (more than 3 months). 

7.1.2. Metabolic fate on ingested beta-alanine 

Considering the high baseline muscle carnosine concentrations, an increase of 40-80% is a 

significant amount of loading (e.g., 24-35mmol/kg dry weight in vastus lateralis muscle 

after 4 weeks of supplementation (Harris et al., 2006)). However, the current 

supplementation protocol requires athletes to take a large dose of beta-alanine each day 

during several weeks. In sport settings, it would be more useful if athletes could load their 

carnosine levels in a shorter time in anticipation of a championship or competition. To 

optimize the beta-alanine loading protocol, the efficiency of beta-alanine 

supplementation can be calculated by dividing the molar increase in muscle carnosine by 

the total ingested molar amount of beta-alanine. Surprisingly, Stegen et al (2013a) found 

that this efficiency is very low (around 2.8% when assuming that 40% of body mass is 

muscle mass), meaning that only 2-3% of the total ingested amount of beta-alanine is 

actually incorporated into muscle carnosine. It was shown that a small part of chronically 

ingested beta-alanine in excreted in the urine (1-2%), indicating that approximately 95% 

of ingested beta-alanine is not used for carnosine synthesis and thus has another 

metabolic fate in the human body (Stegen et al., 2013a). Uptake of beta-alanine into non-

muscle tissue (such as nervous tissue) may account for a (small) portion of the available 

beta-alanine after ingestion. Table 3 gives an overview of the efficiency of beta-alanine or 

carnosine supplementation in different published studies in literature. 

 



 
Table 3: Overview of studies investigating the effect of beta-alanine or carnosine supplementation on human muscle carnosine loading and the efficiency of the different supplementation 

protocols. Efficiency is calculated by dividing the total molar increase in muscle carnosine (40% of body weight x Δ[muscle carnosine]) by the total ingested molar amount of beta-alanine or 

carnosine. BA: beta-alanine; CARN: carnosine; GASTR: gastrocnemius; SOL: soleus; VI: vastus intermedius; VL: vastus lateralis 

Study Daily BA dose  
(g) 

Length Total BA dose (g) Muscle CARN increase  
(mmol/kg ww) 

CARN increase  
(%) 

Efficiency  
(%) 

Harris (2006) 3.2 4 wks 89.6 VL 1.95 39.8 6.17 
 4 - 6.4 4 wks 145.6 VL 2.76 45.6 5.37 

Hill (2007) 4 – 6.4 4 wks 145.6 SOL 2.55 51.3 5.0 
 4 – 6.4 10 wks 414.4 GASTR 3.7 74.4 2.55 

Derave (2007) 2.4 – 4.8 4-5 wks 139.2 SOL 
GASTR 

3.63 
3.74 

46.7 
37.0 

7.02 

Kendrick (2008) 6.4 4 wks 179.2 VL 3.2 53.5 3.85 

Kendrick (2009) 6.4 4 wks 179.2 VL 2.04 34.8 2.45 

Baguet (2009) 2.4 – 4.8 5-6 wks 180 SOL 
GASTR 
TA 

2.2 
1.79 
1.68 

39.0 
23.4 
26.9 

2.68 

Baguet (2010a) 5 7 wks 245 SOL 
GASTR 

1.42 
1.29 

45.3 
28.2 

1.65 

Stellingwerff (2012a) 1.6 – 3.2 8 wks 134.4 GASTR 
TA 

2.36 
2.45 

44.5 
30.3 

5.45 

Stegen (2013) 3.2 46 days 147.2 SOL 
GASTR 

1.7 
1.67 

48.6 
36.7 

2.71 

Bex (2013) 6.4 23 days 147.2 SOL 
GASTR 

2.64 
2.78 

57.8 
40.2 

4.85 

Bex (2014) 6.4 23 days 147.2 SOL 
GASTR 

2.95 
3.27 

57.8 
37.7 

5.92 

Danaher (2014) 4.8 – 6.4 6 wks 224 SOL 
GASTR 

4.92 
5.03 

88 
62 

6.32 

Chung (2014) 6.4 6 wks 268.8 SOL 
GASTR 

5.2 
5.7 

161 
143 

5.65 

Gross (2014) 3.2 38 days 121.6 GASTR 
TA 
VI 
VL 

2 
2.5 
2.6 
1.8 

22.7 
36.2 
46.4 
24.3 

5.02 

Cochran (2015) 3.2 4 wks 89.6 VL 2.1 32.8 7.2 
 3.2 10 wks 224 VL 3.3 51.6 4.5 

Study Daily CARN dose  
(g) 

Length Total CARN dose 
(g) 

Muscle CARN increase  
(mmol/kg ww) 

CARN increase  
(%) 

Efficiency  
(%) 

Harris (2006) 10 - 16 4 wks 364 VL 4.1 70.7 8.1 
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In line with this, Pihl & Fritzson (1955) already reported that more than 90% of the 

injected C14-labelled beta-alanine in rats was recovered in the expired CO2 in 5h, 

suggesting that beta-alanine can be metabolized elsewhere, most probably as a carbon 

source for energy provision through oxidation. As described above, it could be 

hypothesized that beta-alanine is oxidized by GABA-T and/or AGXT2 to form malonate 

semi-aldehyde which can ultimately enter the citric acid cycle and thus contribute to total 

energy delivery. Thus, one could assume that the beta-alanine degrading pathway leads 

to loss of beta-alanine, which could be a possible explanation of the low efficiency of 

beta-alanine supplementation. However, up until now, no studies are available 

investigating the contribution of these enzymes to the circulating beta-alanine and 

muscle carnosine metabolism. Based on this information, it could be questioned whether 

blocking GABA-T and AGXT2 could be a way to decrease the amount of beta-alanine 

degradation, thereby stimulating higher plasma beta-alanine levels and thus subsequently 

promote muscle carnosine synthesis (higher tissue carnosine synthesis as a consequence 

of a more disturbed plasma beta-alanine homeostasis).  

Aims: GABA-T and AGXT2 are two enzymes suggested to transaminate beta-alanine. 

This thesis aims to investigate whether these enzymes are indeed involved in plasma 

beta-alanine and tissue carnosine homeostasis. Therefore, combined oral beta-alanine 

supplementation with inhibitors of GABA-T and/or AGXT2 activity is hypothesized to 

cause a more disturbed plasma beta-alanine homeostasis and thus lead to a higher 

amount of tissue carnosine laoding. 

7.1.3. Determinants of carnosine loading 

Few studies recently revealed some determinants of muscle carnosine loading in order to 

increase the efficiency of the beta-alanine supplementation protocol. First, Stegen et al. 

(2013a) showed that coingesting beta-alanine with a meal containing carbohydrates and 

proteins is able to enhance the amount of carnosine loading compared to ingesting beta-

alanine between the meals. This observation suggests that insulin could play a stimulating 

role in one or more crucial steps of the muscle carnosine synthesis process. In addition, 

training and/or training status is another determinant of muscle carnosine loading. Bex 

et al. (2014) demonstrated that trained muscles had approximately two-fold higher 

carnosine loading compared with untrained muscles for the same oral beta-alanine 
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supplementation protocol. This observation was found both within athletes and between 

athletes participating in different sports. Furthemore, in a follow-up study, it was shown 

that carnosine loading effectiveness was improved by implementing high-volume and 

high-intensity training protocols in combination with beta-alanine in non-specifically 

trained subjects (Bex et al., 2015).  

Table 4: Summary of the efficiency of beta-alanine supplementation for different supplementation studies, showing 

that meal co-ingestion, exercise training (both chronic and acute) and high daily intakes during a limited period lead to 

highest efficiency of beta-alanine induced carnosine loading. Adapted from Blancquaert et al. (2015). BA: beta-alanine 

Study Dose Meal Training BA form Efficiency (%) 

Stegen et al. (2013) 3.2g/d, 46d - - pure 2.39 

Stegen et al. (2013) 3.2g/d, 46d + - slow-release 2.76 

Stegen et al. (2013) 3.2g/d, 46d + - pure 2.99 

Bex et al. (2014) 6.4g/d, 23d + - slow-release 3.49 

Bex et al. (2015) 6.4g/d, 23d + + 
acute 

slow-release 5.42 

Chung et al. (2014) 6.4g/d, 42d + + 
chronic 

slow-release 5.65 

Bex et al. (2014) 6.4g/d, 23d + + 
chronic 

slow-release 5.82 

 

During prolonged competition, it is of importance for athletes to effectively maintain 

muscle carnosine concentrations at elevated levels. Stegen et al. (2014) demonstrated 

that a dose of 1.2g/day is optimal to keep muscle carnosine content elevated at 30-50% 

above baseline after a loading phase.  

Despite the strategies that are shown to improve the efficiency of chronic beta-alanine 

supplementation (Table 4), this efficiency of beta-alanine supplementation remains low 

with ~90% of the beta-alanine still having an unknown metabolic fate. Moreover, the 

study of Hill et al. (2007) demonstrated that loading efficiency is decreasing throughout 

the supplementation period. In their study, carnosine loading was measured in the vastus 

lateralis after 4 and 10 weeks of beta-alanine supplementation, which corresponds to a 

total ingested beta-alanine dose of 145.6g and 414.4g, respectively. They reported an 

increase in carnosine levels of 58.8% at 4 weeks and 80.1% at 10 weeks, demonstrating a 

slower loading process and thus lower loading efficiency in the second period of 
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supplementation (incorporation efficiency for beta-alanine was 5.0% in first 4 weeks vs 

1.22% in subsequent 6 weeks). This reduced efficiency over time suggests that, during the 

course of supplementation, the conditions for carnosine synthesis are less optimal. This 

could be caused by an attempt of the body to not further disturb muscle carnosine 

homeostasis above a certain point (reaching a plateau), but it could also be hypothesized 

that beta-alanine does not longer remain the (only) driving factor for carnosine synthesis. 

As mentioned, L-histidine is the accompanying amino acids for carnosine synthesis. Until 

now, no study investigated the effect of long term beta-alanine supplementation on body 

and muscle L-histidine concentrations. The reduced efficiency of beta-alanine 

supplementation may therefore result from the scarcity of L-histidine following a long and 

intensive beta-alanine supplementation protocol. 

Aims: Beta-alanine is widely accepted as the rate-limiting factor in the carnosine 

synthesis process. Therefore, controlling beta-alanine availability is considered as the 

main factor to regulate carnosine synthesis. However, the beta-alanine 

supplementation protocol that is currently used is long and very intensive while no 

attention is assigned to L-histidine availability. This PhD thesis aims to explore the 

effect of chronic oral beta-alanine supplementation on L-histidine availability, thereby 

revealing the possible contributing role of L-histidine to the carnosine synthesis process.   
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8. Experimental aims and outline of the thesis 

Carnosine is the main molecule investigated in this thesis. It has several biochemical and 

physiological properties relevant to both exercise performance and health-related  issues. 

Although carnosine is extensively investigated during the past decade, its specific 

metabolism is still far from fully understood. Figure 18 gives an overview of the studies 

included in this thesis. These studies were performed to contribute to a better 

understanding of the unresolved physiological puzzle named ‘regulation of muscle 

carnosine homeostasis’.  

 

Figure 18: Schematic overview of the studies included in this thesis 

 

Carnosine loading by beta-alanine supplementation is a rather inefficient process, which 

is probably a consequence of the strong homeostatic system, as described above. Study 1 

and 2 focus on strategies to improve this supplementation efficiency by gathering a better 

insight in the carnosine metabolism. Study 1 mainly focused on the role of beta-alanine 

transaminases in the regulation of muscle carnosine levels upon beta-alanine 

supplementation. As it is hypothesized that ingested beta-alanine can be metabolized 

elsewhere, a possible pathway is transamination by GABA-T and AGXT2 in either liver 

and/or kidney or inside myocytes. It is therefore investigated whether inhibiting the beta-



44  INTRODUCTION 
 

 

alanine transaminase pathway is an efficient way to enhance the amount of carnosine 

loading.  In study 2, it was questioned whether beta-alanine is indeed the one and only 

rate-limiting factor for carnosine synthesis. In some animals, L-histidine was shown to be 

rate-limiting over beta-alanine (Tamaki et al., 1977; Park et al., 2013). Whether carnosine 

loading efficiency can thus be enhanced by L-histidine supplementation (alone or 

combined with beta-alanine) is explored in study 2. To gather a better understanding of 

the carnosine metabolism, study 3 and 4 examined two extreme situations, namely a lack 

of any dietary beta-alanine intake on the one hand and chronic beta-alanine 

supplementation on the other hand, in order to clarify the effect of these scenarios on 

the carnosine homeostasis and its regulation. The effect of a 6-month vegetarian diet in 

previous omnivorous subjects on the homeostasis of three carninutrients (carnosine, 

carnitine, creatine) was examined in study 3. Lastly, study 4 investigated the 

transcriptional events of carnosine-related enzymes and transporters in human skeletal 

muscles in response to beta-alanine supplementation to further elucidate how muscle 

carnosine homeostasis is disturbed and maintained.  

The aims and underlying hypotheses investigated in this thesis are summarized below:  

- To elucidate if beta-alanine transaminases are involved in the regulation of muscle 

carnosine concentrations upon beta-alanine supplementation 

 It is hypothesized that beta-alanine is degraded to malonate semi-aldehyde by 

GABA-T and/or AGXT2 (study 1). If so, inhibiting this transaminase pathway could 

be a way to evoke a higher amount of carnosine loading following beta-alanine 

supplementation (study 1) 

 Beta-alanine transaminases are mainly known to be expressed in central organs 

(liver and kidney), but they might also be involved in beta-alanine degradation 

inside myocytes (study 1). It is therefore hypothesized that they are upregulated 

by beta-alanine supplementation (study 4) 

- To explore whether beta-alanine is the only factor driving carnosine homeostasis 

 Beta-alanine is considered as the rate-limiting precursor for carnosine synthesis in 

humans. The effect of L-histidine supplementation on human muscle carnosine 
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loading is until now never explored. In some animal species, however, L-histidine 

is shown to be the rate-limiting factor in the carnosine synthesis process. It can be 

expected that L-histidine supplementation in humans can thus also influence 

muscle carnosine concentrations (study 2) 

 Based on the low efficiency of beta-alanine supplementation, we hypothesize that 

intramyocellular L-histidine levels are depleted by beta-alanine supplementation, 

thus co-supplementation of L-histidine with beta-alanine can improve the loading 

efficiency (study 2) 

- To gain more insight in the determinants, manipulation and regulation of muscle 

carnosine homeostasis 

 Cross-sectional data demonstrated that vegetarians have somewhat lower muscle 

carnosine levels compared to omnivores, suggesting that the diet (containing 

HCDs and thus beta-alanine) is a determinant of baseline muscle carnosine 

homeostasis. The same cross-sectional findings are reported for plasma and 

muscle carnitine and creatine concentrations. By switching omnivores onto a 

vegetarian diet for 6 months, we hypothesize that homeostasis of carnosine (and 

other carninutrients carnitine and creatine) is disturbed, confirming that the diet is 

a determinant of baseline muscle carninutrients homeostasis (study 3) 

 We know that plasma beta-alanine homeostasis is disturbed by chronic beta-

alanine supplementation. We hypothesize that, as a consequence of disturbed 

plasma beta-alanine levels, muscle carnosine levels are increased to remove the 

redundant plasma beta-alanine (study 1). We thus hypothesize that fasted plasma 

beta-alanine levels upon beta-alanine supplementation can be a suitable predictor 

for the amount of carnosine loading (study 1, 2, 3) 

 We hypothesize that some known and putative players in the metabolic pathways 

of carnosine are expressed in human skeletal muscle such as beta-alanine 

synthezing enzyme GADL1, beta-alanine degrading enzyme GABA-T and histidine 

decarboxylase (HDC) (study 4). It was furthermore expected that, alike rodents, 

human muscle carnosine disturbance is mainly accomplished by changes in the 
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gene expression of both the beta-alanine transporters and carnosine synthase 

enzyme (study 4) 
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KEY POINTS 

- Using recombinant DNA technology, the present study provides the first strong and 

direct evidence indicating that beta-alanine is an efficient substrate for the mammalian 

transaminating enzymes 4-aminobutyrate-2-oxoglutarate transaminase and alanine-

glyoxylate transaminase. 

- The concentration of carnosine and anserine in murine skeletal and heart muscle 

depends on circulating availability of beta-alanine, which is in turn controlled by 

degradation of beta-alanine in liver and kidney.  

- Chronic oral beta-alanine supplementation is a popular ergogenic strategy in sports 

because it can increase the intracellular carnosine concentration and subsequently 

improve the performance of high-intensity exercises. The present study can partly explain 

why the beta-alanine supplementation protocol is so inefficient, by demonstrating that 

exogenous beta-alanine can be effectively routed toward oxidation. 

ABSTRACT 

The metabolic fate of orally ingested beta-alanine is largely unknown. Chronic beta-

alanine supplementation is becoming increasingly popular for improving high-intensity 

exercise performance because it is the rate-limiting precursor of the dipeptide carnosine 

(beta-alanyl-L-histidine) in muscle. However, only a small fraction (3–6%) of the ingested 

beta-alanine is used for carnosine synthesis. Thus, the present study aimed to investigate 

the putative contribution of two beta-alanine transamination enzymes, namely 4-

aminobutyrate-2-oxoglutarate transaminase (GABA-T) and alanine-glyoxylate 

transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue 

anserine.We found that, when transfected into HEK293T cells, recombinant mouse and 

human GABA-T and AGXT2 are able to transaminate beta-alanine efficiently. The reaction 

catalysed by GABA-T is inhibited by vigabatrin, whereas both GABA-T and AGXT2 activity 

is inhibited by aminooxyacetic acid (AOA). Both GABA-T and AGXT2 are highly expressed 

in the mouse liver and kidney and the administration of the inhibitors effectively reduced 

their enzyme activity in liver (GABA-T for vigabatrin; GABA-T and AGXT2 for AOA). In vivo, 

injection of AOA in C57BL/6 mice placed on beta-alanine (0.1% w/v in drinking water) for 

2 weeks lead to a 3-fold increase in circulating beta-alanine levels and to significantly 



52  ORIGINAL RESEARCH – STUDY 1 

 

higher levels of carnosine and anserine in skeletal muscle and heart. By contrast, specific 

inhibition of GABA-T by vigabatrin did not affect carnosine and anserine levels in either 

tissue. Collectively, these data demonstrate that homeostasis of carnosine and anserine 

in mammalian skeletal muscle and heart is controlled by circulating beta-alanine levels, 

which are suppressed by hepatic and renal beta-alanine transamination upon oral beta-

alanine intake. 

ABBREVIATIONS LIST  

AGXT2, alanine-glyoxylate transaminase; AOA, aminooxyacetate; CARNS, carnosine 

synthase; GABA-T, 4-aminobutyrate-2-oxoglutarate transaminase; HCD, histidine-

containing dipeptide; MSA, malonate semi-aldehyde; PBS, phosphate-buffered saline; SAL, 

saline; TauT, taurine transporter 
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INTRODUCTION 

Carnosine is a versatile dipeptide, composed of beta-alanine and L-histidine. Anserine 

(beta-alanyl-Nπ-methylhistidine) and ophidine/balenine (beta-alanyl-Nτ-methylhistidine) 

are two methylated analogues of carnosine, collectively called histidine-containing 

dipeptides (HCDs). HCDs are mainly present in mammalian skeletal muscle and neuronal 

tissue and, to a smaller extent, in the heart, liver and kidney (Boldyrev et al., 2013). 

Skeletal muscles of all mammals, except humans, possess both carnosine and a 

methylated analogue (anserine or ophidine). In human muscles, carnosine is the only HCD 

(5-8mM), with ~2-fold higher concentrations in fast-twitch fibers than slow-twitch fibers 

(Harris et al., 1998; Kendrick et al., 2009). Several physiological properties of carnosine 

are relevant to muscular function and homeostasis, such as pH buffering, anti-oxidant 

capacity, increasing Ca2+ sensitivity and inhibiting protein glycation (Boldyrev et al., 2013; 

Blancquaert et al., 2015).  

The major pathways involved in carnosine metabolism are synthesis from and hydrolysis 

to its constituent amino acids, by carnosine synthase (CARNS) (Drozak et al., 2010) and 

carnosinases (CN) (Teufel et al., 2003), respectively. Beta-alanine has been shown to be 

the rate-limiting precursor for carnosine synthesis in human muscle cells (Harris et al., 

2006). Because HCDs are present in meat and fish, the daily dietary intake of these 

dipeptides in an omnivorous diet is considered to affect the availability of beta-alanine 

and therefore possibly also the muscle carnosine content. Accordingly, chronic oral beta-

alanine supplementation (4-6g/day during 4-10 weeks) was found to increase muscle 

carnosine content by 40-80% (Harris et al., 2006; Hill et al., 2007; Baguet et al., 2009). By 

contrast, a vegetarian diet is free of HCDs and long-term vegetarians may have somewhat 

lower muscle carnosine contents compared to omnivores (Everaert et al., 2011).  

However, considering the high amounts of HCDs present in mammalian muscles and the 

significant roles that they fulfill, carnosine and anserine homeostasis probably do not 

depend entirely on the nutritional supply of beta-alanine. Moreover, herbivores also 

show a high muscle HCD content (Dunnett & Harris, 1999; Boldyrev et al., 2013), although 

both beta-alanine and carnosine are absent in plants and, consequently, from the 

herbivorous diet. This implies the existence of endogenous pathways that synthesize 
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beta-alanine, such as uracil degradation. Similarly, pathways may exist to degrade beta-

alanine and maintain beta-alanine levels and, subsequently, HCD levels within 

homeostatic limits.  

Under conditions where exogenous beta-alanine supply exceeds the need and/or capacity 

to synthesize HCDs, beta-alanine is probably degraded and used as an energy source. This 

was recently suggested by Stegen et al (2013), who found that daily orally ingested beta-

alanine as an ergogenic supplement has a very high whole body retention (only <2% was 

excreted in urine) and only a small fraction of the exogenous beta-alanine is taken up by 

the human muscles to be converted into carnosine (3-6%). Moreover, Pihl & Fritzson 

(1955) reported that more than 90% of the injected C14-labelled beta-alanine in rats was 

recovered in the expired CO2 in 5 h, suggesting that beta-alanine can be metabolized 

elsewhere, most probably as a carbon source for energy provision through oxidation. As a 

result of this, beta-alanine supplementation, which recently became very popular among 

athletic populations as a result of its ergogenic potential (Hill et al., 2007; Derave et al., 

2007), is a rather impractical process, requiring athletes to take large doses of beta-

alanine every day over several weeks to induce HCD loading, resulting in a total ingested 

dose that is an order of magnitude higher than the genuine amount of beta-alanine 

required to synthesize dipeptides.  

To enter the citric acid cycle and provide energy, the amine group of beta-alanine can be 

removed through a transamination resulting in the formation of the keto-acid malonate 

semi-aldehyde (MSA). Mostly based on enzymatic assays in cell extracts, two 

mitochondrial enzymes are known to catalyse this reaction: 4-aminobutyrate-2-

oxoglutarate transaminase (EC 2.6.1.19; also known as GABA-T or beta-alanine-2-

oxoglutarate transaminase) (Ito et al., 2001) and alanine-glyoxylate transaminase (EC 

2.6.1.44; also known as AGXT2 or beta-alanine-pyruvate transaminase) (Rodionov et al., 

2014). Vigabatrin is a known selective irreversible inhibitor of GABA-T (Lippert et al., 

1977), whereas aminooxyacetate (AOA) is known to inhibit all pyridoxal-5’-phosphate-

dependent enzymes, including GABA-T and AGXT2 (John et al., 1978; Tamaki et al., 1990; 

Horváth & Wanders, 1995). Interestingly, administration of AOA has already been 

reported to increase urinary, liver, kidney and plasma beta-alanine levels in rats by 27-, 

15-, 10- and 3-fold, respectively (Baxter & Roberts, 1961; Kurozumi et al., 1999). These 
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results suggest that inhibiting both the transaminase enzymes (GABA-T and AGXT2) might 

be an efficient strategy for counteracting the beta-alanine catabolism in rodents. 

However, to date, the effect of AOA on tissue HCD levels and the effect of vigabatrin on 

both beta-alanine and HCD metabolism have not been determined.  

The present study aimed to test the hypothesis that beta-alanine is degraded by the 

transaminase enzymes GABA-T and AGXT2 and that this reaction regulates tissue HCD 

homeostasis. The present study first aimed to demonstrate that beta-alanine is a suitable 

substrate for both transaminase enzymes by means of recombinant DNA technology, and 

also that vigabatrin is an inhibitor of GABA-T, whereas AOA inhibits both GABA-T and 

AGXT2 activity towards beta-alanine. In addition, the study aimed to determine the tissue 

mRNA expression of beta-alanine transaminases and their role in muscle HCD metabolism 

upon oral beta-alanine intake.   
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MATERIALS AND METHODS 

Ethical approval 

The experimental protocol was approved by the Ethics Committee for Animal Research at 

Ghent University and followed the Principles of Laboratory Animal Care.  

Part 1: in vitro enzymatic experiments 

Cloning and expression of mouse GABA-T and AGXT2 in HEK293T cells  

GABA-T and AGXT2 were PCR-amplified using cDNA from mouse liver using Phusion High-

Fidelity DNA Polymerase, cloned in pEF6/myc-HisA plasmid and expressed in HEK293T 

cells as C-terminal His6-tagged proteins as described previously (Veiga-da-Cunha et al., 

2014). HEK293T cell extracts from three independent experiments (n=3) were prepared 

48 h after transfection, by removing the medium, washing the plates with phosphate-

buffered saline (PBS) and collecting the cells from each plate in 0.5 ml of extraction buffer 

without Triton X-100. The cells were then lysed by freezing twice in liquid nitrogen and 

genomic DNA was removed by treating the lysates with DNase I (125 U/ml). The extracts 

were stored at -80°C before analysis of the recombinant proteins by SDS-PAGE/Western-

blotting and measurement of enzymatic activities. 

Assays of GABA-T and AGXT2 transaminase activities  

GABA-T activity was measured using a spectrophotometric assay based on the sequential 

transamination and glutamate dehydrogenase reaction, which couples the reduction of 

iodonitrotetrazolium to a purple iodonitrotetrazolium-formazan dye that absorbs at 490 

nm. The reaction was followed at 30°C in a mixture (1 ml) containing 50 mM Tris (pH 8.5), 

1 mM ADP-Mg2+, 5 µM pyridoxal-phosphate, 5 mM MgCl2, 2 mM EGTA, 1 mM NAD+, 0.5 

mg/ml bovine serum albumin (BSA), 75 µM INT, 1 mM -ketoglutarate, 2.5 mM ɣ-

aminobutyric acid (GABA) or beta-alanine, 1.5 U of recombinant diaphorase from 

Clostridium kluyveri (500 U/ml) and 10 U of beef liver glutamate dehydrogenase (5000 

U/ml). Vigabatrin (0.5 mM) and AOA (2 µM) were added to the activity assay and the 

reaction was started by the addition of HEK293T cell extracts. Appropriate blanks in the 

absence of GABA or beta-alanine were run in parallel. The concentrated stock of 

diaphorase that was used in the assay (10 mg/ml) was prepared in 50% glycerol, 0.2 M 

Tris (pH 7), 0.54 mM flavin mononucleotide and 0.25 mg/ml BSA and stored at -20°C. 
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AGXT2 activity was measured in a two-step assay using alanine dehydrogenase to 

measure L-alanine formed during the AGXT2 transamination of DL--aminoisobutyrate (or 

beta-alanine) in the presence of pyruvate. In the first step (0.2 ml) the assay mixture 

contained 25 mM Tris (pH 8), 2 µM pyridoxal-phosphate, 2 mM EGTA, 0.25 mg/ml BSA, 1 

mM pyruvate and 5 mM DL--aminoisobutyrate or beta-alanine. Vigabatrin (0.5 mM) and 

AOA (2 µM) were added to the activity assay and the reaction was started by the addition 

of 30 µl HEK293T cell extracts and left to proceed for 4 h at 37°C before stopping (5 min at 

80°C). Appropriate blanks in the absence of DL--aminoisobutyrate or beta-alanine were 

also run in parallel. In the second step, the L-alanine produced was quantified in an end-

point assay performed in 0.8 ml mixture containing 0.15 ml of the first reaction mixture in 

freshly prepared 20 mM Tris/0.5 M hydrazine buffer (pH 9), 0.7 mM EDTA and 0.9 mM 

NAD+. The reaction was started by addition of 5 µl (2 U) of recombinant alanine 

dehydrogenase from Bacillus cereus (> 350 U/ml) and the change in absorbance at 340 

nm was monitored for each sample.  

Part 2: animal nutritional intervention study 

Animal care and experimental protocol  

A total of 66 male C57BL/6 mice (8 weeks old) were used in this study, divided over six 

groups. Upon arrival, mice were allowed to acclimatize to their new surrounding for 10 

days before the start of the 2 week intervention period. All animals were allowed free 

access to food (standard chow not containing carnosine or derivatives) and water at room 

temperature and were exposed to a 12:12 h light/dark cycle.  

Mice were randomly divided in groups and underwent different treatments (Table 1). 

Mice received different drinks depending on the amount of beta-alanine dissolved in the 

drinking water (ranging from 0, 0.1, 0.6 and 1.2% w/v). Mice from the 0.1% beta-alanine 

supplementation group were further divided in subgroups based on daily subcutaneous 

injections with beta-alanine transaminase inhibitors: vigabatrin, AOA or saline (SAL) as a 

control. Vigabatrin (Sabril; Lundbeck, Deerfield, IL, USA) was administered at a dose of 

500mg/kg body weight in aqueous solution (50mg vigabatrin/ml saline or 10µL injection 

volume/g body weight). AOA (Sigma, St Louis, MO, USA) was administered in a dose of 

10mg/kg body weight in aqueous solution (1mg AOA/ml saline or 10µL injection volume/g 

body weight). The same injection volume was used for saline. Drinking water was 
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refreshed at least three times a week and body weight and drinking volume per cage (two 

or three animals) were monitored.  

The last inhibitor injection was performed 3 h prior to dissection. Mice were 

anaesthetized by an intraperitoneal infusion of 80% xylazine – 20% Ketamine (5 µL/g body 

weight). After careful dissection of soleus, tibialis anterior and gastrocnemius muscles and 

blood collection by cardiac puncture, mice were killed by cervical dislocation. Kidneys, 

liver, heart and brain were dissected and urine was collected from the bladder. Any 

visible connective or fat tissue was removed from the tissues and all samples were quickly 

frozen in liquid nitrogen and stored at -80°C. Blood samples were centrifuged at 16,000 g 

for 5 min at 4°C and serum was stored at -80°C. 

Table 1. Characteristics of mice of the nutritional intervention study (Part 2) 

%BA in DW 
Injection 

solution 
n 

BW start 

(g) 

Δ BW 

(g) 

Drinking volume 

(ml/mouse/day) 

Total dose  

(g BA/mouse) 

0% Saline 15 27 ± 1.5 1.5 ± 0.8 6.34 ± 1.24 / 

0.1% Saline 15 25 ± 1.9 § 1.3 ± 1.2 4.91 ± 0.79 § 0.069 ± 0.011 

Vigabatrin 15 25.5 ± 2.3 -0.4 ± 0.9 * 4.39 ± 0.51 * 0.061 ± 0.007 

AOA 8 26.8 ± 1.9 -0.5 ± 0.9 * 5.76 ± 0.14 * 0.081 ± 0.002 

0.6% Saline 7 26.3 ± 3.2 1.5 ± 0.8 5.25 ± 0.35 § 0.441 ± 0.030 

1.2% Saline 6 26.7 ± 1.5 1.6 ± 1.4 4.15 ± 0.99 §§ 0.776 ± 0.108 

§
 p < 0.05 and 

§§
 p < 0.001 vs 0% beta-alanine – SAL and * p < 0.05 vs 0.1% beta-alanine – SAL. Data are means ± SD. BA, 

beta-alanine; BW, body weight; DW, drinking water. 

 

Preparation of mouse liver extracts  

Mouse liver extracts (n=3) were prepared by homogenizing frozen samples in 3 volumes 

(w/v) of extraction buffer (50 mM potassium phosphate buffer, pH 7, 0.1% Triton X-100, 

25 µM pyridoxal-phosphate and 5 µg/ml of leupeptine and antipaine), followed by 

centrifugation (16,000 g for 20 min at 4°C) and collection of the supernatant containing 

soluble proteins. Liver extracts were stored at -80°C.  

Assays of GABA-T and AGXT2 transaminase activities  

GABA-T and AGXT2 activity was measured as described above, except the reaction was 

started by addition of mouse liver extract.  



ORIGINAL RESEARCH – STUDY 1  59 
 

 

mRNA expression of carnosine-related enzymes and transporters in mouse tissues by 

means of quantitative PCR  

Total RNA from mouse skeletal muscles, heart, liver, kidney and brain was isolated using 

the TriPure Isolation Reagent (Roche, Basel, Switzerland) followed by purification with the 

RNeasy Mini Kit (Qiagen, Valencia, CA, USA). An on-column DNase treatment was 

performed using the RNase-Free DNase Set (Qiagen). RNA was quantified using a 

Nanodrop 2000C spectrophotometer (Thermo Scientific, Walthem, MA, USA) and RNA 

purity was assessed using the A260/A280 ratio. Using a blend of oligo(dT) and random 

primers, 500 ng of RNA was reversed transcribed with the iScript cDNA Synthesis kit (Bio-

Rad, Hercules, CA, USA) in accordance with to the manufacturer’s instructions. 

Quantitative PCR was carried out on a Lightcycler 480 system (Roche) using an 8 µL 

reaction mix containing 3 µL of template cDNA (1:10 dilution), 300 nM forward and 

reverse primers and 4 µL SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, 

USA). The cycling conditions comprised a polymerase activation at 95°C for 10 min, 

followed by 45 cycles at 95°C for 15 s, 60°C for 30 s and 72°C for 30 s. Primer sequences 

(Table 2) of most genes of interest (CARNS, taurine transporter (TauT) and GABA-T) are 

available in the literature (Everaert et al., 2013a). The primer sequence for AGXT2 was 

newly designed using Primer Express 3.0 (Applied Biosystems). Sequence specificity was 

confirmed using NCBI Blast analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi). To control 

the specificity of amplification, data melting curves were inspected and PCR efficiency 

was calculated for AGXT2. Normalized gene expression values were calculated by dividing 

the relative gene expression values (calculated by the ΔCt method) for each sample by 

the expression values of the geometric mean of Ppia, Rplp0 and GAPDH as selected by 

GeNorm (Vandesompele et al., 2002). 

Quantification of beta-alanine and GABA by means of high-performance liquid 

chromatography 

Brains were dissolved in PBS (1 mg wet weight brain/10 µL) for homogenization. Brain 

homogenates, serum and urine were deproteinized using 35 % sulfosalicylic acid and 

centrifuged (5 min, 16,000 g). Deproteinized supernatant was mixed with AccQ Fluor 

Borate buffer and reconstituted Fluor Reagent (1:7:2) from the AccQTag chemistry kit 

(Waters, Milford, MA, USA). The same method was applied to the combined standard 
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solutions of beta-alanine (Sigma) and GABA (Sigma). The derivatized samples were 

applied to a Waters high-performance liquid chromatography system comprised of an 

AccQTag column (3.9 x 150 mm, 4 µm) and fluorescence detector (excitation/emission 

wavelength: 250/395 nm). The column was equilibrated with buffer A [10% eluent A 

(Waters) – 90% H2O], buffer B (100% acetonitrile) and buffer C (100% H2O) at a flow rate 

of 1ml/min at room temperature. Urinary beta-alanine values were normalized to 

creatinine using the creatinine assay kit (Sigma). 

Quantification of histidine-containing dipeptides by liquid chromatographyC-mass 

spectrometry  

Tissue carnosine and anserine levels were measured using a Micromass ZMD mass 

spectrometer (Waters) (Baba et al., 2013). Homocarnosine was also measured in the 

brain. Briefly, the tissues were homogenized in PBS buffer containing the protease 

inhibitor (1:100) and internal standard tyrosine-histidine. The homogenates were 

centrifuged at 16,000 g for 10 min. The pellets were discarded and the supernatant was 

precipitated by perchloric acid. The samples were neutralized by ammonium hydroxide 

and diluted in 90% H2O, 10% acetonitrile, 0.1% heptafluorobutyric acid. The peptides 

were separated by reverse phase elution with a polar RP column protected by a polar RP 

guard column. The solution was infused into the mass spectrometer in the positive ion 

mode. The spectrometer was calibrated using NaCsl with the calibration routine included 

in MassLynx, version 3.4 (Waters). Samples were diluted in 70%water:30%acetonitrile and 

the solution was infused using a glass syringe and a Harvard infusion pump at a rate of 10 

µl/min. Tuning conditions were capillary 2.9kV, cone 34V, extractor 9V, Rflens 0.9V, 

source temperature 100°C, desolvation gas 200C, low mass resolution 15.2, ion energy 

0.3V multiplier 650 relative setting. The acquisitons for carnosine (parent ion 227Da, 

daughter ion 110Da), anserine (parent ion 241Da, daughter ion 109.2Da), homocarnosine 

(parent ion 241Da, daughter ion 109.22Da), and tyrosine histidine (parent ion 319Da and 

daughter ion 110.22Da) were taken in the multiple reaction monitoring mode. The limits 

of detection for carnosine and anserine are 0.00367nmol and 0.0303nmol, respectively. 

The limits of quantification for carnosine and anserine is 0.011nmol and 0.0917nmol, 

respectively. 



 

 

Table 2. Primers used in quantitative PCR analysis 

Function Gene symbol 
Forward primer (5’-3’) 

Reverse primer (5’-3’) 
Source 

Carnosine synthesis CARNS TGA-TAG-GCC-CCT-ACT-GAG-TAA-GGT 

TCA-GTG-TCC-TTG-GCA-GGG-TAT 

Everaert et al., 2013 

Beta-alanine transport TauT TGG-CCG-ACA-GCA-TTC-CA 

GCC-TTC-TCT-AAG-GTG-CCT-TCC-T 

Everaert et al., 2013 

Beta-alanine transaminase GABA-T CCT-TCA-TGG-GTG-CTT-TCC-A 

CAA-AGG-AAG-GGA-TGT-CAA-TCT-TG 

Everaert et al., 2013 

 AGXT2 GAT-AGG-CTG-CCA-ATC-AAC-AAT-GT 

TGC-ACT-GGA-GAA-TCT-CGA-CAA 

Primer express 

Reference genes Ppia CAA-ATG-CTG-GAC-CAA-ACA-CAA-ACG 

GTT-CAT-GCC-TTC-TTT-CAC-CTT-CCC 

RTprimerDB 

 Rplp0 GGA-CCC-GAG-AAG-ACC-TCC-TT 

GCA-CAT-CAC-TCA-GAA-TTT-CAA-TGG 

RTprimerDB 

 GAPDH CAC-CAT-CTT-CCA-GGA-GCG-AG 

CCT-TCT-CCA-TGG-TGG-TGA-AGA-C 

RTprimerDB 
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GABA-T activity in brains  

GABA-T activity was measured in brain samples according to the method of Awad et al. 

(2007). Brain samples were stored at  -80°C until homogenization in 10 volumes of chilled 

buffer of the  composition: 20% glycerol, 0.13% Triton X-100, 0.1 mM glutathione, 1 mM 

Na2EDTA, 10 mM K2HPO4, 0.1 mM Pyroxidal-5'-phosphate and acetic acid to bring the pH 

to 6.8. The homogenates were frozen and thawed once before adding to the incubation 

medium (20µL) on a 96-well plate. The incubation medium (180µL) consisted of 100 mM 

potassium pyrophosphate, 3.5 mM 2-mercaptoethanol, 0.01 mM pyroxidal-5'-phosphate, 

5 mM 2-oxoglutarate, 4 mM NAD+. The samples were pre-incubated for 15 min at 37°C 

before the addition of GABA (10mM final concentration). The rate of the enzymatic 

reaction was determined by measuring NADH production at 37°C for 10 min within the 

linear range, using a i-control (infinite 200Pro) spectrophotometer (Tecan, Männedorf, 

Switzerland) (excitation/emission wavelength: 360/465 nm). Enzymatic activity was 

calculated relative to a control sample (distilled H2O instead of GABA) using a NADH 

standard curve.  

Statistics 

Data are reported as the mean ± SD. P ≤ 0.05 was considered statistically significant. The 

body weight at start, change in body weight and drinking volume were evaluated 

separately for the 4 oral beta-alanine supplementation doses on the one hand and the 0.1% 

beta-alanine groups treated with different inhibitors on the other hand. One-way analysis 

of variance (ANOVA) followed by a post hoc Tukey’s test in the case of a significant group 

effect was used. A general linear model repeated measures ANOVA was used to evaluate 

body weight over time (start to end). The dose-response effect of different dosages of 

beta-alanine supplementation on HCD loading and the effect of treatments with different 

inhibitors on enzyme activity and tissue metabolites was evaluated by one-way ANOVA 

followed by a post hoc Tukey’s test in the case of a significant group effect. For the urine 

and blood parameters, an independent sample t test was used to evaluate the effect of 

0.1% beta-alanine supplementation compared to 0% beta-alanine and a one-way ANOVA 

and, subsequently, a post hoc Tukey test was used to evaluate the effect of treatments 

with different inhibitors compared to the 0.1% beta-alanine group. Correlations between 

serum beta-alanine levels and tissue HCD content were obtained by means of Pearson 
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correlations. All statistical analyses were performed using SPSS, version 22.0 (IBM Corp., 

Armonk, NY, USA).  
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RESULTS 

Activity of recombinant mouse GABA-T and AGXT2 in HEK293T cell extracts and effect 

of vigabatrin and AOA  

The enzymatic activity of GABA-T was detected in transfected cell-extracts and was 

similar in the presence of 2.5 mM GABA and beta-alanine (Fig 1A), confirming that in vitro 

beta-alanine was a good substrate for GABA-T. In this case, the activity measured in the 

presence of  2.5 mM GABA was decreased by 75% and 86% when 0.5 mM vigabatrin or 2 

µM AOA, respectively, was added to the assay (Fig 1C). Similarly, cell-extracts containing 

recombinant AGXT2 showed enzymatic activity in the presence of 5 mM beta-alanine and 

DL-β-aminoisobutyrate (Fig 1B) but, in contrast to GABA-T, AGXT2 activity was only 

inhibited by AOA (95% inhibition) and not by vigabatrin (Fig 1D). Similar results were 

obtained with recombinant human GABA-T and AGXT2 (data not shown).  

 

Figure 1. Activity of recombinant mouse GABA-T and AGXT2 (mGABA-T and mAGXT2) in cell extracts of HEK293T and 

inhibition by vigabatrin and aminooxyacetate (AOA). HEK293T cells were transfected or not with plasmids expressing 

mouse GABA-T (A and C) or AGXT2 (B and D). The enzymatic activities of recombinant GABA-T and AGXT2 were assayed 

in vitro, using the corresponding cell extracts, in the presence of 2.5 mM GABA and 5 mM DL-beta-aminoisobutyrate, 

respectively (A and B). The effect of vigabatrin (0.5 mM) and AOA (2 μM) on the enzymatic activities was tested by 

adding the inhibitors directly to the assay mixture as described in Methods (C and D). Values are the mean ± SD of three 

independent measurements. 
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mRNA expression profiles of carnosine-related enzymes and transporters in different 

mice tissues 

The taurine transporter (TauT), responsible for transmembrane transport of beta-alanine, 

was ubiquitously expressed in all murine tissues investigated. CARNS, which is the enzyme 

responsible for carnosine and homocarnosine synthesis, was expressed mainly in the 

brain and the striated muscles, with highest mRNA levels in glycolytic (gastrocnemius and 

tibialis anterior muscles) rather than oxidative muscles (soleus, heart) (Fig 2A&B). The 

beta-alanine transaminating enzymes GABA-T and AGXT2 showed highest mRNA 

expression in the liver and kidney, low mRNA expression in oxidative muscles, and even 

lower expression in glycolytic muscles. However, GABA-T, but not AGXT2, was also clearly 

expressed in the brain (Fig 2C&D).  

 

Figure 2. mRNA expression profile of carnosine-related enzymes and transporters in different mice tissues (three 

skeletal muscles, heart, liver, kidney and brain). mRNA expression profile is shown for TauT (panel A), CARNS (panel B), 

GABA-T (panel C) and AGXT2 (panel D). GASTR, gastrocnemius; TA, tibialis anterior. Values are the mean ± SD of six 

measurements for each tissue. 

 

Effect of vigabatrin and AOA on GABA-T and AGXT2 activity in liver extracts 

Because both GABA-T and AGXT2 were highly expressed in liver, we tested the effects of 

in vivo administration of vigabatrin and AOA on the ex vivo activity of these enzymes in 

liver extracts. In agreement with the results found for the recombinant enzymes (Fig 1), 
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the administration of AOA resulted in the strong inhibition of both GABA-T (-83%) and 

AGXT2 (-99%) enzymatic activities, whereas vigabatrin was a more specific inhibitor of 

GABA-T activity (-81%) and only minimally affected the activity of AGXT2 (-26%) (Fig 

3A&B). 

 

Figure 3. Effect of vigabatrin and AOA on GABA-T and AGXT2 activity in liver extracts.  

Effect of administration of vigabatrin or AOA on the ex vivo activity of beta-alanine transaminating enzymes (GABA-T 

and AGXT2) measured in liver extracts from mice supplemented with 0.1% beta-alanine. GABA-T activity (A) was 

measured with 2.5 mM GABA and 1 mM α-ketoglutarate and AGXT2 (B) with 5 mM DL-beta-aminoisobutyrate and 1 

mM pyruvate. The effect of vigabatrin and AOA on the liver enzymatic activities is the result of the 14 day treatment 

that the mice were subjected to (prior to the preparation of the extract) and not to the addition of the inhibitors 

directly to the assay mixture, as described in the Methods. VIG, vigabatrin. Values are the mean ± SD of three 

independent measurements. 

 

Dose-response relationship of beta-alanine supplementation 

Oral beta-alanine supplementation (0.1% beta-alanine w/v in drinking water for 2 weeks) 

had no effect on the HCD storage in either gastrocnemius or the soleus muscle (Fig 4A&B). 

However, supraphysiological doses of 0.6% and 1.2% of beta-alanine led to significant 

increases in total muscle HCD content. In soleus muscle, which is characterized by low 

amounts of carnosine and anserine, 3- to 4-fold increases were found (p ≤ 0.001 for 0.6% 
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and 1.2% compared to 0% beta-alanine). In gastrocnemius, a 40-50% increase in the 

levels of HCDs was found in mice supplemented with 0.6% and 1.2% beta-alanine (p = 

0.004 and p = 0.017 compared with 0% beta-alanine). The lack of increase in muscle HCD 

concentrations with 0.1% beta-alanine suggests that, at these levels of oral 

supplementation, all the ingested beta-alanine is transaminated. Subsequent inhibitor 

experiments were therefore performed in mice supplemented with this dose of beta-

alanine. 

 

Figure 4. Dose-response relationship of beta-alanine supplementation in soleus and gastrocnemius.  

Dose–response relationship between the amount (w/v) of beta-alanine (BA) added to the drinking water (0%, 0.1%, 0.6% 

or 1.2%) and the HCD levels for musculus soleus (A) and musculus gastrocnemius (B). ∗P < 0.05 and ∗∗P < 0.001 vs. 0% 

beta-alanine – SAL. Significant differences refer to total HCD content (sum of carnosine and anserine). Values are the 

mean ± SD. 

 

Effect of inhibitors on serum and urinary beta-alanine levels  

Although there was no significant effect of 0.1% beta-alanine supplementation by itself, 

serum and urinary beta-alanine levels were significantly increased when this low amount 

of oral beta-alanine was combined with AOA (+218%, p = 0.009 and +250%, p = 0.001 vs 

0.1% beta-alanine – SAL for serum and urine, respectively). Vigabatrin did not significantly 

affect serum, nor urinary beta-alanine levels (+84%, p = 0.486 and +4.0%, p = 0.997 vs 0.1% 

beta-alanine – SAL for serum and urine, respectively) (Fig 5A&B). Individual data points 

are shown in figure 5 to demonstrate the large inter-individual variation that was 

observed. 
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Figure 5. Effect of inhibitors on serum and urinary beta-alanine levels.  

Effect of oral 0.1% beta-alanine (BA) supplementation combined with SAL, vigabatrin (VIG) or AOA, on serum (A) and 

urinary (B) beta-alanine levels. ∗P < 0.05 vs. 0.1%beta-alanine – SAL. Symbols represent individual results (circles) and 

the mean (dash). 

 

Effect of inhibitors on tissue HCD levels 

Supplementation of 0.1% beta-alanine did not affect the HCD levels in any of the 

investigated tissues. However, AOA coadministration led to significantly higher HCD 

loading in the different muscles (Fig 6A-D). The highest effects were found in the soleus 

muscle and the heart, with increases of 128% and 541%, respectively (p < 0.001 vs 0.1% 

beta-alanine – SAL). In soleus and heart, but not in the more glycolytic muscles, serum 

beta-alanine was positively correlated with HCD levels (r = 0.537, p = 0.008 for soleus, r = 

0.570, p = 0.007 for heart). The more glycolytic muscles also showed significantly (or 

trending to significance) higher HCD loading with AOA administration (+105%, p = 0.011 

and +21%, p = 0.056 vs 0.1% beta-alanine – SAL for tibialis anterior and gastrocnemius, 

respectively), although the effects were absent in kidney and brain (Fig 6E&F). 

Furthermore, no effects of vigabatrin on carnosine and anserine levels were found in any 

of the investigated tissues. 

Brain GABA-T activity, brain GABA and homocarnosine levels and serum GABA  

The brain GABA-T activity was significantly decreased with administration of vigabatrin or 

AOA (-82% and -88%, respectively; p < 0.001) (Fig 7A). Beta-alanine supplementation did 

not significantly affect brain GABA levels but led to a significant decrease in brain 

homocarnosine levels (-29%, p = 0.05 vs 0% beta-alanine – SAL). With vigabatrin and AOA 

administration, both brain GABA and homocarnosine levels were significantly increased 

(brain GABA: p  < 0.001 vs 0.1% beta-alanine – SAL for vigabatrin and AOA, brain 

homocarnosine: p = 0.015 and p = 0.027 vs 0.1% beta-alanine – SAL for vigabatrin and 
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AOA, respectively) (Fig 7B&C). Serum GABA was not affected by beta-alanine 

supplementation and was only significantly elevated when vigabatrin was administered 

(+369%, p = 0.002 vs 0.1% beta-alanine - SAL), whereas AOA administration had no effect 

(Fig 7D).  

 

Figure 6. Effect of 0.1% beta-alanine (BA) supplementation combined with SAL, vigabatrin (VIG) or AOA on tissue HCD 

levels. HCD levels are shown for gastrocnemius and tibialis anterior (panel A-B), soleus and heart (panel C-D), kidney 

(panel E) and brain (panel F). ∗∗P < 0.001; $P > 0.05 and < 0.1 vs. 0.1%beta-alanine – SAL. Significant differences refer to 

total HCD content (sum of carnosine and anserine). Values are the mean ± SD. 

 

Body weight and drinking behavior 

Body weight at the start of the intervention was similar between groups, except for the 

0.1% beta-alanine – SAL group, which showed a significantly lower body weight compared 

to the control group (p = 0.044, Table 1). Change in body weight was not significantly 
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different between groups supplemented with different amounts of beta-alanine, 

although their body weight over time did show a significant increase compared to the 

body weight at the start (p < 0.05 for all 4 groups). By contrast, change in body weight 

was different between the 0.1% supplemented groups treated with different inhibitors. 

Body weight gain over time was significantly lower in vigabatrin and AOA treated groups 

compared to 0.1% beta-alanine – SAL group (p < 0.001 and p = 0.002, respectively). In 

addition, the daily drinking volume of all beta-alanine supplemented groups was 

significantly lower compared to the control group (p < 0.05 for 0.1% and 0.6% beta-

alanine and p < 0.001 for 1.2% beta-alanine vs 0% beta-alanine, Table 1). Mice treated 

with vigabatrin drank significantly less and mice treated with AOA drank significantly 

more than the 0.1% beta-alanine – SAL group (p = 0.05 and p = 0.007, respectively). 

 

Figure 7. Effect of 0.1% beta-alanine (BA) combined with SAL, vigabatrin (VIG) or AOA on brain GABA-T activity (A) and 

concentrations of brain GABA (B), brain homocarnosine (C) and serum GABA (D). ∗P < 0.05 and ∗∗P < 0.001 vs. 

0.1%beta-alanine – SAL; §P ≤ 0.05 vs. 0%beta-alanine – SAL. Values are the mean ± SD.  
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DISCUSSION 

The present study aimed to clarify the contribution of beta-alanine degradation by GABA-

T and/or AGXT2 to the metabolism and the homeostasis of HCDs in various mice tissues. 

Selective GABA-T inhibition by vigabatrin caused a moderate, non-significant elevation of 

circulating beta-alanine concentrations, indicating that GABA-T is probably involved in the 

degradation of beta-alanine upon oral ingestion in mice. Nevertheless, the rise in plasma 

beta-alanine was not sufficient to elevate HCD content in tissues that express CARNS (i.e. 

skeletal muscles and heart). Administration of AOA, which inhibits GABA-T to the same 

degree as vigabatrin and additionally inhibits AGXT2, resulted in much larger circulating 

and urinary beta-alanine levels. In turn, this had a marked positive effect on tissue HCD 

content. This effect was most pronounced in oxidative-type striated muscles (soleus and 

heart), less pronounced in glycolytic-type muscles (gastrocnemius and tibialis anterior) 

and absent in the kidney or the brain. The overview of our current understanding of the 

beta-alanine metabolism, based on the results of the present study, is illustrated in Fig 8. 

 

Figure 8. Overview of the current understanding of the beta-alanine metabolism. Beta-alanine transaminating enzymes 

GABA-T and AGXT2 are expressed at mRNA level in liver and kidney, converting beta-alanine to MSA. CARNS is mainly 

expressed in the brain, skeletal muscles and heart. Inhibiting GABA-T and AGXT2 leads to increased circulating levels of 

beta-alanine, which can be taken up in different tissues by the TauT and subsequently converted to carnosine and 

anserine. ANS, anserine; BA, beta-alanine; (HOMO)CARN, (homo)carnosine; HIS, histidine; SSA, succinate semi-aldehyde. 
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It is currently assumed that beta-alanine is transaminated into MSA mainly by GABA-T 

and AGXT2. Enzymatic assays have already indirectly demonstrated that these enzymes 

can transaminate beta-alanine in liver, kidney and brain extracts (Tamaki et al., 1990; 

Kontani et al., 1998; Ito et al., 2001), but the current study provides the first strong direct 

evidence using pure proteins obtained by recombinant DNA technology (Fig 1A&B). 

Furthermore, using this approach, we could confirm that GABA-T, but not AGXT2, is 

inhibited by vigabatrin and that both these enzymes are inhibited by AOA (Fig 1C&D). 

Although, on the basis of these data, we cannot exclude the involvement of other 

enzymes in this process, to our knowledge, there are no other known mammalian 

enzymes that can transaminate beta-alanine. The finding that circulating levels of beta-

alanine were markedly affected when both GABA-T and AGXT2 were inhibited in vivo, 

further supports this notion.  

Gene expression of beta-alanine transaminating enzymes is shown to be high in liver and 

kidney and GABA-T is, unlike AGXT2, also expressed in the brain of control mice (Fig 

2C&D). In line with the in vitro results in transfected HEK293t cells, ex vivo GABA-T and 

AGXT2 activity in liver extracts was affected in the same way following in vivo 

administration of vigabatrin and AOA (Fig 3A&B). Specific GABA-T inhibition by vigabatrin, 

however, did not significantly affect circulating beta-alanine levels whereas inhibition of 

both enzymes by AOA led to a marked increase in these levels in vivo (Fig 5A), suggesting 

that the combined inhibition of both these enzyme increases the circulating levels of this 

amino acid. 

To demonstrate that the transamination of beta-alanine is involved in HCD homeostasis, 

we searched for a suitable oral beta-alanine dose that did not increase muscle HCD 

content on its own, meaning that all exogenously provided beta-alanine is fully routed 

toward oxidation rather than dipeptide synthesis. Of the three different doses tested, we 

found that muscle HCD levels remained stable only with the lowest dose (0.1% beta-

alanine), whereas both 0.6% and 1.2% beta-alanine increased HCD content above the 

physiological set point, suggesting that the beta-alanine transaminases (GABA-T and 

AGXT2) are saturated and no longer able to metabolize all circulating beta-alanine (= i.e., 

fail to avoid a rise in circulating beta-alanine) (Fig 4A&B). Hence, to ensure that the beta-
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alanine transaminases are not saturated, we performed all subsequent in vivo 

experiments with the lowest dose (0.1% beta-alanine).  

In accordance with the results showing that circulating beta-alanine levels were increased 

only upon inhibition of both transaminase enzymes, only AOA administration led to 

significantly elevated HCD levels in gastrocnemius, tibialis anterior, soleus and heart (Fig 

6A-D). This effect was absent in kidney, presumably because CARNS is not highly 

expressed in this tissue (as assumed from the mRNA expression profile). However, 

specific GABA-T inhibition by vigabatrin did not have an effect on the HCD content in any 

of the tissues. Because we did not have an inhibitor specific for AGXT2, which does not 

act on GABA-T, the contribution of GABA-T to the beta-alanine metabolism remains 

unclear. However, our results are consistent with the idea that either GABA-T does not 

play an important role in the transamination process or that AGXT2 is able to compensate 

for the loss in GABA-T activity when vigabatrin is administered. Nevertheless, when taken 

together, these data clearly demonstrate that beta-alanine transaminases are involved in 

tissue HCD homeostasis.  

As noted above, we found that both GABA-T and AGXT2 are highly expressed in liver and 

kidney, but show very low mRNA expression in the different muscles. However, the in 

vivo effects of AOA were most pronounced in oxidative-type muscles (soleus and heart) 

and less pronounced in glycolytic-type muscles (tibialis anterior and gastrocnemius). 

Because GABA-T and AGXT2 are mitochondrial enzymes and oxidative muscles have more 

mitochondria compared to glycolytic muscles, it is reasonable to propose that, in addition 

to oxidation in liver and kidney, beta-alanine can also be locally oxidized in these muscle 

cells. Figure 2C&D show the low but detectable mRNA expression of GABA-T and AGXT2 

in the soleus and the heart, but not in the tibialis anterior and gastrocnemius muscles. 

Hence, even though it appears that beta-alanine oxidation takes place mainly in liver and 

kidney, additional peripheral beta-alanine degradation could possibly take place in 

oxidative muscles. Using radioactive labelled beta-alanine, Tamaki et al. (1980) 

demonstrated that beta-alanine is more stable in rat gastrocnemius (half-life of 2.27hr) 

compared to liver (half-life of 0.41hr), but still much less stable than muscle carnosine 

(half-life of 28 days), suggesting that the peripheral degradation of beta-alanine is 

possible. This possibility is further supported by a recent study (Hatazawa et al., 2015) 
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demonstrating that, in comparison with wild-type mice, GABA-T is upregulated (4.0-fold) 

in the muscles of transgenic mice overexpressing skeletal muscle specific peroxisome 

proliferator-activated receptor gamma coactivator 1 alpha (PGC1α). Furthermore, muscle 

beta-alanine, carnosine and anserine levels were decreased in these transgenic mice 

(ranging from 0.04 to 0.15-fold). These findings support the hypothesis that, in oxidative 

muscles, intramuscular beta-alanine is converted into acetyl-coenzyme A (via MSA) and 

subsequently enters the citric acid cycle.  

By far the largest effect of beta-alanine transaminase inhibition was found in the heart, 

showing 10-fold higher HCD levels when 0.1% beta-alanine was administered 

simultaneously with the transaminase inhibitor AOA (Fig 6D). To our knowledge, this is 

the first study showing an intervention that can elevate HCD content in the heart. A 

recent study of Swietach et al. (2013) demonstrated that HCDs can act as diffusible 

Ca2+/H+ exchangers in cardiomyocytes because both calcium ions and protons can 

competitively bind to proteins and dipeptides, such as the HCDs. Ca2+ signalling regulates 

many cell functions and is modulated by H+ ions, suggesting that spatial Ca2+/H+ coupling 

is probably of general importance in cell signalling and function. An additional 

pathophysiological relevance of carnosine was recently reported by Baba et al. (2013), 

who demonstrated that carnosine plays an important role in detoxifying reactive 

aldehydes and promotes functional recovery in the ischemic heart. Taken together, these 

recent studies indicate an important role of HCDs in the heart and suggest that an 

increase in HCD levels could positively influence cardiac function and the resistance of the 

heart to ischemic injury. 

In the present study, we found that, upon moderate dietary beta-alanine exposure, beta-

alanine transaminases can degrade all excess exogenous beta-alanine to maintain tissue 

HCD homeostasis. Hence, to elevate muscle HCD content, it may be necessary to first 

saturate these enzymes to achieve significant HCD loading. This condition is probably not 

met under normal human dietary situations. However, the selective ingestion of beta-

alanine in high doses, as in human athletes ingesting 4-6g of pure beta-alanine for several 

weeks, can saturate the transaminases and lead to elevated muscle HCD content. The 

activity of beta-alanine transaminating enzymes probabaly explains the low muscular 

uptake and loading efficiency (3-6%) of beta-alanine supplementation, as calculated by 
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Stegen et al. (2013). Because beta-alanine is first routed towards the degradation 

pathway, sufficient beta-alanine needs to be ingested, resulting in a rather inconvenient 

supplementation protocol. This is fortified by case reports in which enhanced beta-

alanine and carnosine levels are present in plasma and muscles, respectively, which is 

suggested to be attributed to genetic deficiencies in the beta-alanine transaminase 

enzymes (Scriver et al., 1966; Jaeken et al., 1984). However, improving the efficiency of 

the beta-alanine supplementation protocol in healthy humans by inhibiting transaminases 

appears to be difficult because of the toxicity (AOA) and side-effects (vigabatrin) of these 

inhibitors and the multiple other metabolic pathways in which these transaminases are 

involved.  

The metabolism of beta-alanine, as determined in the present study, closely resembles 

the metabolism of another non-proteinogenic amino acid, ɣ-aminobutyric acid (GABA). 

GABA is an inhibitory neurotransmitter present in the brain and, similar to beta-alanine, a 

substrate for GABA-T. Interestingly, GABA is also a substrate for CARNS, synthesizing 

homocarnosine when combined with L-histidine. It has been shown that administration of 

vigabatrin results in a dose-dependent increase in GABA and homocarnosine levels in the 

brains of both rodents (Jung et al., 1977) and humans (Petroff et al., 1998, 1999). In 

addition, AOA has similar effects on GABA levels in the brain (Wallach, 1961; Gelder, 1966; 

Löscher & Frey, 1978). In the present study, we confirm that GABA-T is expressed at 

mRNA level in the brain and inhibition by vigabatrin leads to increased GABA 

concentrations (Fig 7B), suggesting that GABA-T regulates GABA homeostasis. AGXT2 is 

not involved in this process. Brain carnosine and anserine were not affected by the 

administration of vigabatrin or AOA, probably as a result of the high GABA concentrations, 

with which beta-alanine has to compete to occupy CARNS. However, the metabolism of 

carnosine in the brain is not yet fully understood, although it probably does not depend 

upon the activity of hepatic transaminases.  

The results of the present study show that mice treated with transaminase inhibitors 

(vigabatrin or AOA) have a reduced body weight gain during the intervention compared to 

mice treated with saline. This observation is in accordance with other studies (Howard et 

al., 1980; Gale & Iadarola, 1980) and is presumably related to disturbance of GABA 

homeostasis, which plays a role in the hypothalamic regulation of food intake. 
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The present study has some limitations. First, mRNA expression was used to estimate the 

protein expression and activity of the main enzymes in the different mice tissues. 

However, mRNA expression is not always in agreement with the amount of mRNA that is 

effectively translated into protein. Our data on mRNA expression should therefore be 

considered as an estimation for protein expression and function. However, when 

available, our expression data are in agreement with existing literature and probably 

provide qualitative information on the tissue distribution of the relevant enzymes. Second, 

two inhibitors were applied in this study: vigabatrin as a specific inhibitor for GABA-T and 

AOA as a non-specific inhibitor (inhibiting both GABA-T and AGXT2). Unfortunately, no 

specific inhibitor for AGXT2 was available. Therefore, we cannot compare the implications 

of inhibiting only AGXT2 vs inhibiting both enzymes on the metabolism of beta-alanine in 

mice. 

In summary, the results of this study suggest that the homeostasis of the HCDs carnosine 

and anserine in cardiac myocytes and skeletal muscle is dependent on the circulating 

availability of beta-alanine. In turn, homeostasis of circulating beta-alanine is, in case of 

excess dietary beta-alanine intake, dependent on the degradation of beta-alanine in liver 

and kidney, which express GABA-T and AGXT2 as the main mammalian enzymes capable 

of metabolizing beta-alanine. The present study highlights the importance of beta-alanine 

transamination in tissue HCD homeostasis and thereby contributes to a better 

understanding of the mammalian beta-alanine and carnosine metabolism.  
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ABSTRACT 

Purpose. Carnosine is a dipeptide composed of beta-alanine and L-histidine and is present 

in skeletal muscle. Chronic oral beta-alanine supplementation can induce muscle 

carnosine loading and is therefore seen as the rate-limiting factor for carnosine synthesis. 

However, the effect of L-histidine supplementation on carnosine levels in humans is never 

established. This study aims to investigate whether 1) L-histidine supplementation can 

induce muscle carnosine loading and 2) combined supplementation of both amino acids is 

more efficient than beta-alanine supplementation alone.  

Methods. Fifteen male and 15 female participants were equally divided in three groups. 

Each group was supplemented with either pure beta-alanine (BA) (6g/day), L-histidine 

(HIS) (3.5g/day) or both amino acids (BA+HIS). Before (D0), after 12 (D12) and after 23 

days (D23) of supplementation, carnosine content was evaluated in soleus and 

gastrocnemius medialis muscles by 1H-MRS and venous blood samples were collected. 

Muscle biopsies were taken at D0 and D23 from the vastus lateralis. Plasma and muscle 

metabolites (beta-alanine, histidine, carnosine) were measured by HPLC.  

Results. Both BA and BA+HIS groups showed increased carnosine concentrations in all 

investigated muscles, with no difference between these groups. In contrast, carnosine 

levels in the HIS group remained unaltered. Histidine levels were significantly decreased 

in plasma (-30.6%) and muscle (-31.6%) of the BA group, while this was prevented when 

beta-alanine and L-histidine were supplemented simultaneously.  

Conclusion. We confirm that beta-alanine, and not L-histidine, is the rate-limiting 

precursor for carnosine synthesis in human skeletal muscle. Yet, although L-histidine is 

not rate-limiting, its availability is not unlimited and gradually declines upon chronic beta-

alanine supplementation. The significance of this decline still needs to be determined, but 

may affect physiological processes such as protein synthesis. 

 

KEYWORDS: Carnosine loading; ergogenic supplements; skeletal muscle metabolism 
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INTRODUCTION 

In recent years, there has been increased research interest in the role of carnosine (beta-

alanyl-L-histidine) in skeletal muscle metabolism and the supplementation with beta-

alanine by athletic populations to increase concentrations of this muscle dipeptide 

(Blancquaert et al., 2015). Carnosine is synthesized from the amino acids L-histidine and 

beta-alanine by carnosine synthase in several tissues, but displays its highest 

concentrations in skeletal muscles (5-8mmol/l wet weight in humans) (Boldyrev et al., 

2013). Harris and co-workers (2006) were the first to show that chronic oral ingestion of 

beta-alanine is able to elevate muscle carnosine content, supporting the assumption that 

beta-alanine is the rate-limiting precursor for carnosine synthesis in muscle. Since then, 

there have been consistent reports that chronic supplementation with beta-alanine (4-10 

weeks, 4-6.4g/day) can increase muscle carnosine content by 40-100% (Hill et al., 2007; 

Baguet et al., 2009). Furthermore, raised muscle carnosine concentrations are associated 

with performance-enhancing (ergogenic) effects on high-intensity exercise, which is most 

likely attributable to carnosine’s role as proton buffer (Baguet et al., 2010b), calcium 

regulator (Dutka et al., 2012) or a combination of these functions (Swietach et al., 2013) 

in skeletal muscle.  

Although beta-alanine has become a popular supplement as a result of these findings, 

direct comparison of the precursor availability of beta-alanine versus L-histidine in the 

synthesis of carnosine in human skeletal muscle is still unexplored. Stegen et al. (2013a) 

demonstrated that the incorporation efficiency of chronic orally ingested beta–alanine 

into muscle carnosine is very low (around 3%), suggesting that other determinants of 

carnosine synthesis may so far have been overlooked. Indeed, one explanation comes 

from our recent findings that ingested beta-alanine is likely prioritized towards other 

metabolic routes, such as transamination and energy delivery (Blancquaert et al., 2016). 

Another possible factor is that the availability of L-histidine is more important than 

originally suggested by Harris et al. (2006). Their study found no significant difference in 

the increase in muscle carnosine content following a 4-week supplementation period with 

beta-alanine (total dose of 145.6g) or an isomolar dose of carnosine (total dose of 364g, 

corresponding to 143.3g beta-alanine), suggesting that the synthetic pathway is mainly 

driven by beta-alanine availability.  
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Similar conclusions came from an equine study (Dunnett & Harris, 1999) in which the 

authors observed that the concentration of muscle histidine (0.21mmol/l wet weight in 

equine muscle) is high relative to its Michaelis Constants (Km) for carnosine synthase 

(16.8µM) (Horinishi et al., 1978), while the opposite is true for beta-alanine (0.15mmol/l 

wet weight concentration in equine muscle vs Km  of 1-2.3mM) (Ng & Marshall, 1978; 

Kish et al., 1979). However, Drozak et al. (2010) recently investigated the kinetic 

properties of recombinant human carnosine synthase and reported a Km which is much 

lower for beta-alanine (0.09mM) and higher for histidine (0.37mM) than the results 

previously calculated from partly purified enzyme extracts from the brain and central 

nervous system of mice (Horinishi et al., 1978), rats (Ng & Marshall, 1978) or humans 

(Kish et al., 1979). This would explain the accumulating number of papers which have 

attributed a more important role to dietary histidine in the carnosine homeostasis in 

different animal species. For example, a histidine-supplemented diet has been shown to 

increase the carnosine content of rats and broiler chickens by 35%-175% (Tamaki et al., 

1977, 1984; Haug et al., 2008; Kralik et al., 2015; Kai et al., 2015). Furthermore, the 

carnosine and anserine (methylated analogue of carnosine) concentrations in broiler 

breast meat was enhanced in histidine-supplemented birds, while beta-alanine 

supplementation failed to have an effect alone or in addition to histidine (Park et al., 

2013). Together, these results implicate that histidine is the rate-limiting factor for 

carnosine synthesis in at least some animal species.  

Although the carnosine metabolism differs between primates, birds and rodents, these 

data warrant further investigation in humans on the effect of chronic histidine 

supplementation on muscle carnosine loading. It is possible, even if histidine 

supplementation fails to directly increase muscle carnosine concentrations in humans, 

that chronic beta-alanine supplementation in humans may gradually deplete muscle 

histidine via a failure of dietary intake to match the increasing use of histidine (semi-

essential, proteinogenic amino acid) for carnosine synthesis. If that is true, histidine 

availability could become rate-limiting for carnosine synthesis under conditions of chronic 

beta-alanine use and carnosine loading would be more efficient when chronic beta-

alanine supplementation is combined with histidine. This theory has not been 

investigated to date. Accordingly, our aim was to study the effect of histidine 
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supplementation, alone or combined with beta-alanine, on human muscle carnosine 

content. We hypothesized that 1) histidine supplementation alone can induce muscle 

carnosine loading and 2) combined supplementation of both amino acids is more efficient 

toward muscle carnosine loading than beta-alanine supplementation alone. As underlying 

mechanism to the latter, we expect that chronic beta-alanine supplementation would 

gradually deplete histidine concentrations in plasma and muscle. 
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MATERIALS AND METHODS 

Subjects 

Thirty subjects (age: 20.0 ± 2.4 yr, body weight: 66.0 ± 10.6 kg, height: 172.8 ± 8.2 cm, 

BMI: 22.0 ± 2.7), both male (n = 15) and female (n = 15), participated in this study. All 

subjects were in good health and none of the participants were vegetarian. All subjects 

were non-specifically trained, but some of them took part in some form of recreational 

exercise 1–3 times per week. The study protocol was approved by the local ethical 

committee (Ghent University Hospital, Belgium) and written informed consent was 

obtained from all participants prior to the study.  

Study design and sample collection 

The subjects were divided in three groups of 10 participants (with 5 men and 5 women in 

each group) and were matched for age, body weight, height and baseline carnosine 

concentrations in soleus and gastrocnemius (Table 1). Each group was supplemented with 

either pure beta-alanine (BA: 6g/day or 67.3mmol/day), L-histidine hydrochloride 

monohydrate (HIS: 4.7g/day which is equivalent to 3.5g/day L-histidine or 22.4mmol/day) 

or combined supplementation of both amino acids (BA+HIS: 67.3 + 22.4mmol/day). 

Because we hypothesized that histidine may become rate-limiting when beta-alanine is 

chronically ingested, we chose a 3:1 molar ratio of beta-alanine to histidine in the 

combined supplementation condition. Supplements were divided in 6 doses throughout 

the day (2x500mg capsules for BA, 2x390mg capsules for HIS) with at least 2h interval 

between intake occasions and participants were asked to take the supplements together 

with meals or snacks. The supplementation period lasted 23 days. To check for 

compliance, participants were asked to fill in a weekly diary, stating when they took their 

pills and consumed meals or snacks. Measurements were performed prior to the study 

(D0), after 12 days (D12) and at the end of the supplementation period (D23). At D0, D12 

and D23, carnosine content was evaluated in soleus and gastrocnemius medialis muscles 

by 1H-MRS. Fasted venous blood samples (EDTA) were collected and immediately 

centrifuged to separate plasma, which was frozen at -20°C until subsequent analysis. 

Furthermore, muscle biopsies were taken at D0 and D23 from the left vastus lateralis at 

rest. Following local anaesthesia, a muscle sample was taken with a 12 Gauge true-cut 
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biopsy needle (Bard Magnum Biopsy gun; Bard, Inc., New Jersey, USA). The samples were 

then immediately frozen in liquid nitrogen and stored at -80°C until subsequent analysis. 

Table 1. Baseline values of the three experimental groups.  

 BA HIS BA+HIS 

Number of subjects 10 10 10 

Age, yr 19.1 ± 1.3 20.5 ± 3.2 20.4 ± 2.4 

Height, cm 171.4 ± 7.3 172.9 ± 9.6 174.1 ± 8.3 

Weight, kg 63.1 ± 10.4 65.0 ± 11.3 69.9 ± 9.9 

Carnosine soleus, mM 4.49 ± 1.23 4.30 ± 1.23 4.60 ± 1.04 

Carnosine gastrocnemius, mM 7.22 ± 2.54 7.23 ± 1.59 7.32 ± 1.58 

Values are mean ± SD 

 

Food Questionnaire 

Prior to the start of the supplementation period, subjects were asked to complete a 3-day 

food diary. To capture weekly variations, participants were asked to report 2 weekdays 

and 1 weekend day. Subjects needed to write down everything they consumed 

throughout the day and specify the quantities of each product. All diaries were checked 

for accuracy at least once and when information was missing (e.g. no quantities, no exact 

recipe…), this was requested during the subjects’ first visit. Based on the food diaries, 

daily intake of calories, proteins, carbohydrates and histidine was determined by a 

professional dietician. As the Belgian food composition tables do not give any information 

on amino acid level, the amount of histidine intake was estimated based on the Danish, 

American (USDA) or German (BLS) food composition tables. For each of these, the ratio of 

histidine on protein was calculated for all food items. This information was used to 

estimate the daily histidine intake.  

Determination of plasma and muscle metabolites by HPLC 

Muscle biopsies of the vastus lateralis were dissolved in phosphate buffered saline 

solution (PBS, 30µL/1mg muscle tissue). Muscle homogenates and plasma of all 

participants were deproteinized using 35% sulfosalicylic acid (SSA) and centrifuged (5 min, 

16,000 g). Deproteinized plasma supernatant (2.6µL) was mixed with 77.4µL of AccQ 

Fluor Borate buffer and 20µL of reconstituted Fluor Reagent from the AccQTag chemistry 

kit (Waters). For muscle homogenates, 5µL of deproteinized supernatant was mixed with 
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75µL AccQ Fluor Borate buffer. The same method was applied to the combined standard 

solutions of beta-alanine, carnosine, histidine and taurine (Sigma). The derivatized 

samples were applied to a Waters HPLC system with following parameters: XBridge BEH 

column (4.6 x 150 mm, 2.5µm) for carnosine, taurine and histidine quantification and 

AccQTag column (3.9 x 150 mm, 5 µm) for beta-alanine quantification, both with 

fluorescence detector (excitation/emission wavelength: 250/395 nm). The column was 

equilibrated with buffer A [10% eluent A (Waters) – 90% H2O], buffer B (100% acetonitrile) 

and buffer C (100% H2O) at a flow rate of 1ml/min at room temperature. BETA-alanine, 

histidine and taurine were measured in plasma, and together with these metabolites, 

carnosine was additionally measured in muscle. 

Determination of muscle carnosine by 1H-MRS 

The carnosine content of all subjects was measured at D0, D12 and D23 by proton 

magnetic resonance spectroscopy (1H-MRS) in soleus and gastrocnemius muscles, as 

previously described (Baguet et al., 2010). The subjects were lying in supine position and 

the lower leg was fixed in a holder with the angle of the ankle at 20° plantar flexion. All 

the MRS measurements were performed on a 3 Tesla whole body MRI scanner (Siemens 

Trio, Erlangen) equipped with a spherical knee-coil. Single voxel point-resolved 

spectroscopy (PRESS) sequence with the following parameters was used: repetition time 

(TR) = 2.000 ms, echo time (TE) = 30 ms, number of excitations = 128, 1.024 data points, 

spectral bandwidth of 1.200 Hz, and a total acquisition time of 4.24 min. The average 

voxel size was 40mm x 11 mm x 29 mm for soleus and 40 mm x 11 mm x 30 mm for 

gastrocnemius and the line width of the water signal was on average 25.3 Hz (soleus) and 

28.0 Hz (gastrocnemius), following shimming procedures. The absolute carnosine content 

(in millimolar; mM) was calculated as described before by Baguet et al., 2010. 

Confirmation of muscle histidine measurements following beta-alanine 

supplementation 

In order to confirm and strengthen our results, histidine concentration was additionally 

measured on vastus lateralis muscle samples of a previous study performed in our lab 

(Stegen et al., 2013a). In this study, subjects were supplemented with 3.2g beta-

alanine/day (either pure or slow-release) during 6-7 weeks. Muscle histidine levels were 

measured by HPLC in 13 male subjects of this study.  
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Statistics  

A one-way analysis of variance (ANOVA) was performed to compare the difference in 

baseline values (age, length, weight, muscle carnosine concentration) between the three 

groups. A 3 x 3 repeated measures analysis of variance (RM ANOVA) was used to evaluate 

muscle carnosine content by 1H-MRS and plasma metabolite concentrations with ‘group’ 

(BA; HIS; BA+HIS) as between-subjects factor and ‘time’ (D0; D12 and D23) as a within-

subjects factor. When a significant interaction effect was present, analyses were repeated 

for each group separately and pairwise comparisons were used to compare the different 

time points. A 3 x 2 RM ANOVA was used to evaluate muscle biopsy metabolite 

concentrations with ‘group’ (BA; HIS; BA+HIS) as between-subjects factor and ‘time’ (D0; 

D23) as a within-subjects factor. When a significant interaction effect was present, 

pairwise comparisons were performed to compare D0 to D23 for each group separately. A 

paired T-test was used to evaluate the effect of beta-alanine supplementation on muscle 

histidine levels in the replication study. All statistical analyses were performed using SPSS 

23.0 software (SPSS, Chicago, IL, USA). Values are presented as mean ± SD and 

significance was assumed at p ≤0.05. 
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RESULTS 

Muscle carnosine content 

Both BA and BA+HIS groups showed significantly increased carnosine concentrations after 

23 days of supplementation in all investigated muscles (BA: soleus p < 0.001 (+52.8%), 

gastrocnemius p = 0.002 (+29.0%), vastus lateralis p = 0.010 (+27.8%). BA+HIS: soleus p < 

0.001 (+50.0%), gastrocnemius p = 0.004 (+31.5%), vastus lateralis p = 0.043 (+29.7%)) 

and there were no differences in the amount of loading between these two groups (Fig 

1A-C).  

 

Figure 1. Effect of supplementation of BA, HIS or BA+HIS on carnosine concentrations in soleus (A), gastrocnemius (B) 

and vastus lateralis (C) muscles. * p < 0.05 for post-hoc analysis when a significant interaction effect was found 
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By taking into additional account the intermediate 1H-MRS measurement (at D12, thus for 

soleus and gastrocnemius only), figure 2 displays muscle carnosine accretion in the first 

(D0-D12) versus the second half (D12-D23) of the supplementation period. Although 

there was no significant interaction effect, there was a 43% smaller carnosine accretion in 

the second half (D12-D23: 0.81 mmol/kg) compared to the first half (D0-D12: 1.42 

mmol/kg) of the supplementation period in the BA group, but this decline in efficiency 

seemed less pronounced (-17%) in the BA+HIS group (ΔD12-D23: 1.11 mmol/kg vs ΔD0-

D12: 1.34 mmol/kg) (Fig 2). In contrast to BA and BA+HIS groups, carnosine 

concentrations of the HIS group remained unaltered during the supplementation period 

(soleus p = 0.864 (+0.9%), gastrocnemius p = 0.771 (+2.2%), vastus lateralis p = 0.788 

(+2.2%)) (Fig 1A-C). 

 

Figure 2. Change in carnosine levels in the first (D0-D12) and second (D12-D23) part of the supplementation period for 

BA and BA+HIS groups. Delta carnosine is calculated for the mean carnosine concentrations in soleus and gastrocnemius 

 

Plasma and muscle histidine concentrations 

The changes in both plasma and muscle histidine levels over time were dependent on the 

supplementation group (interaction effect p = 0.05 for plasma and p = 0.01 for muscle). 

Post-hoc statistical analysis revealed that in the BA group, histidine concentration was 

significantly decreased in plasma (55.0 ± 20.0 to 38.1 ± 15.0 µM at D23, p = 0.014, -30.6%) 

and muscle (0.20 ± 0.06 to 0.14 ± 0.09 mmol/kg at D23, p = 0.003, -31.6%). This decline 

was prevented when both BA and HIS were supplemented simultaneously (plasma: 52.1 ± 

22.0 to 51.7 ± 18.2 µM, p = 0.949, -0.8%; muscle: 0.20 ± 0.12 to 0.21 ± 0.12 mmol/kg, p = 

0.486, +6.2%). When histidine was supplemented alone, a slight, yet non-significant 
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increase in plasma (51.3 ± 14.4 to 62.7 ± 24.4 µM, p = 0.135, +22.2%) and muscle (0.19 ± 

0.07 to 0.27 ± 0.12 mmol/kg, p = 0.153, + 38.8%) histidine levels was observed (Fig 3A&B; 

Table 2). 

 

Figure 3. Effect of supplementation of BA, HIS or BA+HIS on histidine concentrations in plasma (A) and muscle (B). * p < 

0.05 vs D0 for post-hoc analysis when a significant interaction effect was found 

 

Plasma and muscle beta-alanine concentrations 

A significant interaction effect was found for fasting plasma beta-alanine (p = 0.007), 

demonstrating significantly increased levels in both BA (2.6 ± 1.2 to 7.0 ± 3.6 µM, p = 

0.009, + 172.1%) and BA+HIS (2.6 ± 1.0 to 6.2 ± 3.6 µM, p = 0.003, +141.4%) groups, but 

not in the HIS group (2.5 ± 0.9 to 2.7 ± 1.1 µM, p = 0.385) after 23 days of 

supplementation (Table 2). The increase in the BA and BA+HIS groups was already 

established after 12 days of supplementation (p = 0.01 and p = 0.001 for both BA and 

BA+HIS, respectively), with no further increase in the second part of the supplementation 

period (p = 0.237 and p = 0.370 for BA and BA+HIS, respectively). In contrast, no 

significant interaction effect was found for muscle beta-alanine, yet both BA and BA+HIS 

groups showed a slight, non-significant increase in muscle beta-alanine levels (BA: 0.12 ± 
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0.08 to 0.19 ± 0.06 mmol/kg; BA+HIS 0.14 ± 0.14 to 0.21 ± 0.12 mmol/kg) while this 

remained stable in the HIS group (0.11 ± 0.06 to 0.12 ± 0.09 mmol/kg) (Table 2). 

Plasma and muscle taurine concentrations 

No significant interaction effect was found for plasma or muscle taurine levels (p = 0.063 

and p = 0.156, respectively). Yet, both the BA and BA+HIS groups seemed to undergo a 

slight, non-significant decrease in plasma taurine levels (BA: 52.7 ± 7.8 to 39.3 ± 10.0 µM 

at D23, -25.3%; BA+HIS: 53.1 ± 17.9 to 42.4 ± 12.2 µM at D23, -20.1%), which was not the 

case for the HIS group (45.7 ± 16.9 to 51.2 ± 12.8 µM at D23, +12.1%). In muscle, a slight, 

non-significant decrease in taurine levels was only observed in the BA group (11.3 ± 2.6 to 

9.8 ± 1.5 mmol/kg at D23, -13.5%), while muscle taurine remained stable in both the HIS 

and BA+HIS groups (HIS: 11.5 ± 2.5 to 12.3 ± 5 mmol/kg, +7.4%; BA+HIS: 10.0 ± 2.0 to 10.0 

± 2.0 mmol/kg, -0.2%) (Table 2). 

Confirmation of beta-alanine induced muscle histidine decline 

In order to replicate and confirm the finding of the beta-alanine-induced decline in 

muscle histidine concentration, we measured the histidine concentration on muscle 

samples of 13 subjects of a previous study performed in our lab (Stegen et al., 2013a). 

Muscle histidine concentration decreased from 0.36 ± 0.10 to 0.28 ± 0.07 mmol/kg (p = 

0.02, -23.2%), confirming the decline in muscle histidine after beta-alanine 

supplementation found in the main study.  



 

 
 

Table 2. Plasma and muscle beta-alanine, histidine and taurine concentrations for the three experimental groups at D0, D12 and D23.  

 

Muscle values (mmol/kg wet weight) were obtained from muscle biopsies, which were taken at D0 and D23. Values are mean ± SD. * p < 0.05 vs D0 for post-hoc analysis in case a significant 

interaction effect was found 

  

Group BA HIS BA+HIS 

Timepoint D0 D12 D23 D0 D12 D23 D0 D12 D23 

beta-alanine 

plasma (µM) 2.6 ± 1.2 5.8 ± 2.4* 7.0 ± 3.6* 2.5 ± 0.9 2.5 ± 0.8 2.7 ± 1.1 2.6 ± 1.0 5.8 ± 3.0* 6.2 ± 3.6*  

M. vastus lateralis  (mmol/kg) 0.12 ± 0.08 / 0.19 ± 0.06 0.11 ± 0.06 / 0.12 ± 0.09 0.14 ± 0.14 / 0.21 ± 0.12 

Histidine 

plasma (µM) 55.0 ± 20.0 40.1 ± 15.1* 38.1 ± 15.0* 51.3 ± 14.4 61.6 ± 18.5 62.7 ± 24.4 52.1 ± 22.0 46.8 ± 13.2 51.7 ± 18.2 

M. vastus lateralis  (mmol/kg) 0.20 ±0.06 / 0.14 ± 0.09* 0.19 ± 0.07 / 0.27 ± 0.12 0.20 ± 0.12 / 0.21 ± 0.12 

Taurine 

plasma (µM) 52.7 ± 7.8 46.6 ± 12.5 39.3 ± 10.0 45.7 ± 16.9 49.2 ± 12.6 51.2 ± 12.8 53.1 ± 17.9 45.2 ± 15.1 42.4 ± 12.3 

M. vastus lateralis  (mmol/kg) 11.3 ± 2.6 / 9.8 ± 1.5 11.5 ± 2.5 / 12.3 ± 5.0 10.0 ± 2.0 / 10.0 ± 2.0 
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Dietary registration 

There was no significant difference between the 3 experimental groups concerning the 

daily intake of calories, proteins, carbohydrates and histidine through the regular diet. 

The mean intake of histidine averaged 2.66 ± 0.90g/d, which corresponds to 0.040 ± 0.011 

g HIS/kg BW/d. Supplementing 3.5g histidine per day therefore resulted in a daily intake 

which was 2.5 times higher compared to the food-based dietary intake (Table 3). 

Table 3. Mean daily self-reported nutritional intake of calories, proteins and histidine of the three experimental groups.  

 
Calories 
(kcal/d) 

Protein 
(g/kg BW/d) 

Histidine  
(g/kg BW/d) 

Histidine 
(g/d) 

Histidine 
supplement 

(g/d) 

Total 
histidine 

(g/d) 

BA 2536 ± 886 1.47 ± 0.45 0.041 ± 0.01 2.6 ± 1.1 0 2.6 

HIS 2354 ± 449 1.49 ± 0.31 0.042 ± 0.01 2.7 ± 0.7 3.5 6.2 

BA+HIS 2471 ± 552 1.36 ± 0.39 0.038 ± 0.01 2.6 ± 0.9 3.5 6.1 

Values were calculated based on the 3-day food diary. Values are mean ± SD. SD refers to total daily variability between 

the different subjects per group 
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DISCUSSION 

To the best of our knowledge, this is the first study to investigate the effect of chronic 

oral histidine supplementation on muscle carnosine content in humans. Unlike the 

findings in some animals, histidine supplementation did not induce carnosine loading in 

human muscles, although it tended to increase muscle histidine content, suggesting that 

elevated tissue histidine in itself is not sufficient to raise carnosine. In different animal 

species, it was already repeatedly demonstrated that animals fed a histidine-deficient diet 

show a reduction of muscle carnosine content of 60 up to 90% (Quinn & Fisher, 1977; 

Tamaki et al., 1977, 1984; Amend et al., 1979) and that histidine supplementation alone 

can increase carnosine levels at least in some species (Tamaki et al., 1977, 1984; Haug et 

al., 2008; Park et al., 2013; Kralik et al., 2015; Kai et al., 2015). The discrepancy between 

human vs bird and rodent data suggest that carnosine metabolism differs between these 

species when it comes to the rate-limiting precursor for carnosine synthesis.  

In order to investigate whether histidine availability remains sufficient despite continued 

supplementation of only one of the precursors (beta-alanine) of carnosine synthesis, we 

monitored histidine levels during a period of beta-alanine supplementation. Interestingly, 

the current experiment together with the re-analysis of muscle samples from a previous 

study of our laboratory (Stegen et al., 2013a) elucidated that both muscle and plasma 

histidine levels showed a substantial decline (≈-30%) with beta-alanine supplementation. 

This indicates that histidine availability is, although initially not rate-limiting, certainly not 

unlimited in humans either. However, this does not seem problematic for carnosine 

synthesis efficiency in the first 12 days of supplementation, as co-supplementation with 

histidine prevents the histidine decrease without affecting the amount of carnosine 

loading. Yet, although no significant interaction effect was found, there seemed to be a 

more modest decline in the amount of carnosine accretion during the second part of 

supplementation (D12-D23) in the BA+HIS group compared to the BA group. As the 

supplementation period in this study only lasted 23 days with a total ingested beta-

alanine dose of 138g, one could speculate that the depletion of plasma and muscle 

histidine would become more problematic in longer duration studies with higher amounts 

of supplemented beta-alanine. In practice, guidelines for beta-alanine mostly recommend 

4 to 6 or even up to 10 weeks of supplementation (Stellingwerff et al., 2012b), containing 
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total ingested beta-alanine doses ranging from 179.2 up to 414.4g (Hill et al., 2007; 

Kendrick et al., 2008; Baguet et al., 2009; Chung et al., 2012, 2014; Danaher et al., 2014). 

The study of Hill et al. (2007) measured carnosine loading in the vastus lateralis after 4 

and 10 weeks of beta-alanine supplementation, corresponding to a total ingested beta-

alanine dose of 145.6g and 414.4g, respectively. They reported an increase in carnosine 

levels of 58.8% at 4 weeks and 80.1% at 10 weeks, demonstrating a lower loading 

efficiency in the second period of supplementation. It remains to be established whether 

the attenuated carnosine loading upon continued beta-alanine supplementation for 

several months could possibly be related to gradually further depleted histidine levels and 

thus whether histidine supplementation can be of benefit during more prolonged beta-

alanine supplementation.  

In strength-training athletes in an anabolic state, depleted histidine stores as a result of 

beta-alanine supplementation could become problematic. Several studies have explored 

the ergogenic potential of beta-alanine supplementation as a training aid during strength 

training (Kendrick et al., 2008; Bellinger, 2014). The rationale holds that elevated muscle 

carnosine content would better maintain myocellular homeostasis (e.g. in pH) during 

resistance exercise, and thereby increase the number of contraction repetitions (training 

volume) and subjective feeling of fatigue, as suggested by Hoffman et al. (2008). However, 

Kendrick et al. (2008) were not able to demonstrate an added benefit of chronic beta-

alanine supplementation during a 10-week resistance training program on muscle 

strength or muscle mass gains. Possibly, an unnoticed decline in muscle histidine 

concentration may have partly antagonized the potential added benefit of elevated 

muscle carnosine during strength training. As such, a decrease in histidine levels could 

negatively affect the stimulation of muscle protein synthesis which is fundamentally 

regulated by extracellular and intracellular amino acid availability (Kimball & Jefferson, 

2002). Habitual protein intakes of strength athletes is on average 2g/kg BW/day (Phillips, 

2004), corresponding with approximately 3.7g of L-histidine per day for a 66 kg person 

(mean weight of subjects in this study), which is more similar to the daily intake of the 

non-training subjects of the BA group of this study (2.61g/d), compared to the intake of 

the BA+HIS group (6.14g/d). Therefore, given their anabolic state, the higher dietary 

protein intake in strength-training athletes may possibly not compensate for the 
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reduction in muscle histidine when combining strength training with beta-alanine 

supplementation. 

Another example in which the human body is in an anabolic state is during growth. Due to 

the demands of growth and development, getting adequate protein is important during 

infancy, childhood, and adolescence (Joint WHO/FAO/UNU Expert Consultation., 2007). 

Some inconsistency exists regarding the categorization of L-histidine, but it is mostly 

categorized as a semi-essential amino acid (Stifel & Herman, 1972) because adults 

generally produce adequate amounts but children may not. Given this, the use of beta-

alanine supplementation in children, especially during puberty, should be strongly 

discouraged.  

Likewise, adults suffering from obesity and metabolic syndrome seem to have an 

increased need for dietary histidine. In a well-powered intervention study, Feng et al. 

(2013) demonstrated marked reductions in insulin resistance and inflammatory markers 

over a 12-week period of 4g/day of oral L-histidine supplementation in obese women. 

Therefore, supplementing beta-alanine in a condition of insulin resistance or obesity may 

be inappropriate as this may further decline histidine stores, which are already 

compromised in these pathologies, as suggested by Feng et al. (2013). Indeed, a recent 

study indicated beneficial effects of oral carnosine but not of beta-alanine 

supplementation on markers of metabolic stress in high-fat fed rats, despite both 

strategies increased muscle carnosine content to the same extent (Stegen et al., 2015). 

Similar positive effects of oral carnosine supplementation, which in fact equalizes 

combined beta-alanine and L-histidine supplementation in a 1:1 molar ratio, have 

recently also been suggested in obese humans (DeCourten et al., 2016). Thus, even 

though chronic oral beta-alanine supplementation may have applications beyond the 

sports arena, such as in the elderly population (DelFavero et al., 2012), the current study 

suggests that co-supplementing with histidine could be a better alternative in some 

instances. 

A possible exercise-related metabolic pathway in which histidine is involved, is histamine 

synthesis through decarboxylation of L-histidine by histidine decarboxylase (HDC). Some 

beneficial exercise-related roles are ascribed to histamine such as the vasodilating effect 

http://en.wikipedia.org/wiki/Essential_amino_acid
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on arterioles in (post-)exercise hyperaemia (Jones, 2016). Furthermore, Romero et al. 

(2016) demonstrated that the human response to exercise includes an altered expression 

of thousands of protein-coding genes, and >25% of this response is driven by histamine. 

In general, it is believed that histamine can function in a paracrine or endocrine fashion or 

can be stored in mast cells. Mice deficient in HDC or histamine H1-receptors displayed 

markedly reduced endurance abilities in comparison to control mice and the anti-fatigue 

effect of endogenous histamine is completely intact in mast-cell-deficient mice (Endo et 

al., 1998; Niijima-Yaoita et al., 2012), suggesting that histamine might also derive from 

muscle histidine. HDC is expressed in human skeletal muscle and is upregulated following 

exercise (Romero et al., 2016). Decreased muscle histidine levels following beta-alanine 

supplementation might therefore also affect histamine production and thus exercise 

responses. Overall, it remains to be investigated to what extent depleted muscle and 

plasma histidine levels following beta-alanine supplementation affect carnosine 

metabolism, protein and insulin metabolism or histidine decarboxylase kinetics.  

A limitation of this study is the fact that only one histidine dose was tested, alone or in 

combination with beta-alanine. This implicates that the conclusions cannot directly be 

generalized to higher histidine doses or other beta-alanine:histidine ratios than the 3:1 

ratio tested in this study. We hypothesized that histidine may become rate-limiting with 

chronic and intensive beta-alanine consumption, suggesting a smaller amount of histidine 

compared to beta-alanine should suffice to support the beta-alanine intake. Therefore, 

we chose a histidine dose in the same range than the dose applied in a previous 

intervention study and for which no side-effects were reported (Feng et al., 2013). Still, 

the dose used in this study (3.5g/d) was required to considerably increase the daily intake 

of histidine through the regular diet (2.66g/d on average in this study, which was thus at 

least doubled by the supplemented histidine dose). The use of 3-day food diaries to 

estimate histidine intake is a second limitation. It is generally believed that precise 

estimates of protein and energy can be done with 3-day food diaries (Basiotis et al., 1987), 

but amino acids probably show higher day-to-day variability, suggesting that the level of 

precision is lower for this parameter. Yet, the dietary histidine levels were measured 

primarily to 1) provide context for the supplemented versus normal dietary dose of 

histidine ingestions, and 2) control at group level whether the intake differs between the 
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intervention groups, which is probably only minimally influenced by a lower precision. 

Moreover, it should be acknowledged that the absorption kinetics may differ between 

pure and food-derived histidine intake, but no literature is currently available on this 

topic.  

In summary, we have shown that histidine supplementation alone did not suffice to 

increase muscle carnosine content and adding histidine to the beta-alanine 

supplementation protocol did not improve short-term loading efficiency, confirming the 

rate-limiting role of beta-alanine. However, we equally demonstrated that chronic beta-

alanine supplementation reduces plasma and muscle histidine levels, which could be 

prevented by co-supplementing L-histidine alongside beta-alanine. It remains to be 

determined whether the depletion of histidine levels by beta-alanine can compromise 

physiological processes such as carnosine loading of longer duration or protein synthesis 

in an anabolic state. 
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ABSTRACT 

Background: Balanced vegetarian diets are very popular and contain health-promoting 

characteristics, although they are nearly absent in creatine and carnosine and contain 

considerably less carnitine. Very few longitudinal intervention studies investigating the 

effect of a vegetarian diet on the metabolism of these compounds currently exist. 

Objective: We aimed to investigate the effect of transiently switching omnivores onto a 

vegetarian diet for 6 months on the muscle and plasma creatine, carnitine and carnosine 

homeostasis. 

Design: In a 6-month intervention, 40 omnivorous women were divided in three groups: 

control (continued omnivorous diet; Control), a vegetarian diet without supplementation 

(Veg+Pla), and a vegetarian diet combined with daily beta-alanine (0.8-0.4 g/day) and 

creatine supplementation (1 g creatine monohydrate/day) (Veg+Suppl). Before (0M) and 

after 3 (3M) and 6 months (6M), subjects performed an incremental cycling test and 

fasted venous blood samples, muscle biopsies and 24 hr urine samples were collected. 

Muscle carnosine content was determined by 1H-MRS. 

Results: Plasma creatine and muscle total creatine concentrations declined from 0M to 

3M in the Veg+Pla group (p = 0.013 and p = 0.025, respectively), while both increased 

from 0M in the Veg+Suppl group (p = 0.004 and p = 0.007, respectively). None of the 

carnitine-related compounds in plasma or muscle showed a significant interaction effect. 

Muscle carnosine was unchanged over 6M in Control and Veg+Pla groups, but increased 

in the Veg+Suppl group in soleus (p < 0.001) and gastrocnemius (p = 0.001) muscle. 

VO2max and time to exhaustion of the incremental cycling test did not differ between the 

experimental groups at baseline, neither did it change during the 6-month intervention 

period. 

Conclusions: Body creatine concentrations declined over a 6-month vegetarian diet in 

omnivorous women, which was absent when accompanied by daily creatine 

supplementation, whereas carnitine and carnosine homeostasis is not affected by a 6-

month vegetarian diet. 

KEYWORDS: carninutrients, lacto-ovo-vegetarians, beta-alanine 
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INTRODUCTION 

Vegetarian dietary patterns are becoming increasingly popular for various ecological, 

ethical or health-related reasons. A high consumption of red and processed meat has 

been consistently demonstrated to elevate mortality risk from certain cancers (1) and 

cardiovascular diseases (2,3). Yet, it is unclear whether the reduced mortality risk in lacto-

ovo vegetarians, found in some studies, is related to the omission of meat and fish, or 

rather to more prevalent diet-unrelated health-conscious behaviour. A balanced lacto-

ovo-vegetarian diet differs in nutrient intake from an omnivorous diet, e.g. by increased 

intake of fibre, magnesium and antioxidants, but lower intake of omega-3 fatty acids and 

vitamin B12 (4); all of which is reasonably well-documented in the scientific literature. 

However, the impact of the near absent intake of creatine, carnitine and carnosine in a 

vegetarian diet is less well established and could be relevant in relation to muscle 

function, exercise capacity and sports performance. 

Creatine, carnitine and carnosine are solely or almost solely found in tissues of animals (5), 

with highest concentrations in skeletal muscle tissue (hence the name, derived from latin 

carnis, flesh). McCarty (5) therefore suggested to designate these compounds as 

“carninutrients”. They neither qualify as micronutrient, because they are ingested in 

relatively high amounts (range of 0.1-5 g per day), nor as macronutrient, because they are 

not primarily serving an energy provision role. Yet, creatine, carnitine and carnosine are 

nitrogenous molecules that possess properties with relevance to muscle function. 

Creatine plays a crucial bioenergetic role in tissues with high metabolic demand by 

rephosphorylating adenosine diphosphate (ADP) to synthesize adenosine triphosphate 

(ATP) (6). Carnitine is known to play a key role within several cellular energy producing 

pathways such as the transport of long-chain fatty acids into the mitochondria (7–9). It is 

of highest abundance in meat, however, it is also present in a number of non-meat 

nutrients (e.g. nuts, potatoes, milk). In contrast, the dipeptide carnosine (beta-alanyl-L-

histidine) is exclusively present in meat and fish. Carnosine has a wide spectrum of 

bioactive properties such as pH-buffering, calcium regulation, antiglycation and 

antioxidant activity (10). Numerous studies in literature demonstrated the beneficial 

effects of creatine, carnitine (combined with carbohydrates) or beta-alanine (precursor 

amino-acid of carnosine) supplementation on exercise performance in athletes (11–13), 
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and therapeutic potential toward certain disorders in which muscle function is a key 

component (6,14,15).   

Cross-sectional studies suggested that the homeostasis of these carninutrients in humans 

is negatively affected by long-term vegetarianism. Somewhat lower plasma carnitine 

concentrations in vegetarians than in omnivores are reported (16–19), but no consistency 

exists regarding muscle carnitine content. Stephens et al. (19) reported 17% lower muscle 

total carnitine concentrations in vegetarian women while no differences were found in 

same measure in the study of Novakova et al. (16). Until now, no human longitudinal 

intervention study is available investigating the effect of transiently switching omnivores 

onto a vegetarian diet on carnitine homeostasis. It is known, however, that carnitine has a 

slow turnover rate (300-500µmol/day) (7) and since it is still present in a vegetarian diet, 

it can be suggested that carnitine homeostasis is maintained during the first months of 

vegetarianism. Chronic and complete restriction of dietary creatine and carnosine is 

demonstrated to result in lower plasma creatine (17), and decreased intramuscular 

creatine (20) and carnosine (21,22) concentrations as compared with omnivorous 

subjects. Thus, these cross-sectional data suggest that the endogenous synthesis capacity 

may not be sufficient to maintain muscle creatine and carnosine concentrations, and 

therefore the latter may partly depend on dietary intake. Creatine is known to have a high 

turnover rate (~2g/day) (23). Consequently, a 3-week vegetarian intervention in 

omnivorous subjects already decreased muscle creatine content  by 10% (24) and longer-

term interventions might thus even deplete creatine to a greater extent. For carnosine, 

turnover rate is much slower compared to creatine (25). Accordingly, a 5-week vegetarian 

intervention study indicated no significant reduction in muscle carnosine content (26). 

However, in contrast to carnitine, carnosine is completely absent in vegetarian diets, 

suggesting that carnosine homeostasis might be affected by longer-term interventions.  

This study aimed therefore to investigate the effect of a 6-month vegetarian diet on body 

creatine, carnitine and carnosine stores in omnivorous women. We hypothesized that 

homeostasis of creatine and carnosine would be disrupted when their dietary intake was 

lacking. For carnitine, however, we hypothesized that homeostasis can be maintained 

given its slow turnover rate and its presence in some non-meat nutrients. A second aim 

was to investigate whether supplementation of creatine and beta-alanine (the rate-
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limiting precursor of carnosine synthesis), concurrently with a lacto-ovo-vegetarian diet, 

was able to correct for potentially emerging deficiencies.    
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MATERIALS AND METHODS 

Subjects 

Forty healthy female omnivores volunteered to participate in this 6-month intervention 

study. Exclusion criteria were smoking, chronic use of medication, athletes participating in 

competitions, vegetarianism or eating meat or fish less than 5 times a week. One woman 

dropped out within 2 months for personal reasons. At the start of the study, the subjects’ 

age, weight, height and body mass index were 25.6 ± 7.3 yrs, 62.7 ± 7.9 kg, 167 ± 6 cm 

and 22.3 ± 2.6 kg/m2, respectively. None of them were taking supplements containing 

creatine, carnosine, beta-alanine or carnitine in the 3 months prior to the start of the 

study. All participants gave their informed consent and the study was approved by the 

local ethics committee (Ghent University Hospital, Belgium).  

Study design 

The study was scheduled over a period of 6 months and measurements were performed 1 

week prior to the intervention (0M), after 3 months (3M) and within the last week (6M). 

Ten women continued their omnivorous diet throughout the entire study (controls) and 

the other 29 subjects switched to a lacto-ovo-vegetarian diet for 6 months. The 

vegetarian group was split in 2 groups, matched for age, weight, height and baseline 

carnosine concentrations in soleus and gastrocnemius medialis muscles. Fourteen of 

them were supplemented with beta-alanine and creatine (Veg+Suppl) and the other 15 

women received a placebo (Veg+Pla). With regard to supplementation, the study was 

double-blind placebo-controlled. The lacto-ovo-vegetarian diet consisted of vegetables, 

fruits, seeds, grains, meat substitutes, eggs and dairy products and the exclusion of meat, 

poultry and fish. Subjects were asked to complete a 3 day food diary at the start and after 

3 months and received nutritional advice by a dietician during the study to prevent 

deficiencies in macronutrients and micronutrients. Furthermore, vegetarian recipes were 

provided by email to support the subjects in their vegetarian diet. 

Supplements 

The supplementation protocol included simultaneously daily oral administration of 

creatine monohydrate (Creapure®, AlzChem AG, Germany) and slow-release beta-alanine 

(Carnosyn®, Natural Alternatives International, San Marcos, USA) or a placebo 
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(maltodextrin, Natural spices, France). The Veg+Suppl group ingested 1 g of creatine 

monohydrate  (2 capsules of 500 mg) and 0.8 g of beta-alanine (1 Carnosyn® tablet) each 

day for the first 3 months. Intermediate analysis of muscle carnosine content at 3 months 

revealed that 0.8 g of beta-alanine was too high to maintain carnosine at baseline 

concentration, and therefore the beta-alanine dose was reduced to 0.4 g/day during the 

last 3 months of the study, with creatine dosing remaining at 1 g/day. The Veg+Pla group 

was supplemented with an identical number of capsules and tablets of maltodextrin. All 

subjects were asked not to take any other supplements than those provided by the 

current study. Compliance was checked by asking the subjects to return the containers 

and counting the pills that were left. The control group, who remained on an omnivorous 

diet, did not receive any supplements. 

Incremental cycling test 

At 0, 3 and 6M, subjects performed an incremental cycling test. On the first visit, subjects 

were screened to be medically fit before starting the incremental cycling protocol to 

exhaustion. The test was performed on an electrically-braked cycling ergometer 

(Excalibur; Lode, Groningen, The Netherlands). Oxygen consumption was measured 

continuously via a computerized breath-by-breath system (JaegerOxycon Pro, Hoechberg, 

Germany). Following a 3 min warm-up at 40 W, the workload was increased by 40 W 

every 3 min until the point the subjects failed to continue to pedal at 60 rpm. Capillary 

blood samples were taken before and immediately after the incremental cycling test and 

pH and lactate was measured (blood gas analysis: GEM, Premier TM 3000, 

Instrumentation Laboratory, MA, USA). 

Sample collection 

Fasted venous blood samples were collected into heparin plasma tubes and serum gel 

tubes after 0, 3 and 6M. Heparin tubes were immediately centrifuged after collection to 

separate plasma. Serum tubes were left at rest at room temperature to obtain complete 

coagulation, before performing the same centrifugation process as for plasma. All 

samples were frozen at -20°C until subsequently analysis. True cut muscle biopsies were 

taken at baseline and after 3M from the vastus lateralis of the left leg at rest. Following 

local anesthesia of the skin and subcutaneous tissues with 5 mL lidocaine, two muscle 

samples were taken with a 14 Gauge true-cut biopsy needle (Bard Magnum Biopsy gun; 
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Bard, Inc., New Jersey, USA). The muscle samples were then immediately frozen in liquid 

nitrogen and stored at -80°C until subsequent analysis. A far too low number of subjects 

consented to have muscle biopsies taken at 6M. Therefore, muscle analyses were 

restricted to the 0 and 3M time points. Twenty-four hour urine samples were collected at 

baseline and after 3M and 6M into a plastic container and a 5 mL aliquot was stored at -

20°C.  

Quantification of 25-Hydroxyvitamin D 

25-Hydroxyvitamin D was measured in serum samples of all participants using the Elecsys 

Vitamin D total assay (Cobas Instrument). Briefly, the assay kit employs a vitamin D 

binding protein as capture protein to bind vitamin D3 and D2. 

Quantification of plasma and urinary compounds  

Plasma creatine, creatinine, guanidinoacetate, carnitine and acetylcarnitine were 

measured by LC-MSMS with butanol-HCl derivatization. Urinary creatinine was measured 

using the Cobas Instrument (Roche). Plasma beta-alanine and urinary biomarkers for 

meat intake (pi-methyl-histidine, tau-methylhistidine and anserine) were measured by 

HPLC. Plasma and urine of all participants at 3 time points was deproteinized using 35 % 

sulfosalicylic acid (SSA) and centrifuged (16,000 g for 5 min). Two-point six µL of 

deproteinized supernatant was mixed with 77.4 µL of AccQ Fluor Borate buffer and 20 µL 

of reconstituted Fluor Reagent from the AccQTag chemistry kit (Waters). The same 

method was applied to the combined standard solutions of beta-alanine (Sigma) for 

plasma, and pi-methyl-histidine (Sigma), tau-methyl-histidine (Sigma) and anserine (Sigma) 

for urine. The derivatized samples were applied to a Waters HPLC system with following 

parameters: AccQTag column (3.9 x 150 mm, 5 µm) for beta-alanine quantification and 

Xbridge BEH column (4.6 x 150mm, 2.5µm) for pi-methyl-histidine, tau-methyl-histidine 

and anserine quantification, both with fluorescence detector (excitation/emission 

wavelength: 250/395 nm). The column was equilibrated with buffer A [10% eluent A 

(Waters) – 90% H2O], buffer B (100% acetonitrile) and buffer C (100% H2O) at a flow rate 

of 1ml/min at room temperature.  

 

 



116  ORIGINAL RESEARCH – STUDY 3 
 

 

Quantification of muscle carnitine and creatine 

Liquid nitrogen frozen wet muscle samples were freeze-dried before being powdered and 

checked for all visible blood and connective tissue, which were removed under low grade 

microscopy. Then muscle metabolites were extracted by adding cold 0.5 mM perchloric 

acid (PCA, containing 1 mM EDTA) to the muscle powder while on ice in a ratio 1 ml of 

PCA to every 12.5 mg of muscle powder. Then, samples were gently vortexed for 10 min 

before being centrifuged (10,000 rpm for 3 min at 4°C).  Supernatants were then carefully 

removed to new test tubes and neutralised with 2.2 mM KHCO3.The perchlorate 

precipitates were removed by centrifugation (10,000 rpm for 3 min at 4°C), and the 

supernatants (metabolite extracts) were removed to new test tubes and stored at -80C 

for subsequent analysis. Muscle PCA extracts were used to determine muscle creatine (Cr) 

and phosphocreatine (PCr) concentrations and free and acetylcarnitine concentrations 

employing spectrophotometric and radioactive methods described by Harris et al. (1974) 

and Cederblad et al. (1990), respectively. Muscle total creatine and carnitine 

concentrations were expressed as the sum of Cr and PCr, and the sum of free and 

acetylated carnitine, respectively. 

Proton magnetic resonance spectroscopy 

The carnosine levels in soleus and gastrocnemius muscles of all subjects at 0M, 3M and 

6M was measured by proton magnetic resonance spectroscopy (1H-MRS), as previously 

described (Baguet et al., 2010a). The subjects were lying in supine position and the lower 

leg was fixed in a holder with the angle of the ankle at 20° plantar flexion. All the MRS 

measurements were performed with a 3 Tesla whole body MRI scanner (Siemens Trio, 

Erlangen) equipped with a spherical knee-coil. Single voxel point-resolved spectroscopy 

(PRESS) sequence with the following parameters was used: repetition time (TR) = 2.000 

ms, echo time (TE) = 30 ms, number of excitations = 128, 1.024 data points, spectral 

bandwidth of 1.200 Hz, and a total acquisition time of 4.24 min. The average voxel size 

was 40 mm x 10 mm x 28 mm for soleus and 40 mm x 11 mm x 29 mm for gastrocnemius 

and the line width of the water signal was on average 25.2 Hz (soleus) and 28.3 Hz 

(gastrocnemius), following shimming procedures. The absolute carnosine content (in mM) 

was calculated as described before by Baguet et al. (2010a). 
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Statistics  

A two-way mixed-model analysis of variance (ANOVA) was used to evaluate plasma and 

urinary metabolite concentrations, muscle carnosine, time to exhaustion (TTE) and VO2max 

with ‘group’ (Veg+Suppl; Veg+Pla; control) as between-subject factor and ‘time’ (0M; 3M; 

6M) as within-subject factor (SPSS statistical software, SPSS Inc, Chicago, USA). For the 

analysis of capillary lactate and pH, measurements before and after the incremental 

cycling test were included as another within factor (start; end). In case of significance, 

analyses were repeated for each group separately and pairwise comparisons were used 

to compare the different time points. A 3 x 2 repeated measures ANOVA was used to 

analyse muscle biopsy metabolite concentrations with ‘group’ (Veg+Suppl; Veg+Pla; 

control) as between-subject factor and ‘time’ (0M; 3M) as within-subject factor. In case of 

significance, pairwise comparisons were performed to compare 0 to 3 months for each 

group separately. Correlations between serum 25-Hydroxyvitamin D and plasma and 

muscle carnitine concentrations were obtained by means of Pearson correlations. Values 

are presented as mean ± SD and statistical significance threshold was set at p ≤0.05.   



118  ORIGINAL RESEARCH – STUDY 3 
 

 

RESULTS 

Creatine metabolism 

In order to evaluate the effect of a long-term vegetarian diet in previous omnivores on 

creatine metabolism, plasma creatine (Figure 1A), creatinine (Figure 1B) and 

guanidinoacetate (Figure 1C), urinary creatinine (Figure 1D) and muscle phosphocreatine 

(Figure 2A), creatine (Figure 2B) and total creatine (Figure 2C) were measured. For plasma 

creatine, a significant interaction effect (p < 0.001) was found (Figure 1A), demonstrating 

a decrease of 46% from baseline in the Veg+Pla group (p = 0.008) and an increase of 195% 

in the Veg+Suppl group (p = 0.008) after 6 months. Plasma creatinine (p = 0.102) and 

guanidinoacetate (p = 0.554) and urinary creatinine (p = 0.373) were not influenced by 

any intervention. As can be seen on Figure 2, a significant interaction effect (p < 0.001) 

was found for muscle total creatine. Adhering to a creatine-free vegetarian diet for 3 

months caused a significant decline (14.6%) in muscle total creatine (153.5 ± 24.0 to 128.8 

± 11.6 mmol/kg dry weight; p = 0.025), while this was slightly increased in the Veg+Suppl 

and control groups (p = 0.007 and p = 0.087, respectively).  

 

Figure 1. Effect of an omnivorous diet (Control), a vegetarian diet (Veg+Pla) and a vegetarian diet combined with 

creatine and beta-alanine supplements (Veg+Suppl) on plasma creatine (A), plasma creatinine (B), plasma 

guanidinoacetate (C) and urinary creatinine (D) concentrations, analysed by a repeated measures ANOVA. 0M: baseline; 

3M: 3 months; 6M: 6 months. * p < 0.05 compared to 0M 
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Figure 2. Effect of an omnivorous diet (Control), a vegetarian diet (Veg+Pla) and a vegetarian diet combined with 

creatine and beta-alanine supplements (Veg+Suppl) on muscle total creatine concentrations analysed by a repeated 

measures ANOVA. 0M: baseline; 3M: 3 months; dw: dry weight. * p < 0.05 compared to 0M 

 

Carnitine metabolism 

Plasma and muscle free carnitine, acetylcarnitine and total carnitine (free + 

acetylcarnitine forms) concentrations were measured to investigate the effect of induced 

vegetarianism on the carnitine metabolism in previous omnivore subjects. No significant 

interaction effect was found for any of these parameters. However, as shown in Figure 

3A-C and 4A-C, significant main effect of time for plasma carnitine (p = 0.003), 

acetylcarnitine (p = 0.002), and total carnitine (p = 0.001), and muscle carnitine (p = 0.049) 

and total carnitine (p = 0.001) were found. As most of carnitine parameters seem to 

decline independently from intervention, but rather as a result of a seasonal pattern, 

especially towards the 3M time point that coincided with the end of the winter, we 

decided, therefore, to evaluate if carnitine seasonal pattern could be related to the 

vitamin D status. 



120  ORIGINAL RESEARCH – STUDY 3 
 

 

 

Figure 3. Effect of an omnivorous diet (Control), a vegetarian diet (Veg+Pla) and a vegetarian diet combined with 

creatine and beta-alanine supplements (Veg+Suppl) on plasma carnitine (A), plasma acetylcarnitine (B) and plasma total 

carnitine (C) concentrations. 0M: baseline; 3M: 3 months; 6M: 6 months. 
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Figure 4. Effect of an omnivorous diet (Control), a vegetarian diet (Veg+Pla) and a vegetarian diet combined with 

creatine and beta-alanine supplements (Veg+Suppl) on muscle carnitine (A), muscle acetylcarnitine (B) and muscle total 

carnitine (C) concentrations. 0M: baseline; 3M: 3 months; dw: dry weight.  

 

Serum 25-Hydroxyvitamin D  

Similar to most of the carnitine forms, a significant main effect of time (p < 0.001) for 

serum 25-Hydroxyvitamin D concentration was found, exemplified by a significant 

decrease from 0 to 3M and a return to baseline at 6M (Figure 5A). To check whether the 

25-Hydroxyvitamin D levels were the underlying mechanism for the observed pattern of 

carnitine levels in plasma and muscle, correlations between these parameters were 

explored. Surprisingly, a significant negative rather than positive correlation between 
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serum 25-Hydroxyvitamin D levels and plasma total carnitine (r = -0.34, p < 0.001) (Figure 

5B) was observed. No significant correlation between 25-Hydroxyvitamin D levels and 

total muscle carnitine was observed (r = -0.104, p = 0.422). After clustering the subjects in 

vitamin D-deficient (<25 ng/ml at 0 or 3M) and non-deficient (>25 ng/ml) groups, 

significant higher total plasma carnitine levels in the non-deficient than in the deficient 

group were found at each time point (0M p = 0.013; 3M p = 0.064; 6M p = 0.002). 25-

Hydroxyvitamin D deficient subjects also displayed a significantly lower decrease in 

vitamin D levels from 0 to 3M compared to non-deficient subject (-4.53 ng/ml vs 8.50 

ng/ml, p = 0.014).  

 

Figure 5. Effect of an omnivorous diet (Control), a vegetarian diet (Veg+Pla) and a vegetarian diet combined with 

creatine and beta-alanine supplements (Veg+Suppl) on serum 25-Hydroxyvitamin D concentrations (A) and correlations 

between 25-Hydroxyvitamin D and total plasma carnitine content at 0M (r = -0.432, p = 0.008), 3M (r = -0.24, p = 0.153) 

and 6M (r = -0.561, p ≤ 0.001) (B). 0M: baseline; 3M: 3 months; 6M: 6 months. 

 

Carnosine metabolism 

Fasting plasma beta-alanine concentrations remained stable throughout the 6-month 

intervention period in the Veg+Pla and control group, but not in the Veg+Suppl group 

(Figure 6A). The latter group showed a significant increase in plasma beta-alanine 

concentrations after 3 months of vegetarian diet combined with 0.8 g beta-alanine per 
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day (+27.2%; p = 0.027), with no further increase in the following 3 months when the 

daily dose of beta-alanine was lowered to 0.4 g/day (p = 0.740 vs 3 months). A significant 

(p < 0.001) interaction effect (time x group) was found for soleus muscle carnosine 

content (Figure 6B). In accordance with plasma beta-alanine, muscle carnosine did not 

change over time in the Veg+Pla group (p = 0.619) nor in the control group (p = 0.790). 

When a 6-month vegetarian diet was combined with beta-alanine supplementation 

(Veg+Suppl group), soleus carnosine content increased by 26% (p < 0.001). This increase 

was already established after 3 months (+28%; p < 0.001), with no further increase in the 

subsequent 3 months. For gastrocnemius muscle, similar results were found (Figure 6C); a 

significant increase in the Veg+Suppl group of 28% and 41% after 3 (p = 0.009) and 6 (p = 

0.001) months respectively, while carnosine remained stable in the Veg+Pla (p = 0.275) 

and control group (p = 0.293).  

 

Figure 6. Effect of an omnivorous diet (Control), a vegetarian diet (Veg+Pla) and a vegetarian diet combined with 

creatine and beta-alanine supplements (Veg+Suppl) on plasma beta-alanine (A), soleus carnosine (B) and gastrocnemius 

carnosine (C) concentrations. 0M: baseline; 3M: 3 months; 6M: 6 months. * p < 0.05 compared to 0M 
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Compliance control via urinary biomarkers for meat intake 

Both dietary meat intake urinary markers pi-methyl-histidine and anserine were 

significantly lower at 6M than at 0M in the Veg+Pla and Veg+Suppl groups (pi-methyl-

histidine: p = 0.006 and p = 0.004, anserine: p = 0.075 and p = 0.048, respectively), but not 

in the control group (pi-methylhistidine: p = 0.411; anserine: p = 0.526) (Table 1). 

Although urinary tau-methyl-histidine excretion at 6M was significantly lower than at 0M 

in all experimental groups, the magnitude of this decline was more pronounced in the 

Veg+Pla and Veg+Suppl groups than in control.  

Table 1. Urinary concentrations of pi-methyl-histidine, tau-methyl-histidine and anserine for the 3 experimental groups 

at 0M, 3M and 6M analysed by a repeated measures ANOVA 
1,2

 

  0M 3M 6M 

Pi-methyl-
histidine (mg/24h) 

Control 161.9 ± 111.2 117.8 ± 124.8 122.5 ± 168.8 
Veg+Pla 167.4 ± 145.3 26.4 ± 10.7* 15.1 ± 4.7* 
Veg+Suppl 212.9 ± 201.0 28.7 ± 9.1* 18.0 ± 6.7* 

     

Tau-methyl-
histidine (mg/24h) 

Control 55.2 ± 25.3 74.6 ± 61.6 42.6 ± 21.5* 
Veg+Pla 63.1 ± 20.0 43.1 ± 15.3* 27.6 ± 7.1** 
Veg+Suppl 63.0 ± 22.3 46.1 ± 16.0* 26.5 ± 8.5** 

     

Anserine (mg/24h) 
Control 15.0 ± 14.3 9.5 ± 7.4 11.6 ± 23.2 
Veg+Pla 9.2 ± 7.9 5.5 ± 2.9 4.0 ± 1.9$ 
Veg+Suppl 10.7 ± 12.9 4.4 ± 2.2$ 2.6 ± 1.1* 

1
 Data are mean ± SD. 0M: baseline; 3M: 3 months; 6M: 6 months; Veg+Pla: Vegetarian+Placebo; Veg+Suppl: 

Vegetarian+Supplemental creatine and beta-alanine 

2
 * p<0.05 compared to 0M; ** p<0.001 compared to 0M; $ 0.05<p<0.10 compared to 0M 

 

Incremental cycling test 

VO2max and time to exhaustion (TTE) did not differ between the experimental groups at 

baseline, nor did it change during the 6-month intervention period (Table 2). Blood 

lactate increased to a range of 11-14 mmol/l by the end of cycling. Blood pH at rest was 

approximately 7.41-7.42 and was not affected by the subsequent intervention 

(vegetarian/supplementation). The incremental cycling test elicited a marked acidosis (pH 

7.23-7.29) in all intervention groups (Table 3). These parameters (VO2max, TTE, lactate 

and pH) showed neither a significant intervention nor time or interaction effect. 
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Table 2. VO2max and TTE in an incremental cycling exercise test for the 3 experimental groups at 0M, 3M and 6M 

analysed by a repeated measures ANOVA
1
  

  0M 3M 6M 

VO2max 

(ml/min/kg) 

Control 40.4 ± 6.4 39.0 ± 8.8 39.4 ± 6.9 
Veg+Pla 39.4 ± 6.4 37.8 ± 8.0 38.1± 6.6 
Veg+Suppl 36.6 ± 6.3 34.8 ± 4.7 34.5 ± 4.9 

     

TTE  
(min) 

Control 14.5 ± 1.9 14.0 ± 3.0 14.6 ± 2.2 
Veg+Pla 15.1 ± 2.7 14.7 ± 2.5 15.0 ± 2.5 
Veg+Suppl 13.8 ± 2.6 13.6 ± 2.4 13.8 ± 2.9 

1
 Data are mean ± SD. 0M: baseline; 3M: 3 months; 6M: 6 months; TTE: time to exhaustion; Veg+Pla: 

Vegetarian+Placebo; Veg+Suppl: Vegetarian+Supplemental creatine and beta-alanine 

 

Table 3. Capillary lactate and pH at 0M, 3M and 6M at rest and at the end of the incremental cycling test
1
 

  0M 3M 6M 
  Start End Start End Start End 

Lactate 
(mmol/l) 

Control 1.9 ± 0.5  10.7 ± 1.6 2.4 ± 1.0 11.4 ± 2.6 2.0 ± 0.5 12.1 ± 2.0 
Veg+Pla 2.0 ± 0.7 12.4 ± 4.2 2.0 ± 0.9 14.1 ± 2.1 1.7 ± 0.4 12.7 ± 1.1 
Veg+Suppl 1.8 ± 0.8 10.7 ± 2.7 2.2 ± 0.9 12.2 ± 2.3 2.2 ± 1.1 13.1 ± 2.1 

        

pH 
Control 7.40 ± 0.02  7.28 ± 0.03 7.40 ± 0.03 7.27 ± 0.04 7.42 ± 0.04 7.29 ± 0.05 
Veg+Pla 7.41 ± 0.02 7.24 ± 0.07 7.42 ± 0.03 7.23 ± 0.04 7.43 ± 0.02 7.27 ± 0.03 
Veg+Suppl 7.42 ± 0.02 7.28 ± 0.06 7.41 ± 0.01 7.26 ± 0.04 7.43 ± 0.01 7.28 ± 0.04 

1
 Data are mean ± SD. 0M: baseline; 3M: 3 months; 6M: 6 months;Veg+Pla: Vegetarian+Placebo; Veg+Suppl: 

Vegetarian+Supplemental creatine and beta-alanine 
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DISCUSSION 

The present study demonstrates that whole body creatine homeostasis was disturbed by 

a 3-month vegetarian diet in omnivorous women, while carnosine and carnitine 

homeostasis was not affected. The measurements of muscle carnosine demonstrate that 

carnosine homeostasis is even not affected after 6 months of vegetarianism, but no 

muscle data are available at this timepoint for creatine and carnitine. However, the 

plasma measurements suggest that carnitine homeostasis is maintained even at 6 months, 

while creatine homeostasis is not. Total creatine is, alongside glycogen, the most 

abundant metabolite in human skeletal muscle with concentrations around 120-150 

mmol/kg dry weight (dw), and is known to have a high turnover rate, as 1.7% of the total 

body creatine pool is daily non-enzymatically converted into creatinine. Consequently, in 

the women participating in this study, containing ~110 g of total creatine, ~1.6 g/day is 

roughly converted into creatinine and has to be replaced by creatine from diet or from de 

novo biosynthesis (23). It has been demonstrated that the average creatine consumed in 

a diet containing meat and fish is 1.0 g/d (30) and 1-2 g/day of creatine is endogenously 

synthesized from arginine, glycine and methionine in liver, kidney and pancreas (23). Thus, 

in case the diet is almost free of creatine, approximately twice as much creatine needs to 

be synthesized in the body to replace the amount of creatine irreversibly degraded to 

creatinine. The current data demonstrate that endogenous creatine synthesis cannot fully 

compensate for the lack of dietary intake in a vegetarian context. When muscle creatine 

stores decline in response to a vegetarian diet, one would also expect that urinary 

creatinine declines to a similar degree, as there is no enzymatic control for the hydrolysis 

of creatine and total muscle mass is assumed to remain stable. Muscle total creatine and 

urinary creatinine declined by 14.6% and 14.2% respectively in the Veg+Pla group (3M), 

although the former reached statistical significance (interaction effect p < 0.001) and the 

latter did not (interaction effect p = 0.373). 

Carnitine and carnosine have a lower muscular concentration (20-30 mmol/kg dw) and a 

much slower turnover rate than creatine. Healthy subjects excrete carnitine at a rate of 5 

µmol/kg/day, which, for the women participating in this study, is 315 µmol/day (~0.05 g) 

(7). For muscle carnosine, wash-out time after a period of carnosine loading by beta-

alanine supplementation was shown to be a slow process that takes 6-20 weeks (25), 
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demonstrating the slow degradation rate of carnosine. Baguet and colleagues (25) 

calculated that, in absolute terms, the elimination of carnosine is ~0.5 g/day and is thus 3 

to 4-fold slower than that for creatine (1.6 g/day). 

To our knowledge, this is the first long-term intervention study demonstrating that body 

creatine stores decline after a vegetarian diet. Our results are in accordance with cross-

sectional data on plasma and urinary creatine and creatinine values in vegetarian subjects 

(17). Muscle total creatine decreased within 3 months by 14% in our subjects, which is in 

accordance with the cross-sectional decrease (-10%) in muscle total creatine found in the 

study of Burke et al. (20) and the longitudinal decrease (-10%) after a 3-week intervention 

period in omnivorous subjects (24). However, this decrease did not affect VO2max nor TTE 

of the incremental cycling test, although it might affect other short-term high-intensity 

performances such as sprinting, in which phosphocreatine plays a key role.  

Interestingly, creatine supplementation combined with a vegetarian diet was able to 

maintain muscle total creatine content at baseline levels after 3 months and even triple 

plasma creatine concentrations at 6 months, thereby making creatine a proper 

supplement for vegetarian athletes participating in high-intensity exercises. A daily dose 

of 1 g creatine monohydrate seems to be a sufficient dose to prevent deficiencies, which 

is considerably lower than the 3-20 g per day required to elevate muscle creatine stores 

above the baseline set point (31). As the daily ingestion of 0.88 g creatine (1 g creatine 

monohydrate) is adequate to avoid a decline in body creatine stores on the background 

of a creatine-free vegetarian diet, the remainder of the daily creatine requirement is 

probably met by endogenous synthesis in kidney and liver.  

Carnitine homeostasis of either plasma or muscle was not influenced by a vegetarian diet. 

Dietary carnitine intake is mainly attributable to the intake of meat and fish (animal 

source), although it is not completely absent in dairy products and some vegetables, fruit 

and cereals (32). Thus, carnitine is also present in moderate amounts in a vegetarian diet 

and has a slow turnover rate, which is in line with the absence of an effect of 6 months 

vegetarianism on plasma carnitine concentrations,  as we hypothesized. As all 

experimental groups display the same pattern in the current study, namely lower 

carnitine and acetylcarnitine concentrations at 3M, which seemed to be restored at 6M, 
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this may reflect seasonal variations rather than effects of the intervention. The study was 

initiated in mid-December and the intermediate measurements were performed in March, 

thus the first half of the intervention period was during winter, while the second part, 

with the final measurements in the second half of June, was during spring. Therefore, we 

hypothesized that vitamin D status may be an underlying mechanism for the observed 

seasonal fluctuations in carnitine homeostasis. This hypothesis was based on the findings 

of Dursun et al. (33) who found decreased plasma carnitine levels and increased 

carnitinuria in severe vitamin D-deficiency patients (rickets), and rodent studies (34) have 

documented that low vitamin D status impairs lipid oxidation capacity, including carnitine 

palmitoyltransferase-1 (CPT-1) expression. Our results indicate that similar to carnitine, 

seasonal fluctuations are found in serum vitamin D concentration on group level. Yet, 

when looking at individual level, a significant negative correlation between serum vitamin 

D and plasma total carnitine content was found, which would indicate that vitamin D 

cannot explain the seasonal fluctuations in carnitine homeostasis.  

Published cross-sectional data showed lower plasma carnitine concentrations in 

vegetarians than in omnivores (16–19), which is in contrast to our present data. However, 

this could be accounted for by difference in the length of vegetarianism (1.5 - 20 yrs vs 

the present 6 months). It is hypothesized that renal conservation mechanisms and thus 

higher carnitine reabsorption may occur in vegetarians to compensate for the lower 

carnitine concentrations obtained from the diet, thereby keeping plasma carnitine 

concentrations within a relatively normal range (18,35). Furthermore, some inconsistency 

exists also regarding muscle carnitine content, as Novakova et al. (16) did not find 

decreased content in vegetarians, while Stephens et al. (19) reported a 17% reduction. 

However, it should be noted that the study of Novakova et al. (16) included only male 

vegetarians that consumed a vegetarian diet for at least 1.5 yrs, while the study of 

Stephens et al. (19) included both male and female subjects who are vegetarians for 11 

years on average. It can be concluded that seasonal variations probably have a bigger 

impact on body carnitine homeostasis than vegetarian dietary habits, although it cannot 

be excluded that carnitine stores could be affected by long-lasting vegetarianism (>1.5 

yrs).  
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Given that beta-alanine is the rate-limiting precursor for carnosine synthesis in human 

muscle cells and vegetarian diets are free of beta-alanine and carnosine (including its 

methylated variants anserine and balenine), it is somewhat surprising that muscle 

carnosine content was unaltered after a 6-month vegetarian diet in previously 

omnivorous subjects. This suggests that maintenance of carnosine homeostasis does not 

depend on the nutritional supply of beta-alanine. Thus, endogenous beta-alanine 

synthesis can probably entirely compensate for the absence of dietary beta-alanine and 

thereby maintain body homeostasis, at least during the first months of vegetarianism. 

Current findings on muscle carnosine content are somewhat in contrast with cross-

sectional data on long-term vegetarians (>7yrs) in the study of Harris et al. (22) and 

Everaert et al. (21). However, the study of Harris et al. (22) included only 6 vegetarians, 

was not gender- and age-matched (which is important for carnosine; (36)) and was only 

published as a conference abstract. In the study of Everaert et al. (21), the lower muscle 

carnosine content in vegetarians (n=12) vs omnivores (n=38) only reached significance in 

the gastrocnemius, but not the soleus and tibialis anterior muscles. 

Interestingly, a low dose of beta-alanine supplementation (0.8 g/d) for 3 months in 

vegetarians significantly increased plasma beta-alanine and muscle carnosine content by 

20-30%. Knowing that the average daily intake of beta-alanine from an omnivore Western 

diet has been calculated to amount to ~330 mg/day (21), the daily intake of an additional 

~500 mg/d, which corresponds to a total ingested dose of ~46 g in 3 months, is 

responsible for this increase. Because of the increase in carnosine above baseline 

concentration with this initial dose (0.8g/d), beta-alanine dose was reduced to 0.4g/day 

during the last 3 months of the study. This dose did not further enhance plasma beta-

alanine and muscle carnosine concentrations, neither did it restore these concentrations 

to baseline, suggesting this dose was still higher than the normal dietary beta-alanine 

intake of these subjects. 

Some urinary biomarkers of meat intake are known, such as pi-methyl-histidine, tau-

methyl-histidine and anserine (37–39). A clear reduction in urinary excretion of these 

compounds, for pi-methyl-histidine to an order of magnitude lower than the original 

value, was observed in the vegetarian subjects proving that they complied with the 

vegetarian intervention. A limitation of the current study is that data of the muscle 
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biopsies at 6M are missing, making it impossible to draw conclusions on the effect of a 6-

month vegetarian diet on intramuscular creatine and carnitine concentrations.  

It can be concluded that body creatine stores decline by a 3-month vegetarian diet in 

omnivorous women and can be restored by creatine supplementation, which makes 

creatine a suitable carninutrient for supplementation in vegetarian athletes, especially 

those participating in resistance training and short-term, high-intensity exercise 

performances. Carnitine homeostasis was not disrupted by a 3-month vegetarian diet and 

carnosine homeostasis was not disrupted by a 6-month vegetarian diet, suggesting that 

endogenous synthesis can fully compensate to maintain these compounds at a 

homeostatic set point, making supplementation unnecessary in vegetarian subjects. 
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BACKGROUND 

Chronic oral beta-alanine supplementation can elevate muscle carnosine (beta-alanyl-L-

histidine) content and subsequently improve high-intensity exercise performance (Harris 

et al., 2006; Hill et al., 2007). However, the regulation of muscle carnosine levels is still 

poorly understood. The uptake of the rate-limiting precursor beta-alanine and the 

enzyme responsible for the synthesis of carnosine are thought to be key steps. The 

several steps and their respective enzymes and transporters that are possibly involved in 

metabolic pathways of carnosine and constituent amino acids include: beta-alanine 

transport (TauT, PAT1, ATB0,+), beta-alanine availability regulated by beta-alanine 

synthesis (GADL1 and uracil degradation) on the one hand, and beta-alanine degradation 

(GABA-T and AGXT2) on the other hand, L-histidine availability regulated by histidine 

decarboxylase (HDC), carnosine synthesis (CARNS) and carnosine degradation (CNDP1 and 

CNDP2) and carnosine and/or histidine transport (POT-family (proton-coupled 

oligopeptide transporters): PEPT1, PEPT2, PHT1 and PHT2).  

The expression of carnosine synthase (CARNS), tissue carnosinase (CNDP2), 

peptide/histidine transporter 1 (PHT1), taurine transporter (TauT) and proton coupled 

amino acid transporter 1 (PAT1) was already demonstrated in human skeletal muscle, 

whereas serum carnosinase (CNDP1), beta-alanine transporter ATB0,+ and the other 

members of the POT-family are not expressed in human muscle tissue (Everaert et al., 

2013a). The expression of beta-alanine transaminases GABA-T and AGXT2, histidine 

decarboxylase (HDC) and glutamate decarboxylase-like protein 1 (GADL1) was not 

explored in the study of Everaert et al. (2013a). GABA-T and AGXT2 are generally 

considered to be highly expressed in kidney and liver, and to a much lower extent in 

skeletal muscle. However, since beta-alanine is a free amino acid and its availability is 

decisive for carnosine synthesis, the presence of this pathway inside myocytes deserves 

more thorough investigation. Moreover, HDC can be an alternative metabolic pathway for 

intramyocellular L-histidine and thus might also affect carnosine metabolism. Its 

expression was already demonstrated in human skeletal muscle (Romero et al., 2016), 

suggesting that histidine might be degraded in muscle cells. GADL1 can directly synthesize 

beta-alanine from aspartate by a decarboxylation reaction. Its expression is until now only 

confirmed in skeletal muscle of rodents and cattle. In order to get a better understanding 
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of the regulation of muscle carnosine homeostasis, this study aims to investigate the 

mRNA expression of carnosine-related enzymes in human muscle that are putative 

players in the metabolic pathways of carnosine, such as GABA-T, AGXT2 and GADL1.  

Moreover, the study of Everaert et al. (2013a) explored the transcriptional events in 

mouse skeletal muscle in response to beta-alanine supplementation, which is a known 

stimulus for carnosine synthesis. Beta-alanine supplementation increased both TauT, 

CARNS, CNDP2 and GABA-T expression, suggesting that muscles increase beta-alanine 

utilization through both dipeptide synthesis (CARNS) and deamination (GABA-T) and 

further oxidation, in conditions of excess availability. To investigate whether the human 

muscle carnosine metabolism is affected in a similar way upon beta-alanine 

supplementation, this study aimed to investigate the effect of chronic beta-alanine 

ingestion on the mRNA expression of all carnosine-related enzymes and transporters in 

human skeletal muscle. 

METHODS 

Muscle samples of the published study of Stegen et al. (2013a) were subjected to the 

qPCR analysis of the present study. In this previous study, 34 subjects, both males (n=16) 

and females (n=18), were supplemented with either pure beta-alanine during or 

interspersed between meals or slow-release beta-alanine during meals (all three groups 

ingested 3.2g/day for 46 days). By differentiating the timing of beta-alanine intake 

between groups, this study demonstrated that beta-alanine supplementation is more 

effective when co-ingested with a meal. Furthermore, slow-release beta-alanine was 

shown to be equally effective toward muscle carnosine loading compared to pure beta-

alanine. 

The qPCR analysis of the present study was performed on the muscle biopsies of the male 

subjects of the study of Stegen et al. (2013a) (n=16, age: 19.5 ± 1.2 yr, body weight: 73.2 ± 

8 kg). Thus, these 16 subjects were all supplemented with 3.2g beta-alanine per day for 

46 days, but differed in timing of beta-alanine intake and beta-alanine form (pure or slow 

release). Before and after this supplementation period, muscle carnosine levels were 

measured in calf muscles by 1H-MRS and a muscle biopsy was taken from the vastus 

lateralis muscle.  
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Muscle biopsy 

Following local anaesthesia, the muscle sample was taken with a 14 Gauge true-cut 

biopsy needle (Bard Magnum Biopsy gun; Bard, Inc., New Jersey, USA). The samples were 

then immediately frozen in liquid nitrogen and stored at -80°C until subsequent HPLC and 

qPCR analysis.  

Determination of carnosine content in calf muscles by 1H-MRS 

Carnosine content of all the subjects was measured by proton magnetic resonance 

spectroscopy (1H-MRS) in soleus and gastrocnemius medialis muscles, as described by 

Stegen et al. (2013a). The average voxel size for the soleus and gastrocnemius muscle of 

the men included in this analysis was respectively 40 mm x 11 mm x 29 mm and 40 mm x 

12 mm x 30 mm. The line width of the water signal for the soleus and gastrocnemius 

muscle was on average respectively 23.7 Hz and 26.8 Hz, following shimming procedures. 

The absolute carnosine content (in millimolar; mM) was calculated as described before by 

Baguet et al. (2010a). 

Carnosine and taurine quantification by HPLC 

Muslce carnosine and taurine levels were determined by high-performance liquid 

chromatography (HPLC) as previously described (Blancquaert et al., 2016).  

mRNA expression of carnosine-related enzymes and transporters 

Total RNA from human muscle was isolated using the TriPure Isolation Reagent (Roche, 

Basel, Switzerland) followed by purification with the RNeasy Mini Kit (Qiagen, Valencia, 

CA, USA). An on-column DNase treatment was performed using the RNase-Free DNase 

Set (Qiagen). RNA was quantified using a Nanodrop 2000C spectrophotometer (Thermo 

Scientific, Waltham, MA, USA) and RNA purity was assessed using the A260/A280 ratio. 

Using a blend of oligo(dT) and random primers, 500 ng of RNA was reversed transcribed 

with the iScript cDNA Synthesis kit (Bio-Rad, Hercules, CA, USA) in accordance with the 

manufacturer’s instructions. Quantitative PCR was carried out on a Lightcycler 480 system 

(Roche) using an 8 μl reaction mix containing 3 μl of template cDNA, 300 nM forward and 

reverse primers and 4 μl of SYBR Green PCR Master Mix (Applied Biosystems, Foster City, 

CA, USA). The cycling conditions comprised a polymerase activation at 95 °C for 10 min, 

followed by 45 cycles at 95°C for 15 s, 60°C for 30 s and 72°C for 30 s. Primer sequences 
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(Table 1) of most genes of interest are available in the literature (Everaert et al., 2013a). 

The primer sequence for GABA-T, AGXT2 and GADL1 were newly designed using Primer 

Express, version 3.0 (Applied Biosystems). Sequence specificity was confirmed using NCBI 

Blast analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi). To control the specificity of 

amplification, data melting curves were inspected and PCR efficiency was calculated. 

Normalized gene expression values were calculated by dividing the relative gene 

expression values (calculated by the ΔCt method) for each sample by the expression 

values of the geometric mean of ATP50 and rpl19 as selected by GeNorm (Vandesompele 

et al., 2002). 



 

 
 

Table 1. Primers used in quantitative PCR analysis 

Function Gene symbol 
Forward primer (5’-3’) 

Reverse primer (5’-3’) 
Source 

Carnosine synthesis CARNS GGC-GTC-AGC-AAG-AAG-TTC-GT 

CCG-GTG-CTC-TGT-CAT-GTC-AA 

Everaert et al., 2013 

Carnosine hydrolysis CNDP2 TTG-CTG-ATG-GGC-TCT-TTG-GT Everaert et al., 2013 

  TCG-ATG-TCG-TCG-TAC-AGC-TTG-T  

Beta-alanine transport TauT CGT-ACC-CCT-GAC-CTA-CAA-CAA-A 

CAG-AGG-CGG-ATG-ACG-ATG-AC 

Everaert et al., 2013 

 PAT1 CAT-AAC-CCT-CAA-CCT-GCC-CAA-C  

  GGG-ACG-TAG-AAC-TGG-AGT-GC  

Beta-alanine transaminase GABA-T CTG-GAG-ACG-TGC-ATG-ATT-AAC-C  

GTC-GCT-AAG-CAA-CCC-ATG-GT 

Everaert et al., 2013 

Beta-alanine synthesis GADL1 GCC-ATT-AAG-GAG-AGG-ATG-ATG-AA Primer Express 

  GGC-GGA-AGA-AGT-TGA-CCT-TTC  

Histidine transport PHT1 GGT-TAT-GCG-ATC-CCC-ACT-GT Everaert et al., 2013 

  ATC-AGG-AGG-CTT-GGT-GAT-GAA  

Reference genes ATP50 GG-CCT-CCT-GTT-CAG-GTA-TAC-G 

CTT-GCT-CCA-GCT-TAT-TCT-GTT-TTG 

RTprimerDB 

 Rpl19 CGC-TGT-GGC-AAG-AAG-AAG-GTC 

GGA-ATG-GAC-CGT-CAC-AGG-C 

RTprimerDB 
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Statistics 

To investigate the changes in muscle carnosine and taurine content and the changes in 

mRNA expression of the carnosine-related enzymes and transporters after the chronic 

beta-alanine supplementation, a paired sample T-test was used. To test whether the form 

and timing of beta-alanine intake (pure or slow-release, with or without meal) 

differentially influences mRNA expression profiles, a repeated measures ANOVA was 

performed, with time (pre; post) als within factor and group (pure; pure+meal; slow-

release+meal) as between factor. In case of significance, analyses were repeated for each 

group separately and a paired sample T-test was used to compare the different time 

points. All analyses were done with SPSS statistical software (SPSS 20, Chicago, IL) and 

statistical significance was set at p ≤ 0.05. 

PRELIMINARY RESULTS AND CONCLUSIONS 

Carnosine content, CARNS and CNDP2 expression 

Beta-alanine supplementation increased muscle carnosine content in all investigated 

muscles. The carnosine concentrations measured by 1H-MRS in soleus and gastrocnemius 

muscles were increased by 49.4% (4.08mM to 5.95mM, p < 0.001) and 31.2% (5.57mM to 

7.16mM, p < 0.001), respectively (Fig 1). The carnosine content in vastus lateralis 

measured by HPLC showed a similar increase (+48.9%, p < 0.001) (data not shown). 

 

Figure 1. Carnosine content in soleus and gastrocnemius muscle before and after chronic beta-alanine supplementation. 
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Both CARNS (+175.2%, p = 0.01) and CNDP2 (+201%, p < 0.001) mRNA expression were 

significantly increased by chronic beta-alanine ingestion (Fig 2). This is in accordance with 

the results found in mice (Everaert et al., 2013a) and illustrates that elevated plasma 

beta-alanine concentrations result in increased intramyocellular dipeptide synthesis. 

Whether CNDP2 is able to actively degrade carnosine in skeletal muscle is doubtful since 

the optimal pH for carnosine hydrolysis by CNDP2 has been shown to be 9.5 (Lenney et al., 

1985). Although CNDP2 is clearly upregulated by beta-alanine supplementation, it is 

generally believed that carnosine degradation in skeletal muscle (pH 7.1) by CNDP2 is 

minimal. 

 

Figure 2. Effect of chronic beta-alanine supplementation on CARNS and CNDP2 mRNA expression. * p < 0.05 

 

Taurine content, TauT and PAT1 expression 

The vastus lateralis taurine content was not affected by chronic beta-alanine 

supplementation (Fig 3), suggesting that transsarcolemmal taurine uptake is not 

significantly suppressed by elevated plasma beta-alanine levels.   

 

 

Figure 3. Taurine content in vastus lateralis muscle before and after chronic beta-alanine supplementation. 
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Chronic beta-alanine supplementation increased the gene expression of both TauT and 

PAT1 transporters (+132.6%, p = 0.084 and +198.0%, p = 0.05, respectively). When 

comparing the gene expression between the three groups (pure; pure+meal; slow-

release+meal), TauT and PAT1 were only significantly upregulated in the slow-

release+meal group (p = 0.016 and p = 0.01, respectively), but not in the groups that 

ingested pure beta-alanine. In mice, only TauT was modified by beta-alanine 

supplementation, suggesting that TauT is, albeit not the only, yet probably the most 

dominant transporter for the uptake of beta-alanine in mice skeletal muscle. As both 

transporters are upregulated by beta-alanine supplementation in humans, this might be 

an indication that they are both involved in the process of transsarcolemmal beta-alanine 

uptake. The upregulation of TauT might also be a mechanism to maintain intramyocellular 

taurine levels following increased circulating beta-alanine levels (thus taurine uptake is 

not negatively affected by increased beta-alanine uptake).  

 

Figure 4. Effect of chronic beta-alanine supplementation on mRNA expression of beta-alanine transporters TauT and 

PAT1. * p < 0.05, $ 0.05 < p > 0.1 

 

Beta-alanine availability: GABA-T, AGXT2 and GADL1 expression 

GADL1, a putative pathway for intramyocellular beta-alanine synthesis, is for the first 

time shown to be expressed in human skeletal muscle. In contrast to hypothesized, the 

mRNA expression is significantly increased (+77%, p = 0.004) upon beta-alanine 

supplementation (Fig 5). Because GADL1 is also able to synthesize taurine, this 

upregulation might be a strategy to maintain taurine levels upon beta-alanine 

supplementation. It remains to be investigated whether GADL1 is actually active inside 

muscle cells and to what extent its contribution to beta-alanine availability is noteworthy. 
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Moreover, we aimed to investigate the expression of beta-alanine transaminase GABA-T 

and AGXT2. GABA-T was shown to be expressed in human muscle, although the 

expression seemed to be very low (illustrated by high Ct values). Moreover, GABA-T 

expression was slightly but non-significantly decreased by beta-alanine supplementation 

(Fig 5), which is in contrast to the findigs in mice skeletal muscle (Everaert et al., 2013a). 

For AGXT2, 2 primer pairs were tested but no proper primers could be found since the 

efficiency curve of the investigated primer pairs was not linear (Ct values were equally 

high for the different dilutions that were tested) or primers were not specific (as 

illustrated by double peaks in the melting curves). Based on this data, we can conclude 

that no suitable primers were found, and it might be suggested that AGXT2 is not or only 

very minimally expressed in human skeletal muscle and thus its contribution to beta-

alanine oxidation is negligible. Nevertheless, both GABA-T and AGXT2 are known to be 

highly expressed in liver and kidney where they significantly contribute to beta-alanine 

oxidation, as demonstrated by Blancquaert et al. (2016). Thus, intramyocellular beta-

alanine degradation is probably not a main pathway in the regulation of muscle carnosine 

homeostasis.  

 

Figure 5. Effect of chronic beta-alanine supplementation on mRNA expression of GABA-T and GADL1. * p < 0.05 

 

L-histidine transport: PHT1  

PHT1, the histidine transporter that was shown to be expressed in human skeletal muscle, 

does not show altered expression in reponse to beta-alanine supplementation 

(normalised relative mRNA expression: 0.82 to 1.09, p = 0.113), which is in accordance 

with the results found in mice muscle. Thus, following beta-alanine supplementation, 

expression of the histidine transporter was not affected. 
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Summarizing these data on mRNA expression, we can conclude that, similar to mice, 

increased circulating beta-alanine levels stimulate the gene expression of TauT, PAT1 

and CARNS, suggesting that, in conditions of excess availability, muscles increase beta-

alanine uptake and utilization through dipeptide synthesis (CARNS). In contrast to mice, 

genes involved in intramyocellular beta-alanine oxidation were not upregulated, 

suggesting that this pathway mainly takes place in central organs and to a much smaller 

extent inside muscle cells. Whether beta-alanine can also be synthesized inside 

myocytes remains unclear and warrants further investigation. To strengthen and 

confirm these data, protein expression levels could be measured by Western Blot 

analysis. Therefore, these results are currently defined as preliminary.   
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1. Carnosine homeostatic set point 

Carnosine is an intramuscular dipeptide, characterized by a high homeostatic set point. 

Based on the concept of homeostasis, it is hypothesized that muscle carnosine 

concentrations are kept within certain limits by a complex interplay of regulatory 

mechanisms. This thesis contributed to a better understanding of the muscle carnosine 

homeostatic regulation. Below, we will discuss the homeostatic set point and normal 

range that can be derived from our studies and the determinants that are further 

elucidated.  

1.1. Homeostatic set point and normal range 

Based on a database of proton MRS carnosine measurements in calf muscles that were 

collected over the past years in our lab, we generally presume that the set point amounts 

to 4.11 mM in soleus muscle and 6.96 mM in gastrocnemius muscle. In both study 2 

(histidine supplementation) and study 3 (vegetarian intervention) of this thesis, we 

measured the soleus and gastrocnemius carnosine content of 30 and 40 subjects, 

respectively. By adding these new measurements to our database, we can constantly 

enlarge this database, thereby providing an adapted set point based on a bigger amount 

of measurements . Taking into account the new values provided by the studies included in 

this thesis, we can now state that the carnosine set point amounts to 4.09 mM in soleus 

and 6.79mM in gastrocnemius, which closely resembles the previous determined set 

points.  

The carnosine set point in the specific populations of studies 2 and 3 at the start of the 

interventions amounts to 4.46mM and 7.26mM in study 2 and 3.65mM and 5.18mM in 

study 3 for soleus and gastrocnemius, respectively. The interindividual variation is 25.4% 

and 26.0% for study 2 and 24.8% and 27.8% for study 3 in soleus and gastrocnemius, 

respectively, which closely resembles the previous reported interindivual variation 

coefficients (Derave et al., 2010). The fact that the set points in study 2 are higher than 

the ones in study 3 can most likely be explained by the fact that study 2 included both 

males and females, while study 3 only recruited females. It is generally assumed that the 

carnosine set point in men is approximately 20-25% higher compared to the set point in 

women (Mannion et al., 1995). By separating the measurements of males and females of 
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our complete database (n = 387, including the measurements of this thesis), different 

Gaussion distributions can be derived (Fig 1). Indeed, both in soleus and gastrocnemius, 

the carnosine set point is 22% and 28% higher in men compared to women, respectively. 

Based on these data, we can confirm that sex is indeed a determinants of the muscle 

carnosine set point.  

 

  

Figure 1: Gaussian distribution of the carnosine content in both soleus and gastrocnemius muscles in males and females. 

Data are compiled from the database of carnosine measurements from our lab, including the measurements used in the 

studies of this thesis 

 

Repeated measurements of muscle carnosine levels over time in the same persons 

demonstrated a low intra-individual variation and thus a high stability of the carnosine 

set point. For soleus and gastrocnemius muscle, a previous study determined variation 

coefficients over a 3 month period and concluded the variation was 9% and 15%, 

respectively (Baguet et al., 2009). Taking into account the methodological variation of the 
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MRS, the biological variation of muscle carnosine content over a 3 month period is as low 

as ~6% (Baguet et al., 2009). In both study 2 and 3, three carnosine measurements were 

performed over time. This allows us to further elucidate whether carnosine is indeed a 

stable metabolite both on the short (23 days in study 2) and on the long term (6 months 

in study 3), compared to the 3 month period in which the stability is already 

demonstrated. In study 2, the intervention period lasted 23 days with an intermediate 

measurement at day 12. In this study, the carnosine content of the histidine-

supplemented group was not affected by the intervention and it displayed a variation 

coefficient of 10.9% in soleus and 15.0% in gastrocnemius (without taking into account 

the variation of the MRS), which closely leans to the variation coefficients calculated by 

Baguet et al. (2009). Moreover, carnosine content was also determined by HPLC in a 

biopsy of the vastus lateralis muscle taking before and after the intervention period, 

demonstrating a variation coefficient of 15.5%. Thus, in another muscle and using another 

technique to determine carnosine content, a similar variation coefficient was found. In 

study 3, measurements were taken at 3 and 6 months following baseline measurements 

and included a control group who did not undergo any intervention. In these subjects, 

variation coefficients were 9.3% and 12.6% for soleus and gastrocnemius respectively, 

demonstrating that the carnosine set point is indeed stable over a longer period, which 

supports the theory that the carnosine set point and thus homeostasis is specifically 

regulated over time and that this stability extends to at least 6 months (Table 1).  

Table 1. Coefficients of variation (CV) of the repeated measurements of carnosine, creatine and carnitine in the control 

group or intervention group with no effect. VL: vastus lateralis 

 CV (%)  

 Study 2 Study 3 

 SOLEUS GASTR VL SOL GASTR VL 

Carnosine 10.9 15.0 15.5 9.3 12.6  

Creatine 
No values available 

7.8 

Carnitine 7.0 

 

In study 3, we did not only focus on carnosine homeostasis, but also measured 2 other 

carninutrients, namely creatine and carnitine, of which it can be hypothesized that their 
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intramyocellular content is also under homeostatic control. For these metabolites, we can 

only calculate the variation coefficient over 3 months since vastus lateralis biopsies at 6 

months are lacking in this study. For total creatine and total carnitine, variation 

coefficient is 7.8% and 7.0% respectively, which is in the same range as the coefficients 

calculated for carnosine, thus suggesting that these carninutients are indeed subject to 

homeostatic regulation. However, for carnitine, reduced levels were found at 3 months 

and seemed to be restored by 6 months (based on results of plasma metabolites), which 

is suggested to reflect seasonal variations. Thus, for carnitine, it might be suggested that 

homeostasis is influenced by seasonal variations, which is not the case for carnosine or 

creatine, indicating that homeostatic regulation of the latter two is stronger than the 

regulation of carnitine. Since no effects of long-tem vegetarianism was found on carnitine 

homeostasis, it can be concluded that seasonal variations have a bigger impact on 

carnitine homeostasis compared to a vegetarian diet, which is practically free of carnitine.  

1.2. Updated view on determinants of muscle carnosine set point 

In contrast to the low intra-individual variability, there is a large inter-individual variation 

in the carnosine set point in human skeletal muscle. The described determinants for the 

muscle carnosine set point are age, gender, diet and muscle fiber type composition 

(Boldyrev et al., 2013). Based on the measurements in our database, we could already 

confirm that gender is indeed a determinant of the baseline muscle carnosine set point, 

with a higher carnosine set point in men compared to women.  

As mentioned, HCDs are present in meat and fish and omnivores thus have a daily dietary 

ingestion of these metabolites. It is already suggested that normal variations in the 

dietary HCD intake are not greatly affecting muscle carnosine homeostatic set point, but 

cross-sectional data on long-term vegetarians suggest that they have a somewhat lower 

muscle carnosine set point compared to omnivorous subjects (Harris et al., 2007; Everaert 

et al., 2011). This thesis contains the first longitudinal evidence demonstrating that 

muscle carnosine homeostasis is not affected by a 6-month vegetarian diet in previous 

omnivorous women (study 3), thus nullifying the diet as an important determinant of 

the muscle carnosine set point. An updated view of the determinants of baseline muscle 

carnosine is depicted in figure 2 (adapted from Derave et al. (2010)).  
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Figure 2: updated view on the determinants of baseline muscle carnosine content. Based on the results of study 3, it 

can now be stated that long-term vegetarianism is no longer a determinant. 

 

Based on the vegetarian data, it can be concluded that the maintenance of muscle 

carnosine homeostasis does not depend on the nutritional supply of beta-alanine, 

suggesting that endogenous beta-alanine synthesis can entirely compensate for this 

absence. Next to uracil degradation in liver, which is a known pathway to synthesize beta-

alanine, other possible beta-alanine synthesizing pathways include aspartate 

decarboxylation by GADL1 (Liu et al., 2012a) or conversion of malonate semi-aldehyde by 

aminotransferase GABA-T and AGXT2. Both GADL1 and GABA-T are shown to be 

expressed in myocytes (study 4), while the expression of AGXT2 could not yet be 

demonstrated. Moreover, study 1 demonstrated that, upon beta-alanine 

supplementation, the transaminases regulate beta-alanine availability in the circulation 

by their high expression in liver and kidney.  The beta-alanine synthesizing capacity of the 

transaminating pathways was not elucidated in this thesis and thus warrants further 

investigation.  

In summary, the studies included in this thesis contribute to a better understanding of 

the baseline muscle carnosine homeostasis. We confirm that the carnosine set point is 

stable over a 6-month period (low intra-individual variability) and that men have a 

higher baseline set point compared to women (high inter-individual variability). A 

vegetarian diet is not a determinant of baseline muscle carnosine concentration, 

suggesting that endogenous beta-alanine synthesis is an important pathway and needs 

to be further investigated.   
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2. Carnosine loading protocol 

Next to a better understanding of the regulation of baseline muscle carnosine 

homeostasis, this thesis further unraveled the carnosine loading process by beta-alanine 

supplementation. As described in the introduction, carnosine loading by beta-alanine 

supplementation is a rather inefficient process since only 2-3% of the ingested amount 

was shown to be incorporated into muscle carnosine. Meal co-ingestion was the first 

determinant of carnosine loading to be discovered (Stegen et al., 2013b), as higher 

muscle carnosine loading was found when combining meal and beta-alanine intake, 

compared to taking beta-alanine tablets in between meals. Furthermore, Bex et al. (2014, 

2015) unraveled that muscle carnosine loading efficiency is positively affected by an acute 

response of exercise training, with a possible additive effect of chronically trained 

muscles. This thesis further explored the low efficiency of carnosine loading by focusing 

on the metabolism of both precursor amino acids. The quota of beta-alanine 

transamination in the unknown metabolic fate of ingested beta-alanine was elucidated in 

study 1, while focus was shifted on histidine and its apparent unlimited availability for 

synthesis in study 2. With these studies, we aimed to enhance our knowledge about the 

carnosine metabolism on the one hand and tried to search for additional strategies to 

improve beta-alanine supplementation efficiency on the other hand. 

2.1. Muscle carnosine homeostasis vs plasma beta-alanine homeostasis 

Because beta-alanine supplementation disturbs plasma beta-alanine homeostasis and 

subsequently evokes an increase in muscle carnosine levels, the latter can be seen as an 

attempt to restore plasma beta-alanine levels. Therefore, it can be hypothesized that 

plasma beta-alanine homeostasis is more important and thus under a more strict 

homeostatic regulation than muscle carnosine homeostasis. As mentioned in the 

introduction, an enhanced stimulation of transsarcolemmal beta-alanine uptake by TauT 

and intramyocellular carnosine synthesis by CARNS upon elevated plasma beta-alanine 

levels in mice further supports this notion. These findings were now confirmed in humans 

(study 4) and an additional stimulation of beta-alanine transporter PAT1 was 

demonstrated, further confirming the transcriptional regulation aiming to enhance 

transsarcolemmal beta-alanine uptake following oral beta-alanine supplementation.  
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Upon beta-alanine supplementation, both CARNS and GABA-T mRNA expression was 

increased in mice skeletal muscle, while this could not be confirmed for GABA-T in human 

muscles. Based on these data, it is difficult to identify whether increased beta-alanine 

levels are primarily routed toward carnosine (CARNS) or toward oxidation (GABA-T and 

possibly also AGXT2). The results following orchidectomy in mice, a condition of 

presumed reduced sarcoplasmic beta-alanine availability, suggest that priority seems to 

be given to carnosine synthesis, as CARNS is strongly upregulated, whereas GABA-T was 

downregulated (Everaert et al., 2013a). This observation led to the ‘old’ working 

hypothesis that the priority role of beta-alanine is to serve as the precursor of carnosine 

synthesis, and that the role of beta-alanine as a fuel is only used in conditions of excess 

availability. By displaying the beta-alanine and carnosine homeostasis in skeletal muscle 

as two communicating containers, this leads to the following graphical overview of the 

working hypothesis based on the results of Everaert et al. (2013a) (Fig 3). 

Thus, as displayed in figure 3, this hypothesis assumes that, under normal conditions, 

some endogenous produced beta-alanine or beta-alanine from our diet can enter our 

muscle cells (depicted as the beta-alanine container) by TauT or PAT1. The availability of 

beta-alanine suffices to maintain the carnosine levels by the carnosine synthase enzyme. 

When beta-alanine is chronically supplemented, TauT and PAT1 are stimulated (bigger 

entrance for container), leading to an increased beta-alanine availiability inside myocytes. 

As a consequence, CARNS (and possibly GABA-T) is stimulated, and it is hypothesized that 

beta-alanine is primarily routed towards carnosine synthesis, while the rest of the 

remaining beta-alanine is transformed into malonate semi-aldehyde by GABA-T (and 

AGXT2) which can further be oxidized in the citric acid cycle.  

Based on our results in study 1, this hypothesis does not longer hold since we 

demonstrated that, when low amounts of beta-alanine are supplemented (0.1% w/v in 

mice), plasma beta-alanine and muscle carnosine levels are not affected. However, when 

combining this dose with AOA, an inhibitor of both GABA-T and AGXT2, plasma beta-

alanine levels are significantly increased and subsequently enhance muscle carnosine 

content. Based on these data, we can conclude that beta-alanine transamination is the 

main pathway of excess beta-alanine, and carnosine loading thus only appears when 

these enzymes are blocked or saturated. Thus, while Everaert et al. (2013a) hypothesized 
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that beta-alanine transaminases are activated when carnosine synthesis is saturated, we 

now prove it is the other way around; net carnosine synthesis only occurs when beta-

alanine transaminases are saturated and is, next to beta-alanine transamination, thus a 

second pathway to restore circulating beta-alanine levels (Fig 3). These results confirm 

our previous hypothesis, namely that plasma beta-alanine homeostasis is more strictly 

regulated than tissue carnosine homeostasis. Nevertheless, these data also demonstrated 

that the body has a first line of defence against disturbed circulating beta-alanine levels 

(i.e. transamination of beta-alanine, subsequently used for energy delivery) and thus also 

severely endeavors to maintain tissue carnosine homeostasis. It can be concluded that 

priority is given to plasma beta-alanine homeostasis, but tissue carnosine homeostasis 

is also greatly attempted to maintain constant.  

The mRNA expression profile of carnosine-related enzymes and transporters in different 

mice tissues confirmed a high expression of these enzymes in liver and kidney (and GABA-

T also in brain tissue) and a low expression in muscles (study 1). Muscle GABA-T mRNA 

expression was not upregulated following beta-alanine supplementation in humans. 

Together, these data suggest that a whole body regulation is involved in the circulating 

beta-alanine and tissue carnosine homeostasis and regulation is not limited to muscle 

level. Thus, in contrast to formerly believed, the containers of figure 3 can no longer be 

seen as muscle cells but must be seen as an interaction between plasma and tissues (left 

barrel is plasma beta-alanine, right barrel is tissue carnosine). 

The priority to maintain plasma beta-alanine levels is in accordance with the notion that 

enhanced plasma beta-alanine levels cause parasthesia (transient and unpleasant 

flushing sensations on the skin) (Harris et al., 2006). These neural side-effects are caused 

by the high peak plasma beta-alanine concentrations upon ingestion of a pure beta-

alanine supplement (>10mg/kg body weight) and has been shown to be mediated by 

MrgprD receptor expressed in cutaneous sensory neurons (Liu et al., 2012b). In contrast, 

enhanced muscle carnosine levels are beneficial towards performance and do not induce 

any negative side-effects. In this respect, disturbing tissue carnosine homeostasis is a 

logic mechanism to abolish plasma beta-alanine and prevent parasthesia.  
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To summarize, we now generated a better understanding of the muscle carnosine 

metabolism and proved that tissue carnosine is a strict homeostasis in which beta-

alanine transaminases are involved to maintain the carnosine homeostasis as long as 

possible during beta-alanine supplementation. Only by saturating this pathway, 

carnosine loading eventually appears. This also explains the long and intensive beta-

alanine supplementation protocol and the low incorporation efficiency of beta-alanine 

into muscle carnosine, which is further discussed below.   

 

 

Figure 3: graphical overview of the old hypothesis on regulation of muscle carnosine levels and the new hypothesis on  

plasma beta-alanine vs muscle carnosine homeostatic regulation, based on study 1 of this thesis.  

 

Next to the presence of transaminases to remove excess beta-alanine, a second argument 

demonstrating that tissue carnosine set point is kept as stable as possible is provided in 

the 6-month vegetarian intervention, which did not affect muscle carnosine levels, thus 
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suggesting that the endogenous beta-alanine synthesis can entirely compensate for the 

absence of dietary beta-alanine. The expression of GADL1 found in human muscle 

indicate that there indeed might be an intramyocellular pathway to synthesize beta-

alanine, although it is more likely that this enzyme is clearly expressed and/or active in 

other organs, such as the liver (where uracil degradation takes place) and thus beta-

alanine synthesis is, alike beta-alanine degradation, regulated more centrally.  

2.2. L-histidine homeostasis 

Until now, we mainly focused on circulating beta-alanine and tissue carnosine 

homeostasis. However, as mentioned, L-histidine is the other precursor amino acid for 

carnosine synthesis, although not much attention is currently paid to this amino acid in 

literature. It is generally believed that in humans, L-histidine is sufficiently available and 

thus not rate-limiting in the carnosine synthesis process. This is in contrast with some 

animal species, in which histidine supplementation has been shown to increase muscle 

carnosine levels (Tamaki et al., 1977; Park et al., 2013). The high availability of human L-

histidine compared to beta-alanine is demonstrated by fasted plasma L-histidine 

concentrations in the range of 40-60µM (in contrast to 2-5µM for beta-alanine) and 

intramyocellular L-histidine concentrations in the range of 0.2mmol/kg wet weight (in 

contrast to 40-100µmol/kg wet weight for beta-alanine). However, the histidine levels 

upon chronic beta-alanine supplementation were until now never monitored and we 

demonstrated for the first time that L-histidine is depleted by chronic beta-alanine 

supplementation in both plasma and muscle, indicating that body L-histidine 

homeostasis is disturbed. These results suggest that endogenous L-histidine synthesis can 

not compensate for reduced L-histidine levels. Based on these findings, we can conclude 

that beta-alanine homeostasis is considered more important than L-histidine homeostasis, 

since beta-alanine is upon supplementation partly oxidized and additionally used for 

carnosine synthesis, although this depletes histidine stores. 

It can be hypothesized that disturbed L-histidine homeostasis may have some 

implications. Next to beta-alanine transamination, reduced L-histidine levels might be a 

second explanation for the low efficiency of chronic beta-alanine supplementation 

toward carnosine loading. This could not yet be demonstrated in study 2 of this thesis; co-

supplementation of beta-alanine and L-histidine did not significantly enhance the amount 
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of carnosine loading. However, we found a more modest decline in the amount of 

carnosine loading during the second part of supplementation (D12-D23) in the co-

supplemented group compared to the beta-alanine supplementation group, suggesting 

that the depletion of plasma and muscle histidine could become more problematic in 

longer duration studies with higher amounts of supplemented beta-alanine.  

Indeed, figure 4 gives a graphical overview of different studies that chronically 

supplemented beta-alanine and measured carnosine levels at different timepoints, 

thereby making it possible to calculate beta-alanine efficiency throughout a chronic 

supplementation period. For example, the study of Hill et al. (2007) measured carnosine 

loading in the vastus lateralis after 4 and 10 weeks of beta-alanine supplementation and 

reported an increase in carnosine levels of 58.8% at 4 weeks and 80.1% at 10 weeks 

(compared to baseline), demonstrating a lower amount of loading in the second part of 

supplementation. When calculating the incorporation efficiency for beta-alanine, this was 

5.0% in the first 4 weeks vs 1.22% in the subsequent 6 weeks (Fig 4), highlighting that the 

efficiency of beta-alanine supplemention is already low at the start and is even fastly 

decreasing during chronic supplementation. Similarly, the study of Stellingwerff et al. 

(2012a) compared two loading protocols; a high-low protocol (3.2g/d during 4 weeks 

followed by 1.6g/d during 4 weeks) and a low-low loading protocol (1.6g/d during 8 

weeks) and measured carnosine loading at 2, 4 and 8 weeks. Based on these values, 

efficiency of carnosine loading can be measured for the first two weeks, the subsequent 

two weeks and the last 4 weeks, separately. As depicted in figure 4, efficiency is stable 

after 2 and 4 weeks and equal for the two dosing protocols. The low-low group ingested 

half of the amount of beta-alanine (44.8g) at 4 weeks and showed a carnosine increase of 

19% in tibialis anterior muscle, while the high-low group (ingested 89.6g) increased by 36% 

after 4 weeks (thus, both beta-alanine intake and carnosine loading are doubled, resulting 

in the same efficiency). Similar to the results of Hill et al. (2007), the efficiency is 

decreasing after 4 weeks of supplementation in both dosing protocols, and this decline is 

steeper for the high-low group compared to the low-low group. These results indicate 

that the efficiency of beta-alanine supplementation seems to decrease after 4 weeks for 

the supplementation protocols used in the above described studies. Moreover, the higher 

the amount of carnosine loading (and thus histidine depletion), the greater this decline.  
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Figure 4: Efficiency of chronically supplemented beta-alanine, calculated in different supplementation studies and study 

2 of this thesis. Efficiency is calculated by dividing the molar carnosine increase by the total molar intake of beta-alanine.  

 

By calculating the efficiency for study 2, we can compare these values and the course of 

the efficiency during chronic supplementation. In study 2, 6g of beta-alanine was ingested 

daily, which is higher than the supplemented amounts of Hill et al. (2007) and 

Stellingwerff et al. (2012a). Figure 4 shows that efficiency was already decreasing after 12 

days of supplementation, and this decline was more modest in the co-supplemented 

group compared to the beta-alanine group, suggesting that histidine depletion might 

affect the amount of carnosine loading. However, we were not able to find significant 

differences in the amount of loading due to the short supplementation period, but it can 

be hypothesized that a significant difference in loading would appear when 

supplementation was continued (as indicated by the dashed lines on figure 4).  

Furthermore, L-histidine is, in contrast to beta-alanine, a proteinogenic amino acid and 

thus necessary for muscle synthesis. Therefore, it could be hypothesized that L-histidine 

would be even more depleted in strength training athletes and thus can more rapidly 

become rate-limiting for carnosine synthesis. Moreover, subjects characterized by a lower 

intake of proteins (which is the main source of dietary histidine), such as vegetarians and 

elderly are other populations in which histidine depletion may occur to a higher extent. 

Whether L-histidine indeed becomes rate-limiting when beta-alanine is supplemented in 

these populations remains to be investigated. However, our results suggest that L-

histidine levels should be monitored when beta-alanine is chronically ingested in these 

subjects. 
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To summarize, body histidine stores are depleted by chronic beta-alanine 

supplementation. However, this does not seem to affect muscle carnosine loading on 

the short term, as was tested in study 2. Nevertheless, it might affect the loading 

efficiency in longer supplementation protocols and thus co-supplementation of beta-

alanine and L-histidine warrants further research. 

A possible exercise-related metabolic pathway in which histidine is involved, is histamine 

synthesis through decarboxylation of L-histidine by HDC. We could not measure HDC 

expression in human skeletal muscle, but its expression in muscle has been demonstrated 

by other recent investigations (Romero et al., 2016). It is suggested that histamine, which 

has beneficial exercise-related roles, might derive from muscle histidine. In this regard, 

carnosine is often seen as a histidine pool (Greene et al., 1984). In case of decreased 

plasma histidine levels, it can be hypothesized that HDC is downregulated and carnosine 

degradation is increased (as was found by the higher expression of CNDP2 in study of 

Everaert et al. (2013a)), while the opposite might appear in case of increased plasma 

histidine levels (Fig 4). However, until now, it remains to be investigated if and how 

carnosine and HDC contribute to the maintenance of histidine homeostasis. 

 

 

Figure 5: Possible hypothesis on the interaction of carnosine metabolism with the homeostatic regulation of histidine 

levels 
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2.3. Updated view on efficiency of beta-alanine supplementation 

Based on our studies, we can conclude that depleted histidine levels following chronic 

beta-alanine supplementation might negatively affect carnosine loading, and we 

demonstrated that beta-alanine transaminases are indeed partially responsible for the 

low efficiency of beta-alanine supplementation. 

By concurrent administration of beta-alanine and beta-alanine transaminases inhibitors in 

mice, we demonstrated that higher amounts of loading are evoked when both GABA-T 

and AGXT2 are blocked. Based on these data, we can now partially explain the low 

loading efficiency of beta-alanine supplementation. As this study was performed in mice, 

it is difficult to estimate the contribution of these enzymes to the total unknown 

metabolic fate of ingested beta-alanine in humans. Moreover, the effect of inhibiting 

GABA-T and AGXT2 on the mice muscle carnosine loading differed greatly between the 

different muscles that were investigated (small effects for gastrocnemius and tibialis 

anterior, big effects for soleus and heart). Further research on the contribution of beta-

alanine transaminating enzymes in humans and other possible determinants of carnosine 

loading is needed. 

As described above, the highest effects of beta-alanine supplementation and concurrent 

beta-alanine transaminase inhibition were found in soleus and heart (study 1). Moreover, 

serum beta-alanine was positively correlated with the HCD levels in these tissues. 

Fasted plasma beta-alanine levels of humans supplemented with beta-alanine (with or 

without concurrent histidine supplementation) were also measured in study 2 of this 

thesis. Interestingly, change in fasted plasma beta-alanine levels after 23 days of 

supplementation demonstrated a significant correlation with the change in muscle 

carnosine levels in soleus (r = 0.591, p = 0.01) and gastrocnemius (r = 0.442, p = 0.067) 

muscle (Fig 6). Moreover, a similar correlation was already present after 12 days of 

supplementation, although this was only significant in gastrocnemius (r = 0.503, p = 0.04) 

and not in soleus (r = 0.291, p > 0.05). Thus, similar to the results found in mice (study 1), 

fasted plasma beta-alanine levels seem a good predictor for the amount of muscle 

carnosine loading. This is in agreement with the above described hypothesis that plasma 

beta-alanine homeostasis is strictly regulated. When these levels can not be kept within 

homeostatic limits (e.g.saturation of transaminases), beta-alanine is transported inside 
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muscle cells and carnosine synthesis thus is a consequence of the disturbed plasma beta-

alanine homeostasis. Taken together, the data from different studies included in this 

thesis indicate that the change in fasted plasma beta-alanine levels following chronic 

beta-alanine supplementation can be seen as an indication for the amount of muscle 

carnosine loading.  

 

Figure 6: Correlation between the change in plasma beta-alanine levels and the change in muscle carnosine levels for 

soleus and gastrocnemius muscle of the beta-alanine supplemented subjects in study 2 

 

This finding might have some important implications. Fasted plasma beta-alanine levels 

are collected 8-10 hours after the last beta-alanine intake. We demonstrated that these 

fasted beta-alanine levels are correlated with muscle carnosine increase both after 12 

and 23 days of supplementation. Thus, at these timepoints, fasted plasma beta-alanine is 

a predictor for the responsiveness of a subject to beta-alanine supplementation. This is 

probably a consequence of the GABA-T and/or AGXT2 activity. The higher this activity, the 

lower plasma beta-alanine levels and thus the lower muscle carnosine loading. In that 

case, it could be hypothesized that a similar correlation already occurs after one single 

day of beta-alanine supplementation, e.g. after supplementation of 6.4g of beta-alanine 

for one day, fasted plasma beta-alanine levels could be measured on the next morning 

and correlated with carnosine increase after chronic supplementation. If this correlation 

holds, this would mean that the change in plasma beta-alanine levels after one single day 
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of supplementation is a predictor for the degree of carnosine loading after chronic beta-

alanine supplementation. Thus, disturbed plasma beta-alanine homeostasis after one day 

of supplementation could then be a indication that this subject is a high-responder to 

beta-alanine supplementation.  

As demonstrated in study 1, plasma beta-alanine homeostasis is mainly regulated by 

renal and hepatic beta-alanine transamination by GABA-T and AGXT2. In this study, we 

could confirm that beta-alanine is a suitable substrate for both GABA-T and AGXT2. These 

enzymes are thus responsible for the removal of beta-alanine in plasma. Furthermore, 

beta-aminoisobutyric acid (BAIBA) is another suitable substrate for AGXT2, as was also 

demonstrated in study 1. Interestingly, few recent studies demonstrated that certain 

SNPs (single nucleotide polymorphism) are associated with reduced activity of AGXT2 in 

humans (Suhre et al., 2011; Yoshino et al., 2014). The frequency of these SNPs is 

population-dependent and is more frequently present in Asian populations (up to 33%) 

compared to Caucasian populations (less than 1%) (Auton et al., 2015). In these subjects, 

BAIBA urinary excretion was significantly enhanced (Yoshino et al., 2014), suggesting that 

less BAIBA is transaminated by AGXT2, thus leading to a higher excretion. Based on these 

findings, it could be hypothesized that these subjects also have reduced transamination 

of circulating beta-alanine, resulting in enhanced plasma beta-alanine levels upon beta-

alanine supplementation and consequently a higher degree of carnosine loading. 

However, until now, the effect of beta-alanine supplementation in these ‘AGXT2-deficient’ 

subjects is not yet investigated and might be an interesting study to investigate the 

contribution of AGXT2 to the plasma beta-alanine homeostasis in humans. 

To summarize, fasted plasma beta-alanine levels are a predictor for the degree of 

muscle carnosine loading. In other words, subjects who fail to keep circulating beta-

alanine between homeostatic limits, will have a higher incorporation of beta-alanine 

into muscle carnosine and thus a higher degree of muscle carnosine homeostasis failure. 

These subjects are the high-responders to beta-alanine supplementation.    
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3. Limitations 

In this thesis, new insights in the regulation of the carnosine homeostasis are discovered. 

However, some limitations of the performed studies are highlighted below. 

- Throughout the different studies of this thesis, quantitative PCR is used to  measure the 

mRNA expression of the carnosine-related enzymes and transporters. However, it is 

known that mRNA expression is not always in agreement with the amount of mRNA that 

is effectively translated into protein. Discordance between gene and protein expression 

levels is previously described for different genes and might be caused by different factors, 

such as post-transcriptional splicing and translational regulation. Thus, true biological 

differences might exist between mRNA and protein levels, and gene expression 

measurements should therefore be interpreted with caution as they only give an estimate 

of the correspondent protein expression and activity. To truly measure protein expression, 

Western blot analysis should be performed, and activity assays are considered as the gold 

standard to meaure protein function, as was done for GABA-T and AGXT2 in study 1.  

- The performed studies have a relatively small sample size, thereby lowering the power 

of the studies. In study 2 and 3, the interventions were quite intensive, making it 

inconvenient to include more subjects. In the context of the reduction principle for the 

use of laboratory animals, we also kept the groups in study 1 quite small. For some 

parameters however, it might be more straightforward to find significances in a larger 

sample size (e.g. taurine in study 2).  

- Thirdly, the moment on which the biopsy was taken can have a great influence on the 

gene expression results. Since we only take one biopsy after a chronic supplementation 

period in study 4, the results only give a snapshot of the gene expression profiles on that 

moment. It is possible however that gene expression is more acutely influenced and 

affected by a stimulus and is already returning to baseline after a chronic intervention.  

- The contribution of beta-alanine transaminases in the carnosine homeostasis in mice 

was demonstrated by vigabatrin and AOA administration, which are inhibitors of GABA-T 

or both GABA-T and AGXT2, respectively. Based on our findings in mice, we are unable to 

determine the fraction of ingested beta-alanine in humans that is lost through 
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transamination. Moreover, our findings can not directly be applied to the human 

situation because of some reported side-effects of vigabatrin and the toxicity of AOA. 

Vigabatrin is sometimes used as a drug for people with epilepsy or refractory complex 

partial seizures, but it is not a first line treatment as it can cause drowsiness, dizziness and 

permanent vision loss (deterioration of sight from the edges of your field of vision). 

Furthermore, AOA inhibits all PLP-dependent enzymes and was already tested for the 

treatment of some diseases, leading to toxic symptoms such as drowsiness, ataxia, 

seizures, and psychotic behavior (Perry et al., 1980). It remains to be established whether 

beta-alanine transaminases can be blocked by an alternative way which can also be 

applied in humans. 

- Because all PLP-dependent enzymes are blocked by AOA administration, we can 

currently not state with certainty that no other unknown beta-alanine transaminase 

enzyme is involved in this process. Moreover, inhibitor administration was only tested in 

combination with beta-alanine administration. It could however be hypothesized that 

blockade of the transamination of endogenous beta-alanine can elicit muscle carnosine 

loading, thus making beta-alanine supplementation unnecessary.  
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4. Practical applications 

Based on the results of this thesis, we can formulate the following practical applications: 

- Beta-alanine is a popular ergogenic supplement among athletes. It was already 

demonstrated that meal co-ingestion and exercise training are determinants for the beta-

alanine induced carnosine loading scheme. Therefore, athletes are adviced to take the 

beta-alanine supplement together with meals and or training sessions and to plan the 

supplementation period during a training period. Our results now demonstrate that a 

large amount of the ingested beta-alanine is primarily routed toward energy provision 

(by transamination of beta-alanine to malonate semi-aldehyde) and beta-alanine is only 

routed toward carnosine synthesis when the transaminase pathway is saturated. We 

demonstrated that short and intensive beta-alanine supplementation (6gr per day during 

23 days) already evoked significant increases in muscle carnosine. Thus, similar amounts 

of carnosine loading can be obtained when maximizing the daily beta-alanine intake 

during a limited period of time instead of spreading smaller doses during a longer period, 

which might be more convenient for athletes preparing for a championship/competition.  

- If beta-alanine is supplemented for a prolonged period of time, caution should be 

warranted to body histidine levels. Populations having a higher risk of incurring a 

histidine deficit, such as strength training athletes, growing children, vegetarians or 

elderly, should be cautious with beta-alanine supplementation on the long term. 

- Creatine homeostasis was shown to be disturbed by a 6-month longitudinal vegetarian 

intervention in previous omnivorous subjects and could be restored by creatine 

supplementation (1g creatine monohydrate). Creatine plays a crucial bioenergetic role in 

tissues with high metabolic demand by re-synthesizing adenosine triphosphate (ATP) as a 

high-energy phosphate. Thus, creatine is a suitable carninutrient for supplementation in 

vegetarian athletes, especially those participating in resistance training and short-term, 

high-intensity exercise performances such as sprinting. Furthermore, creatine has 

emerged as a relevant dietary intervention able to partially offset frailty in the elderly and 

is also suggested to act as an antiglycemic agent (Gualano et al., 2016; Pinto et al., 2016). 

Therefore, creatine supplementation in specific clinical populations on a vegetarian diet 

might also have clinical relevance.  
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5. Future directions 

The overall aim of this thesis was to provide a better insight in the homeostatic regulation 

of carnosine and thereby partly explaining the low efficiency of chronic oral beta-alanine 

supplementation. Although we provided new insights, some elements of the regulation of 

carnosine homeostasis remain unclear. Below, some specific next steps are described.  

- We demonstrated that specific GABA-T inhibition by vigabatrin did not have an effect on 

the HCD content in any of the investigated tissues. Because we did not have an inhibitor 

specific for AGXT2, which does not act on GABA-T, the contribution of GABA-T to the 

beta-alanine metabolism needs further investigation. In order to be able to compare the 

implications of inhibiting only AGXT2 vs inhibiting both enzymes on the metabolism of 

beta-alanine in mice, AGXT2 knock-out mice are a suitable model. These mice are already 

successfully bred, but their muscle carnosine and anserine levels are until now never 

determined. If a low amount of beta-alanine supplementation (0.1% w/v) in these mice 

would directly enhance circulating beta-alanine and muscle carnosine levels, this would 

suggest that AGXT2 is the main enzyme that is responsible for beta-alanine 

transamination and GABA-T is only minimally involved. If no enhanced beta-alanine and 

carnosine levels would be present upon beta-alanine administration, this would be an 

indication that GABA-T also plays an important role in the transamination process. In this 

case, it can be suggested that the enzymes are both involved and they are able to 

compensate for the loss in activity of the other enzyme.  

- The beneficial effects of administering transaminase inhibitors on the carnosine loading 

can not directly be transferred to humans because of the side-effects and toxicity of these 

substances. As an alternative, a natural inhibitor of these enzymes could be used. Lemon 

balm (Melissa Officinalis) is a natural herb and has already been shown to inhibit GABA-T 

activity both in vitro (Awad et al., 2007, 2009) and in vivo (Yoo et al., 2011). Alike 

vigabatrin, the inhibitory effects of lemon balm were shown to affect the GABA 

metabolism. Since lemon balm only inhibits GABA-T without affecting AGXT2 activity, it 

remains to be investigated whether beta-alanine metabolism will be affected by this 

substance. A natural inhibitor of AGXT2 is until now never demonstrated, but specific 

SNPs associated with decreased AGXT2 activity are described. Thus, administering lemon 
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balm to a small cohort of AGXT2 deficient patients would be a way to determine the 

contribution of both these enzymes to the carnosine homeostasis.  

- Whether histidine can become a rate-limiting factor for carnosine synthesis needs 

further investigation in specific situations and populations such as long-term intensive 

beta-alanine supplementation, vegetarians, strength training athletes or elderly. If 

combined supplementation of beta-alanine and L-histidine would induce a higher amount 

of carnosine loading compared to beta-alanine supplementation alone, the limiting role 

of L-histidine would be demonstrated.  

Besides these specific next steps that need to be further investigated on the short-term, 

there still are some general gaps in the story of carnosine regulation. Some suggestions 

and recommendations for future research tracks are defined below. 

- Until now, apart from uracil degradation in the liver, very little is known about the 

capacity of the body to synthesize beta-alanine. Based on the results of this thesis, it can 

be hypothesized that this pathway might be of greater importance than previously 

thought. Indeed, van Kuilenburg and colleagues (2004) reported that plasma beta-alanine 

homeostasis is not disturbed in patients deficient in beta-ureidopropionase (last enzyme 

involved in endogenous beta-alanine synthesis by uracil degradation). Together with the 

results found in vegetarians (no exogenous beta-alanine), these data suggest that either 

other endogenous beta-alanine synthesizing pathways exist, or beta-alanine degradation 

is down regulated in these specific conditions. Future research is needed to elaborate 

whether, apart from uracil degradation in liver, other beta-alanine synthesis pathways 

exist and to what extent they contribute to the total endogenous beta-alanine availability. 

Possible pathways are aspartate decarboxylation by GADL1 and conversion of malonate 

semi-aldehyde by aminotransferases GABA-T and AGXT2. The mRNA expression of GADL1 

found in human skeletal muscle suggests that this pathway indeed is involved, but the 

protein expression and enzyme activity remains to be investigated. 

- Serum carnosinase (CN1), the enzyme responsible for the hydrolylis of carnosine, is in 

contrast to rodents, highly active in blood and therefore a negative regulator of carnosine 

content in humans. This surprisingly high carnosinase activity results in the absence of 

carnosine from the human blood, which causes the ‘human carnosinase paradox’. Up to 
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now, it is not yet clear why such an active enzyme evolves, when it degrades a molecule 

which has protective properties for a number of diseases and which promotes exercise 

performance capacity.  

- The link between the histamine and carnosine metabolism remains until now unclear. 

Several functions are ascribed to histamine, of which the vasodilating effect on arterioles 

in (post-)exercise hyperaemia is a very interesting one toward exercise performance. 

Histamine might be stored in mast cells, or it can be formed by decarboxylation of muscle 

histidine. HDC is shown to be expressed in human skeletal muscle and is upregulated 

following exercise (Romero et al., 2016). Therefore, carnosine metabolism may be closely 

related to histamine metabolism, which warrants further research.  

- Due to the wide spectrum of bioactive properties of carnosine, its therapeutic potential 

has been tested in numerous diseases in which ischemic or oxidative stress are involved. 

Promising results have been obtained for several pathologies such as diabetes and its 

complications, ocular disease, aging and neurological disorders. In this dissertation, it was 

demonstrated for the first time that carnosine concentrations can be increased in the 

heart of rodents. As it was recently reported that carnosine plays an important role in 

detoxifying reactive aldehydes and promote functional recovery in the ischemic heart, it 

should be further investigated whether increased carnosine levels can positively 

influence cardiac function and resistance of the heart to ischemic injury. This would 

enhance the therapeutic potential of carnosine. 
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6. General conclusions 

Take-home messages derived from this thesis: 

 Homeostasis of the HCDs in cardiac myocytes and skeletal muscle is dependent 

on the circulating availability of beta-alanine. In turn, homeostasis of circulating 

beta-alanine is, in the case of excess dietary beta-alanine intake, dependent on 

the degradation of beta-alanine in liver and kidney, which express GABA-T and 

AGXT2 as the main mammalian enzymes capable of metabolizing beta-alanine. 

Plasma beta-alanine homeostasis is thus securely regulated by the human body. In 

first instance, enhanced circulating beta-alanine levels upon beta-alanine 

supplementation are routed towards oxidation. Secondly and only when this first 

pathway is saturated, beta-alanine is routed toward carnosine synthesis, resulting 

in disturbed muscle carnosine homeostasis. This partially explains the low 

incorporation efficiency of chronically ingested beta-alanine into muscle carnosine. 

 

 Beta-alanine is confirmed as the rate-limiting precursor in the muscle carnosine 

synthesis process since histidine supplementation alone did not suffice to increase 

muscle carnosine content and adding histidine to the beta-alanine 

supplementation protocol did not improve short-term loading efficiency. 

Moreover, it is demonstrated for the first time that the increase in fasted plasma 

beta-alanine levels following chronic beta-alanine supplementation is a 

determinant of the degree of muscle carnosine loading. 

 

 Chronic beta-alanine supplementation reduces plasma and muscle histidine 

levels, which could be prevented by co-supplementing L-histidine alongside 

beta-alanine. It remains to be determined whether the depletion of histidine 

levels by beta-alanine can compromise physiological processes such as carnosine 

loading of longer duration or protein synthesis in an anabolic state. 

 Creatine, but not carnosine and carnitine homeostasis, is disrupted by a 6-month 

vegetarian diet in omnivorous women. Creatine homeostasis can be restored by 

concomitant creatine supplementation, suggesting that creatine is a suitable 
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carninutrient for supplementation in vegetarian athletes, especially those 

participating in resistance training and short-term, high-intensity exercise 

performances. 
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