Steady-state analysis of switching converters via frequency-domain circuit equivalents
- Author
- R Trinchero, Paolo Manfredi (UGent) , IS Stievano and FG Canavero
- Organization
- Abstract
- This brief presents a frequency-domain approach for the steady-state analysis of pulsewidth-modulated converters and switched circuits with nonideal switching behavior. The proposed strategy generalizes recent methodologies based on the Fourier expansion of the steady-state responses of a periodically switching circuit and on the simulation of an augmented linear-time-invariant system. This system is now also given an interpretation in terms of an equivalent circuit, which is simulated at a single frequency point to solve for all the harmonics. The method offers a modular topological approach that is combined with standard tools for circuit analysis and enables the simulation of networks with an arbitrary number of switches and driving mechanisms. Single, multiple, and possibly nonideal commutation events within the switching period are handled in the same framework, without additional complexity. The technique allows for the full frequency-domain characterization of both the functional and the noisy behavior of the circuit responses. The feasibility and strength are demonstrated via comparisons with simulations and measurements on two application examples, i. e., a full-bridge single-phase inverter and a dc-dc boost converter.
- Keywords
- DC-DC CONVERTERS, IBCN, LINEAR CIRCUITS, Circuit simulation, harmonic analysis, periodically switched linear (PSL) circuits, pulsewidth modulation (PWM) inverters, SPICE, switching converters
Downloads
-
6645 i.pdf
- full text
- |
- open access
- |
- |
- 550.72 KB
-
(...).pdf
- full text
- |
- UGent only
- |
- |
- 3.40 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8124586
- MLA
- Trinchero, R., et al. “Steady-State Analysis of Switching Converters via Frequency-Domain Circuit Equivalents.” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, vol. 63, no. 8, 2016, pp. 748–52, doi:10.1109/TCSII.2016.2530299.
- APA
- Trinchero, R., Manfredi, P., Stievano, I., & Canavero, F. (2016). Steady-state analysis of switching converters via frequency-domain circuit equivalents. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 63(8), 748–752. https://doi.org/10.1109/TCSII.2016.2530299
- Chicago author-date
- Trinchero, R, Paolo Manfredi, IS Stievano, and FG Canavero. 2016. “Steady-State Analysis of Switching Converters via Frequency-Domain Circuit Equivalents.” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS 63 (8): 748–52. https://doi.org/10.1109/TCSII.2016.2530299.
- Chicago author-date (all authors)
- Trinchero, R, Paolo Manfredi, IS Stievano, and FG Canavero. 2016. “Steady-State Analysis of Switching Converters via Frequency-Domain Circuit Equivalents.” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS 63 (8): 748–752. doi:10.1109/TCSII.2016.2530299.
- Vancouver
- 1.Trinchero R, Manfredi P, Stievano I, Canavero F. Steady-state analysis of switching converters via frequency-domain circuit equivalents. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS. 2016;63(8):748–52.
- IEEE
- [1]R. Trinchero, P. Manfredi, I. Stievano, and F. Canavero, “Steady-state analysis of switching converters via frequency-domain circuit equivalents,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, vol. 63, no. 8, pp. 748–752, 2016.
@article{8124586,
abstract = {{This brief presents a frequency-domain approach for the steady-state analysis of pulsewidth-modulated converters and switched circuits with nonideal switching behavior. The proposed strategy generalizes recent methodologies based on the Fourier expansion of the steady-state responses of a periodically switching circuit and on the simulation of an augmented linear-time-invariant system. This system is now also given an interpretation in terms of an equivalent circuit, which is simulated at a single frequency point to solve for all the harmonics. The method offers a modular topological approach that is combined with standard tools for circuit analysis and enables the simulation of networks with an arbitrary number of switches and driving mechanisms. Single, multiple, and possibly nonideal commutation events within the switching period are handled in the same framework, without additional complexity. The technique allows for the full frequency-domain characterization of both the functional and the noisy behavior of the circuit responses. The feasibility and strength are demonstrated via comparisons with simulations and measurements on two application examples, i. e., a full-bridge single-phase inverter and a dc-dc boost converter.}},
author = {{Trinchero, R and Manfredi, Paolo and Stievano, IS and Canavero, FG}},
issn = {{1549-7747}},
journal = {{IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS}},
keywords = {{DC-DC CONVERTERS,IBCN,LINEAR CIRCUITS,Circuit simulation,harmonic analysis,periodically switched linear (PSL) circuits,pulsewidth modulation (PWM) inverters,SPICE,switching converters}},
language = {{eng}},
number = {{8}},
pages = {{748--752}},
title = {{Steady-state analysis of switching converters via frequency-domain circuit equivalents}},
url = {{http://doi.org/10.1109/TCSII.2016.2530299}},
volume = {{63}},
year = {{2016}},
}
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: