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Samenvatting

Massale hoeveelheden gegevens worden momenteel geproduceerd op verbazingwekkende

snelheid. Technologische ontwikkelingen maken het goedkoper en toegankelijk voor

bedrijven/instellingen om grote stromen van data te verkrijgen of te genereren. Deze

gegevens kunnen verschillende types van complexiteiten bevatten zoals niet-geobserveerde

waarden, onlogische waarden, extreme waarnemingen, en vele anderen. Anderzijds er-

varen onderzoekers soms beperkingen om steeproefgegevens te bekomen. Zo kan het

kostbaar zijn om een organisme te laten groeien in een lab. Daarom kan een onderzoeker

ervoor kiezen om er slechts enkele te laten groeien, ten koste van een lagere kwaliteit

van de resultaten. Bij dit soort gegevens wordt vaak een groot aantal eigenschappen

gemeten in slechts een klein aantal waarnemingen, zodat de dimensie van de data veel

groter is dan de omvang. Denk bijvoorbeeld aan microarray data. Heel vaak zijn beoefe-

naars meer bezorgd over de correcte inning van de gegevens dan het eigenlijke uitvoeren

van een correcte data-analyse. In dit werk bespreken we methoden voor twee relevante

stappen in de data-analyse. We kijken eerst naar methoden voor de verkennende stap

waarbij de beoefenaar wil navigeren doorheen de grote stroom aan informatie in de data

om te beginnen met het begrijpen van hun structuur en eigenschappen. Vervolgens

bespreken wij methoden voor statistische data-analyse, gericht op een van de belangri-

jkste taken in deze stap: het voorspellen van een uitkomst. In dit werk willen we ook

vaak voorkomende complexiteiten van real data toepassingen zoals hoog-dimensionale

gegevens, atypische data en ontbrekende waarden aanpakken. Meer specifiek begint het

proefschrift met een bespreking van methoden voor hoofdcomponentenanalyse, n van

de meest populaire experimentele technieken. Deze methoden zijn uitbreidingen van de

klassieke benadering van hoofdcomponenten analyse die bestand zijn tegen atypische

gegevens. Hoofdstuk 1 beschrijft de Multivariate S- en de Multivariate Least Trimmed

Squares schatters voor de principale componenten en stelt een algoritme voor dat meer

robuuste resultaten kan opleveren en computationeel sneller is voor hoog-dimensionale

problemen dan bestaande algoritmen voor deze methoden en andere robuuste meth-

oden. We tonen aan dat de overeenkomstige functionalen Fisher-consistent zijn voor

elliptische verdelingen. Bovendien bestuderen we de robuustheidseigenschappen van de

Multivariate S-schatter door zijn invloedsfunctie af te leiden. De Multivariate S- en

de Multivariate Least Trimmed Squares schatters richten zich echter alleen op uitschi-

etende observaties (casewise outliers), dit wil zeggen waarnemingen zijn ofwel regulier

ofwel uitschietend. Hoofdstuk 2 introduceert een nieuwe methode voor principale com-

ponenten waarvan aangetoond wordt dat ze beter tegen uitschietende metingen bestand

is: de coordinatewise Least Trimmed Squares schatter. In het bijzonder kan ons voorstel



cellwise uitschieters behandelen, die heel gebruikelijk zijn in moderne hoog-dimensionale

datasets. We pasten ons algoritme voor multivariate methoden aan voor de coordinate-

wise Least Trimmed Squares schatter zodat deze snel kan berekend worden in hogere

dimensies. Bovendien introduceren wij de functionaalvorm van de schatter en tonen aan

dat deze Fisher-consistent is voor elliptische verdelingen. Hoofdstuk 3 breidt deze drie

methoden uit naar de setting met functionele gegevens en laat zien dat deze uitbreidin-

gen de robuustheidskenmerken van de methoden in de multivariate setting behouden.

Het laatste hoofdstuk van het proefschrift handelt over het maken van voorspellingen

in aanwezigheid van ontbrekende gegevens. Om voorspellingen te maken gebruiken we

boom-gebaseerde methoden. Bomen zijn een populaire data mining techniek die het

mogelijk maakt om voorspellingen te maken over gegevens van verschillende aard en in

aanwezigheid van ontbrekende waarden. We vergelijken de voorspellingsprestaties van

boom-gebaseerde technieken als de beschikbare trainingsdata variabelen met ontbrek-

ende waarden bevatten. De ontbrekende waarden worden ofwel behandeld met behulp

van surrogaat beslissingen in de bomen ofwel door de combinatie van een imputatiemeth-

ode met een boom-gebaseerde methode. Zowel classificatie- als regressieproblemen wor-

den beschouwd. Over het algemeen tonen onze resultaten dat voor kleinere fracties

van ontbrekende gegevens een ensemble methode gecombineerd met surrogaat beslissin-

gen of enkelvoudige imputatie volstaat. Voor matige tot grote fracties van ontbrek-

ende waarden, tonen ensemble methoden op basis van voorwaardelijke inferentiebomen

in combinatie met meervoudige imputatie de beste prestaties, terwijl voorwaardelijke

bagging gebruikmakend van surrogaten een goed alternatief is voor hoog-dimensionale

voorspelling problemen. Theoretische resultaten bevestigen de potentieel betere voor-

spellingsprestaties van meervoudige imputatie ensembles.
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Chapter 1

Robust multivariate subspace

estimation for high-dimensional

data

The content of this chapter is work in progress for future publication.

1.1 Introduction

Principal component analysis (PCA) is a popular exploratory tool for multivariate data.

Classical principal component analysis can be formulated in several ways. One such

formulation is as follows. Classical PCA aims to find an optimal lower-dimensional

subspace in the sense of minimizing the mean of the squared euclidean distances be-

tween the original observations and their orthogonal projections onto the subspace. It

is well-known that the directions spanning this optimal subspace correspond to the first

eigenvectors of the sample covariance matrix. Hence, classical PCA also finds the di-

rections of maximum variability of the data. PCA estimates are often used to visualize

multivariate data and to quickly learn about the main sources of variation in the data.

However, this classical approach to PCA is very sensitive to atypical data. In particular,

the subspace found by minimizing the squared error loss can easily be pulled towards

outliers.

There have been several proposals to robustify PCA. The earliest and easiest approach

consists of taking the eigenvectors and eigenvalues of a robust scatter estimate instead of

the standard sample covariance matrix. M-estimates, minimum volume ellipsoid (MVE)

and S-estimates have been proposed for this purpose. However, this approach cannot

1
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be used for high-dimensional data because calculating high-dimensional robust scatter

matrices is computationally complex. Moreover, while the effciency of robust scatter

estimators increases with dimension (that is, their variance at elliptical distributions

decreases), this comes at the expense of a loss of robustness. Therefore, Locantore et al.

(1999) introduced spherical PCA which uses the covariance matrix of the data projected

onto the unit sphere and can be calculated fast. Another alternative obtains robust PCA

estimates by finding univariate directions that maximize a robust estimator of scale and

are orthogonal to each other. This approach is known as robust projection pursuit (PP)

and has been studied by Li and Chen (1985); Hubert et al. (2005) for example. A

combination of both PP and robust scatter estimation was proposed by Hubert et al.

(2005).

Instead of looking for one direction at a time as in PP, one can seek an optimal lower-

dimensional subspace directly. To this end, Liu et al. (2003) replaced the squared error

loss of classical PCA by the absolute value of the errors. Croux et al. (2003) proposed a

weighted version of this procedure to reduce the effect of high-leverage points. Maronna

(2005) considered robustly estimating the best lower-dimensional linear manifold by

minimizing either an M-estimator of scale or a least trimmed squares (LTS) scale of

the euclidean distances. Maronna called these approaches S-M and S-L and proposes

an iterative algorithm to compute the solutions. He characterizes the solution by all

directions orthogonal to the subspace and shows that these directions correspond to the

eigenvectors associated with the smallest eigenvalues of a weighted covariance matrix.

This may be a potential disadvantage when looking for a small dimensional subspace

of high-dimensional data. In that case a high dimensional covariance matrix is still

needed and a large number of eigenvectors is required. Computing all these directions

in high-dimensional settings will take more time compared to computing only the first

few directions comprising the subspace. Croux et al. (in press) investigated theoretical

properties of the Maronna (2005) method based on the LTS scale.

In this chapter we re-investigate the methods of Maronna (2005) based on M and LTS

scales, which we call Multivariate S-estimator and Multivariate least trimmed squares

estimator respectively. We start with a short review of relevant properties of classical

PCA in Section 1.1.1. We then give the definition of the Multivariate S-estimator esti-

mator and corresponding estimating equations in section 1.2. Here, we also introduce

the functional corresponding to the estimator. We show that the functional is Fisher-

consistent at elliptical distributions and derive its influence function. In section 1.3 we

give the definition of the Multivariate least trimmed squares estimator and introduce

the corresponding functional. We show that the functional is Fisher-consistent at el-

liptical distributions. In section 1.4 algorithms for both estimators are proposed that

are better suited for high-dimensional data. These algorithms directly determine the
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directions of the low-dimensional optimal subspace rather than a basis of directions or-

thogonal to the subspace. Moreover, our iterative algorithm uses estimating equations

derived from first order conditions in order to update these directions, instead of com-

puting high-dimensional covariance matrices as in the algorithm proposed by Maronna

(2005). These modifications make it possible to calculate the S-M and S-L solutions

faster in high-dimensional settings. We consider two choices for the starting values. The

first uses random initial orthogonal matrices as in Maronna (2005) and aims to find

the global minimum. The second uses a few deterministic starting values inspired by

Hubert et al. (2012) and then finds the best local minimum that can be reached from

these initial robust starting solutions. With deterministic starting values the algorithm

is certainly faster and can make it feasible to calculate the solutions for even larger

high-dimensional data. However, this approach is only useful if it does not jeopardize

its performance. Section 1.5 discusses a fast strategy to choose the dimension of the

subspace based on the proportion of unexplained variability. Finally, in section 1.6 we

compare the performance of both algorithms through an extensive simulation study and

a real data application.

1.1.1 Classical PCA approach

We first formalize our approach to the classical PCA problem. Consider a sample Zn =

{xi, i = 1, . . . , n} ⊂ Rp and denote the corresponding data matrix by X = (x1 . . .xn)t.

Let x(Zn) = 1
n

∑n
i=1 xi and Σ̂(Zn) = 1

n−1

∑n
1 (xi − x)(xi − x)T be the corresponding

sample mean and sample covariance matrix. In this work, we consider principal com-

ponent analysis as a method that looks for q < p orthogonal unit vectors b(l) ∈ Rp,
1 ≤ l ≤ q, which span the linear subspace that gives the best approximation to the data

set Zn. Let Bq ∈ Rp×q be an orthogonal matrix with columns Bq = (b(1), . . . ,b(q)),

i.e. BT
q Bq = Iq, and rows bT

j , j = 1, . . . , p. Let Aq ∈ Rn×q be the matrix with rows

aT
i , i = 1, . . . , n, and m ∈ Rp. The corresponding approximations of the observa-

tions are given by x̂i(Bq,Aq,m) ≡ x̂i = m + Bqai, or elementwise x̂ij = mj + aT
i bj .

The associated multivariate residuals are given by ri = xi − x̂i ∈ Rp. Its Euclidean

norm, i.e. the Euclidean distance between xi and its approximation x̂i, is denoted by

di(Bq,Aq,m) = di = ‖ri‖Rp . The classical principal components solution is now found

by minimizing

min
Bq ,Aq ,m

n∑
i=1

‖xi − x̂i(Bq,Aq,m)‖2Rp = min
Bq ,Aq ,m

n∑
i=1

d2
i (Bq,Aq,m) (1.1)

over all Bq ∈ Rp×q orthogonal, Aq ∈ Rn×q and m ∈ Rp. The solution to this problem is

obtained from the eigenvectors and eigenvalues of Σ̂(Zn). Let B̂q(Zn) be the orthogonal
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matrix such that B̂q(Zn)TΣ̂(Zn)B̂q(Zn) = Λ̂(Zn) = diag(λ̂1(Zn), λ̂2(Zn), . . . , λ̂q(Zn)),

where λ̂1(Zn) ≥ λ̂2(Zn) ≥ . . . ≥ λ̂q(Zn) ≥ 0 are the q largest eigenvalues of Σ̂(Zn).

Then, the solution to (1.1) is given by B̂LS = B̂q(Zn), m̂LS = x(Zn) and ÂLS whose

rows are given by âT
i,LS = (xi − m̂LS)TB̂q(Zn), i = 1, . . . , n. Note that the vectors

âi,LS are the scores of the observations xi on the columns of B̂LS. If we assume that

λ̂q(Zn) > λ̂q+1(Zn) then the PCA solution is unique (see Seber, 1984, Theorem 5.3).

Unfortunately, classical principal component analysis can be very sensitive to the pres-

ence of outliers. Since classical PCA is a least squares problem, outliers can pull the PCA

subspace towards them. As a result, incorrect approximations for the regular data are

obtained while the outliers cannot be detected because they do not appear as atypical

points with unusually large Euclidean distance from the estimated subspace. Therefore,

it is crucial to investigate approaches for PCA that can better resist the effect of these

outliers.

1.2 The Multivariate S-estimator for PCA (MVS) in Rp

1.2.1 The estimator

From (1.1) it is easy to see that the classical PCA solution is found by minimizing a scale

estimate σ̂2(d(Bq,Aq,m)) of the Euclidean distances of the residuals d(Bq,Aq,m) =

(d1, . . . , dn), given by

σ̂2(d(Bq,Aq,m)) =
1

n

n∑
i=1

d2
i (Bq,Aq,m). (1.2)

This classical scale estimator based on a quadratic loss function is clearly not robust

against outliers. Maronna (2005) proposed to robustify the classical approach by re-

placing σ̂ by an M-estimator of scale which is defined as follows. For a real vector

u = (u1, u2, . . . , un) an M-scale estimator σ̂M(u) is the solution in s which satisfies

1

n

n∑
i=1

ρc

(ui
s

)
= b (1.3)

where ρc(t) = ρ(t/c) with c > 0 and where ρ : R → R+ is an even function such that

ρ(0) = 0 and ρ(t) is nondecreasing for t > 0 (see e g. Maronna (2005)). The constants c

and b are tuning parameters which can be chosen by the user. These constants control

consistency and robustness/efficiency of the estimator. For instance with c = 1.54764

and b = 0.5 the estimator is consistent at the normal distribution and has the maximum

breakdown point of 50%.



Chapter 1. Robust multivariate subspace estimation for high-dimensional data 5

The multivariate S-estimator for PCA can now be defined as the solution (B̂MVS, ÂMVS, m̂MVS)

of the minimization problem

min
Bq ,Aq ,m

σ̂M(d(Bq,Aq,m)), (1.4)

where Bq ∈ Rp×q again needs to be an orthogonal matrix (i.e. BT
q Bq = Iq), and

σ̂M(d(Bq,Aq,m)) is the solution in s of the equation

1

n

n∑
i=1

ρc

(
di(Bq,Aq,m)

s

)
= b. (1.5)

Note that in Maronna (2005) the Euclidean distance between each observation xi and

its projection x̂i onto the q-dimensional subspace is measured in the p− q dimensional

orthogonal subspace which is equivalent to our current formulation in the p-dimensional

space. We now write the MVS estimator defined in (1.4) in terms of the corresponding

linear subspaces. Let L̂
B̂MVS

be the q−dimensional linear subspace spanned by the

columns of B̂MVS. That is, L̂
B̂MVS

is the minimizer of

min
dim(LBq )=q

σ̂M(d(LBq)) (1.6)

over all linear subspaces LBq of dimension q where d(LBq) = (d1(LBq), . . . , dn(LBq))

are the Euclidean distances to the subspace and σ̂M(d(LBq)) is the solution in s of (1.5)

analogous to σ̂M(d(Bq,Aq,m)).

By implicitly differentiating the M-scale in (1.5) we obtain first order conditions for the

MVS estimator which will be useful to develop an iterative procedure to find local minima

of the MVS optimization problem. Let us denote the coordinates of the multivariate

residuals ri by rij = xij −mj − aT
i bj such that

di(Bq,Aq,m) = ‖xi −m−Bqai‖ =

 p∑
j=1

(xij −mj − aT
i bj)

2

1/2

. (1.7)
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Then, the derivatives of σ̂M with respect to ai, bj and mj become

∂σ̂M

∂ai
= −

∑p
j=1 ρ

′
(
di
σ̂M

)(
σ̂M
di

)
rijbj∑n

i=1 ρ
′
(
di
σ̂M

)
di

, i = 1, . . . , n ,

∂σ̂M

∂bj
= −

∑n
i=1 ρ

′
(
di
σ̂M

)(
σ̂M
di

)
rijai∑n

i=1 ρ
′
(
di
σ̂M

)
di

∂σ̂M

∂mj
= −

∑n
i=1 ρ

′
(
di
σ̂M

)(
σ̂M
di

)
rij∑n

i=1 ρ
′
(
di
σ̂M

)
di

, j = 1, . . . , p .

By setting the above equations to zero and writing

wi = ρ′
(
di
σ̂M

)
σ̂M

di
(1.8)

we obtain the following estimating equations:

p∑
j=1

(xij −mj) bj =

 p∑
j=1

bj bT
j

ai , 1 ≤ i ≤ n , (1.9)

n∑
i=1

wi (xij −mj) ai =

(
n∑
i=1

wi ai a
T
i

)
bj , (1.10)

n∑
i=1

wi (xij − aT
i bj) =

n∑
i=1

wimj , 1 ≤ j ≤ p. (1.11)

These estimating equations naturally suggests an iterative reweighted least squares pro-

cedure to converge to local minima of the objective function which will be used in our

algorithm of the estimator. From (1.9) we obtain that ai = BT
q (x−m). Hence, once Bq

and m are known, the corresponding scores ai of the observations are easily obtained.

By combining this with (1.11) we can also see that m =
∑n

i=1wi xi/(
∑n

i=1wi). Note

that if we put wi = 1 for all observations, then the solution of these equations becomes

the classical PCA solution.

By combining the estimating equations it can also be seen that the MVS-PCA solutions

(B̂MVS, m̂MVS) satisfy the equation:

n∑
i=1

wi(xi − m̂MVS)(xi − m̂MVS)TB̂MVS = B̂MVS Λ̂ (1.12)

where Λ̂ = B̂T
MVS

∑n
i=1wi(xi − m̂MVS)(xi − m̂MVS)TB̂MVS and wi is given in (1.8).
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From (1.12) it follows that the columns of B̂MVS can be taken as the first q eigenvectors

of the weighted covariance matrix C(m̂MVS, B̂MVS):

C(m̂MVS, B̂MVS) =
1

n

n∑
i=1

wi(xi − m̂MVS)(xi − m̂MVS)T, (1.13)

This is in accordance with expression (9) in Maronna (2005).

1.2.2 The functional

To investigate asymptotic properties of the MVS estimator, we first introduce the func-

tional corresponding to the estimator. Consider a p-dimensional random variable x with

a continuous distribution G. We assume that the distribution G has location parameter

µ and dispersion parameter Σ ∈ SPSD(p), i.e. Σ belongs to the class of symmetric posi-

tive semi-definite matrices of size p. It follows that Σ can be decomposed as Σ = βΛβT

where Λ = diag(λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 and β is an orthogonal

p× p matrix with columns β(1), . . . ,β(p).

Similarly as for the MVS estimator, the MVS functionals mMVS(G), BMVS(G) and

aMVS(G) satisfy aMVS(G) = BT
MVS(G) ( x−mMVS(G)). To simplify notation, in what

follows we drop G from the functionals. Therefore, we now focus on the functionals

(mMVS,BMVS) which are the solution of the minimization problem

min
m,BT

q Bq=Iq
σM(dG(x,m,Bq)), (1.14)

where dG(x,m,Bq) =
∥∥x−m−BqB

T
q x
∥∥ and the M-scale functional σM satisfies

∫
ρ

(
dG(x,m,Bq)

σM(dG(x,m,Bq))

)
dG(x) = b (1.15)

The MVS functional can be written in a more general way as follows. Given an orthogo-

nal matrix Bq, let LBq be the q−dimensional linear space spanned by the columns of Bq.

To simplify the presentation, assume that the functional mMVS is known. In addition,

denote as π(y,LBq) the orthogonal projection of y onto the subspace LBq . Therefore,

the MVS functional LBMVS
corresponding to the definition in (1.6) is the solution of the

minimization problem

min
dim(LBq )=q

σM(dG(x,LBq)), (1.16)

over all linear subspaces LBq of dimension q, where dG(x,LBq) =
∥∥x−m− π(x−m,LBq)

∥∥
and the M-scale functional σM satisfies (1.15) for dG(x,LBq).
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An analogous derivation as for (1.13) shows that the columns of the functional BMVS can

be taken as the first q eigenvectors of the weighted covariance matrix C(G,mMVS,BMVS)

which is defined as:

C(G,mMVS,BMVS) =

∫
w(x−mMVS)(x−mMVS)TdG(x) (1.17)

with weights

w = ρ′
(

dG(x,mMVS,BMVS)

σM(dG(x,mMVS,BMVS))

)
σM(dG(x,mMVS,BMVS))

dG(x,mMVS,BMVS)

and MVS location functional

mMVS =

∫
w x dG(x)∫
w dG(x)

Without loss of generality we can assume that µ = 0. We consider the case where x has

a model distribution G = FΣ with density

fΣ(x) =
g(xTΣ−1x)√

det(Σ)
, (1.18)

The function g is assumed to have a strictly negative derivative g′ such that FΣ is a

unimodal elliptically symmetric distribution around the origin (µ = 0). To guarantee

uniqueness of the best q−dimensional subspace Lq spanned by the columns of βq =

(β(1), . . . ,β(q)), we need a condition on the eigenvalues of Σ. In particular, we need

that λq > λq+1. The other eigenvalues may have the same value. Using (1.17) it can

now be shown that the MVS-PCA functional LBMVS
(G) is Fisher-consistent at unimodal

elliptical distributions FΣ.

Theorem 1.1. Let x ∼ FΣ, a p-dimensional elliptically distributed random variable with

location 0 and scatter Σ such that Σ = βΛβT where Λ = diag(λ1, λ2, . . . , λp), λ1 ≥
λ2 ≥ . . . ≥ λp, and β is an orthogonal matrix with columns β(1), . . . ,β(p). Denote as Lq
the linear space spanned by β(1), . . . ,β(q). Assume that λq > λq+1. Then, LBMVS

(FΣ)

is a Fisher-consistent functional for Lq at the model distribution FΣ, i.e.

LBMVS
(FΣ) = Lq (1.19)

In order to assess the effect on the estimator of a small amount of contamination at

a single point we derive the influence function of the corresponding functional. More

specifically, the influence function of a functional T at a distribution G measures the

effect on T of an infinitesimal contamination at a single point Hampel et al. (1986).

Let us denote the point mass at a point x0 by ∆x0 and consider the contaminated



Chapter 1. Robust multivariate subspace estimation for high-dimensional data 9

distribution Gε,x0 = (1− ε)G+ ε∆x0 , then the influence function is given by

IF (x0, T,G) = lim
ε→0

T (Gε,x0)− T (G)

ε
=

∂

∂ε
T (Gε,x0)|ε=0. (1.20)

Let us assume w.l.o.g. that µ is known. We consider the influence function of BMVS(G)

at elliptical distributions. Let us assume, without loss of generality, that the columns of

the functional BMVS(G) are ordered according to decreasing eigenvalues. To derive this

influence function we start with the influence function for the functional C(G,BMVS)

defined in (1.17). To simplify notation let us write C(G) = C(G,BMVS), BMVS =

BMVS(G) and σS = σM(dG(x,BMVS)), the S-scale functional. Moreover, let b
(j)
MVS de-

note the jth column of BMVS, j = 1, . . . , q. Recall that b
(j)
MVS is the jth eigenvector of

the weigthed covariance matrix C(G). Furthermore, let λj(G) denote the jth eigenvalue

of C(G). It can easily be seen that the MVS-PCA functional BMVS is orthogonal equiv-

ariant. Therefore, it suffices to compute the influence function at elliptical distributions

FΣ where µ = 0 and Σ is a diagonal matrix.

Theorem 1.2. Let FΣ be a p-dimensional elliptical distribution with location µ = 0

and scatter Σ = diag(λ1, λ2, . . . , λp). For the diagonal elements of C(FΣ) it holds that:

IF (x0,C, FΣ)ii = u

(
dFΣ

(x0,BMVS)

σS

)
x2

0i − λi(FΣ)

− EFΣ

[
u′
(
dFΣ

(x,BMVS)

σS

)
dFΣ

(x,BMVS)x2
i

]
· IF (x0, σS, FΣ)

σ2
S

,

(1.21)

where u(t) = ρ′(t)/t and the IF of the S-scale functional σS is given by

IF (x0, σS, FΣ) =
σ2

S

(
ρ
(
dFΣ

(x0,BMVS)

σS

)
− b
)

2b− 2bσS + σ2
S EFΣ

[
ρ′
(
dFΣ

(x,BMVS)

σS

)
dFΣ

(x,BMVS)
] .

For the (i, j) elements with i = 1, . . . , q, j = q + 1, . . . , p, we have that

IF (x0,C, FΣ)ij =
[λj(FΣ)− λi(FΣ)] · u

(
dFΣ

(x0,BMVS)

σS

)
x0ix0j

λj(FΣ)− λi(FΣ)−Hij(BMVS)
. (1.22)

For the (i, j) elements with i = q + 1, . . . , p, j = 1, . . . , q, we have that

IF (x0,C, FΣ)ij =
[λj(FΣ)− λi(FΣ)] · u

(
dFΣ

(x0,BMVS)

σS

)
x0ix0j

λj(FΣ)− λi(FΣ) +Hij(BMVS)
. (1.23)
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Finally, for the (i, j) elements with i = 1, . . . , q and j = 1, . . . , q, or with i = q+ 1, . . . , p

and j = q + 1, . . . , p such that i 6= j, we have that

IF (x0,C, FΣ)ij = u

(
dFΣ

(x0,BMVS)

σS

)
x0ix0j , (1.24)

with dFΣ
(x0,BMVS) = ‖x0 −BMVSBT

MVSx0‖. Finally, the expression for Hij(BMVS) is

given in the Appendix.

Note that the influence functions are not bounded. However, they are non-increasing

which means that the effect of a point x0 on the MVS-PCA functional decreases as the

distance from the point to its projection BMVSBT
MVSx0 on the subspace increases. Thus,

only good leverage points, i.e. outliers in the direction of the linear subspace, may have

a large influence on the estimator. On the other hand, the influence of outliers w.r.t. the

subspace is bounded, and smoothly redescends to zero for the non-diagonal elements.

Using the theorem above, one can immediately obtain the influence functions for the

columns of BMVS, i.e. the eigenvectors of C(FΣ). Note that with the assumption of

a diagonal Σ with distinct eigenvalues, it follows from the proof of Theorem 1.1 in

Appendix A that BMVS(FΣ) = βq. Then, Lemma 3 of Croux and Haesbroeck (2000)

yields:

IF (x0,BMVS, FΣ)ij =
IF (x0,C, FΣ)ij
λj(FΣ)− λi(FΣ)

(1− δij) (1.25)

where δij is a boolean that takes value 1 when i = j and 0 otherwise. Therefore, the

diagonal elements of the influence function of BMVS are zero, i.e. IF (x0,BMVS, FΣ)ii =

0, and only i 6= j elements contribute to the IF of the columns b
(j)
MVS, j = 1, . . . , q. For

any j = 1, . . . , q, we therefore obtain

IF (x0,b
(j)
MVS, FΣ) =

q∑
i=1
i 6=j

u
(
dFΣ

(x0,βq)

σS

)
x0ix0j

λj(FΣ)− λi(FΣ)
β(i) +

p∑
i=q+1
i 6=j

u
(
dFΣ

(x0,βq)

σS

)
x0ix0j

λj(FΣ)− λi(FΣ) +Hij(βq)
β(i)

(1.26)

since BMVS(FΣ) = βq. The vector β(i) is the ith eigenvector of Σ, i = 1, . . . , p.

Note that these influence functions can be used to calculate asymptotic variances of the

estimators or to look for influential points.
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1.3 The Multivariate least trimmed squares estimator for

PCA (MVLTS) in Rp

1.3.1 The estimator

Another alternative to make PCA resistant to outliers is to replace the scale σ̂ of the clas-

sical approach by a least trimmed squares (LTS) scale. The LTS scale of the Euclidean

distances of the residuals is defined as

σ̂2
LTS(d(Bq,Aq,m)) =

1

h

h∑
i=1

d2
(i:n)(Bq,Aq,m) (1.27)

where d(1:n)(Bq,Aq,m) ≤ . . . ≤ d(n:n)(Bq,Aq,m) is the ordered sequence of Euclidean

distances and h = n − bnαc, 0 ≤ α ≤ 1. The multivariate LTS-estimator for PCA can

now be defined as the solution (B̂MVLTS, ÂMVLTS, m̂MVLTS) of the minimization problem

min
Bq ,Aq ,m

σ̂2
LTS(d(Bq,Aq,m)), (1.28)

where Bq ∈ Rp×q is an orthogonal matrix. By discarding a portion α of the data

the MVLTS estimator tries to exclude observations that are extreme and can represent

outliers. Note that the formulation of this problem by Maronna (2005) in the p − q

dimensional orthogonal subspace is again equivalent to our formulation in the original

p−dimensional space.

We now write the MVLTS problem (1.28) in terms of the corresponding linear subspaces.

Let L̂
B̂MVLTS

be the q−dimensional linear subspace spanned by the columns of B̂MVLTS.

That is, L̂
B̂MVLTS

is the minimizer of

min
dim(LBq )=q

σ̂2
LTS(d(LBq)) =

1

h

h∑
i=1

d2
(i:n)(LBq) (1.29)

over all linear subspaces LBq of dimension q, where d(1:n)(LBq) ≤ . . . ≤ d(n:n)(LBq)

is the ordered sequence of Euclidean distances to the subspace and h = n − bnαc,
0 ≤ α ≤ 1. It can be seen from the definition of the LTS-scale that the MVLTS estimator

tries to find at the same time an h−subset and the corresponding q−dimensional linear

subspace that gives the smallest orthogonal distances of the h residuals. Hence, we

now give an equivalent formulation to (1.29). Suppose that no h points of the dataset

Zn = {xi, i = 1, . . . , n} ⊂ Rp lie in the same subspace of Rp. Formally, this means
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that for all β, γ ∈ Rp it holds that

#
{
xi | βTx + γ = 0

}
< h (1.30)

unless if β and γ are both zero vectors. Let S = {H ⊂ {1, . . . , n} | #H = h} be the

collection of all subsets of size h. For any H ∈ S denote by x(H) = 1
h

∑
i∈H xi and

Σ̂(H) = 1
h

∑
i∈H(xi − x(H))(xi − x(H))T the mean and covariance matrix of the h

observations {xi; i ∈ H}. Let B̂LS(H) ∈ Rp×q be the classical PCA solution based solely

on the observations in H. Furthermore, let L̂
B̂LS

(H) be the q−dimensional classical

subspace spanned by the columns of B̂LS(H). The optimal h−subset is defined as the

solution Ĥ that minimizes

min
H ∈S

∑
i∈H

d2
i (L̂B̂LS

(H)) (1.31)

where di(L̂B̂LS
(H)) is the Euclidean distance from the ith observation (i ∈ H) to that

linear subspace.

Proposition 1. With the notation above, for datasets satisfying (1.30) we have that{
L̂B̂LS

(Ĥ) | Ĥ ∈ arg min
H ∈S

∑
i∈H

d2
i (L̂B̂LS

(H))

}
={

L̃B̃ ∈ arg min
dim(LBq )=q

σ̂2
LTS(d(LBq ))

}
. (1.32)

Proposition (1) shows that for any subset H which obtains the best classical PCA

approximation, its classical linear subspace is also a solution of the minimization problem

in (1.29). In case that the solution is unique, we can write (1.32) as

L̂
B̂MVLTS

= L̂
B̂LS

(Ĥ) where Ĥ ∈ arg min
H ∈S

∑
i∈H

d2
i (L̂B̂LS

(H)). (1.33)

The columns of B̂LS(Ĥ) are therefore the eigenvectors of the covariance matrix Σ̂(Ĥ)

corresponding to the q largest eigenvalues λ̂1(Ĥ) ≥ λ̂2(Ĥ) ≥ . . . ≥ λ̂q(Ĥ) ≥ 0. The

corresponding estimates are m̂LS(Ĥ) = x(Ĥ) and ÂLS(Ĥ) whose rows are âT
i,LS(Ĥ) =[

xi − m̂LS(Ĥ)
]T

B̂LS(Ĥ). Note that (1.32) implies that (B̂LS(Ĥ), ÂLS(Ĥ), m̂LS(Ĥ)) is

also a solution of the MVLTS minimization problem in (1.28).

1.3.2 The functional

The functional form of the MVLTS estimator can be defined as follows. Consider a p-

dimensional random variable x with a continuous distribution G. We assume again that

the distribution G has location parameter µ and dispersion parameter Σ ∈ SPSD(p),
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decomposed as Σ = βΛβT where Λ = diag(λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0

and β is an orthogonal p× p matrix with columns β(1), . . . ,β(p). To define the MVLTS

functional at the distribution G we need that

PG(βTx = 0) < 1− α (1.34)

for all β ∈ Rp not equal to zero. Denote by 0 < α < 1 the probability mass of G not

determining the MVLTS-PCA solution and define

DG(α) = {E | E ⊂ Rp measurable and bounded with PG(E) = 1− α} . (1.35)

Let (BLS,E(G),mLS,E(G)) be the classical PCA functional for any subset E ∈ DG(α).

To simplify notation we again drop G from the functionals in the remainder. Then, for

any E ∈ DG(α), (mLS,E ,BLS,E) is the solution of the minimization problem

min
m,BT

q Bq= Iq

1

1− α

∫
E
d2
G(x,m,Bq) dG(x), (1.36)

where dG(x,m,Bq) =
∥∥x−m−BqB

T
q x
∥∥ as before. An optimal subset Ê satisfies that∫

Ê
d2
G(x,m

LS,Ê
,B

LS,Ê
) dG(x) ≤

∫
E
d2
G(x,mLS,E ,BLS,E) dG(x), (1.37)

for all E ∈ DG(α). The MVLTS functionals are then defined as

BMVLTS = B
LS,Ê

and mMVLTS = m
LS,Ê

. (1.38)

From the classical PCA estimator we know that m
LS,Ê

= 1
1−α

∫
Ê

x dG(x) and that

the columns of B
LS,Ê

are the first q eigenvectors of the covariance matrix functional

computed at Ê:

Σ
Ê

(G) =
1

1− α

∫
Ê

(x−m
LS,Ê

)(x−m
LS,Ê

)T dG(x). (1.39)

The MVLTS functional can also be written in terms of linear subspaces. To simplify

the presentation, assume that the functional mMVLTS is known. Let π(x −m,LBq) be

the orthogonal projection of (x −m) onto the subspace LBq and define dG(x,LBq) =∥∥x−m− π(x−m,LBq)
∥∥. Furthermore, let LBLS,E

be the linear subspace spanned by

the columns of BLS,E , with E ∈ DG(α). Analogous to Equation (1.37), an optimal

subset Ê satisfies that∫
Ê
d2
G(x,LB

LS,Ê
) dG(x) ≤

∫
E
d2
G(x,LBLS,E

) dG(x), (1.40)
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for all E ∈ DG(α). Then, the MVLTS functional corresponding to the definition of the

estimator in (1.33) is defined as

LBMVLTS
= LB

LS,Ê
(1.41)

The following proposition states that the MVLTS solution can be taken in a region E .

Lemma 1.3. Consider a distribution G satisfying condition (1.34) and an MVLTS

solution LB
LS,Ê

, with Ê ∈ DG(α). Define the region E = {x ∈ Rp; d2
G(x,LB

LS,Ê
) ≤ D2

α}
where D2

α is chosen such that PG(E) = 1− α. Then it holds that

LBLS,E = LB
LS,Ê

(1.42)

Next, we show that the MVLTS estimator inherits the orthogonal equivariance property

from the classical principal component estimator.

Lemma 1.4. Let Υ ∈ Rp×p be any orthogonal matrix. Without loss of generality assume

that the true location µ is known and equal to 0. Consider the orthogonal transformation

Υx of the p-dimensional random vector x. Then the MVLTS functional BMVLTS is

orthogonally equivariant in the sense that

BMVLTS(Υx) = ΥBMVLTS(x) (1.43)

In the context of PCA orthogonal equivariance is sufficient since the classical PCA

procedure is only orthogonal equivariant.

For the MVLTS we also consider the case where x has a unimodal elliptically symmetric

model distribution that is centered around the origin, i.e. G = FΣ with density given

by (1.18). To guarantee uniqueness of the best q−dimensional subspace Lqwe need the

condition on the eigenvalues of Σ that λq > λq+1. Using (1.39) and Lemma 1.3 it can

now be shown that the MVLTS-PCA functional LBMVLTS
(G) is Fisher-consistent at FΣ.

Theorem 1.5. Let x ∼ FΣ, a p-dimensional elliptically distributed random variable with

location 0 and scatter Σ such that Σ = βΛβT where Λ = diag(λ1, λ2, . . . , λp), λ1 ≥
λ2 ≥ . . . ≥ λp, and β is an orthogonal matrix with columns β(1), . . . ,β(p). Denote as Lq
the linear space spanned by β(1), . . . ,β(q). Assume that λq > λq+1. Then, LBMVLTS

(FΣ)

is a Fisher-consistent functional for Lq at the model distribution FΣ, i.e.

LBMVLTS
(FΣ) = Lq (1.44)
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Croux et al. (in press) derived the influence function of the MVLTS functional BMVLTS

which turn out to be bounded for bad leverage points. However, good leverage points

still may have an unbounded influence.

1.4 The algorithm

We start with a description of the algorithm for the MVS and MVLTS estimators in

pseudo-code. Our algorithm depends on the initial choices of Bq and m as well as on

the tuning parameters N1, N2, Npc and tol and can by summarized as follows:

1. Set it← 0.

a. Compute aT
i = (xi −m)TBq, i = 1, . . . , n, and append these vectors to the

rows of Aq.

b. Compute residual distances di = ‖ri(Bq,Aq,m)‖, i = 1, . . . , n, from (1.7).

c. Compute σ̂(d):

• For the MVS estimator: σ̂(d) = σ̂M(d(Bq,Aq,m)) from (1.5).

• For the MVLTS estimator: σ̂(d) = σ̂LTS(d(Bq,Aq,m)) from (1.27).

d. Set σ̂2
0 = σ̂2(d).

e. Set it = 1.

2. Do until it = N1 +N2 or ∆ ≤ tol.

a. Compute wi and update the location m =
∑n
i=1 wixi∑n
i=1 wi

.

• For the MVS estimator: compute wi from (1.8).

• For the MVLTS estimator: take wi =

1 for d(1:n) ≤ . . . ≤ d(h:n)

0 otherwise

b. If it > N1:

(1) Set iter← 1 and ŝ2
0 = σ̂2(d) (current squared scale).

(2) Do until iter = Npc or ∆̃ ≤ tol

i. Compute ai, i = 1, . . . , n, bj and mj , j = 1, . . . , p, using the estimat-

ing equations in (1.9)-(1.11).

ii. Append the vectors bT
j , j = 1, . . . , p, to the rows of Bq and the

vectors aT
i , i = 1, . . . , n to the rows of Aq.

iii. Compute new residual distances di = ‖ri(Bq,Aq,m)‖, i = 1, . . . , n,

from (1.7).

iv. Set ŝ2 = 1
n

∑n
i=1 d

2
i .
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v. Set iter = iter + 1, ∆̃← 1− ŝ2/ŝ2
0 and ŝ2

0 ← ŝ2.

(3) End do.

c. Compute aT
i , i = 1, . . . , n, using equation (1.9) and append these vectors to

the rows of Aq.

d. Compute new residual distances di = ‖ri(Bq,Aq,m)‖, i = 1, . . . , n, from

(1.7).

e. Compute σ̂(d):

• For the MVS estimator: σ̂(d) = σ̂M(d(Bq,Aq,m)) from (1.5).

• For the MVLTS estimator: σ̂(d) = σ̂LTS(d(Bq,Aq,m)) from (1.27).

f. Set σ̂2 = σ̂2(d).

g. Set ∆← 1− σ̂2/σ̂2
0 and σ̂2

0 ← σ̂2.

h. Set it = it + 1.

3. End do.

This algorithm is inspired by the algorithm of Maronna (2005). However, there is an

important difference. Maronna (2005) used the weighted covariance matrix in (1.13)

to compute the eigenvectors, which reduces to the empirical covariance matrix of the

current h−subset in case of the MVLTS estimator. We have replaced the computation of

eigenvectors from this covariance matrix by an iterative process based on the estimating

equations (1.9)-(1.11) in step 2b. This idea is similar to the reweighted least squares

algorithm of Boente and Salibian-Barrera (2015) for the coordinatewise S-estimator.

Extensive experiments showed that iterating the estimating equations only 2 or 3 times

is enough to obtain results close to the eigenvectors of the weighted covariance matrix.

Note that computing eigenvectors of a covariance matrix can be very time-consuming

in higher dimensions or even unfeasible. On the other hand, our approach only requires

vector operations in step 2b, iterated a small number of times, and thus will be more

suitable for high-dimensional settings.

The new algorithm yields the same solution as Maronna’s algorithm if both algorithms

start with the same initial Bq and the same orthogonal equivariant location estimate

m. The reason for the latter condition is that Maronna computes the solution on the

orthogonal space. However, in the experiments we have used the spatial median as

initial location estimator in our algorithm and the (original) coordinatewise median for

Maronna’s algorithm. Similarly as in Maronna’s algorithm, we initially fixed Bq for

N1 iterations to improve the initial location estimate. Maronna states that this also

ensures orthogonal invariance of the resulting estimates. In the experiments we assessed

different choices for the tuning parameters. For the MVS estimator we used the Tukey
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biweight loss function ρ(y) = min(3y2−3y4 +y6, 1) with tuning parameters c = 1.54764,

b = 0.5 corresponding to the maximal breakdown point of 50% and c = 3, b = 0.2426

which yields a better compromise between efficiency and robustness. For the MVLTS

we considered α = 0.5 which trims half of the data with largest orthogonal distance

and α = 0.25 which trims only a quarter with largest distance. Using a similar proof

as in Maronna (2005), it can easily be shown that the M-scale σ̂M and LTS scale σ̂LTS

decrease in each iteration of our algorithm.

1.4.1 Strategy to find the global minimum

To search the global minimum in (1.4) random starting values are generated and iterated.

The best local minimum that is reached is then the approximation for the global opti-

mum. This strategy showed good results in Rousseeuw and Driessen (1999), Maronna

(2005) and Salibian-Barrera and Yohai (2006) However, a sufficiently large number of

initial points has to be used to obtain a good approximation.

The details of the general strategy to approximate the global minimum are as follows.

Take a number Ncand of initial candidates, run the above updating algorithm for each of

them with parametersN1, N2, Npc and tol, and keepNkeep of the resulting estimates with

lowest robust scale σ̂. For each of these Nkeep cases the algorithm continues running with

parameters N ′1, N ′2, N ′pc and tol′. The initial location estimate m is the spatial median

of the data matrix X and the Ncand initial Bq’s are random orthogonal matrices. To

generate these orthogonal matrices we use the method of Stewart (1980) which consists

of orthogonalizing a matrix of normal random numbers. For the tuning parameters

we used the same choices as Maronna (2005), that is Ncand = 50, Nkeep = 10, N1 = 3,

N2 = 2, N ′1 = 0, N ′2 = 10 and tol′ = 0.001. It sufficed to iterate the estimating equations

in step 2b of the algorithm Npc = N ′pc = 3 times to obtain stable results. Note that

for Maronna’s algorithm we kept the parameter values advocated in his paper and also

used the coordinatewise median for the initial location estimator as he proposed.

1.4.2 Strategy to find a good local minimum

As an alternative to searching the global minimum, we adapt the ideas of the determin-

istic MCD algorithm in Hubert et al. (2012). The rationale is that one could start with

a few well-chosen robust starting values that are in the neighborhood of a robust local

minimum of the objective function in (1.4). Hence, we attempt to explore only that part

of the space that gives good solutions. As a consequence, we do not need many starting

values and the convergence may be faster as well, leading to a considerably lower com-

putation time which allows us to handle larger problems. We have adapted five of the
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deterministic starting values proposed by Hubert et al. (2012) to the context of PCA,

such that they can be calculated in high-dimensional problems. We now describe the

procedure to obtain these five starting values

I. Standardize each variable Xj , j = 1, . . . , p, by substracting its median and dividing

by the Qn scale estimator of Rousseeuw and Croux (1993). The standardized data

is denoted by the n × p matrix Z with rows zT
i , i = 1, . . . , n, and columns Zj ,

j = 1, . . . , p.

II. In a first step reduce the effect of potential outliers by one of the following manip-

ulations:

1) Compute the hyperbolic tangent (sigmoid) of each column Zj , i.e. Uj,1 =

tanh(Zj), j = 1, . . . , p. We then form the matrix U1 with columns Uj,1,

j = 1, . . . , p.

2) Let Rj be the ranks of the column Zj . Then form the matrix U2 with columns

Rj , j = 1, . . . , p.

3) Compute normal scores from the ranks Rj : Tj = Φ−1 [(Rj − 1/3)/(n+ 1/3)],

where Φ(.) is the normal cumulative distribution function. Then, form U3

with columns Tj , j = 1, . . . , p.

4) Following the fourth initial scatter estimate of Hubert et al. (2012) that is

based on the spatial sign covariance matrix Visuri et al. (2000), we project the

data points onto the unit sphere with center m̂ and define those projections

as ui,4 = zi/ ‖zi‖, i = 1, . . . , n. We then form U4 with rows uT
i,4, i = 1, . . . , n.

Note that these are not the usual projected data for computing the spatial

sign covariance matrix since m̂ here is the coordinatewise median instead of

the spatial median to make the procedure faster.

5) Take as rows of U5 the dn/2e observations xi with smallest euclidean norm

of the standardized observations zT
i . Note that for this case U5 is a matrix

of size (dn/2e × p).

III. To further reduce the effect of potential outliers, apply a second step on Uk,

k = 1, 2, 3, 4 , which is similar to 5). We first standardize each column Uj,k

by substracting its median and dividing by the Qn scale estimator. Denote this

standardized data matrix by Z̃k. Take as rows of the final matrix Ũk the dn/2e
observations xT

i with smallest euclidean norm of the standardized observations

z̃T
i,k, for k = 1, 2, 3, 4. Note that we take Ũ5 = U5.

IV. For ease of notation let Bk = Bq,k. For each k = 1, . . . , 5, obtain initial estimates

by computing classical PCA on the data Ũk with the following iterative procedure:
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(1) Start with Bk = (e1, . . . , eq), i.e. the canonical casis, and mk = 1
n

∑n
i=1 ũi,k

(2) Compute aT
i,k = (ũi,k −mk)

TBk, i = 1, . . . , n, and append these vectors to

the rows of the matrix Ak.

(3) Compute residual distances from ũi,k to the subspace: di,k = ‖ri,k(Bk,Ak,mk)‖,
i = 1, . . . , n.

(4) Set iter← 1 and ŝ2
0,k = 1

n

∑n
i=1 d

2
i,k.

(5) Do until iter = Npc0 or ∆̃ ≤ tol0

i. With Ũk compute ai,k, i = 1, . . . , n, bj,k and mj,k, j = 1, . . . , p, from the

estimating equations in (1.9)-(1.11) with weights wi = 1, i = 1, . . . , n.

ii. Append the vectors bT
j,k, j = 1, . . . , p, to the rows of Bk and the vectors

aT
i,k, i = 1, . . . , n to the rows of Ak.

iii. Compute residual distances from ũi,k to the subspace: di,k = ‖ri,k(Bk,Ak,mk)‖,
i = 1, . . . , n.

iv. Set ŝ2
k = 1

n

∑n
i=1 d

2
i,k.

v. Set iter = iter + 1, ∆̃← 1− ŝ2
k/ŝ

2
0,k and ŝ2

0,k ← ŝ2
k.

(6) End do.

V. Use Bk and mk, k = 1, . . . , 5, as initial Bq and initial m in the algorithm above.

Note that Hubert et al. (2012) used the raw OGK estimator as a sixth initial scatter

in their deterministic algorithm to calculate the minumum covariance determinant es-

timator of multivariate location and scatter. However, it seems not possible to adapt

that proposal to obtain initial PCA estimates without having to calculate the full p-

dimensional robust covariance estimate of Gnanadesikan and Kettenring (1972). We

want to avoid this in high-dimensional data sets, so we discard this proposal from our

list of deterministic starts. Note that we used Npc0 = 5 iterations to calculate the initial

deterministic estimates and tol0 = 0.001

1.5 Number of components

In some applications the dimension of the linear subspace is known. For instance, users

may want to use the estimated PCA to visualize high-dimensional data in much lower

dimensions. Most of the time however the number of components are chosen according

to the proportion of unexplained variability. At a fixed dimension q, the best linear

subspace is the one that attains the smallest possible unexplained variance uq. At the
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true distribution G of x ∈ Rp this minimal variance is attained by the eigenvectors

β(1), . . . ,β(q) of the underlying scatter matrix Σ which yields

uq =

∑p
j=q+1 λj∑p
j=1 λj

, (1.45)

where λ1 ≥ λ2 ≥ . . . ≥ λp are the corresponding eigenvalues. Maronna (2005) proposed

to estimate the proportion of unexplained variability by:

ûq =
σ̂2
q

σ̂2
0

. (1.46)

In the case of the MVS estimator σ̂q is the S-scale estimate, i.e. the M-scale estimate

corresponding to the MVS estimates in (1.4), while σ̂0 is the minimum of σ̂M(d0(m))

over all m ∈ Rp, with d0(m) = (‖x1 −m‖ , ‖x2 −m‖ , . . . , ‖xn −m‖). For the MVLTS

estimator σ̂q is the LTS scale estimate that corresponds to the MVLTS estimator in

(1.28) while σ̂2
0 is the minimum of σ̂2

LTS(d0(m)) over all m ∈ Rp. Note that in both

cases σ̂2
0 is a squared robust scale estimate for the cases that no principal components

are fitted and thus yields an estimate of the total variance in the data. Proposition 2.2

in Maronna (2005) can be used to show that ûq consistently estimates uq.

We now propose a strategy to choose the dimension q of the subspace that is an adapta-

tion from the approach in Maronna (2005) and is very similar to the strategy in Boente

and Salibian-Barrera (2015) for the coordinatewise S-PCA estimator. Let umax be the

maximum proportion of unexplained variability that the problem allows. Denote as qmax

the maximum dimension of the subspace that we are willing to accept. We look for the

smallest q such that q ≤ qmax and ûq ≤ umax. This goal could be attained by solving

(1.4) or (1.28) for qmax, qmax − 1 , and so forth, but this may be time-consuming. We

now describe a marginal strategy to solve (1.4) or (1.28) when increasing q by 1, which

is much faster.

We first run the algorithm with q = 1. If ûq=1 ≤ umax then we are done. Otherwise,

take the solutions B̂1 ∈ Rp×1, Â1 ∈ Rn×1 and m̂
(1)
j obtained for q = 1 and proceed as

follows. Let r
(1)
ij be the corresponding elementwise residuals, j = 1, . . . , p, i = 1, . . . , n.

Set q = 2 and define the matrices B2 = (B̂1,B) ∈ Rp×2 with B = (b1, . . . , bp)
T and

A2 = (Â1,A) ∈ Rn×2 with A = (a1, . . . , an)T . The corresponding predictions are then

obtained by x̂
(2)
ij = x̂

(1)
ij + bjai with residual distance

∥∥∥r(2)
i

∥∥∥ =

√∑p
j=1

(
r

(1)
ij − bjai

)2
.

The marginal optimization problem now becomes

min
B̂T

1 B=0,A
σ̂M

(∥∥∥r(2)
1 (B,A)

∥∥∥ , . . . ,∥∥∥r(2)
n (B,A)

∥∥∥) , (1.47)
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over B,A, with B̂T
1 B = 0. For the MVS estimator a system of estimating equations

analogous as in Section 1.2 can be derived and then used in the iterative algorithm of

Section 1.4 to find a solution. The MVLTS solution can be found by using 0-1 weights in

the estimating equations of the iterative algorithm. Once the optimal solutions B̂ and

Â according to (1.47) are found, we optimize the robust scale of the residual distances

w.r.t. m to obtain an updated estimate m̂(2). This marginal approach is faster than

directly solving (1.4) or (1.28) for q = 2. With B̂2 = (B̂1, B̂) and Â2 = (Â1, Â), we

then compute ũ2 =
σ̂M(B̂2,Â2,m̂2)

σ̂2
0

. If ũ2 ≤ umax the procedure stops. Otherwise, we

increase q by 1 and repeat the procedure until ũq ≤ umax or until q = qmax. Note that

if ûqmax > umax, then the chosen qmax does not allow to explain enough of the variance

in the data and we will have to modify our goals (increase qmax or umax). Note that

the quantity ũq is typically larger than ûq so that we make a safe choice for q when

ũq ≤ umax.

1.6 Simulation study

We want to assess the performance of our iterative algorithms to calculate the MVS-

PCA and MVLTS-PCA estimators based on the estimating equations. We consider

both strategies for the starting values. Either the algorithm starts with several random

orthogonal matrices or its starts with the five well-chosen deterministic starting solutions

as described in Section 1.4. We compare our algorithms for the MVS-PCA and MVLTS-

PCA estimators with the S-M and S-L algorithms of Maronna (2005). Our algorithms

with random orthogonal matrices are therefore expected to give similar results as those

of Maronna. However, we expect that our algorithms can be computed faster in high-

dimensional settings.

Moreover, we also compare with other methods to estimate the q-dimensional subspace.

In particular, we consider the Projection pursuit (PP) method of Li and Chen (1985),

the Spherical PCA of Locantore et al. (1999) and the classical PCA. To implement the

Projection pursuit estimator in our experiments we used the approximate algorithm

of Croux and Ruiz-Gazen (1996, 2005). We consider three different scales that are

maximized, the modified MAD (used by Croux and Ruiz-Gazen), the M-scale of the

absolute deviations from the median (used in Maronna (2005)) with the Tukey’s biweight

function (c = 1.54764 and b = 0.5) and the LTS scale of the absolute deviations from

the median with α = 0.5. The two latter variants thus use the same scale estimators as

the MVS and MVLTS methods. We denote these procedures as PPMD (PP with MAD

scale), PPME (PP with M-scale) and PPLTS (PP with LTS scale), respectively.
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To investigate the robustness of these methods at finite samples we replicate the simu-

lations in Maronna (2005). Hence, we generate M = 200 samples of size n = 100 and

dimension p = 10, where n − bnεc of the data are generated by the model distribution

N(0,Σ), with Σ = diag(λ1, λ2, . . . , λp). Two designs of diagonal elements for Σ were

considered as in Maronna (2005) that represents:

a) an abrupt increase of the eigenvalues: λj = 1 + 0.1j for 1 ≤ j ≤ (p − q) and

λj = 20(1 + 0.5(j − p+ q)) for (p− q + 1) ≤ j ≤ p.

b) a smooth increase of the eigenvalues: λj = 2j−1 for 1 ≤ j ≤ p.

The remaining bnεc of the data are outliers which are generated from N(kx0, 0.25Σ),

where x0 is a vector of length p with x0j = 1 for j ≤ (p− q) and 0 otherwise. The value

of k runs between 0 and 20 with steps of 0.5. Fractions ε = 10% and ε = 20% of outliers

are considered. We also consider the scenario with only regular data, i.e. ε = 0%. In

all experiments the fitted PCA techniques try to estimate the best linear subspace of

dimension q = 2.

Performance measures

As performance criterion for an estimator B̂q we use a predictive approach analogous

to Maronna (2005). Essentially, we measure the proportion of variance in independent

regular data that remains unexplained by the estimated subspace. More formally, let x

be a N(0,Σ) vector independent of the random sample used to obtain B̂q. Then, the

variability of x around the subspace generated by B̂q is

E‖x− B̂qB̂
T
q x‖2 = tr

[
Σ
]
− tr

[
B̂T
q ΣB̂q

]
,

and the prediction proportion of unexplained variance is:

upred
q =

E‖x− B̂qB̂
T
q x‖2

tr
[
Σ
] = 1−

tr
[
B̂T
q ΣB̂q

]
tr
[
Σ
] . (1.48)

Note that for the Maronna’s S-M and S-L methods characterize the subspace by an

estimate B̂p−q ∈ Rp×(p−q) of its orthogonal complement. Therefore, in this case the

corresponding prediction proportion of unexplained variability becomes:

upred
q =

tr
[
B̂T
p−q Σ B̂p−q

]
tr
[
Σ
] . (1.49)
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We want to keep upred
q as small as possible. At a fixed dimension q the lowest possible

proportion of unexplained variability obtained by the best linear subspace is given by

(1.45). The performance of the subspace generated by the estimate B̂q is then compared

to the best subspace with a measure of relative prediction error:

epred =
upred
q

uopt
q

− 1. (1.50)

While the dimension q of the subspace is chosen according to the proportion of unex-

plained variability in many applications, its quantity given by (1.48) or (1.49) cannot be

obtained in practice since we do not know the scatter matrix Σ that generated the data.

Hence, we need to estimate the proportion of unexplained variance. For the MVS-PCA,

MVLTS-PCA, S-M and S-L procedures we can obviously estimate (1.48) or (1.49) by

(1.46). For the PP, spherical PCA and classical PCA we can estimate upred
q by

ûq = ûq(λ̂) =

∑p
j=q+1 λ̂j∑p
j=1 λ̂j

,

where λ̂j , j = 1, . . . , p, are the eigenvalues or variances as estimated by the respective

methods. Clearly, we do not want too small values or too large values of ûq since that

would lead to under-estimating or over-estimating the dimension of the subspace. Thus,

similarly as in Maronna (2005), we also measure the relative estimation error of ûq by:

eest = max

(
ûq

upred
q

,
upred
q

ûq

)
− 1.

Results

Table 1.1 shows the mean relative prediction errors epred over M = 200 samples for the

methods that showed the best performance throughout the different scenarios analyzed.

Although the PP methods do not perform well in these scenarios, we also included the

results of the PPLTS method in Table 1.1 for comparison purposes. The values of k that

have been included in Table 1.1 are those values at which some estimators attain their

maximum, i.e. their worst performance. More detailed results for all methods can be

found in Tables B.1-B.1 in the Appendix A. For ε = 20% of contamination the evolution

of the mean relative prediction error with the outlier distance k is displayed in Figures

1.1 and 1.2. From k = 10 onwards these prediction errors stabilize so we only show

results up to k = 10. To make the plots easier to read, the results for the second design

are displayed in two panels in Figure 1.2. Only techniques with good performance are
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Table 1.1: Mean relative prediction errors epred for the techniques with best perfor-
mance and for PPLTS

Design ε k PPLTS S-M MVS S-L MVLTS MVS MVLTS
(c=1.5) (c=1.5) (α=0.25) (α=0.25) det(c=1.5) det(α=0.5)

a) 0 0 0.32 0.02 0.02 0.04 0.04 0.02 0.06
10% 1 0.41 0.03 0.03 0.04 0.04 0.03 0.08

2.5 0.62 0.03 0.03 0.03 0.03 0.03 0.07
20 0.58 0.03 0.03 0.03 0.03 0.03 0.07

20% 1.5 0.78 0.03 0.03 0.08 0.07 0.03 0.29
5 1.74 0.03 0.03 0.03 0.03 0.03 0.06
20 0.65 0.03 0.03 0.03 0.03 0.03 0.06

b) 0 0 0.27 0.04 0.04 0.06 0.06 0.04 0.11
10% 1.5 0.40 0.09 0.08 0.14 0.12 0.08 0.14

2 0.46 0.10 0.09 0.11 0.09 0.07 0.12
4 0.49 0.05 0.05 0.06 0.06 0.05 0.11

20% 2 0.78 0.67 0.66 0.68 0.67 0.38 0.35
3 0.73 0.71 0.71 0.66 0.67 0.27 0.15
5 0.57 0.69 0.69 0.17 0.17 0.07 0.11
19 0.30 0.04 0.04 0.05 0.05 0.05 0.11

shown in the plots. Plots for ε = 10% are not shown because for most methods there is

much less variability in this case.
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Figure 1.1: Relative unexplained variance to the best 2 dimensional subspace (epred)
as a function of k for eigenvalue configuration a) and ε = 20%.

The classical PCA (LS) shows the best performance when there are only regular data

(ε = 0%), but as expected it breaks down when outliers are introduced and then becomes

the worst technique by far. PPLTS shows some advantage in comparison to the other

PP approaches but in general all PP approaches give poor results in these settings.
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Figure 1.2: Relative unexplained variance to the best 2 dimensional subspace (epred)
as a function of k for eigenvalue configuration b) and ε = 20%.

Spherical PCA is in general better than the PP approaches even though its performance

decreases considerably when ε = 20% (see Table B.2).

The S-L and S-M algorithms of Maronna (2005) yield very similar results to our MVS

and MVLTS counterparts when using random orthogonal matrices. This can be seen

for instance in Figures 1.1 and 1.2 for the S-L and MVLTS methods with α = 0.5 and

in Figure 1.2 for the S-M and MVS methods with c = 1.5. therefore, by referring to

S-PCA and LTS-PCA we mean the MVS and MVLTS estimators, either calculated with

Maronna’s algorithm or with our algorithm using random orthogonal matrices. LTS-

PCA with α = 0.5 shows very good results. On the other hand, S-PCA with c = 3

breaks down when ε = 20% and performs as bad as the classical PCA in these scenarios.

In general, S-PCA with c = 1.5 and LTS-PCA with α = 0.25 both give excellent results.

Table 1.2: Mean estimation errors eest for data without contamination
Design a) Design b)
ε = 0% ε = 0%

LS 0.09 0.11
PPMD 0.11 0.12
SPC 0.17 0.16
MVS (c=3) 0.07 0.10
MVS (c=1.5) 0.12 0.12
MVLTS (α = 0.5) 0.35 0.29
MVLTS (α = 0.25) 0.19 0.15
MVS-det. (c=3) 0.07 0.10
MVS-det. (c=1.5) 0.12 0.12
MVLTS-det (α = 0.5) 0.36 0.25

The MVS and MVLTS algorithms with deterministic starts aim to find a robust local

minimum. The simulation results show that in both designs the algorithms succeed well

in this. The MVS algorithm with deterministic starting values and c = 1.5 (MVS-det,
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Figure 1.3: Mean estimation error eest as a function of k for eigenvalue configuration
b) and ε = 20%.

c=1.5) clearly performs best in all scenarios explored. This can be seen for example

for design b) with ε = 20% in Figure 1.2. Results of MVS-det (c=1.5) are omitted

from Figure 1.1 since they form almost a straight line with estimates very close to 0.

However, these results are shown for all scenarios and some values of k in Table 1.1. In

general when outliers are close or at a moderate distance of the clean data (i.e. small

or moderate k values) we find that it is more beneficial to start the algorithm with

deterministic starting values than with random orthogonal matrices. Most robust PCA

techniques do not succeed in correctly identifying outliers when they are close to the

regular data. These simulation results suggest that our algorithm with deterministic

starts is not only faster, but it can also better discriminate between outliers and good

data. Even for the very hard design b) with ε = 20% (Figure 1.2) this approach avoids

starting with outliers in more cases than when using random orthogonal matrices.

Figure 1.3 shows the results of mean estimation errors of ûq as a function of the outlier

distance k for design b) with ε = 20% of contamination. The results for the other

scenarios analyzed are pretty similar. We again show results up to k = 10 since the

errors stabilize after that k level. S-M and S-L yield similar results to MVS and MVLTS,

respectively, when using random orthogonal matrices, so they are not shown in Figure

1.3. Likewise, all projection pursuit methods showed similar behavior, so we only show

the results for PPMD. As can be seen in table 1.2, Classical PCA is one of the best

techniques to estimate upred
q for data without outliers. However, it shows very high mean

estimation errors when outliers are present, as expected. With outliers at moderate or

large distance to the regular data, the estimation error of classical PCA reaches values

up to 20 and so they are not shown in Figure 1.3. With ε = 20%, also S-PCA with

c = 3 (results not shown) performs poorly for estimating upred
q and yields results as bad
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as classical PCA for large k values. Spherical PCA (SPC) estimates upred
q comparatively

well only for sufficiently large k values. It can clearly be seen from Figure 1.3 that MVS

with deterministic starts and c=1.5 as well as projection pursuit (PPMD) both are able

to estimate upred
q satisfactorily, even when outliers are very close to the regular data.

The MVLTS algorithm with deterministic starting values and α = 0.5 also performs

quite well. Therefore, our algorithm with deterministic starting values, next to the

aforementioned advantages, is also able to accurately estimate the amount of unexplained

variance of the model. This means that at least in these settings our algorithm with

deterministic starts can effectively choose the dimension of the subspace based on the

estimator ûq in (1.46).
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Figure 1.4: Mean relative prediction errors epred for the simulations with p = 750 and
ε = 20% of contamination

1.7 Simulations with high dimensional data

We now want to see if the performance results of the previous section still hold when

we go to a high-dimensional setting. We therefore consider a data generating model

similar to design a) of the previous section. More specifically, we generated clean data

from the same model distribution. We keep n = 100 fixed but increase the dimension

to p = 200, p = 500 or p = 750. As in the previous experiments we consider a q = 2

dimensional subspace estimation. To generate eigenvalues we slightly modified design a)

to ensure that the two main directions of Σ explain about 80% of the total variability.

We therefore used:

a) For p = 200:

λj = 1+.001j for 1 ≤ j ≤ (p−q) and λj = 20(1+0.5(j−p+q)) for (p−q+1) ≤ j ≤ p.
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b) For p = 500:

λj = 1 + .00015j for 1 ≤ j ≤ (p− q) and for (p− q + 1) ≤ j ≤ p the eigenvalues

λj are the same as a).

c) For p = 750:

λj = 1 + .00007j for 1 ≤ j ≤ (p− q) and for (p− q + 1) ≤ j ≤ p the eigenvalues

λj are the same as a).

For these simulations we took the same model to generate contaminated data as in the

previous section and fixed ε = 20%. To assess the performance of the PCA methods

we used the average of relative prediction errors computed from (1.50) over M = 200

replications. All three high-dimensional cases analyzed showed similar results so we only

present the results for p = 750 in Figure 1.4. Relative prediction errors stabilize from

k = 10 onwards so we only present results up to k = 10. Results of the projection-

pursuit approaches, the LTS-PCA methods with α = 0.25 and the MVS-PCA methods

with c = 3 have a similar behaviour as in the low dimensional case so they are not

displayed in Figure 1.4. We immediately see that in general, prediction errors are larger

as compared to the low dimensional case when the contaminated data is close to the

clean data (small or moderate k values). Classical PCA as expected breaks down with

outliers. The results of spherical principal components (SPC) are similar to the low

dimensional scenario (see Figure 1.2) but in this case they look relatively competitive

given the complexity of the problem. Maronna methods still do not show an advantage

over our procedures based on random orthogonal starts. The performance of S-M even

deteriorates for moderate k values while MVS carries its excellent performance from

the low dimensional to the high-dimensional setting. We also notice that our algorithm

with deterministic starting values has an excellent performance in this setting as well.

In particular, the performance of MVLTS with deterministic starts do not decrease

as compared to the low-dimensional case when the contaminated data is close to the

clean data while S-L and MVS with random orthogonal starts do show a decrease in

performance. MVS with deterministic starts performs equally well as the MVS algorithm

with random orthogonal starts.

1.8 Computational time

We now compare the computational time of our algorithms with those of the algorithms

of Maronna. For this purpose we used the low-dimensional and the high-dimensional

experiments described in previous sections in which we kept the size of the data fixed

to n = 100 while we let the dimension grow. The estimators were implemented in the
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R statistical software and run on a single Intel i7 CPU (3.4GHz) machine running Win-

dows 7. The average of computational times in seconds over M = 200 replications are

summarized on Table 1.3 as dimension p increases. Note that p = 10 refers to the origi-

nal design a) with ε = 20% of contamination. Not surprisingly, we see that the spherical

PCA implementation is the fastest by far while PPLTS is the slowest in higher dimen-

sions. Projection-pursuit calculates one direction at a time which is a disadvantage for

computational time issues. Methods with the Maronna algorithm (S-M and S-L) can

be computed fast in problems with small dimensions since it only needs a few iterations

to give good results. However, as soon as we go to a larger dimension the algorithm

becomes the second and the third slowest in the comparisons of Table 1.3. This result

was expected since the algorithm of Maronna computes the last p− q eigenvectors of a

covariance matrix which is very time-consuming in higher dimensions. We carried out

additional experiments in which we let p increase even more and after p = 1500 it was

already not possible to compute these directions. On the other hand, our algorithm

with random orthogonal matrix is the slowest for small dimensions (p = 10), but it

becomes faster in relation to the algorithm of Maronna after p = 600. Our algorithm of

section 1.4 replaces the computation of eigenvectors from a covariance matrix with sim-

ple vector operations from the estimating equations in (1.9)-(1.11) which consequently

makes the whole algorithm faster. In these experiments however our algorithm with

five deterministic starting values yields the best tradeoff between performance and com-

putational speed. It does not only show the best performance in the low-dimensional

experiments of section 1.6 but also in the high-dimensional ones of section 1.7 while

keeping its fairly low computational time. These methods are also able to accurately

estimate the amount of unexplained variance of their models and therefore they can

effectively choose the dimension of the subspace based on the estimator ûq in (1.46).

This shows that five robust starts are enough to stay in the neighborhood of a robust

local solution for these experiments and we do not need to spend more time looking in

other parts of the space. Overall, deterministic starting values with MVS shows better

performance than with MVLTS in these experiments and it only requires a few more

seconds of computational time.

Table 1.3: Computational time in seconds as the dimension p increases
p=10 p=200 p=500 p=750

PPLTS 0.58 22.64 89.27 196.59
SPC 0.02 0.05 0.09 0.12
S-M 0.44 7.25 49.22 140.40
S-L 0.32 6.16 45.72 130.17
MVS 2.87 22.99 66.96 129.82
MVLTS 2.80 10.81 37.83 82.90
MVS-det. 0.75 5.95 12.22 20.70
MVLTS-det. 0.76 2.28 4.89 7.07
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1.9 Real data example

In this section we illustrate the performance of our MVS and MVLTS algorithms on

the Octane dataset introduced in Hubert et al. (2005). In particular, it consists of

near-infrared (NIR) absorbance spectra of n = 39 gasoline samples with certain octane

numbers over p = 226 wavelengths. Hence, this is a high-dimensional data with p >> n.

It is well known that six of the samples contain added alcohol, so that they are potential

outliers. These are observations 25, 26, and 36-39. With q = 2 components classical

PCA explains 98% of the total variability while the considered robust PCA techniques

explain more than 96% of the total variability. Thus, as in Hubert et al. (2005), we

retain a 2 dimensional subspace.

Figure 1.5 shows the diagnostic plots corresponding to six different PCA estimates to

reduce the data to dimension q = 2. The six considered methods are classical PCA (LS),

projection pursuit with LTS scale (PPLTS), MVLTS with orthogonal random starts and

MVLTS with deterministic starts (both with α = 0.5) and MVS with orthogonal random

starts and MVS with deterministic starts (both with c = 1.5). A diagnostic plot for PCA

was introduced by Hubert et al. (2005) and is a very popular tool to identify outliers

in principal component analysis with high-dimensional data. Essentially, it computes

orthogonal distances from the observations to the estimated subspace as well as robust

distances in the subspace in order to identify three types of outliers. An observation

with small orthogonal distance to the subspace but far from the regular data within the

subspace is called a good leverage point. Moreover, an observation is called an orthogonal

outlier if it lies far from the subspace, but its projection on the subspace is close to the

typical projections. The worse types of outliers are the so called bad leverage points

which are observations that lie far from the subspace and have projections that are also

remote from the regular points in the subspace. Hubert et al. (2005) proposed cutoff

values for both the robust orthogonal distances and the robust score distances that allow

to identify unusually large distances. Computing the robust score distances requires a

robust estimate for the variances according to the basis directions within the subspace.

Since our algorithm yields the basis directions of the subspace and corresponding scores

of the data, but does not yield estimates of the variability, we estimate these variances

robustly by computing univariate LTS or M-scales of the scores corresponding to these

directions.

We focus on the six alcohol samples which are potential outliers. The classical diag-

nostic plot in Figure 1.5a shows that classical PCA only identifies observation 26 as

mildly outlying. This observation only falls just above the cutoff lines which suggests

that the six alcohol samples do not deviate from the other observations. On the other

hand, the diagnostic plots for the five robust PCA methods show a completely different
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Figure 1.5: Diagnostic plots of the Octane dataset based on six two-dimensional PCA
estimates.
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picture. All the robust PCA methods identify the six samples with added alcohol as

outliers. In particular, projection pursuit with LTS scale identifies observations 25, 36,

37, 39 as orthogonal outliers while observations 26 and 38 are flagged as bad leverage

points. MVLTS methods and MVS methods flag the six samples with added alcohol as

bad leverage points that lie far from the two-dimensional subspace which corresponds

to the conclusions of Hubert et al. (2005). Note that while all robust methods yield ap-

proximately the same orthogonal distances for the 6 alcohol samples, the score distances

are not equally large for all methods. In particular, the computationally fast algorithms

with deterministic starts also exhibit large score distances such that the samples with

added alcohol are most clearly identified as bad leverage points in this case.

1.10 Discussion and conclusions

In this Chapter we discussed two methods that aim to estimate the best lower-dimensional

subspace in a robust way, namely the Multivariate S-estimator (MVS) and the Multi-

variate LTS estimator (MVLTS). These methods were introduced by Maronna (2005).

We refer to them as multivariate methods since they look at entire observations by min-

imizing a robust scale of the residual norms. MVS minimizes a M-scale and MVLTS

minimizes a LTS scale of the residual norms. We introduced the corresponding function-

als and showed that they are Fisher-consistent at elliptical model distributions. We also

studied the robustness properties of the MVS-PCA estimator by deriving the influence

functions which turn out to be bounded for outliers w.r.t. the subspace and smoothly

redescends to zero for the non-diagonal elements of the functional. Good leverage points

may have a large influence on the estimator. In the last part of this chapter we pro-

posed an iterative algorithm for both methods which uses the corresponding estimating

equations derived from first order conditions to update the directions. This algorithm

is suitable for high-dimensional problems since we only compute vector operations from

the estimating equations. For the starting values of the algorithm we considered two

choices. The first uses random orthogonal matrices as in Maronna (2005) and aims

to find the global minimum. The second uses a few well-chosen robust starting values

and then finds the best local minimum that can be obtained from these initial robust

solutions. Our algorithm with deterministic starts can be computed faster since we do

not need many starting values and we do not need many iterations before the algorithm

converges. This algorithm can therefore allow us to handle larger problems. Experi-

ments with low and high-dimensional data confirmed a lower computational time of our

algorithm with deterministic starts when compared to the algorithm of Maronna (2005)

or with our algorithm starting with random orthogonal matrices. These simulations also

show that our algorithm with random orthogonal matrices yields very close results to
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the algorithm of Maronna and it shows better results than other robust procedures like

projection-pursuit and spherical principal components. However, starting the algorithm

with deterministic starting values gives better results, even in the complicated scenario

where outliers are close to the regular data. In particular, the MVS algorithm with

deterministic starts and c = 1.5 clearly performs best. Additional experiments suggest

that our algorithm with deterministic starting values, next to the aforementioned ad-

vantages, is also able to accurately estimate the amount of unexplained variability of the

model and to carry its excellent performance to high-dimensional settings. We closed

with an example that used a high-dimensional real dataset. The example confirmed

the good performance of our algorithm, in particular when it starts with deterministic

starting values.



Chapter 2

Coordinatewise subspace

estimation for high-dimensional

data

The content of this chapter is work in progress for future publication. This was a

joint work with Prof. Matias Salibian-Barrera from the University of British Columbia

(Canada).

2.1 Introduction

For many years robust statistics has devoted its attention to the case where a majority

of the observations is regular while the remaining minority may be atypical. Therefore,

most of the existing robust methods in any context aim to identify the minority of outly-

ing cases and downweight them. The Tukey-Huber contamination model is the standard

contamination model that describes this contamination pattern. More specifically, the

Tukey-Huber contamination model assumes that a large fraction (1 − ε) of the data is

generated from a postulated statistical model with well-behaved random noise while the

remaining fraction may be affected by abnormal noise that is left unspecified. However,

this paradigm may not be satisfactory for modern high-dimensional datasets. In partic-

ular, when p > n even a small percentage of outlying cells can affect a large percentage

of observations when the cells are contaminated at random. Thus, in high-dimensional

data the fraction of observations that are completely free of contamination can become

very small and downweighting entire observations can be wasteful if only a small part of

the cells of an observation are actually contaminated. Random outlying cells can thus

be devastating for any affine equivariant high-breakdown estimator since they cannot

34
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handle more than 50% of contaminated observations. Consider for example a data gener-

ating model with a (0−1) contamination indicator variable Oj for every feature j, where

O1, O2, . . . , Op are independent. Consider the case where every variable has the same

probability ε for a contaminated measurement, i.e. Pr(O1 = 1) = . . . = Pr(Op = 1) = ε.

Then, the probability of having a completely clean observation under this model is only

(1−ε)p. Thus, even for small values of ε this probability quickly decreases as p increases,

and for large values of p this probability lies well below the critical value 0.5. For exam-

ple, for ε = 0.01, the probability lies below 50% for p ≥ 69. Alqallaf et al. (2009) called

this contamination model the fully independent contamination model (FICM). However,

most of the contributions in robust statistics have targeted the problem of casewise out-

liers, i.e. observations are either regular or outlying. Alqallaf et al. (2009) investigate

the performance and theoretical properties of such robust estimators of multivariate lo-

cation for the FICM model. They showed that these methods lose their robustness in

presence of cellwise outliers. Therefore, in the last five years, some methods targeting

problems with cellwise outliers have been proposed. Van Aelst et al. (2011); Van Aelst

et al. (2012) and Van Aelst (2016) present adaptations of the Stahel-Donoho estima-

tor to better measure outlyingness of observations for high-dimensional settings with

cellwise outliers. Agostinelli et al. (2015) presented a complex procedure to deal with

cellwise and casewise outliers in the multivariate location and scatter model. In the

regression context, Oellerer et al. (2013) proposed the shooting S-estimator while Leung

et al. (2016) proposed a three-step regression procedure to handle cellwise and casewise

outliers.

Boente and Salibian-Barrera (2015) introduced an S-estimator for functional principal

component analysis. They also define the estimator for multivariate data and discuss

some theoretical properties in this setting. While the estimators presented in Chapter

1 look at entire observations by minimizing a robust scale of the residual norms, the

estimator proposed by Boente and Salibian-Barrera (2015) minimizes the sum of the

M-scales of the coordinates of the residuals. Therefore, the estimator is also suitable to

handle problems with cellwise outliers although this was not the focus in Boente and

Salibian-Barrera (2015). We refer to this estimator as the Coordinatewise S-estimator.

In this chapter we introduce the least trimmed squares equivalent of the Coordinatewise

S-estimator, which we call the Coordinatewise least trimmed squares estimator for PCA

(CooLTS-PCA). It adapts the Coordinatewise S-estimator by replacing the minimization

of the sum of M-scales by the minimization of the sum of least trimmed squares scales to

estimate the best q−dimensional linear space. It is expected that both procedures show

good results in high-dimensional datasets with cellwise outliers while the multivariate

S and LTS for PCA quickly loose their robustness in this setting. In section 2.2 we

recall the definition of the Coordinatewise S-estimator and introduce the functional
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corresponding to the estimator. Next, in section 2.3 we define the Coordinatewise least

trimmed squares estimator and derive the corresponding estimating equations. We also

define the functional corresponding to the estimator. Following arguments in Boente

and Salibian-Barrera (2015) it can also be shown that the CooLTS-PCA functional is

Fisher-consistent and the estimator is consistent at elliptical distributions. In section

2.4 algorithms for both estimators are presented which are obtained by adapting the

algorithms for the multivariate PCA methods in section 1.4. In section 2.5 we describe

the fast strategy of Boente and Salibian-Barrera (2015) to choose the dimension of the

subspace based on the proportion of unexplained variability and adapt it to our CooLTS

estimator. In Section 2.6 the coordinatewise PCA procedures are assessed against the

multivariate PCA procedures of Chapter 1 in a simulation study. Finally, in Section 2.7

we adapt the approach of Rousseeuw and Van den Bossche (2016) to flag cellwise outliers

for the coordinatewise PCA methods and compare their results against a purely outlying

detection method on a real data example. We also compare the outlying detection

of coordinatewise PCA methods against that of multivariate-PCA methods using the

Octane dataset of Section 1.9.

2.2 The coordinatewise S-estimator in Rp

2.2.1 The estimator

As before, consider a sample Zn = {xi, i = 1, . . . , n} ⊂ Rp and let Bq ∈ Rp×q be an

orthogonal matrix with columns Bq = (b(1), . . . ,b(q)), i.e. BT
q Bq = Iq, and rows bT

j ,

j = 1, . . . , p. Let Aq ∈ Rn×q be the matrix with rows aT
i , i = 1, . . . , n, and m ∈ Rp.

The corresponding approximations of the observations are given by x̂i(Bq,Aq,m) ≡
x̂i = m + Bqai, or elementwise x̂ij = mj + aT

i bj . The associated cellwise residuals are

given by rij = xij − x̂ij . Consider the vector rj = (r1j , r2j , . . . , rnj) of the residuals

corresponding to the jth variable.

Boente and Salibian-Barrera (2015) noted that the classical PCA problem in (1.1) can

be rewritten as

min
Bq ,Aq ,m

n∑
i=1

‖ri(Bq,Aq,m)‖2 = min
Bq ,Aq ,m

n∑
i=1

p∑
j=1

r2
ij(Bq,Aq,m)
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Since
∑n

i=1 r
2
ij is proportional to s2

j , the standard estimator of the variance of the residual

vector rj , the classical principal components problem can also be formulated as

min
Bq ,Aq ,m

p∑
j=1

s2
j (Bq,Aq,m) (2.1)

A robust alternative for classical PCA can thus be obtained by replacing the standard

nonrobust variance of the residual vectors by a robust estimator of scale. The coor-

dinatewise S-estimator of Boente and Salibian-Barrera (2015) uses an M-estimator of

scale. Similarly as in (1.3), the M-scale estimate σ̂M(rj) of the residual vector rj is

defined as the solution in s of the equation

1

n

n∑
i=1

ρc

(rij
s

)
= b (2.2)

The coordinatewise S-estimator for PCA (CooS-PCA) can now be defined as the solution

(B̂CooS, ÂCooS, m̂CooS) of the minimization problem

min
Bq ,Aq ,m

p∑
j=1

σ̂2
M (rj(Bq,Aq,m)) (2.3)

Boente and Salibian-Barrera (2015) obtained explicit first-order conditions for the CooS-

PCA estimator by differentiating (2.3) with respect to ai, bj and µj . This yields:

∂

∂ai

 p∑
j=1

σ̂2
M,j

 = −2

p∑
j=1

σ̂M,jh
−1
j ρ′

(
rij
σ̂M,j

)
bj , i = 1, . . . , n ,

∂

∂bj

 p∑
j=1

σ̂2
M,j

 = −2σ̂M,jh
−1
j

n∑
i=1

ρ′
(
rij
σ̂M,j

)
aj , j = 1, . . . , p ,

∂

∂µj

 p∑
j=1

σ̂2
M,j

 = −2σ̂M,jh
−1
j

n∑
i=1

ρ′
(
rij
σ̂M,j

)
, j = 1, . . . , p .

where hj =
∑n

i=1 ρ
′
(

rij
σ̂M,j

)
rij
σ̂M,j

. Setting these to zero they obtained a system of equa-

tions which they rewrote as re-weighted least-squares problems. Setting the weights wij

as

wij = σ̂M,jh
−1
j r−1

ij ρ
′
(
rij
σ̂M,j

)
(2.4)
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they wrote

p∑
j=1

wij (xij − µj) bj =

 p∑
j=1

wij bj bT
j

ai , 1 ≤ i ≤ n , (2.5)

n∑
i=1

wij (xij − µj) ai =

(
n∑
i=1

wij ai a
T
i

)
bj , 1 ≤ j ≤ p , (2.6)

n∑
i=1

wij (xij − aT
i bj) =

n∑
i=1

wij µj , 1 ≤ j ≤ p . (2.7)

This formulation naturally suggests an iterative re-weighted least square procedure to

converge to local minima of the objective function which will be used in the algorithm

of the estimator in section 2.4.

2.3 The coordinatewise LTS estimator in Rp

2.3.1 The estimator

The coordinatewise least trimmed squares estimator uses univariate LTS scale estimators

instead of sample variances in (2.1) to prevent the influence of outliers on the estimation

of the PCA subspace. Similar as in 1.27, the LTS scale estimate σ̂2
LTS(rj) of the residual

vector rj is defined as

σ̂2
LTS(rj) =

1

h

h∑
i=1

(r2
ij)i:n =

1

h

n∑
i=1

wij(xij −mj − aT
i bj)

2 (2.8)

where the weights wij are:

wij =


1 if r2

ij ≤ (r2
ij)h:n

0 if r2
ij > (r2

ij)h:n

(2.9)

The corresponding coordinatewise LTS-estimator for PCA (CooLTS-PCA) can now be

defined as the solution (B̂CooLTS, ÂCooLTS, m̂CooLTS) of the minimization problem

= min
Bq ,Aq ,m

p∑
j=1

σ̂2
LTS (rj(Bq,Aq,m)) , (2.10)

over all orthogonal matrices Bq, Aq, and m.
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Explicit first-order conditions for the CooLTS-PCA estimator can be obtained by dif-

ferentiating (2.10) with respect to ai, bj and µj . This yields

∂

∂ai

 p∑
j=1

σ̂2
LTS,j

 = −2

h

p∑
j=1

wij rij bj , i = 1, . . . , n ,

∂

∂bj

 p∑
j=1

σ̂2
LTS,j

 = −2

h

n∑
i=1

wij rij ai , j = 1, . . . , p ,

∂

∂µj

 p∑
j=1

σ̂2
LTS,j

 = −2

h

n∑
i=1

wij rij , j = 1, . . . , p .

Setting these to zero we obtain the following system of equations:

p∑
j=1

wij (xij − µj − aT
i bj) bj = 0 , 1 ≤ i ≤ n ,

n∑
i=1

wij (xij − µj − aT
i bj) ai = 0 , 1 ≤ j ≤ p ,

n∑
i=1

wij (xij − µj − aT
i bj) = 0 , 1 ≤ j ≤ p .

Similarly as in Boente and Salibian-Barrera (2015), these estimating equations can be

re-expressed as re-weighted least squares problems. More specifically, we obtain the

equations:

p∑
j=1

wij (xij − µj) bj =

 p∑
j=1

wij bj bT
j

ai , 1 ≤ i ≤ n , (2.11)

n∑
i=1

wij (xij − µj) ai =

(
n∑
i=1

wij ai a
T
i

)
bj , 1 ≤ j ≤ p , (2.12)

n∑
i=1

wij (xij − aT
i bj) =

n∑
i=1

wij µj , 1 ≤ j ≤ p . (2.13)

Note that the weights wij are the (0-1) weights of 2.9. Equations above therefore sug-

gests an iterative re-weighted least squares procedure which is used in the algorithm of

the CooLTS estimator detailed in section 2.4. Note that the re-weighted least squares
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problems of the CooLTS-PCA are analogous to those of the CooS-PCA estimator in

equations (2.5), (2.6) and (2.7). They only differ in the weights wij .

2.3.2 The functional

As before, consider a p-dimensional random variable x with a continuous distribution

G with location µ and scatter Σ ∈ SPSD. The scatter matrix Σ can be decomposed

as Σ = βΛβT where Λ = diag(λ1, λ2, . . . , λp), λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, and β is an

orthogonal matrix with columns β(1), . . . ,β(p). Without loss of generality we may again

assume that µ = 0.

We can now define the functionals corresponding to the CooLTS-PCA estimator. Note

that we still have that aCooLTS(G) = BCooLTS(G)T (x−mCooLTS(G)).Therefore, we focus

on the functionals BCooLTS(G) and mCooLTS(G) Given a vector m ∈ Rp and a matrix

Bq ∈ Rp×q with BT
q Bq = Iq, let Kj(m,Bq) denote the distribution of rj(x,m,Bq) where

r(x,m,Bq) = x −m − BqB
T
q x. Then, the functionals (mCooLTS(G),BCooLTS(G)) are

the solution of the minimization problem

min
m,BT

q Bq=Iq
Ψ(m,Bq), (2.14)

where Ψ(m,Bq) =
∑p

j=1 σ
2
LTS(Kj(m,Bq)) with σ2

LTS the LTS scale functional which is

defined as follows. Consider a univariate continuous distribution K and 0 < α < 1 the

probability mass of K not determining the LTS scale solution and define

JK(α) = {S | S ⊂ R, measurable and bounded with PK(S) = 1− α} .

Then, the LTS scale functional at distribution K is defined as

σ2
LTS(K) = min

S∈JK(α)
σ2(KS), (2.15)

where σ2(KS) = 1
1−α

∫
S u

2 dK(u) for any subset S ∈ JK(α). Hence, σ2(KS) is the

functional corresponding to the classical residual variance estimator for the subset S.

The CooLTS functional can also be written in terms of linear subspaces. To simplify the

presentation, assume that the functional mCooLTS(G) is known. Let π(x −m,LBq) be

the orthogonal projection of (x −m) onto the subspace LBq . In addition, let Kj(LBq)

denote the distribution of rj(x,LBq) where r(x,LBq) = x−m− π(x−m,LBq). Then,

the CooLTS functional LBCooLTS
(G) can be defined as the minimizer of:

min
dim(LBq )=q

Ψ(LBq), (2.16)
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where Ψ(LBq) =
∑p

j=1 σ
2
LTS(Kj(LBq)) and σ2

LTS is the LTS scale functional defined in

(2.15).

Since the factor cα =
(

1
1−α

∫ q
−q u

2dF
)−1

with qα = F−1(1 − α) makes the LTS scale

estimator in (2.15) Fisher-consistent at elliptical distributions F , trivial adjustements

to Proposition 2.1 in Boente and Salibian-Barrera (2015) proofs Fisher consistency

of the functional LBCooLTS
(G) for elliptically distributed random vectors. Therefore,

LBCooLTS
(G) is a Fisher-consistent functional for the parameter Lq when G is assumed

to be an elliptical distribution as (1.18), i.e. LBCooLTS
(G) = Lq.

Let L̂
B̂CooLTS

be the CooLTS subspace estimator. That is, L̂
B̂CooLTS

is the minimizer

of
∑p

j=1 σ̂
2
LTS

(
rj(LBq)

)
over all linear subspaces LBq . Proposition 2.2 in Boente and

Salibian-Barrera (2015) can be used to show consistency for L̂
B̂CooLTS

for elliptical ran-

dom vectors because the M-scales in this proposition can directly be replaced by LTS

scales. Hence, the CooLTS estimator L̂
B̂CooLTS

(Zn) converges to Lq as the size of Zn

goes to infinity, i.e. as n→∞.

2.4 The algorithm

In order to solve the minimization problems in (2.3) and in (2.10) we adapt the algo-

rithm in section 1.4 with the corresponding scales and the estimating equations (2.11),

(2.12), (2.13). With initial choices for Bq and m as well as with choices for the tuning

parameters N1, N2, Npc and tol, the algorithm for the coordinatewise methods can by

summarized as follows:

1. Set it← 0.

a. Compute aT
i = (xi −m)TBq, i = 1, . . . , n, and append these vectors to the

rows of Aq.

b. Compute residuals rij = xij −mj − aT
i bj , i = 1, . . . , n, j = 1, . . . , p.

c. Take the vector rj(Bq,Aq,m) = (r1j , r2j , . . . , rnj) and compute Ψ(Bq,Aq,m):

• For the CooS estimator: Ψ(Bq,Aq,m) =
∑p

j=1 σ̂
2
M (rj(Bq,Aq,m)) where

σ̂2
M (rj(Bq,Aq,m)) is computed from (2.2).

• For the CooLTS estimator: Ψ(Bq,Aq,m) =
∑p

j=1 σ̂
2
LTS (rj(Bq,Aq,m))

where σ̂2
LTS (rj(Bq,Aq,m)) is computed from (2.8).

d. Set σ̂2
0 = Ψ(Bq,Aq,m).

e. Set it = 1.

2. Do until it = N1 +N2 or ∆ ≤ tol.
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a. Compute wi and update the location m =
∑n
i=1 wixi∑n
i=1 wi

.

• For the CooS estimator: compute wi from (2.4).

• For the CooLTS estimator: compute wi from (2.9).

b. If it > N1:

(1) Set iter← 1 and ŝ2
0 = Ψ(Bq,Aq,m) (current objective function value).

(2) Do until iter = Npc or ∆̃ ≤ tol

i. Compute ai, i = 1, . . . , n, bj and mj , j = 1, . . . , p, using the estimat-

ing equations in (2.11)-(2.13) or (2.5)-(2.7).

ii. Append the vectors bT
j , j = 1, . . . , p, to the rows of Bq and the

vectors aT
i , i = 1, . . . , n to the rows of Aq.

iii. Compute residual distances di = ‖ri(Bq,Aq,m)‖ = ‖x−m−Bqai‖,
i = 1, . . . , n.

iv. Set ŝ2 = 1
n

∑n
i=1 d

2
i .

v. Set iter = iter + 1, ∆̃← 1− ŝ2/ŝ2
0 and ŝ2

0 ← ŝ2.

(3) End do.

c. Compute aT
i , i = 1, . . . , n, using equation (2.5) or (2.11) and append these

vectors to the rows of Aq.

d. Compute new residuals rij = xij −mj − aT
i bj , i = 1, . . . , n, j = 1, . . . , p.

e. Take the new vector rj(Bq,Aq,m) = (r1j , r2j , . . . , rnj) and compute the new

Ψ(Bq,Aq,m):

• For the CooS estimator: Ψ(Bq,Aq,m) =
∑p

j=1 σ̂
2
M (rj(Bq,Aq,m)) where

σ̂2
M (rj(Bq,Aq,m)) is computed from (2.2).

• For the CooLTS estimator: Ψ(Bq,Aq,m) =
∑p

j=1 σ̂
2
LTS (rj(Bq,Aq,m))

where σ̂2
LTS (rj(Bq,Aq,m)) is computed from (2.8).

f. Set σ̂2 = Ψ(Bq,Aq,m).

g. Set ∆← 1− σ̂2/σ̂2
0 and σ̂2

0 ← σ̂2.

h. Set it = it + 1.

3. End do.

Note that this algorithm follows the recommendation of Maronna (2005) of fixing Bq

for N1 iterations to improve the location estimate. This algorithm is also suitable for

high-dimensional settings since we compute eigenvectors from the estimating equations

in (2.11)-(2.13) which only involve vector operations.

Similar to the MVS and MVLTS estimators, to search the global minimum in (2.3) or in

(2.10) we generate Ncand random orthogonal matrices yielding Ncand initial Bq’s. The
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initial location estimate m is the spatial median of the data matrix X. Next, we run the

above updating algorithm for each initial candidate with parameters N1, N2, Npc and

tol, and keep Nkeep of the resulting estimates with lowest robust scale σ̂. For each of

these Nkeep cases the algorithm continues running with parameters N ′1, N ′2, N ′pc and tol′.

Among the final candidates we then select the one with smallest robust scale σ̂ which is

the approximation for the global minimum and the resulting estimates are the solution

to (2.3) or to (2.10) of this strategy. Here we also use the method of Stewart (1980) to

generate random orthogonal matrices. For the experiments of section 2.6 we kept the

same parameter values as Maronna (2005) which gave good results. These values are

detailed in section 1.4.1.

We are also interested in investigating the strategy with deterministic starting values for

the coordinatewise methods. Recall that this strategy already showed excellent results

and one of the lowest computational times in the experiments and in the application of

Chapter 1 for the MVS and for the MVLTS estimators. As described in section 1.4.2, this

strategy aims to find a robust local minimum by starting from five well-chosen starting

values for Bq and m in the algorithm above. The steps to generate these starting values

are also described in section 1.4.2. We used this strategy for the coordinatewise PCA

methods in chapter 3 where we extend the estimators to accomodate functional data.

In the experiments and applications of chapter 3 we used the same tuning parameter

values as in the experiments of Chapter 1. The whole procedure will certainly be faster

with deterministic starting values than with random orthogonal starts and therefore the

former strategy is more suitable to handle larger problems like in chapter 3.

2.5 Number of components

To choose the number of components for the Coordinatewise LTS procedure we can use

the strategy formulated by Boente and Salibian-Barrera (2015) which we now describe.

Let us consider a fixed dimension q for the subspace. Then, at the true distribution G

of x ∈ Rp the smallest possible unexplained variance uq is attained by the eigenvectors

β(1), . . . ,β(q) of the underlying scatter matrix Σ which yields

uq =

∑p
j=q+1 λj∑p
j=1 λj

, (2.17)

where λ1 ≥ λ2 ≥ . . . ≥ λp are the corresponding eigenvalues.

Let Ψ(B̃CooLTS, ÃCooLTS, m̃CooLTS) =
∑p

j=1 σ̂
2
LTS

(
rj(B̃CooLTS, ÃCooLTS, m̃CooLTS)

)
be

the sum of the LTS scale estimates of the coordinates of the residuals corresponding to

the CooLTS estimates (B̃CooLTS, ÃCooLTS, m̃CooLTS) obtained in (2.10). Furthermore let
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Ψ0(m̃) be the minimum of
∑p

j=1 σ̂
2
LTS (rj(m)) over all m ∈ Rp where the vector

rj(m) = (r1j(m), r2j(m), . . . , rnj(m)) is the jth coordinate of the residuals

ri(m) = xi − m = (ri1(m), . . . , rip(m)). Analogously to (1.46) we can estimate the

proportion of unexplained variability for the CooLTS estimator by:

ûq =
Ψ(B̃CooLTS, ÃCooLTS, m̃CooLTS)

Ψ0(m̃)
. (2.18)

Note that Ψ0(m̃) is the sum of LTS scale estimates of the coordinates of the residuals

for the case where no principal components are fitted and thus yields an estimate of the

total variance in the data. Proposition 2.2 in Boente and Salibian-Barrera (2015) can

be used to show that ûq consistently estimates uq.

As before, let umax be the maximum proportion of unexplained variability that the

problem allows and denote as qmax the maximum dimension of the subspace that we are

willing to accept. We therefore look for the smallest q such that q ≤ qmax and ûq ≤ umax.

The strategy that we now describe is faster than solving (2.10) for qmax, qmax − 1 , and

so forth.

The procedure starts with q = 1. If ûq=1 ≤ umax then we are done. Otherwise, take the

CooLTS solutions B̂1 ∈ Rp×1, Â1 ∈ Rn×1 and m̂
(1)
j obtained for q = 1 and proceed as

follows. Let r
(1)
ij be the corresponding elementwise residuals, j = 1, . . . , p, i = 1, . . . , n.

Set q = 2 and define the matrices B2 = (B̂1,B) ∈ Rp×2 with B = (b1, . . . , bp)
T and

A2 = (Â1,A) ∈ Rn×2 with A = (a1, . . . , an)T . The corresponding predictions are then

obtained by x̂
(2)
ij = x̂

(1)
ij + bjai and note that the residuals satisfy r

(2)
ij = r

(1)
ij − bjai. The

marginal optimization problem now becomes

min
B̂T

1 B=0,A

p∑
j=1

σ̂2
LTS

(
r

(2)
j (B,A)

)
(2.19)

over B,A, with B̂T
1 B = 0 and r

(2)
j (B,A) = (r

(1)
1j − bja1, . . . , r

(1)
nj − bjan).

A system of estimating equations analogous as in Section 2.3 can be derived and then

used in the iterative algorithm of Section 2.4 to find a solution. Once the optimal

solutions B̂ and Â according to (2.19) are found, we optimize the sum of LTS scales

of the coordinates of the residuals w.r.t. m to obtain an updated estimate m̂2. With

B̂2 = (B̂1, B̂), Â2 = (Â1, Â) and m̂2 we then compute ũ2 = Ψ(B̂2,Â2,m̂2)
Ψ0(m̃) . If ũ2 ≤ umax

the procedure stops. Otherwise, we increase q by 1 and repeat the procedure until

ũq ≤ umax or until q = qmax. Note that it should hold that ûqmax ≤ umax otherwise the

problem cannot be solved and we will have to modify our goals (increase qmax or umax).

As we remarked before the quantity ũq is typically larger than ûq so that we make a safe

choice for q when ũq ≤ umax.
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2.6 Simulation study

We want to assess the performance of the coordinatewise PCA procedures against the

multivariate PCA procedures when data contain cellwise outliers. For the comparison

we consider the MVS-PCA, the MVLTS-PCA, the CooS-PCA and our CooLTS-PCA

estimator. To calculate these estimators we use the iterative algorithms of sections 1.4

and 2.4 and use the same parameter values as in the experiments in section 1.6. We only

consider the strategy that generates random orthogonal matrices for Bq since it looks to

approximate the global minimum. For the MVS-PCA and for the CooS-PCA estimator

we used the Tukey biweight loss function with tuning parameters c = 1.54764, b = 0.5.

For the MVLTS-PCA and for the CooLTS-PCA estimator we considered α = 0.5.

To assess the effect of cellwise outliers on the estimators we replicate one of the sim-

ulations in Rousseeuw and Van den Bossche (2016) that generates contamination at

random. First, we generate multivariate data of size n = 100 and dimension p = 20

from the multivariate gaussian distribution with mean zero and A09 correlation matrix

which is given by ρjh = (−0.9)|h−j|. The A09 correlation matrix yields low and high

correlations. Next, these clean data are contaminated. Outlying cells are generated by

replacing a random subset of the n×p cells by a value γ which was varied to see its effect.

In our experiments we consider fractions of contamination of 5%, 10%, 15% and 20%.

From 100 experiments these fractions of outlying cells produce corresponding fractions

of contaminated observations of 64%, 88%, 96% and 99%, on average. This shows how

harmful only a small percentage of outlying cells in the number of contaminated obser-

vations can be. The value of γ runs between 0 and 1000 with steps of 50. Therefore,

we also consider the case of contamination with extreme values. In all experiments we

tried to estimate the best linear subspace of dimension q = 2. To assess the robust

performance of the methods we used the relative prediction error defined in (1.50). We

replicate the experiments M = 200 times and report the mean relative prediction error

epred over those replications.

Figure 2.1 shows the results of these experiments for the four cases of outlying cells

considered.

2.6.1 Results

As shown in Table 2.1, for the case of only clean data classical PCA (LS) shows the

smallest prediction error while the multivariate-PCA methods have clearly lower errors

than their coordinatewise counterparts.
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(a) 5% of outlying cells
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(b) 10% of outlying cells
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(c) 15% of outlying cells
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(d) 20% of outlying cells
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Figure 2.1: Mean relative prediction errors epred over M = 200 replications as a
function of the contamination values γ. For γ = 0, the epred value is indicated with the
name of the method. Panels (a) to (d) shows the results with 5%, 10%, 15% and 20%

of outlying cells.
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Table 2.1: Mean relative prediction errors epred for data without contamination

ε = 0%

LS 0.02

MVS 0.03

MVLTS 0.08

CooS 0.09

CooLTS 0.42

A similar pattern is found when cells are randomly replaced by a value γ = 0. However,

the performance of the coordinatewise-PCA methods get much worse as the fraction of

outliers increase to 15% or 20%, especially the performance of CooLTS (see Panels 2.1c

and 2.1d). Even though γ = 0 corresponds to contaminating with the mean value, the

PCA solution by coordinatewise methods seem to get more biased than that of the mul-

tivariate methods when the fraction of contamination becomes larger. Coordinatewise-

PCA methods may pick up many of these 0 valued cells directly to estimate its solution.

The impact on multivariate-PCA methods may be more mild since they pick up entire

observations by searching those with the smallest euclidean distances.

Figure 2.1 reveals however that multivariate-PCA methods break down with clear out-

liers (γ = 50, 100, . . . , 1000) in any of the fractions considered. The coordinatewise

methods show robust results in those cases. In fact, Multivariate-PCA methods per-

form as bad as the classical PCA. The poor performance of multivariate-PCA methods

was expected since even a fraction of 5% of cellwise outliers leads to a percentage of

contaminated observations that exceeds the critical value of 50%, on average.

We note that the performance of CooLTS is decreased with higher values of contam-

ination for fractions of 10%-20% of outliers (see Panels 2.1b - 2.1d). CooS also gets

its performance decreased with higher values of contamination for a fraction of 5% of

outliers. For fractions of 10%-20% of outliers CooS shows a prediction error which

increases at the beginning but then levels off at some point. However, the effect of

extreme values of contamination is still small for both methods and they still look ro-

bust compared to the multivariate-PCA methods. We also note that the prediction

errors of coordinatewise-PCA methods show a somewhat wiggly pattern. This may be

due to the random contamination introduced which does not ensure that every column

has the same fraction of outliers in every experiment. On the other hand, for clear

outliers multivariate-PCA methods show a stable pattern for its large prediction error

because in all these experiments we always introduce contamination in more than 50%

of observations.

Overall, the Coordinatewise LTS and the Coordinatewise S estimators alternatively

beat each other in the different scenarios analyzed. These experiments also show that in
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general coordinatewise-PCA methods yield more robust results than multivariate-PCA

methods when the data contain large fractions of contaminated observations.

2.7 Real data examples

We now illustrate the coordinatewise-PCA methods on two real data examples. In the

first example we compare cellwise outlier detection by coordinatewise-PCA methods to

the results of DetectDeviatingCells (DDC), which is purely an outlier detection method.

DetectDeviatingCells was introduced in Rousseeuw and Van den Bossche (2016) and

detects cellwise outliers by taking correlations between the variables into account. For

this purpose, we use the Top Gear data analyzed in Rousseeuw and Van den Bossche

(2016). In the second example we compare outlier detection by coordinatewise-PCA

methods to that by multivariate-PCA methods. For this purpose we use the Octane

dataset which was already analyzed in Section 1.9.

In order to decide whether a cell is outlying or not according to our coordinatewise-PCA

methods, we use a similar approach as in Rousseeuw and Van den Bossche (2016) based

on quantiles of the χ2 distribution. In particular, the following steps are taken:

1. Check that every variable in the dataset is approximately Gaussian. If there are

very non-Gaussian variables they should be transformed to approximate Gaussian-

ity, e.g. by taking a logarithmic transformation.

2. Fit the coordinatewise-PCA method and obtain estimates (B̂q, Âq, m̂). The cor-

responding approximations are x̂i = m̂ + B̂qâi, i = 1, . . . , n.

3. Compute cellwise residuals rij(B̂q, Âq, m̂) ≡ rij = xij − x̂ij . Note that rj =

(r1j , r2j , . . . , rnj) is the vector of residuals for the jth variable.

4. Calculate standardized cell residuals:

zij =
rij(B̂q, Âq, m̂)

σ̂(rj(B̂q, Âq, m̂))
(2.20)

where σ̂(rj(B̂q, Âq, m̂)) is the coordinatewise robust scale estimate.

That is, σ̂(rj(B̂q, Âq, m̂)) = σ̂M(rj(B̂q, Âq, m̂)) for the CooS estimator

and σ̂(rj(B̂q, Âq, m̂)) = σ̂LTS(rj(B̂q, Âq, m̂)) for the CooLTS estimator. These

scale estimates are part of the output of the algorithm (see Section 2.4) so that

(2.20) can be computed without additional computational effort.
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5. Take as cutoff value c =
√
χ2

1,p, where χ2
1,p is the pth quantile of the chi-squared

distribution with one degree of freedom. As in Rousseeuw and Van den Bossche

(2016) we take a probability tolerance p = 99% for the examples in this section.

6. Finally, in each column j, flag as an outlier all cells with |rij | > c.

Note that in step 2 PCA methods give lower dimensional approximations while De-

tectDeviatingCells gives estimated values for the cells. We adopt a similar strategy

as in Rousseeuw and Van den Bossche (2016) for the coordinatewise-PCA methods

to flag an entire observation if it contains too many cells with anomalous behaviour.

With this approach, coordinatewise-PCA methods can also flag outlying cases simi-

lar to multivariate-PCA methods. The proposed approach in Rousseeuw and Van den

Bossche (2016) is based on noting that under the null hypothesis of clean multivariate

Gaussian data the distribution of the zij is close to standard Gaussian, so that the cdf

of z2
ij is approximately the cdf F of χ2

1. Rousseeuw and Van den Bossche (2016) first

computes the criterion:

Ti =
1

p

p∑
j=1

F (z2
ij) −

1

2
.

It is easy to see that Ti lies between -0.5 and 0.5. Next, we robustly standardize the

Ti’s. We just use the median and the MAD for the standardization step instead of using

the robust estimates proposed in Rousseeuw and Van den Bossche (2016). Finally, we

flag the observations i for which the standardized Ti exceed the cutoff c defined before.

2.7.1 Top gear data

This dataset was included in Alfons (2016) and contains information on cars featured

on the website of the popular British television show “Top Gear”. More specifically,

there are 32 variables about 297 cars. The dataset also contains a few missing values.

To make it possible the fitting of DetectDeviatingCells, CooS and CooLTS, we removed

all non-numerical variables, which left us with only 11 variables. Furthermore, to make

DetectDeviatingCells work well, we also set aside rows with more than 20% of missing

values. To make the comparison fair, we carried out the same step before fitting CooS

and CooLTS. This left us with 280 observations on 11 variables containing a few miss-

ing values. Five variables were rather skewed so we logarithmically transformed them.

Namely: “price”, “displacement”, “BHP”, “torque” and “topspeed”. Since our PCA

methods cannot handle missing values yet, we imputed the remaining missing values

once with the MICE procedure (i.e. with the parameter m = 1, see Table 4.3) before

running CooS and CooLTS. To fit DetectDeviatingCells we kept those missing values
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since DDC can handle missing data well. Except for the imputation of missing values,

CooS and CooLTS were fitted on the same final dataset as DetectDeviatingCells. This

allows a fair comparison of the methods.

The left panel of Figure 2.2 shows the cell map obtained by applying DetectDeviat-

ingCells. Here we plot the same rows as in Rousseeuw and Van den Bossche (2016)

since they represent interesting cases. Note that because we used the same tolerance

value of 99%, the plot on the left panel is an exact reproduction of the one displayed

in Rousseeuw and Van den Bossche (2016) for DDC. The panel in the middle shows

the results of CooLTS while the right panel shows the results of CooS. Here we show

the results of the algorithm starting with random orthogonal matrices that retain q = 2

components (with 2 components both CooLTS and CooS explain 99% of the total vari-

ability). However, similar results were found for a 2-dimensional approximation with

the algorithm that starts with deterministic values (with explanation of 99% of the total

variability by both methods). This result is included in Figure D.1 of Appendix D. Cells

in yellow represent regular cells while those colored red or blue represent outlying cells.

If the observed cell is much higher than the estimated/approximated cell value, then it

is colored red. If it is much lower it is colored blue. Note that missing data are shown

in white color and labeled NA (from ‘not available’). Moreover, if an entire observation

is outlying we color it black. However, as can be seen from Figure 2.2, for the selected

rows none of the methods detected an outlying observation.
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Figure 2.2: Cell maps for selected rows of the Top gear data when detecting cellwise outliers with DetectDeviatingCells (left-hand side), with
CooLTS (center) and with CooS (right-hand side).
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We see that CooLTS and CooS yield similar results to DDC. Both CooLTS and CooS

are able to flag the unusual high gas mileage (MPG) of the BMW i3. This is in fact an

electric vehicle with only a small additional gas engine. For both coordinatewise-PCA

methods the Corvette’s displacement is not the only feature that stands out, but rather

several features are unusual. The Corvette’s displacement is actually not unusual by

itself, but it is high in relation to other features of the car. Our CooLTS is able to

pick the abnormal weight of 210 kg for the Peugeot 107 while both coordinatewise-PCA

methods flag the acceleration time of zero seconds for the Ssangyong Rodius vehicle as

outlying. Actually, an acceleration time of zero seconds from 0 to 62 mph is physically

impossible, so this is a clear outlying cell.

Coordinatewise-PCA methods are different in nature compared to DetectDeviatingCells.

The primary goal of PCA methods is to estimate the best lower-dimensional subspace

while DDC is a purely oulier detection method. However, with this example we show

that robust PCA by coordinatewise methods mostly detects the same cellwise outliers

detected by DetectDeviatingCells.

2.7.2 Octane data

We now revisit the Octane data to fit coordinatewise-PCA methods. Recall that this

dataset consists of near-infrared (NIR) absorbance spectra of 39 gasoline samples with

some octane numbers over 226 wavelenghts. In Section 1.9 we estimated the best 2-

dimensional subspace by multivariate-PCA methods. For the sake of comparison we

also consider a 2-dimensional approximation based on the coordinatewise-PCA meth-

ods. With 2 components CooLTS and CooS explain about 98% of the total variability.

Previous results of MVS and MVLTS clearly flagged the six samples with added alcohol

as outliers, namely observations 25, 26 and 36-39. Figure 2.3 shows these results for

the multivariate-PCA methods (top panel) as well as the cellwise outliers detected by

CooLTS and CooS with random orthogonal starts (middle and bottom panel respec-

tively). Both CooLTS and CooS flag the observations with added alcohol as outliers

(black color in the horizontal lines). To keep cellwise outliers visible, we have superim-

posed the red and blue colors on the plot. We now see which data cells are actually

responsible for flagging observations 25, 26 and 36-39 as outliers. Moreover, one can

see that a few other samples contain cellwise outliers. By looking at the wavelengths of

these outlying cells we can actually know which chemical elements are responsible for

the deviating measurements. CooLTS and CooS with deterministic starting values yield

similar results but do not flag the alcohol samples as outlying observations. These results

together with the result of DetectDeviatingCells are shown in Figure D.2 of Appendix

D.
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This example shows us that it can easily happen for an ‘outlying observation’ that many

of its data cells are regular and only a few of its cells are actually outlying. Discard-

ing an entire observation can therefore lead to a considerable loss of good information,

especially in high-dimensional settings where we dispose of only a few observations.

Coordinatewise-PCA methods are a good alternative to detect which are the cells re-

sponsible for the ‘outlying’ behavior of an observation.
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Figure 2.3: Cell maps for the Octane dataset with n = 39 gasoline samples and p = 226 wavelengths: when detecting casewise outliers with a
multivariate-PCA method (top panel), when using CooLTS (middle panel) and when using CooS (bottom panel).
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2.8 Discussion and conclusions

In this Chapter we introduced the Coordinatewise least trimmed squares (CooLTS) esti-

mator for principal components. Our proposal is the least trimmed squares equivalent of

the Coordinatewise S-estimator (CooS) of Boente and Salibian-Barrera (2015). In par-

ticular, CooLTS replaces the minimization of the sum of M-scales by the minimization

of the sum of least trimmed squares scales to estimate the best q−dimensional linear

space. Therefore, our estimator is suitable to handle problems with cellwise outliers

in contrast to the multivariate methods of Chapter 1 which only targets casewise out-

liers. We then introduced the functional of the estimator which is Fisher-consistent at

elliptical distributions. The latter can be proved using similar arguments as in Boente

and Salibian-Barrera (2015). We obtained estimating equations derived from first or-

der conditions and used them in our iterative algorithm proposed in chapter 1 which

was adapted to fit coordinatewise PCA methods, and in particular our CooLTS esti-

mator. Since the coordinatewise algorithm uses estimating equations it can also handle

high-dimensional problems.

Results of a experiment confirm that coordinatewise-PCA methods are more suitable

than multivariate-PCA methods in datasets with large fractions of contaminated obser-

vations. We also assessed outlier detection by coordinatewise-PCA methods on two real

data examples. To decide whether a cell is outlying or not we used a similar approach

as in Rousseeuw and Van den Bossche (2016). In the first example we showed that

coordinatewise-PCA methods are able to detect most of the cellwise outliers detected

by a purely outlier detection method. In the second example we looked at a realistic

scenario where some of the cells of ‘outlying observations’ are actually regular cells. We

showed that while multivariate-PCA methods completely discard those ‘outlying obser-

vations’ coordinatewise-PCA methods is a good alternative to identify those regular cells

and flag only the outlying cells responsible for the ‘outlying’ behavior of those observa-

tions. Therefore, coordinatewise-PCA methods can also be used as an outlier detection

tool, especially in high-dimensional settings where we dispose of only a few observations.



Chapter 3

Functional data setting

The content of this chapter is work in progress for future publication. This was a

joint work with Prof. Matias Salibian-Barrera from the University of British Columbia

(Canada).

3.1 Introduction

Principal component analysis was originally developed for multivariate data and later

successfully adapted to accommodate functional data. This is known in the literature

as functional principal component analysis (FPCA). Analogously to the multivariate

case, FPCA also has the property of providing optimal approximations in the L2 sense.

Therefore, one of the main applications of FPCA is to obtain finite dimensional ap-

proximations of functional curves. Similarly as in the multivariate setting, FPCA may

also be used to gain insight in the functional data by identifying the most important

sources of variation of functional data. However, due to the squared loss function in

its optimization problem classical FPCA approach is also very sensitive to abnormal

data. However, there are not yet many proposals in the literature for robust functional

principal component analysis. Locantore et al. (1999) seem to be one of the first to

study this problem with spherical PCA. Gervini (2008) introduced a fully functional

approach to robust spherical principal components. Later, Bali et al. (2011) proposed

a robust projection-pursuit FPCA approach with raw estimation and various strategies

to smooth principal components. They also showed consistency of the estimators for

the eigenfunctions and eigenvalues of the underlying process. More recently, Sawant

et al. (2012) adapted the BACONPCA estimator to the functional data setting and

Boente and Salibian-Barrera (2015) introduced an S-estimator for functional principal

components.

56
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In this section we extend the Multivariate S-estimator, the Multivariate LTS estimator

and the Coordinatewise LTS robust principal component estimators as presented in

Chapters 1 and 2 to the functional data setting. These extensions use smoothed robust

principal components by the Sieves method introduced in Bali et al. (2011). The Sieves

smoothing method uses B−splines as a smoothing tool. Hence, we first project the

functional data on a finite dimensional space by using appropriate basis functions, then

we estimate the principal components in the finite dimensional space and finally we

transform the solution back to the original functional space. The advantages of using

smoothed FPCA have been shown in e.g. Rice and Silverman (1991), Ramsay and

Silverman (2005) and Bali et al. (2011).

As discussed in the previous chapter, even with a small fraction of outlying cells high-

dimensional datasets can contain only a small number of observations that are completely

free of outliers. Since functional data are essentially infinite dimensional, this problem

can become even worse in this setting. Therefore, we are particularly interested in study-

ing the extension of the coordinatewise method based on LTS scales to the functional

setting.

First, we present the extension of the MVLTS and MVS methods to the functional

setting and introduce the corresponding functionals in the Hilbert space in sections

3.2.1 and 3.3.1. We then extend the coordinatewise LTS estimator to functional data in

section 3.4 and define the corresponding functional. Empirical results of these methods

in functional data with complicated patterns of contamination are presented in the

simulation study of section 3.5. We also compare the proposed methods with other

existing robust methods for functional data such as the Coordinatewise S-estimator of

Boente and Salibian-Barrera (2015) and the Sieve-projection pursuit of Bali et al. (2011).

Simulation results show that all robust methods perform equally well in general for small

fractions of contaminated functional observations. When a large fraction of the curves

is contaminated at some positions along its trajectory, then the multivariate methods

break down. On the other hand, the coordinatewise methods still behave robustly if

the curves are not all contaminated at the same positions. Finally, we illustrate that

MVS, MVLTS, CooS and CooLTS are able to identify observations corresponding to

anomalous events in a real data example in section 3.6.

3.2 The Multivariate least trimmed squares estimator for

PCA (MVLTS) in the functional setting

We can extend the estimator defined in Section 1.3 for random vectors to accommodate

functional data. The simplest setting corresponds to observations that are realizations
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of a stochastic process X ∈ L2(I) with I an interval of the real line which can be

assumed to be between 0 and 1, i.e. I = [0, 1]. A more general setting corresponds to

observations that are realizations of a random element on a separable Hilbert space H
with inner product 〈·, ·〉H and norm ‖ · ‖H. Classical principal components for functional

data is defined via the Karhunen-Loève decomposition of the covariance function of

the stochastic process X. It has the property of providing the best lower-dimensional

approximation in the L2 sense.

In general, one rarely observes entire curves but instead observes only a finite set of

discrete values for each of the curves. Moreover, in many applications the curves are

observed at different design points tij , 1 ≤ j ≤ mi, 1 ≤ i ≤ n. This means that

the functional data for observation i usually correspond to values xi1, . . . , ximi with

xij = Xi(tij), 1 ≤ j ≤ mi. Similarly as in Boente and Salibian-Barrera (2015), we

assume that the number of points where each trajectory is observed increases with the

sample size n, and that in the limit these points cover the whole interval [0, 1]. Using

the Sieves method of Bali et al. (2011) , each observed point in H is identified with the

vector formed by its coordinates on an appropriate finite set of functional basis elements

which increases with the sample size. Then, the procedure in Section 1.4 can be applied

to these finite-dimensional vectors to obtain the estimate of the q-dimensional subspace,

which can then be mapped back into H.

More specifically, let δ1, . . . , δp be a set of orthogonal basis elements in H spanning the

linear space Hp. Let xij = 〈Xi, δj〉H be the coefficient of the ith curve on the jth ele-

ment of the basis. After calculating this inner product in H for all elements of the basis,

1 ≤ j ≤ p, we can form the p-dimensional vector xi = (xi1, . . . , xip)
T. We can apply the

procedure described in Section 1.4 to the multivariate set Zn = {xi, i = 1, . . . , n} ⊂ Rp

to obtain the q-dimensional linear space estimate L
B̂MVLTS

(Zn) spanned by the orthog-

onal vectors (b̂(1), . . . , b̂(q)) and the location estimate m̂MVLTS(Zn) = (m̂1, . . . , m̂p),

with scores âil = b̂(l) T (xi − m̂MVLTS(Zn)) and corresponding approximations x̂i =

m̂MVLTS(Zn) +
∑q

l=1 âil b̂
(l) Then, we can transform these MVLTS estimates back to

the original Hilbert space H. Hence, the MVLTS location estimate in H becomes

µ̂MVLTS =
∑p

j=1 m̂j δj and the associated MVLTS estimates of the basis functions of

the q-dimensional linear space are given by φ̂
(l)
MVLTS =

∑p
j=1 b̂lj δj/‖

∑p
j=1 b̂lj δj‖H, for

1 ≤ l ≤ q. Finally, the approximations in H are X̂i = µ̂MVLTS + âil φ̂
(l)
MVLTS.

3.2.1 The functional in H

Before defining the functional corresponding to our estimator in H we introduce some

notation. Denote the tensor product in H by ⊗. For any two elements u, v ∈ H the
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operator u⊗ v : H → H is defined as (u⊗ v)w = 〈v, w〉u for w ∈ H. Let X be a random

element in a separable Hilbert space H and let Op : H → Rp be any linear and bounded

operator. Denote x ∈ Rp the random vector defined by x = OpX with Op : H → Rp

defined as

Op =

p∑
j=1

ej ⊗ δj , (3.1)

where ej , 1 ≤ j ≤ p, are the elements of the canonical basis of Rp. This means that OpX

consists of the p coefficients of X on the basis δ1, . . . , δp. In general, let b(1), . . . ,b(q)

denote the columns of the matrix B and let φ(l)(B) ∈ H be given by

φ(l)(B) =

p∑
j=1

bljδj = (

p∑
j=1

δj ⊗ ej) b(l), 1 ≤ l ≤ q. (3.2)

We denote asHB the linear space spanned by the orthonormal elements φ(1)(B), . . . , φ(q)(B).

Let O∗p : Rp → H denote the adjoint operator of the linear and bounded operator Op. By

Definition 3.1 in Boente and Salibian-Barrera (2015) it follows that X has an elliptical

distribution with parameters µH ∈ H and Γ : H → H, where Γ is a self-adjoint, positive

semidefinite and compact operator, that is X ∼ P(µH,Γ), if and only if the vector OpX

has a p-variate elliptical distribution with location parameter Op µH and scatter matrix

Op ΓO∗p, that is OpX ∼ F(OpµH, OpΓO∗p).

In what follows we assume without loss of generality that X follows a distribution with

location µH = 0. Furthermore, to derive the Fisher consistency of this Sieves−approach

we also assume that OpX ∼ F(OpΓO∗p). The functional corresponding to our estimator

at a distribution P(Γ) of the functional random variable X is obtained by first projecting

X onto a finite set of basis functions δ1, . . . , δp. Then, the problem turns into finding

the MVLTS functional at the distribution F(OpΓO∗p). As in Section 1.3.2 we call G the

distribution F(OpΓO∗p) and define the MVLTS functional at G as

LBMVLTS
(G) = LB

LS,Ê
(G) ∈ min

E∈DG(α)
Ψp(LBLS,E

(G)) (3.3)

where Ψp(LBLS,E
(G)) =

∫
E d2

G(x,BLS,E) dG(x) for subset E ∈ DG(α) with DG(α)

defined in (1.35). The subscript p in (3.3) emphasizes that we are working at the level of

the p-dimensional distribution G. Then, the MVLTS-PCA functional at P(Γ) is obtained

by transforming the solution in (3.3) back onto H.

Consider the spectral decomposition of the scale operator Γ =
∑∞

j=1 λj φ
(j)⊗φ(j), where

λj denotes the jth largest eigenvalue with associated eigenfunction φ(j), j ≥ 1. Assume

that λq > λq+1 and that
∑

j≥1 λj < ∞. The best approximating q-dimensional linear
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space corresponding to distribution P(Γ) is then spanned by φ(1), . . . , φ(q). Proposition

3.1 in Boente and Salibian-Barrera (2015) can be used to show that the functional

LBMVLTS
(G) in (3.3) when transformed back to the original Hilbert space H is equal to

the linear space spanned by φ(1), . . . , φ(q) when the dimension p of the projection grows

to infinity.

More specifically, let Hp be the linear space spanned by {δ1, . . . , δp} and Πp : H → Hp
be the projection operator over Hp, that is, Πp =

∑p
j=1 δj ⊗ δj . In addition, define

O : H → Rp by O =
∑p

j=1 ej ⊗ δj with adjoint operator O∗ : Rp → H. It can be

shown that if u ∈ Rp is an eigenvector of Σ related to an eigenvalue γ, then v = O∗ u

is an eigenfunction of the compact operator Ωp = ΠpΓΠ∗p associated to γ. Similarly, if

v is an eigenfunction of Ωp with eigenvalue γ, then Ov is an eigenvector of Σ associated

with the same eigenvalue γ. Thus, the p largest eigenvalues of Ωp are those of Σ, where

Ωp has at most p non-null eigenvalues. Denote λj(Ωp) the jth largest eigenvalue of the

operator Ωp. Then, by Theorem 1.5 which shows Fisher consistency of the functional

LBMVLTS
(G) at FΣ, it follows that

min
E∈DG(α)

LBLS,E
(G) = LB

LS,Ê
(G) = tr(Ωp)−

q∑
j=1

λj(Ωp), (3.4)

since tr(Σ) = tr(Ωp). Then, B
LS,Ê

can be transformed back to the original variables by

using (3.2), this yields the linear space HB
LS,Ê

spanned by φ(1)(B
LS,Ê

), . . . , φ(q)(B
LS,Ê

).

By (3.4) we have that φ(j)(B
LS,Ê

) = φ(j)(Ωp). The following result can be derived from

Proposition 3.1 in Boente and Salibian-Barrera (2015):

lim
p→∞

Ψp(LB
LS,Ê

(G)) = tr(Γ)−
q∑
j=1

λj , (3.5)

and therefore the linear space spanned by φ(1)(Ωp), . . . , φ
(q)(Ωp) converges to that spanned

by φ(1), . . . , φ(q). In other words, the MVLTS linear space functional is Fisher consis-

tent at distribution P(Γ), i.e. for elliptically distributed random elements in H. The

first part of Proposition 3.1 in Boente and Salibian-Barrera (2015) shows that Fisher

consistency can be proved directly after transformation with (3.2) when assuming that

the orthonormal basis δj is the basis φ(j) for eigenfunctions of Γ.
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3.3 The Multivariate S estimator for PCA (MVS) in the

functional setting

The MVS estimator in the functional setting is obtained analogously to the MVLTS

estimator. We now use similar notation as in section 3.2. We first project the data on

a sufficiently rich space of dimension p with orthonormal basis δ1, . . . , δp and obtain the

p-dimensional dataset Zn = {xi, i = 1, . . . , n} ⊂ Rp with coordinates xij = 〈Xi, δj〉H.

We then apply the procedure in section 1.4 and obtain the estimates B̂MVS(Zn) =

(b̂(1), . . . , b̂(q)) and m̂MVS(Zn) = (m̂1, . . . , m̂p) with scores âil = b̂(l) T (xi−m̂MVS(Zn)).

Finally, we map back the estimates to the original Hilbert spaceH by µ̂MVS =
∑p

j=1 m̂j δj

and for the orthogonal basis we have φ̂
(l)
MVS =

∑p
j=1 b̂lj δj/‖

∑p
j=1 b̂lj δj‖H, for 1 ≤ l ≤ q.

This yields the MVS approximations in H: X̂i = µ̂MVS + âil φ̂
(l)
MVS.

3.3.1 The functional in H

In this section we use the same definitions and notation of section 3.3.1. We define

the functional of the MVS estimator at the elliptical distribution P(Γ) of the functional

random variable X. We also assume that the multivariate vector OpX has a p−variate

elliptical distribution F(OpΓO∗p). Since the procedure first make projections on a finite

set of basis functions we first consider the functional at the distribution F(OpΓO∗p). As in

section 1.14 we call G the distribution F(OpΓO∗p). The MVS functional at G is therefore

defined as

LBMVS
(G) ∈ min

BT
q Bq=Iq

σM(dG(x,Bq)), (3.6)

where dG(x,Bq) =
∥∥x−BqB

T
q x
∥∥ and the M-scale functional σM satisfies

∫
ρ

(
dG(x,Bq)

σM(dG(x,Bq))

)
dG(x) = b

Then, the MVS-PCA functional at P(Γ) is obtained by transforming the solution in

(3.6) back onto H. Using Proposition 3.1 in Boente and Salibian-Barrera (2015) and

the Fisher consistency result in Theorem 1.1 it can be shown that the functional when

transformed back to the original Hilbert space H is equal to the linear space spanned

by φ(1), . . . , φ(q) when the dimension p of the projection grows to infinity.
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3.4 Componentwise least trimmed squares estimator (CooLTS)

in the functional setting

To define the CooLTS-PCA estimator for functional data, we consider as in Section 3.2

the general situation where curves are only partially observed at different design points

tij , 1 ≤ j ≤ mi, 1 ≤ i ≤ n, i.e. xij = Xi(tij). We again assume that the observed

measurements cover the whole support of the curves when the sample size n increases to

infinity. We consider the Sieves−approach for the for functional principal components,

but we replace the MLTS-PCA that was used in Section 3.2 by the CooLTS-PCA pro-

cedure. Similar notations and definitions as for the MVLTS-PCA functional estimates

in Section 3.2 apply therefore for functional CooLTS-PCA with obvious modifications.

3.4.1 The functional in H

We define the CooLTS-PCA functional of a functional random element X in a separable

Hilbert space H with distribution X ∼ P(Γ). We again assume without loss of generality

that X has location µH = 0. Furthermore, to derive the Fisher consistency of this

Sieves−approach we also assume that OpX ∼ F(OpΓO∗p). The functional corresponding

to our estimator is again obtained by first projecting X on a finite set of basis functions

δ1, . . . , δp. Then, the problem turns into finding the CooLTS-PCA functional at the

distribution F(OpΓO∗p). In Section 2.3 the definition of the CooLTS-PCA functional at

G = F(OpΓO∗p) is given by (2.14). It follows that the CooLTS-PCA functional at P(Γ) is

obtained by transforming the solution in (2.14) back onto H.

Similarly as for the MVLTS case, Proposition 3.1 in Boente and Salibian-Barrera (2015)

can be adapted to show that the functional LBCoLTS
(G) corresponding to (2.14) when

transformed back to the original Hilbert space H is equal to the linear space spanned

by φ(1), . . . , φ(q) when the dimension p of the projection grows to infinity. This result

can then be used again to show that the CooLTS-PCA linear space functional is Fisher

consistent for random elements X in H with an elliptical distribution P(Γ).

3.5 Simulation

We consider the same designs as in Boente and Salibian-Barrera (2015) to investigate

the finite-sample properties of the coordinatewise and multivariate estimators in the

functional data setting. We are particularly interested in the performance of our Coor-

dinatewise LTS estimator in functional data in presence of casewise or cellwise outliers.

As in Boente and Salibian-Barrera (2015) the performance of the methods is assessed
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by measuring how well the estimators approximate regular curves on the one hand and

correctly detect outlying curves on the other hand. We use deterministic starting values

for our PCA algorithms since in the previous chapters this strategy showed the best

performance for multivariate data settings at a lower computational time. We com-

pare CooLTS with the CooS estimator of Boente and Salibian-Barrera (2015), the MVS

estimator, the MVLTS estimator, the robust sieve projection-pursuit approach (PP)

proposed in Bali et al. (2011) and the classical PCA approach (LS). We also consider

the best q−dimensional linear space (True) according to the data generating process as

a benchmark for all methods. Of course, this is not an estimator but a kind of oracle

method that cannot be used in practice.

To calculate the functional PCA estimates based on CooLTS, CooS, MVLTS and MVS,

we used the algorithm outline in Section 1.4 with deterministic starting values using

the same parameter values as in the experiments in section 1.6. For the S-estimates we

consider the Tukey’s bisquare function for ρ with constants c = 1.54764, b = 0.50 and

c = 3, b = 0.2426. For the LTS estimates we consider α = 0.5.

3.5.1 Simulation design

We now describe the simulation designs in more detail. To investigate the influence of

different outlier configurations on our estimators we consider the three different models

used in Boente and Salibian-Barrera (2015). The first two models were constructed from

a finite-rank process while the third follows an infinite-rank process. In all cases n = 70

functional observations were generated where each curve was observed at m = 100

equidistant instants in the interval [0, 1]. A total of 500 replications was generated for

each setting. A cubic B−spline basis was used to project the functional data which

in general does not show periodic patterns. The dimension of the basis was chosen to

p = 50 to represent a realistic situation where the sample size is similar to the dimension

of the data. In each model we consider different settings of contaminated data.

Model 1

This model was generated from a two-dimensional scatter operator so that regular curves

follow a smooth trajectory. In particular, the non-contaminated curves Xi ∼ X, 1 ≤
i ≤ n, follow the model

X(ts) = 10 + µ(ts) + ξ1φ1(ts) + ξ2φ2(ts) + zs, s = 1, . . . , 100,
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where zs are i.i.d additive errors that followN(0, 1). The scores ξ1 and ξ2 are independent

of each other and independent of zs with ξ1 ∼ N(0, 25/4), ξ2 ∼ N(0, 1/4). The basis

functions φ1(t) =
√

2 cos(2πt) and φ2(t) =
√

2 sin(2πt) correspond to the Fourier basis.

The mean function is

µ(t) = 5 + 10sin(4πt)exp(−2t) + 5sin(πt/3) + 2cos(πt/2).

To assess the performance of robust functional PCA methods a mixture of clean and

contaminated trajectories is generated from the model:

X(c)(ts) = X(ts) + V Y (ts), s = 1, . . . , 100,

where V ∼ Bi(1, ε1) is independent of X and Y . The contamination process Y is

given by Y (ts) = Wsz̃s with Ws ∼ Bi(1, ε2) and z̃s ∼ N(µ(c), 0.01). Ws and z̃s are all

independent. Observations without contamination correspond to ε1 = 0. Therefore with

this model any trajectory X(ts) has a probability ε1 of being contaminated and any cell

ts of the contaminated trajectories has a probability ε2 of being shifted vertically. The

shift is random normally distributed and tightly centered around µ(c) = 30 (upwards

shift). For our simulations we considered the settings ε1 = 0.10 and ε1 = 0.30 with

ε2 = 0.30 in both cases. For the worst scenario with ε1 = ε2 = 0.30, this means that

we expect about 70× 0.3× 0.3 ≈ 6 outliers in each time instant of the functional data.

An example of this scenario is shown in Figure 3.1. We also examined the amount

of potential coordinatewise outliers in the projected data. We used as a criterion in

each coordinate the highest value and the lowest value of the clean projected data.

Experiments showed that at most 11 cells went outside these bounds in a coordinate.

The actual fraction of contamination in each coordinate is thus still rather low although

30% of the curves is contaminated.

Model 2

This model was also generated from a two-dimensional scatter operator but with a

slightly different process. The non-contaminated trajectories Xi ∼ X were generated as

X(ts) = 150− 2µ(ts) + ξ1φ1(ts) + ξ2φ2(ts) + zs, s = 1, . . . , 100,
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Figure 3.1: An example of Model 1 with ε1 = ε2 = 0.30. Regular curves are shown in
blue color while contaminated curves are shown in red color

where zs, ξ1, ξ2, µ, φ1 and φ2 are as in Model 1. To assess robustness of the methods a

mixture of clean and contaminated trajectories is generated from the model

X(c)(ts) =

X(ts) + V Y (ts) when ts < 0.4

X(ts) when ts ≥ 0.4.

Hence, the contaminated curve are only contaminated in the first part of their trajectory,

i.e. when ts < 0.4. We take V ∼ Bi(1, ε1) independent of X and Y . The contamination

process Y is generated by Y (ts) = Wsz̃s+2µ(ts) with Ws ∼ Bi(1, ε2), z̃s ∼ N(µ(c), 0.01)

and µ(c) = −5. Ws and z̃s are all independent. Observations without contamination

correspond to ε1 = 0. Contaminated curves start with a deviating trajectory in the first

part of their range and then join smoothly with the trajectory of the regular curves. For

our simulations we considered the settings ε1 = 0.10 and ε1 = 0.30 with ε2 = 0.90 in

both cases. For the worst scenario of ε1 = 0.30, this means that we expect 70× 0.3 = 21

outliers for each time instant when ts < 0.4. An example of this scenario is shown in

Figure 3.2. Similarly as in Model 1, for the projected data we found that at most 12

cells that lie outside the minimum and maximum bound of the regular data in each

coordinate.
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Figure 3.2: An example of Model 2 with ε1 = 0.3, ε2 = 0.90. Regular curves are
shown in blue color while contaminated curves are shown in red color

Model 3

This model follows an infinite-rank stochastic process. Regular curves were generated

from a Gaussian process with covariance kernel γX(s, t) = 10min(s, t). The eigenfunc-

tions of the covariance operator are φj(t) =
√

2 sin ((2j − 1)(π/2)t), j ≥ 1, with associ-

ated eigenvalues λj = 10 (2/ [d(2j − 1)π])2. To form data with good and contaminated

trajectories we consider the model

X
(c)
i (s) = Xi(s) + ViDi M I{Ti<s<Ti+`},

where Vi ∼ Bi(1, ε), Pr(Di = 1) = Pr(Di = −1) = 1/2, Ti ∼ U(0, 1 − `), ` < 1/2,

with Vi, Xi, Di and Ti independent of each other. We fix ` = 1/15 and M = 30. We

consider different ε values for the model with these settings, namely ε = 0.10, 0.30. An

example of this configuration for ε = 0.30 is shown in Figure 3.3. We see that with

` = 1/15 contaminated curves make random jumps for about six time instants and then

they return to the regular pattern. We also consider a configuration that uses the same

model but fixes D = 1 (i.e. Pr(D = 1) = 1) so that contaminated curves only have

upwards shifts. For this configuration we set ε = 0.90. An example of this configuration

is shown in Figure 3.4. Even though we contaminate a large majority of 90% of the

curves in this configuration, the amount of outliers in each time instant does not exceed

50% yet. This illustrates that even with a large fraction of contaminated curves, the
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data may still contain a lot of useful information from which the functional principal

components can be estimated robustly by suitable methods.
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Figure 3.3: An example of Model 3 with ε = 0.30. Regular curves are shown in blue
color while contaminated curves are shown in red color
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Figure 3.4: An example of Model 3 with ε = 0.90 and D = 1. Regular curves are
shown in blue color while contaminated curves are shown in red color

As in Boente and Salibian-Barrera (2015) we estimated a low dimensional approximation

of dimension q = 1 for Models 1 and 2 since they were generated from a two-dimensional
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scatter operator and we used dimension q = 4 for Model 3 because this choice explains

95% of the variance of the underlying infinite-rank process.

3.5.2 Results

The measure to assess the quality of the approximation for each curve obtained by the

FPCA methods is the squared residual norm in the original functional space ‖Xi−X̂i‖2H.

The average squared residual norm over the regular curves in a data set assesses quality

of the approximations for the regular data. Obviously, lower values of this average means

a better approximation for these data. On the other hand, the average squared residual

norm over outlying curves assesses to what extend the FPCA estimator is affected by

the outliers. An FPCA method that is robust will give a high average for the outlying

curves, indicating that this method succeeds better in identifying the outliers. Let γi be

the indicator variable taking the value 1 when a curve Xi is an outlier and 0 otherwise.

Then, the proportion of the total mean squared prediction error due to contaminated

curves and clean curves respectively are:

PEH,OUT =
1

n

n∑
i=1

γi‖Xi − X̂i‖2H (3.7)

PEH,CLEAN =
1

n

n∑
i=1

(1− γi)‖Xi − X̂i‖2H. (3.8)

The average squared residual norms over contaminated trajectories and over clean tra-

jectories separately are:

PEH,OUT =

∑n
i=1 γi‖Xi − X̂i‖2H∑n

i=1 γi
(3.9)

and

PEH,CLEAN =

∑n
i=1(1− γi)‖Xi − X̂i‖2H∑n

i=1(1− γi)
(3.10)

respectively. To calculate the prediction errors for the best lower-dimensional predictions

XTrue
i according to the data generating process, we just replace the estimates X̂i by the

approximations XTrue
i based on the optimal subspace according to this process in (3.7),

(3.9) and (3.10). The average values over the 500 datasets of the performance measures

PEH,OUT, PEH,CLEAN, PEH,OUT and PEH,CLEAN are reported in the tables below, using

the labels “Out”, “Clean”, “Out” and “Clean” respectively.

Tables 3.1 and 3.2 summarize the results for Model 1 and 2 respectively, while Tables

3.3 and 3.4 show the results for the configurations of Model 3.
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Table 3.1: Mean prediction errors over 500 replications for Model 1
ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.30

Clean Out Clean Out Clean Out Clean Out Clean

True 1.27 26.93 1.14 269.32 1.26 80.40 0.89 269.72 1.27
LS 1.25 18.96 5.06 193.37 5.68 56.59 5.07 189.69 7.21

CooLTS 1.40 27.34 1.22 270.95 1.36 79.30 0.93 269.69 1.31
CooS(c=1.5) 1.31 26.87 1.27 268.94 1.42 78.20 1.79 263.04 2.60
CooS(c=3) 1.25 26.92 1.13 269.24 1.25 75.07 1.68 254.76 2.50

MVLTS 1.29 27.31 1.16 270.60 1.29 79.39 0.89 269.99 1.25
MVS(c=1.5) 1.25 27.30 1.12 270.54 1.24 79.38 0.86 269.94 1.22
MVS(c=3) 1.24 27.30 1.12 270.51 1.24 58.53 4.13 203.85 6.00

PP 1.34 26.54 1.33 265.79 1.49 73.85 2.21 249.54 3.22

Table 3.2: Mean prediction errors over 500 replications for Model 2
ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.30

Clean Out Clean Out Clean Out Clean Out Clean

True 1.36 10.06 1.22 100.59 1.36 29.95 0.95 100.51 1.36
LS 1.34 1.60 4.03 19.53 4.51 2.52 4.12 8.48 5.87

CooLTS 1.49 10.10 1.37 100.45 1.52 29.48 1.03 100.22 1.45
CooS(c=1.5) 1.40 9.64 2.05 97.21 2.30 24.57 3.35 83.26 4.81
CooS(c=3) 1.35 9.84 1.38 99.23 1.54 4.11 3.86 16.23 5.55

MVLTS 1.38 10.07 1.24 99.85 1.38 29.30 0.96 99.40 1.35
MVS(c=1.5) 1.34 10.15 1.20 100.71 1.33 29.56 0.93 100.62 1.31
MVS(c=3) 1.34 10.14 1.20 100.63 1.33 4.96 3.50 22.59 5.08

PP 1.43 8.92 1.43 90.70 1.59 15.65 2.03 55.22 2.94

Table 3.3: Mean prediction errors over 500 replications for Model 3
ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.30

Clean Out Clean Out Clean Out Clean Out Clean

True 0.30 4.41 0.27 44.16 0.30 13.49 0.21 44.11 0.30
LS 0.29 2.07 0.66 18.46 0.74 9.55 0.72 30.95 1.04

CooLTS 0.48 5.20 0.44 44.87 0.50 14.37 0.30 45.58 0.44
CooS(c=1.5) 0.35 4.47 0.32 44.67 0.35 13.63 0.25 44.57 0.36
CooS(c=3) 0.30 4.41 0.27 44.15 0.30 13.48 0.21 44.05 0.30

MVLTS 0.33 5.21 0.29 44.93 0.33 14.11 0.21 44.77 0.30
MVS(c=1.5) 0.29 5.13 0.25 44.18 0.28 14.04 0.19 44.55 0.28
MVS(c=3) 0.29 5.12 0.25 44.13 0.28 11.14 0.48 35.55 0.71

PP 0.38 4.44 0.35 44.40 0.39 13.59 0.29 44.43 0.42

Let us first look at the results for Model 1 in Table 3.1. Without contamination the

classical FPCA approach (LS) does a good job while the robust methods perform a little

bit worse, indicating that their efficiency is lower. However, in presence of contamination

the classical PCA does not perform well anymore while the other methods show robust

behavior, with some advantage for the LTS methods and for the MVS estimator with

c = 1.5. For Model 2 we see a similar behaviour in Table 3.2. However, when the

fraction of contamination becomes larger (ε1 = 30%) the differences between the LTS

and MVS (c = 1.5) methods and the other procedures becomes larger. While we focused

on a one dimensional approximations in Models 1 and 2, we consider four-dimensional

approximations for the infinite rank process in Model 3. The results in Table 3.3 show

that without contamination the classical PCA is again the best. However, as expected
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Table 3.4: Mean prediction errors over 500 replications for Model 3
ε1 = 0.90, (D=1)

Out Clean Out Clean

True 39.71 0.03 44.11 0.31
LS 32.65 0.41 36.28 4.31

CooLTS 40.26 0.16 45.53 1.45
CooS(c=1.5) 40.34 0.05 44.81 0.52

CooS(c=3) 39.49 0.04 43.87 0.39
MVLTS 37.45 0.59 42.37 5.84

MVS(c=1.5) 33.06 0.43 37.41 3.95
MVS(c=3) 32.30 0.45 36.55 4.05

PP 40.24 0.04 44.69 0.38

the classical approach again quickly deteriorates in the presence of contamination. On

the other hand, the robust methods show robust performance with similar results in

Table 3.3. However, Model 3 seems not to produce severe contamination since even the

classical PCA can discriminate between contaminated and regular curves in some cases.

The configuration of Model 3 considered in Table 3.4 with contamination in 90% of the

curves is a more challenging situation. Here, we clearly see that the multivariate methods

MVS and MVLTS loose their robustness because too many curves are contamination.

On the other hand, the coordinatewise approaches CooLTS and CooS remain robust.

This is because even with this high fraction of contaminated curves, the fraction of

contamination in each coordinate still remains below 50% as explained before. Therefore,

the coordinatewise methods can still withstand this amount of contamination. We see

that in particular the coordinatewise S-estimator shows the best performance in this

setting. Note that also the projection pursuit (PP) approach shows competitive results

in this scenario. For functional PCA based on CooLTS, CooS, MVLTS and MVS results

based on the algorithms with initial estimates calculated from random subsets of size q+1

were also obtained (see Tables B.4-B.7 in the Appendix) and lead to similar conclusions

as with deterministic starting values.

3.6 Real data example

In this section we present an application of the coordinatewise methods and the multi-

variate methods for functional data on real data. The goal is to obtain robust FPCA

estimates and to identify potential atypical observations by examining the functional

PCA approximations given by the methods. The dataset was analyzed in Boente and

Salibian-Barrera (2015) with the Coordinatewise S estimator. We now re-analyze this

data with the other procedures, namely the MVS, the MVLTS and our CooLTS es-

timator. Given the excellent results in previous sections we use our algorithms with

deterministic starting values.
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(a) Mortality data for the period 1816-2010
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(b) Mortality data for the period of interest be-
tween 1816 and 1948

Figure 3.5: Mortality data. Panel (a) contains the curves for the years 1816 to 2010.
Three periods can be distinguished and are marked with different gray scale colors.
Panel (b) only depicts the curves corresponding to the period of interest from 1816 to

1948. On top the median curve is plotted.

3.6.1 Mortality data

The human mortality data is available on-line from the Human Mortality database

(Human Mortality Database, 2013). Figure 3.5 shows the trajectories for this dataset.

Panel 3.5a shows the entire dataset while panel 3.5b shows the period of interest. Every

curve represents a different year and represents the death rate per age group for men in

France. In particular, the logarithm of the death rate of people between the ages of 0 and

99 is shown. From 3.5a we can observe a clear difference in patterns of mortality before

and after the second world war. This phenomenon may be attributed to technological

advances and the change in quality of life in Europe after 1945. One can also notice

a transitional period (1946-1948) where mortality curves lies between the two main

periods. For the analysis we focus on the period between 1816 and 1948 that includes

the pre-war time as well as the the transition period as shown in Panel 3.5b. The

purpose of this analysis is to identify years with an atypical pattern of mortality. We

computed the classical FPCA, FPCA based on S-estimators (MVS and CooS) with

tuning constant c = 3 and FPCA based on LTS estimators (MVLTS and CooLTS) with

α = 0.5 to estimate the best 2 dimensional approximations. In the algorithms of the

robust methods we used a projection onto a cubic B−spline basis of dimension p = 20.

Figure 3.6 contrasts the robust fits with the classical FPCA fit.

From Figure 3.6 we can see that the robust methods identify mortality curves with a

peak from ages 20 to 40 as outliers while the classical approach tries to accommodate

these curves as well as possible. To detect outlying curves we use orthogonal distances

between the observations and their projection on the estimated subspace. We use the

cutoff value of Hubert et al. (2005) for the orthogonal distances in order to flag outliers.
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Figure 3.6: Robust approximations vs classical PCA approximations

Figure 3.7 shows for each of the methods the orthogonal distance of the observations

with the corresponding cutoff to identify outlying observations.
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Figure 3.7: Outlier detection based on orthogonal distances

Figure 3.6 shows that all robust methods identify the following years as outliers: 1855,

1871, 1914-1919 and 1940-1948. All robust methods except MVS also identify year 1832

as a border case. On the other hand, classical PCA only identifies the years 1871,

1914-1915 1940, 1941 and 1943-1948 as mildly atypical. Similar results were obtained

in Boente and Salibian-Barrera (2015) who applied the adjusted boxplot of Hubert

and Vandervieren (2008) on the squared residual distances to identify outliers. It is
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interesting to see that years identified by the robust methods correspond to years of

important events as pointed out by Boente and Salibian-Barrera (2015). In 1855 France

was involved in the Crimean War and in 1871 in the Prussian War. The period 1914-

1919 corresponds to World War I and the Spanish Flu epidemic. France falls to German

occupation in 1941 and from there on France was involved in World War II until its

end in 1945. The period 1946-1948 was a transitional period after the war. Note that

classical FPCA is not able to detect the Crimean War, the last episodes of the World

War I, the spanish flu and the early World War II casualties in France (1940 and 1942).

Figure 3.8 shows the observed and the approximated curves for these events. We can

clearly see that while the classical FPCA tries to fit these curves as well as possible, the

robust methods are not attracted by these observations. Therefore, all robust estimators

in this exampleare able to identify years with atypical events that have affected mortality

rates in France.
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Figure 3.8: Observed curves and PCA approximations by the methods analyzed for
years of important events in France

3.7 Discussion and conclusions

We have extended the MVS-PCA, the MVLTS-PCA and the CooLTS-PCA estimators

to accomodate functional data. We calculate solutions for these extensions by using

smoothed functional PCA according to the Sieves approach of Bali et al. (2011). There-

fore, the functional data is first projected on a finite set of sufficiently rich basis functions,

then the solutions of the estimators are obtained with the algorithms of chapter 1 and

chapter 2 in the finite dimensional space and then these solutions are transformed back
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to the original functional space to obtain final estimates. Later, we introduced the

functionals of the three extensions in the Hilbert space.

Experiments with complicated patterns of contamination but small fractions of outliers

showed that the MVS-PCA, the MVLTS-PCA and the CooLTS-PCA estimators for

functional PCA perform equally well when compared to other existing robust methods

for functional PCA such as the Coordinatewise S-estimator and the Sieves-projection

pursuit of Bali et al. (2011). When a large fraction of the curves is contaminated at some

points along its trajectory, then the multivariate methods break down. On the other

hand, the coordinatewise methods still behave robustly if the trajectories do not have

much contamination at the same positions. This later result confirms the findings of the

experiment in chapter 2 that coordinatewise methods, and in particular our CooLTS,

are able to handle cellwise contamination. Finally, we show in a real example that

the MVS-PCA, the MVLTS-PCA, the CooLTS-PCA and the CooS-PCA extensions for

functional PCA are able to identify curves that correspond to atypical events.



Chapter 4

Tree-based prediction on

incomplete data using imputation

or surrogate decisions

The work in this chapter was published in Cevallos Valdiviezo and Van Aelst (2015).

4.1 Introduction

Many real datasets with predictive applications face the problem of missing values on

useful features. Evidently, this complicates the predictive modeling process since pre-

dictive power may depend heavily on the way missing values are treated. In principle,

missing data can occur in the training data only, in the individual test cases only, or in

both the training data and test cases. In practice, however, missing data appear most

often in both training and test set. Consider for instance customer data that is used to

predict important outcomes such as buying preferences for individual costumers (based

on their past actions). This type of data frequently contains missing values in both the

training data and test cases, because the same amount of information is not available

for all customers.

Most of the research work so far has addressed the problem of missing values in the

training data (see e.g. Rubin (1987); Schafer (1997); Feelders (1999); Dempster et al.

(1977); Batista and Monard (2003); Hapfelmeier and Ulm (2014)). On the other hand,

Saar-Tsechansky and Provost (2007) is one of the only contributions in which the pre-

diction accuracy of classification techniques is compared when only test cases contain

missing values. Tree-based classifiers have been investigated for test cases with data

75
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missing completely at random (MCAR), i.e. test cases with missingness which does not

depend on any value of the data. The performance of prediction methods for different

missing data strategies when missing data occur in both the training and test set has

been assessed in Hapfelmeier et al. (2012); Kapelner and Bleich (2013); Rieger et al.

(2010). However, in Rieger et al. (2010) k-nearest neighbors (kNN) imputation was

applied separately on the training and test samples. This is a potential weakness for

practical purposes because the kNN imputation is impossible for test cases that appear

on a case-by-case basis. Similarly, in Hapfelmeier et al. (2012) and Kapelner and Bleich

(2013) imputation models were applied separately to the training and test cases. More-

over, the response variable was used in the imputation model for the training data so

that the same imputation scheme cannot be applied to test cases arriving one-by-one. In

this study, we are interested in methods that can deal with missingness in both training

and test cases. Moreover, the methods should be able to handle test cases that appear

one-by-one, because this case is often encountered in practical applications. Think for

example of new potential patients for which a prediction needs to be made as soon as

possible on a case-by-case basis, using the available information of the patient (such as

clinical test results).

In this chapter we compare several strategies to handle missing data when using tree-

based prediction methods. We focus on trees because they have several advantages

and few limitations compared to other prediction techniques. Firstly, trees allow to

handle data of different type (categorical, discrete, continuous). Other features that

make trees highly popular among practitioners are their ability to capture important

dependencies and interactions. Moreover, tree-based ensembles such as random forests

can easily handle high dimensional problems and often show good performance without

the need to fine-tune parameters. Trees also include a built-in methodology to process

observations with missing data, called surrogate splits Breiman et al. (1984).

Evidently, if the missing data issue is not addressed correctly, misleading predictions

may be obtained. Thus, one aims for prediction rules that have low bias (accurate

enough) and low variability (stable enough) and at the same time take into account the

additional uncertainty caused by missing values. Among the strategies to handle the

missing values are:

1. Discard observations with any missing values in the training data

2. Rely on the learning algorithm to deal with missing values in the training phase

3. Impute all missing values before training the prediction method
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Approach 1 encompasses ad-hoc procedures like complete case and available case anal-

ysis. They have been shown to work for relatively small amounts of missing data and

under certain restrictive conditions Vach (1994); White and Carlin (2010). However, this

approach is not applicable when missing values are present in test cases. Tree methods

with surrogate splits are an example of the second approach. An advantage of strategy 2

is that incomplete data need not be treated prior to model fitting. For most learning

techniques, the third approach is necessary to handle incomplete values or it simply

helps to improve predictive capability. Many imputation methods have been developed

to address the missing data issue in general. Imputation methods have been studied

extensively with regard to inference: unbiasedness of estimates, efficiency, coverage and

length of confidence intervals or power of tests (see e.g. Little and Rubin (2002); Bur-

gette and Reiter (2010); Shah et al. (2014); Doove et al. (2014)). Other works study

the performance of imputation methods when estimating the true values of the missing

data, without considering the subsequent statistical analysis (see e.g. Liao et al. (2014);

Stekhoven and Bühlmann (2012)). However, there is much less known about the prop-

erties of imputation methods in the context of prediction. An advantage of Approach 3

is that it completely separates the missing data problem from the prediction problem.

This strategy thus gives freedom to (third party) analysts to apply any appropriate data

mining method to the imputed data.

A few comparisons of approach 2 and 3 have already been considered in the literature.

For instance in Feelders (1999) CART using surrogates was compared to CART preceded

by single or multiple imputation. Two classification problems were considered. Multiple

imputation performed clearly better than both single imputation and surrogates. Sin-

gle imputation outperformed surrogates for a fraction of missingness above 10%. No

ensemble methods were considered.

The predictive performance of conditional random forests Hothorn et al. (2011) with

missing data was investigated in Rieger et al. (2010). Conditional random forests (Con-

dRF) combined with surrogates was compared to CondRF with prior kNN imputation.

Both classification and regression problems were considered. No difference in perfor-

mance was found between handling missing values by surrogates or with prior kNN

imputation. Recently, Hapfelmeier et al. (2012) compared the predictive performance of

CART, conditional inference tree (CondTree) and CondRF in combination with surro-

gates or Multiple Imputation by Chained Equations (MICE) to handle the missing data.

Real datasets with and without missing cells were used. The complete data were used

for a simulation study in which missing values were introduced completely at random.

For the real data with missing values MICE did not show a convincing improvement

compared to surrogates, while in their simulation study MICE was beneficial for large

amounts of missing data introduced in many variables. However, the authors argue that
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their simulation results may lack generalizability due to restrictive and artificial simula-

tion patterns. Therefore, it is suggested to extend their simulations to a wider range of

patterns.

So far, there is no clear conclusion in the literature about which combinations of tree-

based prediction method and missing data strategy yield the most satisfactory predic-

tions. It seems that an answer to this question may depend on the structure of the

predictors, the type of relationship between predictors and response variable, and the

pattern and fraction of missing data.

The contribution of this chapter of the thesis is threefold. First, we provide a theoretical

comparison of prediction techniques that can be constructed from incomplete training

data and can be applied directly on individual test cases with missing values, as this cor-

responds to most of the practical applications. Secondly, we set up a framework for the

empirical comparison of these prediction techniques. Thirdly, using this framework, we

provide some insight into the effect of different missing data patterns on the performance

of 26 of these techniques based on trees.

In our comparison we consider as learning methods CART, CondTree, Random Forest

(RF), CondRF, Bagging and Conditional Bagging (CondBagging). The procedures to

handle missing data are surrogates, single imputation by median/mode, proximity ma-

trix or kNN, and multiple imputation by MICE or Multiple Imputation by Sequential

Regression Trees (MIST). Not all combinations have been implemented in R R Devel-

opment Core Team (2011) which we use for our investigation. The 26 techniques in our

comparison are summarized in Table 4.1.

Our comparison incorporates recent tree-based methods and imputation procedures for

which there are almost no research results available about their predictive performance

in presence of missing values. Any analysis or discussion of the situations under which

the different techniques predict well or poorly is still lacking. Our empirical comparison

shows that for moderate to large amounts of missing data, multiple imputation by MICE

or MIST followed by CondRF is advisable, although these techniques are expensive in

terms of computation time. Their better performance is due to the mutual effort of

the imputation strategy and prediction method to average out sampling variability and

variability due to missing data. This result of our empirical comparison is confirmed by

the theoretical derivations. CondBagging using surrogate decisions emerges as an alter-

native with good performance and much lower computation time. For small amounts

of missing data, any ensemble method with surrogate decisions or preceded by single

imputation suffices to get a good prediction performance at a cheaper computational

cost.
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Table 4.1: Overview of the 26 techniques investigated in this study. Each mark ‘×’
corresponds to a technique. The second mark in the MIST + RF box corresponds to a
special case of this technique that consists of imputing bootstrap samples by MIST +

RF. N/I stands for “not implemented”.

Strategy
for miss.
data

Imputation
method

CART CondTree RF CondRF Bagg. CondBagg.

Surrogates None × × N/I × × ×

Single Imp.
Median/mode × × × × N/I N/I
Prox.matrix × × × × N/I N/I
kNN × × × × N/I N/I

Multiple Imp.
MICE × × × × N/I N/I
MIST × × ×× × N/I N/I

4.2 Methodology

4.2.1 Tree-based methods

The Classification and Regression Tree (CART) algorithm proposed by Breiman et al.

(1984) is a popular technique to fit trees. While it is an intuitively appealing procedure,

it also has some drawbacks: it is known to be highly unstable due to its hierarchical

nature Marshall and Kitsantas (2012); Hastie et al. (2009) and it tends to produce

selection bias towards continuous and categorical features with many possible splits and

missing values. Aiming to solve the latter problem, Hothorn et al. (2006) proposed the

conditional inference tree (CondTree) algorithm which utilizes a unified framework for

conditional inference. More specifically, CondTree allows for unbiased selection of the

splitting variable by using univariate P -values which can be directly compared among

covariates measured at different scales. However, CondTree might still be an unstable

procedure due to its hierarchical nature.

With the aim of reducing the prediction variance of single trees, Bagging was proposed

Breiman (1996a). It fits the noisy CART algorithm many times to bootstrap-sampled

versions of the data Efron (1979) and averages for each observation the outcomes of

individual trees to obtain a final prediction. However, overfitting may arise because

trees are fitted on modified versions of the same original sample. This limits the benefits

of Bagging. Hence, Random Forest Breiman (2001) was developed to further improve

the prediction variance reduction of Bagging by decreasing the correlation among trees.

This is established by adjusting the splitting process during the growing of the tree.

Instead of considering all features for each split, only a number g ≤ p of predictors

selected at random are considered as candidates for a split.

In the same spirit, Conditional Bagging and Conditional inference Forests were developed

to combine the benefit of unbiased variable selection with reduction of the prediction

variance Hothorn et al. (2011).
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Surrogate splits, as introduced in Breiman et al. (1984), are an attempt to mimic the

primary split of a region in terms of the number of cases sent down the same way. For

any observation with a missing value for the primary split variable, we can find among

all variables with nonmissing value for that case the predictor and corresponding split

point producing the best surrogate split (i.e. the split yielding the most similar results as

the best split). Quinlan (1993) considers surrogate splits as a special case of predictive

value imputation. All tree-based methods can in theory handle missing predictor values

by using the principle of surrogate splits. However, the implementation of RF in the

R package randomForest Liaw and Wiener (2002) cannot be used on incomplete data.

More information about tree-based methods is given in the Appendix C.

4.2.2 Imputation methods

An imputation can be the mean or a random draw from a predictive distribution that is

specifically modeled for each missing entry Little and Rubin (2002). Thus, an imputation

method is required to estimate these predictive distributions based on the observed data.

In general, an advantage of using an imputation strategy is that it separates the missing

data problem from the prediction problem. Hence, a completed dataset(s) can be used

for the prediction problem. This allows to apply the most appropriate prediction method

on the imputed dataset(s). We now give a short description of the imputation methods

used in this chapter.

Single imputation (SI) methods

A rapid and simple fix to the problem of missing predictor values consists of just replacing

them with the column median or mode, depending on the type of predictor variable.

However, this method might distort the covariate distribution by underestimating its

variance and also the relations between the covariates may be disturbed.

A more elaborate method consists of imputing based on the proximity matrix Liaw and

Wiener (2002), which is a N ×N matrix (N being the size of the training sample) that

comes “for free” in the output of the Random Forest implementation in R. Each cell of

this matrix contains the proportion of the total number of trees in the forest in which the

respective pair of training observations share a terminal region. The proximity matrix

algorithm starts with a median/mode imputation. Then, Random Forest is called with

the completed data. The imputed values are updated according to the current proximity

matrix. For continuous predictors the imputation update is the weighted average of the

initially non-missing observations, where the weights are the proximities. For categorical

predictors the imputation update is the category with the largest average proximity. This
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process is repeated iteratively, usually five times. Thus, the intuitive idea is to give a

larger weight to cases that are more like the case with missing data.

Another single imputation method is kNN imputation Troyanskaya et al. (2001). This

procedure looks for the k nearest neighbors of the missing observation with respect to

their Euclidean distance computed from the remaining observed variables. Eventually,

the missing value is replaced by a weighted mean of the k nearest neighbors, where the

weights are based on the kNN euclidean distances.

After imputation by a SI method, the filled-in data are treated as if they were actually

observed. The additional uncertainty caused by missing data on top of the already

“available” sampling variance is thus ignored. As a consequence, the whole prediction

rule may lose stability and hence prediction performance.

Multiple imputation (MI) methods

One way to take into account the variability caused by missing data is through multiple

imputations Rubin (1987, 1996). This creates several training datasets differing only in

the imputed fields. The variability across these completed versions of the data reflects

the uncertainty underlying the imputed values.

Let M denote the data matrix and D the total number of imputed datasets by MI. As

described in Little and Rubin (2002), multiple imputation draws the missing values for

the oth imputed dataset (o = 1, . . . , D) as:

M
(o)
mis ∼ Pr(Mmis|Mobs), (4.1)

with

Pr(Mmis|Mobs) =

∫
Pr(Mmis|Mobs,θ)Pr(θ|Mobs) dθ. (4.2)

That is, the imputed values are random draws from the joint posterior distribution of

the missing data given the observed data. However, it is often difficult to draw from this

predictive distribution due to the requirement of integrating over the model parameters

θ in (4.2). In the univariate case, Data Augmentation Tanner and Wong (1987) accom-

plishes this by iteratively drawing a sequence of values of the parameters and missing

data until convergence. More specifically, data augmentation can be run independently

D times to generate D iid draws from the approximate posterior distribution involving

D estimates θ∗(1),θ∗(2), . . . ,θ∗(D) from Pr(θ|Mobs) which are subsequently used in the
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conditional distributions Pr(Mmis|Mobs;θ
∗(o)) to draw D imputations. However, in sit-

uations with multivariate data involving nonlinear relationships, building one coherent

model for the joint distribution of the variables may be difficult. In those situations,

simpler methods that approximate draws from (4.1) should be considered. We now

discuss two such methods which are used in our comparison.

Multivariate Imputation by chained equations (MICE)

In real multivariate settings with more than one variable containing missing values, we

might be able to approximate draws from (4.1) by specifying for each incomplete variable

a conditional model for the missing data given a set of other variables. Essentially, for

each variable containing missing values MICE draws values for the parameters and im-

putations from the corresponding conditional model and iterates this procedure through

the other incomplete variables. Hence, the procedure splits the p-dimensional prob-

lem into p one-dimensional problems. By modeling only conditional distributions many

complexities of real-life multivariate data such as predictors of different type, existence

of nonlinear relations or interactions between variables and circular dependence can be

addressed Burgette and Reiter (2010); Doove et al. (2014); Van Buuren (2012); Shah

et al. (2014). These complexities are difficult to handle if a joint modeling approach

Schafer (1997) is adopted. The reason is that in joint modeling an explicit multivariate

distribution for the missing data needs to be specified to derive conditional models for

imputations. Thus, distributional assumptions are imposed which may lack flexibility

to address the above mentioned complexities. On the other hand, MICE (also called

fully conditional specification [FCS] by Van Buuren et al. (2006)) directly specifies con-

ditional models without the need of an explicit multivariate model for the entire dataset.

Instead, the algorithm assumes that an underlying multivariate model exists and that

draws from it can be generated by iteratively sampling from the conditionally specified

imputation models.

Let X be the N × p matrix that contains the partially observed values for the p pre-

dictor variables. Then, Pr(Xmis|Xobs) denotes the joint multivariate posterior where

Xmis and Xobs are the missing and observed parts of X, respectively. Assume that

the multivariate distribution of X is completely specified by θ, a p-dimensional vector

of unknown parameters. MICE aims to obtain the posterior distribution of θ through

chained equations which form parametric models for the conditional distributions. More

precisely, if all p predictors contain missing data, then starting from a simple draw from

the observed marginal distributions the tth iteration of chained equations is a Gibbs

sampler that successively draws:



Chapter 4. Tree-based prediction on incomplete data using imputation or surrogate
decisions 83

θ
∗(t)
1 ∼ Pr(θ1|xobs

1 , xt−1
2 , . . . , xt−1

p )

x
∗(t)
1 ∼ Pr(xmis

1 |xobs
1 , xt−1

2 , . . . , xt−1
p , θ

∗(t)
1 )

... (4.3)

θ∗(t)p ∼ Pr(θp|xobs
p , xt1, x

t
2, . . . , x

t
p−1)

x∗(t)p ∼ Pr(xmis
p |xobs

p , xt1, x
t
2, . . . , x

t
p−1, θ

∗(t)
p ),

where x
(t)
j = (xobs

j , x
∗(t)
j ) is the jth imputed feature at iteration t and θ1, . . . , θp are the

components of θ (see Van Buuren and Groothuis-Oudshoorn (2011); Van Buuren et al.

(2006)).

MICE deviates from Markov Chain Monte Carlo (MCMC) approaches in that the se-

quences of univariate regressions are applied to cases with observed xj . After con-

vergence, it is implicitly assumed that the Gibbs sampler in (4.3) provides a draw θ∗

from its posterior which can be used to draw values X∗ to impute Xmis. Van Buuren

and Groothuis-Oudshoorn (2011) states that convergence of the algorithm can be quite

fast (10 iterations might be enough) since previous imputations x
∗(t−1)
j only enter x

∗(t)
j

through their relation with other variables. This procedure can be run in parallelD times

to generate D imputations. Various authors have shown the satisfactory performance of

this method in a variety of simulation studies (e.g. Van Buuren et al. (2006); Horton and

Kleinman (2007); Hapfelmeier and Ulm (2014)). As mentioned earlier, MICE also gives

the user flexibility to specify a convenient imputation model for each variable in order

to help preserving important characteristics of the data. Due to its construction, this

approach is suitable for data missing at random (MAR), i.e. data whose missingness

depends only on the observed data, although Van Buuren and Groothuis-Oudshoorn

(2011) argues that MICE can also handle data missing not at random (MNAR) under

additional modeling assumptions. Data MNAR occur when the missingness depends on

unobserved data.

Despite the mentioned benefits, the MICE algorithm also has some shortcomings. For

instance, it is not guaranteed that the specified conditional models in the Gibbs sampler

will eventually converge to an existing stationary distribution. This problem is known

as incompatibility of the conditionals which however is not considered a serious prob-

lem in practice Van Buuren et al. (2006). Another issue is that the standard MICE

implementation uses parametric (generalized) linear models to estimate the conditional

distributions in (4.3). Therefore, it might not be able to capture complex relations

among variables, especially when having a large number of predictors.
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Multivariate Imputation by Sequential Regression Trees (MIST)

MIST has been proposed in Burgette and Reiter (2010) with the goal of better cap-

turing interactions and nonlinear relations among predictors when imputing missing

values. MIST uses CART to model the conditional distribution of each missing predic-

tor in (4.3). The authors justify their choice for CART by stressing that it is sufficiently

flexible to capture complex structures without parametric assumptions or data trans-

formations. After convergence, approximate draws from the predictive distribution of

the incomplete targeted predictor can be taken by sampling elements from the final

region that corresponds to the covariate values of the case of interest. A Bayesian

bootstrap Rubin (1981) is performed within each final region before sampling in order

to reflect the uncertainty about the population conditional distributions Burgette and

Reiter (2010). Another benefit of this strategy is that potential problems that may ar-

rive when imputing, such as nonsensical or impossible imputations, are avoided because

MIST imputations come from the observed values.

Summary

There are two sources of uncertainty that might prevent us to produce good prediction

results when using data with incomplete features: one is the inherent sampling variability

and the other is the additional uncertainty caused by missing data. The former is well-

known and can affect the performance of highly data-driven prediction methods such as

single tree methods. The latter can make the prediction rule unreliable if not treated

adequately, even if the prediction method itself is very stable. For instance, if the

imputation is poor then the predictions can become unreliable no matter how well the

learning method performs. This can happen when applying a single imputation prior to

the learning method.

Procedures that combine MI with an ensemble of trees might potentially yield superior

results, thanks to the mutual effort of the imputation strategy and prediction method

to reduce variability of predictions. In particular, they tend to average out not only the

variability present between trees (intra-forest variability), but also the variability due to

the missing data by fitting a forest for each of the D imputed datasets (between-forest

variability). Our theoretical derivation in Section 4.3 confirm the high potential of MI

with ensembles to give accurate predictions. In our empirical investigation (Sections 4.4

and 4.5) we examine to what extent these procedures can indeed outperform the other

alternatives in practical settings.
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We also consider an alternative to multiple imputation, as introduced in He (2006), that

also aims to take into account the variability due to missing data. Since this procedure

showed good results in He (2006), we investigate its performance in our study. The tech-

nique first constructs B bootstrap samples from the original incomplete sample. Next,

each of these bootstrap samples is imputed once. Although only a single imputation is

applied on each bootstrap sample, we end up with B imputed bootstrap samples which

may reproduce the variability of the imputation model. In He (2006) Gaussian, Logistic

or Poisson regression is used to generate imputations, but we adapted the procedure by

using MIST to impute the bootstrap samples (which thus yields MIST imputed boot-

strap samples). This implies that no initial imputation is needed in contrast to the

original procedure. RF is then applied on each of the imputed bootstrap samples, re-

sulting in an ensemble of B forests. Finally, the results of all forests are averaged to

obtain the final predictions. Similar to the previous strategy both intra-forest variabil-

ity and between-forest variability is averaged out so that both sampling variability and

missing data variability might be taken into account.

4.3 Theoretical properties

The derivations in this section form a basis to theoretically compare the properties of

the methods analyzed in this study. Let us denote by ϕLmiss,φ (x) a single tree predictor

at X = x after imputation of missing values in the training set by a single random draw

from their predictive distribution. Here, Lmiss denotes the missing part of the training

set and φ the single imputation on those data by a given imputation method. For a

regression problem, consider the expected generalization error at X = x according to

the squared error loss function:

EL{Err {ϕLmiss,φ (x)}} = EL{EY|X=x{(Y − ϕLmiss,φ (x))2}}, (4.4)

where L denotes the random training set. By rewriting the above expression with

respect to the optimal Bayes model ϕB, it can be shown that in general the expected

generalization error for the prediction at X = x additively decomposes into a bias, a

variance and a noise component as follows:

EL{Err {ϕLmiss,φ (x)}} = (ϕB(x)− EL{ϕLmiss,φ(x)})2 + EL{(ϕLmiss,φ(x)− EL{ϕLmiss,φ(x)})2}

+ Err(ϕB(x))

= bias2(ϕLmiss,φ(x)) + var(ϕLmiss,φ(x)) + Err(ϕB(x)) (4.5)
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The bias term measures the difference between the average prediction over all possible

random training sets and the prediction of the optimal Bayes model. The variance term

measures the variability of the predictions generated by ϕLmiss,φ(x). Lastly, the third

term, Err(ϕB(x)), represents the irreducible error or noise in the data. It is independent

of both the prediction method and the training set. This bias-variance decomposition

of the expected generalization error was first introduced in Geman et al. (1992).

For classification problems a similar decomposition is more difficult to obtain in general.

However, several proposals can be found in the literature for the expected generalization

error based on the zero-one loss function that give a similar insight into the nature of

misclassification error (see e.g.Dietterich and Kong (1995); Breiman (1996b); Tibshirani

(1996); Louppe (2014)). Moreover, soft voting, i.e. averaging class probability estimates

and then predicting the most likely class, provide an easy framework to study the gener-

alization error of classification methods by just plugging averaged estimates into (4.5).

This approach yields nearly identical results as majority voting Breiman (1996a).

First, we review the results showing when ensemble learning is advantageous in com-

parison to single model learning in regression. We then adapt these results to show

the theoretical advantage of multiple imputation regression trees over single imputation

regression trees, given an incomplete training set Lmiss. Finally, we extend our results

to discuss the theoretical benefit of MI combined with ensembles of trees with respect

to SI with an ensemble, MI with a single tree and SI with a single tree.

Ensemble learning

Louppe (2014) provided theoretical derivations using the bias-variance decomposition

to show the superior prediction results of an ensemble of randomized models compared

to its single counterpart, given complete training sets. Specifically, let µL,θ denote the

expectation of a single randomized predictor ϕL,θ(x) (e.g. CART) with randomization

parameter θ. θ is considered to be a random variable inducing randomness between

the models in an ensemble. Further, let σ2
L,θ denote the variance of such predictor.

Now, consider an ensemble of T randomized models (e.g. a forest) ψL,θ1,··· ,θT (x) =
1
T

∑T
i=1 ϕL,θi(x) with θ1, · · · , θT i.i.d. random variables. Louppe (2014) shows that such

an ensemble keeps the same bias as its single model counterpart, but is able to decrease

its variability depending on the size of the ensemble T and the correlation ρ(x) between

the models in the ensemble. Indeed, we have that

EL,θ1,··· ,θT {ψL,θ1,··· ,θT (x)} = µL,θ,
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and thus it follows that

bias2(ψL,θ1,··· ,θT (x)) = (ϕB(x)− µL,θ)2. (4.6)

Hence, an ensemble of randomized models and its single model counterpart have the

same bias.

Therefore, ensemble methods can only reduce prediction error by reducing their variance.

For the prediction variance of the ensemble we obtain that (see e.g. Louppe (2014))

varL,θ{ψL,θ1,··· ,θT (x)} = ρ(x)σ2
L,θ(x) + σ2

L,θ(x)

(
1− ρ(x)

T

)
(4.7)

with

ρ(x) =
EL,θ′,θ′′{ϕL,θ′(x)ϕL,θ′′(x)} − µ2

L,θ(x)

σ2
L,θ(x)

. (4.8)

If we can make the variance of the ensemble, varL,θ{ψL,θ1,··· ,θT (x)}, smaller than the

single model variance σ2
L,θ(x), then the ensemble improves the prediction performance.

As the ensemble gets large, i.e. T →∞, the variance of the ensemble predictor reduces

to ρ(x)σ2
L,θ(x). Hence, large ensembles decrease prediction error when building more

decorrelated trees (i.e. with a larger randomization effect). Moreover, for ρ(x) → 0

the prediction variance reduces to
σ2
L,θ(x)

T , which again reduces with increasing size T

of the ensemble. Notice that when the predictors show no randomization effect at all,

i.e. ρ(x) → 1, then building an ensemble brings no benefit (because all models in the

ensemble yield exactly the same prediction in the limit).

Multiple imputation (MI) versus single imputation (SI) for a single tree

The above results can be extended to the case when MI is combined with single tree pre-

diction given a missing training set Lmiss. We assume that the imputed datasets are all

obtained by the same imputation strategy but each make a different random draw from

the predictive distribution, yielding the prediction ψLmiss,φ1,...,φD (x) = 1
D

∑D
j=1 ϕLmiss,φj (x).

We can decompose the prediction error as in (4.5) and similarly as in Louppe (2014) the

expected value and variance of the multiple imputation prediction can be rewritten as:

EL,φ1,··· ,φD{ψLmiss,φ1,...,φD (x)} = µL,φ,

with µL,φ = EL,φ{ϕLmiss,φ}. Hence, the bias does not reduce by considering multiple

imputations. Therefore, the only source available to reduce prediction error is again the
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variance of the predictor:

varL,φ1,··· ,φD{ψLmiss,φ1,...,φD (x)} = ρB(x)σ2
L,φ(x) + σ2

L,φ(x)

(
1− ρB(x)

D

)
, (4.9)

where σ2
L,φ is the prediction variance of a single tree with single imputation, and ρB(x)

is the correlation of trees corresponding to different imputations of the same dataset,

namely:

ρB(x) =
EL,φ′,φ′′{ϕL,φ′(x)ϕL,φ′′(x)} − µ2

L,φ(x)

σ2
L,φ(x)

(4.10)

Similar conclusions as before can be obtained now. Multiple imputation improves the

performance of single imputation increasingly when the number of imputations D in-

creases and when the correlation ρB(x) among prediction models on the different im-

puted datasets decreases. Note therefore the importance of drawing independent impu-

tations to reduce correlation among the different prediction models.

MI + ensemble methods

Now we discuss when MI combined with an ensemble method yields an improvement in

prediction performance. The final prediction in this case can be written as

ψLmiss,Λ (x) =
1

D

D∑
d=1

1

T

T∑
t=1

ϕLmissθtd ,φd
(x) ,

where Λ denotes a hyperparameter that includes all random parameters θtd for growing

trees and all random parameters φd for random imputations.

We consider again the bias-variance decomposition in (4.5). As before, we assume that

the imputed datasets are all obtained by the same imputation strategy but make a

different random draw from the predictive distribution. Moreover, we assume again

that the randomization parameters θ are i.i.d. random variables. For the bias we obtain

that

EL,Λ{ψLmiss,Λ (x)} = EL,θ,φ{ϕLmiss,θ,φ} = µL,θ,φ.

Therefore bias remains the same as when a single predictor with single imputation is

used. The component that we address to reduce prediction error is therefore again the

variance. We now derive the prediction variance for MI with ensembles.
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varL,Λ{ψLmiss,Λ (x)} = varL,Λ{
1

D

D∑
d=1

1

T

T∑
t=1

ϕLmiss,θtd ,φd
(x)}

=
1

D2

1

T 2

[
EL,Λ{(

D∑
d=1

T∑
t=1

ϕLmiss,θtd ,φd
(x))2} − EL,Λ{

D∑
d=1

T∑
t=1

ϕLmiss,θtd ,φd
(x)}2

]

=
1

D2

1

T 2

[
EL,Λ{

∑
d,e

∑
td,ue

ϕLmiss,θtd ,φd
(x)ϕLmiss,θue ,φe

(x)} − (TDµL,θ,φ(x))2

]

=
1

D2

1

T 2

[∑
d,e

EL,θ,φd,φe{
∑
td,ue

ϕLmiss,θtd ,φd
(x)ϕLmiss,θue ,φe

(x)} − T 2D2µ2
L,θ,φ(x)

]

=
1

D2

1

T 2

[
D

(
T EL,θ,φ{ϕLmiss,θ,φ(x)2}+ (T 2 − T ) EL,θ′,θ′′,φ{ϕLmiss,θ

′,φ(x)ϕLmiss,θ
′′,φ(x)}

)

+ (D2 −D)

(
T 2 EL,θ′,θ′′,φ′,φ′′{ϕLmiss,θ

′,φ′ (x)ϕLmiss,θ
′′,φ′′ (x)}

)
− T 2D2µ2

L,θ,φ(x)

]

=
1

D2

1

T 2

[
D

(
T (σ2
Lmiss,θ,φ

(x) + µ2
L,θ,φ(x)) + (T 2 − T )(ρW (x)σ2

Lmiss,θ,φ
(x) + µ2

L,θ,φ(x))

)

+ (D2 −D)

(
T 2(ρB(x)σ2

Lmiss,θ,φ
(x) + µ2

L,θ,φ(x))

)
− T 2D2µ2

L,θ,φ(x)

]

=
ρW (x)σ2

Lmiss,θ,φ
(x)

D
+ σ2
Lmiss,θ,φ

(x)

(
1− ρW (x)

D · T

)
+ ρB(x)σ2

Lmiss,θ,φ
(x)

(
1−

1

D

)
(4.11)

where ρW (x) is the correlation of trees fitted on the same imputed dataset. More

specifically:

ρW (x) =
EL,θ′,θ′′,φ{ϕL,θ′,φ(x)ϕL,θ′′,φ(x)} − µ2

L,θ,φ(x)

σ2
L,θ,φ(x)

(4.12)

Note that σ2
Lmiss,θ,φ

is the variance of a single tree after single imputation. If we can make

the variance in (4.11) smaller than σ2
Lmiss,θ,φ

, then the prediction error of MI ensembles

will be lower than that of SI with single trees. Remark that the first two terms in (4.11)

are related to the sampling variability of the predictions while the last term is related

to the extra variability in the predictions caused by the missing values. From (4.11)

we can also see that if we take the number of imputations D large enough, having a

low correlation ρW (x) among the trees in each ensemble is not a necessary condition to

decrease prediction error. It then suffices to decrease the correlations among imputations

ρB(x). This is in correspondence with our previous findings for MI + single trees.
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The variance of MI with ensembles can be linked to the variance of MI with single trees

in (4.9) by rewriting (4.11) as follows.

varL,Λ{ψLmiss,Λ (x)} = ρB(x)σ2
Lmiss,θ,φ

(x) +
σ2
Lmiss,θ,φ

(x)

T

(
1− ρB(x)T

D

)
+
ρW (x)σ2

Lmiss,θ,φ
(x)

D
−
ρW (x)σ2

Lmiss,θ,φ
(x)

D · T
(4.13)

Comparing the expression in (4.9) to (4.13) reveals that a lower prediction variance for

MI with ensembles can be achieved by fitting a large number of decorrelated trees on a

large number of decorrelated imputed datasets. While MI with single trees only reduces

variability in the predictions due to missing data, MI with ensembles also reduces the

sampling variability of the predictions.

A similar comparison can be carried out for SI followed by an ensemble which yields the

predictor ψLmiss,θ1,...,θT ,φ (x) = 1
T

∑T
t=1 ϕLmiss,θt,φ (x). This predictor again has the same

bias as the SI + single tree predictor. Moreover, the prediction variance of the SI with

ensemble predictor becomes:

varL,θ1,··· ,θT ,φ{ψLmiss,θ1,...,θT ,φ (x)} = ρW (x)σ2
L,θ,φ(x) + σ2

L,θ,φ(x)

(
1− ρW (x)

T

)
, (4.14)

By comparing (4.14) to (4.11) it is immediately clear that the performance of SI with

ensemble can be improved by imputing the training data several times with decorrelated

imputations (i.e. with MI ensembles).

Finally, we conclude that MI with ensembles gives superior results to SI with an ensem-

ble, MI with a single tree and SI with a single tree. Surrogate splits can be considered as

a special case of single imputation Quinlan (1993), so we can expect that MI with ensem-

bles will also yield better performance than surrogates. Therefore, theoretically MICE

+ CondRF forms an ideal combination. Indeed, by construction MICE attempts to

make independent draws for the imputations while at the same time CondRF attempts

to grow decorrelated trees. Using CondRF also helps to improve the whole technique

by reducing bias.

4.4 Simulation study

In order to compare the use of surrogates versus imputation, and more in general the

predictive performance of the 26 methods considered (see Table 4.1), empirical studies

similar to those in Feelders (1999); Rieger et al. (2010); Hapfelmeier et al. (2012) were
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performed. Next to comparing the empirical performance with the theoretical conclu-

sions, it is of interest to compare our findings with the results in these previous studies,

especially with those in the most recent work Hapfelmeier et al. (2012). Hence, all

four real-life datasets without missing data selected in Hapfelmeier et al. (2012) have

also been used in our studies. They comprise datasets available in R R Development

Core Team (2011) and datasets from the UCI Machine Learning Repository Asuncion

and Newman (2007). Two of these datasets concern classification and the other two

are regression problems. In addition, we also considered a simulated regression dataset

where the response follows the data generating model (DGM) of the simulation study

in Burgette and Reiter (2010). An overview of the total number of observations and

predictors in each dataset can be found in Table 4.2. We now give a short summary of

these datasets.

• The Haberman’s Survival Dataset contains 306 cases from a study conducted on

patients who had undergone surgery for breast cancer. It can be obtained from

the UCI Machine Learning Repository Asuncion and Newman (2007). We aim to

predict the 5-year survival status of a patient based on the three available predictor

variables.

• The Statlog (Heart) Disease Dataset was collected from 270 patients at four differ-

ent hospitals. It is provided by the UCI Machine Learning Repository Asuncion

and Newman (2007). Our objective is to predict the presence of heart disease

based on 13 clinical measurements of the patients.

• The Swiss Fertility and Socioeconomic Indicators Dataset was collected at 47

French-speaking provinces of Switzerland around 1888. It is provided by R R

Development Core Team (2011) and is used to predict a standardized fertility

measure from a set of 5 socio-economic indicators.

• The Infant Birth Weight Dataset was gathered from 189 newborns at the Baystate

Medical Center, Springfield, Mass, during the year 1986. It is available in the R

package MASS and is used to predict the baby’s birth weight in grams from 8 risk

factors.

• A large regression dataset was generated in order to assess our research questions

in a possibly more complex context that might be present in real-life situations.

In particular, a dataset with 500 observations and ten continuous predictors was

created. Predictors were generated from linear models in a way that complexities

such as circular dependence, multicollinearity and interactions may be present.

To generate the response variable, the DGM specified in the simulation study of

Burgette and Reiter (2010) was used with the same parameter values. The noise
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to total variability ratio was kept lower than 10% throughout the generation of

the variables. Detailed information on the DGM for this dataset can be found in

Appendix C.

Table 4.2: Number of observations and predictors listed for each dataset used in this
study

Dataset Obs. Var.

Survival 306 3
Heart 270 13
Fertility 47 5
Birthweight 189 8
Simulated 500 10

To make our findings comparable to those in Hapfelmeier et al. (2012), missing values

were introduced in a similar way as in their paper, although only in the training data.

We only considered complete test cases for evaluation purposes, to avoid an extra source

of variability in the performance measures. In accordance with the recommendation

in Hapfelmeier et al. (2012) to investigate a wider range of patterns we did not only

introduce missing values completely at random (MCAR) but also at random (MAR)

and not at random (MNAR). We now discuss the missing data mechanisms used in our

study in more detail.

Real-life datasets

The following steps were used to introduce missing data in the real datasets according

to the different missing data mechanisms and schemes:

1. Randomly split dataset: 80% training set, 20% test set.

2. Fix the fraction of missing data for each variable with missing values as η = 10%,

20%, 30%, or 40%.

3. Insert missing data in the training set according to one of the following missing

data mechanisms and schemes.

• Under MCAR mechanism:

First scheme: Randomly induce missing data in ALL (p) variables. In each

variable a fraction η of missing values is inserted at random.

Second scheme: Induce missing data in ONE THIRD of all variables (p/3)

chosen at random. In each of these variables a fraction η of missing values is

inserted at random.
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• Under MAR mechanism:

First scheme: Randomly choose one “determining variable” xdet to induce

missing data in the remaining p− 1 variables. In each variable a fraction η of

missing values is inserted. To this end, the value of the determining variable is

transformed into a probability by a logistic function. A missingness indicator

is then generated from a Bernoulli distribution with this probability.

Second scheme: Induce missing data in ONE THIRD of all variables (p/3)

chosen at random. In each of these variables a fraction η of missing values is

inserted. The remaining two thirds of variables now form the “determining

variables”. The values of these determining variables are transformed into a

probability by a logistic function. The missingness indicator is then generated

from a Bernoulli distribution with this probability.

• Under MNAR mechanism:

First scheme: Induce missing data in ALL (p) variables. In each variable a

fraction η of missing values is inserted based on its upper or lower η quantile

(we change this from dataset to dataset), i.e. in every variable a missing

status is given to observations that are above (or below) its upper (or lower)

η quantile.

Second scheme: Induce missing data in ONE THIRD of all variables (p/3)

chosen at random. In each variable a fraction η of missing values is in-

serted based on its upper or lower η quantile (we change this from dataset to

dataset), i.e. in every variable a missing status is given to observations that

are above (or below) its upper (or lower) η quantile.

Note that in the first scheme of MCAR and MNAR it can happen that an observation

has missing values for all the predictor variables. Such observations were removed from

the dataset because they cause problems for several imputation methods.

Simulated dataset

A similar design was used for this dataset. More specifically, these are the steps taken

for the introduction of missing data in our simulated data:

1. Randomly split dataset: 80% training set, 20% test set.

2. Fix the fraction of missing data for each variable with missing values as η = 10%,

20%, 30%, or 40%.
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3. Insert missing data in the training set according to the different mechanisms and

schemes.

• Under MCAR mechanism:

First scheme: Randomly induce missing data in the first 8 variables (x1, x2, . . . , x8).

In each variable a fraction η of missing values is inserted at random.

Second scheme: Randomly induce missing data in ONE THIRD of all vari-

ables (p/3) chosen at random. In each variable a fraction η of missing values

is inserted at random.

• Under MAR mechanism:

First scheme: Use x9 and x10 as potential “determining variables” to induce

missing data in (x1, x2, . . . , x8). In each variable a fraction η of missing values

is inserted by randomly selecting one of the following three strategies:

– insert missing values based on the upper η quantile of one randomly

chosen “determining variable” among x9 and x10, i.e. in every variable a

missing status is given to observations that correspond with those of the

chosen “determining variable” that are above this upper η quantile.

– insert missing values as in the previous strategy but now using the lower

η quantile.

– use both x9 and x10 as determining variables and transform their values

into a probability by a logistic function. A missingness indicator is then

generated from a Bernoulli distribution with this probability.

Second scheme: Induce missing data in ONE THIRD of all variables (p/3)

chosen at random. In each variable a fraction η of missing values is inserted

based on the potential “determining variables” x9 and x10 following the same

procedure as in the previous scheme.

• Under MNAR mechanism:

First scheme: Induce missing data in the first 8 variables (x1, x2, . . . , x8). In

each variable a fraction η of missing values is inserted based on its upper η

quantile. That is, a missing status is given to observations that are above

this upper quantile.

Second scheme: Induce missing data in ONE THIRD of all variables (p/3)

chosen at random. In each variable a fraction η of missing values is inserted

based on its upper η quantile. That is, a missing status is given to observations

that are above this upper quantile.
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General

As in related studies, predictive performance was assessed via the mean squared pre-

diction error (MSPE) for regression or its equivalent misclassification error (MER) for

classification. The procedure to generate datasets with missing values was repeated

1, 000 times for each mechanism and scheme. The mean root MSPE (RMSPE) or the

mean MER across these 1, 000 iterations is reported as a final measure of predictive per-

formance. Moreover, a measure for the performance improvement with an imputation

strategy compared to surrogate decisions is calculated as in Hapfelmeier et al. (2012):

rel.impr. =
MSPESur. −MSPEImp.

MSPESur.
. (4.15)

Hence, we report the mean relative improvement to assess the performance of an impu-

tation method compared to surrogates.

All simulations were implemented in the R statistical software R Development Core

Team (2011). To allow a fair comparison with Hapfelmeier et al. (2012), R function

settings in their paper were replicated in our study. An overview of all the settings for

the methods used in our empirical studies is given in Table 4.3. As mentioned earlier, the

R package randomForest Liaw and Wiener (2002) does not support the use of surrogate

decisions. Therefore, no comparison between surrogates and imputation could be made

for RF.

It has to be emphasized that our comparisons were made among 26 techniques with

fixed modeling strategies. Issues like estimation of parameters that yield the best tree

structure or setting the best possible imputation model for a given imputation strategy

are outside the scope of this study. These settings were specified to allow comparability.

As in Hapfelmeier et al. (2012), the recommendations of Klebanoff and Cole (2008) on

the proper publication of imputation methods were followed in work. They are outlined

in this Section and described in more detail in the Appendix C. This allows researchers

in the field to evaluate the impact of these methods in practice by looking at every result

and the particular situation(s) in which they hold.

4.5 Results and Discussion

A summary of mean RMSPE/MER values as the percentage of missing data increases

can be found in Figures 4.1-4.3 for all datasets analyzed in this study. To make the

plots more informative, we decided to remove all methods with overall low performance.
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Table 4.3: R function and its corresponding package name, package reference paper
and settings for the implementation of each of the methods included in this study

Technique R function R package Reference R Settings

CART rpart() rpart Therneau maxsurrogate = min(3, variables available)

and Atkinson (2011)

CondTree ctree() party Hothorn maxsurrogate = min(3, variables available)

et al. (2011)

RF randomForest() randomForest Liaw ntree = 500,

and Wiener (2002) mtry = min(5, variables available)

CondRF cforest() party Hothorn ntree = 500, mtry = min(5, variables available),

et al. (2011) maxsurrogate = min(3, variables available)

Bagging bagging() ipred Peters et al. (2002) nbagg= 500,

maxsurrogate = min(3, variables available)

CondBagging cforest() party Hothorn ntree = 500,

et al. (2011) maxsurrogate = min(3, variables available)

Median/mode na.roughfix() randomForest Liaw none

and Wiener (2002)

Prox. matrix rfImpute() randomForest Liaw ntree = 500,

and Wiener (2002) mtry = min(5, variables available), iter = 5 a

MICE mice() mice VanBuuren and m = 5,

Groothuis-Oudshoorn defaultMethod = c(”norm”,”logreg”,”polyreg”)

(2011)

MIST treeMI() treeMI Burgette ITER = 20

and Reiter (2010)

kNN kNNImpute() b imputation Troyanskaya k=5

et al. (2001)

aError messages were displayed frequently when running the rfImpute() routine with iter = 5 on
datasets with large amounts of values MAR or MNAR. To obtain imputation in these cases, we ran this
routine exceptionally with iter = 1 combined with median/mode imputation when no convergence of
the Prox. matrix algorithm was attained at some cells.

bSince the kNNImpute() routine only allows numeric data as input, techniques with prior kNN
imputation could not be included in the comparisons made on datasets with at least one categorical
predictor (Heart and Birthweight datasets).

We only show the results for schemes with all variables containing missing values (first

schemes). The performance of all methods when a random third of the variables contains

missing values is quite stable and resembles that of 10% missingness in all variables. Note

that in the plots we have used the same point characters for techniques based on the

same tree prediction method. Different line types and colors (gray scale) correspond to

the different missing data treatments. In addition to these graphical results, a general

summary of mean relative improvement values can be found in Table 4.4 and 4.5. More

extensive numerical reports of mean MSPE/MER values and mean relative improvement

values can be found in the Appendix C.
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4.5.1 Comparison of techniques

The lower lines in Figures 4.1-4.3 mostly correspond to ensemble methods. This con-

firms the theoretical result in Section 4.3 that the usage of ensemble methods is advisable

when the goal is prediction. These methods benefit from their ensemble nature to aver-

age out sampling variability. The same result was empirically obtained by Hapfelmeier

et al. (2012) and corresponds to what has been broadly shown by several authors,

e.g. Bühlmann and Yu (2002); Breiman (1996a). Throughout our simulations CondRF

and RF methods as well as CondBagging performed in general superior to single tree

methods. Among these ensemble methods, one especially finds that the combinations

MICE/MIST + CondRF, MICE/MIST + RF, Prox. matrix + RF and CondBagging

alternatively beat each other throughout the datasets and scenarios analyzed.

For small amounts of missing data, the plots in Figures 4.1-4.3 show that CondRF/-

CondBagging with surrogates or RF/CondRF with a previous single imputation suffices

in general to obtain good prediction results. Therefore, we do not need to make more

intensive multiple imputation computations to obtain satisfactory predictions under this

scenario. In particular, CondRF with surrogates (dotted lines with triangle point-down

symbols) performs as well as other CondRF combinations in three out of the four real-

life datasets: Survival, Heart and Birthweight. Similarly, a SI + RF strategy is sufficient

to obtain competitive prediction results in the Fertility, Heart and simulated datasets.

For instance, Prox. matrix + RF (long-dashed lines with triangle point-up symbols)

performs very well for these datasets.

When the amount of missing values is large under the MCAR or MAR patterns MICE/MIST

+ CondRF/RF methods perform well throughout the datasets analyzed. MICE/MIST

+ CondRF are shown in Figures 4.1-4.3 with the triangle point-down joined with solid

thick lines for MICE as opposed to solid thin lines for MIST. Both methods show com-

petitive performance in comparison to the other techniques in three real-life datasets:

Survival, Heart and Birthweight. RF methods (portrayed by the triangle point-up)

achieve the first place in the Fertility dataset, with all missing data methods performing

equally well, while in the simulated dataset Prox. matrix + RF performs best; in both

cases with a clear difference over the other techniques.

When the amount of missingness becomes large under the MNAR pattern, simulations

show that MICE/MIST + CondRF again produces satisfactory results in general. In

most instances of the real-life datasets they are at least competitive to the other meth-

ods. On the other hand, in our studies the performance of RF methods systematically

deteriorates relative to the other methods. This is particularly the case for all RF meth-

ods in the Survival and Fertility datasets, for RF combined with SI in the Heart and
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Birthweight datasets and for MICE + RF in the simulated dataset. In Figure 4.2 one

can note that for the Fertility dataset RF methods goes down from being the best tech-

niques under MCAR and MAR mechanisms to become incredibly the worse techniques

at large amounts of data MNAR. Likewise, the plots for the Survival, Birthweight and

simulated datasets report more robustness in terms of predictive performance for Con-

dRF methods compared to RF methods under this complex missing data scenario. This

tendency of RF methods was further observed in other simulation studies whose results

are not shown here. Most likely, the difference in performance between CondRF and

RF methods resides on the different strategy that is used to select a splitting covariate

in each region. The CART procedure in RF might bias the selection of splitting vari-

ables while the conditional trees in CondRF aim to prevent this. As a result, CondRF

methods can be more successful in extracting valuable information from the (imputed)

predictor variables than RF methods, especially in situations of high uncertainty caused

by a complex missing data structure.

Interestingly, CondBagging with surrogate decisions (dotted lines with + symbol) also

yielded quite competitive results for all datasets and different scenarios analyzed. More-

over, it is also computationally much faster than MICE/MIST + CondRF/RF (see

subsection 4.5.4), which is an extra advantage. Bagging, however, always showed worse

performance than CondBagging, even for small amounts of missing data.

For SI, it turns out that imputation by the Prox. matrix performs in general comparable

to kNN imputation (results shown in the Appendix C). The new method of MIST

imputed bootstrap samples + RF (in gray solid line in Figures 4.1-4.3) shows good

results in general in comparison to techniques that combine a single tree with surrogates

or to techniques that combine RF with single imputation. This is in line with the results

in He (2006). However, when compared to CondRF procedures or RF combined with

MICE or MIST, it turns out that it has a comparable or slightly worse performance,

but never yields a real improvement.

A comparison between the multiple imputation methods MICE (in solid thick lines) and

MIST (in solid thin lines) in Figures 4.1-4.3 reveals that they mostly yield quite similar

prediction results, with a slight advantage for MICE in the real datasets. Hence, in most

cases the extra flexibility by using trees in MIST does not lead to better imputations,

due to the higher variability of this procedure. However, the high flexibility of MIST

may be useful to capture complicated structures in complex datasets. This is the case for

the simulated dataset where MIST yielded better results in comparison to MICE. Doove

et al. (2014) showed similar results for MIST with complex simulated datasets involving

different types of interactions, considering both categorical and continuous responses.



C
h

a
p

ter
4
.

T
ree-ba

sed
p
red

ictio
n

o
n

in
co

m
p
lete

d
a
ta

u
sin

g
im

p
u

ta
tio

n
o
r

su
rroga

te
d
ecisio

n
s

99

0.26

0.28

0.30

0.32

0.34

0.36

0.38

10% 20% 30% 40%

M
ea

n 
M

E
R

●

● ● ●

●

● ● ●

10% 20% 30% 40%

●
●

● ●

●
●

● ●

10% 20% 30% 40%

●

● ● ●

●

● ● ●

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.18

0.20

0.22

0.24

0.26

0.28

10% 20% 30% 40%

M
ea

n 
M

E
R

● ●
●

●● ● ●
●

10% 20% 30% 40%

Fraction of missing data

● ● ●
●● ● ●
●

10% 20% 30% 40%

●

●

●

●

●

●

●

●

0.18

0.20

0.22

0.24

0.26

0.28

●

●

ConRF

Prox. + RF

Condbagging (surr.)

MIST + CART

MIST + CondTree

MIST + RF

MIST + CondRF

MICE + CART

MICE + CondTree

MICE + RF

MICE + CondRF

MIST boots. + RF

Figure 4.1: Mean MER results for the Survival data (top row) and Heart disease data (bottom row). Results are shown for data MCAR (left
panel), MAR (middle panel) and MNAR (right panel).
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Figure 4.2: Mean RMSPE results for the Fertility data (top row) and Birthweight data (bottom row). The values for the Birthweight dataset have
been divided by 105. Results are shown for data MCAR (left panel), MAR (middle panel) and MNAR (right panel).
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4.5.2 Effects of sample size and dimension

We carried out experiments to investigate the effect of different sample sizes and dimen-

sions on the performance of the techniques under investigation. We used the design of

the simulated dataset and the MNAR scenario. This is the most complex scenario and

exhibits the largest differences across the different percentages of missing data. Perfor-

mance patterns for MCAR and MAR mechanisms were quite similar, but with lower

error rates than for MNAR values. First, the sample size was extended to 750, 1000

and 2000 observations while the dimension remained fixed at 10. Figure 4.4 shows the

results. When the sample size increases, the prediction errors of the methods change

very little with a slight tendency to decrease for some methods. The general perfor-

mance pattern of the methods is almost not changed. Thus, Prox. matrix + RF, MIST

+ RF and MIST imputed bootstrap samples + RF keep their good performance when

the sample size increases.
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Figure 4.4: Effect of sample size on the prediction performance for simulated datasets
under the MNAR mechanism. Results are shown for sample sizes with 750 observations
(left panel), 1000 observations (middle panel) and 2000 observations (right panel) with

dimension fixed at p = 10.

Secondly, we kept the sample size fixed at 500, but increased the dimension to 15, 20 and

50 continuous predictors, by adding noise predictors to our simulated dataset. Missing

data were also generated for these noise predictors. These results are shown in Figure 4.5.

When the dimension grows, most prediction errors slightly increase when compared to

the original simulated dataset. In contrast, CART or CondTree combined with multiple

imputation by MICE yield better prediction errors in higher dimensions, which become
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Figure 4.5: Effect of dimension on the prediction performance for simulated datasets
under the MNAR mechanism. Results are shown for dimensions with 15 (left panel),
20 (middle panel) and 50 continuous predictors (right panel) with sample size fixed at

N = 500.

comparable to those of their counterparts using MIST. While MIST performed clearly

better than MICE in the original 10 dimensional dataset, the difference between both

approaches becomes smaller as the dimension grows. Although this effect seems small for

the range of dimension we consider, intuitively this effect could be expected. MICE uses

more rigid linear models to make imputations while MIST uses flexible models to make

its imputations (i.e. CART models). The linear models in MICE are more biased but less

variable than the models in MIST. In higher dimensions with a lot of noise variables, the

lower variance of the linear models helps MICE to introduce stability in the imputations

and therefore stability in the predictions. Note also that CondBagging and CondRF

(both with surrogates) keep their performance stable as the dimension grows (with

better performance for CondBagging) in contrast to some methods based on imputation

which show a clear increase in their prediction error (e.g. MIST + RF/CondRF). This

may imply that the variability reduction by averaging in MI is exceeded by the extra

noise introduced in the imputation process, due to the many noise predictors.

We also investigated the combined effect of sample size and dimension by generating

datasets of size 1000 in 50 dimensions. The effect on prediction error (results not shown)
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was less pronounced than for sample size 500. Therefore, CondBagging can be advised

for large dimensional datasets, that likely contain noisy variables.

4.5.3 Initial imputation versus surrogates

We first compare SI to the use of surrogate decisions. Table 4.4 shows ranges of mean

relative improvement values over all techniques with SI and all missing data fractions.

These ranges are specified for the three missing data mechanisms: MCAR, MAR and

MNAR. In general there is no clear improvement by SI. As can be seen in Table 4.4,

sometimes large improvements occur but they are not regular throughout the analysis.

For instance, for the Heart and Survival datasets no SI method yields a clear improve-

ment, except at a few instances with MNAR data (e.g. Prox. matrix + CondRF with

31%). For the simulated dataset, single imputation by Prox. matrix or kNN sometimes

yields an improvement for moderate to large fractions of missing data (e.g. kNN +

CondRF with 80%), while in the Birthweight dataset only single imputation by Prox.

matrix combined with CondRF slightly improves on surrogates (e.g. 4% under MAR).

For the Fertility dataset the largest improvement rates are obtained by kNN imputation

(22% for MCAR and 5% for MAR). Overall, there is no guarantee that SI will be supe-

rior to surrogates in real-life applications and in fact it can turn out to be much worse

as can be seen from the large negative lower bounds in Table 4.4.

Table 4.4: Ranges of mean relative improvement for single imputation over all tech-
niques and missing data fractions. Note that the first result line corresponds to the
MCAR pattern, the second to the MAR and the third to the MNAR pattern. Only

CondRF, CondTree and CART were taken into account for these comparisons.

Fraction of var. miss. Real-life Datasets Simulated dataset
Haberman’s Survival Heart Disease Swiss Fertility Birthweight

1/1 -6% to 1% -17% to 0% -11% to 22% -11% to 3% -46% to 44%
-4% to 1% -11% to -1% -14% to 5% -9% to 4% -14% to 29%
-20% to 4% -15% to 31% -53% to 4% -12% to 1% -63% to 80%

1/3 -2% to 0% -17% to -1% -15% to 0% -5% to 1% -3% to 2%
-2% to 0% -17% to -2% -15% to 1% -5% to 1% -2% to 1%
-3% to 1% -14% to 0% -20% to 1% -5% to 1% -12% to 1%

Multiple imputation followed by a single tree method (CART or CondTree) in general

performs better than surrogates when having a high fraction of data missing on all

features under any pattern. However, as in Hapfelmeier et al. (2012), we emphasize that

the comparison between MI and surrogates for single trees is not fair. The reason is that

MI combined with single trees already has an ensemble nature as seen in Section 4.3.

Therefore, it is more honest to look at improvement rates by MI when using an ensemble

method instead of single trees.

Table 4.5 contains the mean improvement rates of MI with CondRF with respect to

CondRF with surrogates. MI followed by an ensemble method does not yield a distinct
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benefit over surrogates when the amount of incomplete data is small. This is mostly

indicated by the rates on the left extremes of the ranges in Table 4.5. However, it

can yield an improvement when the amount of missingness increases. For instance, for

the real datasets MI + CondRF often yields much better results than surrogates at

large amounts of data missing in all covariates (1/1) and for any pattern. The latter

is mostly shown by the rates on the right extremes of the ranges in Table 4.5. In

the simulated dataset only MIST + CondRF performs clearly better than surrogates,

reaching an improvement rate of 80%, while MICE + CondRF performs clearly worse

(see Figure 4.3).

Table 4.5: Ranges of mean relative improvement for multiple imputation with CondRF
vs CondRF with surrogates over all missing data fractions. Note that the first result
line corresponds to the MCAR pattern, the second to the MAR and the third to the

MNAR pattern.

Fraction of var. miss. Real-life Datasets Simulated dataset
Haberman’s Survival Heart Disease Swiss Fertility Birthweight

1/1 -1% to 0% -2% to 1% 0% to 27% 0% to 4% 5% to 20%
0% to 1% 0% to 2% -1% to 11% 1% to 4% -28% to 7%
-1% to 1% -1% to 19% 2% to 8% 1% to 2% -108% to 80%

1/3 -1% to 0% -1% to 3% 1% to 3% 0% to 2% -1% to 1%
-1% to 0% -1% to 2% 0% to 4% 0% to 2% -6% to 1%
-1% to 0% -1% to 2% -1% to 2% 0% to 2% -52% to 1%

Note that our results for the MCAR pattern differ from those obtained in Hapfelmeier

et al. (2012) with real-life datasets originally containing missing values. Authors in

Hapfelmeier et al. (2012) concluded that there was no convincing improvement when

using MI compared to surrogates. However, there are some differences with our study

concerning the modeling of the imputation distributions, as discussed in Section 4.1,

which can explain the difference in results.

4.5.4 Computational issues

The good and safe performance of MICE/MIST + CondRF techniques comes at a cost

in terms of computation time. CondBagging arises as the best alternative when one

is interested in making a tradeoff between performance and computational speed. It

showed quite good results throughout the simulation study and it shows a fairly stable

computation time even with increasing amounts of missing data. Plots of predictive per-

formance versus average computation time (in CPU seconds) are shown in Figure 4.6 for

the Birthweight, Heart, Fertility and simulated datasets under the MNAR mechanism.

This is the scenario that shows the largest differences in performance and computational

cost. However, similar conclusions can be obtained with other scenarios. The different

points in the plots indicate the different percentages of missing data introduced (10%,

20%, 30% and 40%). Note that the computation times are expressed in seconds and

were obtained on a single Intel i7 CPU (3.4GHz) machine running Windows 7.
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Figure 4.6: Performance vs computation time for the Birthweight (top left), Heart
(top right), Fertility (bottom left) and simulated (bottom right) datasets. The mean

RMSPE values for the Birthweight dataset have been divided by 105.

From the plots, the relatively fast computation of CondBagging is evident (see dotted

lines with + symbol). Compared to MIST + CondRF, it runs at least 10 times faster for

the Birthweight, 30 times faster for the Heart, 6 times faster for the Fertility and 10 times

faster for the simulated dataset, while both methods show similar performance in many

cases. The nice trade-off between performance and computation time for CondBag-

ging may become less important when the practitioner has access to multiple processor

machines because the MICE/MIST + CondRF procedures can easily be parallelized.

The plots in Figure 4.6 also suggest that multiple imputation by MICE is faster than

by MIST. Other datasets and scenarios revealed the same behavior. MICE was also

shown to be faster than MIST in Doove et al. (2014). The reason is that MIST uses
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non-parametric tree models with Bayesian bootstrap which can make it more difficult for

the algorithm to converge, compared to the standard MICE that uses linear parametric

models. Therefore, MICE + CondRF makes a better trade-off between performance

and computational cost than MIST + CondRF. Only for complex datasets with strong

nonlinear dependencies MIST + CondRF gives a better performance at the cost of a

higher computation time.

Next to CondBagging, single imputation methods and procedures with surrogates have

stable computational time across scenarios as well, but they may only work for small

amounts of missing data. Only results of Prox. matrix + RF are shown in the plots. In

general, methods show the lowest computation times under MAR and the largest times

under MNAR mechanism. The latter is especially the case for methods with MI. This is

not surprising since, given the complexity of the MNAR mechanism, methods with MI

will need more time until they achieve convergence.

We also inspected the time evolution of the different techniques as sample size and/or di-

mension increases. In particular, we recorded the computation time for the experiments

described in subsection 4.5.2. Figure 4.7 shows the time evolution in CPU minutes for

datasets with 40% of the values MNAR on all features. When the sample size increases

we note from Figure 4.7A that for almost all methods time increases quasi exponen-

tially. Overall, CondBagging consistently has a lower computation time compared to

MICE/MIST + CondRF techniques, with the highest differences for MIST + CondRF.

MICE is faster than MIST in all scenarios. In general techniques take longer to be

computed under data MNAR (plots for MCAR and MAR are not shown here).

When the dimension grows (Figure 4.7B), the computation time of MICE/MIST meth-

ods clearly increases faster than for growing sample size, while CondBagging keeps a

similar speed in both experiments. MICE is still faster than MIST and methods take

longer to be computed under the MNAR mechanism. On datasets of size 1000 in 50 di-

mensions MIST combined with ensembles required the longest computation time, reach-

ing even around 8 minutes. The increase in computation time as size and/or dimension

grows could be expected, especially for the methods with MI. However, computing times

of around 8 minutes on a standard machine are still manageable. Hence, MI + CondRF

can be computed at a reasonable time even for larger datasets.

4.6 Conclusions and Future work

If in real-life applications the practitioner does not know the mechanism that generated

the missing data, as often is the case in practice, we recommend the following strategies
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Figure 4.7: A: Computation time vs sample size for simulated data; B: Computation
time vs dimension for simulated data

when building a prediction model using tree-based methods:

• If small amounts of missingness are present it suffices to apply any ensemble

method with surrogates or with a previous single imputation.

• If the data contains moderate to large amounts of missing values, then multiple

imputation by MICE or MIST followed by CondRF is the safest option.

• For high dimensional datasets, CondBagging with surrogate decisions yields a good

compromise between performance and computation time.

Multiple imputation is preferred over single imputation because the latter often does not

yield any improvement over surrogates. The new method of MIST imputed bootstrap

samples when combined with RF is also not able to outperform MI. Multiple imputation

ensembles in general showed good results in our comparisons, especially when the amount

of missing data was large. These scenarios potentially lead to high prediction variability.

Thus, it is crucial that the prediction rule has the ability to average out these sources

of variability. Thanks to their ensemble nature in both the imputation step and the

prediction model, MI ensembles are able to cancel out both the sampling variability

and the variability caused by the missing data. Our theoretical derivations support the

empirical findings. However, our studies showed that prediction performance of MI + RF

may deteriorate compared to MI + CondRF for large fractions of data MNAR. Most

likely the strategy used to select a splitting variable in each region by the individual
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conditional trees in CondRF allows to better extract valuable information from the

imputations than RF in this complex scenario. Therefore, MI + CondRF is a safer and

more robust method in terms of prediction performance.

In high dimensions, variability reduction by averaging in MI methods like MICE/MIST

+ CondRF can be exceeded by the extra noise introduced in the imputation process due

to a large number of noisy predictors. In these cases CondBagging emerges as a very

good and computationally cheaper alternative.

As with all empirical studies it is not possible to make broad generalizations of our

results to other real-life settings. Our conclusions will be applicable to datasets of

similar structure (correlations, size, dimension,...) when using the same settings for

the tuning parameters of the methods as in our case (see Table 4.3). However, in our

opinion these conclusions form a good reference more generally, as the various real-life

datasets were selected from different scientific fields with variation in the number of

observations and variables. Moreover, the artificial dataset was simulated with a very

complex structure for its predictor variables and their relation with the outcome variable.

The large comparison of several techniques across many missing data scenarios, which

were at times extreme, also enriches the utility and relevance of this study as an element

of reference.

In this study, we have combined missing data procedures with tree-based prediction

methods in such a way that the whole procedure can first be learned on the training

data and then be used to make predictions for individual test cases, when both contain

missing values. In our evaluation of the techniques, we only considered complete test

cases to avoid an extra source of variability in the performance measures. In principle,

all methods considered in this study can handle test cases with missing values, but the

currently available implementations in R are not flexible enough yet to obtain the predic-

tions in practice. For example, for the imputation approaches it would be necessary that

an incomplete test case can be imputed on the basis of the imputation model from the

training data before entering the tree model. Implementations of imputation methods

like mice() or rfImpute() currently do not have the feature to “predict” the missing data

in a new case based on the imputation fit(s) of the training data. Therefore, current

implementations need to be updated and extended with an associated predict function

to make them applicable in practice.



Appendix A

Proofs of theorems and additional

lemmas

Proof of Theorem 1.1. Due to orthogonal equivariance of the estimator we may as-

sume that Σ = diag(λ1, λ2, . . . , λp) with λ1 > λ2 > . . . > λp, so that βq = (e1, e2, . . . , eq),

i.e. the canonical basis. This implies that λq > λq+1 and our parameter of interest Lq
is uniquely defined. It now suffices to show that C(FΣ,BMVS) = diag(λ1, λ2, . . . , λp).

Due to orthogonal equivariance, we can assume w.l.o.g. that C(FΣ,BMVS) = Λ̃ =

diag(λ̃1, λ̃2, . . . , λ̃p). Using the notation u(t) = ρ′c(t)/t we have that

Λ̃ = η

∫
u

(
dG(x,BMVS)

σS

)
xxTg(λ−1

1 x2
1 + λ−1

2 x2
2 + . . .+ λ−1

p x2
p) dx,

for some η > 0. By using the transformation y = Λ̃
−1/2

x it is sufficient to show that all

solutions of

Ip =

∫
u

(
‖ry(BMVS)‖

σS

)
yyTg

(
λ̃1
λ1
y21 +

λ̃2
λ2
y22 + . . .+

λ̃p
λp
y2p

)
dy

with ‖ry(BMVS)‖ =

∥∥∥∥Λ̃1/2
y −BMVSBT

MVSΛ̃
1/2

y

∥∥∥∥, satisfy λ̃1

λ1
= . . . =

λ̃p
λp

. We have that

∫
u

(
‖ry(BMVS)‖

σS

)
y21 g

 p∑
j=1

λ̃j
λj
y2j

 dy =

∫
u

(
‖ry(BMVS)‖

σS

)
y22 g

 p∑
j=1

λ̃j
λj
y2j

 dy

(A.1)

and hence∫
u

(
‖ry(BMVS)‖

σS

)
(y2

1 − y2
2)

g
 λ̃1

λ1
y2
1 +

λ̃2

λ2
y2
2 +

p∑
j=3

λ̃j

λj
y2
j

− g
 λ̃2

λ2
y2
1 +

λ̃1

λ1
y2
2 +

p∑
j=3

λ̃j

λj
y2
j

 dy = 0

(A.2)
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as may be seen by interchanging the roles of y1 and y2. Note that there is a contribution

to the integral above only if in u(t) we have t ≤ c. Suppose that λ̃1
λ1

> λ̃2
λ2

. Then

if y2
1 > y2

2 we have that λ̃1
λ1
y2

1 + λ̃2
λ2
y2

2 > λ̃2
λ2
y2

1 + λ̃1
λ1
y2

2. Likewise, if y2
1 < y2

2 then
λ̃1
λ1
y2

1 + λ̃2
λ2
y2

2 < λ̃2
λ2
y2

1 + λ̃1
λ1
y2

2. Recall that g is strictly decreasing. Thus, if λ̃1
λ1

> λ̃2
λ2

the integral in (A.2) is always non-positive and strictly negative at some y1, y2. This

contradicts (A.1) showing that λ̃1
λ1

= λ̃2
λ2

and in general λ̃1
λ1

= . . . =
λ̃p
λp

Proof of Theorem 1.2. Due to orthogonal equivariance, we can restrict ourselves to

elliptical distributions FΣ with scatter Σ = diag(λ1, λ2, . . . , λp), λ1 > λ2 > . . . > λp.

From (1.17), we can rewrite

C(FΣ) = C(FΣ,BMVS) =

∫
u

(
dFΣ

(x,BMVS)

σS

)
xxTdFΣ(x) (A.3)

with u(t) = ρ′(t)/t. Fisher consistency implies that C(FΣ) = diag(λ1(FΣ), . . . , λp(FΣ)) =

diag(λ1, λ2, . . . , λp). Recall that the columns of BMVS are the ordered eigenvectors of

C(FΣ). To simplify the notation, we write F = FΣ. Let us denote the point mass at a

point x0 by ∆x0 and consider the contaminated distribution Fε,x0 = (1 − ε)F + ε∆x0 .

First, we derive the influence function of the weighted covariance matrix C(FΣ). We

have that

Cε = C(Fε,x0) = (1− ε)
∫
u

(
dFε,x0

(x,BMVS(Fε,x0))

σS(Fε,x0)

)
xxTdF (x)

+ε u

(
dFε,x0

(x0,BMVS(Fε,x0))

σS(Fε,x0)

)
x0x

T
0 (A.4)

Using the definition of the influence function we have that

IF (x0,C, F ) =
∂Cε

∂ε

∣∣∣
ε=0

Differentiating (A.4) gives

IF (x0,C, F ) =

∫
u′
(
dF (x,BMVS)

σS

)
∂

∂ε

dFε,x0
(x,BMVS(Fε,x0))

σS(Fε,x0)

∣∣∣
ε=0

xxTdF (x)

−C(F ) + u

(
dF (x0,BMVS)

σS

)
x0x

T
0 (A.5)
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It holds that

∂

∂ε

dFε,x0
(x,BMVS(Fε,x0 ))

σS(Fε,x0 )

∣∣∣
ε=0

=

=
∂

∂ε

[(
x−BMVS(Fε,x0 )BT

MVS(Fε,x0 )x

)T(
x−BMVS(Fε,x0 )BT

MVS(Fε,x0 )x

)]1/2

σS(Fε,x0 )

∣∣∣
ε=0

=
1

2 dF (x,BMVS)σS
·

·
[(
− IF (x0,BMVS, F )BT

MVSx−BMVSIF (x0,BMVS, F )Tx

)T(
x−BMVSBT

MVSx

)

+

(
x−BMVSBT

MVSx

)T(
− IF (x0,BMVS, F )BT

MVSx−BMVSIF (x0,BMVS, F )Tx

)]
− IF (x0, σS , F ) · dF (x,BMVS) · σ−2

S

=
xT BMVS BT

MVS IF (x0,BMVS, F ) BT
MVS x

dF (x,BMVS)σS
−

xT IF (x0,BMVS, F ) BT
MVS x

dF (x,BMVS)σS

− IF (x0, σS , F ) · dF (x,BMVS) · σ−2
S (A.6)

Inserting (A.6) in (A.5) we obtain:

IF (x0,C, F ) =

∫
u′
(
dF (x,BMVS)

σS

)
xT BMVS B

T
MVS IF (x0,BMVS, F )BT

MVS xxxT

dF (x,BMVS)σS
dF (x)

−
∫
u′
(
dF (x,BMVS)

σS

)
xT IF (x0,BMVS, F )BT

MVS xxxT

dF (x,BMVS)σS
dF (x)

−
∫
u′
(
dF (x,BMVS)

σS

)
dF (x,BMVS)xxT dF (x) IF (x0, σS , F ) · σ−2

S

−C(F ) + u

(
dF (x0,BMVS)

σS

)
x0x

T
0 (A.7)

Using a derivation as in Van Aelst et al. (2013), we obtain that

IF (x0, σS , F ) =
σ2

S

[
ρ
(
dF (x0,BMVS)

σS

)
− b
]

2b− 2bσS + σ2
S EF

[
ρ′
(
dF (x,BMVS)

σS

)
dF (x,BMVS)

]
Since BMVS = (e1, . . . , eq), i.e. the canonical basis, we can rewrite (A.7) as:

IF (x0,C, F ) =

q∑
k,l=1

∫
u′
(
dF (x,BMVS)

σS

)
·

1

dF (x,BMVS)σS
xk IF (x0,BMVS, F )kl xl x xT dF (x)

−
q∑
l=1

p∑
k=1

∫
u′
(
dF (x,BMVS)

σS

)
1

dF (x,BMVS)σS
xk IF (x0,BMVS, F )kl xl x xT dF (x)

−
∫
u′
(
dF (x,BMVS)

σS

)
dF (x,BMVS) x xT dF (x) ·

σ2
S

[
ρ
(
dF (x0,BMVS)

σS

)
− b
]
· σ−2

S

2b− 2bσS + σ2
S EF

[
ρ′
(
dF (x,BMVS)

σS

)
dF (x,BMVS)

]
−C(F ) + u

(
dF (x0,BMVS)

σS

)
x0xT

0
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Simplfying the first and second terms we obtain

IF (x0,C, F ) = −
q∑
l=1

p∑
k=q+1

∫
u′
(
dF (x,BMVS)

σS

)
·

1

dF (x,BMVS)σS
xk IF (x0,BMVS, F )kl xl x xT dF (x)

−
∫
u′
(
dF (x,BMVS)

σS

)
dF (x,BMVS) x xT dF (x) ·

σ2
S

[
ρ
(
dF (x0,BMVS)

σS

)
− b
]
· σ−2

S

2b− 2bσS + σ2
S EF

[
ρ′
(
dF (x,BMVS)

σS

)
dF (x,BMVS)

]
−C(F ) + u

(
dF (x0,BMVS)

σS

)
x0xT

0

We now consider an (i, j)th element of IF (x0,C, F ). By symmetry of the integration

domain, non-zero contributions in the first integral come from i = k, j = l, or, i = l,

j = k. Therefore, for any (i, j)th element with i = 1, . . . , q, j = 1, . . . , q, or with

i = q + 1, . . . , p, j = q + 1, . . . , p, there is no contribution in the first integral. In the

second term the integrand is an odd function if i 6= j and the contribution is zero in

that case. Since C(F ) is a diagonal matrix, for any (i, j)th element with i = q+1, . . . , p,

j = 1, . . . , q, we have that

IF (x0,C, F )ij = −IF (x0,BMVS, F )ij

∫
u′
(
dF (x,BMVS)

σS

)
· 1

dF (x,BMVS)σS
x2ix

2
j dF (x)

+ u

(
dF (x0,BMVS)

σS

)
x0ix0j (A.8)

Similarly, for any (i, j)th element with i = 1, . . . , q, j = q + 1, . . . , p, we get

IF (x0,C, F )ij = −IF (x0,BMVS, F )ji

∫
u′
(
dF (x,BMVS)

σS

)
· 1

dF (x,BMVS)σS
x2ix

2
j dF (x)

+ u

(
dF (x0,BMVS)

σS

)
x0ix0j (A.9)

For any (i, j)th element with i = 1, . . . , q, j = 1, . . . , q, or, i = q+1, . . . , p, j = q+1, . . . , p,

with i 6= j we get

IF (x0,C, F )ij = u

(
dF (x0,BMVS)

σS

)
x0ix0j

And when i = j we get

IF (x0,C, FΣ)ii = u

(
dF (x0,BMVS)

σS

)
x20i − λi(F )−

∫
u′
(
dF (x,BMVS)

σS

)
dF (x,BMVS)x2i dF (x)·

·
σ2
S

[
ρ
(
dF (x0,BMVS)

σS

)
− b
]
· σ−2S

2b− 2bσS + σ2
S EF

[
ρ′
(
dF (x,BMVS)

σS

)
dF (x,BMVS)

]
Using Lemma 3 of Croux and Haesbroeck (2000) and the diagonality of C(F ) it holds

that the diagonal elements IF (x0,BMVS, F )ii are zero, and that the non-diagonal ele-

ments are given by

IF (x0,BMVS, F )ij =
IF (x0,C, F )ij
λj(F )− λi(F )
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Using this result in (A.8) and (A.9) and after rearranging terms we obtain

IF (x0,C, FΣ)ij =
[λj(F )− λi(F )] · u

(
dF (x0,BMVS)

σS

)
x0ix0j

λj(F )− λi(F ) +Hij(BMVS)
, i = q + 1, . . . , p, j = 1, . . . , q

and

IF (x0,C, FΣ)ij =
[λj(F )− λi(F )] · u

(
dF (x0,BMVS)

σS

)
x0ix0j

λj(F )− λi(F )−Hij(BMVS)
, i = 1, . . . , q, j = q + 1, . . . , p

with Hij(BMVS) =
∫
u′
(
dF (x,BMVS)

σS

)
· 1
dF (x,BMVS)σS

x2
ix

2
j dF (x).

Lemma A.1. Let x be a p−dimensional random vector having any distribution G with

location µ and scale Σ ∈ SPSD(p). Assume w.l.o.g. that µ = 0. Let βq be an orthogonal

matrix such that βT
q Σβq = Λq = diag(λ1, λ2, . . . , λq), where λ1 ≥ λ2 ≥ . . . ≥ λq ≥ 0 are

the q largest eigenvalues of Σ. Assume λq > λq+1. For any orthogonal matrix Bq ∈ Rp×q

it follows that

EG
[
‖x−BqB

T
q x‖2

]
≥

p∑
j=q+1

λj . (A.10)

The unique solution which attains this lower bound is βq.

Proof of Lemma A.1. For any orthogonal matrix Bq ∈ Rp×q we obtain:

EG
[
‖x−BqB

T
q x‖2

]
= EG

[
(x−BqB

T
q x)T(x−BqB

T
q x)

]
= tr EG

[
(x−BqB

T
q x)(x−BqB

T
q x)T

]
= tr (EG

[
xxT

]
− EG

[
xxT

]
BqB

T
q −BqB

T
q EG

[
xxT

]
+ BqB

T
q EG

[
xxT

]
BqB

T
q )

= tr (Σ−BT
q ΣBq) = tr (Σ)− tr (BT

q ΣBq)

since the trace of a matrix is invariant under orthogonal transformations. We first show

the following matrix result. Let ηi [·] represent the i−th largest eigenvalue. Then

ηi
[
Σ−BT

q ΣBq

]
≥

{
ηq+i [Σ] = λq+i (i = 1, 2, . . . , p− q)
0 (i = p− q + 1, . . . , p)

(A.11)

Using (A.11) we have that

tr (Σ−BT
q ΣBq) ≥

p∑
j=q+1

λj (A.12)
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We know that tr (βT
q Σβq) =

∑q
j=1 λj . Therefore, we conclude that we attain the lower

bound in (A.12) when Bq = βq (see Seber, 1984, Theorem 5.3), i.e.

tr (Σ− βT
q Σβq) =

p∑
j=q+1

λj (A.13)

Since λq > λq+1 we have also proved the uniqueness part.

Proof of Proposition 1. Take L̂
B̂LS

(Ĥ) where Ĥ ∈ minH∈S
∑

i∈H d
2
i (L̂B̂LS

(H)).

We first prove that L̂
B̂LS

(Ĥ) minimizes σ̂2
LTS(d(LBq)). Take Bq ∈ Rp×q arbitrarily

and denote H1 =
{
i | d2

i (LBq) ≤ d2
(h:n)(LBq)

}
∈ S the set of indices corresponding to

the first h ordered squared Euclidean distances of the residuals. Then we can write∑
i∈H1 d2

i (LBq) =
∑h

i=1 d
2
(i:n)(LBq). Without loss of generality we assume that µ is

known and equal to 0. Using the property of traces and of eigenvalues in (A.11) it

follows that

1

h

∑
i∈H1

d2
i (LBq) =

1

h

∑
i∈H1

‖ri(LBq)‖
2 =

1

h

∑
i∈H1

‖xi −BqB
T
q xi‖

2 ≥
p∑

j=q+1

λ̂j(H
1) (A.14)

where λ̂j(H
1) is the jth eigenvalue of Σ̂(H1), the covariance matrix based on the ob-

servations
{
xi; i ∈ H1

}
. Since the data satisfies condition (1.30), Lemma A.1 can be

applied:

σ̂2
LTS(d(LBq)) =

h∑
i=1

d2
(i:n)(LBq) =

∑
i∈H1

d2
i (LBq) ≥

∑
i∈H1

d2
i (L̂B̂LS

(H1))

≥
∑
i∈Ĥ

d2
i (L̂B̂LS

(Ĥ))

=
h∑
i=1

d2
(i:n)(L̂B̂LS

(Ĥ))

= σ̂2
LTS(d(L̂

B̂LS
(Ĥ)),

where we applied the definition of Ĥ.

We conclude that L̂
B̂LS

(Ĥ) = mindim(LBq )=q σ̂2
LTS(d(LBq)).

On the other hand, take now L̃
B̃q
∈ mindim(LBq )=q σ̂2

LTS(d(LBq)) with L̃
B̃q

spanned

by the columns of B̃q. Take B̃q and denote H̃ =
{
i | d2

i (L̃B̃q
) ≤ d2

(h:n)(L̃B̃q
)
}
∈ S

the set of indices corresponding to the first h ordered squared Euclidean distances

of the residuals. We can write
∑

i∈H̃ d
2
i (L̃B̃q

) =
∑h

i=1 d
2
(i:n)(L̃B̃q

). Then we have∑
i∈H̃ d

2
i (L̃B̃q

) ≤
∑

i∈H̃ d
2
i (L̂B̂LS

(H̃)). But since (A.14) also holds for the pair (H̃, B̃q),

the uniqueness part of Lemma A.1 gives B̃q = B̂LS(H̃). It then follows that for any
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other H ∈ S we have

∑
i∈H

d2
i (L̂B̂LS

(H)) ≥
h∑
i=1

d2
(i:n)(L̂B̂LS

(H)) ≥
h∑
i=1

d2
(i:n)(L̃B̃q

)

=
∑
i∈H̃

d2
i (L̃B̃q

)

=
∑
i∈H̃

d2
i (L̂B̂LS

(H̃)).

Hence, it follows that L̃
B̃q

= L̂
B̂LS

(H̃), where H̃ ∈ minH∈S
∑

i∈H d
2
i (LB̂LS

(H)), which

ends the proof.

Proof of Lemma 1.3. Clearly we have that E ∈ DG(α). From (1.37) we have that∫
Ê
d2
G(x,m

LS,Ê
,B

LS,Ê
) dG(x) ≤

∫
E
d2
G(x,mLS,E ,BLS,E) dG(x) (A.15)

for all E ∈ DG(α). By definition of E we also know that∫
E
d2
G(x,m

LS,Ê
,B

LS,Ê
) dG(x) ≤

∫
Ê
d2
G(x,m

LS,Ê
,B

LS,Ê
) dG(x) (A.16)

By lemma A.1 we obtain∫
E
d2
G(x,mLS,E ,BLS,E) dG(x) ≤

∫
E
d2
G(x,m

LS,Ê
,B

LS,Ê
) dG(x) (A.17)

Combining (A.16) and (A.17) it holds that∫
E
d2
G(x,mLS,E ,BLS,E) dG(x) ≤

∫
Ê
d2
G(x,m

LS,Ê
,B

LS,Ê
) dG(x) (A.18)

Finally, combining (A.15) and (A.18) we obtain∫
E
d2
G(x,mLS,E ,BLS,E) dG(x) =

∫
Ê
d2
G(x,m

LS,Ê
,B

LS,Ê
) dG(x) (A.19)

and thus we conclude that LBLS,E = LB
LS,Ê

.

Proof of Lemma 1.4. The MVLTS solution B
LS,Ê

satisfies BT
LS,Ê

Σ
Ê

B
LS,Ê

= Λ
LS,Ê

,

where Λ
LS,Ê

∈ Rq×q is the diagonal matrix that contains the q largest eigenvalues of the

covariance functional Σ
Ê

. Let us now rewrite the MVLTS problem after the orthogonal
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transformation Υx, Υ ∈ Rp×p:

min
Bq ,BT

q Bq= Iq

1

1− α

∫
Ê
‖Υx−BqB

T
q Υx‖2 dH(x)

= min
Bq ,BT

q Bq= Iq

1

1− α

∫
Ê
‖x‖2 − ‖BqB

T
q Υx‖2 dH(x)

= max
Bq ,BT

q Bq= Iq

1

1− α

∫
Ê
‖BqB

T
q Υx‖2 dH(x)

= max
Bq ,BT

q Bq= Iq

1

1− α

∫
Ê

xTΥTBqB
T
q Υx dH(x)

= max
Bq ,BT

q Bq= Iq
tr(BT

q Γ
Ê

(G)Bq), (A.20)

by using properties of traces and that Γ
Ê

(G) = 1
1−α

∫
Ê

ΥxxTΥT dG(x) = ΥΣ
Ê

(G)ΥT.

Let us define B̃
Ê

(G) = ΥB
LS,Ê

. Since B̃T
Ê

(G)Γ
Ê

(G)B̃
Ê

(G) = Λ
LS,Ê

, we have by lemma

A.1 that B̃
Ê

(G) is the solution to (A.20). Therefore, after transformation we have that

BMVLTS(Υx) = B̃
Ê

= ΥB
LS,Ê

= ΥBMVLTS(x),

and conclude orthogonal equivariance of the MLTS-PCA estimator.

We can now proof the Fisher-consistent result of Theorem 1.5.

Proof of Theorem 1.5. Using the result of Lemma 1.4 we may assume that Σ =

diag(λ1, λ2, . . . , λp) with λ1 > λ2 > . . . > λp, so that βq = (e1, e2, . . . , eq), i.e. the

canonical basis. This implies that λq > λq+1 so that our parameter of interest Lq is

uniquely defined. It now suffices to show that B
LS,Ê

(FΣ) = (e1, e2, . . . , eq) and that

its columns correspond to the q largest eigenvalues of Σ
Ê

(FΣ): λ̃1 > λ̃2 > . . . > λ̃q.

Lemma 1.3 shows that Σ
Ê

(FΣ) is the covariance matrix based solely on the region

E =
{

x ∈ Rp; d2
G(x,LB

LS,Ê
) ≤ D2

α

}
. Due to orthogonal equivariance we can assume

w.l.o.g. that Σ
Ê

(FΣ) = Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃p). We have

Λ̃ = η

∫
E

xxTg(λ−1
1 x2

1 + λ−1
2 x2

2 + . . .+ λ−1
p x2

p) dx,

for some η > 0. We are left to show that λ̃1 > λ̃2 > . . . > λ̃p. For this, it is sufficient to

show that any pair (λ̃j , λ̃j+1) satisfies the condition λ̃j > λ̃j+1, for j = 1, . . . , p− 1. We

have

λ̃2

∫
E
x2

1 g(

p∑
i=1

λ−1
i x2

i ) dx = λ̃1

∫
E
x2

2 g(

p∑
i=1

λ−1
i x2

i ) dx (A.21)
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and hence

λ̃1

[ ∫
E
x2

2

(
g( λ−1

1 x2
1 + λ−1

2 x2
2 +

p∑
i=3

λ−1
i x2

i )− g( λ−1
2 x2

1 + λ−1
1 x2

2 +

p∑
i=3

λ−1
i x2

i )

)
dx

]

−λ̃2

[ ∫
E
x2

1

(
g( λ−1

1 x2
1 + λ−1

2 x2
2 +

p∑
i=3

λ−1
i x2

i )− g( λ−1
2 x2

1 + λ−1
1 x2

2 +

p∑
i=3

λ−1
i x2

i )

)
dx

]
= 0

(A.22)

as may be seen by interchanging the roles of x1 and x2. Equation (A.22) can be rewritten

as

λ̃1 I(x) − λ̃2 K(x) = 0

with

I(x) =

∫
E
x2

2

(
g( λ−1

1 x2
1 + λ−1

2 x2
2 +

p∑
i=3

λ−1
i x2

i )− g( λ−1
2 x2

1 + λ−1
1 x2

2 +

p∑
i=3

λ−1
i x2

i )

)
dx

and

K(x) =

∫
E
x2

1

(
g( λ−1

1 x2
1 + λ−1

2 x2
2 +

p∑
i=3

λ−1
i x2

i )− g( λ−1
2 x2

1 + λ−1
1 x2

2 +

p∑
i=3

λ−1
i x2

i )

)
dx

We know that λ1 > λ2. Then if x2
1 > x2

2 we have that λ−1
1 x2

1 +λ−1
2 x2

2 < λ−1
2 x2

1 +λ−1
1 x2

2

and since g is strictly decreasing this implies K(x) > I(x). Similarly, if x2
1 < x2

2 then

λ−1
1 x2

1 + λ−1
2 x2

2 > λ−1
2 x2

1 + λ−1
1 x2

2 implying K(x) > I(x). Thus, K(x) will always be

larger than I(x). This contradicts (A.21) unless λ̃1 > λ̃2 and in general λ̃1 > λ̃2 > . . . >

λ̃p.
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Additional tables

Table B.1: Additional results of the simulation study in section 1.6

Design ε k LS S-M S-M S-L S-L PPMD PPME
(c=3) (c=1.5) (α=0.5) (α=0.25)

a) 0 0 0.02 0.02 0.02 0.07 0.04 0.39 0.23
10% 1 0.02 0.02 0.03 0.10 0.04 0.43 0.26

2.5 0.03 0.03 0.03 0.07 0.03 0.49 0.34
20 2.60 0.02 0.03 0.07 0.03 0.61 0.54

20% 1.5 0.03 0.03 0.03 1.18 0.08 0.55 0.38
5 2.57 2.60 0.03 0.07 0.03 1.99 1.96
20 2.60 2.62 0.03 0.07 0.03 0.77 0.70

b) 0 0 0.03 0.03 0.04 0.14 0.06 0.25 0.16
10% 1.5 0.05 0.06 0.09 0.24 0.14 0.33 0.28

2 0.11 0.11 0.10 0.15 0.11 0.38 0.34
4 0.66 0.64 0.05 0.11 0.06 0.47 0.47

20% 2 0.48 0.56 0.67 0.75 0.68 0.73 0.66
3 0.66 0.67 0.71 0.49 0.66 0.79 0.75
5 0.69 0.69 0.69 0.11 0.17 0.62 0.61
19 0.70 0.70 0.04 0.11 0.05 0.33 0.31
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Table B.2: Additional results of the simulation study in section 1.6

Design ε k PPLTS SPC MVS MVS MVLTS MVLTS
(c=3) (c=1.5) (α=0.5) (α=0.25)

a) 0 0 0.32 0.04 0.02 0.02 0.07 0.04
10% 1 0.41 0.04 0.02 0.03 0.11 0.04

2.5 0.62 0.05 0.03 0.03 0.07 0.03
20 0.58 0.05 0.02 0.03 0.07 0.03

20% 1.5 0.78 0.09 0.03 0.03 0.96 0.07
5 1.74 0.72 2.60 0.03 0.07 0.03
20 0.65 0.42 2.62 0.03 0.07 0.03

b) 0 0 0.27 0.05 0.03 0.04 0.14 0.06
10% 1.5 0.40 0.13 0.06 0.08 0.20 0.12

2 0.46 0.16 0.10 0.09 0.16 0.09
4 0.49 0.19 0.55 0.05 0.12 0.06

20% 2 0.78 0.55 0.56 0.66 0.74 0.67
3 0.73 0.60 0.67 0.71 0.44 0.67
5 0.57 0.62 0.69 0.69 0.11 0.17
19 0.30 0.46 0.72 0.04 0.11 0.05

Table B.3: Additional results of the simulation study in section 1.6

Design ε k MVS-
det(c=3)

MVS-
det(c=1.5)

MVLTS-
det(α=0.5)

MVLTS-
det(α=0.25)

a) 0 0 0.02 0.02 0.06 0.04
10% 1 0.02 0.03 0.08 0.04

2.5 0.03 0.03 0.07 0.03
20 0.02 0.03 0.07 0.03

20% 1.5 0.03 0.03 0.29 0.06
5 0.28 0.03 0.06 0.03
20 0.04 0.03 0.06 0.03

b) 0 0 0.03 0.04 0.11 0.07
10% 1.5 0.06 0.08 0.14 0.12

2 0.09 0.07 0.12 0.09
4 0.24 0.05 0.11 0.07

20% 2 0.46 0.38 0.35 0.62
3 0.67 0.27 0.15 0.65
5 0.69 0.07 0.11 0.66
19 0.04 0.05 0.11 0.69
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ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.20 ε1 = 0.30

Method Clean Out Clean Out Clean Out Clean Out Clean Out Clean Out Clean

True 1.266 26.930 1.138 269.316 1.264 53.780 1.013 269.685 1.265 80.399 0.888 269.717 1.265

LS 1.246 18.961 5.065 193.372 5.679 37.429 5.682 187.461 7.104 56.593 5.069 189.685 7.214

CoLTS 1.349 26.937 1.204 269.382 1.338 53.792 1.065 269.755 1.329 80.405 0.925 269.757 1.317

MVLTS 1.316 26.935 1.169 269.350 1.298 53.794 1.026 269.749 1.281 80.421 0.889 269.790 1.265

S(3) 1.253 26.922 1.126 269.245 1.252 53.425 1.081 268.453 1.361 75.067 1.685 254.757 2.503

S(1.5) 1.308 26.872 1.270 268.937 1.417 53.241 1.464 267.400 1.850 78.196 1.794 263.041 2.600

PP 1.335 26.536 1.335 265.791 1.486 51.845 1.559 260.972 1.972 73.853 2.206 249.538 3.222

Table B.4: Mean prediction errors over 500 replications for Model 1

ε1 = ε2 = 0.00 ε1 = 0.10 ε1 = 0.20 ε1 = 0.30

Method Clean Out Clean Out Clean Out Clean Out Clean Out Clean Out Clean

True 1.359 10.063 1.222 100.589 1.358 20.054 1.087 100.598 1.358 29.950 0.953 100.506 1.358

LS 1.339 1.597 4.032 19.528 4.512 1.840 4.482 9.505 5.610 2.517 4.119 8.478 5.868

CoLTS 1.441 10.099 1.294 100.998 1.438 20.191 1.152 101.266 1.438 29.965 1.007 100.674 1.435

MVLTS 1.411 10.040 1.254 100.517 1.393 20.054 1.100 100.546 1.374 29.860 0.962 100.261 1.374

S(3) 1.346 9.839 1.380 99.230 1.541 12.427 2.357 69.919 3.035 4.110 3.861 16.235 5.545

S(1.5) 1.401 9.638 2.047 97.207 2.296 17.916 2.891 90.648 3.645 24.572 3.353 83.262 4.809

PP 1.428 8.922 1.427 90.696 1.589 14.865 1.618 76.535 2.039 15.653 2.026 55.221 2.937

Table B.5: Mean prediction errors over 500 replications for Model 2



A
p

p
en

d
ix

B
.

A
d
d
itio

n
a
l

ta
bles

122

ε = 0.00 ε1 = 0.10 ε1 = 0.20 ε1 = 0.30

Method Clean Out Clean Out Clean Out Clean Out Clean Out Clean Out Clean

True 0.304 4.411 0.274 44.163 0.304 8.842 0.243 44.088 0.304 13.491 0.211 44.105 0.304

LS 0.285 2.074 0.660 18.457 0.736 5.599 0.711 27.363 0.893 9.550 0.721 30.954 1.045

CoLTS 0.432 4.534 0.389 45.404 0.433 9.062 0.347 45.176 0.434 13.796 0.307 45.106 0.443

MVLTS 0.327 4.434 0.289 44.384 0.321 8.900 0.249 44.387 0.312 13.573 0.209 44.367 0.300

S(3) 0.301 4.412 0.269 44.148 0.299 8.846 0.237 44.113 0.297 13.476 0.205 44.053 0.296

S(1.5) 0.354 4.465 0.318 44.674 0.354 8.931 0.284 44.535 0.355 13.633 0.248 44.574 0.358

PP 0.385 4.439 0.355 44.397 0.394 8.913 0.321 44.430 0.402 13.592 0.290 44.432 0.419

Table B.6: Mean prediction errors over 500 replications for Model 3

ε1 = 0.90 (D = 1) ε1 = 0.48 ε1 = 0.90 (fixed T)

Method Out Clean Out Clean Out Clean Out Clean Out Clean Out Clean

True 39.705 0.031 44.111 0.308 21.345 0.157 44.096 0.304 39.666 0.031 44.066 0.308

LS 32.654 0.415 36.276 4.310 16.496 0.656 33.999 1.280 2.833 0.035 3.147 0.349

CoLTS 41.861 0.122 46.491 1.474 21.701 0.245 44.831 0.478 3.013 0.050 3.347 0.501

MVLTS 37.876 0.585 42.076 6.712 21.192 0.165 43.861 0.329 2.883 0.039 3.202 0.389

S(3) 39.489 0.039 43.874 0.390 21.255 0.153 43.921 0.298 2.850 0.036 3.166 0.364

S(1.5) 40.337 0.051 44.811 0.517 21.508 0.191 44.443 0.370 2.908 0.041 3.230 0.407

PP 40.235 0.042 44.693 0.376 21.446 0.237 44.315 0.461 3.017 0.049 3.351 0.487

Table B.7: Mean prediction errors over 500 replications for Model 3
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Tree-based methods

C.1 Tree-based methods

Tree-based methods are known to be flexible enough to capture complex interactive

structures and deal comparatively fast with high dimensional settings. Most of them

are founded on the notion of the Classification and Regression Tree (CART) algorithm

proposed by Breiman et al. (1984). The CART algorithm recursively partitions the

predictor space into binary sub-regions so that at each partition the “purest” sub-regions

possible are obtained, i.e. the observed values and the fitted values by the tree are as

close as possible in each of the sub-regions formed. CART fits a constant in each region,

e.g. the average of responses for regression settings or the majority class for classification.

Basically, at each region b we seek for the splitting variable j and corresponding point s

maximizing the reduction of the impurity measure ∆̂Qb:

∆̂Qb = Q̂b −
(
Q̂Lb + Q̂Rb

)
(C.1)

where Q̂Lb and Q̂Rb are the impurity measures at the left child and right child region

of b respectively. This is equivalent to minimizing the total impurity measure after

performing the split (minimizing the rightmost-hand side term of Equation C.1). For

classification problems Q̂Lb and Q̂Rb in Equation C.1 need to be weighted byNLb andNRb

respectively, i.e. the number of cases in the corresponding child region of b. Depending

on the response type different criteria can be employed for measuring region impurity.

The residual sum of squares is often used for continuous response type and the Gini

Index for binary response type.

123



Appendix C. Tree-based methods 124

The growth of the tree continues until a stopping criterion is met, e.g. a minimum size

for a region. To prevent overfitting issues this large tree is pruned. The optimal tree size

is found by means of the cost complexity criterion Cα(T ) which is defined as follows:

Cα(T ) =

|T |∑
b=1

NbQb(T ) + α |T | (C.2)

where T is any subtree that can be obtained by pruning the initial large tree, |T | is the

number of terminal regions in T , Nb the number of observations and Qb(T ) the impurity

measure in terminal region b and α the tuning parameter that controls the tradeoff

between tree size and its goodness of fit to the data. A finite sequence of subtrees can

be formed via weakest link pruning : we successively collapse the internal region that

produces the smallest increase in the impurity measure until the single-region tree is

produced. It can be shown that for each α there is a unique smallest subtree in that

sequence that minimizes Cα(T ). The optimal value of α and thus the optimal tree size

is achieved via cross-validation, commonly by selecting the least complex tree whose

estimated error lies below one standard error above the minimum error value.

Despite being an intuitively appealing procedure, CART has some drawbacks: it is a

highly unstable procedure due to its hierarchical nature Marshall and Kitsantas (2012);

Hastie et al. (2009) and it tends to produce selection bias towards continuous and cat-

egorical features with many possible splits and missing values. Aiming to solve the

latter problem, Hothorn et al. (2006) proposed the conditional inference tree algorithm

(CondTree) which utilizes a unified framework for conditional inference developed by

Strasser and Weber (1999). More specifically, recursive binary partitioning is imple-

mented in two steps:

1. Test the global null hypothesis of independence between any of the p features and

the response variable by means of permutation tests after multiplicity adjustment

(e.g. with Bonferroni procedure). The algorithm is stopped if this hypothesis

cannot be rejected. Otherwise, the feature with the strongest association to the

response is selected. The association of each of the p features to the response

variable is measured by the P -value corresponding to the test for the partial null

hypothesis of that single feature and the response.

2. The best split point s for the predictor j selected in step 1 is determined.

The growth of the tree continues until the algorithm is stopped. Hothorn et al. (2006)

showed that such statistically motivated stopping criterion ensures that the right sized
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tree is grown and therefore no form of pruning or cross-validation is needed. P -values

for the conditional distribution of test statistics are used to allow an unbiased variable

selection since they can be directly compared among covariates measured at different

scales.

Despite these advantages, conditional inference tree might still be an unstable pro-

cedure due to its hierarchical nature. With the aim of reducing prediction variance,

Bagging Breiman (1996a) was proposed. It fits the noisy CART algorithm many times

to bootstrap-sampled versions of the data Efron (1979) and average individual tree out-

comes on each observation to obtain a final prediction. For classification tasks, “majority

voting” over the committee of trees each casting a class “vote” observation-wise is im-

plemented. However, overfitting may arise because trees are fitted on modified versions

of the same original sample. This limits the benefits of Bagging. Random Forests (RF),

introduced by Breiman (2001), was developed to further improve the prediction variance

reduction of Bagging by decreasing the correlation among trees. This is established by

adjusting the splitting process during the growing of the tree. Instead of considering

all features for each split, only a number g ≤ p of predictors selected at random are

considered as candidates for a split. The issue of overfitting might be prevented since we

don’t provide the algorithm with all the available information, but only with a random

part of it. In contrast, more prediction bias might be introduced. A suitable selection

of g as well as of the number of bootstrap samples should be done in order to make a

proper trade-off between bias and variance.

In the same spirit, Conditional inference Forests (CondRF) and Conditional Bagging

(CondBagging) were developed to combine the benefit of unbiased variable selection

with reduction of the prediction variance Hothorn et al. (2011). CondRF follows the

principle of random feature selection of RF, but fits conditional inference tree instead of

CART on the bootstrap samples generated from the training data. CondBagging does

not perform random feature selection just like in Bagging (all variables are considered

for each split), although it uses conditional inference tree as the base learner too.

All these tree-based methods can in theory handle missing predictor values by using

surrogate decisions Breiman et al. (1984). However, the implementation of RF in the

R package randomForest Liaw and Wiener (2002) cannot be used on incomplete data.

In presence of missingness the best split is chosen by considering only observed cases

in every variable. The problem arises either in the training phase or during prediction

when the best split variable contains non-observed values at some cells and thus it is

not defined to which way (left or right) those cases should be sent down the tree. It is

there when alternative or surrogate splits play a role. For any observation with a missing

value for the primary split variable we can find among all variables with nonmissing value
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for that case the predictor and corresponding split point producing the best surrogate

split, i.e. the split yielding the most similar results as the best split of the training

data. Surrogate splits are an attempt to mimic the primary split of a region in terms of

the number of cases sent down the same way. The resemblance between surrogate and

primary splits is calculated on cases with both the best split and the alternative split

variable observed. Once found, such case is sent down the tree according to the best

surrogate split rule. If such observation is missing all potential surrogates splits, then

the case is simply sent to the child with the largest relative frequency at that region.

C.2 Real-life datasets

• The Haberman’s Survival Dataset contains 306 cases from a study that was con-

ducted between 1958 and 1970 at the University of Chicago’s Billings Hospital on

patients who had undergone surgery for breast cancer. It can be obtained from

the UCI Machine Learning Repository Asuncion and Newman (2007). We aim

to predict the 5-year survival status of a patient. Three predictor variables are

available for this purpose, namely: age of patient at time of operation, patient’s

year of operation and number of positive axillary nodes detected.

• The Statlog (Heart) Disease Dataset was collected from patients at four clinics: the

Cleveland Clinic Foundation, the Hungarian Institute of Cardiology (Budapest),

the V.A. Medical Center (Long Beach, CA) and the University Hospital (Zurich,

Switzerland). It is provided by the UCI Machine Learning Repository Asuncion

and Newman (2007). It contains 270 observations. Our objective is to predict

the presence of heart disease based on 13 clinical measurements of the patients:

age, gender, chest pain type, resting blood pressure, serum cholestoral in mg/dl, a

fasting blood sugar assessment (>120 mg/dl), resting electrocardiographic results,

maximum heart rate achieved, exercise induced angina, ST depression induced by

exercise relative to rest, the slope of the peak exercise ST segment, number of

major vessels (0-3) colored by fluoroscopy and thallium scan status information.

• The Swiss Fertility and Socioeconomic Indicators Dataset was collected at 47

French-speaking provinces of Switzerland around 1888. It is provided by R R

Development Core Team (2011) and is used to predict a standardized fertility

measure from a set of 5 socio-economic indicators, namely: males involved in

agriculture as occupation, draftees receiving highest mark on army examination,

draftees with education beyond primary school, catholic population and the infant

mortality within the first year of life.
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• The Infant Birth Weight Dataset was gathered from 189 newborns at the Baystate

Medical Center, Springfield, Mass, during the year 1986. It is available in the R

package MASS. It is used to predict the baby’s birth weight in grams from 8

risk factors available: the mother’s age in years, the mother’s weight in pounds

at last menstrual period, the mother’s race, smoking status during pregnancy, the

number of previous premature labours, history of hypertension, presence of uterine

irritability and the number of physician visits during the first trimester.

C.3 DGM for the Simulated dataset

yi = 0 + 0.5x1,i + 0.5x2,i + 0.5x3,i + 0.5x8,i + 0.5x9,i + 0.5x23,i + 1x1,ix2,i + 1x8,ix9,i + εy,i

(C.3)

εy,i
iid∼ N(0, 1); i = 1, . . . , 500

x1,i = 0 + 0.1x9,i + 0.1x10,i + 0.08x9,ix10,i + εx1,i (C.4)

x2,i = 0 + 0.001x1,i + 0.001x9,i + 0.001x10,i + 0.05x1,ix9,i + 0.05x9,ix10,i + 0.05x1,ix10,i

+ 0.05x1,ix9,ix10,i + εx2,i

x3,i = 0 + 0.001x1,i + 0.001x2,i + 0.001x9,i + 0.001x10,i + 0.05x1,ix2,i + 0.05x1,ix9,i + 0.05x1,ix10,i

+ 0.05x2,ix9,i + 0.05x9,ix10,i + εx3,i

x4,i = 0 + 0.001x1,i + 0.001x2,i + 0.001x3,i + 0.001x9,i + 0.001x10,i + 0.05x1,ix2,i + 0.05x1,ix3,i

+ 0.05x1,ix9,i + 0.05x1,ix10,i + 0.05x2,ix3,i + 0.05x9,ix10,i + εx4,i

x5,i = 0 + 0.001x1,i + 0.001x2,i + 0.001x3,i + 0.001x4,i + 0.001x9,i + 0.001x10,i + 0.005x1,ix2,i

+ 0.005x1,ix3,i + 0.005x1,ix4,i + 0.005x1,ix9,i + 0.005x1,ix10,i + 0.005x3,ix4,i

+ 0.005x9,ix10,i + εx5,i

x6,i = 0 + 0.001x1,i + 0.001x2,i + 0.001x3,i + 0.001x4,i + 0.001x5,i + 0.005x1,ix2,i + 0.005x1,ix3,i

+ 0.005x1,ix5,i + 0.005x9,ix10,i + 0.005x4,ix9,i + 0.005x4,ix10,i + 0.005x3,ix5,i + εx6,i

x7,i = 0 + 0.001x1,i + 0.001x2,i + 0.001x3,i + 0.001x4,i + 0.001x5,i + 0.001x6,i + 0.001x9,i

+ 0.001x10,i + 0.005x1,ix2,i + 0.005x2,ix3,i + 0.005x1,ix6,i + 0.005x1,ix9,i

+ 0.005x6,ix9,i + 0.005x9,ix10,i + εx7,i

x8,i = 0 + 0.001x1,i + 0.001x2,i + 0.001x3,i + 0.001x4,i + 0.001x5,i + 0.001x6,i + 0.001x7,i

+ 0.001x9,i + 0.001x10,i + 0.005x4,ix7,i + 0.005x1,ix4,i + 0.005x1,ix7,i + 0.005x2,ix5,i

+ 0.005x3,ix6,i + 0.005x9,ix10,i + εx8,i

εxj ,i
iid∼ N(0, 0.4); i = 1, . . . , 500; j = 1, . . . , 8

Covariates x9 and x10 were drawn from a bivariate normal distribution with means 10

and 7 respectively, variances equal to 1 and a correlation of 0.9.



Table C.1: Summary of mean MSPE/MER values for the real-life datasets. The values for the Birthweight dataset have been divided by 104.
Results of techniques with prior kNN imputation, Bagging and MIST imputed bootstrap samples + RF are not shown here. Missing data was
induced under MCAR, MAR and MNAR patterns at different fractions and following 2 schemes: all p variables (p− 1 for MAR) with missing values
(1/1) and only p/3 variables with missing values (1/3). Note that the first result line of each technique corresponds to the MCAR pattern, the

second to the MAR and the third to the MNAR pattern. N/I stands for “not implemented”.

Type Data Technique Missing values
0% 10% to 40% Surrogates 10% to 40% Median/mode 10% to 40% Prox. Matrix 10% to 40% MICE 10% to 40% MIST

1/1 1/3 1/1 1/3 1/1 1/3 1/1 1/3 1/1 1/3
Classif. Survival CondRF 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

0.27 0.26 - 0.27 0.27 0.26 - 0.27 0.27 0.27 0.27 0.26 - 0.27 0.27 0.26 - 0.27
0.26 - 0.28 0.26 - 0.27 0.26 - 0.28 0.26 - 0.27 0.26 - 0.30 0.26 - 0.27 0.26 - 0.28 0.27 0.26 - 0.27 0.26 - 0.27

CondTree 0.28 0.27 0.28 0.27 - 0.28 0.28 0.27 - 0.28 0.28 0.27 0.28 0.27 - 0.28 0.28
0.27 0.28 0.27 - 0.28 0.28 0.28 0.28 0.27 - 0.28 0.28 0.27 - 0.28 0.28
0.27 - 0.28 0.28 0.26 - 0.27 0.28 0.27 - 0.28 0.28 0.26 - 0.27 0.28 0.27 - 0.27 0.28

CART 0.28 0.28 0.28 0.28 - 0.29 0.28 0.28 - 0.30 0.28 - 0.29 0.27 0.28 0.27 - 0.28 0.28
0.28 0.28 0.28 0.28 0.28 - 0.29 0.28 0.27 - 0.28 0.28 0.27 - 0.28 0.28
0.27 - 0.32 0.28 - 0.29 0.28 - 0.34 0.28 - 0.29 0.27 - 0.33 0.28 - 0.29 0.27 - 0.30 0.28 0.27 - 0.30 0.28 - 0.29

RF 0.32
N/I N/I

0.32 0.31 - 0.32 0.33 - 0.35 0.32 - 0.33 0.30 - 0.31 0.31 - 0.32 0.30 - 0.31 0.31 - 0.32
0.31 - 0.32 0.31 - 0.32 0.32 0.32 0.30 - 0.32 0.31 - 0.32 0.30 - 0.32 0.31 - 0.32
0.30 - 0.38 0.31 - 0.33 0.31 - 0.38 0.31 - 0.33 0.30 - 0.35 0.31 - 0.32 0.30 - 0.34 0.31 - 0.32

CondBagging 0.26 0.27 0.26 - 0.27
N/I N/I N/I N/I N/I N/I N/I N/I0.27 0.26 - 0.27

0.25 - 0.27 0.26
Heart CondRF 0.17 0.17 - 0.18 0.17 - 0.18 0.18 - 0.21 0.17 - 0.18 0.17 - 0.19 0.17 - 0.18 0.17 - 0.18 0.17 - 0.18 0.17 - 0.18 0.17 - 0.18

0.17 - 0.19 0.17 - 0.18 0.18 - 0.20 0.17 - 0.18 0.17 - 0.19 0.17 - 0.18 0.17 - 0.18 0.17 - 0.18 0.17 - 0.18 0.17 - 0.18
0.17 - 0.29 0.17 - 0.18 0.17 - 0.25 0.17 - 0.19 0.17 - 0.20 0.17 - 0.18 0.17 - 0.24 0.17 - 0.18 0.17 - 0.25 0.17 - 0.18

CondTree 0.24 0.25 - 0.27 0.24 - 0.25 0.25 - 0.28 0.25 0.25 - 0.27 0.24 - 0.26 0.24 0.24 - 0.25 0.24 0.24 - 0.25
0.25 - 0.27 0.24 - 0.25 0.25 - 0.27 0.25 0.25 - 0.27 0.25 - 0.27 0.24 - 0.25 0.24 - 0.25 0.24 0.24 - 0.25
0.24 - 0.31 0.24 - 0.25 0.23 - 0.30 0.24 - 0.26 0.24 - 0.27 0.24 - 0.26 0.24 - 0.27 0.24 - 0.25 0.23 - 0.28 0.24 - 0.25

CART 0.21 0.22 - 0.28 0.22 - 0.23 0.23 - 0.27 0.22 - 0.23 0.23 - 0.27 0.22 - 0.25 0.21 - 0.22 0.21 - 0.22 0.21 - 0.22 0.21 - 0.22
0.22 - 0.26 0.22 - 0.23 0.23 - 0.26 0.22 - 0.23 0.22 - 0.27 0.22 - 0.25 0.21 - 0.22 0.21 - 0.22 0.21 - 0.22 0.21 - 0.22
0.22 - 0.33 0.21 - 0.23 0.22 - 0.32 0.22 - 0.24 0.22 - 0.28 0.21 - 0.25 0.21 - 0.27 0.21 - 0.22 0.21 - 0.28 0.21 - 0.22

RF 0.18
N/I N/I

0.19 - 0.21 0.18 - 0.19 0.18 - 0.20 0.18 - 0.19 0.18 - 0.19 0.18 - 0.19 0.18 - 0.19 0.18 - 0.19
0.19 - 0.21 0.18 - 0.19 0.18 - 0.20 0.18 - 0.19 0.18 - 0.19 0.18 - 0.19 0.18 - 0.19 0.18 - 0.19
0.19 - 0.31 0.18 - 0.20 0.19 - 0.26 0.18 - 0.19 0.19 - 0.26 0.18 - 0.19 0.19 - 0.27 0.18 - 0.19

CondBagging 0.18 0.18 0.18 - 0.19
N/I N/I N/I N/I N/I N/I N/I N/I0.18 - 0.19 0.18 - 0.19

0.18 - 0.26 0.18 - 0.19
Regr. Fertility CondRF 128 124 - 164 127 - 128 127 - 132 127 - 128 125 - 127 126 - 127 118 - 123 123 - 126 123 - 125 125 - 127

124 - 138 127 - 128 127 - 129 127 - 128 124 - 127 124 - 127 119 - 123 122 - 126 123 - 125 125 - 127
129 - 164 127 - 129 132 - 171 128 - 129 131 - 172 128 - 129 124 - 158 126 - 128 124 - 158 126 - 128

CondTree 130 138 - 146 131 - 133 137 - 147 132 - 135 133 - 135 130 - 131 112 - 114 121 - 124 119 - 124 125 - 126
135 - 140 130 - 132 132 - 141 128 - 132 131 129 - 131 114 - 118 123 - 125 121 - 125 125 - 127
144 - 188 130 - 133 146 - 216 132 - 134 151 - 197 129 - 134 132 - 165 129 - 133 135 - 177 129 - 133

CART 130 125 - 134 124 - 129 126 - 138 123 - 127 127 - 130 128 - 131 104 - 111 113 - 121 111 - 116 118 - 123
124 - 128 124 - 126 125 - 134 127 - 131 126 - 129 128 - 132 109 - 114 116 - 123 112 - 118 120 - 126
125 - 185 126 - 128 130 - 228 126 - 132 133 - 236 126 - 148 119 - 162 124 - 128 121 - 160 123 - 128

RF 74
N/I N/I

77 - 91 75 - 79 77 - 89 75 - 80 76 - 88 75 - 78 77 - 91 76 - 80
76 - 87 76 - 79 77 - 87 76 - 82 77 - 86 76 - 81 78 - 88 76 - 79
95 - 250 82 - 95 97 - 274 83 - 95 89 - 204 79 - 90 91 - 196 80 - 93

CondBagging 106 110 - 128 107 - 111
N/I N/I N/I N/I N/I N/I N/I N/I109 - 121 107 - 111

122 - 158 111 - 113
Birthweight CondRF 45.26 45.98 - 49.53 45.56 - 46.93 46.01 - 48.78 45.53 - 46.51 45.59 - 47.70 45.40 - 46.21 45.59 - 47.46 45.40 - 45.92 45.76 - 47.66 45.43 - 46.09

45.90 - 49.21 45.58 - 46.92 45.88 - 48.40 45.55 - 46.48 45.50 - 47.33 45.40 - 46.25 45.56 - 47.03 45.45 - 45.99 45.64 - 47.31 45.50 - 46.11
46.08 - 50.25 45.52 - 47.46 45.66 - 50.32 45.36 - 47.21 45.40 - 50.80 45.28 - 46.85 45.53 - 49.64 45.26 - 46.69 45.73 - 49.58 45.35 - 46.80

CondTree 51.73 51.61 - 52.77 51.69 - 52.25 52.29 - 53.27 51.87 - 52.49 51.32 - 52.66 51.56 - 52.04 50.65 - 52.19 51.01 - 51.46 50.94 - 52.03 51.24 - 51.45
51.67 - 52.62 51.69 - 52.33 52.15 - 53.32 52.00 - 52.17 51.29 - 52.37 51.81 - 52.31 50.57 - 51.69 51.19 - 51.61 50.91 - 51.69 51.29 - 51.56
51.54 - 52.08 51.60 - 52.51 51.71 - 52.36 51.70 - 52.25 51.05 - 52.40 51.42 - 51.91 50.61 - 52.16 50.99 - 51.71 51.02 - 52.04 51.17 - 51.75

CART 52.32 52.53 - 54.21 52.17 - 52.98 53.33 - 55.63 52.73 - 53.95 53.82 - 58.89 53.13 - 55.13 49.14 - 50.23 50.42 - 50.80 49.42 - 49.91 50.65 - 51.04
52.58 - 53.55 52.40 - 53.12 53.10 - 55.34 52.59 - 54.00 53.47 - 57.62 53.10 - 55.28 49.43 - 50.11 50.45 - 50.73 49.68 - 50.06 50.71 - 50.92
51.14 - 57.84 51.82 - 54.45 51.70 - 61.57 52.19 - 56.18 51.81 - 63.50 52.01 - 56.20 48.82 - 52.30 50.29 - 51.54 49.00 - 52.55 50.43 - 51.82

RF 50.46
N/I N/I

50.67 - 53.12 50.63 - 51.41 50.43 - 52.46 50.36 - 50.83 48.89 - 49.55 49.73 - 50.05 49.16 - 49.64 49.82 - 50.17
50.62 - 52.46 50.70 - 51.21 50.34 - 51.87 50.38 - 50.80 49.08 - 49.48 49.57 - 50.08 49.25 - 49.69 49.73 - 50.21
49.58 - 56.36 50.13 - 52.82 48.47 - 55.90 49.66 - 52.11 47.89 - 50.38 49.46 - 49.99 48.29 - 51.49 49.53 - 50.86

CondBagging 46.04 46.37 - 48.77 46.14 - 47.04
N/I N/I N/I N/I N/I N/I N/I N/I46.29 - 48.42 46.20 - 47.05

46.50 - 49.85 46.14 - 47.70



Table C.2: Summary of mean MSPE/MER values for the simulated dataset. Results of techniques with prior kNN imputation, Bagging and MIST
imputed bootstrap samples + RF are not shown here. Missing data was induced under MCAR, MAR and MNAR patterns at different fractions
and following 2 schemes: 8 variables with missing values and only 8/3 variables with missing values. Note that the first result line of each technique

corresponds to the MCAR pattern, the second to the MAR and the third to the MNAR pattern. N/I stands for “not implemented”.

Type Data Technique Missing values
0% 10% to 40% Surrogates 10% to 40% Median/mode 10% to 40% Prox. Matrix 10% to 40% MICE 10% to 40% MIST

8 8/3 8 8/3 8 8/3 8 8/3 8 8/3
Regr. Simulated CondRF 77 79 - 93 77 80 - 101 77 76 - 77 76 - 77 77 77 77 - 80 77

83 - 91 77 78 - 82 77 77 - 78 77 78 - 81 77 - 78 77 - 78 76 - 77
205 - 467 76 - 77 130 - 177 76 - 77 102 - 128 76 - 77 100 - 232 77 - 84 98 - 118 76 - 77

CondTree 77 77 - 112 78 - 79 85 - 124 78 - 79 77 - 79 77 - 78 74 - 77 76 - 77 70 - 76 77 - 78
85 - 93 78 - 79 81 - 86 78 - 79 77 - 81 78 - 80 75 - 77 77 - 78 76 - 79 77 - 78
125 - 521 79 115 - 130 79 109 - 130 79 111 - 251 76 - 84 100 - 123 79

CART 99 111 - 164 98 - 101 121 - 164 98 - 100 99 98 - 99 87 - 92 94 - 96 80 - 91 93 - 97
114 - 131 99 - 101 101 - 114 99 - 101 100 - 102 98 - 101 89 - 98 95 - 97 92 - 96 97 - 99
152 - 172 100 - 101 193 - 230 100 - 102 157 - 195 101 - 109 142 - 413 91 - 101 125 - 161 98 - 100

RF 22
N/I N/I

23 - 27 22 22 22 22 22 22 - 23 22
23 - 24 22 23 - 24 22 - 24 22 - 39 22 - 23 23 - 24 22
124 - 129 22 - 23 73 - 88 22 - 24 123 - 940 22 - 28 46 - 64 22 - 23

CondBagging 60 61 - 73 60
N/I N/I N/I N/I N/I N/I N/I N/I61 - 67 60

84 - 384 60



Table C.3: For each real-life dataset analyzed, we show the average percentage of missing data and the average percentage of complete observations
across 1, 000 simulations in which missingness is introduced according to a fixed pattern, fraction and scheme of missing values.

Data Pattern % miss./var # var. miss. average average Data Pattern % miss./var # var. miss. average average
% miss. data % complete obs % miss. data % complete obs

Survival MCAR 10% 3/3 7.65% 72.39% Fertility MCAR 10% 5/5 8.77% 57.19%
20% 15.00% 51.20% 20% 17.54% 30.79%
30% 22.65% 34.00% 30% 26.32% 14.84%
40% 30.00% 21.55% 40% 32.89% 8.29%
10% 1/3 2.55% 89.80% 10% 2/5 3.51% 80.02%
20% 5.00% 80.00% 20% 7.02% 62.33%
30% 7.55% 69.80% 30% 10.53% 46.80%
40% 10.00% 60.00% 40% 13.16% 36.85%

MAR 10% 2/3 4.90% 81.45% MAR 10% 4/5 7.02% 64.53%
20% 10.00% 64.21% 20% 14.04% 40.21%
30% 15.10% 49.04% 30% 19.30% 27.37%
40% 20.00% 36.43% 40% 26.32% 15.58%
10% 1/3 2.55% 89.80% 10% 2/5 3.51% 81.63%
20% 5.00% 80.00% 20% 7.02% 67.29%
30% 7.55% 69.80% 30% 10.53% 55.78%
40% 10.00% 60.00% 40% 13.16% 47.97%

MNAR 10% 3/3 7.65% 72.69% MNAR 10% 5/5 8.77% 62.76%
20% 15.00% 51.97% 20% 17.54% 28.54%
30% 22.65% 34.30% 30% 26.32% 11.08%
40% 30.00% 20.62% 40% 32.89% 4.67%
10% 1/3 2.55% 89.80% 10% 2/5 3.51% 80.53%
20% 5.00% 80.00% 20% 7.02% 61.51%
30% 7.55% 69.80% 30% 10.53% 44.81%
40% 10.00% 60.00% 40% 13.16% 34.00%

Heart MCAR 10% 13/13 9.46% 24.80% Birthweight MCAR 10% 8/8 8.83% 43.15%
20% 18.49% 5.54% 20% 17.66% 16.94%
30% 27.94% 0.93% 30% 26.49% 5.91%
40% 36.97% 0.14% 40% 35.32% 1.71%
10% 4/13 2.91% 65.12% 10% 3/8 3.31% 73.07%
20% 5.69% 41.08% 20% 6.62% 51.40%
30% 8.60% 23.83% 30% 9.93% 34.51%
40% 11.38% 13.11% 40% 13.25% 21.95%

MAR 10% 12/13 8.73% 30.68% MAR 10% 7/8 7.73% 48.16%
20% 17.06% 10.23% 20% 15.45% 21.25%
30% 25.79% 3.42% 30% 23.18% 8.40%
40% 34.13% 1.52% 40% 30.91% 3.00%
10% 4/13 2.91% 65.49% 10% 3/8 3.31% 74.23%
20% 5.69% 42.06% 20% 6.62% 54.11%
30% 8.60% 25.33% 30% 9.93% 38.55%
40% 11.38% 14.35% 40% 13.25% 25.62%

MNAR 10% 13/13 9.46% 25.76% MNAR 10% 8/8 8.83% 42.98%
20% 18.49% 8.20% 20% 17.66% 16.79%
30% 27.94% 2.16% 30% 26.49% 5.84%
40% 36.97% 0.49% 40% 35.32% 1.61%
10% 4/13 2.91% 65.27% 10% 3/8 3.31% 72.97%
20% 5.69% 42.76% 20% 6.62% 51.46%
30% 8.60% 25.95% 30% 9.93% 34.48%
40% 11.38% 14.15% 40% 13.25% 21.43%



Table C.4: For the simulated dataset, we show the average percentage of missing data and the average percentage of complete observations across
1, 000 simulations in which missingness is introduced according to a fixed pattern, fraction and scheme of missing values.

Data Pattern % miss./var # var. miss. average average
% miss. data % complete obs

Simulated MCAR 10% 8/10 7.27% 43.11%
20% 14.55% 16.92%
30% 21.82% 5.75%
40% 29.09% 1.64%
10% 3/10 2.73% 72.78%
20% 5.45% 51.12%
30% 8.18% 34.36%
40% 10.91% 21.67%

MAR 10% 8/10 7.27% 57.98%
20% 14.55% 32.86%
30% 21.82% 15.17%
40% 29.09% 4.65%
10% 3/10 2.73% 76.02%
20% 5.45% 56.12%
30% 8.18% 39.75%
40% 10.91% 23.43%

MNAR 10% 8/10 7.27% 88.29%
20% 14.55% 76.69%
30% 21.82% 65.35%
40% 29.09% 54.04%
10% 3/10 2.73% 89.17%
20% 5.45% 78.28%
30% 8.18% 67.59%
40% 10.91% 56.92%



Table C.5: Summary of mean MER values for the Survival dataset. Missing data was induced under MCAR, MAR and MNAR patterns at different
fractions and following 2 schemes: all p = 3 = m variables with missing values (for MAR pattern: m = p − 1 = 2) and only p/3 variables with

missing values. N/I stands for “not implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST kNN
Data Technique # Var. % MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR
Survival CondRF 0% 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

m 10% 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.26 0.26 0.26 0.26
20% 0.27 0.27 0.28 0.27 0.27 0.27 0.27 0.27 0.29 0.27 0.27 0.28 0.27 0.27 0.27 0.26 0.26 0.29
30% 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.30 0.27 0.27 0.27 0.27 0.27 0.27 0.26 0.26 0.28
40% 0.27 0.27 0.27 0.27 0.27 0.28 0.27 0.27 0.30 0.27 0.27 0.27 0.27 0.27 0.27 0.26 0.27 0.29

1 10% 0.27 0.26 0.26 0.27 0.26 0.26 0.27 0.27 0.26 0.27 0.27 0.27 0.27 0.27 0.26 0.27 0.26 0.26
20% 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.27 0.27 0.26 0.27
30% 0.27 0.27 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.26 0.26
40% 0.27 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.26 0.27

CondTree 0% 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
m 10% 0.27 0.27 0.28 0.28 0.28 0.27 0.28 0.28 0.28 0.27 0.28 0.27 0.28 0.28 0.27 0.27 0.28 0.27

20% 0.27 0.27 0.28 0.27 0.28 0.26 0.27 0.28 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
30% 0.27 0.27 0.27 0.28 0.28 0.26 0.27 0.28 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.27 0.27 0.26
40% 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.27 0.27 0.26

1 10% 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
20% 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
30% 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
40% 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

CART 0% 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
m 10% 0.28 0.28 0.27 0.28 0.28 0.28 0.28 0.28 0.27 0.27 0.28 0.27 0.28 0.28 0.27 0.28 0.28 0.28

20% 0.28 0.28 0.30 0.28 0.28 0.31 0.29 0.28 0.29 0.27 0.27 0.29 0.27 0.28 0.28 0.28 0.28 0.33
30% 0.28 0.28 0.32 0.28 0.28 0.34 0.29 0.28 0.33 0.27 0.28 0.30 0.27 0.27 0.30 0.28 0.28 0.34
40% 0.28 0.28 0.28 0.29 0.28 0.30 0.30 0.29 0.33 0.27 0.27 0.27 0.27 0.27 0.28 0.28 0.28 0.32

1 10% 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
20% 0.28 0.28 0.29 0.28 0.28 0.29 0.28 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.29
30% 0.28 0.28 0.29 0.28 0.28 0.29 0.29 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.29
40% 0.28 0.28 0.29 0.28 0.28 0.29 0.28 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.29 0.28 0.28 0.29

RF 0% 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
m 10% N/I N/I N/I 0.32 0.32 0.30 0.33 0.32 0.31 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.31 0.31

20% N/I N/I N/I 0.32 0.32 0.33 0.34 0.32 0.35 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.31 0.34
30% N/I N/I N/I 0.32 0.32 0.38 0.34 0.32 0.38 0.30 0.31 0.35 0.30 0.31 0.34 0.31 0.31 0.39
40% N/I N/I N/I 0.32 0.31 0.35 0.35 0.32 0.38 0.30 0.30 0.34 0.30 0.30 0.33 0.31 0.31 0.37

1 10% N/I N/I N/I 0.32 0.32 0.31 0.32 0.32 0.31 0.32 0.32 0.31 0.32 0.32 0.31 0.32 0.32 0.31
20% N/I N/I N/I 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.31 0.32 0.31 0.31 0.32 0.31 0.31 0.33
30% N/I N/I N/I 0.31 0.31 0.33 0.32 0.32 0.33 0.31 0.31 0.32 0.31 0.31 0.32 0.31 0.31 0.33
40% N/I N/I N/I 0.31 0.31 0.32 0.33 0.32 0.32 0.31 0.31 0.32 0.31 0.31 0.31 0.31 0.31 0.32

Bagging 0% 0.32 0.32 0.32 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 0.27 0.27 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 0.27 0.27 0.27 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.27 0.27 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.28 0.27 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

1 10% 0.27 0.27 0.27 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 0.27 0.27 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.27 0.26 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.27 0.27 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 0.26 0.26 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 0.27 0.27 0.25 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 0.27 0.27 0.27 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.27 0.27 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.27 0.27 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

1 10% 0.26 0.26 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 0.27 0.26 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.27 0.27 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.27 0.26 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF m 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.31 0.31 0.30 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.30 0.31 0.32 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.30 0.30 0.33 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.29 0.30 0.32 N/I N/I N/I

Boot. RF 1 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.31 0.31 0.31 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.31 0.31 0.31 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.31 0.31 0.31 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.30 0.31 0.31 N/I N/I N/I



Table C.6: Summary of standard error (SE) estimates of each of the MER estimates for the Survival dataset. Missing data was induced under
MCAR, MAR and MNAR patterns at different fractions and following 2 schemes: all p = 3 = m variables with missing values (for MAR pattern:

m = p− 1 = 2) and only p/3 variables with missing values. N/I stands for “not implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST kNN
Data Technique # Var. % MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR
Survival CondRF 0% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

m 10% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
20% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06
40% 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1 10% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
20% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
40% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

CondTree 0% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
m 10% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

20% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
40% 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1 10% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
20% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
40% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

CART 0% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
m 10% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

20% 0.05 0.05 0.06 0.05 0.05 0.07 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.07
30% 0.06 0.06 0.08 0.06 0.06 0.09 0.06 0.06 0.07 0.05 0.05 0.07 0.05 0.05 0.07 0.06 0.06 0.09
40% 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.08

1 10% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
20% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05
40% 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06

RF 0% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
m 10% N/I N/I N/I 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06

20% N/I N/I N/I 0.05 0.05 0.06 0.06 0.05 0.07 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06
30% N/I N/I N/I 0.06 0.05 0.07 0.06 0.05 0.07 0.05 0.05 0.07 0.05 0.05 0.07 0.06 0.05 0.07
40% N/I N/I N/I 0.06 0.06 0.08 0.06 0.06 0.08 0.05 0.05 0.07 0.06 0.05 0.07 0.06 0.05 0.08

1 10% N/I N/I N/I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
20% N/I N/I N/I 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.06
30% N/I N/I N/I 0.05 0.05 0.07 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.07
40% N/I N/I N/I 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.06

Bagging 0% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.06 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

1 10% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

1 10% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF m 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.06 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.06 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.07 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.07 N/I N/I N/I

Boot. RF 1 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.05 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.06 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.06 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.06 N/I N/I N/I



Table C.7: Summary of mean relative improvement values with an imputation strategy compared to surrogate decisions through different missing
data scenarios for the Survival dataset. Only CondRF, CondTree and CART were taken into account for these comparisons (because RF implemen-
tation in R -randomForest()- cannot be fitted on incomplete data). Missing data was induced under MCAR, MAR and MNAR patterns at different
fractions and following 2 schemes: all p = 3 = m variables with missing values (for MAR pattern: m = p − 1 = 2) and only p/3 variables with

missing values.

Median/mode Prox. Matrix MICE
Missing MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Survival CondRF 0%

m 10% -0.01 0.10 0.00 0.09 0.00 0.10 0.00 0.10 0.00 0.10 -0.01 0.11 0.00 0.09 0.01 0.08 -0.01 0.08
20% -0.01 0.14 0.00 0.13 0.02 0.13 -0.01 0.14 -0.01 0.13 -0.06 0.15 0.00 0.10 0.00 0.11 -0.01 0.11
30% 0.00 0.16 0.00 0.14 0.00 0.13 -0.01 0.16 -0.01 0.14 -0.10 0.19 0.00 0.11 0.00 0.11 0.01 0.09
40% -0.01 0.17 0.00 0.14 -0.06 0.17 -0.02 0.18 -0.01 0.15 -0.13 0.21 -0.01 0.11 0.00 0.10 -0.01 0.05

1 10% 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.08 -0.01 0.08 -0.01 0.08 0.00 0.06 0.00 0.07 -0.01 0.06
20% -0.01 0.10 0.00 0.09 0.00 0.09 -0.01 0.10 -0.01 0.11 -0.03 0.09 0.00 0.07 0.00 0.08 -0.01 0.08
30% 0.00 0.10 0.00 0.10 0.00 0.07 -0.01 0.12 -0.01 0.11 -0.02 0.10 0.00 0.08 0.00 0.09 0.00 0.06
40% 0.00 0.11 0.00 0.11 0.00 0.08 -0.01 0.13 -0.01 0.12 -0.01 0.09 0.00 0.08 -0.01 0.09 0.00 0.07

CondTree 0%
m 10% -0.04 0.16 -0.03 0.13 0.02 0.11 -0.04 0.17 -0.03 0.13 -0.01 0.15 -0.02 0.12 -0.01 0.10 0.01 0.11

20% -0.04 0.17 -0.03 0.14 0.04 0.12 -0.04 0.19 -0.03 0.16 0.02 0.13 -0.01 0.10 -0.01 0.09 0.03 0.11
30% -0.05 0.18 -0.03 0.15 0.02 0.08 -0.04 0.18 -0.03 0.15 0.00 0.14 -0.01 0.10 0.00 0.08 0.02 0.08
40% -0.05 0.19 -0.02 0.15 -0.01 0.13 -0.03 0.19 -0.03 0.15 -0.01 0.11 -0.01 0.07 0.00 0.07 0.00 0.04

1 10% -0.01 0.09 -0.01 0.09 0.01 0.08 -0.02 0.10 -0.01 0.09 0.00 0.08 0.00 0.08 -0.01 0.08 0.00 0.07
20% -0.01 0.10 -0.02 0.10 0.01 0.05 -0.01 0.10 -0.02 0.10 0.00 0.08 0.00 0.06 0.00 0.07 0.01 0.06
30% -0.01 0.10 -0.01 0.10 0.00 0.02 -0.01 0.11 -0.02 0.10 0.00 0.06 0.00 0.05 -0.01 0.08 0.00 0.04
40% -0.02 0.13 -0.01 0.09 0.00 0.02 -0.02 0.12 -0.02 0.10 0.00 0.03 0.00 0.05 0.00 0.06 0.00 0.04

CART 0%
m 10% -0.01 0.14 -0.01 0.13 -0.03 0.16 -0.02 0.15 -0.01 0.14 -0.02 0.17 0.02 0.14 0.01 0.13 0.02 0.14

20% -0.02 0.14 -0.01 0.13 -0.07 0.24 -0.05 0.19 -0.02 0.17 0.01 0.21 0.00 0.16 0.01 0.15 0.02 0.19
30% -0.02 0.15 -0.01 0.14 -0.07 0.23 -0.05 0.20 -0.02 0.15 -0.09 0.28 0.02 0.16 0.00 0.17 0.03 0.20
40% -0.02 0.16 -0.02 0.15 -0.07 0.25 -0.06 0.24 -0.04 0.18 -0.20 0.30 0.02 0.17 0.01 0.17 0.01 0.13

1 10% 0.00 0.10 -0.01 0.09 -0.02 0.12 -0.01 0.11 -0.01 0.11 -0.01 0.11 0.00 0.11 0.00 0.11 0.00 0.10
20% 0.00 0.10 0.00 0.12 -0.01 0.13 -0.02 0.13 -0.01 0.14 -0.01 0.14 0.00 0.13 0.00 0.14 0.00 0.13
30% 0.00 0.11 -0.01 0.11 -0.01 0.13 -0.02 0.16 -0.02 0.14 -0.02 0.16 0.01 0.13 0.00 0.14 0.00 0.13
40% -0.01 0.12 -0.01 0.12 0.00 0.11 -0.02 0.17 -0.02 0.15 -0.01 0.15 0.01 0.15 0.00 0.14 0.01 0.10

MIST kNN
Missing MCAR MAR MNAR MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Survival CondRF 0%

m 10% 0.00 0.09 0.00 0.08 0.00 0.08 0.01 0.11 0.01 0.10 0.01 0.09
20% -0.01 0.11 0.00 0.11 0.01 0.11 0.01 0.13 0.01 0.12 -0.05 0.17
30% 0.00 0.11 0.00 0.11 -0.01 0.10 0.01 0.13 0.01 0.13 -0.05 0.19
40% -0.01 0.11 0.00 0.10 -0.01 0.06 0.00 0.14 0.01 0.13 -0.09 0.17

1 10% 0.00 0.06 0.00 0.07 0.00 0.06 0.00 0.08 0.00 0.08 -0.01 0.06
20% -0.01 0.08 -0.01 0.08 0.00 0.07 0.00 0.09 0.00 0.09 -0.01 0.09
30% 0.00 0.08 0.00 0.09 0.00 0.06 0.00 0.10 0.00 0.10 0.01 0.07
40% 0.00 0.09 0.00 0.09 -0.01 0.08 0.00 0.10 0.00 0.11 -0.01 0.08

CondTree 0%
m 10% -0.03 0.12 -0.02 0.11 0.00 0.09 -0.02 0.14 -0.01 0.12 0.01 0.10

20% -0.02 0.12 -0.02 0.11 0.03 0.12 -0.01 0.13 -0.01 0.12 0.03 0.12
30% -0.02 0.11 -0.01 0.08 0.02 0.09 -0.01 0.13 -0.01 0.11 0.02 0.08
40% -0.01 0.09 0.00 0.07 0.00 0.05 -0.01 0.12 0.00 0.10 0.00 0.06

1 10% -0.01 0.08 -0.01 0.08 0.00 0.06 -0.01 0.08 -0.01 0.09 0.00 0.06
20% -0.01 0.08 -0.01 0.08 0.01 0.06 0.00 0.08 0.00 0.07 0.01 0.05
30% -0.01 0.06 -0.01 0.09 0.00 0.04 0.00 0.07 0.00 0.07 0.00 0.03
40% 0.00 0.05 0.00 0.06 0.00 0.06 0.00 0.08 0.00 0.07 0.00 0.03

CART 0%
m 10% 0.01 0.13 0.01 0.13 0.02 0.14 0.00 0.16 0.01 0.14 -0.03 0.17

20% 0.01 0.15 0.01 0.14 0.05 0.19 -0.01 0.18 0.00 0.16 -0.11 0.26
30% 0.01 0.16 0.01 0.16 0.04 0.22 -0.01 0.18 -0.01 0.19 -0.10 0.28
40% 0.03 0.16 0.02 0.16 0.00 0.14 -0.01 0.22 -0.01 0.19 -0.16 0.30

1 10% 0.01 0.11 0.01 0.11 0.01 0.11 0.00 0.12 0.00 0.12 -0.01 0.12
20% 0.01 0.12 0.00 0.12 0.01 0.13 -0.01 0.14 0.00 0.14 -0.01 0.15
30% 0.02 0.13 0.01 0.14 0.00 0.14 0.00 0.15 -0.01 0.15 -0.01 0.13
40% 0.01 0.14 0.01 0.15 0.00 0.12 0.00 0.16 -0.01 0.15 0.00 0.12



Table C.8: Summary of mean MER values for the Heart dataset. Techniques with prior kNN imputation could not be fitted since this dataset
contains categorical predictors. Missing data was induced under MCAR, MAR and MNAR patterns at different fractions and following 2 schemes:
all p = 13 = m variables with missing values (for MAR pattern: m = p − 1 = 12) and only p/3 variables with missing values. N/I stands for “not

implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST
Data Technique # Var. % MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR
Heart CondRF 0% 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

m 10% 0.17 0.17 0.17 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
20% 0.17 0.18 0.19 0.19 0.18 0.19 0.17 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.18
30% 0.18 0.18 0.23 0.20 0.19 0.22 0.18 0.18 0.18 0.18 0.18 0.20 0.18 0.18 0.20
40% 0.18 0.19 0.29 0.21 0.20 0.25 0.19 0.19 0.20 0.18 0.18 0.24 0.18 0.18 0.25

4 10% 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
20% 0.17 0.17 0.17 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
30% 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17
40% 0.18 0.18 0.18 0.18 0.18 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

CondTree 0% 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
m 10% 0.25 0.25 0.24 0.25 0.25 0.23 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.23

20% 0.26 0.26 0.26 0.26 0.26 0.27 0.26 0.26 0.25 0.24 0.24 0.25 0.24 0.24 0.25
30% 0.27 0.26 0.28 0.27 0.27 0.27 0.26 0.27 0.26 0.24 0.24 0.26 0.24 0.24 0.26
40% 0.27 0.27 0.31 0.28 0.27 0.30 0.27 0.27 0.27 0.24 0.25 0.27 0.24 0.24 0.28

4 10% 0.24 0.24 0.24 0.25 0.25 0.24 0.24 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.24
20% 0.24 0.25 0.24 0.25 0.25 0.25 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.24
30% 0.25 0.24 0.25 0.25 0.25 0.25 0.26 0.25 0.25 0.24 0.24 0.25 0.25 0.24 0.24
40% 0.25 0.25 0.25 0.25 0.25 0.26 0.26 0.27 0.26 0.25 0.25 0.25 0.25 0.25 0.25

CART 0% 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
m 10% 0.22 0.22 0.22 0.23 0.23 0.22 0.23 0.22 0.22 0.21 0.21 0.21 0.21 0.21 0.21

20% 0.24 0.23 0.24 0.24 0.24 0.26 0.24 0.23 0.24 0.21 0.21 0.22 0.21 0.21 0.22
30% 0.26 0.25 0.30 0.26 0.25 0.30 0.25 0.25 0.25 0.21 0.21 0.24 0.21 0.21 0.24
40% 0.28 0.26 0.33 0.27 0.26 0.32 0.27 0.27 0.28 0.22 0.22 0.27 0.22 0.22 0.28

4 10% 0.22 0.22 0.21 0.22 0.22 0.22 0.22 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21
20% 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.22 0.22 0.21 0.21 0.22 0.21 0.21 0.22
30% 0.22 0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.24 0.22 0.22 0.22 0.22 0.21 0.22
40% 0.23 0.23 0.23 0.23 0.23 0.24 0.25 0.25 0.25 0.22 0.22 0.22 0.22 0.22 0.22

RF 0% 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
m 10% N/I N/I N/I 0.19 0.19 0.19 0.18 0.18 0.19 0.18 0.18 0.19 0.18 0.18 0.19

20% N/I N/I N/I 0.20 0.19 0.22 0.19 0.18 0.20 0.18 0.19 0.20 0.18 0.18 0.20
30% N/I N/I N/I 0.20 0.20 0.25 0.19 0.19 0.22 0.19 0.19 0.22 0.18 0.18 0.22
40% N/I N/I N/I 0.21 0.21 0.31 0.20 0.20 0.26 0.19 0.19 0.26 0.19 0.19 0.27

4 10% N/I N/I N/I 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
20% N/I N/I N/I 0.19 0.19 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
30% N/I N/I N/I 0.19 0.19 0.20 0.19 0.18 0.19 0.18 0.18 0.19 0.18 0.18 0.19
40% N/I N/I N/I 0.19 0.19 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Bagging 0% 0.19 0.19 0.19 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 0.23 0.23 0.23 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 0.48 0.39 0.51 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.49 0.45 0.55 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.50 0.48 0.55 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

4 10% 0.20 0.20 0.20 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 0.22 0.22 0.23 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.24 0.23 0.24 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.25 0.25 0.29 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 0.18 0.18 0.18 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 0.18 0.18 0.18 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 0.18 0.18 0.19 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.18 0.18 0.22 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.18 0.19 0.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

4 10% 0.18 0.18 0.18 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 0.18 0.18 0.18 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.18 0.18 0.18 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.19 0.19 0.19 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF m 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.19 0.19 0.19
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.19 0.19 0.20
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.19 0.19 0.22
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.19 0.19 0.27

Boot. RF 4 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.18 0.18 0.18
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.18 0.19 0.19
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.19 0.19 0.19
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.19 0.19 0.19



Table C.9: Summary of standard error (SE) estimates of each of the MER estimates for the Heart dataset. Techniques with prior kNN imputation
could not be fitted since this dataset contains categorical predictors. Missing data was induced under MCAR, MAR and MNAR patterns at different
fractions and following 2 schemes: all p = 13 = m variables with missing values (for MAR pattern: m = p − 1 = 12) and only p/3 variables with

missing values. N/I stands for “not implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST
Data Technique # Var. % MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR
Heart CondRF 0% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

m 10% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
20% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
40% 0.05 0.05 0.07 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.06

4 10% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
20% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
40% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

CondTree 0% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
m 10% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

20% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
30% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
40% 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

4 10% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
20% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
30% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
40% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

CART 0% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
m 10% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.06

20% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.05
30% 0.06 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.06
40% 0.07 0.06 0.08 0.07 0.06 0.07 0.07 0.06 0.08 0.05 0.06 0.06 0.06 0.06 0.06

4 10% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
20% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06
30% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
40% 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

RF 0% 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
m 10% N/I N/I N/I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

20% N/I N/I N/I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% N/I N/I N/I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
40% N/I N/I N/I 0.05 0.05 0.07 0.05 0.05 0.07 0.05 0.05 0.06 0.05 0.05 0.06

4 10% N/I N/I N/I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
20% N/I N/I N/I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30% N/I N/I N/I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
40% N/I N/I N/I 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Bagging 0% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 0.06 0.06 0.06 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 0.08 0.13 0.12 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.08 0.10 0.06 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.08 0.08 0.06 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

4 10% 0.05 0.06 0.06 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 0.06 0.06 0.06 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.06 0.06 0.07 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.07 0.07 0.11 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.05 0.05 0.06 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.05 0.05 0.06 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

4 10% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 0.05 0.05 0.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF m 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.05
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.05
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.05
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.06

Boot. RF 4 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.05
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.05
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.05
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 0.05 0.05 0.05



Table C.10: Summary of mean relative improvement values with an imputation strategy compared to surrogate decisions through different missing
data scenarios for the Heart dataset. Only CondRF, CondTree and CART were taken into account for these comparisons (because RF implementation
in R -randomForest()- cannot be fitted on incomplete data). In addition, kNN imputation could not be implemented since this dataset contains
categorical predictors. Missing data was induced under MCAR, MAR and MNAR patterns at different fractions and following 2 schemes: all

p = 13 = m variables with missing values (for MAR pattern: m = p− 1 = 12) and only p/3 variables with missing values.

Median/mode Prox. Matrix MICE
Missing MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Heart CondRF 0%

m 10% -0.05 0.18 -0.06 0.17 -0.01 0.19 -0.01 0.16 -0.01 0.16 0.01 0.17 -0.01 0.14 0.00 0.13 0.00 0.14
20% -0.10 0.24 -0.07 0.23 -0.05 0.26 -0.02 0.18 -0.01 0.22 0.07 0.18 -0.01 0.17 0.00 0.18 0.03 0.15
30% -0.15 0.27 -0.09 0.24 0.02 0.27 -0.04 0.22 -0.02 0.24 0.19 0.16 -0.01 0.19 0.01 0.19 0.12 0.14
40% -0.17 0.28 -0.11 0.28 0.13 0.21 -0.03 0.23 -0.03 0.29 0.31 0.15 0.01 0.23 0.01 0.21 0.19 0.13

4 10% -0.02 0.16 -0.02 0.13 -0.01 0.16 -0.02 0.18 -0.02 0.17 0.00 0.15 -0.01 0.14 0.00 0.12 0.00 0.12
20% -0.02 0.16 -0.03 0.16 -0.04 0.17 -0.02 0.28 -0.03 0.25 -0.02 0.24 0.00 0.16 0.01 0.14 0.00 0.14
30% -0.02 0.14 -0.02 0.15 -0.05 0.17 -0.04 0.30 -0.03 0.27 -0.03 0.28 0.02 0.15 0.01 0.14 0.01 0.14
40% -0.01 0.16 -0.02 0.15 -0.04 0.14 -0.03 0.34 -0.06 0.33 -0.02 0.33 0.03 0.15 0.02 0.14 0.02 0.14

CondTree 0%
m 10% -0.05 0.27 -0.03 0.26 -0.03 0.34 -0.03 0.26 -0.03 0.28 -0.04 0.31 0.00 0.25 0.01 0.22 -0.04 0.28

20% -0.06 0.33 -0.05 0.36 -0.08 0.31 -0.03 0.28 -0.05 0.45 -0.01 0.28 0.02 0.27 0.01 0.33 0.01 0.27
30% -0.06 0.32 -0.05 0.29 0.00 0.28 -0.03 0.28 -0.05 0.31 0.06 0.26 0.07 0.26 0.05 0.25 0.07 0.22
40% -0.09 0.32 -0.05 0.32 -0.02 0.30 -0.05 0.30 -0.06 0.34 0.09 0.25 0.06 0.28 0.05 0.26 0.09 0.20

4 10% -0.04 0.22 -0.03 0.20 -0.03 0.23 -0.04 0.26 -0.05 0.24 -0.03 0.25 -0.02 0.18 -0.02 0.19 -0.03 0.21
20% -0.05 0.20 -0.03 0.19 -0.04 0.20 -0.06 0.28 -0.07 0.29 -0.02 0.28 -0.01 0.19 -0.01 0.19 -0.01 0.18
30% -0.03 0.18 -0.04 0.20 -0.04 0.19 -0.08 0.34 -0.09 0.35 -0.05 0.32 0.00 0.19 -0.02 0.20 -0.01 0.20
40% -0.03 0.17 -0.02 0.17 -0.03 0.13 -0.09 0.36 -0.12 0.38 -0.09 0.30 -0.01 0.15 0.01 0.17 0.00 0.14

CART 0%
m 10% -0.06 0.30 -0.08 0.29 -0.06 0.37 -0.05 0.30 -0.04 0.30 -0.06 0.35 0.02 0.25 0.02 0.24 -0.02 0.28

20% -0.08 0.32 -0.10 0.35 -0.15 0.38 -0.05 0.33 -0.06 0.33 -0.02 0.34 0.07 0.28 0.03 0.29 0.05 0.27
30% -0.06 0.30 -0.06 0.30 -0.07 0.34 -0.04 0.34 -0.05 0.33 0.11 0.28 0.13 0.27 0.10 0.27 0.16 0.22
40% 0.00 0.29 -0.03 0.31 -0.02 0.32 0.00 0.31 -0.07 0.34 0.11 0.29 0.19 0.25 0.13 0.27 0.17 0.21

4 10% -0.03 0.23 -0.03 0.19 -0.04 0.24 -0.04 0.28 -0.03 0.25 -0.04 0.26 0.00 0.19 0.00 0.17 -0.02 0.20
20% -0.05 0.23 -0.05 0.23 -0.08 0.25 -0.07 0.34 -0.08 0.34 -0.07 0.33 0.00 0.21 0.00 0.22 -0.03 0.22
30% -0.05 0.23 -0.05 0.22 -0.07 0.23 -0.11 0.41 -0.12 0.38 -0.13 0.38 0.00 0.22 -0.01 0.22 -0.01 0.20
40% -0.06 0.22 -0.03 0.19 -0.05 0.19 -0.17 0.44 -0.17 0.43 -0.14 0.36 0.00 0.21 0.01 0.20 0.01 0.18

MIST
Missing MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD
Heart CondRF 0%

m 10% -0.02 0.14 0.00 0.13 -0.01 0.14
20% -0.01 0.17 0.00 0.18 0.02 0.15
30% -0.01 0.19 0.02 0.17 0.10 0.15
40% 0.00 0.21 0.02 0.20 0.16 0.13

4 10% -0.01 0.14 -0.01 0.12 -0.01 0.13
20% 0.00 0.15 0.01 0.13 0.00 0.13
30% 0.01 0.15 0.01 0.14 0.01 0.14
40% 0.02 0.15 0.02 0.14 0.01 0.14

CondTree 0%
m 10% 0.01 0.25 0.02 0.23 -0.03 0.27

20% 0.03 0.25 0.03 0.32 0.02 0.25
30% 0.08 0.25 0.07 0.24 0.06 0.22
40% 0.07 0.28 0.07 0.28 0.08 0.20

4 10% -0.02 0.19 -0.02 0.18 -0.03 0.22
20% -0.02 0.20 -0.01 0.18 -0.01 0.19
30% -0.01 0.19 -0.02 0.20 -0.01 0.21
40% -0.01 0.16 0.00 0.16 0.00 0.12

CART 0%
m 10% 0.03 0.26 0.02 0.26 -0.01 0.28

20% 0.09 0.26 0.06 0.27 0.06 0.27
30% 0.15 0.25 0.12 0.26 0.15 0.24
40% 0.19 0.26 0.13 0.26 0.14 0.21

4 10% -0.01 0.24 0.00 0.18 -0.02 0.20
20% 0.01 0.21 0.00 0.22 -0.02 0.23
30% 0.01 0.21 0.00 0.21 0.00 0.19
40% 0.01 0.21 0.02 0.18 0.01 0.16



Table C.11: Summary of mean MSPE values for the Fertility dataset. Missing data was induced under MCAR, MAR and MNAR patterns at
different fractions and following 2 schemes: all p = 5 = m variables with missing values (for MAR pattern: m = p − 1 = 4) and only p/3 variables

with missing values. N/I stands for “not implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST kNN
Data Technique # Var. % MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR
Fertility CondRF 0% 127.77 127.77 127.86 127.77 127.77 127.86 127.77 127.77 127.86 127.77 127.77 127.86 127.77 127.77 127.86 127.77 127.77 127.86

m 10% 128.19 127.95 129.00 127.58 127.17 132.37 127.03 126.58 131.21 122.79 123.24 123.96 124.94 125.41 123.67 125.56 126.13 132.18
20% 124.35 123.84 137.13 127.45 126.96 143.15 125.06 124.98 143.71 119.18 119.59 131.33 122.73 123.46 131.19 124.73 124.68 151.72
30% 160.05 133.61 163.05 129.27 129.16 171.03 125.64 124.71 171.18 118.68 119.94 149.81 122.86 123.07 156.57 125.90 124.56 169.92
40% 164.29 138.43 164.48 132.15 129.21 154.69 125.46 124.03 172.26 118.20 119.01 158.08 123.89 123.18 158.22 124.47 124.70 160.74

2 10% 128.11 128.21 128.85 127.97 127.76 129.37 127.33 127.25 127.59 126.42 125.61 126.14 127.13 126.92 126.56 127.51 127.18 126.77
20% 127.60 126.92 127.38 128.20 127.94 127.72 126.87 125.69 127.56 124.94 123.49 126.05 125.91 125.74 126.14 126.96 125.40 126.88
30% 127.08 127.48 127.78 126.51 127.76 128.89 126.41 125.79 128.98 123.36 122.20 127.76 124.85 124.93 128.42 125.85 125.80 128.16
40% 127.71 128.26 127.98 127.62 127.39 128.30 126.86 124.48 128.38 123.29 121.51 127.77 125.42 124.62 128.16 126.02 126.62 128.54

CondTree 0% 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09 130.09
m 10% 138.10 135.32 144.17 136.59 132.47 146.26 133.09 131.32 150.54 114.18 118.11 132.30 120.39 122.10 135.50 128.47 131.63 151.31

20% 142.63 135.32 157.02 137.64 134.36 168.60 134.34 131.25 170.10 111.56 113.92 140.73 119.09 121.61 143.12 128.75 129.65 175.81
30% 143.86 138.41 188.49 144.19 137.64 215.86 134.65 130.52 197.26 111.69 117.09 164.34 121.52 121.26 176.74 133.25 130.15 182.40
40% 146.31 139.92 169.33 146.75 141.06 181.69 133.31 131.00 186.53 113.79 118.01 165.45 124.08 125.46 168.29 131.56 132.10 168.53

2 10% 131.86 131.35 132.73 132.09 128.10 133.71 130.01 131.14 132.91 124.38 125.10 131.48 126.26 127.40 130.42 130.21 130.41 131.53
20% 132.86 132.48 130.38 134.69 131.50 131.59 130.46 129.24 129.26 122.27 123.25 129.29 124.61 126.61 128.57 131.72 132.88 129.53
30% 131.33 130.46 131.80 132.19 129.34 132.54 130.20 129.48 132.74 121.55 122.86 131.47 124.98 124.87 131.78 130.48 130.86 131.77
40% 131.54 131.47 133.14 131.72 130.52 133.35 131.18 130.64 133.56 121.07 123.01 133.12 125.47 126.48 133.06 131.21 132.24 134.12

CART 0% 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24 130.24
m 10% 129.66 126.75 124.63 125.54 126.68 129.62 127.08 126.34 133.11 111.04 113.81 119.13 115.73 118.38 121.39 126.06 127.73 130.98

20% 125.30 125.83 155.77 128.67 128.75 159.44 128.99 128.34 163.67 105.59 110.14 127.49 111.97 116.05 123.96 127.94 129.90 174.41
30% 132.52 123.64 185.30 134.55 125.50 227.94 126.94 126.76 203.60 104.05 108.71 147.37 110.91 112.03 157.98 130.19 128.35 182.12
40% 134.26 128.49 173.22 138.34 133.72 184.14 129.69 129.24 236.01 105.16 108.89 161.91 111.49 114.56 160.12 133.20 128.94 181.46

2 10% 128.09 126.36 127.71 127.16 126.95 126.94 128.19 128.84 131.57 120.93 123.30 127.36 123.29 125.96 128.46 129.21 129.71 133.29
20% 128.54 125.40 125.56 127.48 130.45 125.58 131.00 129.59 125.71 119.33 120.24 124.37 122.54 125.22 122.74 129.92 131.96 127.13
30% 125.04 123.81 127.38 124.78 128.65 132.41 129.71 127.54 132.21 114.94 118.14 125.95 119.15 122.10 127.07 127.89 132.37 132.67
40% 124.09 124.64 126.35 122.70 130.52 129.38 129.64 132.08 148.09 113.21 116.30 127.59 117.70 120.09 126.23 127.60 130.47 135.48

RF 0% 74.25 74.25 74.26 74.25 74.25 74.26 74.25 74.25 74.26 74.25 74.25 74.26 74.25 74.25 74.26 74.25 74.25 74.26
m 10% N/I N/I N/I 76.82 76.21 95.48 76.75 76.70 97.24 75.74 76.66 89.48 77.41 78.14 90.68 77.40 78.02 107.47

20% N/I N/I N/I 79.59 79.08 116.98 79.68 79.55 121.06 79.52 79.29 102.96 81.82 81.39 103.37 82.47 81.72 129.43
30% N/I N/I N/I 84.90 83.00 249.93 84.97 80.52 274.27 84.08 81.27 203.72 85.53 83.31 195.71 88.95 84.21 281.98
40% N/I N/I N/I 90.89 87.46 180.06 89.32 86.90 231.20 88.50 86.32 171.77 90.86 87.83 172.60 92.11 87.89 194.39

2 10% N/I N/I N/I 75.18 75.59 81.92 75.01 75.75 82.67 75.38 75.53 79.23 75.96 76.21 80.00 75.95 75.95 84.08
20% N/I N/I N/I 76.60 77.91 82.10 77.27 77.98 83.72 76.90 77.71 82.14 77.92 78.13 82.43 77.38 78.24 83.84
30% N/I N/I N/I 77.50 79.09 95.03 78.76 79.85 94.41 77.12 79.47 90.07 79.23 78.86 93.15 78.48 80.72 94.36
40% N/I N/I N/I 78.56 79.44 90.40 79.99 81.90 94.91 78.02 80.75 87.03 79.87 79.14 88.80 79.16 80.90 91.05

Bagging 0% 94.58 94.58 94.62 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 116.84 114.42 134.54 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 174.11 171.60 170.40 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 193.31 174.73 178.66 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 225.10 199.47 228.91 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

2 10% 104.15 107.93 118.66 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 112.78 118.35 128.83 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 164.40 136.63 175.54 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 172.36 157.66 187.25 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 105.68 105.68 105.88 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 110.44 109.06 122.11 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 115.70 112.49 131.23 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 123.63 116.74 158.33 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 128.01 120.55 157.67 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

2 10% 107.44 107.27 111.52 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 109.62 108.91 111.43 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 110.31 109.83 113.38 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 111.44 110.73 113.34 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF m 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 83.29 83.31 95.49 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 87.92 85.88 108.88 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 92.81 89.14 183.04 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 97.44 94.31 172.87 N/I N/I N/I

Boot. RF 2 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 86.22 82.27 86.52 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 83.29 82.04 87.75 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 84.42 84.68 97.10 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 85.33 85.80 95.19 N/I N/I N/I



Table C.12: Summary of standard error (SE) estimates of each of the MSPE estimates for the Fertility dataset. Missing data was induced under
MCAR, MAR and MNAR patterns at different fractions and following 2 schemes: all p = 5 = m variables with missing values (for MAR pattern:

m = p− 1 = 4) and only p/3 variables with missing values. N/I stands for “not implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST kNN
Data Technique # Var. % MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR
Fertility CondRF 0% 61.56 61.56 61.60 61.56 61.56 61.60 61.56 61.56 61.60 61.56 61.56 61.60 61.56 61.56 61.60 61.56 61.56 61.60

m 10% 62.34 61.97 72.64 63.93 61.95 69.96 63.59 61.24 71.52 58.46 60.19 67.73 62.06 61.86 66.68 58.58 60.49 77.99
20% 62.81 61.68 69.05 62.80 64.23 68.61 61.52 61.58 73.61 58.38 58.51 71.02 60.84 61.92 66.90 60.13 60.36 86.28
30% 74.32 69.18 74.98 66.18 67.32 77.04 65.16 63.21 81.36 59.49 59.98 70.74 63.40 62.75 72.62 63.23 59.34 74.85
40% 75.33 70.60 75.36 66.39 65.40 67.94 63.06 61.14 80.29 59.34 61.39 73.25 62.38 62.56 70.14 59.48 61.28 74.65

2 10% 62.55 62.43 64.19 62.46 61.74 63.61 60.73 62.40 62.48 61.75 61.12 62.53 62.51 61.99 62.09 61.30 61.30 62.58
20% 63.31 62.75 65.35 63.25 62.78 64.76 61.88 60.98 65.67 61.09 60.35 64.14 62.71 61.00 63.93 61.61 58.97 64.42
30% 61.67 63.18 63.85 61.60 62.52 63.75 61.62 63.15 64.75 60.00 60.28 63.49 61.43 61.88 63.48 61.00 62.67 63.28
40% 63.30 64.99 62.06 62.93 63.69 62.17 62.44 62.79 62.23 61.17 60.23 61.98 62.53 63.48 61.85 60.97 63.99 62.35

CondTree 0% 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06 78.06
m 10% 73.49 75.42 77.54 74.71 74.54 89.68 79.00 74.90 87.61 63.59 66.88 69.47 70.77 71.78 72.49 71.20 75.79 82.60

20% 72.64 72.33 86.51 70.70 75.83 87.93 75.78 75.51 88.31 61.16 62.97 75.85 65.72 68.91 74.87 69.20 73.00 93.67
30% 74.22 75.83 99.69 78.56 75.52 119.96 79.77 77.96 111.60 59.55 64.06 79.32 66.28 66.71 86.85 71.95 67.59 91.38
40% 74.79 69.69 74.63 76.45 72.75 77.80 75.30 72.42 101.19 59.60 62.97 75.28 65.44 65.31 74.43 65.26 69.59 75.21

2 10% 74.91 75.93 77.28 76.28 75.19 75.23 76.72 78.29 77.46 74.73 72.29 73.18 75.80 75.50 73.33 76.89 76.62 75.28
20% 76.91 75.99 73.19 76.48 79.44 72.28 77.42 75.47 75.17 73.34 69.45 73.39 74.64 72.13 71.92 76.06 72.55 74.00
30% 74.14 72.29 73.17 75.66 72.69 75.35 75.10 75.35 77.78 67.28 67.02 72.79 70.68 69.46 74.07 72.68 73.45 73.32
40% 70.43 73.08 70.74 70.84 74.37 71.11 74.76 77.03 71.30 68.12 64.83 70.71 68.91 71.57 70.54 70.56 74.33 71.69

CART 0% 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57 70.57
m 10% 70.72 67.07 64.77 70.96 69.80 65.88 74.11 70.19 72.26 63.51 63.37 63.40 67.82 64.92 61.09 70.07 71.00 77.73

20% 67.98 70.86 78.49 72.45 75.98 79.32 76.88 77.20 89.32 60.08 63.76 73.69 64.93 66.51 60.26 75.39 78.00 99.02
30% 74.60 67.97 106.62 81.45 69.90 111.96 75.69 71.97 117.44 57.31 61.24 76.85 61.72 62.58 79.80 77.21 73.20 98.24
40% 70.82 68.75 86.63 74.94 72.38 81.75 75.92 74.46 135.16 56.81 60.39 80.33 61.49 61.72 72.79 75.85 72.65 85.96

2 10% 69.65 71.48 67.33 70.39 73.24 68.37 71.08 73.30 72.42 68.94 68.78 68.38 70.42 71.62 68.05 72.13 73.31 71.75
20% 70.28 67.72 66.82 71.68 75.14 67.43 72.57 73.93 71.15 67.82 66.06 67.78 67.84 69.18 65.37 72.88 73.03 68.53
30% 66.32 64.43 65.72 67.61 71.42 77.60 74.67 73.72 80.56 62.85 63.40 67.06 65.12 66.92 66.83 69.41 73.66 72.96
40% 64.28 67.57 64.91 64.91 72.65 68.17 71.79 79.08 99.41 62.18 64.65 70.85 63.14 66.48 65.73 69.25 71.49 81.54

RF 0% 39.62 39.62 39.75 39.62 39.62 39.75 39.62 39.62 39.75 39.62 39.62 39.75 39.62 39.62 39.75 39.62 39.62 39.75
m 10% N/I N/I N/I 44.24 40.80 53.08 44.64 41.58 57.85 39.73 40.95 50.20 41.74 41.43 49.35 41.00 43.77 65.75

20% N/I N/I N/I 43.67 46.82 62.14 46.02 46.21 69.04 41.48 42.88 56.95 41.86 43.39 47.98 48.12 48.00 81.24
30% N/I N/I N/I 49.17 46.03 170.36 51.34 43.82 179.50 43.99 41.98 139.11 44.16 43.36 129.82 52.78 46.70 182.43
40% N/I N/I N/I 51.98 49.03 80.03 50.01 48.88 110.73 46.14 45.64 77.07 46.36 45.33 75.34 51.91 50.47 85.60

2 10% N/I N/I N/I 40.75 41.46 46.41 40.66 41.45 47.53 40.74 40.51 43.76 41.01 40.61 44.10 41.50 41.94 49.05
20% N/I N/I N/I 42.21 41.66 46.80 42.32 41.84 47.45 41.31 41.12 45.74 41.41 40.85 44.07 42.26 40.48 47.17
30% N/I N/I N/I 41.03 43.48 65.02 44.14 44.13 64.24 40.20 41.54 55.54 41.24 41.56 57.20 42.48 44.73 61.88
40% N/I N/I N/I 41.54 43.62 48.28 42.27 45.64 53.69 40.90 42.39 47.35 40.67 42.00 46.74 40.93 44.05 50.17

Bagging 0% 54.86 54.86 54.77 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 64.94 64.75 79.79 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 83.13 80.63 79.23 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 99.87 80.60 83.80 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 158.51 103.99 129.38 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

2 10% 59.74 61.45 75.71 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 61.28 64.27 76.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 78.81 70.12 84.91 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 79.58 76.39 84.94 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 61.72 61.72 61.97 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 62.41 61.75 72.89 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 63.42 62.67 72.30 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 65.68 65.84 72.05 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 65.93 64.69 71.22 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

2 10% 62.56 61.95 64.40 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 63.34 62.68 65.26 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 61.65 62.30 63.07 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 62.00 63.09 60.91 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF m 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 43.78 43.74 51.85 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 44.67 45.36 52.47 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 47.09 45.81 104.86 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 49.39 49.19 77.23 N/I N/I N/I

Boot. RF 2 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 46.02 43.94 47.58 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 42.17 43.41 46.10 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 42.07 45.22 54.22 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 42.60 45.50 49.31 N/I N/I N/I



Table C.13: Summary of mean relative improvement values with an imputation strategy compared to surrogate decisions through different
missing data scenarios for the Fertility dataset. Only CondRF, CondTree and CART were taken into account for these comparisons (because RF
implementation in R -randomForest()- cannot be fitted on incomplete data). Missing data was induced under MCAR, MAR and MNAR patterns
at different fractions and following 2 schemes: all p = 5 = m variables with missing values (for MAR pattern: m = p− 1 = 4) and only p/3 variables

with missing values.

Median/mode Prox. Matrix MICE
Missing MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Fertility CondRF 0%

m 10% 0.00 0.09 0.00 0.08 -0.05 0.16 0.01 0.08 0.01 0.09 -0.03 0.14 0.04 0.11 0.03 0.10 0.03 0.09
20% -0.04 0.17 -0.04 0.15 -0.06 0.14 -0.03 0.18 -0.04 0.21 -0.06 0.12 0.03 0.14 0.02 0.16 0.05 0.13
30% 0.18 0.22 0.00 0.25 -0.08 0.32 0.19 0.28 0.01 0.34 -0.07 0.26 0.25 0.20 0.07 0.25 0.08 0.14
40% 0.19 0.17 0.04 0.25 0.04 0.17 0.20 0.30 0.04 0.37 -0.07 0.27 0.27 0.19 0.11 0.26 0.03 0.13

2 10% 0.00 0.07 0.00 0.06 -0.01 0.06 0.00 0.09 0.01 0.07 0.01 0.04 0.01 0.07 0.02 0.08 0.02 0.09
20% -0.01 0.10 -0.02 0.12 -0.01 0.04 -0.01 0.18 -0.01 0.17 0.00 0.05 0.01 0.11 0.02 0.13 0.01 0.08
30% -0.01 0.14 -0.02 0.17 -0.01 0.09 -0.03 0.28 -0.01 0.24 -0.01 0.07 0.02 0.17 0.03 0.18 0.00 0.05
40% -0.01 0.11 0.00 0.12 0.00 0.04 -0.02 0.26 0.00 0.24 0.00 0.03 0.03 0.12 0.04 0.16 0.00 0.03

CondTree 0%
m 10% -0.04 0.34 -0.02 0.34 -0.04 0.39 0.01 0.33 -0.04 0.68 -0.08 0.42 0.13 0.31 0.06 0.51 0.06 0.23

20% -0.02 0.41 -0.03 0.34 -0.15 0.49 0.02 0.41 -0.02 0.44 -0.16 0.46 0.18 0.31 0.12 0.36 0.07 0.27
30% -0.06 0.46 -0.04 0.34 -0.16 0.39 0.02 0.42 -0.01 0.51 -0.06 0.25 0.19 0.26 0.11 0.36 0.09 0.19
40% -0.06 0.39 -0.05 0.39 -0.11 0.36 0.02 0.48 0.00 0.44 -0.11 0.45 0.19 0.28 0.13 0.30 0.02 0.11

2 10% -0.03 0.35 0.00 0.23 -0.04 0.25 -0.03 0.47 -0.03 0.41 -0.02 0.23 0.03 0.31 0.01 0.32 -0.03 0.35
20% -0.06 0.37 -0.01 0.27 -0.03 0.21 -0.04 0.44 -0.04 0.55 0.00 0.24 0.05 0.37 0.02 0.39 -0.01 0.28
30% -0.04 0.30 -0.02 0.28 -0.01 0.21 -0.06 0.52 -0.07 0.58 -0.01 0.16 0.04 0.32 0.01 0.40 -0.01 0.15
40% -0.03 0.29 -0.01 0.23 0.00 0.10 -0.06 0.52 -0.05 0.43 0.00 0.08 0.06 0.22 0.01 0.38 0.00 0.07

CART 0%
m 10% -0.03 0.40 -0.05 0.46 -0.15 0.61 -0.04 0.50 -0.07 0.54 -0.17 0.55 0.10 0.42 0.06 0.36 -0.02 0.43

20% -0.11 0.53 -0.08 0.48 -0.11 0.48 -0.11 0.58 -0.12 0.60 -0.10 0.45 0.10 0.40 0.07 0.39 0.15 0.34
30% -0.09 0.52 -0.08 0.45 -0.46 0.94 -0.06 0.57 -0.14 0.65 -0.21 0.60 0.15 0.36 0.07 0.38 0.12 0.36
40% -0.11 0.54 -0.11 0.46 -0.19 0.57 -0.07 0.60 -0.12 0.66 -0.53 1.05 0.16 0.35 0.10 0.35 -0.01 0.42

2 10% -0.02 0.26 -0.04 0.34 -0.02 0.24 -0.04 0.37 -0.07 0.43 -0.07 0.43 0.04 0.28 -0.01 0.32 -0.03 0.40
20% -0.02 0.25 -0.09 0.50 -0.02 0.26 -0.09 0.50 -0.11 0.56 -0.03 0.34 0.04 0.30 0.00 0.37 -0.01 0.32
30% -0.02 0.28 -0.09 0.56 -0.06 0.61 -0.12 0.72 -0.10 0.59 -0.05 0.43 0.05 0.32 0.00 0.40 0.00 0.21
40% -0.01 0.21 -0.08 0.37 -0.04 0.29 -0.15 0.73 -0.14 0.58 -0.20 0.77 0.06 0.32 0.02 0.39 -0.02 0.26

MIST kNN
Missing MCAR MAR MNAR MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Fertility CondRF 0%

m 10% 0.03 0.09 0.02 0.08 0.03 0.10 0.01 0.09 0.01 0.08 -0.02 0.19
20% 0.00 0.13 -0.01 0.14 0.04 0.12 -0.03 0.17 -0.03 0.19 -0.09 0.15
30% 0.22 0.23 0.05 0.24 0.03 0.21 0.19 0.28 0.01 0.32 -0.07 0.21
40% 0.23 0.21 0.07 0.26 0.02 0.16 0.22 0.25 0.05 0.32 0.01 0.18

2 10% 0.01 0.06 0.01 0.06 0.01 0.05 0.00 0.07 0.00 0.07 0.01 0.05
20% 0.01 0.10 0.00 0.14 0.01 0.05 -0.01 0.14 -0.01 0.17 0.00 0.05
30% 0.01 0.16 0.00 0.19 -0.01 0.08 -0.01 0.22 -0.01 0.22 -0.01 0.05
40% 0.01 0.12 0.02 0.15 0.00 0.06 0.00 0.16 0.00 0.17 -0.01 0.07

CondTree 0%
m 10% 0.11 0.26 0.05 0.61 0.04 0.22 0.01 0.51 -0.05 0.69 -0.16 0.62

20% 0.14 0.32 0.07 0.30 0.06 0.24 0.04 0.48 -0.01 0.43 -0.19 0.43
30% 0.13 0.28 0.08 0.30 0.03 0.17 0.02 0.39 -0.01 0.45 0.01 0.21
40% 0.12 0.28 0.08 0.26 0.00 0.12 0.03 0.42 0.00 0.43 0.00 0.14

2 10% 0.02 0.28 0.00 0.33 -0.01 0.24 -0.02 0.38 -0.03 0.42 -0.02 0.27
20% 0.04 0.28 0.00 0.33 0.00 0.21 -0.04 0.45 -0.09 0.60 -0.01 0.20
30% 0.02 0.26 0.01 0.29 -0.01 0.19 -0.04 0.40 -0.06 0.44 0.00 0.09
40% 0.03 0.28 0.01 0.31 -0.01 0.18 -0.04 0.39 -0.04 0.38 -0.02 0.29

CART 0%
m 10% 0.07 0.40 0.03 0.33 -0.04 0.44 -0.05 0.53 -0.09 0.55 -0.13 0.55

20% 0.06 0.41 0.03 0.41 0.16 0.28 -0.11 0.54 -0.12 0.59 -0.16 0.51
30% 0.10 0.38 0.04 0.37 0.07 0.37 -0.10 0.65 -0.13 0.58 -0.09 0.54
40% 0.11 0.38 0.06 0.35 -0.01 0.42 -0.10 0.64 -0.10 0.59 -0.16 0.52

2 10% 0.02 0.26 -0.03 0.33 -0.05 0.40 -0.05 0.39 -0.08 0.42 -0.11 0.50
20% 0.02 0.28 -0.04 0.40 0.00 0.24 -0.06 0.41 -0.15 0.65 -0.04 0.33
30% 0.02 0.34 -0.02 0.37 -0.02 0.46 -0.09 0.62 -0.15 0.62 -0.06 0.41
40% 0.03 0.26 0.01 0.30 -0.01 0.21 -0.09 0.54 -0.13 0.58 -0.08 0.44



Table C.14: Summary of mean MSPE values for the Birthweight dataset. Techniques with prior kNN imputation could not be fitted since this
dataset contains categorical predictors. Missing data was induced under MCAR, MAR and MNAR patterns at different fractions and following 2
schemes: all p = 8 = m variables with missing values (for MAR pattern: m = p− 1 = 7) and only p/3 variables with missing values. N/I stands for

“not implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST
Data Technique # Var. % MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR
Birth CondRF 0% 452584.3 452584.3 452349.3 452584.3 452584.3 452349.3 452584.3 452584.3 452349.3 452584.3 452584.3 452349.3 452584.3 452584.3 452349.3
weight m 10% 459813.2 458992.8 460798.3 460084.9 458842.1 456592.0 455864.1 454975.1 454021.8 455948.7 455580.4 455251.7 457636.4 456398.5 457278.8

20% 470114.8 470404.5 478195.6 467515.1 467241.1 475207.1 460091.9 459926.5 475636.0 460952.3 460268.7 469403.0 462783.4 461678.9 472087.5
30% 482392.0 481917.0 492959.4 477648.5 474148.1 496061.5 469665.0 466360.6 500344.1 467393.9 465472.0 485580.4 469770.2 467643.0 488075.3
40% 495339.9 492056.7 502489.0 487839.4 483971.3 503222.9 477049.5 473259.6 508027.8 474596.4 470321.5 496365.5 476550.7 473110.8 495810.1

3 10% 455552.5 455768.8 455229.1 455279.8 455451.4 453641.1 453961.3 454047.9 452832.4 454049.1 454449.9 452611.6 454312.0 454960.0 453520.0
20% 459479.2 460493.0 462969.7 457503.2 458951.3 461101.7 454927.1 456868.1 460182.8 455058.2 456325.9 458050.3 455504.3 457254.0 458861.5
30% 465069.8 464313.9 468813.0 461167.3 460616.6 467871.2 458286.4 458454.7 466690.4 458022.9 457405.1 462856.6 458638.5 458629.0 464084.0
40% 469347.9 469171.4 474591.6 465090.5 464801.6 472121.7 462060.3 462456.3 468462.3 459197.7 459908.0 466857.9 460931.9 461054.4 467954.3

CondTree 0% 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7 517320.7
m 10% 516077.1 516714.5 515440.7 522882.1 521478.3 517123.5 513178.7 512893.4 510503.9 506521.2 505691.9 506135.5 509433.3 509088.7 510155.9

20% 517041.0 520764.8 515499.1 527386.1 525012.5 523624.2 516440.4 517922.0 516052.8 509498.9 507979.2 510297.9 510890.7 509988.7 510701.2
30% 523261.6 526201.1 520818.0 531561.9 528104.6 523539.2 521859.6 518856.1 518815.3 516110.8 515540.8 516876.2 516374.4 514333.6 518068.3
40% 527684.5 525408.3 520307.0 532709.7 533196.8 522524.6 526562.4 523704.1 523954.2 521850.2 516941.5 521592.5 520270.0 516899.1 520359.4

3 10% 516856.9 516902.3 516024.1 518702.3 520081.8 516956.0 515554.3 518056.7 514174.2 510059.5 511859.1 509915.7 512391.3 513461.1 511655.5
20% 519470.9 520737.1 519686.2 521794.6 519993.4 520140.0 516544.2 518265.1 515753.2 511821.1 512334.3 510223.2 513075.1 512876.2 512320.4
30% 522358.9 521951.5 522279.9 522550.0 521479.4 522506.9 518112.1 519440.9 519052.6 513364.3 512225.0 512324.6 513928.0 514382.9 514497.6
40% 522458.0 523250.5 525096.0 524867.3 521677.6 521520.6 520393.3 523142.9 518793.1 514623.2 516121.2 517098.8 514469.5 515626.5 517474.6

CART 0% 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9 523200.9
m 10% 525344.7 525841.1 511444.4 533349.2 531027.9 517028.2 538200.7 534694.7 518118.6 495420.1 498458.5 488186.1 498178.3 500559.6 489973.0

20% 527392.1 534232.5 544938.0 539896.3 542494.9 565500.1 555437.5 550276.0 583683.7 491372.9 494295.0 499879.1 494249.0 496806.7 508755.8
30% 538780.1 532592.9 576179.0 548640.1 545449.7 604052.0 575947.6 563886.9 626916.9 497888.3 501050.8 514442.3 496874.3 499612.7 525536.0
40% 542070.8 535502.0 578406.1 556261.3 553376.2 615713.7 588939.0 576184.4 635028.6 502318.0 499256.4 522998.4 499064.6 499952.2 524674.5

3 10% 521682.3 523984.0 518219.5 527339.3 525864.4 521884.9 531308.8 530976.4 520138.1 507545.5 507302.6 502864.7 509911.2 507665.4 504270.6
20% 524738.8 528971.0 535673.3 531793.1 537098.9 545358.9 532804.8 543160.4 548015.0 504150.8 506618.7 507967.7 506479.7 509156.0 512757.8
30% 527032.8 528807.8 535861.7 536272.5 533979.9 554750.5 538329.0 547277.6 558336.8 506277.1 504458.2 513819.7 507429.0 507063.8 516095.4
40% 529764.0 531217.4 544492.2 539481.6 540036.5 561837.9 551281.1 552781.4 561971.2 507973.4 507071.9 515379.1 510390.5 507760.1 518194.2

RF 0% 504581.2 504581.2 504759.5 504581.2 504581.2 504759.5 504581.2 504581.2 504759.5 504581.2 504581.2 504759.5 504581.2 504581.2 504759.5
m 10% N/I N/I N/I 506671.5 506231.2 495833.9 504319.0 503369.4 484744.4 494028.5 494796.4 481970.7 496403.7 496882.5 482940.6

20% N/I N/I N/I 513642.2 513171.1 510777.1 505383.7 505908.2 504587.1 488947.0 490805.9 478863.2 492460.1 492493.1 487043.3
30% N/I N/I N/I 521534.8 517847.8 553346.0 517679.7 509804.8 554084.8 492216.2 492463.6 497852.5 491557.6 493090.6 514925.1
40% N/I N/I N/I 531205.7 524561.3 563622.7 524572.9 518657.6 558955.6 495534.0 492431.8 503813.5 492282.9 492612.9 513650.7

3 10% N/I N/I N/I 506343.2 507041.7 501345.0 504239.0 504644.2 496557.9 500467.9 500839.9 494567.0 501709.0 502146.3 495308.6
20% N/I N/I N/I 507023.0 507638.1 508202.2 503577.6 504245.1 501625.3 497271.4 498123.3 494610.1 499202.4 499567.0 498343.4
30% N/I N/I N/I 509959.0 508533.1 523810.8 504174.7 503836.4 517206.8 497296.9 495696.1 499699.5 498179.4 497288.3 508573.4
40% N/I N/I N/I 514054.2 512123.1 528201.7 508266.3 507980.1 521149.4 497495.6 496951.1 499911.3 499185.5 497370.2 507960.7

Bagging 0% 469856.8 469926.2 469451.7 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 499907.9 493056.7 494686.4 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 542382.7 535212.5 560208.4 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 599570.4 571437.5 608223.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 782016.0 681922.1 872861.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

3 10% 477541.8 477184.5 475940.5 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 492257.4 489998.0 497194.7 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 508186.7 503863.1 517245.8 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 532981.8 526042.3 545106.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 460448.6 460443.2 460549.6 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 463687.5 462866.9 464962.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 468936.9 469742.9 476940.5 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 477626.4 477626.9 489741.8 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 487727.6 484238.1 498541.2 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

3 10% 461370.1 462029.9 461439.6 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 463671.9 465040.2 468152.8 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 467362.7 466800.9 473146.8 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 470411.9 470481.3 476965.2 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF m 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 490130.2 490812.3 477936.3
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 489616.8 489928.9 488850.7
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 492411.0 489847.1 513976.6
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 494961.3 492170.8 514146.1

Boot. RF 3 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 492230.9 491771.8 486736.9
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 491033.7 491528.9 491588.1
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 492891.6 490494.8 501376.8
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 491322.4 492009.9 503441.4



Table C.15: Summary of standard error (SE) estimates of each of the MSPE estimates for the Birthweight dataset. Techniques with prior kNN
imputation could not be fitted since this dataset contains categorical predictors. Missing data was induced under MCAR, MAR and MNAR patterns
at different fractions and following 2 schemes: all p = 8 = m variables with missing values (for MAR pattern: m = p− 1 = 7) and only p/3 variables

with missing values. N/I stands for “not implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST
Data Technique # Var. % MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR
Birth CondRF 0% 93781.7 93781.7 93451.8 93781.7 93781.7 93451.8 93781.7 93781.7 93451.8 93781.7 93781.7 93451.8 93781.7 93781.7 93451.8
weight m 10% 95510.2 95361.1 94661.6 94626.5 94326.8 93461.5 93904.8 93349.3 92241.3 94715.2 94595.4 93567.2 95009.1 94337.7 93864.1

20% 97077.3 97519.1 96666.3 95302.3 95046.1 96329.2 92591.9 93337.9 96132.9 95553.4 94652.9 95288.1 94774.1 94980.9 95600.9
30% 98658.0 99114.0 99256.0 98894.5 96855.4 99386.0 96345.9 94868.8 101150.0 96050.0 97166.7 98433.6 96651.9 96582.6 98271.9
40% 100124.0 100590.7 100328.1 98574.4 97463.0 100696.1 96409.7 96921.7 103229.2 97759.5 96436.6 100768.5 96836.1 96903.3 99961.6

3 10% 94112.6 94349.1 94700.7 93524.6 93727.0 93641.3 93235.8 93178.4 93417.9 93550.4 94152.4 93679.4 93625.0 94361.3 94007.3
20% 95580.9 95126.4 95994.3 94175.7 94247.8 94549.7 93360.4 93613.4 94605.1 94165.9 94302.6 95020.8 94220.6 94186.9 94653.4
30% 98160.8 96641.6 97984.3 96111.8 94740.9 96233.4 94804.5 93927.2 96486.8 95309.4 95079.3 96249.8 96044.2 95304.9 96805.4
40% 97996.1 97902.2 99634.3 96280.9 95486.0 97465.1 95627.7 95178.8 96211.3 95977.1 96101.4 97459.3 95644.4 95297.3 97518.7

CondTree 0% 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9 97991.9
m 10% 100267.7 102096.2 98426.2 101601.4 102732.9 97404.8 99270.3 101319.4 98648.7 100134.4 98922.7 99214.5 99963.6 98431.2 97698.2

20% 101441.2 102001.2 102075.5 101721.2 101365.0 99285.9 100911.2 101783.0 103398.8 101176.7 99153.6 101691.3 99949.9 99444.8 100256.0
30% 103184.1 102018.8 104909.3 104326.7 102481.6 99530.3 105535.6 102018.8 104456.0 101761.0 102925.4 102298.3 102099.0 102124.3 101538.2
40% 104676.5 103685.6 103124.4 102040.9 105364.5 99194.4 105512.8 104340.5 105782.4 102585.9 102194.7 102597.5 102774.1 101754.7 102096.1

3 10% 99637.9 98749.3 99023.4 99679.8 98302.1 97578.4 100181.3 98611.2 98250.7 98515.1 98259.0 97052.5 98126.5 97739.1 98460.0
20% 101031.4 99652.2 101002.7 98649.2 99400.7 98828.3 99835.5 99096.2 100307.3 98879.8 98979.6 99399.7 98264.4 99452.2 98962.8
30% 105552.5 103367.4 103535.0 102950.4 102511.4 99843.1 104120.0 103068.6 100321.6 101635.7 101603.0 99838.4 100028.9 102078.5 100836.8
40% 102518.5 100549.9 105550.3 101687.8 100312.7 100404.6 102159.8 103394.4 99278.4 99513.5 99440.1 102254.4 98969.3 98333.9 101330.3

CART 0% 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3 118534.3
m 10% 116809.1 117853.0 117315.9 118253.0 118973.7 114921.8 120660.3 122270.2 113702.2 107606.1 107803.9 105023.7 106191.1 108171.2 103306.2

20% 113630.5 119074.1 114703.0 119234.0 118804.1 121157.2 122367.7 122529.6 133543.7 107464.9 106131.9 104997.7 103508.8 104874.1 105370.8
30% 121617.5 117426.1 124033.5 122910.7 121471.5 123072.9 130073.3 122981.7 139768.2 106253.1 106928.7 106489.5 105417.6 104863.2 107050.9
40% 119768.4 115009.4 121172.4 125089.2 120985.3 127278.3 130080.0 133103.5 138228.2 105752.0 106002.3 110231.2 103336.2 103331.7 105908.2

3 10% 117670.2 118257.7 115105.6 115900.1 117096.5 117782.3 116666.8 118058.5 117351.4 110718.8 111361.5 110110.1 110940.7 111165.5 112382.6
20% 119413.6 113506.5 117073.8 117341.0 113323.1 121812.9 119185.7 118858.1 122918.4 109814.3 107992.2 109602.0 110963.6 107071.1 109915.1
30% 118079.3 118715.9 117537.1 120583.5 116181.0 117864.8 119909.9 121197.5 119224.7 111911.4 110368.3 111548.5 113571.4 109893.4 111871.8
40% 120009.0 121241.4 122212.1 119767.5 122535.7 123749.0 125481.1 124354.7 128790.7 112198.0 111243.7 113274.5 111765.8 112115.1 112093.1

RF 0% 97319.4 97319.4 97564.5 97319.4 97319.4 97564.5 97319.4 97319.4 97564.5 97319.4 97319.4 97564.5 97319.4 97319.4 97564.5
m 10% N/I N/I N/I 98553.5 98023.1 93931.6 100787.5 99062.8 94237.7 98746.1 97978.5 95767.4 98720.5 98097.4 94022.0

20% N/I N/I N/I 99856.2 99802.8 100168.3 100110.2 101154.1 103430.1 99689.3 99789.8 97002.0 97117.1 98539.3 96942.9
30% N/I N/I N/I 104648.5 102953.9 108031.9 108190.1 106078.4 113258.1 101743.8 103376.5 100642.7 99578.5 100318.3 100842.3
40% N/I N/I N/I 104439.2 103139.2 114723.5 106064.5 106781.0 119498.5 102067.7 100146.2 107009.5 97003.1 98218.3 106794.7

3 10% N/I N/I N/I 98400.0 98758.1 95771.5 98166.1 98481.9 96382.7 97647.0 97596.0 96471.0 98016.8 97933.3 96674.4
20% N/I N/I N/I 98403.8 97463.8 98128.1 99762.4 98624.8 99349.3 99462.3 97998.1 97503.3 97669.0 96769.2 97044.8
30% N/I N/I N/I 99466.4 98568.1 105054.1 101573.7 98724.0 104927.2 100325.3 99759.1 101792.1 100629.4 98060.7 103524.4
40% N/I N/I N/I 103558.0 101307.6 102676.7 104692.5 101893.5 104292.5 101504.4 101313.3 102043.1 101046.8 99396.1 102507.5

Bagging 0% 98471.2 98326.5 98417.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 109096.5 106912.6 108058.3 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 120419.2 117040.8 126035.1 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 154982.3 127705.2 163402.2 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 418046.5 302205.5 700133.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

3 10% 102920.4 103787.1 102653.5 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 110954.5 107398.5 108747.3 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 113654.3 109596.5 115762.4 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 117435.9 118901.8 119415.8 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 93576.6 93574.1 93604.8 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
m 10% 95965.7 95619.4 95304.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 96680.0 97744.1 97207.7 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 97862.8 99402.6 99716.7 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 99125.9 99520.0 100382.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

3 10% 94422.8 94391.3 94712.9 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 95846.9 95959.4 96649.6 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 98522.1 96957.7 98332.7 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 97882.2 98505.4 99742.0 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF m 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 98924.9 100034.8 95438.6
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 99212.9 99292.8 99584.4
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 101508.8 100370.5 103139.5
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 98440.4 99845.0 105183.3

Boot. RF 3 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 98311.0 99949.3 97186.9
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 99233.9 99401.2 97928.9
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 100029.7 98802.6 103666.9
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 101262.3 98819.1 102677.9



Table C.16: Summary of mean relative improvement values with an imputation strategy compared to surrogate decisions through different missing
data scenarios for the Birthweight dataset. Only CondRF, CondTree and CART were taken into account for these comparisons (because RF
implementation in R -randomForest()- cannot be fitted on incomplete data). In addition, kNN imputation could not be implemented since this
dataset contains categorical predictors. Missing data was induced under MCAR, MAR and MNAR patterns at different fractions and following 2

schemes: all p = 8 = m variables with missing values (for MAR pattern: m = p− 1 = 7) and only p/3 variables with missing values.

Median/mode Prox. Matrix MICE
Missing MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Birthweight CondRF 0%

m 10% 0.00 0.03 0.00 0.03 0.01 0.03 0.01 0.04 0.01 0.03 0.01 0.04 0.01 0.02 0.01 0.02 0.01 0.02
20% 0.00 0.04 0.01 0.04 0.01 0.04 0.02 0.05 0.02 0.05 0.00 0.05 0.02 0.03 0.02 0.03 0.02 0.03
30% 0.01 0.05 0.01 0.05 -0.01 0.05 0.02 0.06 0.03 0.06 -0.02 0.06 0.03 0.04 0.03 0.04 0.01 0.03
40% 0.01 0.05 0.01 0.05 0.00 0.06 0.03 0.07 0.04 0.07 -0.01 0.07 0.04 0.04 0.04 0.04 0.01 0.04

3 10% 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.01
20% 0.00 0.03 0.00 0.03 0.00 0.03 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.02 0.01 0.02 0.01 0.02
30% 0.01 0.03 0.01 0.03 0.00 0.04 0.01 0.05 0.01 0.04 0.00 0.05 0.01 0.03 0.01 0.03 0.01 0.03
40% 0.01 0.04 0.01 0.04 0.00 0.04 0.01 0.05 0.01 0.05 0.01 0.05 0.02 0.03 0.02 0.03 0.02 0.03

CondTree 0%
m 10% -0.02 0.08 -0.01 0.08 -0.01 0.08 0.00 0.08 0.00 0.08 0.01 0.09 0.02 0.06 0.02 0.06 0.02 0.06

20% -0.02 0.09 -0.01 0.08 -0.02 0.09 0.00 0.10 0.00 0.10 0.00 0.08 0.01 0.07 0.02 0.07 0.01 0.07
30% -0.02 0.08 -0.01 0.08 -0.01 0.09 0.00 0.10 0.01 0.10 0.00 0.09 0.01 0.06 0.02 0.06 0.01 0.06
40% -0.01 0.08 -0.02 0.09 -0.01 0.10 0.00 0.10 0.00 0.10 -0.01 0.10 0.01 0.05 0.01 0.06 0.00 0.06

3 10% 0.00 0.05 -0.01 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.01 0.05 0.01 0.05 0.01 0.05
20% -0.01 0.07 0.00 0.07 0.00 0.07 0.00 0.08 0.00 0.08 0.01 0.07 0.01 0.05 0.01 0.06 0.02 0.05
30% 0.00 0.07 0.00 0.06 0.00 0.07 0.00 0.09 0.00 0.09 0.00 0.07 0.02 0.05 0.02 0.05 0.02 0.05
40% -0.01 0.07 0.00 0.07 0.00 0.07 0.00 0.09 0.00 0.09 0.01 0.07 0.01 0.05 0.01 0.05 0.01 0.05

CART 0%
m 10% -0.02 0.13 -0.02 0.13 -0.02 0.14 -0.03 0.15 -0.03 0.15 -0.03 0.17 0.05 0.12 0.04 0.12 0.03 0.12

20% -0.03 0.14 -0.03 0.14 -0.05 0.16 -0.07 0.19 -0.05 0.19 -0.08 0.19 0.06 0.13 0.06 0.13 0.07 0.12
30% -0.03 0.15 -0.04 0.16 -0.06 0.17 -0.09 0.21 -0.08 0.20 -0.11 0.21 0.06 0.14 0.05 0.14 0.10 0.13
40% -0.04 0.16 -0.04 0.16 -0.08 0.16 -0.11 0.22 -0.09 0.22 -0.12 0.22 0.06 0.15 0.06 0.14 0.09 0.14

3 10% -0.02 0.10 -0.01 0.10 -0.01 0.10 -0.03 0.13 -0.02 0.12 -0.01 0.11 0.02 0.09 0.03 0.09 0.03 0.08
20% -0.02 0.10 -0.02 0.11 -0.02 0.12 -0.03 0.15 -0.04 0.15 -0.03 0.14 0.03 0.11 0.04 0.10 0.05 0.11
30% -0.02 0.12 -0.02 0.12 -0.04 0.13 -0.03 0.15 -0.05 0.17 -0.05 0.15 0.03 0.11 0.04 0.11 0.03 0.11
40% -0.03 0.12 -0.02 0.12 -0.04 0.13 -0.05 0.18 -0.05 0.17 -0.04 0.17 0.03 0.12 0.04 0.12 0.05 0.12

MIST
Missing MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD
Birthweight CondRF 0%

m 10% 0.00 0.02 0.01 0.02 0.01 0.02
20% 0.01 0.03 0.02 0.03 0.01 0.03
30% 0.03 0.03 0.03 0.03 0.01 0.03
40% 0.04 0.04 0.04 0.04 0.01 0.04

3 10% 0.00 0.01 0.00 0.01 0.00 0.01
20% 0.01 0.02 0.01 0.02 0.01 0.02
30% 0.01 0.03 0.01 0.03 0.01 0.03
40% 0.02 0.03 0.02 0.03 0.01 0.03

CondTree 0%
m 10% 0.01 0.06 0.01 0.07 0.01 0.06

20% 0.01 0.07 0.02 0.06 0.01 0.06
30% 0.01 0.06 0.02 0.06 0.00 0.06
40% 0.01 0.05 0.01 0.06 0.00 0.06

3 10% 0.01 0.05 0.01 0.05 0.01 0.04
20% 0.01 0.06 0.01 0.06 0.01 0.05
30% 0.01 0.06 0.01 0.05 0.01 0.05
40% 0.01 0.06 0.01 0.05 0.01 0.05

CART 0%
m 10% 0.04 0.11 0.04 0.12 0.03 0.11

20% 0.05 0.13 0.06 0.13 0.06 0.12
30% 0.07 0.14 0.05 0.14 0.08 0.13
40% 0.07 0.14 0.05 0.14 0.08 0.13

3 10% 0.02 0.09 0.03 0.09 0.02 0.08
20% 0.03 0.11 0.03 0.11 0.04 0.10
30% 0.03 0.11 0.03 0.11 0.03 0.11
40% 0.03 0.12 0.04 0.12 0.04 0.11



Table C.17: Summary of mean MSPE values for the simulated dataset. Missing data was induced under MCAR, MAR and MNAR patterns
at different fractions and following 2 schemes: 8 variables with missing values and only 8/3 variables with missing values. N/I stands for “not

implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST kNN
Data Technique # Var. % MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR
Simu CondRF 0% 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80 76.80
lated 8 10% 78.92 91.08 380.46 79.51 78.41 129.73 76.46 77.17 101.88 76.73 77.77 99.86 76.85 76.80 98.00 77.39 77.07 96.44

20% 83.23 89.96 467.49 87.39 80.18 149.66 76.99 76.93 111.75 76.80 79.95 123.53 77.76 76.74 107.73 78.07 77.39 105.52
30% 87.54 82.95 234.38 97.40 80.90 168.46 76.59 77.52 119.40 76.72 81.37 174.69 78.12 77.57 113.89 80.22 78.16 113.79
40% 93.17 82.89 204.51 101.08 81.73 176.84 76.55 77.18 128.49 76.61 79.76 232.30 79.56 78.05 117.55 84.74 78.00 114.79

3 10% 77.15 76.98 76.68 76.73 77.31 76.32 76.79 76.98 76.29 76.85 76.77 77.06 76.75 76.77 76.27 76.89 76.64 76.51
20% 76.70 76.73 76.54 76.89 76.64 76.16 76.62 76.83 76.56 76.88 77.39 78.18 76.88 76.40 76.51 77.03 76.14 76.58
30% 76.82 77.13 76.33 77.14 77.11 76.61 77.00 76.91 76.51 76.69 77.48 80.37 76.91 76.94 76.32 77.44 77.24 76.75
40% 77.20 76.95 76.69 76.71 77.02 76.46 76.49 77.03 76.35 76.82 78.12 83.69 77.07 76.73 76.35 77.21 76.79 76.15

CondTree 0% 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38
8 10% 77.48 91.59 370.98 85.15 82.87 115.03 77.17 81.28 109.25 76.64 77.13 111.08 75.75 79.08 100.36 78.56 80.76 104.73

20% 86.37 92.52 520.88 93.72 80.82 126.51 77.94 79.09 120.45 75.65 75.67 127.17 71.71 76.54 113.61 81.12 78.70 114.26
30% 103.28 85.13 152.61 116.46 84.40 129.60 79.32 77.37 126.61 74.81 75.29 178.93 72.83 75.68 118.31 84.87 78.57 120.39
40% 112.46 85.55 125.16 123.71 86.39 130.13 78.62 79.15 130.13 73.62 76.80 250.56 70.31 78.16 122.52 91.98 81.11 124.09

3 10% 78.62 77.74 78.68 78.75 77.74 78.68 77.30 78.31 78.66 76.23 77.79 76.25 76.69 77.43 78.65 77.44 78.16 78.66
20% 79.10 78.32 78.72 79.25 78.37 78.73 77.75 79.63 78.72 76.50 77.48 78.69 78.46 77.94 78.70 79.08 78.67 78.71
30% 77.93 78.68 78.80 77.99 78.72 78.81 77.24 78.74 78.79 76.46 76.58 78.42 77.15 78.31 78.78 77.27 78.72 78.79
40% 78.55 78.61 78.84 78.56 78.65 78.88 77.32 78.42 78.87 75.59 77.65 83.96 78.23 78.49 78.83 78.23 78.44 78.84

CART 0% 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53 98.53
8 10% 110.50 114.10 151.51 121.05 101.36 230.11 99.38 100.86 156.62 91.91 89.04 141.64 91.20 93.94 124.52 99.43 100.54 131.92

20% 138.88 123.57 165.65 144.64 110.64 192.82 98.79 102.01 166.51 91.22 90.65 233.70 87.82 95.60 143.33 103.13 103.81 150.18
30% 153.40 129.81 170.10 155.63 113.84 213.45 98.83 100.52 178.35 86.96 98.19 299.51 83.00 92.81 152.80 103.67 100.88 156.73
40% 163.66 131.48 171.95 163.79 113.44 211.95 98.94 99.56 194.64 86.97 93.93 412.76 80.36 92.29 160.73 110.47 101.97 161.83

3 10% 99.14 98.85 100.38 100.13 98.82 100.38 98.51 99.44 109.19 96.47 95.54 92.50 97.42 97.34 98.17 99.07 99.33 98.33
20% 97.97 99.73 100.49 98.08 99.60 100.49 98.92 98.70 100.61 94.03 95.24 91.32 93.07 98.98 99.23 98.81 99.32 98.47
30% 100.64 100.37 100.57 100.16 100.08 101.94 98.20 98.31 100.53 95.44 96.90 93.88 94.38 98.25 100.41 99.36 100.75 100.40
40% 99.51 100.53 100.61 99.51 100.56 100.53 99.19 100.89 101.16 94.93 95.71 101.37 96.80 99.01 100.43 99.04 101.01 100.43

RF 0% 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78
8 10% N/I N/I N/I 22.53 23.02 129.31 21.72 24.45 72.96 21.80 22.35 123.14 22.11 22.54 46.34 21.90 30.21 52.76

20% N/I N/I N/I 23.23 23.71 124.17 21.89 23.26 88.07 21.96 23.91 355.72 22.21 22.98 55.55 22.54 26.81 65.87
30% N/I N/I N/I 24.82 24.36 126.39 21.69 23.08 88.23 21.90 38.16 644.79 22.44 23.35 61.13 24.21 28.48 69.74
40% N/I N/I N/I 26.85 24.32 123.56 21.95 22.73 88.38 21.96 39.15 939.87 22.86 23.70 64.39 27.07 27.61 67.38

3 10% N/I N/I N/I 22.42 21.93 22.56 21.73 23.55 23.66 21.76 22.25 22.43 21.90 22.18 22.71 21.91 22.27 22.22
20% N/I N/I N/I 22.30 22.43 22.37 21.63 22.28 22.17 21.89 21.95 23.56 21.93 22.22 22.49 21.92 22.45 27.76
30% N/I N/I N/I 22.11 22.05 22.52 21.76 21.98 22.62 21.86 22.21 25.06 22.06 22.04 22.75 21.97 22.25 26.81
40% N/I N/I N/I 22.32 22.26 22.42 21.67 22.09 22.56 21.87 22.70 28.41 22.01 22.13 22.58 22.31 22.61 23.63

Bagging 0% 55.30 55.30 55.30 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
8 10% 102.74 373.06 432.45 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 238.96 597.39 680.83 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 651.19 868.40 901.43 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 1454.06 1187.34 1112.51 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

3 10% 71.25 258.40 412.10 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 90.43 402.46 652.18 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 132.33 551.55 864.46 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 200.28 725.34 1069.24 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 59.54 59.54 59.54 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
8 10% 61.26 66.60 360.22 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 64.18 64.49 384.24 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 67.10 61.37 96.74 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 72.66 62.28 83.99 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

3 10% 60.20 59.88 59.79 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 60.03 60.05 59.70 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 60.29 60.01 59.94 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 60.41 60.10 60.12 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF 8 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 25.85 27.81 50.77 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 24.25 27.04 59.25 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 26.49 26.32 63.93 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 26.33 28.46 66.51 N/I N/I N/I

Boot. RF 3 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 24.38 26.77 24.95 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 25.66 26.96 26.06 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 25.05 26.08 26.75 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 27.13 26.41 25.28 N/I N/I N/I



Table C.18: Summary of standard error (SE) estimates of each of the MSPE estimates for the simulated dataset. Missing data was induced under
MCAR, MAR and MNAR patterns at different fractions and following 2 schemes: 8 variables with missing values and only 8/3 variables with missing

values. N/I stands for “not implemented”.

Missing Surrogates Median/mode Prox. Matrix MICE MIST kNN
Data Technique # Var. % MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR MCAR MAR NMAR
Simu CondRF 0% 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25
lated 8 10% 175.12 184.44 315.20 174.17 176.91 210.50 174.79 176.96 188.89 175.64 175.40 188.74 175.27 175.64 187.74 176.08 175.77 185.41

20% 177.85 183.49 336.28 174.62 176.57 220.45 175.70 175.98 187.38 175.50 175.53 182.37 176.59 175.64 190.26 176.40 178.22 190.37
30% 179.96 183.45 253.34 180.47 178.23 232.34 176.44 176.89 194.71 175.55 175.31 180.60 176.69 176.03 193.36 176.27 177.81 196.39
40% 184.34 180.69 247.73 184.00 177.11 233.89 176.12 175.88 195.84 175.44 176.25 191.23 176.32 176.29 195.90 178.88 176.34 193.87

3 10% 176.12 176.07 176.21 175.22 175.83 175.30 175.29 174.87 176.12 175.67 176.01 175.40 175.82 175.84 175.58 175.41 175.64 176.02
20% 175.92 176.29 175.39 175.94 176.07 175.39 175.78 177.02 175.64 175.66 176.42 175.99 175.74 175.57 176.19 176.41 175.16 175.32
30% 174.89 175.37 175.48 175.18 176.43 176.26 176.30 175.70 176.03 175.56 175.34 175.62 175.66 175.39 175.66 175.70 175.93 176.72
40% 175.84 175.07 175.70 175.60 174.45 175.44 174.98 176.17 175.75 175.75 176.03 176.09 175.58 175.07 175.20 175.84 175.20 175.82

CondTree 0% 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49 157.49
8 10% 164.93 177.73 307.56 167.14 169.54 169.93 158.62 169.05 168.77 163.04 162.09 168.74 167.08 169.12 167.25 158.73 168.96 166.66

20% 157.11 170.68 342.80 159.72 157.69 168.26 157.76 158.07 168.91 159.30 157.83 172.21 157.69 158.00 168.22 158.25 157.59 168.31
30% 165.67 154.41 206.78 159.99 158.00 167.76 167.17 157.49 168.67 160.56 157.52 215.38 159.79 157.35 168.39 158.69 157.87 168.03
40% 168.87 156.03 168.45 168.70 158.61 168.65 167.60 157.65 168.79 161.51 159.21 314.42 160.67 165.32 168.07 160.40 158.29 167.91

3 10% 157.56 157.21 169.20 157.55 157.21 169.20 157.49 157.49 169.20 157.57 157.55 163.72 157.48 157.51 169.20 157.20 157.32 169.20
20% 158.47 157.27 169.20 158.51 157.26 169.19 157.17 167.34 169.20 157.48 159.13 158.45 158.32 157.35 169.20 157.98 157.20 169.20
30% 157.43 157.12 169.19 157.44 157.11 169.19 156.45 157.14 169.19 157.44 157.58 160.98 157.41 157.18 169.19 157.38 157.10 169.19
40% 157.43 156.21 169.19 157.42 156.20 169.19 156.46 156.21 169.19 157.82 156.37 164.75 157.43 156.21 169.19 157.41 156.24 169.20

CART 0% 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57 157.57
8 10% 161.35 158.02 167.68 159.81 157.02 263.70 157.41 158.61 174.65 156.81 154.93 169.29 163.06 156.93 166.25 158.34 157.27 165.74

20% 170.57 157.14 167.19 171.02 170.56 176.42 157.58 169.51 171.83 166.85 170.58 242.81 167.39 170.83 168.39 169.50 169.33 167.94
30% 175.05 156.95 167.11 165.54 157.94 171.69 157.17 157.88 172.21 162.69 157.88 298.98 157.04 158.45 167.85 169.01 159.00 173.40
40% 162.21 156.87 166.95 161.91 157.80 171.70 157.51 157.73 176.23 162.44 156.80 381.48 160.45 163.59 167.85 158.84 158.31 167.48

3 10% 169.91 157.48 169.68 169.74 157.48 169.68 157.58 157.34 175.00 157.73 156.54 157.17 164.19 157.66 157.57 157.44 157.44 157.54
20% 157.22 157.30 169.67 157.20 157.34 169.67 157.57 157.58 169.64 158.11 158.19 158.19 156.09 158.06 157.49 158.62 157.42 157.52
30% 169.35 169.60 169.68 169.45 169.66 169.45 157.37 157.59 169.67 167.25 166.78 169.76 163.84 169.69 169.62 157.43 169.83 169.64
40% 157.42 169.68 169.68 157.42 169.70 169.69 157.42 169.56 169.69 156.03 168.94 171.10 157.90 169.86 169.65 156.96 169.72 169.65

RF 0% 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80 113.80
8 10% N/I N/I N/I 114.81 114.29 208.43 114.26 114.82 134.38 114.07 114.20 184.50 114.63 114.58 127.55 114.24 131.64 130.26

20% N/I N/I N/I 114.19 117.08 171.83 114.88 113.99 137.62 114.69 114.27 447.14 114.79 114.89 133.51 113.50 121.16 144.57
30% N/I N/I N/I 116.01 116.58 166.69 113.71 114.97 149.23 114.65 141.88 650.45 114.24 116.69 134.28 116.96 129.49 148.45
40% N/I N/I N/I 119.03 114.64 160.40 113.39 114.85 133.27 114.17 118.66 824.56 115.05 115.20 138.50 123.52 121.64 136.47

3 10% N/I N/I N/I 115.25 113.57 115.13 113.39 122.22 115.72 113.91 116.18 113.93 114.25 115.68 116.97 114.40 113.44 113.87
20% N/I N/I N/I 114.68 115.30 113.95 113.83 114.65 113.89 114.35 113.94 114.18 114.22 114.55 115.04 115.14 114.95 124.86
30% N/I N/I N/I 114.26 114.45 114.31 114.15 114.56 115.25 114.36 113.98 113.65 114.89 114.66 115.69 114.14 113.86 116.33
40% N/I N/I N/I 114.79 115.13 114.69 113.85 114.64 114.14 113.92 114.41 114.55 114.32 114.46 115.48 116.07 117.22 117.68

Bagging 0% 155.36 155.36 155.36 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
8 10% 181.88 315.20 328.45 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 257.49 363.98 385.87 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 483.06 460.79 422.09 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 723.86 498.42 449.31 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

3 10% 173.55 291.63 323.67 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 176.76 339.34 377.00 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 225.48 422.89 414.69 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 254.71 537.55 444.39 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

CondBagging 0% 157.65 157.65 157.65 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
8 10% 160.55 162.17 308.70 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

20% 164.84 160.58 306.33 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 165.18 157.89 167.93 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 166.63 157.51 164.10 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

3 10% 159.52 158.41 158.53 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
20% 158.91 158.07 157.44 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
30% 157.76 158.40 158.82 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I
40% 157.31 157.92 158.73 N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I

Boot. RF 8 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 119.71 117.17 138.14 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 117.06 123.45 146.87 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 121.55 114.54 145.90 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 119.85 124.45 145.27 N/I N/I N/I

Boot. RF 3 10% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 120.19 126.02 112.24 N/I N/I N/I
20% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 126.24 125.72 120.87 N/I N/I N/I
30% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 120.71 116.48 115.92 N/I N/I N/I
40% N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I N/I 131.82 121.34 118.04 N/I N/I N/I



Table C.19: Summary of mean relative improvement values with an imputation strategy compared to surrogate decisions through different
missing data scenarios for the simulated dataset. Only CondRF, CondTree and CART were taken into account for these comparisons (because RF
implementation in R -randomForest()- cannot be fitted on incomplete data). Missing data was induced under MCAR, MAR and MNAR patterns

at different fractions and following 2 schemes: 8 variables with missing values and only 8/3 variables with missing values.

Median/mode Prox. Matrix MICE
Missing MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Simulated CondRF 0%

8 10% -0.09 0.25 -0.11 1.43 0.72 0.14 0.05 0.15 -0.10 1.36 0.78 0.12 0.05 0.15 -0.17 1.84 0.79 0.13
20% -0.24 0.48 -0.05 1.00 0.71 0.17 0.12 0.25 0.07 0.54 0.79 0.13 0.11 0.27 -0.06 0.66 0.74 0.14
30% -0.38 0.56 -0.06 0.37 0.31 0.20 0.10 0.95 -0.05 0.72 0.48 0.28 0.09 0.89 -0.28 1.27 -0.15 1.16
40% -0.28 0.41 -0.11 0.38 0.15 0.13 0.22 0.52 -0.06 0.65 0.33 0.41 0.20 0.55 -0.18 0.86 -1.08 2.26

3 10% 0.00 0.07 -0.01 0.08 -0.01 0.08 -0.01 0.11 -0.01 0.09 0.01 0.07 -0.01 0.10 0.00 0.10 -0.10 0.57
20% -0.01 0.08 -0.01 0.10 0.01 0.07 0.00 0.13 0.00 0.11 0.00 0.09 0.00 0.11 -0.02 0.20 -0.18 0.80
30% -0.01 0.07 0.00 0.08 0.00 0.08 0.01 0.10 0.01 0.08 0.00 0.07 0.01 0.11 -0.06 0.45 -0.29 0.92
40% 0.00 0.08 -0.01 0.08 0.01 0.08 0.02 0.09 0.00 0.11 0.01 0.07 0.01 0.09 -0.05 0.23 -0.52 1.42

CondTree 0%
8 10% -0.30 0.56 -0.10 0.79 0.66 0.24 -0.01 0.36 -0.14 0.99 0.68 0.24 0.02 0.36 -0.05 1.00 0.68 0.23

20% -0.33 0.77 -0.08 0.68 0.69 0.30 0.05 0.50 -0.03 0.63 0.70 0.30 0.07 0.57 0.07 0.64 0.69 0.32
30% -0.46 1.12 0.02 0.38 0.01 0.26 0.20 0.58 0.16 0.39 0.05 0.24 0.27 0.55 0.19 0.43 -0.63 1.97
40% -0.26 0.48 -0.09 1.20 -0.06 0.09 0.29 0.73 0.03 1.23 -0.06 0.13 0.32 0.76 0.09 1.33 -1.90 6.37

3 10% -0.01 0.04 0.00 0.02 0.00 0.00 0.02 0.17 -0.02 0.17 0.00 0.00 0.06 0.15 0.01 0.18 -0.01 0.35
20% 0.00 0.02 0.00 0.01 0.00 0.01 -0.02 0.33 0.00 0.10 0.00 0.01 0.04 0.19 -0.01 0.36 -0.09 0.68
30% 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.13 0.00 0.05 0.00 0.00 -0.05 0.79 0.05 0.18 -0.02 0.40
40% 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.17 0.00 0.01 0.00 0.00 0.06 0.18 0.02 0.13 -0.22 0.96

CART 0%
8 10% -0.16 0.34 0.12 0.30 -0.63 1.12 0.11 0.29 0.14 0.37 -0.06 0.41 0.21 0.29 0.25 0.29 0.05 0.41

20% -0.07 0.21 0.14 0.29 -0.20 0.32 0.33 0.27 0.22 0.31 0.00 0.28 0.41 0.27 0.34 0.26 -0.62 2.01
30% -0.07 0.26 0.14 0.30 -0.33 0.31 0.39 0.28 0.28 0.31 -0.08 0.41 0.50 0.28 0.28 0.37 -1.18 3.00
40% -0.02 0.16 0.14 0.36 -0.32 0.41 0.44 0.29 0.29 0.37 -0.18 0.59 0.54 0.28 0.33 0.39 -1.95 3.58

3 10% -0.02 0.11 0.00 0.02 0.00 0.00 -0.02 0.12 -0.01 0.08 -0.12 0.51 0.01 0.16 0.04 0.09 0.09 0.13
20% 0.00 0.01 0.00 0.02 0.00 0.00 -0.01 0.13 0.01 0.10 0.00 0.03 0.07 0.11 0.07 0.11 0.09 0.21
30% 0.01 0.05 0.00 0.03 -0.03 0.23 0.01 0.10 0.01 0.04 0.00 0.01 0.08 0.12 0.04 0.27 0.05 0.35
40% 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.08 -0.02 0.18 -0.01 0.05 0.05 0.08 0.06 0.12 -0.05 0.51

MIST kNN
Missing MCAR MAR MNAR MCAR MAR MNAR

Data Technique # Var. % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Simulated CondRF 0%

8 10% 0.05 0.12 -0.08 1.32 0.79 0.12 0.03 0.17 -0.07 1.23 0.80 0.12
20% 0.11 0.22 0.07 0.49 0.80 0.13 0.09 0.24 0.07 0.53 0.80 0.13
30% 0.09 0.81 -0.04 0.61 0.54 0.19 -0.01 0.99 -0.02 0.44 0.55 0.20
40% 0.19 0.43 -0.05 0.55 0.44 0.20 -0.01 0.67 -0.01 0.39 0.45 0.20

3 10% 0.00 0.09 0.00 0.06 0.01 0.06 -0.01 0.11 0.00 0.09 -0.01 0.11
20% -0.01 0.09 0.01 0.08 0.00 0.05 -0.01 0.11 0.01 0.11 -0.01 0.09
30% 0.01 0.05 0.01 0.07 0.00 0.05 0.00 0.09 0.00 0.09 0.00 0.08
40% 0.00 0.06 0.00 0.06 0.01 0.07 -0.01 0.08 0.00 0.10 0.01 0.11

CondTree 0%
8 10% 0.05 0.35 -0.05 0.94 0.72 0.22 -0.05 0.42 -0.12 0.98 0.71 0.22

20% 0.19 0.51 0.05 0.58 0.73 0.26 0.02 0.54 -0.04 0.66 0.73 0.26
30% 0.36 0.46 0.20 0.37 0.15 0.20 0.11 0.76 0.15 0.38 0.12 0.21
40% 0.44 0.56 0.07 1.22 0.03 0.05 0.12 0.80 0.02 1.23 0.01 0.07

3 10% 0.05 0.13 0.02 0.08 0.00 0.00 0.01 0.26 -0.02 0.17 0.00 0.00
20% 0.02 0.15 0.01 0.10 0.00 0.00 -0.03 0.31 0.00 0.09 0.00 0.01
30% 0.03 0.07 0.01 0.04 0.00 0.00 0.01 0.12 0.00 0.04 0.00 0.00
40% 0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.07 0.00 0.01 0.00 0.00

CART 0%
8 10% 0.22 0.29 0.22 0.28 0.22 0.23 0.11 0.29 0.12 0.45 0.14 0.27

20% 0.45 0.27 0.30 0.31 0.16 0.18 0.30 0.30 0.21 0.32 0.11 0.24
30% 0.53 0.27 0.35 0.32 0.13 0.09 0.36 0.30 0.28 0.31 0.10 0.13
40% 0.59 0.26 0.37 0.36 0.09 0.07 0.37 0.33 0.27 0.37 0.07 0.09

3 10% 0.02 0.11 0.02 0.06 0.01 0.04 -0.03 0.15 -0.01 0.07 0.01 0.04
20% 0.06 0.14 0.02 0.08 -0.01 0.18 -0.01 0.10 0.01 0.03 0.01 0.04
30% 0.07 0.12 0.03 0.06 0.00 0.04 0.00 0.08 -0.01 0.12 0.00 0.02
40% 0.04 0.07 0.02 0.06 0.00 0.03 0.00 0.06 -0.01 0.13 0.00 0.01
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Figure D.1: Cell maps for selected rows of the Top gear data: when detecting cellwise outliers with DetectDeviatingCells (left-hand side), when
using CooLTS with deterministic starts (center) and when using CooS with deterministic starts (right-hand side).
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Figure D.2: Cell maps for the Octane dataset with n = 39 gasoline samples and p = 226 wavelengths: when detecting casewise outliers with a
multivariate-PCA method (top panel), when using CooLTS with deterministic starts (middle panel) and when using CooS with deterministic starts

(bottom panel).
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P. Bühlmann and B. Yu. Analyzing bagging. The Annals of Statistics, 30:927–961, 2002.

ISSN 00905364. doi: 10.1214/aos/1031689014.

L. F. Burgette and J. P. Reiter. Multiple imputation for missing data via sequential re-

gression trees. American Journal of Epidemiology, 172(9):1070–1076, November 2010.

ISSN 1476-6256. doi: 10.1093/aje/kwq260. URL http://aje.oxfordjournals.org/

content/172/9/1070.full.pdf+html.

H. Cevallos Valdiviezo and S. Van Aelst. Tree-based prediction on incomplete data using

imputation or surrogate decisions. Information Sciences, 311:163–181, August 2015.

ISSN 00200255. doi: 10.1016/j.ins.2015.03.018. URL http://linkinghub.elsevier.

com/retrieve/pii/S0020025515001838.

C. Croux and G. Haesbroeck. Principal component analysis based on robust estimators of

the covariance or correlation matrix: influence functions and efficiencies. Biometrika,

87:603–618, 2000. ISSN 0006-3444. doi: 10.1093/biomet/87.3.603. URL http://

biomet.oxfordjournals.org/content/87/3/603.short.

C. Croux and A. Ruiz-Gazen. A Fast Algorithm for Robust Principal Components Based

on Projection Pursuit, pages 211–216. Physica-Verlag HD, Heidelberg, 1996. ISBN

978-3-642-46992-3. doi: 10.1007/978-3-642-46992-3 22. URL http://dx.doi.org/

10.1007/978-3-642-46992-3_22.

C. Croux and A. Ruiz-Gazen. High breakdown estimators for principal components: The

projection-pursuit approach revisited. Journal of Multivariate Analysis, 95:206–226,

2005. ISSN 0047259X. doi: 10.1016/j.jmva.2004.08.002.

C. Croux, P. Filzmoser, G. Pison, and P. J. Rousseeuw. Fitting multiplicative models

by robust alternating regressions. Statistics and Computing, 13(1):23–36, 2003. doi:

10.1023/A:1021979409012. URL http://dx.doi.org/10.1023/A:1021979409012.
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