Advanced search
1 file | 2.67 MB Add to list

Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat

Author
Organization
Project
Abstract
Background: Soil microorganisms are key determinants of soil fertility and plant health. Soil phytopathogenic fungi are one of the most important causes of crop losses worldwide. Microbial biocontrol agents have been extensively studied as alternatives for controlling phytopathogenic soil microorganisms, but molecular interactions between them have mainly been characterised in dual cultures, without taking into account the soil microbial community. We used an RNA sequencing approach to elucidate the molecular interplay of a soil microbial community in response to a plant pathogen and its biocontrol agent, in order to examine the molecular patterns activated by the microorganisms. Results: A simplified soil microcosm containing 11 soil microorganisms was incubated with a plant root pathogen (Armillaria mellea) and its biocontrol agent (Trichoderma atroviride) for 24 h under controlled conditions. More than 46 million paired-end reads were obtained for each replicate and 28,309 differentially expressed genes were identified in total. Pathway analysis revealed complex adaptations of soil microorganisms to the harsh conditions of the soil matrix and to reciprocal microbial competition/cooperation relationships. Both the phytopathogen and its biocontrol agent were specifically recognised by the simplified soil microcosm: defence reaction mechanisms and neutral adaptation processes were activated in response to competitive (T. atroviride) or non-competitive (A. mellea) microorganisms, respectively. Moreover, activation of resistance mechanisms dominated in the simplified soil microcosm in the presence of both A. mellea and T. atroviride. Biocontrol processes of T. atroviride were already activated during incubation in the simplified soil microcosm, possibly to occupy niches in a competitive ecosystem, and they were not further enhanced by the introduction of A. mellea. Conclusions: This work represents an additional step towards understanding molecular interactions between plant pathogens and biocontrol agents within a soil ecosystem. Global transcriptional analysis of the simplified soil microcosm revealed complex metabolic adaptation in the soil environment and specific responses to antagonistic or neutral intruders.
Keywords
RHIZOCTONIA-SOLANI, SERRATIA-PLYMUTHICA, GENE ONTOLOGY, Microbial interaction, RNA-Seq, Transcriptomics, Gene expression, QUANTITATIVE PCR DATA, GENOME SEQUENCE, SECONDARY METABOLISM, Plant pathogen, Soil transcriptome, Soil microbial community, Biological control, TRICHODERMA-ATROVIRIDE, ARMILLARIA-MELLEA, PSEUDOMONAS-FLUORESCENS, ASPERGILLUS-NIGER

Downloads

  • Perazzolli et al. 2016 BMC Genomics 17 838.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.67 MB

Citation

Please use this url to cite or link to this publication:

MLA
Perazzolli, Michele, et al. “Transcriptomic Responses of a Simplified Soil Microcosm to a Plant Pathogen and Its Biocontrol Agent Reveal a Complex Reaction to Harsh Habitat.” BMC GENOMICS, vol. 17, 2016, doi:10.1186/s12864-016-3174-4.
APA
Perazzolli, M., Herrero, N., Sterck, L., Lenzi, L., Pellegrini, A., Puopolo, G., … Pertot, I. (2016). Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat. BMC GENOMICS, 17. https://doi.org/10.1186/s12864-016-3174-4
Chicago author-date
Perazzolli, Michele, Noemí Herrero, Lieven Sterck, Luisa Lenzi, Alberto Pellegrini, Gerardo Puopolo, Yves Van de Peer, and Ilaria Pertot. 2016. “Transcriptomic Responses of a Simplified Soil Microcosm to a Plant Pathogen and Its Biocontrol Agent Reveal a Complex Reaction to Harsh Habitat.” BMC GENOMICS 17. https://doi.org/10.1186/s12864-016-3174-4.
Chicago author-date (all authors)
Perazzolli, Michele, Noemí Herrero, Lieven Sterck, Luisa Lenzi, Alberto Pellegrini, Gerardo Puopolo, Yves Van de Peer, and Ilaria Pertot. 2016. “Transcriptomic Responses of a Simplified Soil Microcosm to a Plant Pathogen and Its Biocontrol Agent Reveal a Complex Reaction to Harsh Habitat.” BMC GENOMICS 17. doi:10.1186/s12864-016-3174-4.
Vancouver
1.
Perazzolli M, Herrero N, Sterck L, Lenzi L, Pellegrini A, Puopolo G, et al. Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat. BMC GENOMICS. 2016;17.
IEEE
[1]
M. Perazzolli et al., “Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat,” BMC GENOMICS, vol. 17, 2016.
@article{8157602,
  abstract     = {{Background: Soil microorganisms are key determinants of soil fertility and plant health. Soil phytopathogenic fungi are one of the most important causes of crop losses worldwide. Microbial biocontrol agents have been extensively studied as alternatives for controlling phytopathogenic soil microorganisms, but molecular interactions between them have mainly been characterised in dual cultures, without taking into account the soil microbial community. We used an RNA sequencing approach to elucidate the molecular interplay of a soil microbial community in response to a plant pathogen and its biocontrol agent, in order to examine the molecular patterns activated by the microorganisms. 
Results: A simplified soil microcosm containing 11 soil microorganisms was incubated with a plant root pathogen (Armillaria mellea) and its biocontrol agent (Trichoderma atroviride) for 24 h under controlled conditions. More than 46 million paired-end reads were obtained for each replicate and 28,309 differentially expressed genes were identified in total. Pathway analysis revealed complex adaptations of soil microorganisms to the harsh conditions of the soil matrix and to reciprocal microbial competition/cooperation relationships. Both the phytopathogen and its biocontrol agent were specifically recognised by the simplified soil microcosm: defence reaction mechanisms and neutral adaptation processes were activated in response to competitive (T. atroviride) or non-competitive (A. mellea) microorganisms, respectively. Moreover, activation of resistance mechanisms dominated in the simplified soil microcosm in the presence of both A. mellea and T. atroviride. Biocontrol processes of T. atroviride were already activated during incubation in the simplified soil microcosm, possibly to occupy niches in a competitive ecosystem, and they were not further enhanced by the introduction of A. mellea. 
Conclusions: This work represents an additional step towards understanding molecular interactions between plant pathogens and biocontrol agents within a soil ecosystem. Global transcriptional analysis of the simplified soil microcosm revealed complex metabolic adaptation in the soil environment and specific responses to antagonistic or neutral intruders.}},
  articleno    = {{838}},
  author       = {{Perazzolli, Michele and Herrero, Noemí and Sterck, Lieven and Lenzi, Luisa and Pellegrini, Alberto and Puopolo, Gerardo and Van de Peer, Yves and Pertot, Ilaria}},
  issn         = {{1471-2164}},
  journal      = {{BMC GENOMICS}},
  keywords     = {{RHIZOCTONIA-SOLANI,SERRATIA-PLYMUTHICA,GENE ONTOLOGY,Microbial interaction,RNA-Seq,Transcriptomics,Gene expression,QUANTITATIVE PCR DATA,GENOME SEQUENCE,SECONDARY METABOLISM,Plant pathogen,Soil transcriptome,Soil microbial community,Biological control,TRICHODERMA-ATROVIRIDE,ARMILLARIA-MELLEA,PSEUDOMONAS-FLUORESCENS,ASPERGILLUS-NIGER}},
  language     = {{eng}},
  pages        = {{18}},
  title        = {{Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat}},
  url          = {{http://doi.org/10.1186/s12864-016-3174-4}},
  volume       = {{17}},
  year         = {{2016}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: