# Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: Fluid Science and Engineering at ETMM11</td>
<td>3</td>
</tr>
<tr>
<td>Tripping Effects in Low-Reynolds Number Turbulent Boundary Layers</td>
<td>5</td>
</tr>
<tr>
<td>Influence of a Large-Eddy-Breakup-Device on the Turbulent Interface of Boundary Layers</td>
<td>10</td>
</tr>
<tr>
<td>C. Chin, N. Hutchins, A. Ooi, R. Örlü, P. Schlatter, and J. P. Monty</td>
<td></td>
</tr>
<tr>
<td>History Effects and Near-Equilibrium in Turbulent Boundary Layers</td>
<td>14</td>
</tr>
<tr>
<td>P. Schlatter, R. Vinuesa, A. Bobke, and R. Örlü</td>
<td></td>
</tr>
<tr>
<td>Investigation of Turbulent Boundary Layers</td>
<td>20</td>
</tr>
<tr>
<td>Approaching Separation</td>
<td>20</td>
</tr>
<tr>
<td>A. Droždž and W. Elsner</td>
<td></td>
</tr>
<tr>
<td>Assessment of Turbulent Boundary Layers on a NACA4412 Wing Section at Moderate Re</td>
<td>25</td>
</tr>
<tr>
<td>R. Vinuesa, S. M. Hosseini, A. Hanifi, D. S. Henningson, and P. Schlatter</td>
<td></td>
</tr>
<tr>
<td>Revisiting Hot-Wire Anemometry Close to Solid Walls</td>
<td>30</td>
</tr>
<tr>
<td>Y. Ikeya, R. Örlü, K. Fukagata, and P. H. Alfredsson</td>
<td></td>
</tr>
<tr>
<td>Further Assessment of the Grey-Area Enhanced -DES Approach for Complex Flows</td>
<td>36</td>
</tr>
<tr>
<td>M. Fuchs, C. Mockett, J. Sesterhenn, and F. Thiele</td>
<td></td>
</tr>
<tr>
<td>An Investigation of Transition Prediction Using Improved KDO RANS Model</td>
<td>42</td>
</tr>
<tr>
<td>J.L. Xu, D. Xu, Y. Zhang, and J.Q. Bai</td>
<td></td>
</tr>
<tr>
<td>Prediction of Bypass and Separation-Induced Transition With an Algebraic Intermittency Model</td>
<td>48</td>
</tr>
<tr>
<td>S. Kubacki, T. Borzecki, E. Dick</td>
<td></td>
</tr>
<tr>
<td>Skin Friction Reduction in Fully Developed Turbulent Channel Flow Based on DNS and Adjoint Shape Optimization</td>
<td>54</td>
</tr>
<tr>
<td>T. Köthe and C. Wagner</td>
<td></td>
</tr>
<tr>
<td>A Comparative Study of DES Type Methods for Mild Flow Separation Prediction on a NACA0015 Airfoil</td>
<td>59</td>
</tr>
<tr>
<td>L. Wang, L. Li, and S. Fu</td>
<td></td>
</tr>
</tbody>
</table>

---

**Next ERCOFAC Events**

**ERCOFTAC Spring Festival**
6th April, 2017
Vienna, Austria

**ERCOFTAC Committee Meetings**
6th April, 2017, 2016
Vienna, Austria

---

**Hosted, Printed & Distributed By**

Częstochowa University of Technology
ISSN: 2518-0991

The reader should note that the Editorial Board cannot accept responsibility for the accuracy of statements made by any contributing authors.
ERCOFTAC is a leading European association of research, education and industry groups in the technology of flow, turbulence and combustion. The main objectives of ERCOFTAC are: To promote joint efforts of European research institutes and industries with the aim of exchanging technical and scientific information; to promote Pilot Centres for collaboration, stimulation and application of research across Europe; to stimulate, through the creation of Special Interest Groups, well-coordinated European-wide research efforts on specific topics; to stimulate the creation of advanced training activities; and to be influential on funding agencies, governments, the European Commission and the European Parliament.

www.ercoftac.org

Honorary Presidents
Mathieu, J. Spalding, D.B.

Executive Committee
Chairman
Tomboulides, A.
Aristotle University of Thessaloniki, Greece
Tel: +30 2310 996068 ananiast@auth.gr

First Deputy Chairman
Von Terzi, D.

Second Deputy Chairman
Hirsch, C.

Treasurer
Hickel, S.

SPC Chairman
Geurts, B.

SPC Deputy Chairman
Standingford, D.

KNC Chairman
Von Terzi, D.

KNC Deputy Chairman
Seoud, R.E.

Industrial Eng. Officer
Rodi, W.

Knowledge Base Editor
Elsner, W.

ERCOFTAC Seat of the Organisation
Director
Hirsch, C.
Chaussée de la Hulpe 189
Terhulpsesteenweg
B-1170 Brussels, Belgium
Tel: +32 2 643 3572
Fax: +32 2 647 9398
ado@ercoftac.be

Scientific Programme Committee
Chairman
Hickel, S.
Delft University of Technology
Faculty of Aerospace Engineering
Kluyverweg 1
2629 HS Delft
The Netherlands
Tel: +31 152 789 570
S.Hickel@tudelft.nl

Deputy Chairman
Geurts, B.

Knowledge Network Committee
Chairman
Standingford, D.
Zenotech Ltd.
1 Laarkfield Grove
Chepstow, NP16 5UF
United Kingdom
Tel: +44 7870 628 916
david.standingford@zenotech.com

Deputy Chairman
Von Terzi, D

Industrial Eng. Officer
Seoud, R.E.
richard.seoud-ieo@ercoftac.org

ERCOFTAC Central Administration and Development Office (CADO)
Admin. Manager
Jakubczak, M.
PO Box 53877
London, SE27 7BR
United Kingdom
Tel: +44 203 602 8984
admin@rado-ercoftac.org
Skype: Ercoftaccado
PREDICTION OF BYPASS AND SEPARATION-INDUCED TRANSITION
WITH AN ALGEBRAIC INTERMITTENCY MODEL

S. Kubacki1, T. Borzecki2, E. Dick3

1Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology,
Nowowiejska 24, 00-665, Warsaw, Poland
2Anio Aero, Grażynskiego 141, 43-300 Bielsko-Biała
3Department of Flow, Heat and Combustion Mechanics, Ghent University,
St.-Pietersnieuwstraat 41, 9000 Ghent, Belgium

Slawomir.Kubacki@meil.pw.edu.pl

Abstract

The paper discusses applications of an algebraic intermittency model for prediction of bypass and separation-induced boundary layer transition. The transition model is coupled with a \( k-\omega \) turbulence model. The transition model uses only local variables and is tuned for turbomachinery flows. For bypass transition, two effects in an attached pre-transitional boundary layer are modelled: damping of small-scale disturbances induced by the free stream and breakdown of the near-wall perturbed flow with generation of fine-scale turbulence. For separated flow, the model describes breakdown of a laminar free shear layer. We refer to [1] for a complete discussion of the modelling assumptions and the model validation.

1 Transition mechanisms

Transition mechanisms in an attached laminar boundary layer subjected to a high free-stream turbulence level (above 0.5-1%) are discussed by Hack and Zaki [2]. Streamwise elongated disturbances are generated. These are zones of forward and backward jet-like perturbations, alternating in spanwise direction. They are called streaks or Klebanoff disturbances. Streaks grow downstream both in length and amplitude and finally some streaks cause turbulent spots. Transition is then called of bypass type, which means that instability by Tollmien-Schlichting waves is bypassed. Breakdown is then earlier and much faster. Klebanoff modes are initiated by deep penetration into a laminar boundary layer of large-scale perturbations from the free stream. The strong damping of small-scale components is called shear sheltering. There are at least two instability mechanisms in a boundary layer perturbed by streaks. One is instability by inflection of the velocity profile in wall-normal direction between the boundary layer edge and a low-speed streak. The other is instability of the velocity profile in wall-normal direction in the overlap zone of the leading edge of a high-speed streak and the trailing edge of a low-speed streak. Both instabilities are triggered by small-scale perturbations, although these are damped in the boundary layer

Transition mechanisms in a separated laminar boundary layer are discussed by McAuliffe and Yaras [3]. Under low free-stream turbulence, transition is initiated by inviscid Kelvin-Helmholtz instability, with formation of spanwise vortices. They group at selective streamwise wavelengths, analogous to Tollmien-Schlichting waves in an attached boundary layer. The roll-up vortices break down as they travel downstream. The breakdown process is rather slow with low free-stream turbulence, but, under high free-stream turbulence, bypass transition with formation of streaks in the attached boundary layer prior to separation can co-exist with the Kelvin-Helmholtz generated spanwise vortices in the separated layer. The breakdown of the vortex rolls is then strongly accelerated by perturbations due to the Klebanoff modes. For sufficiently strong free-stream turbulence, the Kelvin-Helmholtz instability may even be bypassed by the breakdown of the streaks. So, a bypass mechanism is possible in a separated shear layer, similar as in an attached boundary layer.

2 Model formulation

The transport equations for turbulent kinetic energy and specific dissipation read

\[
\frac{Dk}{Dt} = \gamma P_k + (1 - \gamma) P_{sep} - \beta k \omega + Diff(k)
\]  

\[
\frac{D\omega}{Dt} = \frac{\omega}{k} P_k - \beta \omega^2 + Diff(\omega)
\]

The basic equations are the \( k-\omega \) equations of the turbulence model of Wilcox [4], but there are three modifications in the production terms. In the original model, production of turbulent kinetic energy by turbulent shear is \( P_k = \nu_T S^2 \), with \( \nu_T \) the full eddy viscosity and \( S = (2S_{ij}S_{ij})^{1/2} \) the magnitude of the shear rate tensor. Firstly, this production term is written as \( P_k = \nu_s S^2 \), where \( \nu_s \) is the small-scale eddy viscosity, which is part of the full eddy viscosity \( \nu_T \). Secondly, the production term \( P_k \) is multiplied with an intermittency factor \( \gamma \) which is zero in laminar flow and unity in turbulent flow. Thirdly, the term \( (1 - \gamma) P_{sep} \) is added to the production term of the \( k \)-equation. This term models turbulence production by instability and breakdown of a laminar free shear layer in a low turbulence level background flow.

The turbulent kinetic energy \( k \) is split, based on the laminar-fluctuation kinetic energy transition model of Walters and Cokljat [5], into a small-scale part and a large-scale part:

\[
k_s = \frac{f_{SS} k}{k_l} = k - k_s
\]

The splitting by the factor \( f_{SS} \) expresses the shear-shielding effect in a pre-transitional boundary layer. Small-scale disturbances in the turbulent flow near to the
laminar part of the layer are damped. Only large-scale disturbances penetrate deeply into the laminar layer, but these do not contribute to turbulence production by shear but induce the streaks. The restriction of the turbulence production by turbulent shear to small-scale fluctuations is expressed by replacing the full eddy viscosity by a small-scale eddy viscosity in the production terms of the $k$- and $\omega$-equations (Eqs. 1 and 2).

Shear-sheltering depends on the ratio of two timescales in a laminar layer: the timescale of convection of disturbances relative to an observer inside the layer and the timescale of diffusion in the normal direction. Walters [6] expresses damping of small-scale fluctuations in a pre-transitional boundary layer by stating that fluctuations in the border zone of the laminar and turbulent parts synchronize strongly with the mean velocity gradient in the laminar part. So, he assumes that fluctuations, both in streamwise and in wall-normal direction, after damping, scale with $y^3$. This means proportionality between $\sqrt{k}$ and $\Omega$, resulting in $l \propto \sqrt{k}/\Omega$ and $\tau_d \propto k/\nu^2$.

The role of the flow-dependent term in the non-linear eddy-viscosity turbulence model of Khodak and Hirsch [7]. The $f_W$ function limits the correction to the border zone between laminar and turbulent parts in a pre-transitional boundary layer. The $C_W$ and $C_\Psi$ are positive constants, determined by simulations of flows through the N3-60 steam turbine cascade and the V103 compressor cascade. We discuss simulations of the N3-60 cascade later.

The eddy viscosity associated to small scales is calculated in the same way as the eddy viscosity of the original turbulence model [4] by replacing $k$ by $k_s$:

$$\nu_s = \frac{k_s}{\bar{\omega}}, \text{with } \bar{\omega} = \max \left[ \omega, \frac{C_{lim}S}{a_s} \right]$$

The constant $a_s$ is set to 0.3 and $C_{lim} = 7/8$, which are the standard values. The large-scale eddy viscosity, is, similarly defined with $k$:

$$\nu_l = \frac{k_l}{\bar{\omega}}, \text{with } \bar{\omega} = \max \left[ \omega, \frac{C_{lim}S}{a_l} \right]$$

The constant $a_l$ is set to 0.6, which is larger than the standard value 0.3. The resulting eddy viscosity, used in the Navier-Stokes equations, is $\nu_T = \nu_l + \nu_s$. The reason for the enlarged value of $a_l$ with respect to $a_s$ is earlier transition due to increased instability of a laminar flow perturbed by streaks under an adverse pressure gradient. The values of the $a_l$ and $C_{lim}$ constants (Table 1) have been modified somewhat with respect to the values used in [1]. This change is the result of further model calibration on an extended number of cases.

The intermittency function $\gamma$ determines when a flow region is laminar or turbulent. The free stream is turbulent. Thus $\gamma$ is set to unity in the free stream. At a wall, the flow is laminar. Hence, $\gamma$ is set to zero there. $\gamma$ is prescribed algebraically as a function of the distance to the wall by

$$\gamma = \min \left( \max \left( \sqrt{\frac{ky}{A_s\nu}}, 1 \right), 1 \right)$$

were $A_s$ is a constant.

The motivation for $Re_y = \sqrt{ky}/\nu$ as non-dimensional distance to the wall (Eq. 8) originates from the work of Wang et al. [11], who observed that breakdown occurs when, near to the wall, the ratio of turbulent shear stress to wall shear stress reaches a critical value. Near to a wall, the streamwise fluctuation $u^\prime$ in a pre-transitional boundary layer is caused by streaks. So, we may assume that near to a wall $u^\prime$ scales with $y^3/\nu^2$. Near to a wall, turbulent kinetic energy is strongly damped and with a turbulence model $\sqrt{k}$ becomes representative for $u^\prime$. So, the near-wall turbulent shear stress, obtained by multiplying $u^\prime$ by the wall-normal fluctuation $v^\prime$ and time-averaging, can be estimated by $-\rho \frac{\partial u^\prime v^\prime}{\partial y} \gg \rho y^3 v^3 \sqrt{k}$. So, the ratio of both terms gives the characteristic Reynolds number $Re_v = \sqrt{ky}/\nu$.

The intermittency function is somewhat simplified with respect to the function of our previous work [8] by equalising the threshold value $C_T$ and the growth rate $A_T$ ($C_T = A_T = A_s$), but this is not a significant change.

The present model, in contrast to our previous version, includes turbulence production due to breakdown of a laminar separated boundary layer at low free-stream turbulence level using 2D RANS (or 2D/3D URANS). This is realised by the term $(1 - \gamma)P_{sep}$ in the $k$-equation (Eq. 1). For $P_{sep}$ we adopt a term with the same purpose in the newest intermittency-transport transition model by Menter et al. [9]:

$$P_{sep} = C_{sep} F_{sep} \nu S^2$$

$$F_{sep} = \min \left( \max \left( \frac{Re_v}{2.2 A_s}, 1 \right), 1 \right)$$
Table 1: Transition model constants

<table>
<thead>
<tr>
<th>$A_x$</th>
<th>$C_S$</th>
<th>$C_\gamma$</th>
<th>$C_\psi$</th>
<th>$C_{sep}$</th>
<th>$A_V$</th>
<th>$a_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>21.0</td>
<td>1.0</td>
<td>10.0</td>
<td>2.0</td>
<td>550.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure 1: N3-60 cascade. Turbulence intensity along the suction side of the blade at distance 10 mm from the blade surface for $Tu = 3\%$ and $Tu = 0.4\%$. $S_0$ is the length of the suction side of the blade.

with $R_V = y^2S/\nu$. The constants $C_{sep}$ and $A_V$ have been calibrated for the T3C4 flat plate flow of ERCOF-TAC, which is characterized by laminar boundary layer separation in the rear part of the plate (result are not shown). Table 1 lists the model constants.

3 Computational aspects

All simulations reported here are for the N3-60 steam turbine cascade using 2D RANS or 2D URANS. The 2D computational grids, with about $1.1 \cdot 10^5$ cells, consist of a structured boundary layer part with quadrilateral cells near to walls and an unstructured part away from walls. The grid is refined near to walls. The $y^+$ parameter varies between 0.1 and 0.8 along walls and about 40 cells are used across the boundary layer grid part.

4 N3-60 cascade with steady inflow

We discuss the model performance for transition in attached and in laminar separation states by 2D RANS for steady inflow of the N3-60 cascade, measured by Zarzycki and Elsner [10]. The N3-60 profile is the enlarged profile of a stator vane in the high-pressure part of a steam turbine. Geometric data are: blade chord 300 mm, axial blade chord 203.65 mm, blade pitch 240 mm. The exit Reynolds number is $6 \cdot 10^5$. Measurements are available for inflow turbulence $Tu = 3\%$ and $Tu = 0.4\%$ in the leading edge plane. Laminar separation occurs at the suction side for $Tu = 0.4\%$.

At the inlet to the computational domain, placed at 0.344 times the axial chord length upstream of the leading edge, a uniform flow velocity in the axial direction was imposed. The inlet turbulence intensity in the leading edge plane was set according to the two sets of experimental data. The inlet turbulent length scale was not reported in the measurements. For $Tu = 3\%$, the inlet turbulent length scale was adjusted by matching the measured turbulence intensity at a distance of 10 mm from the blade surface (this is above the boundary layer edge). The obtained turbulent length scale is $l_t = 6$ mm for $Tu = 3\%$. Fig. 1 shows that the agreement between prediction and measurement is reasonably good, which means that the inlet conditions for the modelled scalars have been set correctly. For low turbulence level at inlet ($Tu = 0.4\%$), the evolution of the free-stream turbulence along the blade surface is not available in the database. We assume a smaller length scale ($l_t = 2$ mm) at the entrance to the cascade than for high inlet turbulence level since no turbulence grid was installed in the reference experiment. The turbulent intensity reproduced at the leading edge of the blade corresponds with measurements, $Tu = 0.5-0.4\%$ (Fig. 1).

Fig. 2 shows the contour plot of turbulent kinetic energy for $Tu = 3\%$ and the comparison between computed and measured shape factor $H_{12}$ along the suction side of the blade. The simulated transition comes from the bypass term $\gamma P_k$ in Eq. 1. Transition onset, at $S/S_0 = 0.75$, and growth rate in the transition zone are reproduced correctly by the model.

Fig. 3 shows the contour plot of turbulent kinetic energy for $Tu = 0.4\%$ and the comparison between com-
of transition is observed at 5 N3-60 cascade with unsteady layer is fully modelled now [1]. This is no transition in a separated laminar boundary layer was not reproduced by the T3C4 case has been done well. We bring that the model calibration for separation-induced transition was imposed following Wilcox [12]:

\[
\omega = \omega_\infty + C_{\mu}^{1/4} \frac{\sqrt{k}}{l_{\text{mix}}} \text{ and } l_{\text{mix}} = 0.18 y_{1/2}
\]  

The background dissipation \(\omega_\infty\) has been used to adjust the evolution of the fluctuating velocity component parallel to the blade, \(u' = (2k/3)^{1/2}\), at distance 10 mm from the suction surface of the blade to the experimental one for moving bars (results are not shown).

Fig. 4 shows the perturbation velocity vectors in every 15 cells. The perturbation velocity field is obtained by subtracting the time-averaged velocity field from the instantaneous velocity field. Clearly, the 1.1 x 10^5 mesh is sufficient to properly reproduce the negative jet effect caused by a moving wake.

Fig. 5 shows space-time diagrams of shape factor obtained in the experiment (a) and in the simulation (b) for wake-induced transition with background turbulence level T u = 3 % (d = 6mm). The two straight lines mark the path of the moving wake. The wake position was determined from the free-stream velocity at the edge of the boundary layer. The bottom line is the path of the moving wake, determined as the position at which local flow deceleration starts in the rear part of the blade (S/S0 > 0.6). The upper line corresponds to the central part of the moving wake, determined as the start of local flow deceleration.

The agreement between simulation and measurement is very good under the wake impact (S/S0 = 0.6, \(\tau/T = 0.2\)). The width of the turbulent zone is somewhat too large at S/S0 = 0.7 – 0.8 and the transition is reproduced somewhat too late in between wakes near to the trailing edge (S/S0 = 0.9, 1.0 < \(\tau/T < 1.2\)).

Fig. 6 shows space-time diagrams of shape factor for wake-induced transition with background turbulence
Figure 4: Negative jet visualised by perturbation velocity vectors in every 15 cells for 2D URANS

Figure 5: N3-60 cascade, bar diameter 6 mm and background turbulence level 3 %. Space-time diagrams of shape factor, a) experiment, b) simulation

Figure 6: N3-60 cascade, bar diameter 4 mm and background turbulence level 0.4 %. Space-time diagrams of shape factor, a) experiment, b) simulation

level $Tu = 0.4 \% \ (d = 4\text{mm})$. The model is able to properly detect transition onset under the wake impact ($S/S_0 = 0.7, \tau/T = 0.4$). The width of the turbulent zone, after wake impact, is comparable in both simulation and measurement. The quality of the model becomes less in between wakes ($S/S_0 = 0.9, 1.1 < \tau/T < 1.5$) near to the trailing edge of the blade. The model predicts flow separation, which is not present in the experiment. The explanation is the somewhat too low free-stream turbulence level reproduced in the simulation in the rear part of the blade, which causes delayed transition there. In the experiment, interaction occurs near the suction side trailing edge between the wake of the adjacent blade and the moving wake through the blade passage. Vortices are shed from the blade wake, which break down, causing increased free-stream turbulence. This interaction is not detected in the 2D URANS simulation.

Overall, the simulation results of wake-induced transition both at high ($Tu = 3\%$) and low ($Tu = 0.4\%$) background turbulence levels are good using the present algebraic transition model.
6 Conclusions

Applications of an algebraic intermittency model have been presented. The model produces good results for bypass and separation-induced transition (2D RANS) and for wake-induced transition (2D URANS), for flow through the stream turbine vane cascade N3-60, at both high and low free-stream turbulence levels.

Acknowledgement

The first and second author acknowledge support from the research project COOPERNIK financed partly by the Polish National Centre for Research and Development (INNOLOT/1/11/NCBR/2014) and partly by Avio Polska Sp. z o.o.

References


