Advanced search
1 file | 2.03 MB Add to list

Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson's disease individuals

(2016) NEUROIMAGE-CLINICAL. 12. p.559-569
Author
Organization
Abstract
Background: Aerobic exercise training (AET) has been shown to provide general health benefits, and to improve motor behaviours in particular, in individuals with Parkinson's disease (PD). However, the influence of AET on their motor learning capacities, as well as the change in neural substrates mediating this effect remains to be explored. Objective: In the current study, we employed functional Magnetic Resonance Imaging (fMRI) to assess the effect of a 3-month AET program on the neural correlates of implicit motor sequence learning (MSL). Methods: 20 healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+ 5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after the AET program, participants' brain was scanned while performing an implicit version of the serial reaction time task. Results: Brain data revealed pre-post MSL-related increases in functional activity in the hippocampus, striatum and cerebellum in PD patients, as well as in the striatum in HC individuals. Importantly, the functional brain changes in PD individuals correlated with changes in aerobic fitness: a positive relationship was found with increased activity in the hippocampus and striatum, while a negative relationship was observed with the cerebellar activity. Conclusion: Our results reveal, for the first time, that exercise training produces functional changes in known motor learning related brain structures that are consistent with improved behavioural performance observed in PD patients. As such, AET can be a valuable non-pharmacological intervention to promote, not only physical fitness in early PD, but also better motor learning capacity useful in day-to-day activities through increased plasticity in motor related structures.
Keywords
Parkinson's disease, Exercise, Motor learning, fMRI, BASAL GANGLIA, TREADMILL EXERCISE, PHYSICAL-ACTIVITY, BRAIN PLASTICITY, MOUSE MODEL, NEUROPLASTICITY, CEREBELLUM, COGNITION, RATS, NEUROGENESIS

Downloads

  • main.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.03 MB

Citation

Please use this url to cite or link to this publication:

MLA
Duchesne, Catherine et al. “Influence of Aerobic Exercise Training on the Neural Correlates of Motor Learning in Parkinson’s Disease Individuals.” NEUROIMAGE-CLINICAL 12 (2016): 559–569. Print.
APA
Duchesne, Catherine, Gheysen, F., Boré, A., Albouy, G., Nadeau, A., Robillard, M., Bobeuf, F., et al. (2016). Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. NEUROIMAGE-CLINICAL, 12, 559–569.
Chicago author-date
Duchesne, Catherine, Freja Gheysen, Arnaud Boré, Genevieve Albouy, Allexandra Nadeau, ME Robillard, F Bobeuf, et al. 2016. “Influence of Aerobic Exercise Training on the Neural Correlates of Motor Learning in Parkinson’s Disease Individuals.” Neuroimage-clinical 12: 559–569.
Chicago author-date (all authors)
Duchesne, Catherine, Freja Gheysen, Arnaud Boré, Genevieve Albouy, Allexandra Nadeau, ME Robillard, F Bobeuf, AL Lafontaine, O Lungu, L Bherer, and J Doyon. 2016. “Influence of Aerobic Exercise Training on the Neural Correlates of Motor Learning in Parkinson’s Disease Individuals.” Neuroimage-clinical 12: 559–569.
Vancouver
1.
Duchesne C, Gheysen F, Boré A, Albouy G, Nadeau A, Robillard M, et al. Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. NEUROIMAGE-CLINICAL. 2016;12:559–69.
IEEE
[1]
C. Duchesne et al., “Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals,” NEUROIMAGE-CLINICAL, vol. 12, pp. 559–569, 2016.
@article{8172139,
  abstract     = {Background: Aerobic exercise training (AET) has been shown to provide general health benefits, and to improve motor behaviours in particular, in individuals with Parkinson's disease (PD). However, the influence of AET on their motor learning capacities, as well as the change in neural substrates mediating this effect remains to be explored. 
Objective: In the current study, we employed functional Magnetic Resonance Imaging (fMRI) to assess the effect of a 3-month AET program on the neural correlates of implicit motor sequence learning (MSL). 
Methods: 20 healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+ 5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after the AET program, participants' brain was scanned while performing an implicit version of the serial reaction time task. 
Results: Brain data revealed pre-post MSL-related increases in functional activity in the hippocampus, striatum and cerebellum in PD patients, as well as in the striatum in HC individuals. Importantly, the functional brain changes in PD individuals correlated with changes in aerobic fitness: a positive relationship was found with increased activity in the hippocampus and striatum, while a negative relationship was observed with the cerebellar activity. 
Conclusion: Our results reveal, for the first time, that exercise training produces functional changes in known motor learning related brain structures that are consistent with improved behavioural performance observed in PD patients. As such, AET can be a valuable non-pharmacological intervention to promote, not only physical fitness in early PD, but also better motor learning capacity useful in day-to-day activities through increased plasticity in motor related structures.},
  author       = {Duchesne, Catherine and Gheysen, Freja and Boré, Arnaud and Albouy, Genevieve and Nadeau, Allexandra and Robillard, ME and Bobeuf, F and Lafontaine, AL and Lungu, O and Bherer, L and Doyon, J},
  issn         = {2213-1582},
  journal      = {NEUROIMAGE-CLINICAL},
  keywords     = {Parkinson's disease,Exercise,Motor learning,fMRI,BASAL GANGLIA,TREADMILL EXERCISE,PHYSICAL-ACTIVITY,BRAIN PLASTICITY,MOUSE MODEL,NEUROPLASTICITY,CEREBELLUM,COGNITION,RATS,NEUROGENESIS},
  language     = {eng},
  pages        = {559--569},
  title        = {Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson's disease individuals},
  url          = {http://dx.doi.org/10.1016/j.nicl.2016.09.011},
  volume       = {12},
  year         = {2016},
}

Altmetric
View in Altmetric
Web of Science
Times cited: