Advanced search
1 file | 2.45 MB

The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis

(2016) MOLECULAR & CELLULAR PROTEOMICS. 15(8). p.2744-2755
Author
Organization
Project
Biotechnology for a sustainable economy (Bio-Economy)
Abstract
Strigolactones are plant metabolites that act as phytohormones and rhizosphere signals. Whereas most research on unraveling the action mechanisms of strigolactones is focused on plant shoots, we investigated proteome adaptation during strigolactone signaling in the roots of Arabidopsis thaliana. Through large-scale, time-resolved, and quantitative proteomics, the impact of the strigolactone analog rac-GR24 was elucidated on the root proteome of the wild type and the signaling mutant more axillary growth 2 (max2). Our study revealed a clear MAX2-dependent rac-GR24 response: an increase in abundance of enzymes involved in flavonol biosynthesis, which was reduced in the max2-1 mutant. Mass spectrometry-driven metabolite profiling and thin-layer chromatography experiments demonstrated that these changes in protein expression lead to the accumulation of specific flavonols. Moreover, quantitative RT-PCR revealed that the flavonol-related protein expression profile was caused by rac-GR24-induced changes in transcript levels of the corresponding genes. This induction of flavonol production was shown to be activated by the two pure enantiomers that together make up rac-GR24. Finally, our data provide much needed clues concerning the multiple roles played by MAX2 in the roots and a comprehensive view of the rac-GR24-induced response in the root proteome.
Keywords
MAX1, SHOOT, ANALOG GR24, FLAVONOLS, PHOSPHATE, PROTEINS, HORMONE, GENES, AUXIN TRANSPORT, ACTS DOWNSTREAM

Downloads

  • Walton et al. 2016 Molecular and Cellular Proteomics 15 2744.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.45 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Walton, Alan, Elisabeth Stes, Geert Goeminne, Lukas Braem, Marnik Vuylsteke, Cedrick Matthys, Carolien De Cuyper, et al. 2016. “The Response of the Root Proteome to the Synthetic Strigolactone GR24 in Arabidopsis.” Molecular & Cellular Proteomics 15 (8): 2744–2755.
APA
Walton, A., Stes, E., Goeminne, G., Braem, L., Vuylsteke, M., Matthys, C., De Cuyper, C., et al. (2016). The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis. MOLECULAR & CELLULAR PROTEOMICS, 15(8), 2744–2755.
Vancouver
1.
Walton A, Stes E, Goeminne G, Braem L, Vuylsteke M, Matthys C, et al. The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis. MOLECULAR & CELLULAR PROTEOMICS. 2016;15(8):2744–55.
MLA
Walton, Alan, Elisabeth Stes, Geert Goeminne, et al. “The Response of the Root Proteome to the Synthetic Strigolactone GR24 in Arabidopsis.” MOLECULAR & CELLULAR PROTEOMICS 15.8 (2016): 2744–2755. Print.
@article{8113286,
  abstract     = {Strigolactones are plant metabolites that act as phytohormones and rhizosphere signals. Whereas most research on unraveling the action mechanisms of strigolactones is focused on plant shoots, we investigated proteome adaptation during strigolactone signaling in the roots of Arabidopsis thaliana. Through large-scale, time-resolved, and quantitative proteomics, the impact of the strigolactone analog rac-GR24 was elucidated on the root proteome of the wild type and the signaling mutant more axillary growth 2 (max2). Our study revealed a clear MAX2-dependent rac-GR24 response: an increase in abundance of enzymes involved in flavonol biosynthesis, which was reduced in the max2-1 mutant. Mass spectrometry-driven metabolite profiling and thin-layer chromatography experiments demonstrated that these changes in protein expression lead to the accumulation of specific flavonols. Moreover, quantitative RT-PCR revealed that the flavonol-related protein expression profile was caused by rac-GR24-induced changes in transcript levels of the corresponding genes. This induction of flavonol production was shown to be activated by the two pure enantiomers that together make up rac-GR24. Finally, our data provide much needed clues concerning the multiple roles played by MAX2 in the roots and a comprehensive view of the rac-GR24-induced response in the root proteome.},
  author       = {Walton, Alan and Stes, Elisabeth and Goeminne, Geert and Braem, Lukas and Vuylsteke, Marnik and Matthys, Cedrick and De Cuyper, Carolien and Staes, An and Vandenbussche, Jonathan and Boyer, Fran\c{c}ois-Didier and Vanholme, Ruben and Fromentin, Justine and Boerjan, Wout and Gevaert, Kris and Goormachtig, Sofie},
  issn         = {1535-9476},
  journal      = {MOLECULAR \& CELLULAR PROTEOMICS},
  keyword      = {MAX1,SHOOT,ANALOG GR24,FLAVONOLS,PHOSPHATE,PROTEINS,HORMONE,GENES,AUXIN TRANSPORT,ACTS DOWNSTREAM},
  language     = {eng},
  number       = {8},
  pages        = {2744--2755},
  title        = {The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis},
  url          = {http://dx.doi.org/10.1074/mcp.M115.050062},
  volume       = {15},
  year         = {2016},
}

Altmetric
View in Altmetric
Web of Science
Times cited: