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Abstract—This paper presents an iterative and adaptive per- matrix [21] or ABCD matrix [25]. A general rule for the
turbation technique for the analysis of nonuniform transmission number of discretizations to be used is missing’ yet it has
lines. Place-dependent variations of the per-unit-lengtiparame- - paan shown that, for instance, as many as 128 discretization

ters are interpreted as perturbations with respect to theiraverage twist ired t tel t th f
values along the line. This allows casting the governing e@tions per twist are required 1o accurately capture the response o

for the corresponding perturbations of the voltages and curents @ TWP [15]. This can lead to large computational times,
as those of a uniform transmission line with distributed souces. especially in those cases that require a repeated-runsimaly
Therefore, standard transmission line theory is used to callate g provide a statistical description of problems that are in
these perturbation terms. Specifically, perturbations of hcreasing herently stochastic (see, e.g., [17]-[19] and [26]-[28}her

order are computed iteratively starting from the solution of the h bdivide the li int if i i
unperturbed line. The accuracy is adaptively adjusted by siing approaches subdivide the line Into nonuniiorm sections o

a threshold on the convergence of the solution. The algoritn  €xponential [29] or linear [30] type, for which analytical
turns out to be simple to implement and very accurate, yet solutions exist, but limited to the case of lossless linethwi
faster than traditional approaches based on the discretizon  frequency-independent per-unit-length (p.u.l.) paramset

of the line into uniform subsections. The technique is validted There exist other techniques, mainly proposed for mi-

through the analysis of several nonuniform transmission ke truct that based | diff t
structures of relevance in EMC applications, namely unifomly crowave structures, that are based on several diiferent So-

and nonuniformly twisted wire pairs as well as a cable bundle lutions, including the Taylor series expansion of the p.u.l
with lacing cords. parameters [2], finite-difference time domain methods [H],

Index Terms—Cable bundles, crosstalk, multiconductor trans- Chebyshev interpolations [31], [32], waveform relaxa(j88],
mission lines, nonuniform transmission lines, transmissin line the method of characteristics [34], full-wave simulati¢8s],
theory, twisted wire pairs. rational approximations [36], wavelets theory [37], [38)e
differential quadrature method [39], or congruence trans-
forms [40]. These methods, however, rely on specific assump-
, L ) tions, idealizations or approximations, and they oftem tout

Non_umform transmission Ilne_s (NUTLS) are W'(_jely ENCOUNy, he rather time consuming and/or cumbersome to implement.
tered in several transport and industrial applications thed An alternative approach converts the NUTL equations into
study still represents an active field of research in EMC m[’ﬁe equations of uniform lines excited by equivalent distred

[5]. One of the most common examples are twisted Wi@ources [41]. This method, originally presented for single

pairs (T\_NP,S)' which are used to, tra_nsfgr information iWnes, has been recently recast in terms of a two-step per-
comdmunlgatlon s;(;sterg_s dge to tlhe" high |mr_nu_n|ty ]Eo bOIﬁhrbation technique applied to single or differential [423
conducted [6] and ra lated [7] electromagnetic inter €N \vell as to arbitrary multiconductor transmission lines ][43
Many other contributions addressed the EMC modeling §4¢ onuniformity is in this case interpreted as a pertiobat

the TWP performance in terms of susceptibility to extemngli, respect to an average uniform line. A perturbation &nth
fields [8]-[11] or wave propagation and crosstalk [12]-[W8] 15 assumed for the voltages and currents along the line.
second example of a NUTL is a hand-assembled cable bun@Sngthy manipulations of the governing equations allow to

where the _(rando_m) meandering_of wires yields a geometﬂrive at semi-analytical expressions for the first- andede

far from being uniform along the line [17]-[19]. Additional  , yor nerturbations of the voltages and currents. Nevieshe

cable bundles may assume a nonuniform geometry as a regilt. o5y njexity of these equations discourages to develop

of the presence of lacing cords, which are used to hold WirgSalogous results for higher-order terms.

together in long harnesses [2_0]' L , So far, the aforementioned method has been applied to
Whgreas the theory for umform transmission lines is We[yrinted circuit board interconnects, in which the spateia-

estgbhshed [21], the anaIyS|_s of NUTLS remains a re_searﬁgn of the p.u.l. parameters is limited by geometrical con-

topic, as no closed-form solution exists except for someiape gyaints * thus rendering the second-order perturbatidfi- su

cases [22]-[24]. The classical approach to tackle thislprob &ently accurate [42]-[44]. On the contrary, the variasiasf

is to subdivide the line into locally uniform sections an ire positions in TWPs or in nonuniform cable harnesses, as
to analyze them upon concatenation of their Cham'parameé%nsidered in this paper, result in a more severe variatfon o
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I. INTRODUCTION



The aim of this paper is therefore to generalize the teclniqwith the constant part being the average of the matrix values
presented in [43] to an arbitrary number of perturbatioover the line length, i.e.,
steps. However, instead of attempting to derive unmandgeab

closed-form expressions, an iterative procedure is putdoa. L= 1 /Z L(z)dz

The governing equations for the perturbations of the velsag ¢ Jo 4)
and currents are expressed as the equations of a uniform -1 st

transmission line with distributed sources that dependhen t C= Z/o C(z)dz,

previous perturbation step. Next, the equations are ietgt
solved via the well-known and standard transmission linghereasAL(z) and AC(z) are the variations (or perturba-
theory, in analogy with the problem of electromagnetic fielions) of the p.u.l. inductance and capacitance, respgtiv
illumination of the line [21]. The iteration is adaptivelythat remain after subtraction of the constant part. The abov
stopped when the result has converged within a predefir@@composition is analogous to the one applied to the modal
threshold. The methodo|ogy is genera| and app]ies to a]'bm‘ formulation of uniform differential lines in [46], where eh
multiconductor NUTLs with frequency-dependent parangete@im was to assess the effect of unintentional geometrical
Moreover, it is simple and straightforward to implemeninige imbalance.
nonetheless very fast and accurate. The frequency-domaif he voltages and currents are represented as
solution is readily combined with a scattering characteion K
to obtain time-domain results [45]. Applications to norformn V(2) = Volz) + Z Vi(2)
cables are provided to validate the proposed technique. 1

The remainder of the paper is organized as follows. The K ®)
proposed perturbation method is outlined in Section lusHI I(z) = Zo(2) + ZIk(z),
trative application examples and validations are proviged k=1
Section Ill. The achieved results are discussed in Secton 'i.e., as the summation ofinperturbed values Vy,Z, and

Finally, a summary and conclusions are presented in Segqrhations/,, 7, of increasing order. Note that in [42] and

tion V. [43], only the casek = 2 was considered, for which closed-
form expressions could be provided oy, Z;, V> andZ,.
I ITER_ATIVE PERTURBATION TECHNIQUE Substituting (3) and (5) into (1) and collecting the terms of
A. NUTL Equations the same order, yields
Consider the frequency-domain Telegrapher’s equations fo

an N-conductor NUTL of length: divo(z) = —jwlTy(z)
z
d , d . ©)
EV(Z’W) = —jwl(z,w)I(z,w) ) EIQ(Z) = —jwCVy(2)
d
EI(Z’W) = —jwC(z,w)V(z,w), and p
wherez € [0, ] denotes the longitudinal coordinaté, and I @V’“(z) = —JwLIi(z) + Vri(2) e
are N-vectors collecting the voltages and currents along the d 7 — iwCY 7
line, and£ andC are theN x N complexandplace-dependent dz k(2) = —jwCVi(2) + Irn(2),
p.u.l. inductance and capacitance matrices, defined as ;. _ ;g with the equivalent distributed sources defined
R(z,w) as
a@w:L@w%wfﬁ— Vir(z) = —jwAL(2)Tr-1(2) @
(2) .
T = —jwAC(2)Vi_ .
C(z,w) = C(z,w) + L(;;w), ra(e) = ~jull(z)Ver(z)

It is worth noting that:

encompassing the frequency-dependent p.u.l. resistamce, | The governing equations (6) for the zeroth-order compo-
ductance, conductance and capacitance matrices of the line ont of the voltages and currents are those of a uniform

From now on, the dependence of the voltages, currents and ,onsmission line with constant p.u.l. parametérand
p.u.l. parameters on the angular frequencys dropped for 5
notational convenience. These quantities are understobéd t

' « The governing equations (7) for theh-order perturba-
referred to a given frequency.

tion of the voltages and currents are those of the same
uniform line with additional distributed sources.

« According to (8), such distributed sources depend on the
The z-dependent p.u.l. parameters are now represented in previous solution obtained for — 1.

terms of a uniform (i.e., constant) component plus a place-

dependent variation:

L(z) =L+ AL(2)

B. Perturbation of Voltages, Currents and p.u.l. Paramgter

C. Solution Procedure

3) The explicit, general solution of (7) is given in [21] for
C(z) =C+ AC(z), the illumination of a uniform transmission line by an exirn



electromagnetic field: allows to rewrite the latter as

1 z
VFT,k(Z) = +§Y71Te’yz/ ei’YTTilYVRk(T)dT
0
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0
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— §Y*1Tﬂye“’z / e*"’TTfleyk (r)dr
0

with ®;; (4, j = 1, 2) the blocks of the chain-parameter matrix, +1Y*1T7e*“’z / e T 'Ipy(7)dr
given by 2 0
1 4
IFTJQ(Z) = 7§Te’yz/ ei’yTﬁilTilYVFyk(T)dT
0
1 L e [T i
®11(2) §Y_1T(e'72+e_"’z)T_1Y (10a) +§Te K / "y T Vg (7)dT
0
1 lmve [ e
P12(z) = finlT’y(eW —e )Tt (10b) +§Tev / e "I Iy (7)dr
0
1 e [ oarm-
Bs1(2) = —5T(e* —e " )yTiT Y (10c) +5Te™” / e T Ty (7)dr
0
X (13)
Pyy(z) = =T(e7*+e )T, (10d) The above formulation allows a more efficient calculation of
2 the cumulative integrals, as needed to evaluate the forcing

terms alongz. These are in turn necessary to evaluate the
solution (9) for the update of the distributed sources (8).

It should be noted that the matrix blocks (10), as well as
the matricesY, ~ and T, refer only to the uniform line
parametersC and C, and they are therefore calculated only
once per frequency point.

whereY = jwC and the matriceS" and~ are given by the
eigendecomposition

—1 2
T YZT =+, (11) p. Incorporation of the Terminal Conditions

In order to fully determine the solution (9) of the equa-
tions (6) and (7)V(0) andZ,(0), with £ = 0,..., K, need
with Z = jwL. Furthermore, the so-callddrcing termsVpr;, 10 be found, which requires proper boundary conditions séhe
andZpr, are given by - are typically given as the Thévenin or Norton equivalents
of the line terminations [21]. For example, considering the
Thévenin representation with equivalent voltage soules,
and impedanceZg ; at the source (S) (or near-end= 0)

Verk(z) = and load (L) (or far-endz = ¢) terminations, the boundary
. . conditions read [43]
i — d P -7 d
/0 n(z = )Vrk(r)dr +/0 12(2 = ) Irp(r)dr Vo(0) = Vg — ZsZy(0) 14
Trri(2) = Vo) = Vi +ZrTo(0),

/ D91 (2 — 7)Vp(T)dr + / Dos(z — T)Lpk(T)dr. for (6), and
0 0 (12) Vi(0) = —Z5T;(0) (15)
Finally, V;(0) and Z,(0) are the solution at the near-end Vi(l) = ZpIy(0),
termination, which is calculated by incorporating the baany for (7). Briefly speaking
conditions, as discussed in the next section. The expregsjo the line appears only once, i.e., in the unperturbed salutio
is valid also for (6), i.e., fork = 0, for which however the

) . - Given the terminal conditions (14) and (15), the currents at
fS%rl(J::r;gsterms (12) vanish due to the absence of dlstnbut%d: 0 are now readily derived as:

the original terminal excitatiarf

The calculation of the forcing terms (12) involves convolu- To(0) = A7 [(@11(6) = Zr @21 (£) Vs = V1] (16)
tion integrals. Yet, these convolutions are reduced todstah 5, the unperturbed solution and
integrals thanks to the exponential dependence of the chain
parameter matrix orz. In fact, substitution of (10) into (12) Zx(0) = Afl[VFTyk(E) —Z1Zpr (L) a7



for the perturbation terms, with A. Uniformly Twisted Pair

The first example is taken from [15] and deals with the
coupling between a TWP and a straight wire (see Fig. 1).

The voltagesV,,(0) at the near-end termination are found b he wires have a total diametér= 1.7 mm and a 0.11-mm
substitution of (16) and (17) into (14) and (15). hick PVC coating (relative permittivity of 3.5). The seption
between the straight wire and the center of the TWR is

2.55 mm, so the three wires are touching when they are lined
E. lterative and Adaptive Solution up horizontally, and they lie at a height= 5 cm above a
erfect ground plane. The line has a length 1 m and the

i Bas;ahd (f)n”the mftorm::ltlon COIIthed in tt:ef prevg)ttjg SEYWP hasN = 25 full twists. The wires are terminated as
ions, the following iterative procedure is put forward the . o\ i Fig. 1(b).

simulation of a NUTL. First, the unperturbed solutidf
and Z, of the line (6) with averaged p.u.l. parameters (4) 5. @ 1 m (TWP: 25 twists)
is calculated using the chain-parameter matrix (10) and the

proper boundary conditions. Next, the first-order equivale @//8\
\ ) §

A = [Qll(E)ZS“FZL@QQ(E)_4’12(6)_ZL¢21(€)ZS]. (18)

distributed source¥r ; andZr,; are calculated with (8), based
on the place-dependent variation of the p.u.l. parameTérs. Som =
first-order perturbation¥; andZ; are computed as the solu-{v e
tion of (7), after incorporating the pertinent forcing texifi3) @ o (b i
into the terminal conditions, as indicated in Section II9e
second-order equivalent distributed sourtes, andZg, are _ _ _ _ _ , , _
T ’ . Fig. 1. Line configuration of a straight wire and a uniformlyisted pair:
then calculated, and the above procedure is iterated umetil Eross-sectional view at = 0 (a) and longitudinal view with terminations (b).
solution has converged below a predefined threshold.
Specifically, at each iteration it is checked whether the The place-dependent cross-sectional-coordinates of the
relative contribution provided by the last perturbatiae.(ithe twisted wires #2 and #3 are given by
I m rturbation term over th m of all avaglabl
ti;?rtncs()) ispustsgicgzrlttlljybg:noallt?n m(;genittugeéuln ?na?h:m?flfcl:t; z2(2) = s + (d/2) Cf)s( #(2))
y2(2) = h+ (d/2) sin(p(2))
)
)

terms, at a given frequency, the solution is stopped at iter- (20)
ation K if x3(z) = s — (d/2) cos(p(z
ys(z) = h — (d/2)sin(p(2)),
Do Vi (2) Tk (2) _ _
max = Max " | =E < Gth, with ¢(z) = a4+ 272zN/¢, and where the angle determines
2 oh—o Ve(2) | | 2keo Zu(2) (19) the position of the TWP at = 0. The position of wire #1 is

where the maximum is intended over all the elements’of fixed in thezy-plane withz; = 0 andy, = 5 cm. Ata given

. L longitudinal itionz, the | ion of the TWP, and hen
andZ. Either the values along the entire line length, or tho gngitudinal positionz, the location of the and hence,
o . . e entire cross-section, is fully determined by the rotati
at the terminations only, may be considered depending on tane lew(2).
guantities of interest. gleelz

A . ¢ Id be found h In order to remove the overhead of the calculation of
S Yet, no rigorous proof could be found as to the guaragq p.u.l. parameters in the following simulations, a plin

‘?nterpolatlon of the inductance and capacitance matrises i
constructed as a function gf. An interpolation over 200
points yields a maximum relative error well bel® %. The
average inductance and capacitance matrices along tharéne

I1I. NUMERICAL RESULTS AND APPLICATIONS 936.6 739.7 739.7

L= 739.7 915.3 808.7 | nH/m
739.7 808.7 915.3

engineering purposes investigated so far, and reportelisn t
paper, this turns out to be the case.

The proposed technique has been implemented in MATLAB
and it is applied in this section to the analysis of nhonumfor
cable lines, containing either TWPs or lacing cords. Refeze and
results are generated by discretizing the line into uniform ~ oL7 —23.1 -23.1
cascaded sections (UCS) [21], [25]. As dielectric coatiags C=| —-231 1071 —79.8 | pF/m,
included, the method in [47] and [48] is used to calculate —231 -798 1071
the p.u.l. capacitance and inductance matrices from thke calespectively, whereas the maximum relative perturbatmins
cross-section at a given position along the line. For thhe matrix entries over the line length d&L/L| .y = 8%
perturbation technique, a cumulative Simpson’s quadeatwand |AC/Cluma = 251%. Whilst the longitudinal variation
is adopted for the calculation of the integrals (13), and tle# the p.u.l. inductance is relatively small, the variatioh
threshold for the adaptive solution is setdg = 1%. The the capacitance matrix is extremely high due to the mutual
simulations are performed on an ASUS U30S laptop with ahielding of wires #2 and #3 with respect to wire #1.

Intel(R) Core(TM) i3-2330M, CPU running at 2.20 GHz and Fig. 2 shows the magnitude of the current on the straight
4 GB of RAM. wire along the first full twist of the TWP, at a frequency of



=90 ; ; ; ; ; ; ; periodicity of the line allows an efficient implementaticitioe
UCS approach. Nevertheless, even when exploiting this very
idealized situation with the UCS, the perturbation techeiq
has a comparable or even lower execution time.

-100r T LR LL P IV

o X-x-x.)()g?(

B. Randomly Twisted Pair

In this second example, a stochastic twisting pattern is

~140r—1cs (a=10°) . k )
ascribed to the TWP of Fig. 1, using the model suggested

kel

T/ - = =UCS (a =90°)
~150p : ggizfﬁzggg Eg - 3())) I in [7]. The configuration of the terminations remains the sam
160, = : = s S - 2 4 However, the rotation angle(z) is now defined as
z [cm)] z
o) = [ aiz, 1)
0

Fig. 2. Magnitude of the current along the straight wire atMHz. Lines:
results computed with the UCS method far= 0° (solid) anda: = 90°  where
(dashed); markers: same results obtained with the proppsetirbation —1/2

technique. alz) = [<g> CL (1’2(_?) 2] 22)

11 MHz. The reference results are computed with the UGfadp(z) (twist pitch function) is a Gaussian stochastic process
approach for two starting positions of the TWP, correspogdi with a nominal valuep,., and correlation function

to a = 0° (solid line) anda. = 90° (dashed line). Each twist .

has been discretized into 128 uniform sections. There is a o(z,2') = 026—%_ (23)

strong impact of the starting position on the current magiaf
as already observed in [15]. The same results are compuldte parameters and p control the nonuniformity and de-
via the proposed perturbation technique (markers) withaup formation of the twisting. For the simulatiop,,,,, = 2 cm,

3 iterations, showing excellent agreement. 0 /Pnom = 0.3 and p/prom = 0.5 are considered [7].
; P I et o @I I
——TUCS (a=10°)
~601 _ _ _uCs (o = 90°) i 4
* perturbation (o = 0°) % ; 1& ky ¥ ‘:; i | R GRS S QIS S
_got._* perturbation (ov =90° { 1 ¥ ' !; l

XK
xR K H X X

e
Fig. 4. Three profile realizations of the stochastic TWP @é&0-cm section
(on scale).

Fig. 4 shows three different realizations (with axis aspect
. ratio preserved) of the randomly twisted pair over a length
10° 1@ of 10 cm. It is important to point out that the structure is

Frequency [He| no longer periodic. For a given realization @fz), the same
spline interpolation as generated for the previous exarigple
Fig. 3. Magnitude versus frequency of the current at theefat-termination Used to retrieve the p.u.l. inductance and capacitanceaesitr
of the straight wire. Curve identification is as in the captiuf Fig. 2. Fig. 5 shows the voltage at the far-end termination of the
straight wire, computed for ten realizations of the stotihas

In addition, Fig. 3 shows the magnitude of the current a&wP with both the UCS method (solid lines) and the proposed
the far-end termination of the straight wire over 300 fregrye perturbation technique (markers). In the former case, itfee |
points from 300 MHz to 1 GHz. Also for this analysishas to be discretized into 4000 uniform sections to achieve
remarkable agreement is established between the referecmevergence, which leads to a simulation time of 180 s for
UCS method and the proposed perturbation technique. Téech realization. In contrast, the perturbation technioly
number of perturbation steps used by the latter varies withquires about 18 s. A remarkable tenfold speed-up is theref
the frequency, and ranges from 2 to 10 in order to achieaehieved with the proposed methodology. It is worth noting
Dax < 1%. Hence, a two-step perturbation as proposed that the exact time depends on the number of perturbatips ste
[42] and [43] is not always accurate enough for this line. Thesed by the adaptive solution, which in turn varies with the
average number of iterations per frequency is 3.5d6t 0° frequency and the specific realization. A maximum number of
and 2.6 fora = 90°, leading to a simulation time of 7.2 s8 perturbations has been used to calculate the results irbFig
and 5.3 s in the two cases, respectively. The simulation tirAdthough not visible in Fig. 5, for the higher frequencieg th
for the UCS is 6.5 s. It should be noted that, in this case, thesults from the UCS and the present method remain identical
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Vi(6)] [dBV]

Frequency [Hz] 12
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Fig. 5. Magnitude of the voltage at the far-end terminatidrthe straight
wire for ten realizations of the randomly twisted pair, cartgal with both the

UCS approach (lines) and the perturbation technique (msjtke Fig. 7. Initial cross-section and wire numbering for the leabundle with

lacing cords.

C. Cable Bundle With Lacing Cords In order to assess the impact of the expansion coefficient
The final example considers a cable bundle with lacirff value is swept from 1 (uniform cable harness) to 3.
cords, which are commonly used to hold wires together frig- 8 shows the corresponding far-end crosstalk voltages
long harnesses. The presence of lacing cords is modeledPEduced on wires #9 (dashed lines) and #4 (solid lines) ey th
proposed in [20] and illustrated in Fig. 6: at the beginningxcitation of wire #8 with a 1V voltage source, and computed
and end of the harness, as well as at the location of théth the UCS technique by discretizing the line into 320
lacing cords, the cable cross-section has a minimum rad®gctions. The results computed with the perturbation tiecien
dimensionr,. The cross-section radius expands between t{@arkers) agree once again very well. Intuitively, the stalk
lacing cords, reaching a maximum valuey. This behavior is in principle reduces for larger values af as this implies that
periodically repeated all over the cable length. Assumirag t the distance between the wires increases in between twalaci
the cords are evenly spaced, the radial coordinate of eaeh viiords, thus reducing the overall coupling. Nonethelessreth
at a given longitudinal position is multiplied by a sinusoidal €Xist some frequencies at which the crosstalk is higher for
coefficient defined as larger values ofx (see, e.g., the region from 5 to 10 MHz).
The simulation times are 107.6 s for the UCS method and
6r-(2) = L(a+ 1)+ 3(a —1)sin(2rz/D — 7/2), (24) 24.7 s for the perturbation technique, which uses a maximum
where D = ¢/(Nrc + 1) is the lace-to-lace distance and

number of 18 iterations, achieving a speed-upldfx.
Npc is the number of lacing cords. A spline interpolatior
of the p.u.l. parameters as a function &f is created to
efficiently sample the inductance and capacitance matiices
the simulations.

=
m
S,
Q)
b E
g
B0
=

~ g0 V() (UCS)

Vi(0) (UCS)

x  Vy(¢) (perturbation)
-100; *  V4(¢) (perturbation) |

lacing cords 10 10° 10° 10’ 10
Frequency [Hz]

Fig. 6. Side view of a cable harness model with lacing cord§. [2

o ) ] ~ Fig. 8. Magnitude of the crosstalk voltage at the far-endnieations of
The application refers to a 24-wire cable with the initialvires #9 and #4, computed with both the UCS approach (dashedsalid

cross-section displayed in Fig. 7. The wires have a radius 'Bfs) and the perturbation technique (markers)dos 1,1.5,2,2.5, 3.

0.75 mm. The radius of the dielectric coating is 1.15 mm and

its relative permittivity is 2.6. The harness lies at a heigh

of 1.8 cm above a PEC ground plane and it Bas- = 19 IV. DiscussionN

lacing cords over a length of 4 m. The wires are terminatedFig. 9 shows the convergence of the maximum relative
as indicated in Table I. difference, given by (19), in the solution of the three con-



TABLE |
RESISTIVE TERMINATIONS OF THE CABLES WITH LACING CORDSIN OHMS.

[wre# | 1 [2[3]4] 5 [6][7]8]o9o]10]11]12]13]14]15]16]17] 18 | 19 [20]21] 22 [23]24]
near end 10 | 100] 5k | 10k ] 100k| 200] 100] 50| 1k | 10 [ 100k| 10k | 1k | 20] 200] 50 [ 200] 200k| 10k | 1k [ 20] 500] 1k | 1k
far end | 100k | 50k | 50| 300| 6k | 10k | 1k | 2k | 20k| 800] 4k | 7k | 800] 40| 20 | 00| 3k | 4k | 100k| 1k | 2k | 20k | 30] 50

uniformly twisted pair =~ randomly twisted pair  cable with lacing cords

10 the perturbation technique scales well with the number of
976.8 MHz 984.7 MHz 88.4 MHz conductors, although the overall efficiency in this specific
\ example is lower due to the small number of discretizations
(320) required by the reference approach.

TABLE Il
COMPUTATIONAL TIME AND SPEED-UP FOR THE CONSIDERED
APPLICATION EXAMPLES.

DN
0 \ example | UcCs approaclﬁ perturbation| speed—ud
-3
10 123456789101 2 3 456 7 81357 911131517 uniformly TWP (@ = 90°) 6.5s 53s 1.2x
iteration count
randomly TWP 180.0 s 18.0 s 10x
cable with lacing cords 107.6 s 24.7 s 4.4x

Fig. 9. Convergence of the maximum relative difference fo®)the three
application examples. The iteration stop threshold of 1%naked by the
horizontal red line.

V. CONCLUSIONS

sidered application examples. It should be noted that thisThiS paper proposed an iterative and adaptive perturba-

maximum difference is calculated over all the terminal volt'©" technl_qu_e for_ the analysis O.f nonuniform multlconQUc-
ages and currents of the line. For each case, the resuls refgf transmission lines. The solution of the NUTL equations
to the frequency exhibiting the lowest convergence rage, i.'S .conver.ted Into the .standard. and well-known solution .Of
976.8 MHz for the uniformly twisted pair, 984.7 MHz fOrumform lines with eqU|vaIer_1t _dlstrlbuted sources depegdi
the nonuniformly twisted pair, and 88.4 MHz for the cabl@" th_e place-glependent variation of the p.u._l. paramears.
with lacing cords. The 1% threshold that determines ligrave _solutlon allows to compute an arbitrary number_of
convergence of the iterative solution is marked as a hot:i;zton'o“a‘rtur.b"’mon.S Of the voltages and currents glong the line.
red line. The plots show that, in most of the situations,raftt;[he S|mulat|c.)n.|s sto_pped when the perturbat!on terms hgve
two iterations the solution is still far from being convedge converged W'.thm agien thr-eshold. The teghlnlqug is applie
The results for the third example also highlight that, itively, to the analysis of crosstalk in cables containing either WP

the convergence becomes slower when the nonuniformityﬁg Itac'?hg C(?[Lds' tlt tl(ernz o Ib?' verg/ acguratteﬁ y(;t_ S|ger11]i|2l§?nt
higher, i.e., as the bundle expansion coefficianincreases. aster than the standard solution based on the discrelreati

The result foraa = 1, corresponding to a uniform cablethe line into uniform subsections.
harness, is not shown as the perturbation method immeyliatel

yields the exact solution.
- . - : H. Haase, T. Steinmetz, and J. Nitsch, “New propagationdets for
Table Il summarizes the computational times required {H electromagnetic waves along uniform and nonuniform cabl&SEE

simulate the application examples, and the speed-up athiev Trans. Electromagn. Compatol. 46, no. 3, pp. 345-352, Aug. 2004.
by the proposed perturbation technique. It is interestingote [2] M. Khalaj-Amirhosseini, "Analysis of coupled nonunifm transmission

: : : : " lines using Taylor's series expansionEE Trans. Electromagn. Com-
that the perturbation technique is faster despite requitire pat, vol. 48, no. 3, pp. 594600, Aug. 2006.

numerical integration of the equivalent sources (13) olaer t[3] M. Tang and J. Mao, “A precise time-step integration moethfor
line length. This is because it solves a uniform line, in vahic  transient analysis of lossy nonuniform transmission Ih&SEE Trans.

- - Electromagn. Compatvol. 50, no. 1, pp. 166-174, Feb. 2008.
Only the equalent forcmg terms need to be calculated apﬁj G. Antonini, “Spectral models of lossy nonuniform matinductor

updated at each iteration. The cumulative integration ligexh transmission lines,IEEE Trans. Electromagn. Compatol. 54, no. 2,
out in an efficient manner by exploiting the diagonal stroetu  pp. 474-481, Apr. 2012.

) P : : [5] K. Afrooz and A. Abdipour, “Efficient method for time-doain analysis
of the place dependent matréx- » thus allowmg to achieve of lossy nonuniform multiconductor transmission line drivby a modu-

a substantial speed-up. lated signal using FDTD techniqud EEE Trans. Electromagn. Compat.
The largest speed-up is achieved in the analysis of the Vol 54, no. 2, pp. 482-494, Apr. 2012.

. . .. . . 6] F. Grassi and S. A. Pignari, “Immunity to conducted noisk data
randomly twisted pair. This is the line that requires thh transmission along dc power lines involving twisted-wirairp above

largest amount of discretizations (4000) in the traditlona ground” IEEE Trans. Electromagn. Compatol. 55, no. 1, pp. 195-
UCS approach, thus suggesting that the proposed method_ js207, Feb. 2013.

ffici for highl if i M h 7] G. Spadacini and S. A. Pignari, “Numerical assessmentdfated sus-
more efficient for highly nonuniform lines. Moreover, t ceptibility of twisted-wire pairs with random nonuniformwisting,” IEEE

analysis of the cable bundle shows that the performance of Trans. Electromagn. Compatol. 55, no. 5, pp. 956-964, Oct. 2013.
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