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Abstract—This paper presents an iterative and adaptive per-
turbation technique for the analysis of nonuniform transmission
lines. Place-dependent variations of the per-unit-lengthparame-
ters are interpreted as perturbations with respect to theiraverage
values along the line. This allows casting the governing equations
for the corresponding perturbations of the voltages and currents
as those of a uniform transmission line with distributed sources.
Therefore, standard transmission line theory is used to calculate
these perturbation terms. Specifically, perturbations of increasing
order are computed iteratively starting from the solution of the
unperturbed line. The accuracy is adaptively adjusted by setting
a threshold on the convergence of the solution. The algorithm
turns out to be simple to implement and very accurate, yet
faster than traditional approaches based on the discretization
of the line into uniform subsections. The technique is validated
through the analysis of several nonuniform transmission line
structures of relevance in EMC applications, namely uniformly
and nonuniformly twisted wire pairs as well as a cable bundle
with lacing cords.

Index Terms—Cable bundles, crosstalk, multiconductor trans-
mission lines, nonuniform transmission lines, transmission line
theory, twisted wire pairs.

I. I NTRODUCTION

Nonuniform transmission lines (NUTLs) are widely encoun-
tered in several transport and industrial applications andtheir
study still represents an active field of research in EMC [1]–
[5]. One of the most common examples are twisted wire
pairs (TWPs), which are used to transfer information in
communication systems due to their high immunity to both
conducted [6] and radiated [7] electromagnetic interference.
Many other contributions addressed the EMC modeling of
the TWP performance in terms of susceptibility to external
fields [8]–[11] or wave propagation and crosstalk [12]–[16]. A
second example of a NUTL is a hand-assembled cable bundle,
where the (random) meandering of wires yields a geometry
far from being uniform along the line [17]–[19]. Additionally,
cable bundles may assume a nonuniform geometry as a result
of the presence of lacing cords, which are used to hold wires
together in long harnesses [20].

Whereas the theory for uniform transmission lines is well
established [21], the analysis of NUTLs remains a research
topic, as no closed-form solution exists except for some special
cases [22]–[24]. The classical approach to tackle this problem
is to subdivide the line into locally uniform sections and
to analyze them upon concatenation of their chain-parameter
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matrix [21] or ABCD matrix [25]. A general rule for the
number of discretizations to be used is missing, yet it has
been shown that, for instance, as many as 128 discretization
per twist are required to accurately capture the response of
a TWP [15]. This can lead to large computational times,
especially in those cases that require a repeated-run analysis
to provide a statistical description of problems that are in-
herently stochastic (see, e.g., [17]–[19] and [26]–[28]).Other
approaches subdivide the line into nonuniform sections of
exponential [29] or linear [30] type, for which analytical
solutions exist, but limited to the case of lossless lines with
frequency-independent per-unit-length (p.u.l.) parameters.

There exist other techniques, mainly proposed for mi-
crowave structures, that are based on several different so-
lutions, including the Taylor series expansion of the p.u.l.
parameters [2], finite-difference time domain methods [3],[5],
Chebyshev interpolations [31], [32], waveform relaxation[33],
the method of characteristics [34], full-wave simulations[35],
rational approximations [36], wavelets theory [37], [38],the
differential quadrature method [39], or congruence trans-
forms [40]. These methods, however, rely on specific assump-
tions, idealizations or approximations, and they often turn out
to be rather time consuming and/or cumbersome to implement.

An alternative approach converts the NUTL equations into
the equations of uniform lines excited by equivalent distributed
sources [41]. This method, originally presented for single
lines, has been recently recast in terms of a two-step per-
turbation technique applied to single or differential [42]as
well as to arbitrary multiconductor transmission lines [43].
The nonuniformity is in this case interpreted as a perturbation
with respect to an average uniform line. A perturbation is then
also assumed for the voltages and currents along the line.
Lengthy manipulations of the governing equations allow to
arrive at semi-analytical expressions for the first- and second-
order perturbations of the voltages and currents. Nevertheless,
the complexity of these equations discourages to develop
analogous results for higher-order terms.

So far, the aforementioned method has been applied to
printed circuit board interconnects, in which the spatial varia-
tion of the p.u.l. parameters is limited by geometrical con-
straints, thus rendering the second-order perturbation suffi-
ciently accurate [42]–[44]. On the contrary, the variations of
wire positions in TWPs or in nonuniform cable harnesses, as
considered in this paper, result in a more severe variation of
the p.u.l. parameters (especially, the capacitance) alongthe
line. In these cases, a second-order perturbation no longer
suffices. To accurately describe all relevant phenomena such
as, e.g., shielding effects between wires, many higher-order
perturbations need to be taken into account.
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The aim of this paper is therefore to generalize the technique
presented in [43] to an arbitrary number of perturbation
steps. However, instead of attempting to derive unmanageable
closed-form expressions, an iterative procedure is put forward.
The governing equations for the perturbations of the voltages
and currents are expressed as the equations of a uniform
transmission line with distributed sources that depend on the
previous perturbation step. Next, the equations are iteratively
solved via the well-known and standard transmission line
theory, in analogy with the problem of electromagnetic field
illumination of the line [21]. The iteration is adaptively
stopped when the result has converged within a predefined
threshold. The methodology is general and applies to arbitrary
multiconductor NUTLs with frequency-dependent parameters.
Moreover, it is simple and straightforward to implement, being
nonetheless very fast and accurate. The frequency-domain
solution is readily combined with a scattering characterization
to obtain time-domain results [45]. Applications to nonuniform
cables are provided to validate the proposed technique.

The remainder of the paper is organized as follows. The
proposed perturbation method is outlined in Section II. Illus-
trative application examples and validations are providedin
Section III. The achieved results are discussed in Section IV.
Finally, a summary and conclusions are presented in Sec-
tion V.

II. I TERATIVE PERTURBATION TECHNIQUE

A. NUTL Equations

Consider the frequency-domain Telegrapher’s equations for
anN -conductor NUTL of lengthℓ:

d

dz
V(z, ω) = −jωL(z, ω)I(z, ω)

d

dz
I(z, ω) = −jωC(z, ω)V(z, ω),

(1)

wherez ∈ [0, ℓ] denotes the longitudinal coordinate,V andI
areN -vectors collecting the voltages and currents along the
line, andL andC are theN×N complexandplace-dependent
p.u.l. inductance and capacitance matrices, defined as

L(z, ω) = L(z, ω) +
R(z, ω)

jω

C(z, ω) = C(z, ω) +
G(z, ω)

jω
,

(2)

encompassing the frequency-dependent p.u.l. resistance,in-
ductance, conductance and capacitance matrices of the line.
From now on, the dependence of the voltages, currents and
p.u.l. parameters on the angular frequencyω is dropped for
notational convenience. These quantities are understood to be
referred to a given frequency.

B. Perturbation of Voltages, Currents and p.u.l. Parameters

The z-dependent p.u.l. parameters are now represented in
terms of a uniform (i.e., constant) component plus a place-
dependent variation:

L(z) = L̃+∆L(z)

C(z) = C̃ +∆C(z),
(3)

with the constant part being the average of the matrix values
over the line length, i.e.,

L̃ =
1

ℓ

∫ ℓ

0

L(z)dz

C̃ =
1

ℓ

∫ ℓ

0

C(z)dz,

(4)

whereas∆L(z) and ∆C(z) are the variations (or perturba-
tions) of the p.u.l. inductance and capacitance, respectively,
that remain after subtraction of the constant part. The above
decomposition is analogous to the one applied to the modal
formulation of uniform differential lines in [46], where the
aim was to assess the effect of unintentional geometrical
imbalance.

The voltages and currents are represented as

V(z) = V0(z) +

K
∑

k=1

Vk(z)

I(z) = I0(z) +

K
∑

k=1

Ik(z),

(5)

i.e., as the summation ofunperturbed values V0, I0 and
perturbationsVk, Ik of increasing order. Note that in [42] and
[43], only the caseK = 2 was considered, for which closed-
form expressions could be provided forV1, I1, V2 andI2.

Substituting (3) and (5) into (1) and collecting the terms of
the same order, yields

d

dz
V0(z) = −jωL̃I0(z)

d

dz
I0(z) = −jω C̃ V0(z)

(6)

and
d

dz
Vk(z) = −jωL̃Ik(z) + VF,k(z)

d

dz
Ik(z) = −jω C̃ Vk(z) + IF,k(z),

(7)

k = 1, . . . ,K, with the equivalent distributed sources defined
as

VF,k(z) = −jω∆L(z)Ik−1(z)

IF,k(z) = −jω∆C(z)Vk−1(z).
(8)

It is worth noting that:

• The governing equations (6) for the zeroth-order compo-
nent of the voltages and currents are those of a uniform
transmission line with constant p.u.l. parametersL̃ and
C̃.

• The governing equations (7) for thekth-order perturba-
tion of the voltages and currents are those of the same
uniform line with additional distributed sources.

• According to (8), such distributed sources depend on the
previous solution obtained fork − 1.

C. Solution Procedure

The explicit, general solution of (7) is given in [21] for
the illumination of a uniform transmission line by an external
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electromagnetic field:

Vk(z) = Φ11(z)Vk(0) +Φ12(z)Ik(0) + VFT,k(z)

Ik(z) = Φ21(z)Vk(0) +Φ22(z)Ik(0) + IFT,k(z)
(9)

with Φij (i, j = 1, 2) the blocks of the chain-parameter matrix,
given by

Φ11(z) =
1

2
Y

−1
T(eγz + e

−γz)T−1
Y (10a)

Φ12(z) = −
1

2
Y

−1
Tγ(eγz − e

−γz)T−1 (10b)

Φ21(z) = −
1

2
T(eγz − e

−γz)γ−1
T

−1
Y (10c)

Φ22(z) =
1

2
T(eγz + e

−γz)T−1, (10d)

whereY = jωC̃ and the matricesT andγ are given by the
eigendecomposition

T
−1

YZT = γ
2, (11)

with Z = jωL̃. Furthermore, the so-calledforcing termsVFT,k

andIFT,k are given by

VFT,k(z) =
∫ z

0

Φ11(z − τ)VF,k(τ)dτ +

∫ z

0

Φ12(z − τ)IF,k(τ)dτ

IFT,k(z) =
∫ z

0

Φ21(z − τ)VF,k(τ)dτ +

∫ z

0

Φ22(z − τ)IF,k(τ)dτ .

(12)
Finally, Vk(0) and Ik(0) are the solution at the near-end
termination, which is calculated by incorporating the boundary
conditions, as discussed in the next section. The expression (9)
is valid also for (6), i.e., fork = 0, for which however the
forcing terms (12) vanish due to the absence of distributed
sources.

The calculation of the forcing terms (12) involves convolu-
tion integrals. Yet, these convolutions are reduced to standard
integrals thanks to the exponential dependence of the chain-
parameter matrix onz. In fact, substitution of (10) into (12)

allows to rewrite the latter as

VFT,k(z) = +
1

2
Y

−1
Te

γz

∫ z

0

e
−γτ

T
−1

YVF,k(τ)dτ

+
1

2
Y

−1
Te

−γz

∫ z

0

e
γτ

T
−1

YVF,k(τ)dτ

−
1

2
Y

−1
Tγe

γz

∫ z

0

e
−γτ

T
−1IF,k(τ)dτ

+
1

2
Y

−1
Tγe

−γz

∫ z

0

e
γτ

T
−1IF,k(τ)dτ

IFT,k(z) = −
1

2
Te

γz

∫ z

0

e
−γτ

γ
−1

T
−1

YVF,k(τ)dτ

+
1

2
Te

−γz

∫ z

0

e
γτ

γ
−1

T
−1

YVF,k(τ)dτ

+
1

2
Te

γz

∫ z

0

e
−γτ

T
−1IF,k(τ)dτ

+
1

2
Te

−γz

∫ z

0

e
γτ

T
−1IF,k(τ)dτ

(13)
The above formulation allows a more efficient calculation of
the cumulative integrals, as needed to evaluate the forcing
terms alongz. These are in turn necessary to evaluate the
solution (9) for the update of the distributed sources (8).

It should be noted that the matrix blocks (10), as well as
the matricesY, γ and T, refer only to the uniform line
parametersL̃ and C̃, and they are therefore calculated only
once per frequency point.

D. Incorporation of the Terminal Conditions

In order to fully determine the solution (9) of the equa-
tions (6) and (7),Vk(0) andIk(0), with k = 0, . . . ,K, need
to be found, which requires proper boundary conditions. These
are typically given as the Thévenin or Norton equivalents
of the line terminations [21]. For example, considering the
Thévenin representation with equivalent voltage sourcesVS,L

and impedancesZS,L at the source (S) (or near-end,z = 0)
and load (L) (or far-end,z = ℓ) terminations, the boundary
conditions read [43]

V0(0) = VS − ZSI0(0)

V0(ℓ) = VL + ZLI0(ℓ),
(14)

for (6), and
Vk(0) = −ZSIk(0)

Vk(ℓ) = ZLIk(ℓ),
(15)

for (7). Briefly speaking, the original terminal excitationof
the line appears only once, i.e., in the unperturbed solution.

Given the terminal conditions (14) and (15), the currents at
z = 0 are now readily derived as:

I0(0) = A
−1[(Φ11(ℓ)− ZLΦ21(ℓ))VS −VL] (16)

for the unperturbed solution and

Ik(0) = A
−1[VFT,k(ℓ)− ZLIFT,k(ℓ)] (17)
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for the perturbation terms, with

A = [Φ11(ℓ)ZS+ZLΦ22(ℓ)−Φ12(ℓ)−ZLΦ21(ℓ)ZS ]. (18)

The voltagesVk(0) at the near-end termination are found by
substitution of (16) and (17) into (14) and (15).

E. Iterative and Adaptive Solution

Based on the information collected in the previous sec-
tions, the following iterative procedure is put forward forthe
simulation of a NUTL. First, the unperturbed solutionV0

and I0 of the line (6) with averaged p.u.l. parameters (4)
is calculated using the chain-parameter matrix (10) and the
proper boundary conditions. Next, the first-order equivalent
distributed sourcesVF,1 andIF,1 are calculated with (8), based
on the place-dependent variation of the p.u.l. parameters.The
first-order perturbationsV1 andI1 are computed as the solu-
tion of (7), after incorporating the pertinent forcing terms (13)
into the terminal conditions, as indicated in Section II-D.The
second-order equivalent distributed sourcesVF,2 andIF,2 are
then calculated, and the above procedure is iterated until the
solution has converged below a predefined threshold.

Specifically, at each iteration it is checked whether the
relative contribution provided by the last perturbation (i.e., the
last computed perturbation term over the sum of all available
terms) is sufficiently small in magnitude. In mathematical
terms, at a given frequency, the solution is stopped at iter-
ationK if

Dmax = max

(∣

∣

∣

∣

∣

VK(z)
∑K

k=0
Vk(z)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

IK(z)
∑K

k=0
Ik(z)

∣

∣

∣

∣

∣

)

< δth,

(19)
where the maximum is intended over all the elements ofV
andI. Either the values along the entire line length, or those
at the terminations only, may be considered depending on the
quantities of interest.

As yet, no rigorous proof could be found as to the guaran-
teed convergence of the series (5). However, for all practical
engineering purposes investigated so far, and reported in this
paper, this turns out to be the case.

III. N UMERICAL RESULTS AND APPLICATIONS

The proposed technique has been implemented in MATLAB
and it is applied in this section to the analysis of nonuniform
cable lines, containing either TWPs or lacing cords. Reference
results are generated by discretizing the line into uniform
cascaded sections (UCS) [21], [25]. As dielectric coatingsare
included, the method in [47] and [48] is used to calculate
the p.u.l. capacitance and inductance matrices from the cable
cross-section at a given position along the line. For the
perturbation technique, a cumulative Simpson’s quadrature
is adopted for the calculation of the integrals (13), and the
threshold for the adaptive solution is set toδth = 1%. The
simulations are performed on an ASUS U30S laptop with an
Intel(R) Core(TM) i3-2330M, CPU running at 2.20 GHz and
4 GB of RAM.

A. Uniformly Twisted Pair

The first example is taken from [15] and deals with the
coupling between a TWP and a straight wire (see Fig. 1).
The wires have a total diameterd = 1.7 mm and a 0.11-mm
thick PVC coating (relative permittivity of 3.5). The separation
between the straight wire and the center of the TWP iss =
2.55 mm, so the three wires are touching when they are lined
up horizontally, and they lie at a heighth = 5 cm above a
perfect ground plane. The line has a lengthℓ = 1 m and the
TWP hasN = 25 full twists. The wires are terminated as
shown in Fig. 1(b).

1
2

3

5 cm

2.55 mm

1.7 mm

α

xy

(a)

50 Ω

100 Ω

1 V

50 Ω

100 Ω

1 m (TWP: 25 twists)

z

1

2

3

(b)

Fig. 1. Line configuration of a straight wire and a uniformly twisted pair:
cross-sectional view atz = 0 (a) and longitudinal view with terminations (b).

The place-dependent cross-sectionalx-y-coordinates of the
twisted wires #2 and #3 are given by

x2(z) = s+ (d/2) cos(ϕ(z))
y2(z) = h+ (d/2) sin(ϕ(z))

x3(z) = s− (d/2) cos(ϕ(z))
y3(z) = h− (d/2) sin(ϕ(z)),

(20)

with ϕ(z) = α+ 2πzN/ℓ, and where the angleα determines
the position of the TWP atz = 0. The position of wire #1 is
fixed in thexy-plane withx1 = 0 andy1 = 5 cm. At a given
longitudinal positionz, the location of the TWP, and hence,
the entire cross-section, is fully determined by the rotation
angleϕ(z).

In order to remove the overhead of the calculation of
the p.u.l. parameters in the following simulations, a spline
interpolation of the inductance and capacitance matrices is
constructed as a function ofϕ. An interpolation over 200
points yields a maximum relative error well below0.1%. The
average inductance and capacitance matrices along the lineare

L̃ =





936.6 739.7 739.7
739.7 915.3 808.7
739.7 808.7 915.3



 nH/m

and

C̃ =





51.7 −23.1 −23.1
−23.1 107.1 −79.8
−23.1 −79.8 107.1



 pF/m,

respectively, whereas the maximum relative perturbationsof
the matrix entries over the line length are|∆L/L̃|max = 8%
and |∆C/C̃|max = 251%. Whilst the longitudinal variation
of the p.u.l. inductance is relatively small, the variationof
the capacitance matrix is extremely high due to the mutual
shielding of wires #2 and #3 with respect to wire #1.

Fig. 2 shows the magnitude of the current on the straight
wire along the first full twist of the TWP, at a frequency of
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Fig. 2. Magnitude of the current along the straight wire at 11MHz. Lines:
results computed with the UCS method forα = 0

◦ (solid) andα = 90
◦

(dashed); markers: same results obtained with the proposedperturbation
technique.

11 MHz. The reference results are computed with the UCS
approach for two starting positions of the TWP, corresponding
to α = 0◦ (solid line) andα = 90◦ (dashed line). Each twist
has been discretized into 128 uniform sections. There is a
strong impact of the starting position on the current magnitude,
as already observed in [15]. The same results are computed
via the proposed perturbation technique (markers) with up to
3 iterations, showing excellent agreement.
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Fig. 3. Magnitude versus frequency of the current at the far-end termination
of the straight wire. Curve identification is as in the caption of Fig. 2.

In addition, Fig. 3 shows the magnitude of the current at
the far-end termination of the straight wire over 300 frequency
points from 300 MHz to 1 GHz. Also for this analysis,
remarkable agreement is established between the reference
UCS method and the proposed perturbation technique. The
number of perturbation steps used by the latter varies with
the frequency, and ranges from 2 to 10 in order to achieve
Dmax < 1%. Hence, a two-step perturbation as proposed in
[42] and [43] is not always accurate enough for this line. The
average number of iterations per frequency is 3.5 forα = 0◦

and 2.6 forα = 90◦, leading to a simulation time of 7.2 s
and 5.3 s in the two cases, respectively. The simulation time
for the UCS is 6.5 s. It should be noted that, in this case, the

periodicity of the line allows an efficient implementation of the
UCS approach. Nevertheless, even when exploiting this very
idealized situation with the UCS, the perturbation technique
has a comparable or even lower execution time.

B. Randomly Twisted Pair

In this second example, a stochastic twisting pattern is
ascribed to the TWP of Fig. 1, using the model suggested
in [7]. The configuration of the terminations remains the same.
However, the rotation angleϕ(z) is now defined as

ϕ(z) =

∫ z

0

α(z′)dz′, (21)

where

α(z) =

[

(

d

2

)2

+

(

p(z)

2π

)2
]−1/2

(22)

andp(z) (twist pitch function) is a Gaussian stochastic process
with a nominal valuepnom and correlation function

c(z, z′) = σ2e
−

|z−z
′|2

ρ2 . (23)

The parametersσ and ρ control the nonuniformity and de-
formation of the twisting. For the simulation,pnom = 2 cm,
σ/pnom = 0.3 andρ/pnom = 0.5 are considered [7].

Fig. 4. Three profile realizations of the stochastic TWP overa 10-cm section
(on scale).

Fig. 4 shows three different realizations (with axis aspect
ratio preserved) of the randomly twisted pair over a length
of 10 cm. It is important to point out that the structure is
no longer periodic. For a given realization ofϕ(z), the same
spline interpolation as generated for the previous exampleis
used to retrieve the p.u.l. inductance and capacitance matrices.

Fig. 5 shows the voltage at the far-end termination of the
straight wire, computed for ten realizations of the stochastic
TWP with both the UCS method (solid lines) and the proposed
perturbation technique (markers). In the former case, the line
has to be discretized into 4000 uniform sections to achieve
convergence, which leads to a simulation time of 180 s for
each realization. In contrast, the perturbation techniqueonly
requires about 18 s. A remarkable tenfold speed-up is therefore
achieved with the proposed methodology. It is worth noting
that the exact time depends on the number of perturbation steps
used by the adaptive solution, which in turn varies with the
frequency and the specific realization. A maximum number of
8 perturbations has been used to calculate the results in Fig. 5.
Although not visible in Fig. 5, for the higher frequencies the
results from the UCS and the present method remain identical.
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Fig. 5. Magnitude of the voltage at the far-end termination of the straight
wire for ten realizations of the randomly twisted pair, computed with both the
UCS approach (lines) and the perturbation technique (markers).

C. Cable Bundle With Lacing Cords

The final example considers a cable bundle with lacing
cords, which are commonly used to hold wires together in
long harnesses. The presence of lacing cords is modeled as
proposed in [20] and illustrated in Fig. 6: at the beginning
and end of the harness, as well as at the location of the
lacing cords, the cable cross-section has a minimum radial
dimensionr0. The cross-section radius expands between two
lacing cords, reaching a maximum valueαr0. This behavior is
periodically repeated all over the cable length. Assuming that
the cords are evenly spaced, the radial coordinate of each wire
at a given longitudinal positionz is multiplied by a sinusoidal
coefficient defined as

δr(z) =
1

2
(α+ 1) + 1

2
(α− 1) sin(2πz/D− π/2), (24)

where D = ℓ/(NLC + 1) is the lace-to-lace distance and
NLC is the number of lacing cords. A spline interpolation
of the p.u.l. parameters as a function ofδr is created to
efficiently sample the inductance and capacitance matricesin
the simulations.

r0 αr0

lacing cords

D

Fig. 6. Side view of a cable harness model with lacing cords [20].

The application refers to a 24-wire cable with the initial
cross-section displayed in Fig. 7. The wires have a radius of
0.75 mm. The radius of the dielectric coating is 1.15 mm and
its relative permittivity is 2.6. The harness lies at a height
of 1.8 cm above a PEC ground plane and it hasNLC = 19
lacing cords over a length of 4 m. The wires are terminated
as indicated in Table I.
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24

1 2 3 4 5 6

7 8 9 10 11

12 13 14 15

16 17 18 19 20

21 22 23 24

x (mm)

y
(m

m
)

Fig. 7. Initial cross-section and wire numbering for the cable bundle with
lacing cords.

In order to assess the impact of the expansion coefficientα,
its value is swept from 1 (uniform cable harness) to 3.
Fig. 8 shows the corresponding far-end crosstalk voltages
produced on wires #9 (dashed lines) and #4 (solid lines) by the
excitation of wire #8 with a 1V voltage source, and computed
with the UCS technique by discretizing the line into 320
sections. The results computed with the perturbation technique
(markers) agree once again very well. Intuitively, the crosstalk
in principle reduces for larger values ofα, as this implies that
the distance between the wires increases in between two lacing
cords, thus reducing the overall coupling. Nonetheless, there
exist some frequencies at which the crosstalk is higher for
larger values ofα (see, e.g., the region from 5 to 10 MHz).
The simulation times are 107.6 s for the UCS method and
24.7 s for the perturbation technique, which uses a maximum
number of 18 iterations, achieving a speed-up of4.4×.
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Fig. 8. Magnitude of the crosstalk voltage at the far-end terminations of
wires #9 and #4, computed with both the UCS approach (dashed and solid
lines) and the perturbation technique (markers) forα = 1, 1.5, 2, 2.5, 3.

IV. D ISCUSSION

Fig. 9 shows the convergence of the maximum relative
difference, given by (19), in the solution of the three con-
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TABLE I
RESISTIVE TERMINATIONS OF THE CABLES WITH LACING CORDS, IN OHMS.

wire # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

near end 10 100 5k 10k 100k 100 100 50 1k 10 100k 10k 1k 10 100 50 100 100k 10k 1k 10 500 1k 1k

far end 100k 50k 50 300 6k 10k 1k 2k 20k 800 4k 7k 800 40 20 600 3k 4k 100k 1k 2k 20k 30 50

1 2 3 4 5 6 7 8 9 10
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1

D
m
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976.8 MHz
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α = 90◦
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randomly twisted pair

iteration count

984.7 MHz

1 3 5 7 9 11131517

cable with lacing cords

α

88.4 MHz

Fig. 9. Convergence of the maximum relative difference (19)for the three
application examples. The iteration stop threshold of 1% ismarked by the
horizontal red line.

sidered application examples. It should be noted that this
maximum difference is calculated over all the terminal volt-
ages and currents of the line. For each case, the result refers
to the frequency exhibiting the lowest convergence rate, i.e.,
976.8 MHz for the uniformly twisted pair, 984.7 MHz for
the nonuniformly twisted pair, and 88.4 MHz for the cable
with lacing cords. The 1% threshold that determines the
convergence of the iterative solution is marked as a horizontal
red line. The plots show that, in most of the situations, after
two iterations the solution is still far from being converged.
The results for the third example also highlight that, intuitively,
the convergence becomes slower when the nonuniformity is
higher, i.e., as the bundle expansion coefficientα increases.
The result forα = 1, corresponding to a uniform cable
harness, is not shown as the perturbation method immediately
yields the exact solution.

Table II summarizes the computational times required to
simulate the application examples, and the speed-up achieved
by the proposed perturbation technique. It is interesting to note
that the perturbation technique is faster despite requiring the
numerical integration of the equivalent sources (13) over the
line length. This is because it solves a uniform line, in which
only the equivalent forcing terms need to be calculated and
updated at each iteration. The cumulative integration is carried
out in an efficient manner by exploiting the diagonal structure
of the place-dependent matrixe±γz, thus allowing to achieve
a substantial speed-up.

The largest speed-up is achieved in the analysis of the
randomly twisted pair. This is the line that requires the
largest amount of discretizations (4000) in the traditional
UCS approach, thus suggesting that the proposed method is
more efficient for highly nonuniform lines. Moreover, the
analysis of the cable bundle shows that the performance of

the perturbation technique scales well with the number of
conductors, although the overall efficiency in this specific
example is lower due to the small number of discretizations
(320) required by the reference approach.

TABLE II
COMPUTATIONAL TIME AND SPEED-UP FOR THE CONSIDERED

APPLICATION EXAMPLES.

example UCS approachperturbation speed-up

uniformly TWP (α = 90
◦) 6.5 s 5.3 s 1.2×

randomly TWP 180.0 s 18.0 s 10×

cable with lacing cords 107.6 s 24.7 s 4.4×

V. CONCLUSIONS

This paper proposed an iterative and adaptive perturba-
tion technique for the analysis of nonuniform multiconduc-
tor transmission lines. The solution of the NUTL equations
is converted into the standard and well-known solution of
uniform lines with equivalent distributed sources depending
on the place-dependent variation of the p.u.l. parameters.An
iterative solution allows to compute an arbitrary number of
perturbations of the voltages and currents along the line.
The simulation is stopped when the perturbation terms have
converged within a given threshold. The technique is applied
to the analysis of crosstalk in cables containing either TWPs
or lacing cords. It turns to be very accurate, yet significantly
faster than the standard solution based on the discretization of
the line into uniform subsections.
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