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Abstract
Salmonella is frequently found in poultry and represent an important source for human gas-

trointestinal infections worldwide. The aim of this study was to investigate the prevalence,

genotypes and antimicrobial resistance of Salmonella serotypes in broilers from Ecuador.

Caeca content from 388 at random selected broiler batches were collected in 6 slaughter-

houses during 1 year and analyzed by the ISO 6579/Amd1 protocol for the isolation for Sal-
monella. Isolates were serotyped and genotypic variation was acceded by pulsed field gel

electrophoresis. MIC values for sulfamethoxazole, gentamicin, ciprofloxacin, ampicillin,

cefotaxime, ceftazidime, tetracycline, streptomycin, trimethropim, chloramphenicol, colistin,

florfenicol, kanamycin and nalidixic acid were obtained. Presence of blaCTX-M, blaTEM,

blaSHV and blaCMY; andmcr-1 plasmid genes was investigated in resistant strains to cefo-

taxime and colistin respectively. Prevalence at batch level was 16.0%. The most common

serotype was S. Infantis (83.9%) followed by S. Enteritidis (14.5%) and S. Corvallis (1.6%).

The pulsed field gel electrophoresis analysis showed that S. Corvallis, S. Enteritidis and S.
Infantis isolates belonged to 1, 2 and 12 genotypes respectively. S. Infantis isolates showed
high resistance rates to 12 antibiotics ranging from 57.7% (kanamycin) up to 98.1% (nali-

dixic acid and sulfamethoxazole). All S. Enteritidis isolates showed resistance to colistin.

High multiresistant patterns were found for all the serotypes. The blaCTX-M gene was pres-

ent in 33 S. Infantis isolates whilemcr-1 was negative in 10 colistin resistant isolates. This

study provides the first set of scientific data on prevalence and multidrug-resistant Salmo-
nella coming from commercial poultry in Ecuador.

Introduction
Foodborne infections in humans caused by Salmonella are of primary importance around the
world. Majowicz et al. [1] estimated that non-typhoidal Salmonella was the cause of 93.8
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million cases of gastroenteritis, with 155.000 deaths yearly worldwide. For 2010 it was esti-
mated that foodborne salmonellosis caused by non-typhoidal Salmonella resulted in 6.43 mil-
lion Disablility-Adjusted Live Years [2]. Salmonellosis is characterized by acute onset of fever,
abdominal pain, diarrhea and nausea [3]. Salmonellosis is especially important in susceptible
groups such as young, elderly and immunocompromised patients [2]. In Ecuador 3373 human
cases or 21.6 cases/100,000 inhabitants of foodborne salmonellosis were reported in 2014 [4].

Although Salmonella contaminated vegetables and fruits may be the source for human
infection, several domestic animal species are considered as the most important source of
human infection, since such animals are often colonized by this pathogen. Poultry is by far the
main vehicle of these pathogens in the food chain [5–7]. In Latin America some Salmonella
outbreaks in humans linked to chicken consumption are published [8–10]. However data on
the prevalence of Salmonella in industrial reared poultry in Latin America is limited [11–13].

Worldwide the use of antibiotics in husbandry practices is a major concern since this may
promote the development of multidrug-resistant bacteria. Antibiotics in poultry production
systems are widely used to prevent, control and treat bacterial infections as well as growth pro-
moters [14]. These facts are of special relevance in developing countries where misuse of antibi-
otics and the lack of control over their usage is a problem to be addressed [15]. Resistant
bacteria can cause human diseases or transmit its resistance genes to pathogenic bacteria [16].

In Ecuador chicken meat is frequently consumed and its demand increased over the years
[17]. Although Ecuadorian poultry industry only provides chicken meat for local consumption,
it is expected that in the future it can have access to international markets once sanitary condi-
tions are better understood and controlled. Moreover, despite the importance of non-typhoidal
Salmonella as a foodborne pathogen, little is known about its epidemiology on poultry farms,
in slaughterhouses and retail stores in the main centers of production and consumption of
poultry products. This Information may help to establish surveillance programs and interven-
tions measures regarding the presence and antimicrobial resistance of Salmonella.

The aim of this study was to investigate the prevalence, genetic profiles and antimicrobial
resistance of Salmonella in broilers slaughtered in industrial facilities located in the province of
Pichincha in Ecuador.

Materials and Methods

Study design and sampling
Pichincha, the province where Quito the capital city of Ecuador is located, was selected as the
area to collect samples since it is an important region within Ecuador for the production of
broiler meat. Big slaughterhouses were contacted and asked for their willingness to cooperate
in the study. Based on these results sampling was performed in 6 slaughterhouses. From June
2013 to July 2014, a total of 388 batches (birds coming from one broiler house and slaughtered
on the same day) were sampled. Each batch originated from a different epidemiological unit.
All sampled batches were commercially reared and slaughtered at the age of 6 to 7 weeks.

From each batch one caecum from 25 randomly selected chickens were collected, and trans-
ported in an ice box within 1 hour to the laboratory for bacteriological analysis.

Isolation and Identification of Salmonella
From each of the 25 caeca content was aseptically pooled. Therefore, all caeca were immersed
in ethanol, and after evaporation of the ethanol approximately 1 g content/cecum was collected
in a sterile plastic bag. All samples were homogenized by hand during 1 min. after the addition
of 225 ml Buffered Peptone Water (BPW; Difco, BD, Sparks, MD). After the incubation of the
preenrichment media at 37°C for 20 hours 3 drops of each culture medium were spotted onto a
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Modified Rappaport-Vassiliadis agar plate (MSRV; Oxoid, Basingstoke, UK) and incubated at
42°C for 24 hours. Plates were examined for migration and if present a loopful from the edge of
the migration zone was streaked onto a Xylose Lysine Deoxycholate agar plate (XLD, Difco)
and incubated at 37°C for 24 hours. Two presumptive Salmonella colonies were tested using
Triple Sugar Iron agar (Difco, BD), Lysine Iron agar (BBL, BD), Urea agar (BBL, BD) and Sul-
fur Indole Motility medium (BBL, BD) for confirmation.

Characterization of Salmonella isolates
One Salmonella isolate per positive sample was further characterized. To limit the number of
Salmonella strains to be serotyped, isolates were grouped by an enterobacterial repetitive inter-
genic consensus (ERIC) PCR as described by Rasschaert et al. [18]. ERIC PCR was performed
on 59 strains within the same run. Based on ERIC PCR profiles 16 isolates were selected for ser-
otyping. All these selected isolates and the 3 isolates not included in the ERIC PCR run were
serotyped according to the Kauffmann-White scheme.

To characterize the Salmonella strains within each serotype, all isolates were genotyped by
pulse field gel electrophoresis (PFGE) after digestion with XbaI enzyme [19]. The relatedness
among the PFGE profiles was analyzed with GelCompar II software v. 6.6 (Applied Maths,
Sint-Martems-Latem, Belgium). Bands representing fragments between 35 kb and 1140 kb in
size were included in the analysis. A similarity dendrogram was constructed by the unweighted
pair group method using arithmetic averages algorithm (UPGMA). DICE similarity coefficient
with a position tolerance of 1.4 was calculated. A PFGE genotype was assigned on the basis of
the difference in the presence of at least one band in the XbaI fingerprint [20]. Genotypes were
identified by numerical suffixes after a capital indicating the serotype (e.g. I-1 refers to serotype
Infantis).

Antimicrobial Resistance
Antimicrobial resistance was evaluated by determining the minimum inhibitory concentration
(MIC) using the EUMVS2 plates (Thermo Scientific, West Palm Beach, USA). The tests were
performed according to the manufacturer instructions. The following antibiotics were evaluated:
sulfamethoxazole, gentamicin, ciprofloxacin, nalidixic acid, ampicillin, cefotaxime, ceftazidime,
tetracycline, streptomycin, trimethoprim, chloramphenicol, colistin, florfenicol and kanamycin.
Escherichia coliATCC 25922 was used as the quality control strain. Clinial breakpoints values
from the Clinical and Laboratory Standards Institute [21] were considered to determine bacterial
antibiotic resistance for kanamycin and sulfamethoxazole. For all other antibiotics epidemiologi-
cal breakpoint values from the European Committee on Antimicrobial Susceptibility Testing
were considered [22]. Salmonella isolates resistant to cefotaxime where further examined for the
presence of ESBL or AmpC phenotypes by disk diffusion tests [23,24]. According to the disk dif-
fusion results PCR tests were performed to identify blaCTX-M, blaTEM and blaSHV genes in ESBL
isolates and blaCMY in AmpC isolates. PCR conditions and primers were the ones described by
Hasman et al. [25] for blaCTX-M, Olesen et al. [26] for blaTEM, Arlet et al. [27] for blaSHV and;
Hasman et al. [25] and Kruger et al. [28] for blaCMY

Isolates with phenotypic resistance to colistin were tested for the presence of the new
describedmcr-1 plasmid gene by primers described by Liu et al. [29]. For the PCR reaction
mixture the Maxima Hot Start Green PCRMaster Mix (Promega) was used. The total mixture
of 25 μl contained 1 X hot start PCR buffer, 400μM of each nucleotide (dNTP) 4mMMgCl2,
0.2 μM of each primer and 1 μl of the template DNA obtained after boiling during 10 minutes
of 1 colony of the bacteria in 100 μl of DNA free water. The following PCR program was used:
a denaturation step at 95°C for 5 minutes, 35 cycles of 1 minute at 95°C, 0.5 minutes at 60°C, 1
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minute at 72°C, and finally 10 minutes at 72°C. After the PCR, the amplification products were
confirmed by gel electrophoresis using a 2% agarose gel. A PCR amplicon of 308 bp was
expected. As positive control we used the Salmonella autoagglutinable strain S15FP06306, a
strain isolated from poultry and confirmed to have themcr-1 gene by sequencing of the PCR
product and by performing whole genome sequencing on the strain.

Statistical analysis
Prevalence of Salmonella positive batches was estimated using a random-effects logistic regres-
sion model with farms and the sampling occasions per farm as random factors. The 95% confi-
dence interval (CI95%) for the prevalence was calculated once the regression model fit the
intercept. Variance components and their standard deviations and the intraclass correlation
coefficient (ICC) are reported. Function glmer from lme4 package [30] in R environment ver-
sion 3.3.1 [31] was used to estimate the fixed and the random factors. Salmonella prevalence in
farms and its CI95% were estimated under independence assumption for farms and considering
a farm positive when at least one of the sampled batches was positive.

Results
In total 388 batches originated from 119 farms (1 to 9 flocks per farm) were sampled. From all
tested batches 62 (16.0%; CI95%: 12.6–24.5) were Salmonella positive. The variance component
for farms was 0.0237 (SD: 0.154) and 0.0345 (SD: 0.185) for sampling occasions per farm.
Thus, the ICC estimated was 0.5928 as a measure of reproducibility in the sample results. Posi-
tive batches originated from 50 (42.0%; CI95%: 33.1–51.4) farms (Table 1). For 87 farms, more
than one batch was sampled. One, two and three batches were found Salmonella positive on 41,
6 and 3 of those farms respectively.

ERIC-PCR of the 59 Salmonella isolates delivered 2 patterns. Serotyping demonstrated that
pattern 1 corresponded to S. Enteritidis and pattern 2 to S. Infantis (Fig A in S1 File). Direct
serotyping of the other 3 Salmonella strains resulted in 2 strains belonging to S. Infantis and 1
strain to S. Corvallis. In total 52 isolates (83.9%) were S. Infantis, 9 (14.5%) S. Enteritidis and 1
(1.6%) S. Corvallis.

The PFGE analysis (Fig B in S1 File) showed that S. Corvallis, S. Enteritidis and S. Infantis
isolates belonged to 1, 2 and 12 genotypes respectively (Table 2).

Table 1. Salmonella positive batches in relation to the number of tested batches per farm.

Number of batches/farm sampled Number of farms Number of farms with 0, 1, 2 or 3
positive batches

0 1 2 3

1 34 27 7

2 18 12 6

3 12 7 5

4 19 10 8 1

5 17 5 10 2

6 15 6 4 4 1

7 2 1 1

8 1 1

9 1 1

Total 119 70 41 6 3

doi:10.1371/journal.pone.0159567.t001
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Within the S. Infantis strains the genetic similarity was minimal (87% similarity) and the
different genotypes were due to the presence or absence of one band in the obtained profiles.
The genotype I-1 was the dominant genotype (40.4%) within this serotype. Salmonella isolates
from 9 farms with more than 1 Salmonella positive batch, belonged to different serotypes (2
farms), genotypes (5 farms) or serotypes and genotypes (1 farm) (Table 3).

Antimicrobial resistance rates within each Salmonella serotype against the 14 tested antibi-
otics are shown in Table 4 and the MIC distributions for the different antibiotics are shown in
Table B in S1 File. S. Infantis isolates showed a resistance rate of 5.8% and 1.9% for ceftazidime
and colistin respectively, whereas for the other 12 tested antibiotics the resistance rates varied
from 57.7% (kanamycin) up to 98.1% (nalidixic acid and sulfamethoxazole). In contrast, all S.
Enteritidis isolates showed resistance to colistin. The resistance rate for the other antibiotics
ranged from 11.1% up to 33.3%.

S. Infantis isolates showed 19 resistance patterns in which resistance from 2 up to 13 antibi-
otics were involved (Table 5). The resistance pattern 2 (38.5%) was the most frequent one
within S. Infantis isolates. S. Enteritidis isolates presented 4 antibiotic resistance patterns

Table 2. Salmonella genotypes present in each serotype.

Serotype Genotype Nb. of strains

S. Corvallis C-1 1

S. Enteritidis E-1 5

E-2 4

S. Infantis I-1 21

I-2 6

I-3 2

I-4 6

I-5 1

I-6 1

I-7 1

I-8 10

I-9 1

I-10 1

I-11 1

I-12 1

Total 62

doi:10.1371/journal.pone.0159567.t002

Table 3. Salmonella serotypes and genotypes found in farms with multiple positive batches.

Farm Serotypes-genotypes Total

C-1 E-1 E-2 I-1 I-2 I-8 I-9 I-10 I-11

A 1 1 2

B 1 1 2

C 2 2

D 1 1 2

E 1 1 2

F 1 1 2

G 1 2 3

H 1 2 3

I 1 1 1 3

doi:10.1371/journal.pone.0159567.t003
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Table 4. Number of Salmonella strains resistant to each tested antibiotic.

Number (%) of resistant isolates

Antibiotic S. Infantis S. Enteritidis S. Corvallis

Sulfamethoxazole 51 (98.1) 3 (33.3) 1 (100)

Nalidixic acid 51 (98.1) 2 (22.2)

Ciprofloxacin 49 (94.2) 2 (22.2) 1 (100)

Tetracycline 49 (94.2) 1 (11.1)

Trimethropim 47 (90.4) 2 (22.2) 1 (100)

Streptomycin 47 (90.4) 2 (22.2)

Cefotaxime 42 (80.8) 2 (22.2)

Ampicillin 41 (78.8) 1 (11.1)

Florfenicol 40 (76.9) 2 (22.2)

Gentamicin 39 (75) 2 (22.2)

Chloramphenicol 39 (75) 1 (11.1)

Kanamycin 30 (57.7) 2 (22.2)

Colistin 1 (1.9) 9 (100)

Ceftazidime 3 (5.8) 1 (11.1)

doi:10.1371/journal.pone.0159567.t004

Table 5. Antibiotic resistance patterns of Salmonella strains and phenotypes of cefotaxime resistant strains.

Pattern Resistance pattern No. Antibiotics S. Infantis S. Enteritidis S. Corvallis Rate (%) ESBL + strains* blaCTX-M AmpC + strains*

1 SGCAFZTRMHNKL 13 2 3.2% 2 2

2 SGCAFTRMHNKL 12 20 32.3% 15 15 5

3 SGCAFTRMHONL 12 1 1.6% 1

4 SGCAFTRMONKL 12 1 1.6% 1

5 SGCFZRMHONKL 12 1 1.6% 1

6 SGCAFTRMHNL 11 6 9.7% 6 5

7 SGCAFTMHNKL 11 2 3.2% 2 2

8 SGAFTRMHNL 10 1 1.6% 1 1

9 SGCAFTRMKL 10 1 1.6% 1 1

10 SGCAFTRHNL 10 1 1.6% 1 1

11 SGCAFMHNKL 10 1 1.6% 1 1

12 SGCTRMHNKL 10 3 4.8% NA NA NA

13 SCAFTRMNL 9 1 1.6% 1

14 GCAFMHNKL 9 1 1.6% 1 1

15 SCTRMHNL 8 1 1.6% NA NA NA

16 SCAFZTRL 8 1 1.6% 1 1

17 SCAFTRL 7 3 4.8% 3 3

18 SCFTRML 7 1 1.6% 1

19 SCTRML 6 4 6.5% NA NA NA

20 STRML 5 1 1.6% NA NA

21 SCM 3 1 1.6% NA NA

22 SO 2 1 1.6% NA NA

23 SM 2 1 1.6% NA NA

24 O 1 6 9.7% NA NA

Total 52 9 1 34 33 10

Sulfamethoxazole (S), ciprofloxacin (C), nalidixic acid (L), tetracycline (T), trimethoprim (M), cefotaxime (F), ampicillin (A), florfenicol (N), gentamicin (G),

chloramphenicol (H), kanamycin (K), streptomycin (R), colistin (O) and ceftazidime (Z).

NA: Not Applicable.

*Number of strains with ESBL or AmpC phenotype according to disk diffusion test.

doi:10.1371/journal.pone.0159567.t005
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containing 1 (pattern 24, 6 strains), 2 (pattern 21, 1 strain) and 12 (patterns 4 and 5, both one
strain) antibiotics. Two S. Enteritidis isolates were resistant to 12 antibiotics. The S. Corvallis
isolate was resistant to 3 antibiotics.

From the 44 Salmonella isolates that showed resistance to cefotaxime 34 presented a ESBL
phenotype and were S. Infantis, while 10 presented an AmpC phenotype with 2 S. Enteritidis
and 8 S. Infantis. None of the ESBL isolates were positive by PCR for the blaTEM or blaSHV

genes, while 33 of these isolates were positive for the blaCTX-M gene. None of the AmpC isolates
were positive for the blaCMY gene. None of the 10 colistin resistant strains were positive for the
mcr-1 plasmid gene by PCR.

Discussion
To our knowledge, this is the first study about Salmonella in commercial reared broiler batches
at slaughter in Ecuador. Results indicate that 15.9% of the batches slaughtered in the province
of Pichincha are Salmonella positive. This result is similar to the prevalence reported in Vene-
zuela (23%; n = 332) [32]. In contrast prevalence in Brazil was only of 5% (n = 40) [33] and in
Colombia 65% (n = 315) [34]. On the other hand, for the European Union member states and
3 European non-member states an overall Salmonella prevalence of 3.37% at farm level was
reported with rates varying from 0.08% in Norway to 13.48% in Hungary in 2014 [35].

Only S. Infantis (83.9%), S. Enteritidis (14.5%) and S. Corvallis (1.6%) were found in posi-
tive batches. These findings contrast with data from Colombia, where a wider diversity of Sal-
monella serotypes were reported in broilers at slaughter age [36]. These authors found 31
serotypes among 378 examined Salmonella strains with the most common serotypes being S.
Paratyphi B dT+, S. Heidelberg, S. Enteritidis and S. Typhimurium. Similarly, data from Vene-
zuela indicated that the most prevalent Salmonella serotypes at slaughterhouse level were S.
Parathyphi B and S. Heidelberg [32]. On the other hand, in Brazil the most prevalent serotypes
in chicken carcasses were S. Enteritidis, S. Infantis, S. Typhimurium and S. Heidelberg [37]. In
the European Union the most reported serotypes at farm level were S. Infantis (43.4%) followed
by S. Mbandaka (13.5%), S. Livingstone (7.3%) and S. Enteritidis (7.3%) in 2014 [35]. Accor-
dantly, the emergence of S. Infantis in human salmonellosis has been reported [38]. The role
poultry in human salmonellosis caused by S. Infantis in Ecuador needs further research.

Moreover, PFGE analysis demonstrated that the S. Infantis strains were genetically very
similar. Although there were 12 identified genotypes within S. Infantis, most of them varied in
1 to 2 bands with similarities above 88%, which suggest that these strains are highly related
[20]. This is in accordance with other studies that showing a high similarity of S. Infantis within
poultry, other animal and human isolates [39–42].

The reason why only 3 Salmonella serotypes were found and the S. Infantis strains showed a
high genetic similarity in the present study is not clear and need further research for clarifica-
tion. In a first step collection of samples from all over Ecuador may give a broader view of Sal-
monella serotypes present in broilers at national level. Moreover, such a study may also
confirm the prevalence of Salmonella in broilers observed in the present study.

High antibiotic resistance rates were shown against most of the tested antibiotics within S.
Infantis strains. S. Infantis strains showed also higher multiresistant patterns than S. Enteriti-
dis. Of the S. Infantis strains 44.2% showed resistance to at least 12 antibiotics, whereas 22.2%
of S. Enteritidis strains presented resistant patterns to 12 antibiotics. In concordance, for Brazil
71.3% (n = 87) of Salmonella strains isolated from poultry houses were reported to be resistant
to chloramphenicol, ampicillin, ceftazidime, ciprofloxacin, nalidixic acid, tetracycline, sulfa-
methoxazole, and trimethoprim/sulfamethoxazole [43]. Although S. Enteritidis has been found
to be susceptible to most antibiotics [44,45], antibiotic resistance has also been reported to β-
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lactam antibiotics, sulfonamides, quinoxalines, fluoroquinolones and tetracyclines [46–48].
Moreover, 2 S. Enteritidis isolates presented resistance towards 12 antibiotics which is in accor-
dance with previous findings [49]. This is of special interest since it suggests that in high antibi-
otic pressure environments, non-classical multidrug resistant (MDR) Salmonella serotypes can
emerge.

In the present study 85.5% and 83.9% of Salmonella strains were resistant to nalidixic acid
and ciprofloxacin respectively. High resistance rates to fluoroquinolones have been reported in
Salmonella. For example, EFSA and ECDC reported for 2013 high to extremely high levels of
resistance to these 2 antibiotics in Salmonella from broilers [45]. A study in Serbia showed that
100% of S. Infantis strains were resistant to ciprofloxacin and nalidixic acid [42] while Rahmani
et al., demonstrated high fluoroquinolone resistance in both, S. Infantis and S. Enteritidis [41].
High fluoroquinolone resistance rates reported in our study may be explained by the selective
pressure of resistant strains under the common use of fluoroquinolones as therapeutics in
Ecuadorian broiler farms.

Low rates of colistin resistant in Salmonella has been described before [41,50,51]. However,
it has been suggested that S. Enteritidis may have increased colistin MIC values [52]. This is in
accordance with our results where 77.8% of S. Enteritidis and 1.9% of S. Infantis strains pre-
sented a colistin resistant phenotype. On the other hand, other studies have reported that resis-
tance to colistin in Salmonella enterica isolated from food animals was mainly presented in S.
Typhimurium but not in S. Enteritidis or S. Infantis [53,54]. Since the resistance in the pheno-
type positive Salmonella strains was not attributable to themcr-1 plasmid gene, it may be
assumed that mutations in the chromosomal genes were the source for the observed resistance
[29]. Even though themcr-1 plasmid gene has been mainly described in E. coli from Latin
America, Europe and Asia [29,55–57] this gene has also been observed in Salmonella enterica
from European countries like UK, Spain and France [58–60]. These data suggest thatmcr-1
gene might be present in Salmonella enterica in Latin America, but further research is needed
to confirm this assumption.

In accordance with findings from other studies carried out in Latin America, β-lactam-resis-
tant Salmonella isolates were identified [34,61,62]. Although blaTEM and blaSHV are reported as
common genes in resistant Salmonella [43,63], these resistance genes were not found in our
strains. However, studies in Brazil and USA have identified the blaCTX-M genes as the most
prevalent ESBL genes in Salmonella recovered from poultry [64,65] which is in accordance
with our results. It should be taken into account that, even though the main families of beta-
lactamases were included in this study, resistance to beta-lactams present in the negative strains
could be mediated by other ESBL or AmpC genes [14,66]. The presence of these strains in
Ecuadorian broilers is of public health concern since resistance to β-lactam antibiotics, listed as
WHO Essential Medicines [67], may limit the options to treat human Salmonella infections.

Moreover, all antibiotics, with exception of colistin and ceftazidime, showed high rates of
antimicrobial resistance indicating the necessity of a better use of antibiotics and biosecurity
implementation in the primary sector to reduce the multidrug-resistant bacteria loads in broil-
ers reared in Ecuador. It is worth to mention that there is a global trend towards an increase of
antimicrobials consumption in the animal production sector [68]. This place a concern since
the misuse of antibiotics in livestock production can lead to the occurrence of MDR bacteria,
especially in low- and middle-income countries frequently lacking a clear legislative framework
about the use of antibiotics in the animal production sector [69].

In conclusion, this study provides the first set of scientific data on prevalence and multi-
drug-resistant Salmonella originating from commercial poultry in Ecuador. This evidence may
be useful for implementation of official policies aiming to decrease the prevalence of Salmo-
nella in poultry farms.
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Supporting Information
S1 File. Fig A, ERIC-PCR profiles of the 59 tested Salmonella isolates. Fig B, PFGE profiles of
the 62 Salmonella isolates collected from the positive broiler batches. Table A, Distribution of
the minimal inhibitory concentration values for the 62 Salmonella isolates collected from the
positive broiler batches.
(PDF)
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