Advanced search
1 file | 7.54 MB Add to list

A combinatorial characterization of the Lagrangian Grassmannian LG(3,6)(𝕂)

(2016) GLASGOW MATHEMATICAL JOURNAL. 58(2). p.293-311
Author
Organization
Abstract
We provide a combinatorial characterization of LG(3, 6)(K) using an axiom set which is the natural continuation of the Mazzocca-Melone set we used to characterize Severi varieties over arbitrary fields (Schillewaert and Van Maldeghem, Severi varieties over arbitrary fields, Preprint). This fits within a large project aiming at constructing and characterizing the varieties related to the Freudenthal-Tits magic square.
Keywords
Dual polar spaces, Embedding

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 7.54 MB

Citation

Please use this url to cite or link to this publication:

MLA
Schillewaert, J., and Hendrik Van Maldeghem. “A Combinatorial Characterization of the Lagrangian Grassmannian LG(3,6)(𝕂).” GLASGOW MATHEMATICAL JOURNAL, vol. 58, no. 2, 2016, pp. 293–311, doi:10.1017/s0017089515000208.
APA
Schillewaert, J., & Van Maldeghem, H. (2016). A combinatorial characterization of the Lagrangian Grassmannian LG(3,6)(𝕂). GLASGOW MATHEMATICAL JOURNAL, 58(2), 293–311. https://doi.org/10.1017/s0017089515000208
Chicago author-date
Schillewaert, J, and Hendrik Van Maldeghem. 2016. “A Combinatorial Characterization of the Lagrangian Grassmannian LG(3,6)(𝕂).” GLASGOW MATHEMATICAL JOURNAL 58 (2): 293–311. https://doi.org/10.1017/s0017089515000208.
Chicago author-date (all authors)
Schillewaert, J, and Hendrik Van Maldeghem. 2016. “A Combinatorial Characterization of the Lagrangian Grassmannian LG(3,6)(𝕂).” GLASGOW MATHEMATICAL JOURNAL 58 (2): 293–311. doi:10.1017/s0017089515000208.
Vancouver
1.
Schillewaert J, Van Maldeghem H. A combinatorial characterization of the Lagrangian Grassmannian LG(3,6)(𝕂). GLASGOW MATHEMATICAL JOURNAL. 2016;58(2):293–311.
IEEE
[1]
J. Schillewaert and H. Van Maldeghem, “A combinatorial characterization of the Lagrangian Grassmannian LG(3,6)(𝕂),” GLASGOW MATHEMATICAL JOURNAL, vol. 58, no. 2, pp. 293–311, 2016.
@article{8501628,
  abstract     = {{We provide a combinatorial characterization of LG(3, 6)(K) using an axiom set which is the natural continuation of the Mazzocca-Melone set we used to characterize Severi varieties over arbitrary fields (Schillewaert and Van Maldeghem, Severi varieties over arbitrary fields, Preprint). This fits within a large project aiming at constructing and characterizing the varieties related to the Freudenthal-Tits magic square.}},
  author       = {{Schillewaert, J and Van Maldeghem, Hendrik}},
  issn         = {{0017-0895}},
  journal      = {{GLASGOW MATHEMATICAL JOURNAL}},
  keywords     = {{Dual polar spaces,Embedding}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{293--311}},
  title        = {{A combinatorial characterization of the Lagrangian Grassmannian LG(3,6)(𝕂)}},
  url          = {{http://doi.org/10.1017/s0017089515000208}},
  volume       = {{58}},
  year         = {{2016}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: