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Abstract—The conventional Finite-Difference Time-Domain
(FDTD) method with staggered Yee scheme does not easily allow
including thin material layers, especially so if these layers are
highly conductive. This paper proposes a novel subgridding
technique for 2D problems, based on a Hybrid Implicit-Explicit
(HIE) scheme, that efficiently copes with this problem. In the
subgrid, the new method collocates field components such that
the thin layer boundaries are defined unambiguously. Moreover,
aspect ratios of more than a million do not impair the stability
of the method and allow for very accurate predictions of the
skin effect. The new method retains the Courant limit of the
coarse Yee grid and is easily incorporated into existing FDTD
codes. A number of illustrative examples, including scattering by
a metal grating, demonstrate the accuracy and stability of the
new method.

Index Terms—Finite-Difference Time-Domain (FDTD), Hybrid
Implicit-Explicit (HIE), multiscale, scattering, subgridding

I. INTRODUCTION

Due to the increasing impact of parallel processing, the
Finite-Difference Time-Domain (FDTD) method remains one
of the most popular computational methods for solving
Maxwell’s equations. Besides its simplicity associated with
its regular grid, it also has some clear advantages such as its
broadband nature and its ability to treat nonlinearities.

FDTD suffers, however, from the Courant-Friedrichs-Lewy
(CFL) stability criterion which, together with the numerical
dispersion error, causes the CPU-time to become exceedingly
large in cases where geometrical features are involved that
are orders of magnitude smaller than the working wavelength.
This well-known problem has been the subject in a lot of
recent research. A possible solution involves the application
of subgridding techniques with a local time step, bounded by
a local stability criterion. Despite some important work in this
domain [1]–[5], an accurate, stable and completely explicit
version of such a refinement scheme has, to our knowledge,
still not been found.

Another way is to relax the CFL limit by systematically
filtering out the high wave numbers at every iteration [6].
This technique is easily incorporated into existing FDTD
codes, but the time won by relaxing the CFL limit should
not be wasted by extra computations. In fact, applying a filter
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implies the calculation of time-consuming Fourier and inverse-
Fourier transforms. Spatial filtering is also used to stabilize
subgridding schemes [7]. At least one of the fields in the dense
grid is spatially filtered in order to equalize the time step of
the dense and coarse grid. This results in one global time
step determined by the cell size of the coarse grid. However,
reasonably large aspect ratios, for instance 1:1000 in one
dimension, seem to be unreachable for the spatially-filtered
subgridding scheme as it requires discarding too many wave
numbers.

Yet an alternative approach to tackle the multiscale problem
has recently been proposed in [8]. This method does not
modify the field solutions, but searches the space of stable
eigenmodes of the discrete curl-curl operator. Then, at any
time, the field solution E(t) can be calculated as a super-
position of these stable eigenmodes, i.e. E(t) = Qst y(t)
with Qst the matrix composed of all stable eigenmodes. The
unknown coefficient vector y(t) is discretized in time resulting
in explicit update equations which are unconditionally stable.
The time step is chosen based on accuracy. The method is
however irreconcilable with conventional FDTD.

Other procedures circumvent the CFL limit by using im-
plicit time integration instead of the classical leapfrog scheme,
which leads to unconditionally stable methods that require
the inversion of sparse matrices. Examples of these implicit
methods are Crank-Nicolson (CN) FDTD [9], alternating
direction implicit (ADI) FDTD [10], locally one-dimensional
(LOD) FDTD [11,12] and Laguerre-FDTD [13,14]. A lot of
comparisons concerning the CPU-time and accuracy of these
implicit schemes have been reported [15]–[17]. Compared to
explicit methods, they all reduce the number of time steps per
simulation at the expense of a higher computational effort per
time step. For multiscale configurations, optimal performance
is obtained by applying the fast (explicit and parallel) FDTD
method in the bulk part of the simulation domain together with
an implicit method to resolve the fine geometries. Since the
time step of the implicit method can be chosen arbitrarily,
it is set equal to the FDTD time step of the coarse grid.
In order to match both grids, one can use simple spatial
interpolations [18,19] or, alternatively, one can transfer the
information between both grids through equivalent Huygens’
surface currents [20].

Besides these purely implicit methods, whether or not com-
bined with conventional FDTD in a multigrid configuration,
another kind of (partially) implicit schemes exist: the so-called
Hybrid Implicit-Explicit (HIE) FDTD methods [21,22]. They
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are used to analyse structures that are fine in at least one but
not all directions. Therefore, the update equations consist of a
mixture of implicit and explicit equations. As a consequence,
they obey a reduced stability constraint.

The method advocated in this paper is a new two-
dimensional (2D) HIE-FDTD method for transverse electric
(TE) waves dealing with geometrical structures that are fine in
one dimension. The method is used for subgridding purposes
and its grid, which uses a discretization that differs from the
staggered Yee cell, is matched to the conventional FDTD
grid with negligible spurious reflection. The proposed HIE-
subgridding method allows extremely high aspect ratios, say
more than 106, and it is easily incorporated in conventional
FDTD. The HIE scheme leverages some ideas reported in
[23]–[25], where a fully collocated and unconditionally stable
implicit method to simulate electromagnetic waves in fusion
plasmas was presented. In [24], this fully collocated implicit
method is combined with classical FDTD to obtain a 1D local
refinement scheme. The HIE-FDTD method described here is
the extension of this preliminary work to two dimensions.

This paper is organized as follows. Section II details the
new HIE-FDTD method’s formalism. Section III investigates
the numerical dispersion and stability of the technique. In
Section IV, several numerical scattering examples are listed
to demonstrate the accuracy of the new subgridding method,
including scattering by a metal grating. Finally, this paper ends
with a concise discussion of the main findings in Section V.

II. DESCRIPTION OF THE NEW HIE METHOD

We restrict the discussion to the 2D-TE case. Extension to
the 2D-TM case runs along the same lines, but discussing both
simultaneously would impair the clarity of the explanation.
Extension to 3D remains the topic for further research.

In a general sourceless, piecewise homogeneous medium,
the TE-problem is described by

∂Ex
∂y
− ∂Ey

∂x
=
∂Bz
∂t

(1)

µ−1 ∂Bz
∂y

= ε
∂Ex
∂t

+ σEx (2)

−µ−1 ∂Bz
∂x

= ε
∂Ey
∂t

+ σEy , (3)

where all fields lie in the xy-plane and are invariant in the
z-direction. The typical configuration we want to tackle is
depicted in Fig. 1. A thin, e.g. highly conductive, slab is
embedded in a classical FDTD grid. This slab can be sub-
stantially smaller than the Yee cell of the global FDTD grid in
one dimension, here the x-dimension, i.e. d� x2 − x1 = ∆x,
although, it comprises several Yee cells in the other dimension.
In what follows, the new HIE-subgridding method is presented
as the result of a Petrov-Galerkin method. To this end,
suitable basis and testing functions are constructed from one-
dimensional pulse and triangle functions. First, the standard
FDTD method in the FDTD grid (i.e. the area outside PQRS
in Fig. 1) is treated in a similar fashion as [3], starting
from the well-known Whitney forms. Then, the HIE update
equations inside PQRS are derived based on the insights from
[23] and, finally, the interface condition between both grids
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Fig. 1: The HIE-subgridding scheme for a vertically oriented slab.
The rectangle PQRS encloses the HIE region which consists of a
thin conductive slab of width d and a padding area filled with the
same medium as the surrounding FDTD grid. The arrows indicate the
discretization points of the electric field components, the dots those
of the magnetic field. The blue markers are discretized at integer
multiples of ∆t, whereas the red markers are discretized at half-
integer multiples of ∆t.

is established. It is important to already draw attention to
the fact that the HIE grid is partially collocated. Compared
to the conventional FDTD discretization scheme, the electric
field’s y-component, tangential to the thin slab, is shifted to
the spatial and temporal position of Bz . This gives rise to a
discretization scheme where all field components are ordered
in layers parallel to the slab surface. The major advantage of
this approach is that no uncertainty as to the thickness of the
thin slab is introduced, as would be the case with a staggered
approach.

A. Classical leapfrog 2D-TE equations

We use the 2D-TE Yee cell, with dimensions ∆x×∆y, as
shown in Fig. 2 (left). The Ex, Ey and Bz field components
are expanded as

Ex(x, y, t) =
∑
i,j,n

E
n+ 1

2

x,i+ 1
2 ,j

Πi+ 1
2
(x)Λj(y)Πn+ 1

2
(t) (4)

Ey(x, y, t) =
∑
i,j,n

E
n+ 1

2

y,i,j+ 1
2

Λi(x)Πj+ 1
2
(y)Πn+ 1

2
(t) (5)

Bz(x, y, t) =
∑
i,j,n

Bnz,i+ 1
2 ,j+

1
2

Πi+ 1
2
(x)Πj+ 1

2
(y)Λn(t) . (6)

For the x-dependence, the pulse and triangle basis functions
in (4)–(6) are defined as

Πi+ 1
2
(x) =

{
1 i∆x < x < (i+ 1)∆x

0 elsewhere
(7)

Λi(x) =


1− i+ x

∆x (i− 1)∆x < x ≤ i∆x
1 + i− x

∆x i∆x < x < (i+ 1)∆x

0 elsewhere

, (8)
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and similarly for the y- and t-dependence. The weights in the
summations (4)–(6) are the actual field components as found
in the classical FDTD derivation, i.e.

E
n+ 1

2

x,i+ 1
2 ,j

= Ex
(
(i+ 1/2)∆x, j∆y, (n+ 1/2)∆t

)
(9)

E
n+ 1

2

y,i,j+ 1
2

= Ey
(
i∆x, (j + 1/2)∆y, (n+ 1/2)∆t

)
(10)

Bnz,i+ 1
2 ,j+

1
2

= Bz
(
(i+ 1/2)∆x, (j + 1/2)∆y, n∆t

)
, (11)

with ∆x, ∆y and ∆t the space and time increments. The
expansions (4)–(6) are the so-called Whitney forms. They
possess the curl inclusion property. The curl operator projects
the space of one-forms such as Ex and Ey exactly on the space
of 2-forms such as Bz . Assuming weak differentiability, this
can be seen from the fact that

d

dx
Λi =

1

∆x

(
Πi− 1

2
−Πi+ 1

2

)
. (12)

Substituting the expansions (4)–(6) into Faraday’s law (1),
using the property (12), all terms can be expressed using
solely pulse basis functions. Hence, Faraday’s law is readily
satisfied if terms in the same pulse × pulse × pulse expansion
are identified on both sides of the equation. For the terms
containing

Πk+ 1
2
(x) Πl+ 1

2
(y) Πm+ 1

2
(t) , (13)

this results in the classical FDTD relationship
1

∆t

(
Bm+1

z,k+ 1
2
,l+ 1

2
−Bmz,k+ 1

2
,l+ 1

2

)
=

1

∆y

(
E
m+ 1

2

x,k+ 1
2
,l+1

− E
m+ 1

2

x,k+ 1
2
,l

)
− 1

∆x

(
E
m+ 1

2

y,k+1,l+ 1
2

− E
m+ 1

2

y,k,l+ 1
2

)
.

(14)

Since the pulse functions in (4)–(6) are not differentiable, one
cannot enforce Ampère’s law in the same way as Faraday’s
law. We now substitute (4) and (6) into (2) and evaluate this
equation in the weak sense by multiplying left- and right-hand
side with the testing function

Tmk+ 1
2 ,l

(x, y, t) = Πk+ 1
2
(x) Λl(y) Λm(t) , (15)

followed by integration over the simulation domain. The
derivatives of the pulse functions are transferred to the testing
functions via integration by parts. The remaining integrals
are evaluated using a trapezoidal integration rule, a process
referred to as mass-lumping [3]. The final result is again the
well-known classical FDTD relation, namely

µ−1

∆y

(
Bmz,k+ 1

2
,l+ 1

2
−Bmz,k+ 1

2
,l− 1

2

)
=

ε

∆t

(
E
m+ 1

2

x,k+ 1
2
,l
− E

m− 1
2

x,k+ 1
2
,l

)
+
σ

2

(
E
m+ 1

2

x,k+ 1
2
,l

+ E
m− 1

2

x,k+ 1
2
,l

)
.

(16)

A similar reasoning applied to (3) gives

− µ−1

∆x

(
Bmz,k+ 1

2
,l+ 1

2
−Bmz,k− 1

2
,l+ 1

2

)
=

ε

∆t

(
E
m+ 1

2

y,k,l+ 1
2

− E
m− 1

2

y,k,l+ 1
2

)
+
σ

2

(
E
m+ 1

2

y,k,l+ 1
2

+ E
m− 1

2

y,k,l+ 1
2

)
.

(17)

In the finite-element community, it is well understood that
FDTD can be seen as a special case of the Finite-Element
Time-Domain (FETD) method with a structured grid, Whitney
forms and mass-lumping [3].

Ey

Ex

Bz

ex

ey
bz

Δy

Δx

Δyf

Δxf

Fig. 2: Classical 2D-TE Yee cell (left) and new HIE cell for a thin slab
extending in the y-dimension (right). The blue markers indicate field
components discretized at integer multiples of ∆t, the red markers
at half-integer multiples.

B. HIE 2D-TE equations for a thin conductive slab

The right part of Fig. 2 shows the arrangement of the fields
in a HIE cell for a layer which is thin in the x-direction.
The Ex, Ey and Bz fields are now deliberately discretized at
exactly the same x-coordinates as to avoid any ambiguity with
respect to the thickness of the thin layer when aggregating cells
in the x-direction. In the y-direction, staggering is retained.
Moreover, the fine cell dimensions ∆xf × ∆yf are chosen
such that ∆yf = ∆y (i.e. identical to the overall FDTD
grid), with ∆xf a fraction of the total thickness d of the
thin layer and with ∆xf � ∆x. The time increment ∆t also
remains identical to the time step in the overall FDTD grid.
The expressions (4)–(6) are now replaced by

Ex(x, y, t) =
∑
i,j,n

enx,i,jΛi(x)Λj(y)Λn(t) (18)

Ey(x, y, t) =
∑
i,j,n

e
n+ 1

2

y,i,j+ 1
2

Λi(x)Πj+ 1
2
(y)Πn+ 1

2
(t) (19)

Bz(x, y, t) =
∑
i,j,n

b
n+ 1

2

z,i,j+ 1
2

Λi(x)Πj+ 1
2
(y)Πn+ 1

2
(t) . (20)

A lowercase notation is adopted for the HIE expansion co-
efficients as this will be helpful to distinguish between the
variables in the main grid and the subgrid later on. Both
Faraday’s and Ampère’s law now only allow weak solutions.
A similar analysis with mass-lumping readily shows that
substitution of (18)–(20) into (2) and testing with

T
m+ 1

2

k,l (x, y, t) = Λk(x) Λl(y) Πm+ 1
2
(t) (21)

leads to the explicit update equation

em+1
x,k,l =

ε
∆t

− σ
2

ε
∆t

+ σ
2

emx,k,l +
1

ε
∆t

+ σ
2

µ−1

∆y

(
b
m+ 1

2

z,k,l+ 1
2

− b
m+ 1

2

z,k,l− 1
2

)
.

(22)

Testing (1) and (3) with

Tmk+ 1
2 ,l+

1
2
(x, y, t) = Πk+ 1

2
(x) Πl+ 1

2
(y) Λm(t) . (23)

results in the implicit update equations

1

∆xf

[
−1 1

] [ ey,k
ey,k+1

]m+ 1
2

l+ 1
2

+
1

∆t

[
1 1
] [ bz,k
bz,k+1

]m+ 1
2

l+ 1
2

= − 1

∆xf

[
−1 1

] [ ey,k
ey,k+1

]m− 1
2

l+ 1
2

+
1

∆t

[
1 1
] [ bz,k
bz,k+1

]m− 1
2

l+ 1
2

+
1

∆y

(
emx,k,l+1 + emx,k+1,l+1 − emx,k,l − emx,k+1,l

)
(24)
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and( ε

∆t
+
σ

2

) [
1 1
] [ ey,k
ey,k+1

]m+ 1
2

l+ 1
2

+
µ−1

∆xf

[
−1 1

] [ bz,k
bz,k+1

]m+ 1
2

l+ 1
2

=
( ε

∆t
− σ

2

) [
1 1
] [ ey,k
ey,k+1

]m− 1
2

l+ 1
2

− µ−1

∆xf

[
−1 1

] [ bz,k
bz,k+1

]m− 1
2

l+ 1
2

.

(25)

By way of example, a more detailed derivation of (25) is
given in Appendix A. Combining the two implicit equations
(24) and (25) at all spatial positions, gives one big matrix
equation

1

∆xf
AD

1

∆t
AI( ε

∆t
+
σ

2

)
AI

µ−1

∆xf
AD

Xm+ 1
2

=

 − 1

∆xf
AD

1

∆t
AI( ε

∆t
− σ

2

)
AI − µ−1

∆xf
AD

Xm− 1
2 +

1

∆y

[
Y m

0Nx×Ny

]
.

(26)

Here, Xm+ 1
2 is a [(2Nx + 2) × Ny]-dimensional matrix

containing all unknown discrete field quantities for Ey and
Bz inside the HIE grid, namely

Xm+ 1
2 =



e
m+ 1

2

y,0, 1
2

· · · e
m+ 1

2

y,0,Ny− 1
2

...
. . .

...

e
m+ 1

2

y,Nx,
1
2

· · · em+ 1
2

y,Nx,Ny− 1
2

b
m+ 1

2

z,0, 1
2

· · · b
m+ 1

2

z,0,Ny− 1
2

...
. . .

...

b
m+ 1

2

z,Nx,
1
2

· · · bm+ 1
2

z,Nx,Ny− 1
2


, (27)

where Nx and Ny denote the number of cells in the HIE re-
gion in the x- and the y-dimension respectively. The Nx ×Ny-
dimensional matrix Y m takes the contribution of ∂Ex

∂y into
account, originating from Faraday’s law in discrete form (24),
i.e.

Y m =

 emx,0,1 · · · emx,0,Ny

...
. . .

...
emx,Nx−1,1 · · · emx,Nx−1,Ny

+

 emx,1,1 · · · emx,1,Ny

...
. . .

...
emx,Nx,1 · · · emx,Nx,Ny


−

 emx,0,0 · · · emx,0,Ny−1

...
. . .

...
emx,Nx−1,0 · · · emx,Nx−1,Ny−1

−

 emx,1,0 · · · emx,1,Ny−1

...
. . .

...
emx,Nx,0 · · · emx,Nx,Ny−1


(28)

AD and AI denote the differentiator and interpolator matrix
respectively, both with dimension Nx × (Nx + 1).

AD =


−1 1 0 0 · · ·
0 −1 1 0 · · ·
0 0 −1 1 · · ·
...

...
...

...
. . .

 AI =


1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
...

...
...

...
. . .

 (29)

The matrix equation (26) is still incomplete. It forms an
underdetermined system since for each value of the y-index l,
there are 2Nx+2 unknowns but only Nx linearly independent
equations. The remaining two rows, which have to be added
to (26), will be found below by deriving the correct interface

condition between the HIE grid and the surrounding FDTD
grid (Section II-C).

We draw the reader’s attention to the elegance of (26). It
solely requires the inversion of one matrix which scales inde-
pendently of Ny . The explicit calculation of this matrix inverse
must however be avoided by applying an LU decomposition.
This computation step can be optimized by first making the
matrix banded, which is done by constructing a permutation
matrix that rearranges ey and bz in Xm± 1

2 according to
their (increasing) x-coordinate. Every iteration step now only
requires the solution of an upper- and lower triangular linear
system, which can be performed very efficiently.

Looking back at Fig. 1, we note that the discretization in the
x-direction inside PQRS is nonuniform as the increment along
x inside the conductive slab will typically be chosen much
smaller than for the remaining padding space. This poses no
problem to the implicit technique.

C. Interface condition

To derive the interface condition between the HIE and
FDTD grid, the two grids first need to be aligned to each
other. Having a closer look at Fig. 2, we see that by shifting
the Yee cell a distance ∆x

2 in the x-direction and a distance
∆t
2 in the t-direction, the Ex and Bz discretization points

of both schemes coincide on the interface. Thus, instead of
using the standard Whitney form expansion (4)–(6), the shifted
expansions

Ex(x, y, t) =
∑
i,j,n

Enx,i,j Πi(x)Λj(y)Πn(t) (31)

Ey(x, y, t) =
∑
i,j,n

Eny,i+ 1
2 ,j+

1
2

Λi+ 1
2
(x)Πj+ 1

2
(y)Πn(t) (32)

Bz(x, y, t) =
∑
i,j,n

B
n+ 1

2

z,i,j+ 1
2

Πi(x)Πj+ 1
2
(y)Λn+ 1

2
(t) (33)

are adopted to integrate the HIE grid into the classical FDTD
grid. Hence, the finite-difference relations (14), (16) and (17)
remain valid apart from a small change of the indices k and m.
Two sets of interfaces remain:
• the left and right interfaces, which are affected by the

implicit update of ey and bz;
• the upper and lower interfaces, which are only affected

by the explicit update of ex.
The first set provides the extra information needed to add to
(26) in order to obtain a unique solution for ey and bz at
every update. The necessary interface conditions are obtained
by testing Faraday’s law (1) with the HIE testing function
(23). At the right side (x = x2, see Fig. 1), this yields (30)
as given below. Time t0 = n∆t here stands for an arbitrary
update moment in the overall FDTD grid, whereas y0 = j∆y
stands for the y-coordinate of grid points in the FDTD and
HIE grids ranging between y1 and y2 − ∆y (see Fig. 1). To
further elucidate (30), consider Fig. 3 and Table I.

Table I summarizes the spatial and temporal position on
which the three field components are discretized in both grids.
Bz and Ex are treated in the same way in these grids, but this
is not the case for Ey . Further note that all field values on the
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Fig. 3: Scheme relevant to the right interface condition (30) at x = x2

in Fig. 1.

boundary of the subgrid are discretized according to the rules
of the HIE grid. Fig. 3 zooms in on one particular y0-value
and all field values that play a role in (30). The first term in
the l.h.s. of (30) is the contribution of ∂Ex

∂y in (1) obtained by
first taking the average of the Ex-values at C and D and at A
and G resp., and using the resulting values to determine the
y-derivative in reference point O. Similarly, the r.h.s. of (30)
stands for the contribution ∂Bz

∂t in (1). To calculate this time
derivative at t = t0 in O, first, average Bz-values in O are
obtained from the values at E and B for both t = t0 + ∆t

2 and
t = t0− ∆t

2 . Finally, the second term in the l.h.s. of (30) is the
contribution ∂Ey

∂x in (1) and needs a more careful examination.
The approximation for this derivative in O is obtained using
the Ey-values at B, O and F, with weights -1, 0.5 and 0.5
resp. However, note from Table I that ey at B is discretized at
half-integer time instants. As we need the x-derivative at an
integer time instant, averaging two half-integer time instants
intervenes. A similar procedure is adopted for the left interface
(x = x1).

The upper and lower interface conditions are readily re-
trieved by testing Ampère’s law (2) with the HIE testing
function (21). Fig. 4 depicts the situation at the upper side
(y = y2) for an arbitrary grid point (x,y2). To apply (2),
we need the value of Bz at O. This value is obtained by

HIE grid

FDTD grid

y2+Δy/2

y2

y2-Δy/2

x1 x x2=x1+Δx

bz

Bz Bz

ex

O
A B

C

D

Fig. 4: Scheme relevant to the upper interface condition at y = y2

in Fig. 1.

interpolation using the values in A and B. With this value
of Bz in O, the value of bz in D and the value of ex in C, we
now apply (22). As this interface will typically be a material
boundary as well, the material parameters µ, ε and σ in (22)
need to be averaged over the HIE and FDTD cell. A similar
procedure is adopted for the bottom interface (y = y1).

D. Implementation

The HIE-subgridding technique is easily added to existing
FDTD codes. In case of a vertically oriented slab (see Fig. 1),
the final subgridding algorithm obeys following leapfrog time
iteration scheme. First, Bz is updated in the FDTD region.
The old Bz values left and right of the HIE region have to
be stored because they are needed for the interface conditions.
Next, ey and bz are simultaneously updated in the HIE region
using (26). Then, ex is updated in the HIE region using (22).
Finally, Ex and Ey are updated in the FDTD region.

III. DISPERSION AND STABILITY

A. Numerical dispersion relation
As in [26, §4.3], the numerical dispersion of the HIE method

is assessed by substituting a discrete plane wave solution
with numerical wave vector k̃ = k̃xux + k̃yuy , but physical
frequency ω, into the update equations for vacuum, i.e. (22),

1

∆y

[
1

2

(
et0x,x2,y0+∆y + Et0x,x2+∆x,y0+∆y

)
− 1

2

(
et0x,x2,y0

+ Et0x,x2+∆x,y0

)]
− 1

∆x

[
1

2

(
Et0
y,x2+ ∆x

2
,y0+ ∆y

2

+ Et0
y,x2+ 3∆x

2
,y0+ ∆y

2

)
− 1

2

(
e
t0+ ∆t

2

y,x2,y0+ ∆y
2

+ e
t0−∆t

2

y,x2,y0+ ∆y
2

)]
=

1

∆t

[
1

2

(
b
t0+ ∆t

2

z,x2,y0+ ∆y
2

+B
t0+ ∆t

2

z,x2+∆x,y0+ ∆y
2

)
− 1

2

(
b
t0−∆t

2

z,x2,y0+ ∆y
2

+B
t0−∆t

2

z,x2+∆x,y0+ ∆y
2

)]
(30)

TABLE I: Discretization in time and space in both grids.

FDTD HIE
x y t y t

Ex i∆x j∆y n∆t j∆y n∆t

Ey

(
i + 1

2

)
∆x

(
j + 1

2

)
∆y n∆t

(
j + 1

2

)
∆y

(
n + 1

2

)
∆t

Bz i∆x
(
j + 1

2

)
∆y

(
n + 1

2

)
∆t

(
j + 1

2

)
∆y

(
n + 1

2

)
∆t
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(24) and (25) with ε = ε0, µ = µ0 and σ = 0. This results in
the dispersion relation:c∆t

∆x

tan
(
k̃x∆x

2

)
tan

(
ω∆t

2

)
2

+

c∆t
∆y

sin
(
k̃y∆y

2

)
sin
(
ω∆t

2

)
2

= 1 . (34)

This dispersion relation is not surprising. As was the case
for the fully implicit method in [25], the extra interpolations
in space and time convert the sine functions of the classical
FDTD dispersion relation into tangent functions. Since we
apply the implicit technique in the x-dimension, only the term
corresponding to this dimension features tangent functions.
Furthermore, the appearance of solely sine and tangent func-
tions in the dispersion relation is very reassuring: for well-
resolved wavelengths, i.e. k̃x∆x � 1 and k̃y∆y � 1, and
small time step, the numerical solution converts to the physical
one, i.e. k = ω/c.

B. Stability

Since the HIE method consists of both implicit and explicit
calculations, the question arises whether the explicit update is
bounded by a minimum time step similar to the Courant limit
for classical FDTD. In what follows, first, complex-frequency
analysis [26, §4.7] is used to see if such limitations exist for
the HIE method. In a second step, the matrix stability of the
total subgridding technique is investigated.

1) Complex-frequency analysis: Using trigonometric iden-
tities, the numerical dispersion relation (34), this time with
numerical instead of physical angular frequency, can be trans-
formed into

sin2

(
ω̃∆t

2

)
=

(
c∆t
∆x

tan
(
k̃x∆x

2

))2

+
(
c∆t
∆y

sin
(
k̃y∆y

2

))2

(
c∆t
∆x

tan
(
k̃x∆x

2

))2

+ 1
.

(35)
If ξ2 is defined to be the r.h.s. of (35), one can calculate the

numerical frequency as

ω̃ =
2

∆t
sin−1(ξ) . (36)

Note first of all that ξ is a real number. It is observed that
ω̃ can become complex for |ξ| > 1. In [26, §4.7], it is
shown that complex numerical frequencies lead to instabilities.
Therefore, numerical stability can only be guaranteed provided
that ξmax ≤ 1. To determine ξmax, the sine in the r.h.s. of
(35) is set equal to one and the tangent terms are replaced by
a newly defined variable τ which can take any nonnegative
real value. Further, the 1D Courant number is defined as

Sy =
c∆t

∆y
. (37)

Now, the aim is to find the value of τ for which the function

ξ(τ) =

√
τ + S2

y

τ + 1
, τ ∈ R+

0 (38)

reaches its maximum. However, taking the derivative and
setting it equal to zero gives no solution for τ . In fact, ξ(τ)

is monotonically increasing for Sy < 1, constant for Sy = 1
and monotonically decreasing for Sy > 1. Hence,

ξmax =


ξ(+∞) = 1 if 0 ≤ Sy < 1

1 if Sy = 1

ξ(0) = Sy if Sy > 1

(39)

From (39), it is concluded that the stability constraint
ξmax ≤ 1 corresponds to Sy ≤ 1. As could be expected
intuitively, the stability of the HIE method is determined by the
1D Courant limit in the y-direction, i.e. the direction in which
the explicit update occurs. If ∆t satisfies the 2D Courant limit,
it automatically satisfies the 1D Courant limit as well, so no
extra limitations apply to the new subgridding technique.

The stability condition Sy ≤ 1, also has been verified
computationally by exciting a HIE grid delimited with perfect
electrically conducting (PEC) boundaries for different values
of ∆t.

2) Computational analysis of the matrix stability: The
complex-frequency analysis is not a sufficient proof for the sta-
bility of the HIE-subgridding technique. The classical FDTD
method in the coarse grid and the HIE method in the fine grid
are both stable if the time step obeys the 2D Courant limit, but
yet, nothing is said about the effect of the interfacing between
both grids.

As is the case for all time-domain methods, it is possible
to express the HIE-subgridding method in terms of one single
time-stepping operator. This is a matrix M , also called the
amplification matrix, that operates on a column vector V n

which contains all unknowns at a specific time t = n∆t, or
better said, after a specific number of iterations (since not
all unknowns are discretized at the same point in time). The
“future” quantities can then be found calculating

V n+1 = M V n + Un , (40)

where Un is a column vector representing the sources. This
describes a linear system, which is known to be BIBO
(Bounded-Input Bounded-Output) stable if all eigenvalues of
M lie on or inside the unit circle of the complex plane.
Eigenvalues inside the unit circle are physically translated to
losses, for example due to the presence of a lossy material
such as a conductor. Eigenvalues with a small phase angle
correspond to temporally well-resolved phenomena, i.e. with
many ∆t per period.

The matrix M can be extracted from a simulation as
follows:

1) Define the vector V n containing all unknowns.
2) Assign the unit vector with only the ith element different

from zero to V n.
3) Do the necessary calculations to advance one time step.
4) The resulting vector V n+1 is the ith column of M .
5) Iterate over all i.

Fig. 5b shows plots of the eigenvalues λ for the following
test case (see Fig. 5a). The overall FDTD grid measures 7
by 8 cells with ∆x = 0.30 m and ∆y = 0.25 m. This
grid is terminated by PEC and PMC (perfect magnetically
conducting) boundaries. The HIE grid covers 4 cells in the
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Fig. 5: Eigenvalues λ of the time-stepping operator M for the
configuration of (a) with (b) Sxy = 1; (c) Sxy = 1 and vacuum
everywhere; (d) Sxy = 0.5; (e) Sxy = 1.1; (f) denser discretization.

y-direction and is positioned centrally in the overall grid. In
turn, a thin copper plate (εr = 1, σ = 5.8 · 107 S/m) of
thickness 10 µm is itself positioned slightly towards the right
of the center of the HIE grid (at a fraction 0.6 of the HIE
region’s total width). The discretization step in the x-direction
for this plate is chosen to be 0.2 µm (50 divisions over the plate
thickness). It should be emphasized that the aspect ratio of the
refinement in the x-direction exceeds 106! For this example,
the dimension of the matrix M in (40) is 859× 859. The 2D
Courant number

Sxy = c∆t

√
1

∆x2
+

1

∆y2
(41)

is chosen to be 1. For the other plots, the following modifica-
tions were made: σ = 0 (vacuum) in Fig. 5c, a smaller Courant
number (Sxy = 0.5) in Fig. 5d and a larger one (Sxy = 1.1)
in Fig. 5e. For the vacuum simulation, all eigenvalues are on
the unit circle. For a smaller Courant number, i.e. for smaller
∆t, the eigenvalues shift towards lower phase angles, whereas
for a Courant number larger than one the simulation becomes
unstable, since some eigenvalues are outside the unit circle.

Finally, Fig. 5f presents results similar to Fig. 5b, but for
15 by 16 cells in the overall FDTD grid and the HIE grid
covering 8 cells in the y-direction, while keeping the overall
simulation space unchanged (i.e. the sampling is now denser).

d

σ,ε,μ0

x

y

ε0,μ0 ε0,μ0

-x0 0

h

Fig. 6: Set-up for the determination of the transmission through a
thin lossy layer.

The thickness of the plate also remains unchanged but is now
discretized with a 0.05 µm increment (200 divisions over the
plate thickness, M has dimension 5801× 5801). This drastic
increase in grid sampling density does not affect the stability.

IV. NUMERICAL EXAMPLES

A. Transmission of a magnetic line source field through a thin
conductive layer

Consider the geometry of Fig. 6. A conducting slab with
thickness d and height h resides in free space. A magnetic
line source δ(x + x0, y)g(t)uz illuminates the slab in the
near field. To validate our new HIE-subgridding method,
simulation results are compared with the analytical results
obtained by extending the slab to infinity, i.e. h → ∞. This
analytical solution is derived using a well-known frequency-
domain approach [27] for layered media by introducing a
spatial Fourier transform of Maxwell’s equations along the
y-coordinate. This yields the magnetic field at the back of the
slab (x = d):

Hx=d
z (ω, y) =

1

2π

+∞∫
−∞

Hx=d
z (ω, ky) ejkyy dky (42)

with

Hx=d
z (ω, ky) = − 2Z1g(ω) e−jΓ0x0

(Z0 + Z1)2 ejΓ1d − (Z0 − Z1)2 e−jΓ1d

(43)
and g(ω) the time-domain Fourier transform of g(t). Further-
more, the impedances Z0 and Z1 are

Z0 =
Γ0

ωε0
Z1 =

Γ1

ωε0εr,eff
, (44)

while the wave numbers Γ0 and Γ1 are given by

Γ0 = (k2
0 − k2

y)
1
2 Γ1 = (k2

0 εr,eff − k2
y)

1
2 . (45)

They depend on the vacuum wave number k0 and
the effective relative permittivity of the conductive slab
εr,eff = εr − jσ/ωε0. Both wave numbers must have a phase
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Fig. 7: Shielding effectiveness of a copper slab (d = 10µm,
εr = 1, σ = 5.8 · 107 S/m) for a near-field H-dipole at x0 = 10
mm. Observation points are placed at y = 0 mm (highest curve),
y = 0.8 mm and y = 1.6 mm (lowest curve).

angle in the fourth quadrant in order to ensure the exponentials
in (43) to be damped. As a consequence, the integrand of (42)
is discontinuous at ky-values for which Γ0 and/or Γ1 become
zero. In order to resolve this behaviour adequately, we use a
tanh-sinh quadrature rule [28]. In the absence of the slab, the
magnetic field of the line source at x = d is a simple Hankel
function

Hx=d
z,vac(ω, y) = −k

2
0g(ω)

4ωµ0
H

(2)
0

(
k0

√
(x0 + d)2 + y2

)
.

(46)
From the above, we derive the dimensionless shielding
effectiveness:

SEdB(ω, y) = 20 log10

∣∣∣∣∣Hx=d
z,vac(ω, y)

Hx=d
z (ω, y)

∣∣∣∣∣ . (47)

For the numerical results discussed below, SE(ω, y) is first
calculated using the new HIE-subgridding technique. This re-
quires two different runs: one with and one without conductive
slab. At every time step, the value of Hz is recorded in
different observation points along the back of the slab (x = d).
The data of both runs are Fourier transformed with respect to t
and then divided by each other. The length h is chosen large
enough (more specifically, h > 2cNt∆t, with Nt the total
number of time iterations) as to ensure that the recorded fields
are not yet influenced by diffraction at the top and bottom of
the slab. This implies that the numerically obtained SE(ω, y)
values can be compared to the corresponding analytical values
for h→∞ obtained by calculating (42).

Fig. 7 shows that the shielding effectiveness of a thin
copper slab is accurately computed for all frequencies that are
adequately covered by the source. Fig. 8 shows the shielding
effectiveness for exactly the same configuration, except for the
fact that the slab is made of highly doped silicon.

The simulation details for the copper layer are the following.
The time dependence of the line source is

g(t) = sin(2πfct) e
−(t−td)2

2t2w (48)

0 0.5 1 1.5 2 2.5 3 3.5
5

10

15

20

f [GHz]

S
E

[d
B
]

analytical solution
HIE-subgridding

Fig. 8: Shielding effectiveness of a highly doped silicon slab (d =
10µm, εr = 11.7, σ = 103 S/m) for observations on y = 0 mm
(highest curve), y = 0.8 mm and y = 1.6 mm (lowest curve).

with fc = 1 GHz, td = 1/4fc and tw = td/2
√

2 ln(2).
The overall FDTD grid counts 68 by 10202 divisions with
∆x = ∆y = 0.8 mm. It is terminated by a 10-cell thick split-
field perfectly matched layer (PML) [29]. The time step at the
Courant limit (Sxy = 1) is ∆t = 1.8869 ps and the number
of time steps is chosen to be Nt = 6000. The HIE subgrid is
positioned in the center of the overall FDTD grid. The copper
slab inside the HIE grid has width d = 10 µm and counts 50 by
10180 cells, which also corresponds to the segmentation of the
HIE grid except for the fact that there are two more divisions
in the x-direction to set up the padding area (see Fig. 1).
Hence, the height of the slab is h = 10180∆y = 8.144 m and
the refinement ratio in the x-direction for the cells inside the
slab is 50∆x/d = 4000. The slab’s left surface is exactly in
the middle of the HIE grid so that the source, which is placed
12 cells to the left of the HIE grid, is 10 mm removed from
the slab, i.e. x0 = 10 mm. With these choices, diffraction
effects at the upper and lower edges of the copper slab do not
influence the presented data.

For the silicon slab, the same parameters are used but now
the FDTD grid and the slab have respectively 5112 and 5090
divisions in the y-direction, and Nt = 3000.

As remarked by one of the reviewers, in the past, thin
conductive sheets have already attracted a lot of attention
in the FDTD community. We refer the reader to [30] for
a recent contribution and to the list of related papers cited
in the references of [30]. In [30], the application of the
impedance network boundary conditions (INBC) together with
a new approach to treat the so-called H-node shift problem,
is shown to lead to a very good prediction of the shielding
effectiveness. In the present paper, the thin sheet example
only serves as a way to illustrate the accuracy of the proposed
method (with a maximum error for the SE of 0.4 dB in the tail
of the source’s spectrum). In contrast to the INBC approach,
HIE-subgridding is not restricted to good and homogeneous
conductors (σ � ωε), but can handle any type of material. It
does not depend on the fact that a 1D thin sheet approximation
is introduced (see e.g. the grating example below).
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Fig. 9: Quantization of spurious reflections: magnitude of the reflec-
tion coefficient of a vacuum HIE-subgrid in a vacuum parallel plate
waveguide excited by its TEM mode. The physical configuration is
presented as an inset.

B. Vacuum simulation and spurious reflections

In analogy to [3,31], the spurious reflections originating
from the interface between the coarse FDTD grid and the
HIE-subgrid are quantified by exciting a vacuum parallel
plate waveguide by a TEM pulse which propagates towards a
vacuum HIE-subgrid. The configuration is shown in the inset
of Fig. 9. The separation between the two plates is 10 mm, the
subgrid measures 4 mm in the y-direction and has a thickness
∆x of one coarse FDTD cell. The HIE-subgrid consists of
50 subdivisions in the x-dimension with ∆xf = 0.2µm,
completed by two padding areas in order to obtain one ∆x.
The magnitude of the reflection coefficient

R(ω) =
Htot
z (ω)−Hinc

z (ω)

Hinc
z (ω)

(49)

is plotted in Fig. 9 for two coarse grid cell sizes:
∆x = ∆y = 0.5 mm and ∆x = 2∆y = 2 mm. The total field
Htot
z (t) = Hinc

z (t) + Hrefl
z (t) is recorded in an observation

point P placed five cells in front of the subgrid. An aux-
iliary simulation without subgrid provides the incident field
values Hinc

z (t). Fig. 9 confirms that HIE-subgridding can
easily compete with other subgridding methods such as the
conservative subgridding scheme described in [31]. As the
frequency increases, the sampling density of the grid relative
to the wavelength drops and the discrepancy between the
dispersion relations in both grids augments, which unavoidably
results in higher reflections. For the same reason, the coarser
discretization of the FDTD region results in a higher reflection
coefficient.

C. Skin effect

One of the purposes of the new subgridding method is
to accurately model thin good conductor effects. We again
turn to the set-up of Fig. 6, but now with a finite slab
having h = 10 mm. The slab is made of copper and
has thickness d = 10 µm. It is discretized with a 0.2 µm
increment in the x-direction. The FDTD cell dimensions are
∆x = 0.253 mm and ∆y = 0.250 mm. The source is again a
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Fig. 10: Current density in the cross section of a thin copper slab
(d = 10µm, h = 10 mm, σ = 5.8 · 107 S/m) at f = 2.45 GHz.
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Fig. 11: Field solutions on the slab surface compared to MoM.

Gaussian-modulated sinusoidal pulse (48) placed at a distance
x0 = 10 mm from the front of the copper slab. Fig. 10
displays the normalized magnitude of the current density in the
y=0-cross-section at 2.45 GHz (green dots). At this frequency,
the skin depth δ is 1.3351 µm. Two exponentials are fitted
(in the least-squares sense) to the data points that lie within
one skin depth distance from the left and right conductor
surface, resulting in the dashed lines in Fig. 10. The fitting
leads to the following numerical data for the skin depth:
δleft = 1.3353µm and δright = 1.3342µm, i.e. a relative
error of less than one per thousand.

D. Field solutions on the material surface compared to MoM

For exactly the same set-up as in Section IV-C, the magnetic
fields along the left and right surface of the copper slab are
compared to the output of Nero2d [32], a noncommercial
MoM-solver. Fig. 11 again confirms the accuracy of the HIE-
subgridding technique.

E. Radiation pattern of a metal grating structure

As a last example, the far-field radiation pattern of a metal
grating is studied. The set-up is shown in Fig. 12: an incident
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Fig. 12: A plane TE-wave incident on a 3-strip metal grating.

plane TE-wave impinges upon a number of metal strips
under an angle θinc. The incident-field array (IFA) excitation
is applied in combination with the total-field/scattered-field
formalism [26, §5.7]. Fourth-order interpolation as well as high
grid sampling densities (at least 30 cells per wavelength) are
used to enhance the accuracy of the plane wave excitation.
The scattered-field region is enveloped by classical split-field
PMLs. The metal grating structure behaves like a phased an-
tenna array. Its far-field radiation pattern can be determined by
applying a near-to-far-field (NTFF) transformation. Thereto,
we adopt the frequency-domain approach described in [33,
§8.3.2]. Fig. 13 shows the scattering width, i.e.

σ2D = lim
ρ→∞

2πρ

∣∣∣∣Eφ(ρ)

Einc

∣∣∣∣2 , (50)

for a 3-strip metal grating, illuminated by a 2.45 GHz plane
wave incident under an angle θinc = 30◦, for various values
of the electrical conductivity. The scattering is strongest in
the specular direction φs = 60◦. Furthermore, according to
the antenna array factor, one expects to see a grating lobe
at φs = arccos

(
sin(θinc) − λ

w+s

)
, which is for θinc = 30◦,

w = 80 mm and s = 10 mm equal to 149.27◦ (with λ the
wavelength of the incident wave). This additional grating lobe
becomes more clear for a higher number of strips, as can
be seen in Fig. 14. For a 2.45 GHz source, the skin depth
equals the thickness of the strips, i.e. δ = d = 0.5 mm, when
σ = 413.6 S/m. In Fig. 13, this is translated to a fast increase
in the amount of scattered radiation between an electrical
conductivity of 1 and 1000 S/m. For higher values of σ, the
radiation pattern remains (almost) identical.

V. CONCLUSION

We proposed a new thin-layer subgridding technique for
2D-TE problems based on a hybrid implicit-explicit scheme.
This new technique allows very fine sampling in the direction
perpendicular to the thin layer, making it, e.g., ideally suited to
model the skin effect. The implicit part of the HIE-subgridding
method, applied inside the subgrid, leverages a collocated
discretization scheme, as such avoiding any ambiguity con-
cerning the thickness of the thin material layers. Furthermore,
it permits nonuniform discretizations without jeopardizing the
stability. This stability was thoroughly analyzed and the clas-
sical 2D Courant limit, imposed by the coarse FDTD grid, is
found to be the only restriction. Regarding the implementation,
the subgridding technique is easily integrated into existing
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Fig. 13: Radiation pattern of a 3-strip metal grating (w = 80 mm,
s = 10 mm, d = 0.5 mm) for different values of the conductivity σ
(εr = 1).
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Fig. 14: Radiation pattern of a copper grating structure (w = 80 mm,
s = 10 mm, d = 0.5 mm, εr=1, σ = 5.8 · 107 S/m) illuminated by
a 2.45 GHz plane wave incident under an angle θ = 30◦ for various
numbers of strips.

FDTD codes as it only requires some extra steps in the
leapfrog time iteration scheme in conjunction with minor
modifications to the FDTD code itself. The novel hybrid
scheme’s accuracy is validated by means of several numerical
examples, showing, e.g., that the substantial effect of finite
conductivity on the power scattered by a metal grating can be
accurately predicted. Future work will focus on an analogous
subgridding scheme for the TM-case and for more general
electromagnetic problems in the full three-dimensional space,
as well as a PML formulation for the HIE method allowing
the efficient simulation of infinitely long thin layers.

APPENDIX

The goal of this appendix is to give a mathematical deriva-
tion of the discrete form of Ampère’s law (25) as used by the
HIE scheme. Thereto, Ampère’s law (3) is expanded in basis
functions according to (19)–(20), and then tested by (23). The
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testing step leads to the following set of integrals that have to
be calculated. For testing of the l.h.s. of (3), we need∫

∂

∂x

(
Λi(x)

)
Πk+ 1

2
(x) dx = δi,k+1 − δi,k∫

Πj+ 1
2
(y) Πl+ 1

2
(y) dy = ∆y δj,l∫

Πn+ 1
2
(t) Λm(t) dt =

∆t

2
(δn,m + δn,m−1)

For testing the r.h.s. of (3), we need∫
Λi(x) Πk+ 1

2
(x) dx =

∆xf
2

(δi,k+1 + δi,k)∫
Πj+ 1

2
(y) Πl+ 1

2
(y) dy = ∆y δj,l∫

∂

∂t

(
Πn+ 1

2
(t)
)

Λm(t) dt = δn,m − δn,m−1∫
Πn+ 1

2
(t) Λm(t) dt =

∆t

2
(δn,m + δn,m−1)

The integrals evaluate to Kronecker deltas. Inserting these
solutions in the expanded form of (3), and subsequently divid-
ing both sides of the resulting discrete equation by ∆xf∆y∆t

2 ,
eventually gives (25).
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