Prediction of turbulent reactive flows by means of numerical simulations applied to anaerobic digesters

David Fernandes del Pozo¹, Kevin Van Geem², and Ingmar Nopens¹

¹BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
²Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052 Gent, Belgium

Anaerobic digestion

- Organic matter degradation, in the absence of O₂, to obtain biogas
- Feed: sludge (from WWTP) or manure/waste from agriculture activities
 - Stabilisation of sludge
 - High energetic product value
 - Reduction in sludge volume
 - Destruction of pathogens
 - Odour reduction
 - Economic benefits
 - Slow reaction rates
 - Vulnerable to various inhibitors
 - Low COD removal
 - Tight process control

Role of mixing

- Good Mixing = homogeneous properties
- Currently, there is no consensus about the role of mixing and its effect on the anaerobic digestion performance

PhD Roadmap

1. Methodology
 - Use of Computational Fluid Dynamics (CFD) to obtain spatio-temporal knowledge
 - Complex fluid matrix → Challenging modelling
 - Select proper models to describe accurately the system

2. How do we model turbulence/mixing inside the bioreactor?
 - Test different turbulence models and select the best one in terms of accuracy/computational cost
 - RANS: Standard, RNG, realizable k-ε, standard k-ω, RSM, ...
 - LES (Large Eddy Simulation)
 - Validation:
 - Compare to experimental and/or benchmark data

3. How do we model the sludge rheological behaviour?
 - Sludge behaves as a non-Newtonian fluid → Apparent viscosity
 \[\tau = \eta \cdot \dot{\gamma} \]
 - Select model which is valid for the shear rate range inside the bioreactor

4. How do we model the conversion from substrates to products?
 - Select simple models and increase in complexity
 - Empirical correlations to obtain CH₄ yield
 - AMD1 model (most complex model)
 - Test the influence of the hydrodynamics on the biokinetic performance

Biochemistry

- Sludge (complex particulate waste)
- Hydrolysis
- Soluble organics (sugars, amino acids, LCFA)
- Acidogenesis
- Acetogenic
- Methanogenesis
- CH₄ + CO₂

Problems

- Complex microbiology: different optimum working conditions
- Inhibition: pH, alkalinity, NH₃, H₂, VFAs, etc.
- Disruption of methanogenic activity!
- Non-ideal hydrodynamics:
 - Short-circuits (lower SRT)
 - Dead zones (lower Volume)
 - Mass/heat local gradients
 - Stratification (different densities)