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Abstract

What are scientific theories and how should they be represented?

In this paper I propose a causal-structural account, according to

which scientific theories are to be represented as sets of interrelated

causal and credal nets. In contrast with other accounts of scientific

theories (such as Sneedian structuralism, Kitcher’s unificationist

view, and Darden’s theory of theoretical components), this leaves

room for causality to play a substantial role. As a result, an

interesting account of explanation is provided which sheds light on

explanatory unification within a causalist framework. The theory of

classical genetics is used as a case study.
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1 Introduction

What are scientific theories and how should they be represented? In this

paper, I propose a causal-structural account according to which scientific

theories are to be represented as sets of interrelated causal and credal nets.

The theory of classical genetics will be used as a case study and several

philosophical topics (relating to exemplars, anomalies, explanation and

unification) will be explored.

What scientific theories are and how they should be represented, have

been very pressing questions in 20th century philosophy of science. In

search for an answer, many have used the theory of classical genetics as a

case study. Woodger ([1929], [1952], [1959]) has provided an elaborate

reconstruction of classical genetics within the neopositivist axiomatic

framework. Balzer and Lorenzano ([2000]) and others have discussed

classical genetics extensively within the Sneedian structuralist framework

(based on Balzer et al. [1987]).1 Others have used the case of classical

genetics to address related questions about theory change in science

(Darden [1991]), or about explanation and unification (Kitcher [1989]).

Unfortunately, causality plays no substantial role in any of the above

accounts. During the past decades, however, more and more philosophers

have stressed the centrality of causality in, among other things,

explanation. If they are correct, which I think they are, and if scientific

theories can be used for explanation, which I think they can, then we need

an account of scientific theories that allows us to represent their causal

structure (see section 4 for a more elaborate discussion of causality and

explanation). It will emerge that my causal-structural approach, which

builds on Woodward’s interventionist account of causation and on the

theory of causal Bayes nets, is very suitable to that task. It naturally
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represents both the qualitative and the quantitative aspects of the causal

structure of classical genetics in an integrated way. It also results in an

interesting account of explanation which allows us to get a grip on

explanatory unification within a causalist framework. Moreover, it offers a

nice explication of lawfulness in classical genetics and in the special

sciences in general (see section 17). A final advantage, which I will not

stress here, is that it can easily be implemented in computers and AI; see

the tools developed by Spirtes et al. ([2000]), such as TETRAD. Some of

the leading figures discussed in this paper have endeavoured a similar

advantage in the past, using different tools such as PROLOG (Balzer and

Lorenzano [2000], p. 243) and SUTTON (Darden and Rada [1988]).

This paper consists of three parts. In the first part (sections 2-6) I will

set the stage. In section 2 I introduce the reader to the main concepts of

classical genetics. In section 3, I briefly present three existing philosophical

accounts of classical genetics, by the structuralists, by Kitcher and by

Darden. Their ideas will play an important role in this paper and I will try

to accommodate several of them. Yet I will also point to a very important

lacuna they in common: they have no substantial role for causality to play

(section 4). Finally, I will sketch Woodward’s interventionist account of

causation (section 5) and the basic formal concepts to be used in this

paper: causal nets, credal nets, and several kinds of isomorphism relations

(section 6).

In the second part (sections 7-16), I will present the causal-structural

account of scientific theories by applying it to the theory of classical

genetics. More specifically, I present classical genetics’ qualitative causal

structure (section 7), its application to monohybrid crosses with complete

dominance (sections 8 and 10) and incomplete dominance (section 12), and
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its application to multihybrid crosses with independent assortment (section

14) and with linkage and crossing over (sections 15-16). Meanwhile, I also

present a causal-structural account of explanation (section 9) and glance at

Darden’s discussion of exemplars (section 11) and anomalies (section 13).

In the third part (sections 17–18), I will expand on the

causal-structural account of scientific explanation (section 17), and

highlight one of its important advantages, viz. that it allows us to get a

grip on explanatory unification within a causalist framework (section 18).

Finally, I conclude in section 19 by discussing the possible

generalizability of the causal-structural account of scientific theories.

2 The Theory of Classical Genetics

The theory of classical genetics has been developed roughly between 1900

and the end of the 1920’s. In the middle of the 19th century, Gregor

Mendel studied phenomena of inheritance and hybridization mainly by

experimenting with pea plants. He presented his seminal ideas in 1865. In

1866 these were published in his Versuche über Pflanzen-Hybriden (Mendel

[1865], [1933]). In 1900, his work again came to the fore, due to the works

of De Vries ([1900]), Correns ([1900]) and, shortly afterwards, Bateson

([1900], [1902]). Almost thirty years later, Thomas Hunt Morgan published

the second edition of The Theory of the Gene (1928). This can be

considered an end-point in the development of classical genetics (Darden

[1991], pp. 3 and 38). In this paper, I will use Morgan’s exposition as my

main source for exploring the structure of classical genetics. But first I will

introduce the main concepts of classical genetics based on a contemporary

textbook (Klug et al. [2006]).

The main aim of classical genetics is to explain the distribution of
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observable traits in the offspring of two (groups of) crossed organisms

(Klug et al. [2006], chapters 3–5). For example, why is it that after

crossing true-breeding tall pea plants with short pea plants all the

resulting offspring is tall?2 And why is it that after crossing this offspring

with short pea plants, half of the resulting plants are tall whereas the

other half are short?

Traits (such as tall and short) are alternative forms of the same

character (in casu stem length in pea plants). (Klug et al. [2006], p. 40)

They are assumed to be coded for (or caused) by the organism’s genes.

Alleles are alternative forms of genes. (Klug et al. [2006], p. 42) For

example, there exists an allele for tall stems and an allele for short stems.

(Other genes may have more than two possible alleles; Klug et al. [2006],

section 4.5.) An organism’s observable features are called its phenotype;

the set of its alleles for a given character (or set of characters) is called its

genotype. (Klug et al. [2006], p. 42) In their experiments, classical

geneticists focussed on the transmission of one character (monohybrid

crosses), or more characters (dihybrid, trihybrid, . . . crosses). (Klug et al.

[2006], pp. 40–4) The number of copies an organism has of each gene

depends on its number of chromosomes. In this paper, I will focus on

diploid organisms. These have two copies of each chromosome, and hence

two copies of each gene. (Klug et al. [2006], p. 20) If both copies are

identical (the same allele), the individual is homozygous, otherwise it is

heterozygous. (Klug et al. [2006], p. 42) The specific location of a specific

gene on its chromosome is called its locus (plural: loci) (Klug et al. [2006],

p. 51).

Alleles are transmitted to the next generation via the gametes or

germ-cells. Barring cases of crossing-over, each germ-cell receives one
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member of each pair of chromosomes, and hence one copy of each gene

(Klug et al. [2006], pp. 27–30). By invoking certain hypotheses about this

process, the distribution of genotypes (and hence of phenotypes) in the

offspring can be explained. With respect to each pair of alleles, the law of

segregation states that during gamete formation, the paired alleles separate

or segregate randomly, so that each germ-cell receives one or the other

with equal likelihood. (Klug et al. [2006], p. 42) When multiple pairs of

alleles are investigated (as is the case in multihybrid crosses) extra

assumptions are needed. Mendel assumed that the transmission of one pair

of alleles was independent of the transmission of other pairs. This was

later called the law of independent assortment (Klug et al. [2006], p. 46).

This law holds only for genes that lie on different chromosomes. Genes

lying on the same chromosome are said to be linked (Klug et al. [2006], p.

101). Normally, gametes do not receive exact copies of the original

chromosomes. Homologous chromosomes (chromosomes of the same pair)

typically exchange part of their material (crossing-over). As a result,

linkage is normally incomplete (Klug et al. [2006], p. 101).

Other hypotheses pertain to the relation between genotype and

phenotype. The best-known principle is complete dominance. For example,

a pea plant that is heterozygous for stem length is tall (the tall-allele is

dominant, the short-allele is recessive). Not all characters show complete

dominance, however (see section 12).

3 Three Philosophical Accounts of the Theory of Classical

Genetics

In this section, I will briefly present three existing philosophical accounts

of the theory of classical genetics: by the structuralists, by Kitcher and by
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Darden. Even though they have an important problem in common (they

all treat issues of causality in stepmotherly fashion; see section 4), these

three accounts definitely deserve our attention. I will focus on the

structuralist notions of ‘theory-element’, ‘T-theoreticity’ and explanation

as ‘embedding’, on Kitcher’s ‘general argument patterns’ and on Darden’s

notions of ‘theoretical component’ and ‘abstract explanatory pattern’. In

the rest of this paper, these notions will be translated into the language of

causal Bayes nets. This will prove to be fruitful in the construction of an

adequate account of scientific theories, of explanation and of unification.3

3.1 The structuralist account

Balzer Lorenzano ([2000]) have analysed the theory of classical genetics

within the Sneedian structuralist framework, in which mature scientific

theories are represented in terms of their logical models, i.e. set-theoretic

structures that satisfy particular statements or propositions (Balzer et al.

[1987], pp. 2–3). In the structuralist approach, scientific theories are rarely

treated as monolithic entities. They are usually represented as theory-nets:

partially ordered sets of theory-elements, which are the basic building

blocks of scientific theories (Balzer et al. [1987], p. 172). A theory-element

T = 〈K, I〉 consists of a core K and a limited domain of intended

applications I (Balzer et al. [1987], p. 39).

The theory-core K(T) = 〈Mp(T),M(T),Mpp(T),GC(T),GL(T)〉

consists of five elements (Balzer et al. [1987], p. 79). Mp(T), the set of T’s

potential models, consists of those set-theoretic structures that can be

subsumed under T’s conceptual framework; i.e. the structures for which it

makes sense to ask whether they satisfy T’s laws (Balzer et al. [1987], pp.

15–7). M(T) is the set of T’s models, i.e. those potential models that
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satisfy T’s laws (hence M(T) ⊂Mp(T)) (Balzer et al. [1987], pp. 3 and

15–7). Mpp(T) is the set of T’s partial potential models, i.e. those

fragments of the potential models which contain only T’s non-theoretical

conceptual apparatus (Balzer et al. [1987], pp. 56–7). Roughly speaking, a

concept is T-non-theoretical if there are ways of determining or measuring

that concept which do not invoke T’s laws, and T-theoretical otherwise

(Balzer et al. [1987], pp. 50ff). For example, in classical genetics,

‘phenotype’ is a non-theoretical concept; ‘genotype’ is theoretical (see

section 7).4 Partial potential models can be ‘extended’ to potential models

by adding suitable T-theoretical relations (Balzer et al. [1987], pp. 56–7).

T’s constraints, GC(T), characterize the connections among the different

local applications of T (Balzer et al. [1987], pp. 40–1 and 78). For

example, one constraint may state that the same genotype used in two

different models will produce the same phenotype in these respective

models (Balzer and Lorenzano [2000], p. 254). Finally, T’s intertheoretical

links, GL(T), represent the transfer of data from another theory T′ to T

(Balzer et al. [1987], pp. 58 and 79). Such transfer is needed for measuring

T-non-theoretical concepts.

The set of intended applications I describes the phenomena that T

should account for (Balzer et al. [1987], pp. 86–9). The intended

applications have the structure of partial potential models. But Mpp

contains all of T’s possible applications (even ‘purely mathematical’

structures), not all of which are intended; therefore, I ⊆Mpp. The

distinction between merely possible applications and intended possible

applications cannot be made in a purely formal way (Balzer et al. [1987],

pp. 88–9). Often, the set of intended applications is specified by citing a

few ‘paradigms’ or ‘exemplars’ (such as ‘the pendulum’ and ‘the projectile’
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in classical particle mechanics). Systems that are sufficiently similar to

these exemplars are then said to belong to I.

To explain some given data or phenomena by means of T, one

proceeds as follows (Balzer et al. [1987], p. 23). By assumption, the data

have the structure of one of T’s partial potential models (some

Mpp ∈Mpp). By adding T’s theoretical concepts, one creates a potential

model (some Mp ∈Mp); this ‘embedding’ of the data in a potential model

is the conceptual aspect of the application of T. Then one asserts that the

data satisfy the laws of T, i.e. that Mp is an actual model of T (Mp ∈M).

This assertion has empirical consequences which, if they turn out to be

true, show that we have successfully applied T to I.

To simplify matters, Balzer and Lorenzano do not distinguish between

actual, potential and partial potential models. In their reconstruction, all

the models of classical genetics consist of eight components: a set J of

genetic individuals (these are individual organisms or populations thereof),

a set P of phenotypes, a set G of genotypes, and five functions relating

these sets to one another (e.g., APPEARANCE is a function mapping

individuals to their phenotypes) ([2000], pp. 246–9). Different

theory-elements are obtained by specifying the number of genes that are

investigated, or by specifying the precise mathematical form of the models’

functions. They distinguish, among other things, between theory-elements

for monohybrid crosses with complete dominance, for monohybrid crosses

with incomplete dominance, for dihybrid crosses with independent

assortment, etc.; together, these theory-elements form the theory-net of

classical genetics ([2000], pp. 260–2). Data are explained by embedding

them in one of classical genetics’ models ([2000], p. 3).

Like Balzer and Lorenzano, I will discuss the different
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‘theory-elements’ of classical genetics separately and I will explore their

formal interrelations (albeit using a different formal apparatus). I will also

adopt the notion of ‘T-theoreticity’ and of explanation as ‘embedding’.

These ideas, together with some of Kitcher’s and Darden’s, will help to get

an adequate grip on explanatory unification.

3.2 Kitcher’s unificationism

Kitcher’s main research question is not how to represent scientific theories,

but how to build a unificationist theory of explanation.

According to Kitcher ([1989], p. 447), scientific theories are

constituted by patterns of derivation or general argument patterns, which

are defined as follows:5

A schematic sentence is an expression obtained by replacing

some, but not necessarily all, the nonlogical expressions

occurring in a sentence with dummy letters. [. . . ] A set of

filling instructions for a schematic sentence is a set of

directions for replacing the dummy letters of the schematic

sentence, such that, for each dummy letter, there is a direction

that tells us how it should be replaced. [. . . ] A schematic

argument is a sequence of schematic sentences. A classification

for a schematic argument is a set of statements describing the

inferential characteristics of the schematic argument: it tells us

which terms of the sequence are to be regarded as premises,

which are inferred from which, what rules of inference are used,

and so forth. Finally, a general argument pattern is a triple

consisting of a schematic argument, a set of sets of filling

instructions and a classification for the schematic argument.
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(Kitcher [1989], p. 432, original emphasis)

Kitcher ([1989], pp. 438–42) characterizes classical genetics as a set of

patterns that serve to answer specific types of questions:

What is the expected distribution of phenotypes in a particular

generation? Why should we expect to get that distribution?

What is the probability that a particular phenotype will result

from a particular mating?, and so forth. (Kitcher [1989], p. 438)

The general idea common to all patterns is that these questions may be

answered

[. . . ] by making hypotheses about the relevant genes, their

phenotypic effects, and their distribution among the individuals

in the pedigree. (Kitcher [1989], pp. 438–9)

The simplest pattern, for example, is called Mendel and has four premises

(Kitcher [1989], p. 439). The first premise says that there are two alleles A

and a, where A is dominant and a recessive. It is a schematic sentence

with A and a as dummy letters. The filling instructions state that these

are to be replaced with names of alleles. The second premise says that AA

and Aa individuals have trait P , whereas aa individuals have trait P ′. The

dummy letters P and P ′ are to be replaced with names of phenotypic

traits. The third premise is a list specifying the genotypes of all the

individuals involved. And the fourth premise says that ‘For any individual

x and any alleles yz if x has yz then the probability that x will transmit y

to any one of its offspring is 1/2’ (Kitcher [1989], p. 439). This is the law

of segregation. From these premises, the expected distribution of progeny

phenotypes can be derived by filling in the dummy letters. Mendel is
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limited to cases with only one gene and two possible alleles, and with

complete dominance. Other, more complicated patterns (called Refined

Mendel and Morgan) are more encompassing (Kitcher [1989], pp. 440–1).

3.3 Darden and theory change in science

Darden’s main research question is how scientific theories change over

time, how new scientific ideas are developed, and what strategies there are

for theory change in science (Darden [1991]). To that end, she analyses the

theory of classical genetics in terms of theoretical components, ‘parts of the

theory that change over time’ (Darden [1991], p. 18). For example, between

1900 and 1903 Mendelian genetics incorporated the following component:

Unit-characters: (1) An organism is to be viewed as composed

of separable unit-characters. (Adapted from Darden [1991], p.

168)

This component gradually evolved. Where, according to Darden, no

distinction was made in 1900–1903 between observable traits and

underlying elements or factors, that distinction was evident as of 1910:

Factors and characters. (1’) Characters are produced by

factors. (2a’) One factor may produce one character or (2b’)

multiple factors may interact in the production of one

character. (Adapted from Darden [1991], p. 168)

By 1926, this evolved into the following:

Genes and characters: (1”) Genes cause characters. (2a”) One

gene may cause one character or (2b”) multiple factors (genes

at different loci in linkage groups) may interact in causing one
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character or (2c”) one gene may affect many characters.

(Adapted from Darden [1991], p. 169)

Theoretical components are not the same as structuralist

theory-elements. First, a single theory-element may (and usually does)

satisfy more than one law or explanatory principle. Theoretical

components are such explanatory principles. Hence theory-elements consist

of more than one theoretical component. (In section 17, I will expand on

my views on laws and explanatory principles.) Second, whereas theoretical

components are inherently dynamic, theory-elements are more or less

stable end-products of such theory evolution (but see Balzer et al. [1987],

chapter V, for an account of the diachronic structure of theories). Darden’s

analogue of a theory-element is an abstract explanatory pattern—a notion

derived from Kitcher. Each pattern invokes a number of theoretical

components and is introduced by means of one or more exemplars or

paradigmatic crosses (see section 11).

4 A Common Lacuna: Where is Causality?

These three accounts of the theory of classical genetics have one lacuna in

common: to a greater or lesser extent, they treat issues of causality in

stepmotherly fashion.

First, Balzer et al. ([1987]) do not discuss the difference between causal

and non-causal relations or laws. It could well be that (some of) a theory’s

laws are causal, but the structuralist framework lacks the expressive power

to say so. As a result, the structuralist account of explanation (see section

3.1) is a-causal. Moreover, it is also intended as an account of prediction;

no distinction is made between prediction and explanation. And even

when they apply their framework to overtly causal theories such as
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classical genetics, the structuralists are reluctant to make room for

causality. Balzer and Lorenzano, for example, talk about phenotypes being

‘caused’ (with quotation marks!) by genotypes ([2000], pp. 247–8).6

A notable exception in the structuralist literature is Forge ([2002]),

who goes some way to giving a structuralist account of causal explanation.

He conjectures that in structuralist reconstructions of scientific theories,

causes can be represented by (unconstrained) theoretical concepts or

functions ([2002], p. 113). While this conjecture is interesting, two remarks

should be made. First, Forge focuses on scientific theories in the physical

sciences and it is an open question whether his conjecture would apply to

the theory of classical genetics as well. Second, and more importantly, a

function or concept that is theoretical for a theory T1 may be

non-theoretical for some other theory T2. But that would make it

non-causal for T2 by definition. This is an unwelcome consequence of

Forge’s conjecture.

Second, Kitcher explicitly discusses the notion of causation, but he

‘explains it away’. Because of well-known empiricist concerns, he refuses to

adopt a causal account of explanation (Kitcher [1989], p. 435). Instead he

develops an explanatory account of causation: ‘What is distinctive about

the unification view is that it proposes to ground causal claims in claims

about explanatory dependency rather than vice versa.’ (Kitcher [1989], p.

436) Causal relevance is dependent on explanatory relevance, where the

latter is tied to the systematization of belief in the limit of scientific

inquiry, as guided by the search for derivational unification (Kitcher [1989],

p. 499).7

Third, Darden is less reluctant to talk about causality in her account

of classical genetics. She acknowledges that causal considerations did play
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a role in genetics and cytology (Darden [1991], pp. 253–4), especially in the

Morgan group (Darden [1991], p. 183), and she uses causal language when

formulating the theoretical components of Mendelian genetics (see the

examples cited in section 3.3). But for all that, she pays relatively little

attention to causation in classical genetics. Nor does she give an account of

causation.

One may wonder, of course, whether causality really is that

important.8 In my opinion, there are multiple reasons why causality merits

particular attention in our representations of scientific theories, the most

important one being related to explanation.9 For many philosophers,

explanation is tightly connected to causation; see the causal-mechanical

accounts of Salmon ([1984]) and Dowe ([2000]), the interventionist

accounts of Hausman ([1998]) and Woodward ([2003]), and the mechanistic

accounts of Machamer et al. ([2000]), Glennan ([1996], [2002]), Bechtel and

Abrahamsen ([2005]) and Craver ([2007]).

One of the central motivations for stressing the role of causality in

explanation is that it solves several of the problems that notoriously plague

Hempel’s ([1965]) deductive-nomological (DN) model of explanation.

(Woodward [2009], section 2.5) One such problem is explanatory

asymmetry. One may logically derive, and hence DN -explain, the length of

a flagpole’s shadow from its height, together with certain laws and initial

conditions. Likewise, one may derive, and hence DN -explain, its height

from the length of its shadow, again together with certain laws and initial

conditions. But whereas the first derivation seems explanatory, the second

does not. Kitcher ([1989], pp. 485–7) endeavours to solve this problem

within his unificationist model, but he arguably fails (Woodward [2003],

pp. 358–60; Gijsbers [2007], pp. 489–91). Causal considerations, by
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contrast, fit this intuition well: the length of the shadow is caused by the

length of the flagpole, but not vice versa.

Before turning to the next section, I would like to add one remark on

the relation between explanation and causality. Even though I endorse the

view that causality plays an important role in explanation, I do not wish

to say that all explanation is causal explanation. Mathematical

explanations, for example, may well be a-causal (see Mancosu [2011],

section 1 and Woodward [2003], pp. 220–1) and they may better fit

Hempel’s or Kitcher’s account of explanation. That need not be a

problem; after all it seems doubtful that there can be a truly general

account of explanation that holds in all possible domains of inquiry (cf.

note 25). Still, if causal considerations are relevant, they should better be

taken into account. This surely holds in the case of classical genetics, as I

will argue in the next section.

5 Woodward’s Interventionist Account of Causation

My account of the causal structure of classical genetics builds upon

Woodward’s interventionist theory of causation. The central idea of this

theory is that causal relations ‘are potentially exploitable for purposes of

manipulation and control’ (Woodward [2003], p. v). For two reasons,

Woodward’s theory is well suited for my purposes.10 First, it dovetails

with (large part of) the literature on causal Bayes nets, such as the works

of Pearl ([2000]) and Spirtes et al. ([2000]) (see Woodward [2003], pp.

38–45). Second, it also nicely fits the concept of causality as it figured in

classical genetics. As Waters ([2007], section I) points out, classical

geneticists considered genes as difference makers for phenotypic traits in

the way specified by the difference principle (see Waters [1994], p. 172 for a
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seminal version of this principle):

Difference principle: differences in a gene cause uniform phenotypic

differences in particular genetic and environmental contexts. (Waters

[2007], p. 558)

In well-devised experiments, these classical geneticists created a stable

genetic and environmental context so as to make sure that the difference

principle would apply (Waters [2007], p. 558). This principle, Waters

contends, can be naturally reformulated in terms of manipulations of genes

(in the sense of the ‘ideal interventions’ to be discussed below) given

certain genetic and environmental contexts (Waters [2007], p. 564).

Woodward ([2003], p. 39) conceives of the relata of causal relations as

random variables (more precisely: changes in the values thereof).

Intuitively, a random variable represents some feature of an entity or set of

entities. Each random variable can have several possible values, each of

which represents a different state that the feature can take. For example,

the variable ‘TrafficLights’ can take ‘red’, ‘orange’ and ‘green’ as its

possible values.

The basic intuition underlying Woodward’s account of causation is

that one random variable X is a (type-level) cause of another random

variable Y just in case manipulating X would result in a change in Y (or

in the probability distribution of Y ). Of course, not every manipulation of

X would be suitable. If, for example, the manipulation of X would change

Y directly, or if it would change some of the causes of Y that are not

themselves effects of X, then Y would change irrespective of whether X is

a cause of Y . To rule out such problems, Woodward introduces the notion

of an ideal intervention on X with respect to Y to explicate changes in X
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which influence Y , if at all, only via X and not via some other causal route

(see Woodward [2003], p. 94 for an informal characterization and 98–99 for

a precise definition). If the relation between X and Y remains ‘invariant’,

that is, continues to hold, under some range of such ideal interventions on

X, then it is causal. It is not necessary that it is invariant under all

possible interventions on X; ‘invariance under interventions’ is a gradual

notion (Woodward [2003], pp. 257–65). With the help of the notion of

ideal interventions, Woodward defines ‘direct causation’ (relative to a set

of variables V ) as follows (this notion nicely fits the formal framework of

causal Bayes nets.):

(DC) A necessary and sufficient condition of X to be a direct cause of Y

with respect to some variable set V is that there be a possible

intervention on X that will change Y (or the probability distribution

of Y ) when all other variables in V besides X and Y are held fixed at

some value by interventions. (Woodward [2003], p. 55)

6 Causal Bayes Nets and Their Interrelations

In this section, I first introduce the basic terminology of causal Bayes nets

(6.1). Then I introduce some new concepts: various isomorphism relations

for causal nets and their constituents (6.2). Finally, I discuss a related

concept—credal nets—and define corresponding isomorphism relations

(6.3). Causal nets will play the same role as models in the structuralist

framework. Credal nets will serve in the creation of a causal analogue for

structuralist theory-elements and Darden’s abstract explanatory patterns.

And the isomorphism relations will help to explore classical genetics’

unifying power.
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6.1 Causal Bayes nets

A causal net (or causal Bayesian network) is a causally interpreted

Bayesian network. A Bayesian network B = 〈G,P 〉 consists of a directed

acyclic graph G = 〈V,E〉 and a probability distribution P (V ) over a set of

random variables V , where P (V ) and G satisfy the Markov Condition. (If

it is clear over which set of variables a distribution is defined, I will write

P instead of P (V ).) A directed acyclic graph G = 〈V,E〉 consists of a set

V of vertices or nodes (this is the set of random variables on which B is

defined), and a set E of directed edges (A→ B, where A,B ∈ V ). Since G

is acyclic, there is no directed path from any variable to itself.

To interpret a Bayesian network causally (and hence to treat it as a

causal net) is to interpret the edges in E causally, so that for all vertices

A,B ∈ V , A→ B ∈ E if and only if A is a direct cause of B, relative to V .

The notion of ‘direct cause’ can be defined by means of Woodward’s (DC).

In the case of causal nets, the Markov Condition is called the Causal

Markov Condition. Let DESC(A) consist of all variables B ∈ V such that

in G there is a directed path from A to B (these are the graph-theoretical

‘descendants’ of A); and let PA(A) consist of all C ∈ V such that

C → A ∈ E (these are the graph-theoretical ‘parents’ of A).

Definition 1 (Causal Markov Condition) Let G = 〈V,E〉 be a causal

graph with vertex set V and P be a probability distribution over the vertices

in V generated by the causal structure represented by G. G and P satisfy

the Causal Markov Condition if and only if for every A ∈ V , A is

independent of V \ (DESC(A) ∪ PA(A)) given PA(A).11 (Adapted from

Spirtes et al. [2000], p. 29)

The Causal Markov Condition specifies which conditional or

20



unconditional independence relations a probability distribution P must

satisfy in order to be causally Markov with respect to a given graph G, so

that B = 〈G,P 〉 counts as a causal net.12 This can be illustrated by means

of figure 1. PT1 is independent of GC1 conditional on GT1 in any P that is

causally Markov to figure 1; likewise, GC1 and GC2 are unconditionally

independent. (At the moment, the reader need not care about what these

variables stand for or which causal relations this figure depicts.)

6.2 Relations among causal nets

As is evident from the above definitions, causal nets may differ from each

other along several lines: viz. with respect to V and/or E and/or P . Here

I will define several possible relations between sets of variables, between

graphs, and between causal nets that are helpful to analyse the causal

structure of classical genetics.

But first let me introduce some notation pertaining to random

variables. Each random variable A ∈ V may assume a range of possible

values. These are mutually exclusive and jointly exhaustive. Let [A] be the

set of A’s values. In this paper, I will only deal with finite random

variables (variables with a finite number of values). Where

U = {A1, . . . , An} is a set of variables, let [U ] = [A1]× . . .× [An]. The

members of [U ] thus consist of the possible configurations of members of

[A1], . . . , [An], respectively.13 Finally, let [[U ]] =
⋃

[Ai] (for all Ai ∈ U).

Obviously, [U ] and [[U ]] are different sets.

Now we are ready to define some possible interrelations between

causal nets. I will start with isomorphism and value-isomorphism, defining

these notions in turn for sets of variables, for graphs, and for causal nets.

Definition 2 ((value-)isomorphism for sets of variables) Two sets
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of variables V and V ′ are isomorphic if and only if there is a bijection

b : V → V ′.14 They are value-isomorphic if and only if there are bijections

b : V → V ′ and b′ : [[V ]]→ [[V ′]] such that for any A ∈ V and a ∈ [[V ]],

a ∈ [A] if and only if b′(a) ∈ [b(A)].

Definition 3 ((value-)isomorphism for graphs) Two graphs

G = 〈V,E〉 and G′ = 〈V ′, E′〉 are isomorphic if and only if there is a

bijection b : V → V ′ such that for any A,B ∈ V : A→ B ∈ E if and only if

b(A)→ b(B) ∈ E′. They are value-isomorphic if and only if they are

isomorphic and V and V ′ are value-isomorphic.

Definition 4 ((value-)isomorphism for causal nets) Two causal nets

B = 〈G,P 〉 and B′ = 〈G′, P ′〉 are isomorphic if and only if G and G′ are

isomorphic. They are value-isomorphic if and only if G and G′ are

value-isomorphic.

With respect to isomorphic graphs and causal nets, let me introduce

the following convention:

Convention 1 If G = 〈V,E〉 and G′ = 〈V ′, E′〉 are isomorphic, I will

write G′ = 〈V ′, E〉 instead of G′ = 〈V ′, E′〉—even if E and E′ are specified

over different sets of variables. Analogously, I will write B′ = 〈〈V ′, E〉, P ′〉

instead of B′ = 〈〈V ′, E′〉, P ′〉 in case B and B′ are isomorphic.

The relations of isomorphism and value-isomorphism of definition 4

concern structural (or qualitative) similarities between causal nets. Let us

now turn to probabilistic (or quantitative) similarities.

Definition 5 (distribution-identity for causal nets) Let B = 〈〈V,E〉,

P 〉 and B′ = 〈〈V ′, E〉, P ′〉 be value-isomorphic and let b and b′ be bijections

as in definition 2. Moreover, for every u = 〈a1, a2, . . . , an〉 ∈ [V ], let
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b′(u) = 〈b′(a1), b′(a2), . . . , b′(an)〉. Then B and B′ are distribution-identical

if and only if P (u) = P ′(b′(u)) for each u ∈ [V ]. (In other words, B and B′

have like joint distributions.)

The relations between these definitions are obvious. If two sets of

variables V and V ′ are value-isomorphic they are also isomorphic, but not

vice versa. (Idem for graphs and causal nets.) If two causal nets B and B′

are isomorphic (resp. value-isomorphic), then so are their respective graphs

and hence their respective sets of variables, but not vice versa. And if two

causal nets are distribution-identical they are value-isomorphic, but not

vice versa.

6.3 Credal nets and their interrelations

Along with causal nets, I will use another concept that ties graphs and

probability distributions together: credal nets. A credal net is a set of

Bayesian networks over a fixed set of variables (Cozman [2005], p. 171).15

These Bayes nets all have the same G, but differ with respect to P . More

precisely, a credal net B = 〈G,P〉 consists of a directed acyclic graph

G = 〈V,E〉 and a set P of probability distributions over V , called a a credal

set. As I interpret Bayes nets causally here, I will carry over this

interpretation to credal nets.

Definition 6 (credal net) A credal net is a set of causal nets with a

common graph: B = 〈G,P〉 = {B = 〈G,P 〉 | P ∈ P}.

Structural (qualitative) and probabilistic (quantitative) similarity

relations can also be defined for credal sets and credal nets:

23



Definition 7 ((value-)isomorphism for credal sets) Two credal sets

P(V ) and P′(V ′) are isomorphic if and only if V and V ′ are isomorphic.

They are value-isomorphic if and only if V and V ′ are value-isomorphic.

Definition 8 (distribution-identity for credal sets) Let V and V ′ be

value-isomorphic, let b and b′ be bijections as in definition 2, and let u and

b′(u) be defined as in definition 5. Then the credal sets P(V ) and P′(V ′)

are distribution-identical if and only if there is a bijection b′′ : P→ P′ such

that P (u) = b′′(P )(b′(u)) for all P ∈ P and all u ∈ [V ]. (In other words, all

distributions in P are distribution-identical to their image in P′.)

Definition 9 ((value-)isomorphism for credal nets) Two credal nets

B = 〈G,P〉 and B′ = 〈G′,P′〉 are isomorphic if and only if G and G′ are

isomorphic. They are value-isomorphic if and only if G and G′ are

value-isomorphic.

Definition 10 (distribution-identity for credal nets) Two credal

nets B = 〈〈V,E〉,P〉 and B′ = 〈〈V ′, E〉,P′〉 are distribution-identical if and

only if P(V ) and P′(V ′) are distribution-identical. Equivalently, B and B′

are distribution-identical if and only if there is a bijection b∗ : B→ B′

such that for all B ∈ B, B is distribution-identical to b∗(B).

The relations between these definitions are obvious. If two credal sets

P and P′ are distribution-identical they are also value-isomorphic, and

hence also isomorphic, but not vice versa. (Idem for credal nets.) And if

two credal nets B and B′ are distribution-identical, then so are their

respective credal sets. (Idem for value-isomorphism and isomorphism.)

Overview of the above definitions:
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(value-)isomorphism distribution-identity

sets of variables definition 2 /

graphs definition 3 /

causal nets definition 4 definition 5

credal sets definition 7 definition 8

credal nets definition 9 definition 10

7 The Theory of the Gene and its Causal Graph

Let us turn now to the second part of this paper and apply the above

formal framework to Morgan’s exposition of the ‘theory of the gene’

(Morgan [1928]). According to Morgan, the modern theory of heredity ‘is

primarily concerned with the distribution of units between successive

generations of individuals’ (Morgan [1928], p. 1). These units are invisible

and they are called genes. To these genes, properties are assigned in a

non-arbitrary way, based on ‘numerical data obtained by crossing two

individuals that differ in one or more characters’ (Morgan [1928], p. 1).

After presenting several examples of possible relations between genes and

characters, Morgan formulates the theory of the gene as follows (the three

following quotes are from Morgan [1928], p. 25):

We are now in a position to formulate the theory of the gene.

The theory states that the characters of the individual are

referable to paired elements (genes) in the germinal material

that are held together in a definite number of linkage groups;

Where Morgan writes about ‘pairs of genes’, we would now say ‘pairs of

alleles.’ Linkage groups are groups of genes that are typically transmitted

together (since they lie on the same chromosome). Morgan continues by
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specifying the law of segregation (Mendel’s first law) and the law of

independent assortment (Mendel’s second law):

it states that the members of each pair of genes separate when

the germ-cells mature in accordance with Mendel’s first law,

and in consequence each germ-cell comes to contain one set

only; it states that the members belonging to different linkage

groups assort independently in accordance with Mendel’s

second law;

Finally he explains the basics of ‘gene mapping’, the technique by means of

which the Morgan group was able to discover which of an organism’s genes

belonged to the same linkage group (and in what order):

it states that an orderly interchange—crossing-over—also takes

place, at times, between the elements in corresponding linkage

groups; and it states that the frequency of crossing-over

furnishes evidence of the linear order of the elements in each

linkage group and of the relative position of the elements with

respect to each other.

The theory of the gene, as it is presented by Morgan, is not one single

theory. It is composed of different abstract explanatory patterns (Darden

[1991]), general argument patterns (Kitcher [1989]), or theory-elements

forming a theory-net (Balzer and Lorenzano [2000]). I will incorporate this

aspect by representing it by means of interrelated credal nets. As these

credal nets are interpreted causally, the common lacuna is remedied. To

some extent these credal nets share the same causal structure. This

common causal structure ties them together, and distinguishes the theory
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Figure 1: The causal structure of classical genetics

of the gene from alternative theories of inheritance such as Francis Galton’s

(see Leuridan [2007] for a brief characterization of Galton’s theory).

This shared causal structure is shown in figure 1. The directed acyclic

graph comprises nine nodes, which represent the genotype (GTi), the

phenotype (PTi) and the make-up of the germ-cells (GCi) of three groups

of organisms (a paternal group, i = 1; a maternal group, i = 2; and a filial

group, i = 3).16 The GTi and GCi variables in figure 1 are dotted to

indicate that they are CG-theoretical in the structuralists’ sense (see

section 3.1; ‘CG’ stands for the theory of classical genetics). At the time,

there was no way to determine an organism’s genotype or the make-up of

its germ-cells without invoking the theory of classical genetics. The

phenotypic variables, by contrast, are CG-non-theoretical. One can

determine an organism’s phenotypic traits without relying on CG. This

point is important with respect to explanation in classical genetics (see

section 17).
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The causal relations between these variables are depicted in figure 1.

The genotypes (GTi) causally influence the corresponding phenotypes

(PTi), as well as the corresponding germ cells (GCi)—manipulating the

former via an ideal intervention will change (the probability distribution

over) the latter. And the parental germ cells (GC1 and GC2) together

causally determine the filial genotype GT3. These relations are very

plausible from a present-day point of view. But to avoid any allegation

that I’m misinterpreting Morgan’s exposition, we should briefly justify

them on the basis of his work.

In section 5, I have argued, based on (Waters [2007]), that

Woodward’s interventionism fits Morgan’s concept of causality. Here I

discuss the precise causal relations that played a role in Morgan’s theory of

the gene. Let me start with the relation between genes and characters. It

is very natural to consider genes as the causes of characters; i.e. to assume

that for each i, GTi → PTi. It is not so natural, however, to attribute this

assumption to Morgan and his contemporaries. Explicit causal language

was surprisingly rare in the genetics literature at the time. Still, Morgan

uses implicit causal language on repeated occasions. He hypothesizes that

the tall variety of pea plants ‘contains in its germ-cells something that

makes the plants tall’ (Morgan [1928], p. 2, my emphasis). He

distinguishes between red-producing genes and white-producing genes in

crosses of four-o’clocks (Morgan [1928], p. 8). And he talks about the

effects of mutant changes (Morgan [1928], p. 315). These examples should

suffice to show that, according to Morgan, genes cause characters (see also

Darden [1991], pp. 182–3 and Waters [2007]).

What about the relations between the paired genes and the germcells?

In the third and the fourth chapter of his book, Morgan lists overwhelming
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cytological evidence leading to the conclusion that GTi → GCi (1 ≤ i ≤ 3)

and that GC1 → CT3 ← GC2: the chromosomes are the bearers of the

genes ([1928], p. 45), somatic cells have a diploid number of chromosomes,

half of which come from the father, the other half from the mother ([1928],

p. 32), and the germ cells receive a haploid number of chromosomes

([1928], p. 33).

8 A First Exemplar: Stem Length in Pea Plants

Morgan ([1928]) presents the theory of classical genetics by means of a set

of exemplars, particular crosses which are explained by means of the

theory of the gene and which are supposed to represent a class of similar

phenomena. His first exemplar consists of Mendel’s well-known

monohybrid crosses with complete dominance on pea plants (Morgan

[1928], pp. 2–4). Recall that in a monohybrid cross only one pair of

opposing characteristics is studied.

8.1 Three crosses on stem length in pea plants

Mendel ([1865], pp. 5-27) crossed a tall variety of edible pea (Pisum) with

a short variety. The tall plants he used were true-breeding. He observed

that when true-breeding tall plants are crossed with short plants, all the

offspring or hybrids (F1) are tall (cross 1). It did not matter whether the

tall plants produced pollen and the short plants produced eggs or vice

versa. Reciprocal crosses gave identical results (Mendel [1865], pp. 8–9). In

a second cross (cross 2), self-fertilization of the F1-generation resulted in

offspring (F2) 75% of which was tall, the other 25% being short. Finally,

when the F1 hybrids (pollen plants) were back-crossed to short plants (egg

plants), 50% of the resulting off-spring F2′ was tall, the other 50% was
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short (cross 3). How can these phenotypic distributions be explained? It

will turn out in section 9 that the results of each cross can be explained by

fitting them in a causal net the graph of which is isomorphic to figure 1.

Here, I will first characterize the graph which these causal nets have in

common and the explanatory principles or laws their probability

distributions have to satisfy.

8.2 The causal graph for stem length in pea plants

Let us first give an appropriate interpretation for the nodes in figure 1 by

specifying their respective sets of possible values. All the plants in these

crosses are tall (PTi = tall) or short (PTi = short). These traits are

referable to paired alleles in the germinal material. Let t and s denote a

‘tall-producing’ and a ‘short-producing’ allele, respectively.17 There are

three possible configurations of paired alleles, i.e. three possible values for

the variables GTi, viz. tt, ts, and ss. Finally, the germ-cells contain one

allele of each pair. Hence, the variables GCi may assume the values t or s.

These specifications can be summarized as follows. Let

V 1 = {PT1, . . . , GC3} be a set of variables corresponding to the nodes in

figure 1. Let

[PTi] = {tall, short}, [GTi] = {tt, ts, ss}, and [GCi] = {t, s}, (1 ≤ i ≤ 3).

Let G1 = 〈V 1, E〉 be isomorphic to figure 1 (where PT1 ∈ V 1 corresponds

to the node PT1 in the graph, . . . ). This completes the description of G1.

By adding probability distributions to this graph, we will obtain causal

nets that represent crosses 1 to 3. These probability distributions have to

satisfy the explanatory principles, or laws, invoked by Morgan.
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table 1 table 2 table 3
PTi GCi GT3

GTi tall short GTi t s GC1 GC2 tt ts ss
tt 1.00 0.00 tt 1.00 0.00 t t 1.00 0.00 0.00
ts 1.00 0.00 ts 0.50 0.50 t s 0.00 1.00 0.00
ss 0.00 1.00 ss 0.00 1.00 s t 0.00 1.00 0.00

s s 0.00 0.00 1.00

Conditional probability tables 1–3, satisfied by all P ∈ P1

8.3 Morgan’s explanatory principles and the credal net for

stem length in pea plants

To explain the phenotypic distributions of crosses 1 to 3, Morgan appeals

to four principles—either explicitly or implicitly ([1928], pp. 2–4). First, he

assumes that plants having two tall-producing alleles are tall; that hybrids,

which have an allele for tall and one for short, are tall; and that plants

having two short-producing alleles are short. This corresponds to what is

called the principle of complete dominance. They are summarized in

conditional probability table 1. This table specifies the probability

distribution over the values of each PTi, given the possible values of its

graphical parent GTi, (1 ≤ i ≤ 3). For example, the second row states that

P (PTi = tall | GTi = ts) = 1.00. This expresses the dominance of tall over

short.

Second, Morgan invokes the law of segregation (Mendel’s first law):

‘[i]f the element [or allele] for tall and the one for short (that are both

present in the hybrid) separate in the hybrid when the eggs and pollen

grains come to maturity, half the eggs will contain the tall and half the

short element [. . . ]. Similarly for the pollen grains’ (Morgan [1928], p. 3).

In this quote, Morgan only discusses segregation for hybrid plants, but

from his exposition of the underlying chromosomal mechanism, it is clear

that Mendel’s first law applies to true-breeding plants as well, see (Morgan
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[1928], pp. 33-4). The law of segregation is summarized in table 2.

A third, very implicit principle states that when an egg and a pollen

grain fertilize, their respective elements together make up the genotype of

the resulting offspring. I will call this the combination principle (table 3).18

Finally, Morgan assumes chance fertilization ([1928], p. 3). For

example, when one crosses or self-fertilizes hybrids it may not be the case

that tall-producing pollen have a tendency to fertilize tall-producing eggs

rather than short-producing eggs. This assumption need not be expressed

by means of a conditional probability table, as it holds for any probability

distribution that satisfies the Causal Markov Condition relative to figure

1.19

Together, these principles give rise to a credal set P1(V 1):

P1(V 1) = {P (V 1) | P (V 1) satisfies tables 1–3 and

the Causal Markov Condition relative to G1}.

Joined with G1, this defines a credal net B1 = 〈G1,P1〉.

9 Explaining Mendel’s Crosses: a Causal-Structural Account

Morgan explains the filial phenotypic distributions in crosses 1 to 3 by

deriving them, by means of the laws or explanatory principles just

discussed, from assumptions regarding the parental genotypes. Described

in this way, explanation is syntactic. But we can also approach it in a

semantic or model-theoretic way. Each of the crosses can be explained by

embedding them in a causal net (some B ∈ B1). This model-theoretic

approach mimics the structuralist account of explanation, while making

room for the concept of causality. Let me call it the causal-structural
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account of explanation. (See section 17 for a further elaboration.)

In section 3.1 we saw that for the structuralists, to explain some given

data by means of a theory T,20 one adds to these data—which have the

structure of a partial potential model—T’s theoretical concepts—thus

creating a potential model—and then shows that it is an actual model of

T. This ‘embedding’ can be translated to the language of causal nets.21

The data in section 8.1 concern the phenotypic distribution of the filial

group, given the phenotypes of the parental groups. Hence they pertain to

the CG-non-theoretic variables PTi (with [PTi] = {tall, short}, 1 ≤ i ≤ 3).

These can be included in a graph that also contains the CG-theoretical

variables GTi and GCi (1 ≤ i ≤ 3). By demanding that this graph is

isomorphic to figure 1 and by adding suitable probability distributions

which satisfy tables 1–3 and are causally Markov to the graph in question,

one obtains models (causal nets in B1) that incorporate classical genetics’

conceptual framework, satisfy its laws and explain the data.

Let us first turn to cross 1. In one variant of cross 1, the pollen plants

are true-breeding for tall and the egg plants are short:

PT1 = tall, PT2 = short. If it is assumed that a true-breeding tall plant

contains the element for tall twice (cf. Morgan [1928], p. 6), it can be

‘abduced’ that GT1 = tt and GT2 = ss.22 If we denote the probability

distribution corresponding to this cross by P 1(V 1), or briefly P 1, we can

express this as follows: P 1(PT1 = tall) = P 1(PT2 = short) =

1.00, and P 1(GT1 = tt) = P 1(GT2 = ss) = 1.00. Assume now that

P 1 ∈ P1, so that it satisfies tables 1–3 and the corresponding explanatory

principles. Then it follows that P 1(GC1 = t) = P 1(GC2 = s) = 1.00 (by

table 2), and that P 1(GT3 = ts) = 1.00 (by table 3). Hence

P 1(PT3 = tall) = 1.00 (by table 1), which corresponds to the data. This
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shows that cross 1 can be represented by a causal net B1 = 〈G1, P 1〉 which

predicts that all hybrid offspring is tall. Since B1 satisfies causal

explanatory principles, this embedding of the data in B1 can rightly be

called causal explanation. It shows how the variables on which the data

report (in casu PT3) fit in a larger causal system, and how this causal

system brings about the (probability distribution over the) values of these

variables.23

The phenotypic distribution in cross 2 can be explained in an

analogous way, by embedding it in some causal net, say B2 = 〈G1, P 2〉,

where P 2 ∈ P1 so that B2 ∈ B1. In cross 2, the F1 hybrids are selfed and

they produce F2 offspring 75% of which is tall and 25% of which is short.

Obviously, if P 2(GT1 = ts) = P 2(GT2 = ts) = 1.00 and if P 2 ∈ P1, then

P 2(GT3 = tt) = 0.25, P 2(GT3 = ts) = 0.50, and P 2(GT3 = ss) = 0.25, so

that P 2(PT3 = tall) = 0.75 and P 2(PT3 = short) = 0.25. This

corresponds to the data.

Finally, in cross 3 the F1 hybrids are back-crossed with the recessive

parental plants. Let P 3(GT1 = ts) = P 3(GT2 = ss) = 1.00. If P 3 ∈ P1,

then P 3(PT3 = tall) = 0.50. ‘The results confirm the expectation.’

(Morgan [1928], p. 4) Hence, cross 3 can be represented by

B3 = 〈G1, P 3〉 ∈ B1.

Cross 3 was designed by Mendel (and cited by Morgan) as a test cross.

The fact that several different, but somehow similar crosses could be

explained by means of the same explanatory principles, raised confidence

that the explanatory principles invoked were not ad hoc.

So far we have seen that a number of crosses with tall and short pea

plants can be represented by distinct causal nets B1,B2,B3 that belong to

one common credal net B1. Each of these causal nets is a model of
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classical genetics and explains the data (phenotypic distributions) at hand.

In what follows, I will show how crosses on other characters in Pisum or

with other genera can be represented by causal nets that fit in analogous

credal nets, and explicate the precise relations between these credal nets.

(This will prove to be fruitful when we turn to the discussion of

explanatory unification.)

10 Monohybrid Crosses with Complete Dominance

B1’s can be used to describe monohybrid crosses with tall (dominant) and

short (recessive) Pisum plants. In the history of classical genetics, many

other monohybrid crosses with complete dominance have been reported. In

his Versuche über Pflanzen-Hybriden, Mendel discussed six more such

crosses with Pisum (Mendel [1865], pp. 5–17). He selected traits relating

to the shape of the ripe seeds (round, wrinkled), the colouration of the

seed albumen (yellow, green), . . . Likewise, Morgan ([1928], pp. 4–5)

discusses the inheritance of eye colour in humans (blue, brown) as an

example of complete dominance. These crosses cannot be described by the

members of B1, since the set of variables V 1 on which these are defined is

tied to stem length in Pisum. However, by slightly changing the members

in V 1, they can.

Consider Morgan’s case of human eye colour. Two phenotypic traits

are studied, where brown is dominant to blue. These are referable to

paired alleles in the germinal material, which Morgan denotes by br and bl

respectively. (Morgan and his co-workers used a large variety of symbolic

systems to denote alleles.) The results of crosses with blue and brown eyes

in humans can be accounted for with the help of the explanatory principles

discussed in section 8.3, viz. the law of segregation, complete dominance,
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etc. Thus, they are very similar to the case of stem length in Pisum. This

similarity can be explicated in a precise way. There is a credal net, say B2,

that is both value-isomorphic and distribution-identical to B1, such that

its members can be used to explain crosses on eye colour in humans.

Let us see how B2 can be characterized. V 2 = {PT ′1, . . . , . . . , GC ′3} is

a set of variables corresponding to the nodes in figure 1, where

[PT ′i ] = {brown, blue}, [GT ′i ] = {brbr, brbl, blbl}, and

[GC ′i] = {br, bl}, (1 ≤ i ≤ 3). Let b : V 1 → V 2 be a bijection such that

b(PTi) = PT ′i , b(GTi) = GT ′i , b(GCi) = GC ′i (1 ≤ i ≤ 3). Let

b′ : [[V 1]]→ [[V 2]] be a bijection such that for any A ∈ V 1 and a ∈ [[V 1]],

a ∈ [A] if and only if b′(a) ∈ [b(A)]. More specifically, let

b′(tall) = brown, b′(short) = blue, b′(tt) = brbr, . . . , b′(s) = bl. V 2 is

value-isomorphic to V 1 (definition 2); hence G2 = 〈V 2, E〉 is

value-isomorphic to G1 = 〈V 1, E〉 (definition 3).

Let P2 be the set of probability distributions over V 2 that satisfy

constraints analogous to tables 1–3 and are causally Markov to G2. More

specifically, where the members of P1 satisfy P (a | pa(A)) = r (for some

r ∈ [0, 1]), let the members of P2 satisfy P (b′(a) | b′(pa(A))) = r for any

A ∈ V 1, a ∈ [A], and pa(A) ∈ [PA(A)].24 (PA(A) ⊂ V 1 comprises A’s

graphic parents in G1.) It follows that P2 is distribution-identical to P1.

Let B2 = 〈G2,P2〉. B2 is value-isomorphic (definition 9) and

distribution-identical (definition 10) to B1. Thus for any possible cross of

tall and short pea plants, there is an analogous cross on eye colour in

humans. And likewise for their respective explanations.

Formally speaking, it is trivially easy to create a distribution-identical

image of a credal net: just relabel the variables and their values. But

empirically, the discovery that eye colour could be explained in the very
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same way as stem length, was not trivial at all. Hence distribution-identity

expresses a philosophically interesting phenomenon (see also section 18).

11 Exemplars, Abstract Explanatory Patterns,

Generic Credal Nets and Mechanism Schemas

The relations between crosses on stem length in pea plants and crosses on

eye colour in humans can be generalized to all monohybrid crosses with

complete dominance. It is useful to introduce the notion of a generic credal

net that serves as an abstract representation of all these similar crosses in

the same way as do Darden’s abstract explanatory patterns. Like abstract

explanatory patterns, generic credal nets are obtained by abstracting from

exemplars and they play a role in a theory’s unifying power.

Darden’s notions of ‘exemplar’ and ‘abstract explanatory pattern’

derive from the works of Kuhn and Kitcher. Starting from (Kuhn [1962],

pp. 186–91), she defines exemplars as ‘[. . . ] concrete problem solutions in

which a formalism (such as a mathematical equation) is applied and given

empirical grounding’ (Darden [1991], p. 18). Kuhnian exemplars, Darden

argues, may serve to generate Kitcherian argument patterns.

[They] may serve in the construction of abstract explanatory

patterns or schemas [. . . ]. The patterns abstractly characterize

mechanisms, which, when they are operating, produce

observable data-points as output. Thus, fitting an observation

into a pattern is a way of explaining it. A set of exemplary

patterns constitutes the explanatory repertoire of Mendelian

genetics [. . . ]. (Darden [1991], p. 19)

The crosses on stem length in Pisum play the role of Dardenian exemplars

in (Morgan [1928]). Darden writes, ‘[t]he examples supplied model cases.
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Similar results of similar hybrid crosses could be explained by invoking

similar steps and filling in the details about the characters in the specific

cross.’ (Darden [1991], p. 18)

Credal nets (such as B1 and B2) can be looked upon as precise

explications of the notion of ‘exemplar’ in Darden’s works. Generic credal

nets can be obtained from credal nets by abstracting from the precise

details (which genotypes?, which phenotypes?, etc.) of the latter. They are

distribution-identical to the credal nets from which they result. Let

Bα = 〈Gα,Pα〉 be a generic credal net that is distribution-identical to B1

(with Gα = 〈V α, E〉). Any reciprocal monohybrid cross with two

phenotypic traits, two alleles, and complete dominance can be described by

means of a causal net that is distribution-identical to some member of Bα,

by filling in V α and Pα.25

These explications of Darden’s concepts are very fruitful, I contend,

because they explicitly make room for causality. This fruitfulness will

emerge in section 18, where I will provide a causal account of explanatory

unification which improves on those of Kitcher and Darden.26

Before we go to the next section, Let me briefly turn to Darden’s more

recent work on mechanisms. Darden now uses the label ‘mechanism

schema’ instead of ‘abstract explanatory pattern’ ([2002], [2005]). A

mechanism schema is a ‘truncated abstract description of a mechanism

that can be instantiated by filling it with more specific descriptions of

component entities and activities’ (Darden [2005], pp. 360–1); see also

(Machamer et al. [2000], p. 15).27 They are often depicted in diagrams

(Darden [2005], p. 358). Darden now claims that ‘[t]he structure of

biological theories in [classical genetics and molecular biology] is best

analyzed by appeal to mechanism schemas, and not by appeal to sets of
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laws or argument schemata’ ([2005], p. 351).

It may be suggested that the notion of ‘mechanism schema’ provides a

more elegant and less formal tool for analysing the theory of classical

genetics than mine.28 Perhaps, my formal apparatus could be eliminated

in favour of the use and reuse with modifications of the diagram in figure

1, interpreted as a mechanism schema. I disagree. Most of Darden’s

mechanism schemas and the diagrams in which they are depicted, are

purely qualitative—as is the graph in figure 1. But in contrast to the

former, the latter may be given a quantitative interpretation in a very

natural way, viz. by combining it with causally Markov probability

distributions so as to obtain causal nets. (Hence generic credal nets offer

an explication of Darden’s mechanism schemas; they should not be

eliminated in favour of the latter.) As should be clear by now, quantitative

information was crucial for the prediction and explanation of phenotypic

distributions in classical genetics. In the interest of prediction, biologists

like Lazebnik ([2002]) and philosophers like Bechtel ([2011]) have stressed

the need for quantitative representations of biologists’ findings at the

expense of merely qualitative, diagrammatic representations. Casini et al.

([2011]) and Clarke et al. ([unpublished]) have offered accounts of

mechanisms invoking causal Bayes nets. These accounts offer an integrated

approach to both the qualitative and the quantitative aspects of

mechanisms. As a result, one of their major advantages is that they can be

easily used for quantitative prediction (both passive prediction and

prediction of the results of manipulations). My approach is in line with

this interesting work.
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12 Incomplete Dominance

B1 and B2 represent but two exemplars, and Bα represents but one part

of classical genetics. Obviously there was more to classical genetics than

monohybrid crosses with complete dominance. After presenting Mendel’s

crosses and those regarding eye colour in man, Morgan turns to crosses

that are interestingly different and which cannot be represented by means

of Bα.

There are other crosses that give, perhaps, a more striking

illustration of Mendel’s first law. For instance, when a red and

a white-flowered four-o’clock [Mirabilis jalapa] are crossed, the

hybrid [F1] has pink flowers [. . . ]. If these pink-flowered hybrid

plants self-fertilize, some of their offspring (F2) are red like one

grandparent, some of them pink like the hybrid, and others

white like the other grandparent, in the ratio of 1:2:1. Here one

original parental color is restored when red germ-cell meets red,

the other color is restored when white meets white, and the

hybrid combinations appear as often as red meets white, or

white meets red. All the colored flowered plants in the second

generation taken together are to the white-flowered plants as

3:1.

In passing it is important to note two facts. The red and the

white F2 individuals are expected to breed true, because they

contain the elements for red, or for white, twice present [. . . ],

but the pink F2 individuals should not breed true, since they

are like the first hybrid generation, and contain one red and

one white element [. . . ]. All this turns out to be true when
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these plants are tested. (Morgan [1928], pp. 5–6)

Morgan’s explanation of these phenotypic distributions rests on the

law of segregation, chance fertilization, and the combination principle.

What is new, however, is the relation between the genotype and the

phenotype. Let me jointly label the relations in the quote above the

‘principle of incomplete dominance’.

How can we account for this difference in terms of causal nets? It is

easily seen that crosses with incomplete dominance are structurally

different from crosses with complete dominance. Crosses on flower colour

in four-o’clocks cannot be described by means of causal nets that are

value-isomorphic (let alone distribution-identical) to members of Bα, since

the corresponding set of variables, say V 3, is not value-isomorphic to V α.

The flower colour of four-o’clocks has three possible states: white, pink,

and red. So let me define V 3 = {PT1, . . . , . . . , GC3}, with

[PTi] = {red, pink, white}, [GTi] = {rr, rw,ww}, and

[GCi] = {r, w}, (1 ≤ i ≤ 3).29 Let G3 = 〈V 3, E〉 be isomorphic to figure 1.

What about the probability distributions over G3? The constraints

generated by incomplete dominance, by Mendel’s first law, and by the

combination principle are summarized in tables 4, 5 and 6, respectively.

Together, they determine the credal set P3(V 3) and the resulting credal

net B3 = 〈G3,P3〉. (As before, chance fertilization is ingrained in the

graphical structure of figure 1.)

In line with section 9, the crosses cited by Morgan can be explained

by means of members of B3. In a first cross, a red flowered four-o’clock is

joined with a white-flowered four-o’clock. Morgan does not clarify which of

the two is the pollen producing plant but, as reciprocal crosses again give

the same results, we may assume that the pollen producing plant is red.30
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table 4 table 5 table 6
PTi GCi GT3

GTi red pink white GTi r w GC1 GC2 rr rw ww
rr 1.00 0.00 0.00 rr 1.00 0.00 r r 1.00 0.00 0.00
rw 0.00 1.00 0.00 rw 0.50 0.50 r w 0.00 1.00 0.00
ww 0.00 0.00 1.00 ww 0.00 1.00 w r 0.00 1.00 0.00

w w 0.00 0.00 1.00

Conditional probability tables 4–6, satisfied by all P ∈ P3

Now consider a distribution P 1(V 3) such that

P 1(PT1 = red) = P 1(PT2 = white) = 1.00.31 If P 1(V 3) ∈ P3, then

P 1(PT3 = pink) = 1.00. This corresponds to the data, so it may be

assumed that B1 = 〈G3, P 1〉, with P 1 ∈ P3, represents and explains this

first cross. In the second cross, the F1 hybrids are self-fertilized, so let

P 2(V 3) be such that P 2(PT1 = pink) = P 2(PT2 = pink) = 1.00. If

P 2(V 3) ∈ P3, then P 2(PT3 = red) = 0.25, P 2(PT3 = pink) =

0.50, and P 2(PT3 = white) = 0.25. Hence, the 1:2:1 ratio can be

explained by assuming that this cross is rightly described by

B2 = 〈G3, P 2〉, where P 2 ∈ P3.

As we saw in section 9, Morgan cites test crosses to confirm the law of

segregation. With respect to incomplete dominance, he considers three

such crosses: self-fertilization of the red F2 plants, selfing of the white F2

plants, and selfing of the pink F2 hybrids (Morgan [1928], p. 6). All

predictions turned out to be true. In other words, for all three crosses

there is a P ∈ P3 such that the corresponding B = 〈G3, P 〉 explains the

data. As a result, the adequacy of P3 and of B3 is confirmed.

Flower colour in four-o’clocks is not the only character that shows

incomplete dominance. Like results have been obtained with snapdragons

(Antirrhinum), where crosses of red- and white-flowered plants give rise to

pink-flowered offspring (Klug et al. [2006], pp. 68–9).
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These relations can be generalized to all monohybrid crosses with

incomplete dominance. Let Bβ = 〈Gβ,Pβ〉, with Gβ = 〈V β, E〉, be a

generic credal net such that V β is value-isomorphic to V 3, Gβ is

value-isomorphic to G3, and Bβ is distribution-identical to B3. Any

monohybrid cross with incomplete dominance can be described by means

of a causal net that is distribution-identical to some member of Bβ.32

Complete dominance and incomplete dominance are clearly different, as

Bα and Bβ are not value-isomorphic, let alone distribution-identical.

13 Anomalies

The history of classical genetics is replete with theory changes to account

for apparent anomalies. In the beginning of the 20th century, more and

more exceptions to the principle of complete dominance were reported. In

Darden’s terminology, these should be regarded as model anomalies (as

opposed to monster anomalies), since they required ‘a change in the set of

patterns for normal, well-functioning cases. [. . . ] either the alteration of a

typical pattern or the addition of one or more new patterns to the set’

(Darden [1991], p. 199).33 Mendel’s theory was not abandoned, but

adapted.34

In the structuralist vocabulary: crosses with complete dominance and

with incomplete dominance are different kinds of intended applications,

giving rise to different kinds of data structures, which are to be dealt with

by means of different theory-elements (Balzer and Lorenzano [2000], pp.

256–61).

In my terminology: failures of complete dominance gave rise to data

for which there is no B = 〈G,P 〉 such that (i) B is distribution-identical to

some member of Bα, the then available generic credal net, and such that
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(ii) P is consistent with the data. They were model anomalies since they

required a new generic credal net, Bβ = 〈Gβ,Pβ〉, that substantially

differed from Bα.

14 Multihybrid Crosses with Independent Assortment

After presenting two monohybrid crosses with complete dominance, and

one with incomplete dominance, Morgan turns to dihybrid crosses. He

cites one of Mendel’s well-known dihybrid crosses with Pisum plants on

albumen colour (yellow versus green) and seed shape (round versus

wrinkled).35 Mendel had first crossed peas with yellow and round seeds

and peas with green and wrinkled seeds. The resulting hybrids (F1) were

yellow and round. Then he self-fertilized the hybrids, thus obtaining F2

plants which were yellow round, yellow wrinkled, green round, and green

wrinkled in the ratio of 9:3:3:1. (Morgan [1928], pp. 7–8)

To explain the phenotypic distributions in the F1 and the F2

generation, Morgan takes the law of segregation and adds the assumption

that segregation for one pair of elements is independent of segregation for

another pair. This is the law of independent assortment (Morgan [1928], p.

10). He assumes complete dominance for the pairs yellow/green and

round/wrinkled, as in the monohybrid crosses. He adopts some revised

version of the combination principle (see figure 8 in Morgan [1928], p. 9).

Finally, he assumes chance fertilization. Together, these laws or

explanatory principles give rise to a credal net, say B4 = 〈G4,P4〉, the

members of which explain dihybrid crosses on albumen colour and seed

shape in pea plants. Let us see how B4 looks like.

Clearly, the above crosses cannot be described by any set of variables

that is value-isomorphic to V α or V β. Each phenotypic variable has four
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possible values: [PTi] = {yellowround, yellowwrinkled, greenround,

greenwrinkled}. Morgan refers these phenotypes to eight possible

genotypes: [GTi] = {GGWW,GGWw, . . . , ggww}; see table 7 for the full

list. The gametes have four possible make-ups: [GCi] = {GW,Gw, gW,

gw}.36 (G stands for the yellow-producing allele, g for green, W for round,

w for wrinkled.) Let V 4 be the set of these variables and let G4 = 〈V 4, E〉

be isomorphic to figure 1.

Tables 7 and 8 specify some of the constraints to be satisfied by all P

in the credal set P4 over V 4. (I will not discuss the combination principle,

the specification of which is straightforward. Nor will I discuss chance

fertilization, which is ingrained in figure 1.) Table 7 explicates the principle

of complete dominance for both albumen colour and seed shape. Table 8

explicates the law of segregation and the law of independent assortment.

The fifth line of table 8 shows the quintessence of independent assortment:

P (GCi = GW | GTi = GgWw) = P (GCi = Gw | GTi = GgWw) =

P (GCi = gW | GTi = GgWw) = P (GCi = gw | GTi = GgWw) = 1
4

(compare this with the fifth line of table 10).

Both aforecited crosses (GGWW × ggww and GgWw ×GgWw) can

be explained by means of a causal net B ∈ B4. Similar crosses can be

explained in a similar way. Hence, let Bγ = 〈Gγ ,Pγ〉 be the generic credal

net for dihybrid crosses with complete dominance and independent

assortment, where Gγ = 〈V γ , E〉 and where Bγ is distribution-identical to

B4.

15 Multihybrid Crosses with Linkage and Crossing-over

Many cases of independent assortment were known at the time, yet

independent assortment is not a universally applicable law.
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table 7 table 8
PTi GCi

ye ye gr gr
GTi rnd wrd rnd wrd GTi GW Gw gW gw
GGWW 1.00 0.00 0.00 0.00 GGWW 1.00 0.00 0.00 0.00
GGWw 1.00 0.00 0.00 0.00 GGWw 0.50 0.50 0.00 0.00
GGww 0.00 1.00 0.00 0.00 GGww 0.00 1.00 0.00 0.00
GgWW 1.00 0.00 0.00 0.00 GgWW 0.50 0.00 0.50 0.00
GgWw 1.00 0.00 0.00 0.00 GgWw 0.25 0.25 0.25 0.25
Ggww 0.00 1.00 0.00 0.00 Ggww 0.00 0.50 0.00 0.50
ggWW 0.00 0.00 1.00 0.00 ggWW 0.00 0.00 1.00 0.00
ggWw 0.00 0.00 1.00 0.00 ggWw 0.00 0.00 0.50 0.50
ggww 0.00 0.00 0.00 1.00 ggww 0.00 0.00 0.00 1.00

Conditional probability tables 7–8, to be satisfied by all P ∈ P4 (together
with the combination principle)

It might, then, have seemed justifiable to extend this

conclusion to as many pairs of characters as enter any

particular cross. This would mean that there are as many

independent pairs of elements in the germinal material as there

are possible characters. Subsequent work has shown, however,

that Mendel’s second law of independent assortment has a

more restricted application, since many pairs of elements do

not assort freely, but certain elements that enter together show

a tendency to remain together in succeeding generations. This

is called linkage. (Morgan [1928], p. 10)

More precisely,

By linkage we mean that when certain characters enter a cross

together, they tend to remain together in later generations, or,

stated in a negative way, certain pairs of characters do not

assort at random. (Morgan [1928], p. 10)

Genes that are linked belong to the same linkage group. Drosophila

melanogaster (fruit fly), for example, has four linkage groups (Morgan
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[1928], pp. 11–2). It was soon discovered that genes in the same linkage

group are not always completely linked. There may be some interchange

between linkage groups.

This interchange is called crossing-over, which means that,

between two corresponding linked series, there may take place

an orderly interchange involving great numbers of genes.

(Morgan [1928], p. 14)

As an exemplar, Morgan cites crosses performed by Bateson and

Punnett on Lathyrus odoratus or sweet peas (purple flowers and long

pollen grains crossed to red flowers and round pollen grains). Flower colour

and pollen shape in sweet peas were known to show normal Mendelian

segregation and to satisfy the principle of complete dominance, with purple

dominant to red and long dominant to round (Darden [1991], pp. 122–3).

Bateson and Punnett had observed that ‘the two types that go in together

come out together more frequently than expected for independent

assortment of purple-red and round-long’ (Morgan [1928], p. 10).

Because of the difference between linkage and independent

assortment, there is no credal net B which is (i) distribution-identical to

Bγ , the generic credal net for dihybrid crosses with independent

assortment, and which is such that (ii) its members can be used to explain

dihybrid crosses on flower colour and pollen shape in sweet peas. We

should seek a new credal net, say B5 = 〈G5,P5〉, with G5 = 〈V 5, E〉 and

such that P5 accounts for the failure of independent assortment.

Let us first have a look at Bateson and Punnett’s data (Morgan

[1928], p. 11, figure 9).37 Cross 1: Sweet peas with purple flowers and long

pollen grains were crossed with sweet peas with red flowers and round
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pollen grains. (It may be assumed that all plants were true-breeding.) The

resulting hybrids (F1) had long pollen grains and purple flowers. Cross 2:

Self-fertilization of the F1 generation produced F2 individuals in the

following proportions (the absolute frequencies are Morgan’s, I have added

the percentages):

cross 2: long, purple round, purple long, red round, red

583 26 24 170

73% 3% 3% 21%

These results can be explained as follows. We know that the F1 plants

are hybrid, so P (GT1 = GgWw) = P (GT2 = GgWw) = 1.00, where G

denotes the purple-producing allele, g the red-producing allele, W the

long-producing allele and w the round-producing allele.38 We may assume

that complete dominance still holds between purple and red, and between

long and round in the dihybrid case, so that we may rely on some variant

of table 7. We may also assume that the combination principle holds.

Then all we need to do is to find the appropriate conditional probability

table for the relation between GTi and GCi. It turns out that the

phenotypic distribution for the F2 individuals can be explained if (but not

only if, see below)

P (GCi = GW | GTi = GgWw) = 0.46

P (GCi = Gw | GTi = GgWw) = 0.04

P (GCi = gW | GTi = GgWw) = 0.04

P (GCi = gw | GTi = GgWw) = 0.46

For example, by the principle of complete dominance the F2

individuals can only have round pollen and red flowers if their genotype is

ggww. Hence their fertilizing gametes must both be gw. The following
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calculations retrodict that 21% of the F2 plants will have round pollen and

red flowers (assuming chance fertilization). We know that

P (GT1 = GgWw) = P (GT2 = GgWw) = 1.00. By the conditional

probabilities just given, we can compute that P (GC1 = gw) = 0.46, and

likewise that P (GC2 = gw) = 0.46. Given chance fertilization,

P (GC1 = gw ∧GC2 = gw) = 0.46× 0.46 = 0.21. So by the combination

principle and by some analogue of table 7, P (GT3 = ggww) = 0.21 and

P (PT3 = roundred) = 0.21. Like calculations allow to retrodict the

probabilities of the other phenotypes in F2.
39

P5 cannot be specified by demanding that for all P ∈ P5 the above

conditional probabilities hold, since these conditional probabilities are

cross-dependent. Assume that, in cross 1, GGww individuals had been

crossed with ggWW individuals (instead of GGWW × ggww).40 The

resulting F1 hybrids would all be GgWw, as in Morgan’s example. But

self-fertilization of these hybrids would give F2 plants in the following

proportions:

long, purple round, purple long, red round, red

50,16% 24,84% 24.84% 0.16%

The reason is that here G and w (and thus g and W ), tend to remain

together, whereas in the original cross G and W (and thus g and w) did so:

P (GCi = GW | GTi = GgWw) = 0.04

P (GCi = Gw | GTi = GgWw) = 0.46

P (GCi = gW | GTi = GgWw) = 0.46

P (GCi = gw | GTi = GgWw) = 0.04

How, then, should we characterize P5? Linkage and crossing-over

influence the probabilistic relations between GTi and GCi, as compared to
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table 9 table 10
PTi GCi

pu pu red red
GTi lng rnd lng rnd GTi GW Gw gW gw
GGWW 1.00 0.00 0.00 0.00 GGWW 1.00 0.00 0.00 0.00
GGWw 1.00 0.00 0.00 0.00 GGWw 0.50 0.50 0.00 0.00
GGww 0.00 1.00 0.00 0.00 GGww 0.00 1.00 0.00 0.00
GgWW 1.00 0.00 0.00 0.00 GgWW 0.50 0.00 0.50 0.00
GgWw 1.00 0.00 0.00 0.00 GgWw a

2
1−a
2

1−a
2

a
2

a ∈ {0.08, 0.92}
Ggww 0.00 1.00 0.00 0.00 Ggww 0.00 0.50 0.00 0.50
ggWW 0.00 0.00 1.00 0.00 ggWW 0.00 0.00 1.00 0.00
ggWw 0.00 0.00 1.00 0.00 ggWw 0.00 0.00 0.50 0.50
ggww 0.00 0.00 0.00 1.00 ggww 0.00 0.00 0.00 1.00

Conditional probability tables 9–10, satisfied by all P ∈ P5 (together with
the combination principle). Table 9 is analogous to table 7 (complete
dominance holds, even though pollen shape is linked with flower colour).
The difference between tables 8 and 10 reveals the difference between
independent assortment on the one hand, and linkage and crossing-over on
the other hand. min{0.08, 0.92} is the frequency of crossing-over.

cases of independent assortment, if and only if GTi = GgWw (i.e., if and

only if doubly heterozygous plants are involved).41 Both sets of conditional

probabilities listed above can be summarized as follows:

P (GCi = GW | GTi = GgWw) =
a

2

P (GCi = Gw | GTi = GgWw) =
1− a

2

P (GCi = gW | GTi = GgWw) =
1− a

2

P (GCi = gw | GTi = GgWw) =
a

2
,

where a ∈ {0.08, 0.92} and where min{0.08, 0.92} = 0.08 is the frequency of

crossing-over for dihybrid crosses on flower colour and pollen shape in

Lathyrus odoratus. All this is summarized in table 10.

P5 thus is the set of distributions over V 5 that satisfy tables 9 and 10

(plus the combination principle and chance fertilization). (Note that the

physical probability a may take two possible values and that hence the

distribution over GCi conditional on GTi is imprecise. But regarding
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crosses on flower colour and pollen shape in Lathyrus odoratus, the

physical probability a may not take a value between 0.08 and 0.92.)

Other crosses, for example on Drosophila, also revealed linkage and

crossing-over, but with different frequencies of crossing-over. The

frequency of crossing-over for some particular pair of genes in some

particular organism is most easily determined observationally as follows

(cf. Morgan [1928], pp. 14–7). Let A and B denote dominant alleles; a and

b their recessive counterparts. Let two grandparental individuals (e.g.

AABB and aabb, or AAbb and aaBB) together produce a double

heterozygote (AaBb) (F1). Perform the cross AaBb× aabb (the resulting

offspring is F2). Barring problems of statistical inference and barring cases

of double crossing-over, the frequency of crossing-over is identical to the

proportion of individuals in F2 that do not phenotypically resemble any of

the grandparents (called cross-over types).

Crosses on wing colour (yellow, gray) and eye colour (white, red) in

Drosophila revealed a frequency of crossing-over of 1%. Other crosses in

Drosophila gave other frequencies: 33% in white versus red eyes and

miniature versus long wings, or 40% in white versus red eyes and forked

versus normal bristles. If there are no cross-over types, linkage is complete.

In short, Morgan and his group observed all possible percentages of

crossing-over, up to nearly 50% (Morgan [1928], pp. 19–20). As a result,

the generic credal net for dihybrid crosses with linkage and crossing-over

(and with complete dominance) should look like the following. Let

Bδ = 〈Gδ,Pδ〉 be such that (i) Gδ = 〈V δ, E〉 is value-isomorphic to

G5 = 〈V 5, E〉, and (ii) any P ∈ Pδ satisfies complete dominance, the

combination principle and some analogue of table 10, where a ∈ {b, 1− b}

for some b ∈ [0.00, 0.50]. (It should be noted that the characterization of
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Pδ should invoke one more principle relating to the linear ordering of the

genes, see section 16.)

16 Double Crossing-over and the Linear Order of the Gene

Crossing-over may occur within linkage groups and the frequency of

crossing-over may be estimated from the types of crosses cited in section

15. However, the Morgan group discovered a phenomenon called double

crossing-over that leads to a systematic underrating of the frequencies of

crossing-over. ‘By double crossing-over is meant that interchange takes

place twice between two pairs of genes involved in the cross. The result is

to lower the observed cases of crossing-over, since a second crossing-over

undoes the effect of a single crossing-over’ (Morgan [1928], p. 20, original

emphasis). This problem is solved by taking into account more than two

pairs of traits.

For example, if a female [Drosophila] with the following nine

characters of Group I, scute, echinus, cross-veinless, cut, tan,

vermilion, garnet, forked and bobbed, is crossed to a wild type

male, and if the F1 female [. . . ] is back-crossed to the same

multiple recessive type, the offspring produced will give a

record of every crossing-over. (Morgan [1928], p. 20)

Based on these results, Morgan draws a linear diagram depicting the

corresponding genes in the linkage group ([1928], p. 21). In figure 2,

crossing-over has taken place twice. As a result, it seems as if no

crossing-over has taken place between e.g. forked and cross-veinless, thus

lowering the estimated frequency of crossing-over. By taking the

intermediate loci into account, this bias is remedied.
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Figure 2: The linear order of the genes in Group I of Drosophila (adapted
from Morgan [1928], p. 21, figures 15 and 18). At the top, no crossing-over
has occurred. At the bottom, crossing-over took place twice (between tan
and cut, and between garnet and forked).

More generally, the Morgan group concluded that linkage groups can

be represented linearly, with genes lying in a line ‘like beads on a string’

(Morgan [1928], p. 24). Evidence for this linear order came from two

sources. First, cytological evidence showed that chromosomes were

threadlike entities (Morgan [1928], pp. 38–44). As the assumption that

genes are located on the chromosomes became more and more accepted, it

was most natural to assume they are organized linearly. Second, genetic

evidence pointed in the same direction in a way that is relevant for the

characterization of Pδ.

It can be assumed that crossing-over is the result of some interchange

taking place at the level of the chromosomes (Morgan [1928], p. 39).

Though cytological evidence for such an interchange was not conclusive, it

was quite convincing (Morgan [1928], p. 44). Such considerations gave rise

to the concept of map distance: the ‘distance’ between pairs of elements or
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genes on the same chromosome, measured in terms of their percentage of

crossing-over (Morgan [1928], p. 22).42 The concept of map distance

allowed to further corroborate the hypothesis of the linear order of the

genes.

Suppose that crossing-over between yellow wings and white

eyes occurs in 1.2 per cent of cases. If we then test white with a

third member of the same series, such as bifid wings, we find

3.5 per cent of crossing-over [. . . ]. If bifid is in line and on one

side of white it is expected to give with yellow 4.7 per cent

crossing-over, if on the other side of white it is expected to give

2.3 per cent of crossing-over with yellow. In fact, it gives one of

these values, namely, 4.7. We place it, therefore, below white in

the diagram. This sort of result is obtained whenever a new

character is compared with two other members of the same

linkage group. The crossing-over of a new character is found to

give, in relation to two other known factors, either the sum or

the difference of their respective cross-over values. This is the

known relation of points on a line, and is the proof of the linear

order of the genes; for no other spatial relation has yet been

found that fulfills these conditions. (Morgan [1928], p. 24, my

emphasis)

Morgan’s citation can be explicated as follows. Let i, j and k be

characters of the same kind of organism, say Drosophila. Let the credal net

Bij = 〈〈V ij , E〉,Pij〉 be the set of causal nets that represent dihybrid

crosses on i and j (and analogously for Bjk = 〈〈V jk, E〉,Pjk〉 and

Bik = 〈〈V ik, E〉,Pik〉). If i, j and k are cases of complete dominance, then

Bij , Bjk and Bik are distribution-identical to Bδ.43 Finally, let
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aij , ajk, and aik be the frequencies of crossing-over for Bij ,Bjk and Bik.

If the genes belong to the same linkage group, then according to Morgan’s

findings either aij = ajk + aik or aij = |ajk − aik|. This imposes an

important constraint (in the structuralists’ sense) on the characterization

of Pδ: it expresses important connections between different local

applications of Bδ.

17 Causal-Structural Explanation

Let us turn now to the final part of this paper: the causal-structural

account of explanation and its relation to unification. As we saw in

sections 9-16, Morgan explains filial phenotypic distributions by means of a

carefully chosen set of explanatory principles or laws and assumptions

regarding the parental genotypes. As such, his explanations are a syntactic

enterprise, a matter of derivation. But they can also be explicated

model-theoretically. To explain a given phenotypic distribution, one tries

to find an appropriate credal net B, satisfying the right explanatory

principles, so that one of its causal nets can be used to embed the data in.

The label ‘causal-structural account of explanation’ covers both these

aspects of explanation.

This account has a number of interesting characteristics. First and

foremost, it is a causal account of explanation. The laws or explanatory

principles invoked by Morgan are inextricably joined to the causal

structure in figure 1, where this structure is defined in terms of

Woodward’s (DC).

It may seem strange to equate the explanatory principles of classical

genetics with laws. After all, aren’t laws of nature true, universal and

physically necessary generalizations whereas the explanatory principles of
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classical genetics face numerous exceptions, have a limited domain of

application and are highly contingent? No. By endorsing this claim, one

would demand too much from laws of nature—in fact so much that it

becomes questionable whether there are any laws at all in the special

sciences. As I have argued following Mitchell ([1997], [2000]), explanatory

principles such as those of classical genetics, need not satisfy the

traditional criteria for lawfulness to deserve the label ‘law’ (Leuridan

[2010]). If they (or, more precisely, the regularities they describe) have

sufficient stability and strength,44 and if they are invariant under some

range of interventions, they can be used (in particular contexts) for

explanation (even if they fail to hold outside those contexts). The

causal-structural account of scientific theories provides a nice explication of

this view. The explanatory principles or laws of each (generic) credal net

have a limited domain of application. Within that domain, they may be

used for explanation regardless of the fact that they face exceptions

(anomalies, see section 13) and fail to hold in other credal nets.

Another way to phrase this is as follows. Each generic credal net

implicitly incorporates a set of ceteris paribus conditions which help to

determine its domain of intended applications. Of course, these are not

just any ceteris paribus conditions, but well delineated sets of such

conditions, based on existing scientific knowledge. So it should not be

feared that these ceteris paribus conditions make the principles of classical

genetics trivially true. (See Pietroski and Rey [1995]; Earman et al. [2002];

Woodward [2002]; and Mitchell [2002] for a discussion of ceteris paribus

clauses.) For example, Bα −Bδ all assume that mutation does not occur;

and Bγ and Bδ both assume that there is no gene interaction.

A second characteristic of the causal-structural account of explanation
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is that it also is an epistemic and representational, rather than an ontic

account of explanation. What explains is not the causal structure of the

world itself, but causal explanatory principles describing that causal

structure. The model-theoretic approach need not detract from that

representational character, as classical genetics’ causal nets are themselves

‘simulacra’ of real-world states of affairs (cf. Cartwright [1983], pp.

143–62).45 To say it with a catchword: ‘No explanation without

representation!’ Yet focussing on these models also helps to see that

explanation is not merely derivational ; the causal nets in question have to

bear the right relations to the ontic structure of the world. And it helps to

illuminate the notion of explanatory unification; the causal nets in

question bear interesting similarity relations to each other. Finally, the

formal framework I use allows for an integrated approach to both the

qualitative and the quantitative aspects of causal structures in a way that

is suitable for e.g. prediction (see section 11).

18 Explanatory Unification

The causal-structural account of scientific theories allows us to get a grip

on explanatory unification within a causalist framework. Today, Kitcher’s

anti-causalist approach is still influential in the literature on unification.

Yet in the past years, the need for, or desirability of, a causalist account

has been stressed by several authors. Here, I will present the criticisms

raised by Mäki ([2001]) and Woodward ([2003]) against Kitcher’s

unificationism, elaborate my own proposal, and contrast it with Strevens’

kairetic account.

Kitcherian unification consists in showing that many different

phenomena can be derived from a small number of explanatory patterns.
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The unifying power of a set of argument patterns varies directly with the

number of statements that can be derived by means of its members,

directly with the stringency of the patterns in the set,46 and inversely with

the number of patterns in the set (Kitcher [1989], p. 435). The patterns in

the most unifying set of patterns over a body of scientific knowledge K

(called the explanatory store E(K)) determine what explains what.

Both Mäki and Woodward endorse the importance of unification as an

epistemic virtue, but they are dissatisfied by Kitcher’s approach. I go with

them in several ways. I, too, consider unificatory power an epistemic

virtue. It is a virtue which scientific theories may have to a greater or

lesser extent on top of their being explanatory. I also agree with their

critique of Kitcher. Yet I am not fully satisfied with their views either (for

reasons to be outlined below). As I will show, the causal-structural theory

of explanation adequately addresses their worries while providing an

interesting and elaborate alternative to Kitcher’s account.

Woodward finds the idea that explanation is a matter of unifying a

range of different phenomena ‘unquestionably intuitively appealing’;

generality is ‘at least sometimes an explanatory virtue’; and ‘theory

unification has clearly played an important role in science’ ([2003], p. 358).

Yet he wonders whether our intuitive notion(s) of unification can be made

more precise in a way that fits our interventionist intuitions concerning

explanation ([2003], p. 358). In his opinion, Kitcher fails to do so.

Unification may be an explanatory virtue, but it is not a sufficient

condition for explanation: ‘considerations having to do with unification do

not automatically pick out those derivations that are explanatory from

those that are not’ ([2003], p. 361).

Woodward’s own proposal is to explicate unification in terms of ranges
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of invariance. A generalization’s explanatory depth is tied to the range of

ideal interventions under which it is invariant: the wider its range of

invariance, the more explanatory it is ([2003], pp. 257–65). This range of

invariance is also related to the generalization’s generality or unifying

power ([2003], pp. 366 and 373).

I agree that ‘range of invariance’ captures part of the notion of

unification, but I think that more of Kitcher’s intuitions can be recovered

in the interventionist approach (note that Woodward leaves open this

possibility; [2003], p. 373). More specifically, generic credal nets and their

possible interrelations allow us to explicate the intuition that different

phenomena can be explained by means of a number of more or less similar

causal ‘patterns’. But let me first turn to Mäki’s views.

For Mäki, Kitcher’s account of unification is problematic as it comes

down to mere derivational unification, i.e. ‘unification as a derivational

accomplishment without ontological groundings’ ([2001], p. 497).

According to Kitcher, explanation is not a matter of describing causal

relations in the world. Instead, causal relevance is dependent on

explanatory relevance and hence on derivational unification ([1989], pp.

436 and 499; see also section 4 above.

In Mäki’s opinion, unification should not be (merely) derivational; it

should (also) be ontological.47 Ontological unification is ‘based on the

referential and representational capabilities of theories’, not on their

inferential capabilities (Mäki [2001], p. 498).48 It is ‘a matter of

redescribing apparently independent and diverse phenomena as

manifestations [. . . ] of one and the same small number of entities, powers,

and processes’ (Mäki [2001], p. 498).

Unification, according to this picture, is not just a matter of
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derivational success but rather a matter of successfully

representing how things are related in the causal order of things

in the world. (Mäki [2001], p. 500, my emphasis)

What is important for the present paper, is the fact that derivational and

ontological unification need not be incompatible (Mäki [2001], p. 499).

They may coincide, or derivational unification may have partial ontological

grounds. Ontological unification is only incompatible with mere

derivational unification. I agree that ontological and derivational

unification may coincide. But Mäki’s view is only partly satisfying, as he

adds the following:

My hunch is that this is a contingent issue; there is no necessity

for the two kinds of unification to be related in one particular

way or another. (Mäki [2001], p. 499)

Mäki’s hunch is plausible, provided derivation is tied to standard logical

inference. In this respect I would like to take his side. Kitcher’s argument

patterns are phrased in natural language, but their expressive power does

not exceed that of non-modal second order logic joined with probability

theory.49 Hence, whether they coincide with ‘the causal order of things in

the world’ (where this causal order is not defined as a function of the

explanatory relations), is a contingent issue. Yet if derivation is tied to

causal reasoning, the tie between derivational and ontological unification is

much stronger and Mäki’s distinction largely dissolves. In this sense, his

answer is but partly satisfying.

In my causal-structural framework, unification is a matter of

similarity between a theory’s intended applications and, relatedly, between

its causal and credal nets. As such, it comes in degrees. The stronger the
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relations between credal nets (where distribution-identity is stronger than

value-isomorphism, which is stronger than isomorphism), the stronger the

corresponding phenomena are unified. But, and this is very important, all

credal nets are isomorphic.

First, different crosses on a particular trait (or set of traits) in a

particular organism are explained by means of a given set of explanatory

principles. For example, crosses on stem length in pea plants are explained

by means of complete dominance, the law of segregation, chance

fertilization, and the combination principle. Semantically speaking, these

different crosses are embedded in different causal nets B1,B2, . . . which

belong to a common credal net B1. This already provides some unification.

Second, other crosses, e.g. on eye colour in humans, are explained by

means of the very same explanatory principles. They are embedded in

causal nets that belong to a different credal net, such as B2. B2 is

distribution-identical to B1, which means that inheritance of stem length

in pea plants and of eye colour in humans is highly similar,

notwithstanding the fact that prima facie they are very distinct characters

in very distinct species. This can be generalized to all monohybrid crosses

with complete dominance. These can be explained by members of credal

nets that are distribution-identical to B1. I have used the generic credal

net Bα as an abstract representation of all such crosses. Many divergent

cases can be viewed as highly similar (in the sense of distribution-identity).

Distribution-identity is a very strong notion of similarity which expresses a

kind of very strong unification. It shows that phenomena not only

resemble each other qualitatively (qua qualitative causal relations), but

also quantitatively or probabilistically.

Third, monohybrid crosses with complete dominance are but one kind
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or type of phenomena. Other kinds were explained by means of other sets

of explanatory principles, giving rise to other generic credal nets. (Each of

these generic credal nets, and their instances, provide unification for their

domain of intended application.) I have discussed Bβ,Bγ ,Bδ, and more

could be specified for other types of crosses (see section 19). All these

credal nets (and their specific instances) are isomorphic, as their graphs

are isomorphic to figure 1. Isomorphism is a much weaker relation than

distribution-identity, and hence expresses a weaker notion of unification,

but the large number of kinds of phenomena that stand in this

isomorphism relation made classical genetics interestingly unifying. And

what is important: it shows that all these kinds of crosses are explained in

terms of a common underlying causal structure, and that the distinct

generic credal nets of classical genetics each characterize very similar

mechanisms50 (Darden [1991], p. 19) or very similar entities, powers and

processes (Mäki [2001], p. 498).

The causal-structural notion of unification is both derivational and

ontological and hence meets Mäki’s worries. It is derivational because

classical genetics makes use of (a limited stock of) explanatory principles,

which are syntactic statements, to explain a wide range of phenomena. It

is also ontological, because these principles are closely tied to a common

causal mechanism (entities, processes, powers) which is qualitatively

represented in figure 1.51

All of classical genetics’ causal nets are isomorphic, and this shows

that apparently very different phenomena can be explained in a unified

way. Yet I do not claim that isomorphism of a theory’s causal nets is a

sufficient condition for that theory to be unifying. One may, after all,

devise artifacts that have a causal structure that is isomorphic to figure 1
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but which have nothing to do with classical genetics. To show that their

structure is isomorphic to the causal nets of classical genetics would only

be a kind of ‘spurious unification’ (Kitcher [1981], pp. 526–9). The

phenomena to be explained have to be in the domain of intended

applications of classical genetics. This is not a defect of my account, but

an unavoidable feature that it shares with the structuralists and with

Kitcher. From their works it is clear that there is no straightforward

recipe, or set of necessary and sufficient conditions, for establishing a

theory’s domain of intended applications. As I wrote in section 3.1, the

structuralist notion of intended applications cannot be defined in a purely

formal way; it also relies on pragmatic considerations—see (Balzer et al.

[1987], pp. 37–40, 87–9; Balzer and Lorenzano [2000], p. 245; Balzer and

Dawe [1986a], p. 67). Sets of intended applications I are often specified by

citing a few ‘paradigms’ or ‘exemplars’ such as stem length in pea plants.

All exemplars of classical genetics concern crosses of organisms with

certain phenotypic traits, the resulting progeny of which shows a more or

less definite phenotypic distribution. To be included in the set of intended

applications of classical genetics, crosses of organisms have to be

sufficiently similar to one of its exemplars (qua types of traits involved, qua

resulting distributions, etc.).52 What counts as sufficiently similar depends

on pragmatic considerations. Moreover, the set of classical genetics’

intended applications changed over time and frequently was a matter of

debate (Darden [1991], pp. 166 and 260). Likewise, Kitcher’s notion of

filling instructions, which he needs to avoid spurious unification, cannot be

formally defined. Although he nowhere says so, it is clear from his writings

that their specification has to rely on pragmatic considerations as well.

Isomorphism is not a necessary condition either. Define isomorphism
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class as a class of causal nets that are isomorphic to each other. While

classical genetics has only one isomorphism class (all of its causal nets are

isomorphic to each other), there may be scientific theories that have more

than one such class and still are judged to have at least some unifying

power. Yet I conjecture that, ceteris paribus, the less isomorphism classes

a theory has, the more we would judge it to be unifying. A theory with

less isomorphism classes posits less fundamentally different causal

structures underlying the phenomena to be explained.53 Thus,

isomorphism for causal and credal nets and its stronger nephew,

distribution-identity, serve to explicate our intuitive notion of unification

in a way that fits the interventionist theory of causation and allows to

reconcile derivational with ontological unification.

Let me conclude this section by briefly turning to Strevens’ kairetic

account of explanation. The claim that the causal-structural account of

scientific theories allows us to get a grip on explanatory unification within

a causalist framework may suggest that this account is similar in spirit to

Strevens’ ([2004]), at least prima facie. After all, Strevens also endeavours

to ‘unify the causal and unificatory approaches to explanation—causally’

(see the title of his paper). More specifically, his goal is ‘a causal account

of explanation that has many of the advantages of the unification account’

(Strevens [2004], p. 154). Yet there are some important differences which

reward further examination. (Strevens [2004] focuses on explanations of

events or singular facts, whereas I have been focusing here on explanations

of regularities, yet the differences I mention carry over to the kairetic

account of the explanation of laws and regularities; see Strevens [2008],

part III.)

A first difference is that Strevens’ use of the unificationist framework
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is not meant to capture the notion of unification, but the distinct notion of

explanatory relevance. A second, minor difference is that Strevens’ use of

‘model’ as a ‘set of propositions’ is a syntactic one ([2004], p. 163), whereas

mine is semantic. This brings me to a last and most important difference.

Strevens does not attempt to explicate his concept of causation. This

places him in a comfortable position—too comfortable, perhaps. It allows

him, for instance, to stipulate that logical entailment in causal models

represents relations of causal production ([2004], p. 163). The literature on

interventionist accounts of causation has shown, however, that one should

not skate on thin ice when trying to make logical entailment fit causal

relations; see e.g. (Hausman [1998], chapter 8) for an elaborate attempt to

model explanations as causal arguments. Strevens ([2004], p. 163)

acknowledges that not all entailments represent causal processes. Yet he

does not provide even the slightest account of what would make an

entailment represent a causal process. The best one finds, is whether or

not physical theory (the true theory of everything, whatever that may be)

attributes to the premises the power to bring about the conclusion ([2004],

p. 165). By opting for a specific and substantive account of causation

(Woodward’s), I have placed myself in a more difficult and vulnerable

situation, since I expose myself to possible counterexamples (see section 19

on the tenability of the Causal Markov Condition).

19 Concluding Remarks

In this final section, I would like to make some concluding remarks on

three issues. First, I will briefly discuss the parts of classical genetics which

I have not explicitly dealt with in this paper. Second, I will consider the

applicability of the causal-structural account to theories other than
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classical genetics. What characteristics should a theory have in order to fit

the causal-structural account? This brings me to a third and very

important issue: the tenability of the Causal Markov Condition.

In this paper, I have discussed some of the best known parts of

classical genetics, starting from Morgan’s exposition from 1928. At the

time, however, many phenomena were known that do not fit any of the

generic credal nets I have sketched: cases of sex-linked inheritance,

multiple alleles, multiple genes, gene interaction, pleiotropy, lethal alleles,

non-diploidy, incomplete penetrance, . . . I contend that causal nets, credal

nets and generic credal nets can be defined for all these phenomena, based

on the graph in figure 1. Hence they fit the causal-structural account of

classical genetics.

Apart from classical genetics, which other theories would be suitable

for the causal-structural account of scientific theories? In my opinion, the

following three criteria are relevant (this list is not intended to be

exhaustive). First, the theory in question should be causal in the

interventionist sense. The concepts of intervention, invariance and the like

should be applicable. Given that Woodward ([2003]) uses examples from a

wide range of scientific disciplines, ranging from physics and chemistry,

over biology and the biomedical sciences, to economics and social theory,

this criterion is not very restrictive. Still, not all scientific theories may be

suitable. For example, it has been suggested that the notion of ‘ideal

intervention’ is not applicable to EPR phenomena in quantum mechanics

(Hausman and Woodward [1999], pp. 560–70). If that is correct, then my

causal-structural account is not suited for quantum mechanics. (See Suárez

and San Pedro [2011], pp. 183–7, for a critical evaluation of Hausman and

Woodward’s claim, however.)
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Second, given the relations between the causal-structural account and

Sneedian structuralism, I surmise that a good place to look for further

candidate theories would be among the wide range of examples that have

been discussed by the structuralists (see Balzer et al. [2000], for a

collection of paradigmatic examples). Insofar as these theories fit the

interventionist framework, approaching them from a causal-structural

rather than structuralist perspective would be advantageous. For example,

it would allow us to examine to what extent they give rise to causalist

explanatory unification.

A theory that seems to meet both criteria is general equilibrium

theory in economics, which pictures the economy as ‘a collection of

economic agents who make supply and demand decisions over

commodities, labour types and assets, in order to further their own

interests’ and ‘studies the equilibrium properties of the economy, so

conceived’ (Bryant [2010], p. 1). Hamminga and Balzer ([2000]) have

analysed this theory within the structuralist framework and Woodward

([2003], pp. 233 and 355–6) suggests that the relations between e.g. supply,

demand and prices can be analysed in interventionist terms.

The third criterion is related to the first: the theory should not violate

the Causal Markov Condition (CMC), as that condition is one of the most

central assumptions of my account. The aforementioned claim by

Hausman Woodward ([1999]) is based on problems regarding the CMC in

the context of EPR phenomena.

The CMC and its relation to interventionism are not undisputed.54

Hausman and Woodward ([1999], [2004a], [2004b]) defend the link between

the CMC and manipulation. Cartwright ([2001], [2002]) and Steel ([2006])

offer a critical discussion. It has been also argued that the CMC may fail
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for a number of reasons (see Cartwright [2001], pp. 254–60; Spirtes et al.

[2000], pp. 295–7; and Williamson [2005], pp. 52–7). One example is

Cartwright’s chemical factory ([1999], p. 7). Suppose that a factory C

probabilistically produces some chemical X, and that when it does

produce X, it also produces, as a side-effect, a nasty polluant Y . X and Y

always occur together (the one is produced if and only if the other is). The

factory is a purely probabilistic cause: X (and hence Y ) is produced only

80% of the time the production process is active. In this set-up, X and Y

are not independent conditional on C.55 Hence the CMC is violated.

Different solutions have been proposed for this problem. For example,

Hausman and Woodward ([1999], p. 562) suggest that maybe C has been

characterized in insufficient detail. Another possibility is to treat the

production of the chemical and its by-product as a single effect, to be

modelled by a single variable (cf. Hausman and Woodward [1999], p. 564).

These solutions may be helpful in some cases; yet whether they always

work, I do not know. My approach, in any case, would be pragmatic. The

CMC should not be considered an a priori principle which is indissolubly

tied to the concept of causation. It is a substantive—and hence

useful—semantic constraint since it makes causal graphs more than mere

dots-and-arrows. But it is also fallible. As a result, when applying causal

nets for causal discovery, for causal reasoning, or for representing scientific

theories (in a certain context), one always runs the risk that the CMC is

violated (in that context). But this is no reason to dispense with the CMC

or with causal nets altogether. Their applicability should be checked on a

case-by-case basis. And if it is true that Woodward’s interventionism fits

many different disciplines, we need not despair. We have good reasons to

believe that my causal-structural approach fits many causal scientific
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theories.
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Notes

1Other structuralist accounts of classical genetics can be found in

(Balzer and Dawe [1986a], [1986b], [1997]).
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2A plant is true-breeding for some trait if, when self-fertilized, it only

produces offspring with this trait. This definition is not watertight. In a

given cross, all the offspring of non-true-breeding plants may, by accident,

have the parental phenotype. Yet the larger the set of offspring, the less

likely this is.

3I will not discuss Woodger’s work, since I will not incorporate any of

his views below. To some extent, his work also suffers from the common

lacuna to be presented in section 4. Where at first he paid relatively much

attention to causation ([1929], passim), he became more skeptical about

using causal language in science later on ([1952], p. 194).

4The T-theoretical/T-non-theoretical distinction should not be confused

with the observable/unobservable distinction. The two distinctions differ

both intensionally and extensionally (Dı́ez [2002], p. 15).

5Later, Kitcher ([1993], p. 9) rejected thinking of science as a series of

theories, defined as sets of statements, while at the same time sticking to

the view that explanatory schemata or patterns are implicit in scientific

practice ([1993], pp. 82–4).

6See also (Balzer and Dawe [1986a], pp. 58 and 62) and (Balzer and

Dawe [1986b], p. 179) for a similar reluctance to use causal language.

7Woodward ([2003], pp. 360–2) criticizes Kitcher’s theory as a theory of

causation and explanation. For criticisms of Kitcher’s theory as a theory of

unification and for my solution to the problems raised, see section 18.

8I would like to thank an anonymous referee for pressing me on this

issue.

9Causation is also deemed by many to play an important role in policy,

manipulation or intervention. The consensus view in philosophy of science

now is that causal relations are potentially exploitable for manipulation,
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policy and control, whereas spurious correlations are not; see for example

(Cartwright [1983]; Spirtes et al. [2000]; Pearl [2000]; Woodward [2003];

and Williamson [2005]). However, see (Leuridan et al. [2008]) for a specific

type of policy—selective policy—that is based on spurious correlations

such as the phenotypic distributions studied in classical genetics.

10For reasons of space, I will not systematically discuss the other

accounts of causation that are available on the philosophical market. The

two reasons to be discussed should suffice to show at least that

Woodward’s theory is a well-suited candidate for my purposes.

11In this definition, ‘independent’ means ‘probabilistically independent

according to P ’.

12The Causal Markov Condition does not rule out that P satisfies some

extra conditional or unconditional independence relations as well. To

simplify automated causal discovery, many search algorithms invoke

another, complementary assumption (Faithfulness) which rules out such

extra independence relations, see (Spirtes et al. [2000], p. 31). As I will not

touch upon the problem of causal discovery, I will not require that P and

G are faithful.

13When I will apply the definitions developed in this section and the next

one to the theory of classical genetics, I will not attach significance to the

order of the values in the elements of [U ] and hence will use a relaxed

notation.

14A bijection or bijective function f is a function which is both injective

(if f(x) = f(y), then it must be the case that x = y) and surjective (for

every element w in its range, there is an element v in its domain such that

w = f(v)). Source: http://mathworld.wolfram.com.

15Originally, credal nets were used to facilitate reasoning with imprecise
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probabilities (Cozman [2000]). This is not my aim in this paper.

16In the case of self-fertilization, the paternal and the maternal group are

the same. Still, it is convenient to represent such crosses by means of the

causal graph in figure 1.

17Morgan does not use ‘tall-producing allele’ or ‘short-producing allele’.

But his presentation of inheritance of flower-colour in four-o’clocks is

phrased in terms of ‘white-producing gene’ and ‘red-producing gene’

(Morgan [1928], p. 5–7).

18The combination principle should not be confused with the

COMBINATOR function in (Balzer and Lorenzano [2000]). In their

paper, the role of the gametes is not made explicit.

19Chance fertilization comes down to GC1 and GC2 being

probabilistically independent, which is true for any probability distribution

that satisfies the Causal Markov Condition relative to figure 1 (or to any

isomorphic graph), as can be seen by means of the d-separation criterion,

see (Pearl [2000], p. 16; Spirtes et al. [2000], p. 44).

20Strictly speaking, what is explained in classical genetics is not the data,

but what Bogen and Woodward ([1988], pp. 305–6) call ‘phenomena’.

Phenomena are relatively stable and repeatable and can hence be

predicted and explained by theories. Data are idiosyncratic to a particular

experimental setting and hence not predictable or systematically

explainable. For example, the phenotypic 3:1-ratio of tall versus short in

the F2 generation of cross 2 (section 8.1) is a phenomenon, an idealized

statistical generalization. Mendel’s data for that cross were 787
1064 versus

277
1064 , which is close but not identical to 3:1 ([1965], p. 13). From here

onwards, by ‘data’ I will mean ‘phenomena’ in the above sense.

21Within the structuralist literature, there is some discussion as to
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whether all explanation has to be ‘ampliative’, i.e. whether it always

requires the addition of T-theoretical concepts. I would like to thank José

Dı́ez for pointing this out.

22Abduction is a type of inference which is to be distinguished from

‘deduction’ and ‘induction’ (Douven [2011], section 1.1). Peirce ([CP],

5.189) defines ‘abduction’ as follows: ‘The surprising fact, C, is observed;

But if A were true, C would be a matter of course, Hence, there is reason

to suspect that A is true.’ In classical genetics, the inference from

phenotypes to genotypes was explicitly abductive and, given the

CG-theoretical nature of the GTi and GCi variables, based on the

explanatory principles of genetics itself. This does not mean, however, that

the explanation being given is ad hoc. The explanatory principles were

expected to hold in a wider range of related cases (see section 18 for an

explication of this ‘wider range of related cases’) and they were explicitly

tested by means of test crosses (see cross 3 below). In Waters’ words: they

were ‘local inferences to the best explanation’ ([2004], p. 802). (Inference

to the best explanation is a close nephew of abduction. A hypothesis A is

the best explanation for C if it outdoes all other explanations for C.)

23A reciprocal variant of cross 1, in which the pollen plants are short and

the egg plants are pure tall, gives the same results, as Mendel ([1865], p. 9)

discovered. These results can be explained by means of the very same set

of principles: there is a P ∈ P1 such that P (PT1 = short) = (PT2 =

tall) = 1.00, and P (GT1 = ss) = P (GT2 = tt) = 1.00. Given that P ∈ P1,

P (PT3 = tall) = 1.00. This also corresponds to the data. In cases of

sex-linked inheritance, however, reciprocal crosses do not result in identical

filial phenotypic distributions. Such cases can also be modelled in my

framework, but I will not do so here.
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24Where U = {A1, . . . , An} ⊆ V and b : V → V ′, let

b(U) = {b(A) | A ∈ U} and b′([U ]) = [b(A1)]× . . .× [b(An)].

25Generic credal nets not only resemble Darden’s abstract explanatory

pattern. They also resemble the structuralist notion of ‘theory-element’.

Moreover, they also resemble van Fraassen’s ‘model types’ (see van

Fraassen [1980], p. 44 and especially Lloyd [1983], pp. 118–21). However,

my account of explanation is more substantive (or less skeptical) than van

Fraassen’s ([1980], chapter 5) and Lloyd’s ([1983], pp. 116–7), without

being a truly general account of explanation (see sections 9 and 17; for a

defense of truly general accounts of explanation, see Nickel [2010]; for a

critique of his arguments, see Dı́ez et al. [forthcoming]).

26My framework cannot account for every single detail of Darden’s

analysis. For example, Darden ([1991], pp. 195–9) strongly clings to the

role of diagrammatic representations (e.g. pedigree diagrams) in the

history of classical genetics. Given that diagrams, and more broadly visual

representations, may play an important role in functional explanation

(Perini [2005a]), in scientific arguments (Perini [2005b]), and in

confirmation (Perini [2005c]), all of which are highly important in science,

the causal-structural account should be viewed as complementary to

(rather than a strict alternative for) Darden’s analysis.

27Darden’s ([2005]) main interest is in the relation between classical

genetics and molecular biology. She argues that these fields investigated

different, serially integrated, hereditary mechanisms and that molecular

biology offered a kind of explanatory extension of the field of classical

genetics, albeit via mechanism schemas instead of Kitcherian argument

patterns (Darden [2005], p. 350). For an interesting critique of the

explanatory extension view, based on the existence of ‘explanatory
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interference’ between the two fields, see (Baetu [2011]).

28I would like to thank both anonymous referees for pressing me on this

issue.

29Morgan does not use r and w (but black and white circles) for the red-

and white-producing alleles in his diagrammatic representation of these

crosses (Morgan [1928], p. 7).

30The reverse assumption would result in a different B ∈ B3.

31Note that P 1(V 1) and P 1(V 3) are different distributions, given that V 1

and V 3 are different sets of variables (they are not even value-isomorphic).

Likewise, B1 = 〈G3, P 1〉 with P 1 ∈ P3 should not be confused with

B1 = 〈G1, P 1〉 with P 1 ∈ P1.

32Monohybrid crosses with codominance, instead of incomplete

dominance, can also be represented by causal nets that are

distribution-identical to some member of Bβ. This is in line with the fact

that to distinguish between codominance and incomplete dominance, one

has to invoke a theory (at the molecular level) other than classical

genetics. In (Morgan [1928]), no exemplar of codominance is mentioned.

33See also (Kitcher [1993], pp. 256–63) for a more elaborate account of

anomaly-resolution in terms of the deletion/alteration of patterns (or

‘constraints’) in an escape tree. Darden ([1991]) does not discuss the status

of incomplete dominance as a model anomaly.

34The status of the principle of complete dominance was hotly debated in

the early days of classical genetics. The question was whether it is a

universal law. Mendel ([1865]) only discussed crosses with complete

dominance but there is no clear indication that he deemed complete

dominance a universal phenomenon—quite to the contrary. Nevertheless

De Vries ([1900], p. 110) took it to be a (nearly) universal phenomenon.
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Correns ([1900], pp. 122 and 132), by contrast, mentioned several failures

of complete dominance. Weldon ([1902], pp. 229, 236–52) attributed the

‘Law of Dominance’ a central place in Mendel’s theory and showed that it

was plagued by exceptions. Bateson ([1902], pp. 117–8) replied to

Weldon’s arguments by denying the principle of complete dominance this

central place. Hence exceptions to it should not count heavily against the

theory of Mendelian genetics.

35Mendel ([1865], p. 17–23) also performed multihybrid crosses with

three or more characters and independent assortment. Morgan ([1928], p.

10) mentions these only in passing (but see Morgan [1919], pp. 71–2 for an

example). Crosses with three or more independent pairs of traits can be

easily incorporated in my framework, but I will not do it here.

36For the extensions of [GTi] and [GCi], see (Morgan [1928], p. 9, figure

8).

37The text in (Morgan [1928], p. 11, figure 9) gives the impression that

the cross concerned purple and white flowers, instead of purple and red

ones. This conflicts with Morgan’s main text and with (Darden [1991], p.

122).

38Morgan ([1928], p. 11) uses pictorial elements instead of letters to

denote these alleles.

39The calculations for the other phenotypes are somewhat more

elaborate, given the multiple realizability of dominant phenotypic traits.

40Morgan does not discuss this particular cross, but an analogous way of

reasoning can be found in (Morgan [1928], pp. 16–7).

41The if -direction has been illustrated by means of the data from

Bateson and Punnett. For the only if -direction, suppose first that

GTi = GGWW or any other doubly homozygous value. Then (absent
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mutation) only one kind of gametes can be produced, in casu GCi = GW .

Second, suppose that GTi = GGWw or any other singly homozygous

value. Then one chromosome will carry G and W . The other chromosome

will carry G and w. Part of the gametes (say, x%) will not be the result of

crossing-over. Half of them (x2%) will be GW , the other half will be Gw.

The rest of the gametes, (100− x)%, will be the result of crossing-over.

Half of these, 100−x
2 %, will be Gw; the other half will be GW .

Consequently, x
2 + 100−x

2 = 50% of the gametes will be GW , the other half

will be Gw. Hence, the gametes of both doubly homozygous plants and

singly heterozygous plants are as in the case of independent assortment

(even though they result from strongly different underlying mechanisms).

42Sturtevant equated one map unit (mu) with 1 percent recombination.

In honour of Morgan’s work, map units are often referred to as

centimorgans (cM). (Klug et al. [2006], p. 105) Map distances are not

absolute distances, since not all parts of the chromosome are evenly prone

to interchange. Moreover, a crossover event in one region of the

chromosome may inhibit a second event in nearby regions (positive

interference). Positive interference increases as the genes in question are

closer. This may be explained by physical constraints preventing the

formation of closely aligned chiasmata. (Klug et al. [2006], p. 114)

43Obviously, cases of incomplete dominance, codominance, etc. also

conform to Morgan’s observation, but the corresponding dihybrid crosses

are represented by generic credal nets other than Bδ.

44Stability is a gradual notion. It pertains to the conditions upon which

a regularity is contingent. Strength also is a gradual notion. It can be

thought of in terms of covariance or correlation, with deterministic

regularities being a limit case. (Leuridan [2010], pp. 324–5; Mitchell [1997],
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pp. S477–8, [2000], pp. 259-63)

45Although classical genetics’ causal nets are possible realizations in

which all of the theory’s valid sentences are satisfied (cf. Suppes [1969], p.

24), and hence ‘things depicted by classical genetics’, cf. (Balzer et al.

[1987], p. 2), they are themselves abstract representations of the real-world

states of affairs.

46One pattern is more stringent than another one if the conditions it sets

on instantiations are more difficult to satisfy (Kitcher [1989], p. 433).

47See also (Mäki [1990]; Marchionni [2005]). Woodward ([2003], p. 362)

calls this kind of unification physical unification, but he and Mäki do not

refer to each other’s writings.

48The notion of ontological unification is not wedded to an ontic account

of explanation, as is evident from Mäki’s use of ‘the referential and

representational capabilities of theories’. Ontological unification and ontic

explanation should not be conflated.

49Alleles and genotypes may be considered properties (of organisms)

instead of objects. Then in a sense Kitcher’s schematic sentence ‘There are

two alleles A, a. A is dominant, a is recessive.’ is a second-order sentence. I

write ‘in a sense’, since the quantifier indirectly refers to filling instructions

(A and a are dummy letters, not common second order variables).

50Credal nets here are defined in terms of Woodwardian causal relations

(section 6) and laws or explanatory principles that can be conceived of in

the sense of Mitchell’s pragmatic laws (section 17), not in terms of

mechanisms. I have argued elsewhere, however, that there need not be any

tension between the former and the latter (Leuridan [2010], section 7).

51This claim should be nuanced. (I would like to thank an anonymous

referee for pressing me on this issue.) Figure 1 represents only certain
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aspects of this common causal mechanism, to wit the qualitative relations

between those properties of the entities, processes, and powers that can be

represented by the variables GT1, . . . , PT3. That is not surprising: all

representations are abstractions that leave out part of their subject matter.

52For a broader conception of the domain of classical genetics, see

(Waters [2004]).

53This same intuition can be found in the works of Bartelborth ([1996],

[2002]), Sintonen ([1989]) and Lloyd ([1983]).

54I will not discuss the tenability of the Faithfulness Condition, as I did

not assume it.

55If X and Y would be independent conditional on C, then

P (xy | c) = P (x | c)× P (y | c) for all x ∈ [X], y ∈ [Y ] and for all c ∈ [C]

(provided P (c) 6= 0). In this case, however, P (X = 1, Y = 1 | C = 1) =

0.8 6= P (X = 1 | C = 1)× P (Y = 1 | C = 1) = 0.64 (where ‘X = 1’ means

that X is present, ‘Y = 1’ means that Y is present, and ‘C = 1’ means

that the production process is active).
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