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21 Introduction 

CLOSTRIDIUM DIFFICILE 
 

1 THE ORGANISM 

In 1935, Hall and O’Toole isolated a novel anaerobic bacterium from the stool of healthy infants. 

They named it Bacillus difficilis referring to the difficulties they encountered in its isolation and 

culture. It was later renamed as Clostridium difficile.1 It was, however, not until 1978 that C. difficile 

was recognized as a human pathogen associated with severe disease.2 In the past decade however, it 

has emerged rapidly as one of the most important healthcare associated pathogens and is associated 

with prolonged treatment and hospital stay leading to increased healthcare costs.3, 4  

1.1 GENERAL CHARACTERISTICS 

C. difficile is a Gram-positive, toxin-producing, rod-shaped bacterium that grows in strictly anaerobic 

conditions. Vegetative cells are 2-8 µm long and 0.5 µm wide.1, 2 The bacterium is highly motile due 

to the presence of peritrichous flagellae.5 Under unfavorable conditions such as nutrient deprivation 

or exposure to high temperatures, it is able to form highly resistant spores which can survive for 

months. C. difficile can be part of the normal intestinal microbiota without causing disease. Up to 

70% of all newborns and 3% of adults are asymptomatically colonized with C. difficile and are a 

potential source for the spread of the pathogen.6, 7 C. difficile is heterotrophic since it requires the 

presence of 6 amino acids (cysteine, isoleucine, leucine, proline, tryptophan and valine) for optimal 

growth.8 A recent report however, recognizes the bacterium as the first autotrophic bacterial 

pathogen since it was able to grow with CO2 and H2 as sole carbon and energy source. This great 

metabolic flexibility could be a major asset in the pathogenicity of C. difficile.9  

1.2 GENETICS 

C. difficile belongs to the Clostridiaceae and the genus Clostridium. The genus Clostridium is a very 

heterogeneous group of bacteria that do not form a phylogenetically coherent group. It is subdivided 

in different clusters based on gene or protein sequences. C. difficile is one of the pathogens 

belonging to cluster XI.10, 11 C. difficile strains are subdivided in different types based on whole 

genome DNA sequencing. Strain typing is important to detect and understand changes in 

epidemiology and to identify epidemic hospital outbreaks. Different typing techniques have been 

used including toxinotyping based on changes in the pathogenicity locus, ribotyping based on 
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ribosomal DNA, restriction enzyme analysis or pulsed field gel electrophoresis, both based on whole 

genome DNA.12-15 

The first whole genome sequence was obtained in 2006 from C. difficile strain 630. This virulent, 

multi-drug resistant strain was isolated from a Swiss patient with severe pseudomembranous colitis. 

The genome consisted of a circular chromosome of 4 290 252 bp and a plasmid of 7881 bp. Up to 

11% of the genome consisted of mobile genetic elements, mainly conjugative transposons, which 

might play an important role in the acquisition of genes involved in e.g. antimicrobial resistance and 

virulence.16 

1.3 VIRULENCE FACTORS 

1.3.1 TOXIN A AND B 

PATHOGENICITY LOCUS 

The two best characterized virulence factors of C. difficile are toxin A (TcdA) and toxin B (TcdB). 

Different studies indicate the importance of these two toxins since clinical isolates that lack both 

toxins are nonpathogenic to humans and animals. Both toxins are encoded by genes localized on a 

19.6 kb large pathogenicity locus (PaLoc) (Figure 1). This locus furthermore contains genes encoding 

a positive regulator of toxin expression (TcdR), a negative regulator (TcdC) and a bacteriophage 

related pore forming protein (TcdE). Toxin synthesis is growth-phase dependent and at its maximum 

in the stationary growth phase. Toxin expression is regulated by different environmental signals 

including nutrient depletion, carbon source and antibiotics. TcdR encodes an alternative sigma factor 

for RNA polymerase that specifically triggers the transcription of tcdA and tcdB genes. Moreover, 

TcdR expression is autoregulated and an initial small increase in its expression will result in a rapid 

accumulation of TcdR.17 During the exponential growth phase, TcdC is expressed. TcdC is a small 

acidic protein that acts as a negative regulator of toxin expression. It is an anti-sigma factor that 

prevents interaction between TcdR-RNA polymerase and the toxin promoters. Epidemic 

C. difficile 027 strains appear to have a mutation in tcdC resulting in a higher toxin production which 

appears to be in part the reason for their hypervirulence.18 TcdE encodes a small hydrophobic protein 

and is required for efficient release of the toxins. Moreover, it seems to protect the C. difficile cells 

themselves from cell lysis or membrane permeability during toxin secretion.19  
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Figure 1. Composition of the PaLoc region. TcdA and tcdB encode the two most important C. difficile 

virulence factors: toxin A and toxin B, respectively. Toxin expression is regulated by a positive regulator 

encoded by tcdR and a negative regulator encoded by tcdC. TcdE is related to a pore forming protein produced 

by bacteriophages. 

 

STRUCTURE 

Toxin A and B are members of the large clostridial toxins family. Toxin A has a molecular size of 

308 kDa and toxin B has a mass of 269.6 kDa. Both toxins are the prototypes of the clostridial 

glycosylating toxins. Their structure is based on the ABCD model and contains a biologically active 

domain (A), a receptor binding domain (B), an autocatalytic domain for toxin processing (C) and a 

translocation domain (D).20 (Figure 2) 

 

 

Figure 2. Structure of toxins A and B. Toxin A consists of 2710 amino acids and has a molecular size of 

308 kDa. Toxin B is made up of 2366 amino acids and has a mass of 269.6 kDa. Both toxins contain four 

domains based on the ABCD model. The N-terminal glucosyltransferase domain A comprises the biological 

activity of the toxins. The cysteine protease domain C is the autocatalytical site necessary for processing of the 

toxin. Domain D contains a hydrophobic region that is necessary for membrane translocation. The C-terminal 

domain contains polypeptide repeats involved in receptor binding.  
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MECHANISM OF ACTION 

The C-terminal region of both toxins is involved in receptor binding and contains combined repetitive 

oligopeptides that consist of multiple short and long amino acid repeats. These amino acid repeats 

form motifs that bind sugar moieties on the surface of the host cells. It still remains unclear what the 

exact binding ligands on the host cells are. TcdA has been shown to bind α-Gal-(1,3)-β-Gal-(1,4)-β-

GlcNAc but this sugar cannot be found on human cells.21 TcdA is also able to interact with the 

disaccharide β-Gal-(1,4)-β-GlcNAc which is found on human I, X and Y blood antigens and 

glycosphingolipids but it is not clear if these serve as ligands in the human colon as well.22 Sucrose-

isomaltase has been identified as a receptor in the rabbit ileum but this protein is not found on 

target cells in the human colon.23 For TcdB, the situation is even less clear. TcdB is able to invade 

different cell types suggesting a common receptor but it still remains unidentified.24 

 

  

Figure 3. Mechanisms of intoxication. The toxins bind with a receptor on the surface of the enterocytes 

(1). The complex is internalized by endocytosis (2). Acidification of the endosome (3) induces a conformational 

change externalizing the autocatalytic and glucosyltransferase domain (4). The glucosyltransferase domain is 

released into the cytosol (5) and inactivates Rho GTPases (6). 
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After receptor binding, the whole complex is internalized by clathrin mediated endocytosis.25 

Acidification of the endosome induces a conformational change exposing the hydrophobic region in 

the translocation domain enabling insertion into the endosomal membrane. Hereby, the 

autocatalytic and glucosyltransferase domain are delivered into the cytosol.26 Release of the 

enzymatic glucosyltransferase domain is dependent on cellular inositol hexakiphosphate (InsP6).27 

InsP6 might play an important role in stabilization of toxin conformation essential for proper 

proteolytic activity and/or cleavage.20 Once cleaved, the enzymatic glucosyltransferase domain is 

released into the cytosol and inactivates Rho GTPases (Rho, Ras and Cdc42) by monoglucosylation of 

Thr.37, 20, 28, 29 (Figure 3) Rho GTPases are involved in many cellular processes including the regulation 

of the actin cytoskeleton. Inactivation of RhoGTPases by TcdA and TcdB causes a disruption of cell-

cell junctions resulting in increased epithelial permeability and luminal fluid accumulation associated 

with CDI. Moreover, the toxins can induce cell rounding and cell death by apoptosis and necrosis.30, 31 

Both toxins also trigger the release of proinflammatory cytokines from immune and epithelial cells 

including TNF-α and IL-8. IL-8 is important in the pathogenesis of CDI since it is involved in the 

recruitment and activation of neutrophils which are typically present in high amount at the site of 

inflammation.32 

IMPORTANCE OF TCDA AND TCDB IN DISEASE 

In the 1980s, researchers postulated that TcdA was the main virulence factor responsible for CDI. 

Results of animal studies indicated that administration of purified TcdA to hamsters caused disease 

while administration of TcdB alone did not. However, challenge of hamsters with TcdB and a low 

concentration of TcdA was able to induce disease symptoms. Co-administration of TcdA and TcdB 

even resulted in more severe disease. Based on these results, they concluded that both toxins 

worked synergistically with TcdA being responsible for initial intestinal damage allowing TcdB to 

exert its cytotoxic activity.33 TcdA was associated with extensive tissue damage and fluid 

accumulation in the intestinal tract and was named enterotoxin while TcdB was named cytotoxin due 

to its 1000-fold more potent cytotoxic activity against cultured cells.34, 35 The discovery of pathogenic 

strains that only produce TcdB and not TcdA (TcdA-TcdB+) forced researchers to adjust their initial 

findings. Pituch et al. reported that up to 11% of all their clinical isolates were TcdA-TcdB+.36 In 

addition, no TcdB-negative strains (TcdA+TcdB-) that only produce TcdA have yet been isolated. Lyras 

et al. provide evidence that TcdB is essential for virulence of C. difficile since results of in vitro and in 

vivo tests prove that TcdA mutants were still as virulent as the wild type strain while TcdB mutants 

were associated with a significantly attenuated virulence phenotype.37 However, Kuehne et al. 

indicated the importance of both toxins since a TcdB mutant producing only TcdA was indeed able to 
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induce disease after challenge of hamsters. These contradictory results indicate the necessity of 

further research to definitively define the exact role of both toxins.35 

1.3.2 BINARY TOXIN 

In addition to toxins A and B, a third toxin has been identified known as the binary toxin CDT. Up to 

23% of all C. difficile strains produce this additional toxin including the hypervirulent strain 027.38 CDT 

is an actin-specific ADP-ribosyltransferase that consists of two subunits: CDTa, the enzymatic 

component, and CDTb, the binding component, that are encoded by the genes cdtA and cdtB 

respectively, located on a 4.3 kb locus on the C. difficile chromosome, known as the CDT locus. It 

additionally contains cdtR that encodes a response regulator that controls the transcription of cdtA 

and cdtB.39, 40 CDTb is responsible for receptor binding and translocation of the enzymatic component 

CDTa into the cytoplasm of the host cell. Lipolysis-stimulated lipoprotein receptor was identified as 

the host cell receptor for CDT and is highly expressed in the gut.41 Once in the cytoplasm, CDTa 

catalyzes the ADP-ribosylation of monomeric actin, thereby interfering with the polymerization of 

actin and inducing depolymerization of actin filaments. Actin is involved in many cellular functions 

including establishment of cell morphology. Inhibition of actin polymerization and depolymerization 

causes a complete disruption of the actin cytoskeleton and loss of cell integrity.42 Moreover, it 

induces the formation of microtubule based protrusions on the surface of epithelial cells with an 

increased adherence of clostridial cells to the intestinal epithelium as a result.43 Binary toxin positive 

strains have been associated with a higher mortality rate, more severe diarrhea and relapses. They 

are more likely community associated, indicating that it has indeed a contribution to the 

pathogenicity of the infecting strain.44-47 In addition, a recent report describes the isolation of 

C. difficile strains from patients with diarrhea due to CDI which are positive for binary toxin but 

negative for toxins A and B.48  

1.3.3 OTHER VIRULENCE FACTORS 

Not only the above described toxins are involved in the pathogenicity of C. difficile. Numerous 

studies have highlighted a number of other factors that have been associated with virulence. 

Successful colonization of C. difficile starts with the attachment of the strain to intestinal host cells. 

Different colonization factors have been described including flagellin FliC and flagellar cap protein 

FliD, fibronectin binding protein Fbp68, cell wall proteins Cwp66 and Cwp84, surface layer protein 

SlpA and a heat shock protein GrOEL.49-54  
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2 CLOSTRIDIUM DIFFICILE ASSOCIATED DISEASE IN HUMANS 

C. difficile causes a spectrum of disease with varying severity ranging from asymptomatic carriers 

over mild, moderate or severe diarrhea to a fulminant and possibly life threatening 

pseudomembranous colitis.55 Macroscopic observations after endoscopy typically reveal 

characteristic white/yellow plaques spread throughout the colon mucosa that might explain the 

malabsorption and observed diarrhea. Typical microscopic features associated with C. difficile 

infections (CDI) are a marked mucosal and submucosal edema and the presence of neutrophils. 

Pseudomembranous colitis is characterized by ‘volcanic eruptions’ that contain an overload of fibrin, 

mucin, neutrophils and deteriorated mucosa.56, 57 

2.1 RISK FACTORS 

The most important risk factors associated with CDI are antibiotic exposure, advanced age and 

hospitalization. The intestinal microbiota plays an important role in protecting the host against 

invading harmful microorganisms, a mechanism which is known as colonization resistance. 

Disturbances in this complex ecosystem makes the host susceptible for gastrointestinal infections. In 

the case of CDI, the disruption of the intestinal microbiota is mainly associated with the consumption 

of antibiotics. Antibiotic administration has a drastic effect on the composition of the gut microbiota 

and is associated with a decreased bacterial diversity. The induced changes are antibiotic- and host-

specific. If antibiotic therapy is stopped, the gut microbiota is able to partially recover but some 

effects are persistent.58  

A large study conducted by Wiström et al. indicated that up to 12% of patients receiving antibiotic 

therapy develop diarrhea.59 Other studies even report incidences of diarrhea in up to 30% of patients 

receiving antibiotics.60, 61 Although Tedesco et al. stated in 1974 that patients receiving clindamycin 

developed diarrhea in 21% of cases and pseudomembranous colitis in 10% of cases for various 

reasons, it was not until 1978 that C. difficile was identified as the major cause of antibiotic 

associated pseudomembranous colitis.62, 63 A subsequent reduction in the use of clindamycin was 

associated with a reduced risk of clindamycin associated colitis. The frequent use of second and third 

generation cephalosporins in the 1980s-1990s was associated with a high risk for developing CDI 

which lasts until today.64 Fluoroquinolones were first introduced as antimicrobials in 1988 but only in 

2001 was the association made with an increased risk for CDI.65 The hypervirulent ribotype 027, 

responsible for major hospital outbreaks of CDI in North America and Europe, was found to be 

fluoroquinolone resistant.66, 67 Table 1 gives an overview of the risk associated with different 

antibiotics. 
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Table 1. Antibiotics: Risk of C. difficile associated diarrhea 68 

High risk Moderate risk Low risk 

Cephalosporins (3rd generation) Narrow-spectrum Sulfonamides 

Clindamycin Cephalosporins Nitrofurantoin 

Fluoroquinolones Macrolides Mandelamine 

Broad-spectrum penicillins Trimethoprim-sufamethoxazole Vancomycin (IV) 

 Carbapenems Metronidazole 

  Aminoglycosides 

  Rifampicin 

 

The two other major risk factors are hospitalization and advanced age with CDI being most 

commonly diagnosed in hospitalized patients older than 65 years.67, 69, 70 A comprehensive survey by 

Karlström et al. clearly indicated a dramatic increase in the incidence of CDI in patients after the age 

of 60 years.71 Since aging is associated with an impaired immune function, it might be possible that 

older patients do not develop an efficient immune response against C. difficile toxins as compared to 

younger individuals but this remains to be confirmed.72 The hospital setting brings together a number 

of factors that make it an ideal environment for C. difficile to survive and cause infections including 

the frequent use of antibiotics, close contact with infected patients and the easy spread of 

disinfectant-resistant spores to other patients by health care workers. Other risk factors that have 

been associated with CDI are underlying disease, nasogastric tubing, use of gastric acid suppressants 

and the use of anticancer drugs.73-76  

2.2 INFECTION CYCLE 

C. difficile can be found throughout the environment, especially in the soil. It can be found in the 

human gut as part of the indigenous gut microbiota in up to 3% of adults without causing disease. A 

colonization rate as high as 70% can be found in newborns without causing disease. This might have 

several causes including the absence of toxin receptors on enterocytes or downstream signaling 

pathways in the immature gut mucosa, competition with the maturing infant gut microbiota and 

maternally acquired protective factors.6, 7 C. difficile spores are commonly found in the healthcare 

facilities on different surfaces in the environment (e.g. floor, toilet, bathroom,…) and medical 

equipment (thermometer, blood pressure monitor,…). Spores can be spread by direct person-to-

person contact with infected patients or indirectly by the hands of healthcare workers.77, 78 C. difficile 

is transmitted through the fecal-oral route. Upon oral ingestion of C. difficile, vegetative cells get 

killed in the stomach but spores can survive the acidity of the stomach and pass into the small bowel. 
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Once in the small intestine, the spores germinate to vegetative cells under the influence of bile salts. 

Disruption of the gut microbiota abolishes the colonization resistance that confers protection against 

pathogens giving C. difficile the chance to persist in the large bowel. C. difficile colonizes the colon 

and produces several virulence factors that are associated with disease. The two best characterized 

virulence factors are toxins A and B. Toxin production induces the synthesis of TNF-α and pro-

inflammatory interleukins leading to an increased vascular permeability, recruitment of neutrophils 

and monocytes, loss of epithelial integrity and epithelial cell apoptosis. Local production of hydrolytic 

enzymes causes degradation of connective tissue which leads to colitis, pseudomembrane formation 

and watery diarrhea (Figure 4). Some strains produce an additional toxin, the binary toxin CDT but its 

precise role in disease development is not yet well understood. Thus, three major events are 

associated with pathogenicity of C. difficile: alteration of the indigenous gut microbiota, intestinal 

colonization with toxigenic C. difficile and multiplication of the strain associated with toxin 

production.79  

 

 

Figure 4. C. difficile pathogenesis. C. difficile vegetative cells colonize the colon and produce several 

virulence factors (1). Toxins A and B induce the production of tumor necrosis factor-α and proinflammatory 

interleukins leading to increased vascular permeability, recruitment of neutrophils and monocytes (2), loss of 

epithelial cell junctions (3) and apoptosis of epithelial cells (4). Production of hydrolytic enzymes causes 

degradation of connective tissue which eventually leads to colitis, pseudomembrane formation (5) and watery 

diarrhea.
79
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2.3 CHANGING EPIDEMIOLOGY 

C. difficile is one of the leading causes of health care associated infections. Until the late 1990s, 

incidences of CDI remained relatively stable. In the past decade however, the epidemiology changed 

dramatically worldwide with different publications reporting increasing incidence and severity. Over 

the past five years, C.difficile has even replaced methicillin resistant Staphylococcus aureus (MRSA) as 

the most common cause of healthcare associated infections in the United States.80 CDI incidence 

increased from 3.82 per 1000 hospital discharges in 2000 to 8.75 per 1000 hospital discharges in 

2008 and is diagnosed in 0.9% of all hospital admissions with a mortality rate of 9.1%.81 In Belgium, 

C. difficile is responsible for 4.2% of all healthcare associated bacterial infections. CDI incidences in 

Belgium have been rising since 1998 but stabilized at high level since 2004. In 2009 and 2010, a small 

decrease was noted after which the mean incidence remained stable at high level for the past 

4 years. In 2014, a mean incidence of 1.49 and 0.86 cases per 1000 admissions was calculated for all 

CDI episodes and hospital-acquired CDI episodes respectively.82-84  

As stated above, antibiotic exposure, advanced age and hospitalization are the most important risk 

factors for CDI. C. difficile is, however, more and more isolated from people lacking these traditional 

risk factors. Community-acquired cases (CA-CDI) are being reported more frequently. CDI is defined 

as community acquired if symptoms occur in the community, within 48 hours after hospitalization or 

12 weeks post-hospitalization.85 In the United Kingdom, incidences increased from 0 to 18 cases per 

100 000 persons per year between 1994 and 2004.86 In Sweden, 22-28% of all cases of CDI were 

community acquired.71, 87 From 2007 to 2011, 36-38% of all cases of CDI in Belgium are not hospital 

acquired. As opposed to data from other countries, there is currently no evidence that CA-CDI cases 

in Belgium are rising.83 Moreover, Fellmeth et al. showed that more than half of all CA-CDI cases are 

not associated with the standard risk factors including advanced age and antibiotic exposure.88 

Patients suffering from CA-CDI appear to be younger and a higher proportion of females is affected 

as compared to healthcare associated CDI. The disease appears to be less severe and relapses are 

less likely. Moreover, a substantial part of the infections is not associated with antibiotic 

exposure.89, 90  

A number of different reasons can explain the recent rise in morbidity and mortality due to CDI 

including advances in technology leading to better diagnostic techniques and better surveillance 

programs with obligatory reporting of cases. One of the main reasons, however, is the emergence of 

a new hypervirulent clone called BI/027/NAP1 (ribotype 027). This strain overproduces the virulence 

toxins A and B and binary toxin. It was first associated with an epidemic outbreak in 2002 in southern 

Canada where an unusual increase in the incidence and severity of CDI was detected.66, 91 This 
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epidemic strain spreads rapidly through Northern America and Europe.92, 93 It was isolated for the 

first time in Belgium in 2005 and was responsible for a rise in mortality. Nowadays, a decline is noted 

in the number of infections due to ribotype 027 but it is being replaced by other virulent strains. For 

example, ribotype 106 is now one of the most commonly found strains in the United Kingdom.94 In 

Belgium, ribotypes 002, 014, 020 and 078 are now more frequently isolated than ribotype 027.95 

2.4 RECURRENT INFECTIONS 

One of the major problems with CDI is the high rate of recurrent infections. Recurrent infections can 

be defined as complete resolution of symptoms followed by reoccurrence of the disease. A first 

episode of recurrence occurs in 15-35% of patients but up to 65% of these patients will suffer from 

additional recurrences. Recurrent infections can be caused by either reinfection with a new strain or 

relapse with the original infecting strain. Reinfection is most likely caused by germination of 

endogenous C. difficile spores after antibiotic treatment is stopped. For reinfections, spores in the 

environment and contact with other C. difficile patients are the most important sources of infection. 

Relapse and reinfection is thought to occur at approximately the same rate.79, 96, 97 Risk factors 

associated with recurrent disease include age higher than 65 years, additional antibiotic therapy after 

CDI treatment, increased severity of underlying disease and a low immune response against 

C. difficile toxin A.98 Evidence exists that an adequate antibody response to C. difficile toxin A during 

an initial episode of CDI is associated with protection against recurrence.98 

2.5 CURRENT TREATMENT STRATEGY 

2.5.1 ANTIBIOTIC THERAPY 

Since CDI is the consequence of antibiotic consumption, an important initial step in the treatment of 

the disease is the discontinuation of the inciting antibiotic as soon as possible. Different studies show 

that simultaneous use of antibiotics for reasons other than CDI is associated with prolonged diarrhea 

and an increased risk of recurrent CDI. If ongoing antibiotic therapy is however necessary for 

treatment of the primary infection, it is recommended to choose antibiotics that are less frequently 

associated with the development of CDI.99, 100 Additional treatment measures also include 

administration of fluids and electrolytes, avoidance of anti-motility drugs and revised use of proton 

pump inhibitors.101 

In mild cases of CDI, discontinuation of the inciting antibiotic might be sufficient to resolve disease. 

Most patients will however need additional antibiotic therapy. Metronidazole and vancomycin are 

the two main antibiotics used to treat CDI. Disease severity determines which antibiotic should be 

used. Mild-to-moderate CDI is treated with metronidazole while vancomycin is the drug of choice for 
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severe or complicated disease.99, 100 Several studies indicate that metronidazole is not inferior to 

vancomycin for the treatment of mild-to-moderate disease.102, 103 One of the major advantages of 

metronidazole is its low cost. Moreover, it is believed that metronidazole is less associated with the 

theoretical risk of acquisition of vancomycin resistant enterococci (VRE). There is however no valid 

evidence to support this theory since both antibiotics have been associated with the overgrowth of 

VRE during treatment for CDI.104  

For severe or complicated CDI, vancomycin has proven to be more effective and is the drug of 

choice.105 For patients who develop fulminant CDI that fails to respond to antibiotic treatment and 

who progress to systemic toxicity, peritonitis, toxic megacolon or bowel perforation, emergency 

colectomy can be live-saving.106 First recurrences are normally treated with the same antibiotic as the 

initial episode after reassessment of disease severity. Since metronidazole is fully absorbed by the 

gastrointestinal tract, long duration therapy might lead to serious adverse effects. Therefore, second 

and further recurrences should be treated with vancomycin.99-101  

In 2011, the US Food and Drug Administration (FDA) and the European Medicine Agency (EMA) 

approved the use of fidaxomicin to treat CDI.107 Fidaxomicin is a macrolide antibiotic that exerts its 

antibacterial activity by inhibiting RNA synthesis. Results of clinical trials indicate that fidaxomicin is 

as effective as vancomycin for the treatment of CDI.108, 109 Fidaxomicin has a narrow spectrum of 

activity and has thus a limited impact on the composition of the indigenous microbiota.110 Moreover, 

it is associated with a reduced risk for relapse and inhibits C. difficile sporulation.111 Although no 

resistance has yet been reported, a C. difficile strain with an elevated MIC value has been isolated 

from a patient with CDI.112 Unfortunately, the use of fidaxomicin has not yet become common 

practice due to its high cost. The cost of treatment with fidaxomicin is estimated at approximately 

$296 per day which is more than double of that of vancomycin being $139 per day.113 Moreover, 

fidaxomicin does not show superiority over standard antibiotic therapy for the treatment of 

hypervirulent strains.108, 109 

2.5.2 NON-ANTIBIOTIC TREATMENT 

Fecal microbiota transplantation (FMT) is defined as the administration of a stool sample containing 

distal gut microbiota from a healthy donor to a patient with a disease caused by an alteration of 

his/her normal gut microbiota.114 The last few years, FMT has gained more and more attention for 

the treatment of recurrent CDI in order to restore the disturbed intestinal microbiota caused by 

repeated antibiotic treatment.115 The use of FMT as a first line treatment for patients suffering from 

recurrent CDI is now recommended in the practice guidelines from both the American College of 

Gastroenterology and the European Society of Clinical Microbiology and Infectious Diseases.99-101 
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Results of a recent randomized controlled clinical trial indicated that FMT was superior to 

conventional antibiotic treatment.116 Moreover, the treatment appears to be well tolerated by 

patients since no severe side effects have yet been identified. Possible long term adverse effects 

however are yet unknown and require further research. As compared to the high cost of vancomycin 

therapy, FMT has the advantage of being inexpensive.115 

2.6 INFECTION CONTROL PROGRAMS 

The increased incidence of CDI has led to the development of several guidelines in an attempt to 

control CDI. Since 2007, Belgian hospitals are obliged to report nosocomial cases of CDI. Elaboration 

of a good surveillance program can help to detect a rise in the incidence of CDI and identify possible 

epidemic outbreaks of the pathogen. Infection control programs including proper personnel 

education can aid in the early detection of CDI leading to earlier treatment and proper infection 

control practices.  

Infection control practices are focused on preventing horizontal transmission of the pathogen and on 

controlling CDI associated risk factors. Hospitalized patients are exposed to C. difficile by indirect 

contact with healthcare workers, the contaminated environment or by direct contact with infected 

patients. At every level, measures can be taken to control the transmission of the pathogen. First of 

all, patients suffering from CDI should be isolated in a private room or at most in a room with 

another patient with CDI to prevent direct patient-to-patient transmission and limit contamination of 

the direct environment. To limit spread of the pathogen by health care workers, they are encouraged 

to pay attention to good hand hygiene. Since C. difficile spores are resistant to the commonly used 

alcohol based antiseptics, they should thoroughly wash their hands with water and soap or use 

chlorhexidine based antiseptics. In addition, contaminated surfaces (floors, toilets, bed frames,…) 

should also be disinfected with chlorhexidine based products. If possible single-use disposable 

equipment (e.g. thermometers) can be used or medical equipment should be dedicated to a single 

patient. All equipment should be carefully cleaned and disinfected using the proper antiseptics after 

use on a patient suffering from CDI. Use of disposable gloves or protective clothing can also aid in 

limiting the spread of the pathogen.99, 100, 117  

Since antibiotic consumption is one of the most important risk factors for CDI, a good antibiotic 

stewardship might aid in controlling the incidence of CDI. Several studies show that the restricted use 

of antibiotics has a beneficial effect on the incidence of CDI.118-120 Restricted use of antibiotics helped 

to control an epidemic hospital outbreak of the highly fluoroquinolone resistant NAP1/BI/027 

strain.120, 121 Moreover, limited use of clindamycin, an antibiotic at high risk for developing CDI, 
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decreased the incidence of CDI.119, 122 The replacement of cefotaxime by the low risk antibiotic 

piperacillin-tazobactam was associated with a reduction in CDI rate of more than 50%.  

 

3 CLOSTRIDIUM DIFFICILE ASSOCIATED DISEASE IN ANIMALS 

C. difficile has been isolated from several animal species including calves, cattle, deer, goats, sheep, 

cats, dogs, horses, piglets, pigs and poultry. Most studies focus on the prevalence of the pathogen in 

healthy animals and the risk of spread to the environment and humans. Many reports describe the 

presence of C. difficile in animals regardless of the presence of diarrhea. Clinical symptoms due to 

CDI vary widely between and within species.123, 124 

C. difficile has been recognized as an important intestinal pathogen in horses of all ages with disease 

outcomes ranging from mild diarrhea to life-threatening necrotizing enterocolitis.124-127 As in humans, 

hospitalization and antibiotic exposure are two important risk factors.128 Antibiotic administration in 

horses has been associated with changes in the intestinal microbiota and an increase in the amount 

of C. difficile.129 Moreover, C. difficile spores have been isolated from the floor, stables, medical 

equipment and footwear of the medical personal in a veterinary hospital.130 Antibiotic exposure is 

however not always a prerequisite to develop C. difficile associated disease (CDAD). Other reported 

predisposing factors are dietary changes, stress and pre- and post-surgical feed withdrawal.127 Fatal 

enterocolitis has been reported in horses without a history of hospitalization or antibiotic 

exposure.125, 131 On the other hand, toxigenic and non-toxigenic C. difficile strains have been isolated 

from horses outside the hospital environment.128, 132, 133 Rodriguez et al. postulate that horses 

frequently harbor toxigenic and non-toxigenic C. difficile strains regardless of hospitalization. The 

development of diarrhea appears to be more unusual.128 Noteworthy, a synergism between 

C. difficile and C. perfringens has been reported in gastrointestinal disease in horses.125  

In neonatal piglets, C. difficile is an important cause of diarrhea, mesocolonic edema and colitis.134 

Different authors report outbreaks of C. difficile infection in piglets.135, 136 Up to two thirds of litters 

can be affected and mortality rates as high as 16% have been reported.134, 137 Yaeger et al. detected 

C. difficile toxin in 29% of piglets with diarrhea. In 19% of diarrheal piglets, C. difficile was the sole 

pathogen present.138 Experimental inoculation of piglets with C. difficile spores led to the 

development of characteristic C. difficile associated disease indicating that C. difficile is a porcine 

pathogen.139, 140 However, C. difficile colonization is not always associated with disease. It is 

commonly found in the feces of piglets. Prevalence of C. difficile in neonatal piglets is as high as 100% 

within 48h after birth.141 Remarkably, colonization significantly decreases over time.142 In pigs at 
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slaughter age, C. difficile is often not detected.132, 143-145 On the other hand, a Belgian study isolated 

C. difficile from 1% of pigs at slaughter age and 7% of pig carcasses in the slaughter house.146 Several 

studies report the lack of association between the presence of C. difficile and the development of 

diarrhea.141, 147, 148 In contrast to the situation in humans, antibiotic use does not affect the 

prevalence of C. difficile in pigs. No differences were detected in prevalence, antimicrobial 

susceptibility and toxinotypes of C. difficile strains isolated from pigs and environmental samples in 

conventional versus antibiotic free farms.145 Interestingly, administration of a non-toxigenic 

C. difficile strain as a probiotic to piglets successfully lowered the prevalence of toxin-positive feces, 

mesocolonic edema and microscopic lesions as compared to control piglets.149 

The importance of C. difficile as a bovine pathogen is less clear. C. difficile has been isolated from 

healthy calves as well as calves suffering from diarrhea.150-152 Several reports describe that C. difficile 

is isolated to a higher extent in young calves with a sharp decrease when they reach slaughter  

age.153-155 On the other hand, several authors still describe the presence of C. difficile in calves at 

slaughter age and on calve carcasses.146, 150, 155 Remarkably, one study reports that the use of 

antimicrobials was associated with increased shedding of the pathogen in calves.153  

In dogs, the role of C. difficile in gastrointestinal disease is not defined. C. difficile has been isolated 

from healthy animals as well as from animals suffering from diarrhea.156-161 A positive association has 

however been reported between the detection of C. difficile toxin and the presence of diarrhea in 

dogs.162 Clooten et al. reported a significant association of CDI with antibiotic exposure and 

hospitalization.162 Initially, a significant association between the presence of C. difficile toxins and 

acute hemorrhagic diarrheal syndrome was reported.163 Recently, this observation was countered 

since Busch et al. reported low detection rates of toxigenic C. difficile strains with no differences 

between healthy and diarrheal dogs. Therefore, the role of C. difficile toxin A and B in the 

pathogenesis of acute hemorrhagic diarrheal syndrome was questioned.164 As in horses, a synergism 

between C. difficile and C. perfringens has been suggested for enteric disease in dogs.160  

Less information is available about the role of C. difficile in enteric disease in cats. C. difficile has been 

isolated from cats lacking any sign of disease.159, 162 On the other hand, Weese et al. detected 

C. difficile toxins in cats suffering from acute diarrhea.165 Another report describes the isolation of 

toxigenic C.  difficile from cats with diarrhea that responded to subsequent metronidazole therapy.166 

Although these results might propose a possible role of C. difficile in feline enteric disease, no 

definite conclusions can be made due to the limited information available. 

Although the data available on the contribution of C. difficile as a pathogen in animals are 

accumulating, it remains difficult to get a clear picture. Rodriguez-Palacios et al. postulated that it 
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might be important to take into account geographical, climate and seasonal factors when studying 

the prevalence of C. difficile in the intestinal tract of animals and the environment.132 Great concern 

exists on the possible zoonotic potential of the organism. Since C. difficile has been reported in 

household pets and farm animals, they might provide a reservoir for toxigenic isolates. Moreover, 

identical toxigenic isolates have been detected in humans and animals. Especially ribotype 078 has 

been commonly found in animals and is pathogenic in humans. In addition, C. difficile has been found 

in several food products such as processed meat products, edible shellfish and raw vegetables 

questioning its potential role in foodborne transmission. The contribution to human CDI has however 

not been extensively studied.167, 168,169-171  
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CLOSTRIDIUM PERFRINGENS 
 

1 THE ORGANISM 

Clostridium perfringens is a ubiquitous microorganism that can be found throughout the 

environment and as a member of the normal intestinal microbiota of humans and animals.172, 173 It is 

however also a common and important human and animal pathogen causing a spectrum of diseases. 

C. perfringens is known as the leading cause of gas gangrene and one of the most common causes of 

food poisoning.174 It has been associated with antibiotic associated diarrhea and human necrotic 

enteritis.175 As an animal pathogen, C. perfringens is the causative agent of enterotoxemia in cattle, 

sheep, rabbits, pigs and horses.174 In this chapter, we shall not review all the different diseases 

associated with C. perfringens in animals and humans, but limit to necrotic enteritis in broiler 

chickens. Much research has been done to understand the role of C. perfringens in broiler necrotic 

enteritis. Since the ban on the use of antibiotics as growth promoters, the incidence of necrotic 

enteritis in broilers has been rising. Several studies indicate that enterotoxigenic C. perfringens 

strains can be found in poultry derived products.176 Improper handling of contaminated food has 

been associated with transmission of enterotoxigenic C. perfringens strains to humans.177 Control of 

this pathogen is necessary to limit production losses, decrease mortality, improve animal welfare, 

decrease the risk of contamination of poultry products for human consumption and protect human 

health. 

1.1 GENERAL CHARACTERISTICS 

Clostridium perfringens is a Gram-positive, rod-shaped bacterium.172, 178 It grows in anaerobic 

conditions but is less strictly anaerobic than other Clostridia since it can survive prolonged exposure 

to oxygen.179 Vegetative cells are 1.3 – 19.0  µm long and 0.6 – 2.4 µm wide.172, 178 Although no 

flagella are present, the bacterium gains its motility due to the presence of type IV pili.180 Under 

optimal growth conditions (43-45°C), C. perfringens is known as the most rapidly multiplying 

organism with generation times less than 10 min. Growth is accompanied by excessive gas 

production. The bacterium is able to survive unfavorable conditions due to the formation of highly 

resistant spores.178, 181  C. perfringens is heterotrophic since it needs the presence of 13 amino acids 

for optimal growth. As a consequence, it cannot grow in an environment where an amino acid supply 

is limited. By the production of extracellular toxins and enzymes, C. perfringens can make these 

nutrients available and import them inside the cell for its own use.182  
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1.2 GENETICS 

C. perfringens belongs to the family of the Clostridiaceae and cluster I of the genus Clostridium.11 The 

first whole genome sequence was published in 2002 from C. perfringens strain 13. This strain 

naturally occurs in the soil. It is classified as a toxinotype A strain which is commonly associated with 

gas gangrene in humans. The genome consists of a circular chromosome of 3 031 430 bp and a 

plasmid of 54 310 bp. In contrast to C. difficile, the C. perfringens genome contains only few mobile 

genetic elements.182  

1.3 VIRULENCE FACTORS 

C. perfringens exerts its toxic effect by the secretion of a variety of toxins and enzymes that damage 

the hosts tissue. Four major toxins can be distinguished: alpha-, beta-, epsilon- and iota-toxin. Only 

the gene encoding alpha-toxin is located on the chromosome. The other three major toxins are 

plasmid-borne.183 Several excellent reviews can be consulted on the role of these toxins in disease.184-

187 C. perfringens strains are classified into five toxinotypes (A-E) based on their differential 

production of the four major toxins.183, 188 (Table 2) This differential toxin production determines the 

pathogenicity of the C. perfringens isolate and is associated with specific human and animal disease. 

The majority of strains that cause necrotic enteritis in broilers, gas gangrene, food poisoning and 

diarrhea in humans belong to toxinotype A.189-191  

Table 2. Clostridium perfringens toxinotypes.183 

Toxinotype Alpha-toxin Beta-toxin Epsilon-toxin Iota-toxin 

A x    

B x x x  

C x x   

D x  x  

E x   x 

 

In addition to the major toxins, an enterotoxin and several minor toxins are known. Enterotoxin is a 

membrane acting toxin produced during sporulation. It is associated with human food poisoning.192 

Several minor toxins are produced, including theta-toxin or perfringolysin O, which is responsible for 

the hemolysis of red blood cells and beta2-toxin, which is associated with enteritis in piglets.193, 194 

The designation major and minor toxin is solely intended for classification of strains into toxinotypes 

and does not refer to the virulence of the toxins.  
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2 NECROTIC ENTERITIS IN POULTRY 

Necrotic enteritis (NE) is the most common enteric disease in broilers. In 1961, C. perfringens was 

identified as the causative agent of NE.195 The disease is characterized by necrosis and inflammation 

in the gastrointestinal tract. Clinical signs are depression, anorexia, diarrhea, dehydration and ruffled 

feathers. Macroscopic lesions are mainly confined to the small intestine but can extend to the caeca, 

liver and kidneys. The intestines are thin walled, inflamed and filled with gas.196 A spectrum of 

mucosal lesions can be detected ranging from focal necrosis or ulceration to the presence of necrotic 

patches or a pseudomembrane.197 NE can manifest in a clinical or subclinical manner. The acute 

clinical form of NE leads to an increased mortality rate in broiler flocks. Mortality rates are generally 

between 2 - 10% but rates as high as 50% have been reported. Subclinical disease is characterized by 

damage to the intestinal mucosa leading to decreased digestion and absorption, reduced growth rate 

and impaired feed conversion ratios. It often remains undetected and has the greatest impact on 

performance.191, 198, 199 The total annual cost due to NE in broilers has been estimated to be over 

$2 billion.200 

C. perfringens is part of the normal broiler gut microbiota. Counts of 0 – 105 cfu/g have been found in 

the intestinal content of healthy broilers. On the other hand, broilers suffering from NE can have up 

to 106 – 108 cfu/g in their intestinal content.201, 202  NE arises if an environment is created that favors 

the overgrowth of C. perfringens. Two important issues that are associated with this are the nature 

of the feed and the presence of coccidiosis caused by Eimeria species. In addition, virulent 

C. perfringens strains are required to induce NE.203 A recent review offers an excellent update on the 

pathogenesis of C. perfringens associated NE.196  

It has long been thought that alpha-toxin was the key virulence factor in NE since toxinotype A 

strains are the most predominantly found in NE, oral inoculation of broilers with semi-purified alpha-

toxin or alpha-toxin containing supernatant was associated with high mortality rates and 

immunization of broilers with alpha-toxin based vaccines significantly protected against NE.189, 204-207 

However, the role of alpha-toxin was questioned by several authors.189 The most conclusive evidence 

was presented by Keyburn et al. who proved that an alpha-toxin deficient strain was still able to 

induce disease in an in vivo NE model.197 Discovery of the novel toxin NetB provided comprehensive 

evidence that this is the most important toxin involved in NE.208 For example, a NetB mutant failed to 

induce disease while complementation of the NetB mutant with the wild type NetB gene successfully 

caused NE.208 In addition, a 100% correlation has been found between the production of NetB and 

the ability to induce NE in an in vivo model.209, 210, 701 NetB is exclusively found in chicken isolates, 
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with just one exception.211 Moreover, immunization of broilers with NetB toxoid conferred partial 

protection against NE.212, 213   

A remarkable observation is that while a high degree of genetically different C. perfringens isolates 

can be found in healthy animals, single strain dominance is observed in birds suffering from NE. 

Pulsed field gel electrophoresis indicated that C. perfringens isolates from NE positive flocks are 

usually genetically identical within a flock.189, 204 The exact mechanism behind this is not yet 

understood. However, isolates from NE positive flocks appear to be more capable of inhibiting other 

C. pefringens strains as compared to isolates from healthy birds. Key components behind this 

mechanism might be the production of bacteriocins. In the case of C. perfringens and NE, a 

bacteriocin called perfrin was recently discovered. Perfrin was bactericidal for other C. perfringens 

strains and associated with NetB positive strains from NE positive flocks.214, 215  

2.1 CURRENT TREATMENT STRATEGY 

2.1.1 ANTIBIOTIC THERAPY 

NE has long been controlled by the use of antibiotics as in-feed growth promoters. The European 

Union has however banned the use of in-feed antibiotics leading to a flare in the incidence of NE in 

broilers. Antibiotics are now used for therapeutic reasons when clinical signs of NE are apparent. 

Amoxicillin, tylosin, lincomycin and bacitracin are commonly used antibiotics to control NE. In vivo 

experiments studying the effect of these antibiotics on broiler NE are however limited. Only one 

study describes the protective effect of amoxicillin treatment on the development of NE lesions.216 

Lincomycin, tylosin and bacitracin have been successfully used to control broiler NE but resistance 

against these antibiotics has already been reported.216-223 In addition, imprudent use of these 

antibiotics could even contribute to the development of antibiotic resistance.216  
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THE QUEST FOR  

ALTERNATIVE TREATMENTS 
1 THE RISING NEED FOR ANTIBIOTIC ALTERNATIVES 

1.1 CLOSTRIDIUM DIFFICILE 

Although still efficient, the current treatment strategies using the antibiotics metronidazole and 

vancomycin have some major drawbacks. Metronidazole is effective against infections with 

anaerobic bacteria while vancomycin is able to kill Gram-positive bacteria. As such, both antibiotics 

do not have a narrow spectrum of activity and also act on a large range of bacteria from the gut 

microbiota. For both antibiotics, a limited treatment success in severe disease and a high recurrence 

rate has been reported.224 Moreover, careful use of vancomycin is recommended to avoid the risk of 

colonization with vancomycin resistant enterococci. The emergence of highly virulent strains also 

requires the need for efficient treatments to rapidly cure the disease and limit spread of the 

pathogen. 

Excessive use, over-prescription and misuse of antibiotics have led to a dramatic increase in the 

incidence of antibiotic resistant microbial pathogens.225 Consumption of antibiotics is always 

associated with the risk of spread of resistance to other pathogens or bacteria of the indigenous 

microbiota. Although most C. difficile strains remain susceptible to metronidazole, clinical isolates 

with reduced susceptibility have been reported.90, 226-228 There is great concern that the industry is 

not able to develop new effective antibiotics at a sufficient rate to counteract the development of 

antibiotic resistance.225 Since 1987, no novel antibiotic classes have been successfully discovered.229 

Moreover, pharmaceutical companies have curtailed their antibacterial research due to its expensive 

and time consuming character and devious regulations.230  

As stated by Johnson et al., it seems contradictory that standard treatment of CDI involves the 

administration of antibiotics when disease outcome results from the disruptive effect of antibiotics 

on the colonic microbiota.231 After all, treatment with broad spectrum antibiotics might further 

disrupt the already abnormal microbiota and thereby enhance the growth of any leftover C. difficile 

organisms or of a newly acquired strain once antibiotic therapy is discontinued. There is a great need 

to look for efficient treatments that do not further disrupt the already altered indigenous microbiota, 
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help to restore the complex balance of the normal gut microbiota and limit the use of additional 

antibiotic therapy.232  

Research has been done to develop novel antibiotics with a narrow spectrum of activity specifically 

targeting C. difficile without significantly affecting the microbiota. The only FDA and EMA approved 

narrow spectrum antibiotic for the treatment of CDI is fidaxomicin.107 As mentioned before, this 

antibiotic is as efficient as vancomycin but has the disadvantage of being extremely expensive.113 

Cadazolid and SMT19969 are two examples of narrow spectrum antibiotics with potent in vitro 

antibacterial activity against C. difficile.233, 234 Cadazolid is an oxazolidinone antibiotic that acts as an 

inhibitor of protein synthesis and is able to inhibit DNA synthesis in a limited extent. Results of in vivo 

experiments demonstrate complete protection against diarrhea and death and support the relevance 

of further clinical studies.235 SMT19969 is a non-absorbable antibiotic that inhibits DNA synthesis. 

Results of in vivo hamster trials concluded that SMT19969 was superior to vancomycin since a 

greater overall survival was noted along with a delayed time to relapse and a lower recurrence rate. 

Moreover, fecal samples were negative for culture spores and an improved recovery of the intestinal 

microbiota was detected. A phase 1 clinical trial indicated that SMT19969 was safe and well tolerated 

and caused a minimal disturbance of the intestinal  microbiota.236-238 Both antibiotics are very 

promising but require further clinical studies.  

Several other alternative treatments have been proposed including immune therapy, bacteriophage 

therapy, administration of antimicrobial peptides such as bacteriocins and lipopeptides, and use of 

probiotics. Due to the scope of this PhD thesis, we will focus on microbial based products as 

alternatives for antibiotic therapy. For more information on other treatment strategies we would like 

to refer to an excellent review by Hedge et al.239 

1.2 CLOSTRIDIUM PERFRINGENS 

Antibiotics have long been used as in-feed additives to improve nutrient availability, animal health, 

and growth performance. Hence, NE has long been constrained at the same time. However, public 

concern on the use of in-feed antibiotics and the alarming rise of antibiotic-resistant “superbugs” has 

led to a ban on the use of antibiotics as growth promoters in Europe. Consequently, a rise has been 

seen in the incidence of NE in broilers with a concomitant increase in the therapeutic use of 

antibiotics to treat NE.191, 240, 241 Imprudent use of these antibiotics is however associated with the 

risk of resistance development.216 In addition, resistance against the commonly used antibiotics to 

treat NE has already been reported.216-218, 222, 223 Research has focused on alternative strategies to 

improve animal health. Strategies to control NE mainly focus on dietary changes, pathogen reduction 

and stimulation of the immune response.242 C. perfringens infections have been successfully 
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controlled using natural feed additives, organic acids, enzymes, lysozymes or microbial derived 

products. Figure 5 gives an overview of the virulence mechanisms of C. perfringens that can be 

tackled to control the pathogen.243 Due to the scope of this thesis, we will focus on microbial based 

products. Several excellent reviews describe these alternative strategies and can be consulted for 

more detailed information.242, 243 

 

 

Figure 5. Potential targets for the control of NE caused by C. perfringens in broilers.243 
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2 MICROBIAL BASED PRODUCTS AS PROMISING THERAPEUTICS FOR 

INTESTINAL CLOSTRIDIAL INFECTIONS 

2.1 BACTERIAL METABOLITES 

The upsurge in multidrug resistant pathogens has created the need to look for alternatives to 

antibiotics as efficient treatment strategies. Prokaryotic microorganisms produce a vast range of 

secondary metabolites that are not always essential for growth and reproduction per se but aid the 

organisms to survive under unfavorable conditions. Singla et al. attempted to classify these bacterial 

metabolites based on structural relationships and proposed 17 different structural classes (Table 3). 

These molecules are structurally very diverse and display a broad range of activities with potential 

therapeutic significance including antibacterial, antiviral, antifungal, antitumor, anti-inflammatory 

and antibiofilm activities.244 The bacteriocins, lantibiotics and lipopeptides will be discussed in more 

detail below. For more information about the therapeutic spectrum of other metabolites, we would 

like to refer to the recent review of Singla et al.244 

Table 3. Classification of bacterial metabolites as proposed by Singla et al.244 The underlined classes 

are discussed in more detail. 

 Structural class Bacterial metabolites examples 

1 β-lactam antibiotics Sulfazecin, isosulfazecin 

2 Bacteriocin Thuricin, coagulin 

3 Cyclic lipoheptapeptide Surfactin A-D, iturin, fengycin 

4 Catecholate siderophore Bacillibactin, petrobactin 

5 Diketopiperazine Nocazine D, E 

6 Indole alkaloids 3-hydroxyacetylindole, 3-formylindole 

7 Lantibiotic Nisin, subtilin, mersacidin 

8 Polyketide macrolactone Difficidin, bacillaene, macrolactin 

9 Aminopolyol Zwittermicin 

10 Isocoumarin Amicoumacin A, B, C 

11 Amino sugar 3, 3’-neotrehalosadiamine 

12 Adenine nucleotide β-exotoxin 

13 Polyacetilene analog Melanin 

14 Dipeptide Bacilysin 

15 Phospholipid Bacilysocin 

16 Prenylated naphthoquinones Fumaquinone, naptherpin, marinone 

17 Synthetic analogues of cyclic lipoheptapetide Azasurfactin, 3-epi-azasurfactin 
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2.1.1 BACTERIOCINS 

Bacteriocins are ribosomally synthesized antimicrobial peptides produced by one bacterium that are 

active against other bacteria and for which the producer has a specific mechanism of immunity. They 

differ from the traditional antibiotics in their biosynthetic pathway and activity spectrum. While 

bacteriocins are ribosomally synthesized, antibiotic synthesis is catalyzed by large multi-enzyme 

complexes. Most antibiotics have a broad spectrum of antibacterial activity. Bacteriocins on the 

other hand are mainly targeted at a narrow spectrum of bacteria often within the same species as 

the producing strain or closely related ones, although broad spectrum bacteriocins also exist. 

Another major difference is their potency against susceptible bacteria. Bacteriocins are able to kill 

other bacteria at nanomolar concentrations as compared to antibiotics that are needed in much 

higher concentrations to be effective. Moreover, bacteriocins have been demonstrated to have a low 

toxicity towards eukaryotic cells. Since they display a limited spectrum of activity, their use can limit 

collateral damage to the gut microbiota. The production of antimicrobial activity can be exploited in 

situ by use of these bacteria as probiotic microorganisms. Due to the peptidic nature of bacteriocins, 

they are amenable to bioengineering in order to ameliorate their effectiveness or to overcome 

possible toxicity issues. Taken together, all these characteristics suggest that bacteriocins are 

promising alternatives to conventional antibiotics.245-248  

Due to the multitude of ongoing research on bacteriocins produced by Gram-positive bacteria 

classification schemes are constantly updated. Based on the publications of Rea et al. and Cotter et 

al., an overview is represented in Table 4 with the most important features for each class being 

displayed. Three major classes can be distinguished: the posttranslationally modified bacteriocins 

(class I), the unmodified bacteriocins (class II) and the bacteriolysins (class III). Both class I and class II 

bacteriocins are further divided in several subclasses.247, 248 Several modes of action of bacteriocins 

have already been reported including inhibition of gene expression and protein synthesis. However, 

most bacteriocins have the membrane as a target. Some of them inhibit cell wall synthesis while 

others cause pore formation leading to membrane permeabilization, leakage of intracellular 

compounds, dissipation of the transmembrane potential and eventually cell death.246, 247 Certain 

bacteriocins even encompass both mechanisms of action. For example, nisin binds lipid II and 

thereby prevents proper cell wall synthesis. In addition, it uses lipid II as a docking molecule to induce 

the formation of pores.249 

CLASS I: POST-TRANSLATIONALLY MODIFIED BACTERIOCINS 

Class I bacteriocins contain post-translational modifications. Based on the type of modification, six 

subclasses can be distinguished with specific features (Table 4). The most thoroughly studied are the 
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lantibiotics. Lantibiotics are small peptides (< 5 kDa) that contain the unusual amino acids 

lanthionine, β-methyllanthionine, dehydroalanine or dehydrobutyrine. Lantibiotics are known to 

have a potent and broad spectrum of activity, a low degree of antibiotic resistance development and 

a negligible amount of cytotoxicity. Nisin is the best characterized lantibiotic and is widely used as 

food preservative. Several classification schemes have been proposed to further subdivide the 

lantibiotics based on their structure, biosynthetic pathway, similarity of propeptides or absence or 

presence of antimicrobial activity.248, 250, 251 A second subclass of post-translational bacteriocins are 

the sactibiotics. These bacteriocins contain intramolecular cross-linkage between sulphur atoms of 

cysteine residues and α-carbons of certain amino acids. Although some members possess a broad 

spectrum of activity, certain sactibiotics only have a limited spectrum of activitiy. Thuricin CD is 

known to selectively target C. difficile and is discussed in more detail below.248, 252 A relatively new 

subclass are the thiopeptides. They consist of a central pyridine, dihydropyridine or piperidine ring 

that serves as a scaffold for at least one macrocyclic structure and tail which both contain 

dehydrated amino acids and azoles. Several thiopeptides are known to encompass antibacterial 

activity against important bacterial pathogens such as MRSA and VRE. Major drawbacks are however 

its large molecular size and poor solubility in water which limits their use as therapeutics.248, 253, 254 

Three other classes are also known that only contain a few members. Linaridins are bacteriocins with 

a linear structure that contain unusual dehydrated amino acids. Bottromycins contain a macrocyclic 

amine, a decarboxylated carboxy-terminal thiazole and carbon-methylated amino acids. A last small 

class, the glycocins, contain S-linked glycopeptides.247 

CLASS II: UNMODIFIED BACTERIOCINS 

The class II bacteriocins consist of a heterogenous group of peptides (< 10 kDa) composed of 

standard amino acids. Four subclasses are distinguished. Members of class IIa, called the pediocin-

like bacteriocins, have a narrow spectrum of activity and are all able to inhibit the growth of Listeria 

monocytogenes. Antibacterial activity has been reported against important human pathogens such as 

S. aureus and VRE. Since they only have a limited spectrum of activity, the deleterious effect on the 

commensal microbiota is minimized which offers a major advantage. All class IIa bacteriocins share a 

common amino-terminal region (YGNGV), called the pediocin box, which is thought to facilitate 

nonspecific binding with target cell surfaces.247, 255 Subclass IIb are the two-peptide bacteriocins that 

are composed of two separate peptide chains that need to interact to obtain optimal activity. Great 

variations exist in amino acid sequence and structure of these bacteriocins but a common GxxxG 

motif is conserved in all peptides. They possess a limited spectrum of activity.256 Circular bacteriocins 

are classified in subclass IIc. During their synthesis, the peptide backbone undergoes head-to-tail 

cyclization. Their circular nature provides enhanced stability. They are heat stable and relatively 
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resistant to proteolytic digestion. Circular bacteriocins encompass a broad spectrum of activity.  All 

three subclasses function by targeting the cell membrane inducing pore formation and eventually cell 

death.257 Subclass IId contains the linear, unmodified, non-pediocin-like bacteriocins. These 

bacteriocins do not show sequence similarity to the other class II bacteriocins. As such, they show 

great variations in structure and modes of action.258 

CLASS III: BACTERIOLYSINS 

A final class are the bacteriolysins which are the least well characterized. Bacteriolysins are large, 

heat unstable bacteriocins. They are made up of different domains, each responsible for receptor 

binding, translocation and antibacterial activity. The small number of bacteriolysins known target the 

bacterial cell membrane. Bacteriolysins with narrow and broad spectrum of activity have been 

reported.259  

2.1.1.1 BACTERIOCINS FOR THE CONTROL OF CLOSTRIDIUM DIFFICILE 

The antibacterial activity of certain bacteriocins against C. difficile has already been reported.260 

However, the potential use of bacteriocins as alternative therapeutics for CDI must meet a number of 

criteria. First of all, it needs to be as least as effective as the currently used antibiotics. Most ideally, it 

would encompass a narrow spectrum of activity with high specificity for C. difficile resulting in 

restricted collateral damage to the gut microbiota. In addition, the possibility of resistance 

development in C. difficile or other species should be minimal. The bacteriocin itself must be able to 

survive transit through the gastrointestinal tract. It should be delivered in a stable and functional way 

at the target site. Finally, the bacteriocin needs to be non-toxic for the host.261 Several studies have 

highlighted the potent in vitro activity of certain class I bacteriocins against C. difficile. These 

bacteriocins belonged to the subclasses of the lantibiotics, sactibiotics and thiopeptides. No 

bacteriocins with anti-C. difficile activity have yet been reported in the other three subclasses. 

CLASS I: POST-TRANSLATIONALLY MODIFIED BACTERIOCINS 

Lantibiotics. Different lantibiotics are reported to be at least as effective as metronidazole and 

vancomycin in killing C. difficile. These lantibiotics include nisin and lacticin 3147 produced by 

Lactococcus lactis, actagardine A produced by Actinoplanes garbadinensis ATCC31049 and mutacin 

1140 produced by Streptococcus mutans JH1140.260, 262-265 Lacticin 3147 was even reported to 

efficiently kill C. difficile in an in vitro gut model.263 Moreover, engineering of nisin and mutacin 1140 

has led to the discovery of mutants with elevated antibacterial activity against C. difficile.265 NVB302 

is a semi-synthetic derivative of the lantibiotic deoxyactagardine B produced by Actinoplanes ligurae 

which proved to be non-inferior to vancomycin in an in vitro human gut model of CDI.266 Results of a 

recent phase I clinical trial indicated that high concentrations of NVB302 were recovered in fecal 
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samples and that it was safe and well-tolerated in healthy test subjects.267 Unfortunately all of these 

lantibiotics show a broad spectrum of activity and will have a considerable impact on the resident gut 

microbiota. 

Sactibiotics. A very promising bacteriocin with a narrow spectrum of activity is thuricin CD produced 

by B. thuringiensis DPC 6431. Thuricin CD is a posttranslationally modified bacteriocin that consists of 

two distinct peptides, Trn-α and Trn-β, that act synergistically to kill C. difficile.268 Its use in an in vitro 

distal colon model indicated that it was equally effective as the standard antibiotics at killing 

C. difficile but had no significant impact on the composition of the microbiota.269 One of the major 

problems concerning bioavailability of bacteriocins is their sensitivity to the harsh environmental 

conditions in the digestive tract.270-273 Oral administration of unprotected thuricin CD to pigs revealed 

that no functional thuricin CD could be detected in the porcine intestinal tract. While Trn-α appeared 

to be resistant to gastric enzymes, Trn-β was degraded by gastric enzymes in vitro and in vivo 

resulting in no functional intestinal thuricin CD. In an attempt to deliver functional thuricin CD to the 

gut, spores of the producing organism B. thuringiensis DPC 6431 were fed to mice. Unfortunately, 

99% of the spores were excreted and no thuricin CD was detected in the intestinal tract indicating 

that ingestion of B. thuringiensis spores is not a suitable vehicle for delivery of thuricin CD in the gut. 

However, rectal administration of thuricin CD to mice significantly decreased C. difficile shedding. As 

such, rectal administration of thuricin successfully overcomes stability issues and might be a mode of 

delivery of functional thuricin CD to the colon.271  

Thiopeptides. LFF571 is a semi-synthetic derivative of the natural occurring thiopeptide bacteriocin 

GE2270 A. It displays antimicrobial activity against a range of Gram-positive bacteria by targeting 

protein synthesis.274 LFF571 has an excellent in vitro activity against C. difficile.275 Moreover, results 

of a hamster trial indicated that LFF571 was more efficient than vancomycin in a lower dose, with 

fewer recurrences.276 Additional in vivo studies in hamsters and rats proved that LFF571 was poorly 

absorbed and high intestinal concentrations were detected.274 Results of a phase I clinical trial 

indicated that LFF571 was well tolerated by the healthy test subjects with no serious side effects 

being reported. Moreover, low serum concentrations and high fecal concentrations were 

measured.277 Recently, a phase II clinical trial was conducted evaluating the safety and efficacy of 

LFF571 in adults with primary CDI or a first recurrent episode. A clinical cure and recurrence rate of 

90.6% and 15.4% were reported for LFF571-treated patients respectively. Both rates were better 

than those reported for vancomycin-treated patients for which a clinical cure rate of 78.3% and 

recurrence rate of 25.3% was described. These results indicate that LFF571 is non-inferior to 

vancomycin for the treatment of CDI.278  
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CLASS II: UNMODIFIED BACTERIOCINS 

Less research has been done to study the antibacterial effect of class II bacteriocins on C. difficile. 

Only two bacteriocins have been reported to show in vitro activity against C. difficile, namely 

CECT7121 produced by Enterococcus faecalis CECT7121 and acidocin LCHV produced by Lactobacillus 

acidophilus n.v. Er 317/402 strain Narine. Since these bacteriocins have no modifications, one of the 

major problems encountered might be their sensitivity to proteolytic digestion in the digestive tract 

as compared to the posttranslationally modified bacteriocins. To overcome this problem, in situ 

production of the bacteriocins could be achieved by the use of probiotics. E. faecalis CECT7121 is a 

promising candidate for use as a probiotic with therapeutic significance. Several reports have 

indicated that this strain is able to induce an adequate immune response in the host.279-281 More 

research is however necessary to evaluate the production of functional bacteriocin in the gut and its 

probiotic efficacy in the prevention or treatment of CDI. L. acidophilus is a commonly used probiotic 

and part of the Bio-K+® probiotic mixture with proven effectiveness against CDI.282 

R-TYPE BACTERIOCINS 

R-type bacteriocins are phage-tail like particles that are produced by some C. difficile strains. They 

are classified as bacteriocins because they comprise antibacterial activity against other C. difficile 

strains. They share genetic relatedness and structural similarities with temperate phages, hence it is 

believed that they share a common ancestor. Due to their high specificity, they offer a promising 

alternative approach to selectively kill C. difficile without a detrimental effect on the resident gut 

microbiota or the fear of developing antibiotic resistance. R-type bacteriocins kill target bacteria by 

attaching to a bacterial receptor followed by perforation of the cell membrane causing rapid 

membrane depolarization and instant cell death. Recognition of target bacteria is mediated by the 

receptor binding protein (RBP) from the bacteriocin which determines the killing spectrum. 

AvidBiotics created genetically modified R-type bacteriocins by changing the RBP and called them 

AvidocinTM proteins. Results of an in vivo mouse trial indicated that the tested AvidocinTM survived 

passage through the mouse gastrointestinal tract, did not alter the gut microbiota and prevented 

colonization of C. difficile NAP1/BI/027 spores which makes it worthwhile to further investigate its 

potential prophylactic and therapeutic use.283-285  

Noteworthy, synergistic effects of bacteriocins and conventional antibiotics have been reported. 

Authors hypothesize that initial bacteriocin-induced cell wall damage make the target bacteria more 

accessible for antibiotic uptake increasing their antibacterial effect.286  

 



 

 

Table 4. Classification of bacteriocins produced by Gram positive bacteria based on the classification by Rea et al. and Cotter et al.247, 248
 The underlined 

bacteriocins show potent in vitro activity against C. difficile. Bacteriocins highlighted in bold have reported activity against C. perfringens. *Acidocin LCHV and CECT7121 are 

reported to belong to the class II bacteriocins but are not yet assigned to a subclass. 

Class Subclass Distinctive features Examples 

I 

Lantibiotics 
Unusual amino acids: lanthionine, β-methyellanthionine, dehydroalanine, 

dehydrobutyrine 

Nisin, actagardine, lacticin 
3147, mutacin 1140, NVB302, 

ruminococcin A/C 

Sactibiotics 
Intramolecular cross-linkage between sulphurs of cysteine residues and α-carbons of 

certain amino acids 
Thuricin CD 

Thiopeptides Central pyridine, dihydropiridine or piperidine ring and heterocycles GE2270A, LFF571 

Linaridins Unusual dehydro amino acids Cypemicin 

Bottromycins 
Macrocyclic amidine, decarboxylated carboxy-terminal thiazole and carbon-

methylated amino acids 
Bottromycin A2 

Glycocins S-linked glycopeptides Sublancin 168 

II 

IIa: pediocin-like 
Conserved N-terminal region (pediocin box), anti-Listeria activity, narrow spectrum of 

activity 
Pediocin A, divercin 

IIb: two-peptide 
Two peptides that need to interact to form an active complex, common GxxxG motif 

in all peptides 
Plantaricin S, lactococcin 

IIc: circular 
Covalent linkage between N- and C-terminal of the peptide resulting in a circular 

backbone 
Gramicidin S 

IId: linear, non-pediocin-like Heterogeneous group of bacteriocins that do not belong to any of the other classes Acidocin LCHV, CECT7121* 

III Bacteriolysins 
Large, heat-labile bacteriocins with different domains for translocation, receptor 

binding and lethality 
Helveticin J, Zoocin A 

 

 



 

 

51 Introduction 

2.1.1.2 BACTERIOCINS FOR THE CONTROL OF CLOSTRIDIUM PERFRINGENS 

Bacteriocins represent a promising alternative to conventional antibiotics. Little is known about the 

use of bacteriocins as feed additives for poultry although more and more research is being done 

nowadays.287 Intestinal colonization of Campylobacter sp. in poultry was successfully controlled by 

dietary addition of certain class II bacteriocins.287-289 Few in vivo trials have been conducted to test 

the efficacy of bacteriocin administration on NE in broilers. 

CLASS I: POST-TRANSLATIONALLY MODIFIED BACTERIOCINS 

Lantibiotics. Several bacteriocins have already been identified with potent in vitro inhibitory activity 

against C. perfringens. The well characterized nisin produced by Lactococcus lactis was shown to 

inhibit the outgrowth of spores and vegetative cells.290 Inhibitory activity of two lantibiotics, 

ruminococcin A produced by Ruminococcus gnavus E1 and a lantibiotic produced by Bifidobacterium 

longum DJO10A, against several pathogenic clostridia, including C. perfringens and C. difficile, has 

been reported.291, 292 Inoculation of rats with R. gnavus E1 revealed that ruminococcin A was only 

poorly expressed in the gastrointestinal tract. However, researchers identified another lantibiotic, 

ruminococcin C, which was active against C. perfringens and expressed in vivo. A recent report 

describes the beneficial effect of sublancin, a class I bacteriocin produced by B. subtilis strain 168, on 

NE in broilers.293 

CLASS II: UNMODIFIED BACTERIOCINS 

In-feed supplementation of pediocin A, a class IIa bacteriocin produced by Pediococcus pentosaceus 

FBB61, improved the growth performance of broilers challenged with C. perfringens.294 Addition of 

lyophilized divercin produced by Carnobacterium divergens, to the feed was associated with 

improved broiler performance and maintenance of the histomorphology of the gastrointestinal 

tract.295  

BACTERIOCIN LIKE INHIBITORY SUBSTANCES 

Several bacteriocin-producing bacteria have been isolated from the gastrointestinal tract of healthy 

animals. The inhibitory activity towards C. perfringens and the proteinaceous nature of these 

compounds has been confirmed in vitro.296-298 Bacterial metabolites with antimicrobial activities 

similar to those of bacteriocins that have not yet been purified, identified and characterized are 

temporarily classified as bacteriocin-like inhibitory substances (BLIS). Recently, Brevibacillus 

borstelensis AG1 was associated with the production of a thermostable BLIS of 12 kDa with potent 

activity against C. perfringens.299  
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2.1.2 NONRIBOSOMALLY SYNTHESIZED LIPOPEPTIDES 

Lipopeptides are low molecular weight amphiphilic molecules composed of a lipid tail linked to a 

short linear or cyclic peptide and produced by a wide variety of bacteria, yeasts and fungi. Their 

synthesis is catalyzed by nonribosomal peptides that contain 3 distinct domains: an adenylation, 

condensation and thioesterase domain. Each domain is involved in the stepwise incorporation of an 

amino acid in the peptide backbone. First, amino acids and peptides are activated by adenylation and 

covalently linked to the peptidyl carrier protein. Next, a peptide bond is formed between two amino 

acids. The peptide is finally released after thioester hydrolysis which is mostly accompanied with 

cyclization. Several enzymes catalyze the attachment of the fatty acid chain to the N-terminal part of 

the peptide. A high structural diversity among the lipopeptides is observed due to variations in 

length, configuration, number and composition of lipids and amino acids. Most lipopeptides are 

directed against the membrane of target cells. After initial binding, oligomerization induces the 

formation of pores causing membrane damage and eventually cell death. Lipopeptides possess an 

extensive range of properties including emulsifying, foaming, solubilizing and biosurfactant 

capacities. Moreover, they display antibacterial, antiviral, antifungal, hemolytic, antitumor and 

insecticidal activities which make them promising therapeutic alternatives.300-302 Some lipopeptides 

are already registered as commercial antibiotics. Daptomycin is the first FDA approved lipopeptide 

antibiotic used for the treatment of systemic and life threatening infections caused by Gram-positive 

bacteria.303  

Lipopeptides from Bacillus species are of the most intensively studied. Three different classes of 

cyclic lipopeptides can be distinguished: surfactins, fengycins and iturins. Iturins are composed of a 

peptide backbone of 7 α-amino acids linked to a β-amino fatty acid (C14-C17). All iturins share the 

common sequence β-amino fatty acid – Asx – Tyr – Asx with variable amino acids at the other 

positions. Iturin, bacillomycin, bacillopeptin and mycosubtilin belong to the iturin family. The peptide 

moiety in fengycins is made up of 10 α-amino acids and is linked to a β-hydroxy fatty acid (C14-C18). 

Lipopeptides of the fengycin family are the only ones that contain unusual amino acids such as 

ornithine and allo-threonine. Variations in the peptide backbone allow us to distinguish fengycin and 

plipastatin. Both iturins and fengycins are known for their strong antifungal activities. Surfactins 

consist of 7 α-amino acids linked to a β-hydroxy fatty acid with a variable chain length of 12 to 16 

carbon atoms. Surfactins are very powerful biosurfactants and have demonstrated antibacterial 

capacities. Among the surfactin family, surfactin, lichenysin, esperin and pumilacidin can be 

distinguished based on diversity of the peptide sequence.300  
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Surfactin is the most extensively studied and the major representative of all lipopeptides. Several 

Bacillus species are able to produce surfactin, including B. subtilis, B. amyloliquefaciens, B. pumilus 

and B. licheniformis.304-307 It is a negatively charged molecule due to the presence of amino acids 

glutamate and aspartate on positions 1 and 5 in the heptapeptide. The other positions are occupied 

by hydrophobic amino acids (Figure 6). Surfactin variants with differences in the composition of the 

amino acid sequence and length of the fatty acid chain have already been isolated. At positions 2, 4 

and 7, a valine, leucine or isoleucine can occur.304, 308, 309 A surfactin variant with an alanine at position 

4 has also been reported.310 These changes are associated with altered culture conditions and can 

affect the activity of surfactin. For example, replacement of valine at position 4 with leucine or 

isoleucine renders surfactin variants with higher affinity for hydrophobic solvents and doubles their 

surfactant activity.304 Moreover, shorter fatty acid chains are associated with better foaming 

properties while longer fatty acid chains increase the hemolytic activity.311, 312 Usually a mixture of 

surfactin isoforms is produced by the bacterium with differences in peptide sequence and fatty acid 

chain length.304, 313-315 

 

Figure 6. Primary structure of surfactin (n = 9 – 11) 

Surfactin has a compact structure due to its cyclization. The peptide backbone folds back together 

and adopts the 3D conformation of a stable β-sheet. On one side of the molecule, amino acids 2 and 

6 face each other in close vicinity of the acidic amino acids Glu-1 and Asp-5 which constitute a minor 

polar domain. On the opposite side, a major hydrophobic domain is formed in which residue 4 faces 

the connection of the fatty acid chain. The side chains of residue 3 and 7 contribute to a lesser extent 

to the hydrophobicity of this major domain (Figure 7). Below the critical micelle concentration, the 

fatty acid chain adopts an extended conformation freely in solution. Above this concentration, 

supramolecular structures like micelles are formed due to hydrophobic interactions between the 

fatty acid chains.316, 317 The two acidic groups form a well suited claw which can bind divalent cations. 

Ca2+ is known to stabilize the surfactin conformation, decrease the critical micellar concentration and 

thus facilitate micelle formation.316, 318, 319  
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Figure 7. 3D structure of surfactin peptide sequence. The amino acids found in standard surfactin are 

represented on their appropriate position. Hydrophobic amino acids in positions 2, 3, 4, 6 and 7 and the 

attachment site of the fatty acid chain are represented in pale grey. Acidic amino acids 1 and 5 are in black and 

dark grey respectively. Peptide backbone atoms are in grey. 

 

Figure 8. Surfactin biosynthesis. The surfactin synthetase complex consists of seven modules (grey and red) 

responsible for the specific incorporation of seven amino acids. These modules are further subdivided in 24 

catalytic domains encompassing 1 of the following functions: adenlyation (A), protein carrier peptide (PCP), 

condensation (C), epimerization (E) and thioesterase (TE) activity. In a final step, peptide release is catalyzed by 

the TE domain and accompanied by cyclization.
320
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The surfactin synthetase complex contains four enzymatic subunits with a modular organization. 

Seven modules can be distinguished that are each responsible for incorporation of an amino acid 

which are further organized in 24 catalytic domains responsible for substrate recognition, activation, 

binding, modification, elongation and release of the lipopeptide (Figure 8). Surfactin synthesis is 

initiated by activation of the relevant amino acids in a two-step reaction. After initial binding, the 

adenylation domain A catalyzes the formation of an aminoacyl adenylate intermediate. This molecule 

is converted to a thioester by transfer to the peptidyl carrier protein (PCP) also known as the 

thiolation domain T. PCP provides a way of transport of the substrates and elongation intermediates 

to the different catalytic domains. Elongation of the peptide occurs by the formation of peptide 

bonds between the amino acid building blocks bound to the PCPs and is catalyzed by the 

condensation domain C. Release of the final product is catalyzed by the C-terminal thioesterase 

domain TE and is accompanied by macrocyclization. The surfactin synthetase complex also contains 

additional editing domains. Module 3 and module 6 encompass an epimerization domain responsible 

for modification of L-amino acids to D-amino acids. As a consequence, the heptapeptide in surfactin 

has the chiral sequence LLDLLDL. In vitro studies indicate that modules 2, 4 and 7 are able to 

recognize and accept several aliphatic amino acids rendering surfactin variants with differences in 

peptide sequence as discussed earlier.320, 321 

The genes required for surfactin biosynthesis are organized in a 25kb operon srfA which is also 

involved in sporulation. Four open reading frames can be distinguished srfA-A, srfA-B, srfA-C and 

srfA-D, which corresponds to the four enzymatic subunits. SrfA-A, srfA-B and srfA-C are involved in 

adenylation, condensation and elongation of the growing peptide sequence. At the end of srfA-C, a 

thioesterase domain is encoded responsible for release and cyclisation of the peptide. The presence 

of these three subunits is sufficient for surfactin synthesis. However, the presence of a fourth 

subunit, SrfA-D, encoding a thioesterase/acyltransferase enzyme, is associated with enhanced 

surfactin production. SrfA-D stimulates the formation of initiation products and is involved in transfer 

of the fatty acid chain to SrfA-A inducing formation of β-hydroxyacyl-glutamate.316, 320-322  
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Figure 9. Scope of surfactin usage.302 

Surfactin is a versatile molecule which acts as a powerful biosurfactant with exceptional emulsifying 

and foaming properties. It displays a wide array of interesting biological activities including 

antitumor, antibacterial, antiviral and hemolytic activities.323-328 An overview of all its potential 

applications is presented in Figure 9.302 Its mode of action is a direct consequence of the interaction 

with the target membrane and the alteration of the membrane properties. As an amphiphilic 

molecule, it can tightly associate with lipid layers and induce membrane perturbation and pore 

formation. Using artificial membranes, it was demonstrated that the degree of membrane damage is 

highly dependent on the surfactin concentration. Dimerization of surfactin molecules in the lipid 

bilayers appears to be an essential step for membrane destabilization and leakage. At low 

concentrations, surfactin inserts into the outer leaflet of the membrane inducing limited 

perturbation. It is miscible with the phospholipids and forms mixed micelles. With increasing 

concentrations, temporary membrane permeabilisation is achieved but membranes are able to 

recover. Further rise in surfactin concentration induces the development of surfactin-rich domains in 

the membrane eventually leading to the formation of pores. The presence of high surfactin 

concentrations leads to the complete disruption of the membrane with the formation of mixed 

micelles. Surfactins membrane interaction is enhanced by the presence of cations which conceal the 
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negative charge of the Glu-1 and Asp-5 amino acids making a deeper insertion of the lipopeptide into 

the membrane possible.321, 329, 330 

2.1.2.1 LIPOPEPTIDES FOR THE CONTROL OF CLOSTRIDIUM DIFFICILE 

CB-183,315 or surotomycin is a cyclic lipopeptide structurally related to daptomycin with significant 

activity against Gram-positive bacteria and limited activity against Gram-negative bacteria. It is the 

only lipopeptide known with potent inhibitory activity against C. difficile. In vitro studies showed that 

surotomycin has MIC values ≤ 1 µg/ml against C. difficile and is more potent than vancomycin and 

metronidazole.331, 332 Results of a phase II clinical trial indicated that CB-183,315 was safe and well 

tolerated. Moreover, a high clinical cure rate and a statistically significant reduction in recurrence 

rate was reported for CB-183,315 as compared to vancomycin.333 A phase III clinical trial has just 

been completed but no results have yet been reported.  

2.1.2.2 LIPOPEPTIDES FOR THE CONTROL OF CLOSTRIDIUM PERFRINGENS 

As for C. difficile, surotomycin is the only lipopeptide with reported antibacterial activity against 

C. perfringens. Research, however, focusses on its use against CDAD and no information is available 

yet for a possible use against C. perfringens associated diseases.334 

2.1.3 LIMITATIONS OF BACTERIOCINS AND LIPOPEPTIDES AS THERAPEUTICS 

Bacteriocins and lipopeptides are very promising alternatives to antibiotics, but do have some major 

drawbacks. First of all, purification of these compounds is not straightforward and yields are 

generally low which makes their production costs high.297, 298 It has therefore been postulated that it 

might be more efficient to supply probiotic bacteria that produce the bacteriocins in situ.287 Although 

these antimicrobial peptides are amenable to bioengineering, it cannot be guaranteed that the 

engineered molecules have the same activities as the natural peptides. Many antimicrobial peptides 

are reported to be non-toxic for the host but some of them might be indeed toxic for eukaryotic cells 

due to their hemolytic activity. The activity spectrum of the peptides can be narrow but broad 

spectrum activity has also been reported which has an adverse effect on the composition of the 

normal microbiota. This feature is however advantageous when bacteriocins are used as e.g. food 

preservatives.335 Moreover, there is still the possibility that bacteria develop resistance against these 

antimicrobial peptides. To date, bacteriocins have not been extensively used as therapeutics. Hence, 

little is known about resistance development. Although nisin has long been used as food 

preservative, no resistance of food spoilage bacteria has yet been reported in the food industry. Our 

knowledge on bacteriocin resistance development relies solely on in vitro experiments.336 The effect 

of antimicrobial peptides on the body is largely unknown since in vivo studies about 
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pharmacodynamics, pharmacokinetics, and stability of these molecules are rare. Stability issues, 

toxicity, immune responses and other issues still need to be studied thoroughly.337 Finally, the 

possibility exists that the compounds are not able to survive the harsh conditions in the 

gastrointestinal tract such as the acidity of the stomach or proteolytic digestion.337 

2.2 PROBIOTICS 

The intestinal microbiota has an important role in maintaining the hosts health and wellbeing. It 

fulfills several important functions including the digestion of carbohydrates that otherwise remain 

unavailable for host cells, mucosal cell development, vitamin production, intestinal transit regulation, 

immune system stimulation and colonization resistance. Colonization resistance is the first line of 

defense against harmful invasion by microbial pathogens. Suppression of microbial pathogen growth 

by colonization resistance includes the physical obstruction of attachment sites, competition for 

essential nutrients, production of toxic metabolic end products, production of antimicrobial 

compounds and immune system stimulation.225, 338, 339 Disturbances of the complex homeostasis of 

the gut microbiota leads to a vast range of diseases from the obvious inflammatory bowel diseases 

such as Crohn’s disease to the activation of chronic human immunodeficiency virus infection, cancer 

and even allergies.340-343  

2.2.1 PROBIOTICS FOR THE CONTROL OF CLOSTRIDIUM DIFFICILE 

One of the most common causes of imbalance of the gut microbiota is antibiotic consumption. Up to 

25% of patients receiving antibiotics develop antibiotic associated diarrhea (AAD) with C. difficile as 

the most important cause.344, 345  

Probiotics are defined as live microorganisms that confer a health benefit to the host when 

consumed in appropriate amounts.225 The principle of using harmless bacteria for the protection 

against pathogens has been known for many years. Already in 1907, Metchnikoff postulated that 

human health could be improved by manipulation of the gut microbiota due to the consumption of 

healthy bacteria from yoghurt.346 One of the most widely recognized uses for probiotics refers to the 

gastrointestinal tract e.g. in the control of travelers’ diarrhea, inflammatory bowel disease and 

irritable bowel syndrome.347 Several studies indicate the beneficial effect of probiotics in reducing 

the risk of AAD. The most conclusive results have been found for the single strain probiotics 

Lactobacillus rhamnosus GG and Saccharomyces boulardii and indicate that both strains are able to 

significantly reduce the risk for AAD.348-354  

Since C. difficile is the most common cause of AAD, probiotics might offer an attractive alternative to 

standard antibiotic therapy. Probiotics can protect the host against invading pathogens in different 



 

 

59 Introduction 

ways: they can support the restoration of the normal gut microbiota by repopulation of the gut with 

non-pathogenic flora, improve the gut mucosal barrier function, positively affect the hosts immune 

system and provide direct protection against harmful infections by the production of antimicrobial 

compounds that act against these invading pathogens.355 A major advantage of probiotics is their 

relatively low production cost and the unlikeliness of increasing the incidence of antibiotic 

resistance.225  

Many recent reviews and meta-analyses postulate the positive effect of probiotic administration on 

the primary prevention of CDAD. A review by Johnston et al. (20 trials) showed a 66% reduction in 

the incidence of CDAD and a meta-analysis by McFarland et al. (6 trials) indicated a 41% reduction in 

CDAD due to probiotic consumption.356, 357 Avadhani and Miley (8 trials) even reported a CDAD 

reduction rate of 71%.358 A systematic review and meta-analysis by Johnson et al. (11 trials) also 

suggests that primary prevention of CDAD with probiotics might be achievable.359 A recent Cochrane 

analysis indicates the safe and effective use of probiotics in the prevention of CDAD.360 There is, 

however, still no consensus reached due to the diversity of probiotic strains used, small sample sizes, 

low overall CDI rates and methodological flaws in study design of the clinical trials.361 The observed 

results are, however, promising but require larger, well defined studies to be able to draw definite 

conclusions. A recent Delphi study involving the expert opinion of 8 specialists in the field does 

however recommend the use of specific probiotics to prevent C. difficile overgrowth.362 The 

microorganisms that are most commonly studied are the yeast Saccharomyces boulardii and bacteria 

of the genus Lactobacillus.  

YEASTS 

Saccharomyces boulardii is a non-pathogenic yeast which is one of the most commonly used 

probiotics. Several studies have been performed evaluating the effect of S. boulardii administration 

on CDI. Supplementary administration of S. boulardii reduced the risk of CDI in children receiving 

antibiotic therapy but not in adults.348, 363, 364 Although S. boulardii is not effective in preventing a 

primary episode of CDI, several studies indicate that combined use of standard vancomycin therapy 

and S. boulardii is efficient in preventing recurrent CDI.61, 365, 366 Although the exact mechanism 

behind the protection against CDI is yet unknown, several possibilities have been suggested. 

S. boulardii produces a 54 kDa serine protease that not only degrades C. difficile toxins A and B but 

also inactivates the toxin A receptor on intestinal epithelial cells.367 Moreover, it stimulates the hosts 

immune system and enhances the total intestinal IgA response as well as the specific anti-toxin A IgA 

response.368 Evidence exists that S. boulardii also exerts its anti-inflammatory activity by modulation 

of the hosts MAP kinase signaling pathways.369 Tasteyre et al. showed that S. boulardii is able to 
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inhibit in vitro cell adherence of C. difficile indicating a competition for attachment sites between 

both microorganisms.370  

LACTIC ACID BACTERIA 

Members of the genus Lactobacillus have a long record of safety and have already been used for 

many years in fermented foods such as yogurt, soy products and kefir.371, 372 Several studies have 

investigated the efficacy of Lactobacillus species in the primary prevention of CDI. A probiotic drink 

containing L. casei SHIROTA (Yakult) was able to decrease the rate of CDI. Six percent of the patients 

in the untreated control group developed CDI as compared to none of the patients in the treatment 

group.373 Hickson et al. proved that a mixture of L. casei, L. bulgaricus, and Streptococcus 

thermophilus reduced the incidence of CDI from 17% in the control group to 0% in the probiotic 

treatment group.374 A four strain probiotic mixture of L. acidophilus NCFM, L. paracasei Lpc-37, 

Bifidobacterium lactis Bi-07 and B. lactis Bl-04 lowered the risk of CDAD in a dose-dependent 

manner.375 Plummer et al. showed that administration of L. acidophilus and B. bifidum significantly 

reduced the fecal excretion of C. difficile toxins as compared to untreated patients indicating a 

possible mode of action for the probiotic, i.e. toxin neutralization rather than prevention of 

colonization.376 L. plantarum 299v was the only Lactobacillus based probiotic studied for the 

secondary prevention of CDI. Although the trial was stopped early due to a low number of study 

subjects, it gave evidence for a reduction in recurrence rate since administration of the probiotic in 

conjunction with standard metronidazole therapy rendered a recurrence rate of 36% as compared to 

67% in the control group receiving only metronidazole.377 L. plantarum 299v was also shown to 

reduce the colonization level of C. difficile in critically ill patients.378  

The Federal Department of Public Health in Canada has recently approved the use of Bio-K+® (Bio-K 

Plus International Inc., Laval, Quebec, Canada) for the prevention of antibiotic associated diarrhea 

due to C. difficile. Bio-K+® is a commercially available probiotic containing L. acidophilus CL1285®, 

L. casei LBC80R® and L. rhamnosus CLR2®. Initial studies by Beausoleil et al. and Sampalis et al. both 

indicated that the daily administration of Bio-K+® was safe and well tolerated. Moreover, they both 

concluded that the treatment was effective in the prevention of AAD in hospitalized patients. 

Unfortunately, no definite conclusions on the effect of CDAD could be made due to the small sample 

sizes and low overall CDI incidence.379, 380 Gao et al. demonstrated that Bio-K+® was effective in 

reducing CDAD in hospitalized patients on antibiotics in a dose-dependent way. Administration of the 

probiotic formula once or twice daily significantly reduced the CDI incidence to 9.4% and 1.2% 

respectively as compared to 23.8% for the placebo group.381 Recently, Maziade et al. reported the 

results of an 10-year study evaluating the impact of Bio-K+® on CDAD in addition to existing 

preventive measures in a Canadian hospital. In 2003, this hospital suffered from a C. difficile 
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NAP1/027/BI outbreak which they were unable to control by standard preventive measures. It was 

decided to administer the probiotic Bio-K+® formula to all adult in-patients on antibiotics within 

12 hours of antibiotic prescription. In the first 2 years of the study, they proved that Bio-K+® resulted 

in a reduction of 73% for all CDI cases, 76.4% for severe CDI cases and 39% for recurrent CDI. 

Moreover, during the following 8 years of follow up, primary CDI incidences decreased from 18.0 

cases per 10 000 patient days to 2.3 cases per 10 000 patient days and remained at such low level. 

Moreover, this average CDI rate was consistently lower than that observed in similar other hospitals 

in Quebec.282, 382  

Several studies fail to prove a positive effect of probiotic administration on the prevention of CDAD. 

Different reasons can explain this heterogeneity in effectiveness including the quantity of probiotic 

administered, the patient population studied and the distribution of risk factors among the patient 

population.282 It is important to keep in mind that the effect of the probiotic bacteria under 

investigation are strain specific. This means that the observed results from one study only relate to 

that strain and cannot be extrapolated to other strains. For example, L. rhamnosus GG has a 

beneficial effect on CDAD but other L. rhamnosus strains might not. The reason for this observation is 

that individual strains have certain specific characteristics such as gastric acid and bile resistance, 

ability to colonize the mucosa and the potential to produce specific antimicrobial 

compounds.282, 351, 383, 384 

NONTOXIGENIC CLOSTRIDIUM DIFFICILE 

Nontoxigenic C. difficile isolates lack the toxin A and B genes. As a consequence, they do not produce 

active toxins and are unable to induce disease.385 Already in 1983, researchers discovered that 

colonization of hamsters with nontoxigenic strains of C. difficile before administration of a toxigenic 

strain suppressed the cecal colonization of this toxigenic strain and improved survival rates.386 

Treatment of two patients with recurrent disease with oral nontoxigenic C. difficile proved to be 

successful in resolving relapsing CDI.387 Previous studies indicate that asymptomatic colonization with 

C. difficile correlates with a decreased risk of CDAD.388 Moreover, acquisition of a toxigenic C. difficile 

strain mounted an adequate serum IgG antibody response against toxin A to prevent CDAD.389 Based 

on these findings, Sambol et al. postulated that colonization with a nontoxigenic C. difficile strain is 

harmless for the host and will possibly provide protection against colonization with toxigenic 

C. difficile strains that induce CDAD. Results of their hamster trial proved that prior colonization with 

nontoxigenic CD strains is highly effective in preventing CDAD after subsequent challenge with 

toxigenic CD strains.390 Merrigan et al. proved that the nontoxigenic strain C. difficile VP20621 

successfully protected hamsters against challenge with toxigenic strains.391 A recent study evaluated 

the safety of a VP20621 spore suspension in healthy adults and proved that VP20621 was well 
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tolerated and able to colonize the gastrointestinal tract.392 Moreover, results of a recent phase II 

clinical trial showed that VP20621 significantly reduced CDI recurrence.393 Taken together, these 

findings support the possible use of nontoxigenic C. difficile strains as probiotics to prevent primary 

or recurrent CDI.  

BACILLUS BASED PROBIOTICS 

Bacillus species have already been used as probiotics for human as well as veterinary use for a long 

time.394 One of the major assets of Bacillus species is their ability to easily produce spores. These 

spores are very stable which is beneficial for the products shelf life and enables them to survive the 

harsh conditions of the gastrointestinal tract.395, 396 Several studies show that the number of excreted 

fecal spores exceeds the number of orally dosed spores which supports the hypothesis that Bacillus 

spores are able to germinate, grow, proliferate and re-sporulate in the intestinal tract.397-400 More 

conclusive evidence is found using a reverse-transcriptase PCR assay measuring the expression of 

vegetative or sporulation specific genes in the mouse gut indicating significant levels of germination 

and sporulation.397, 399  

Orally ingested Bacillus probiotics can exert their beneficial probiotic effect through a combination of 

different mechanisms. Competitive exclusion of bacterial pathogens by Bacillus spores has been 

specifically demonstrated as a mode of action in aquaculture for the fish pathogen Aeromonas 

hydrophila and in poultry for Salmonella Enteritidis, Clostridium perfringens and Escherichia coli.401, 

402 Moreover, several studies indicate that orally administered bacteria are able to efficiently induce 

an immune response in the host.403, 404 Duc et al. evidenced that B. cereus, B. clausii and B. pumilus 

probiotics generated systemic IgG antispore responses and elicited cytokine responses in the gut 

associated lymphoid tissue.405 As described above, Bacillus species are known as excellent producers 

of antimicrobial compounds which can also contribute to their probiotic effectiveness. For example, 

the product Enterogermina® (Sanofi Winthrop, Milan, Italy) has been marketed in Italy for more than 

30 years. The probiotic contains spores of four antibiotic resistant Bacillus clausii strains and its use is 

recommended to cure and prevent intestinal microbiota disorders during antibiotic treatment. The 

probiotic provides protection by stimulation of IgA secretion and the production of AMPs during 

sporulation. Since antibiotics are ineffective against spores, it is suitable to use in conjunction with 

antibiotic therapy.406-410 

Different Bacillus probiotics have been successfully used to reduce the rate of AAD. B. clausii has 

been reported to reduce the rate of diarrhea due to anti-Helicobacter pylori therapy.411 Spielholz 

observed lower AAD and CDAD incidences after administration of a symbiotic tablet containing 

S. boulardii and B. coagulans.412 A recent report showed that administration of a single strain 
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probiotic containing B. subtilis 3 or a two strain probiotic containing B. subtilis 3 and B. licheniformis 

31 during antibiotic therapy decreased the incidence of AAD. Moreover, both probiotics were well 

tolerated by the patients without side effects.413 A Chinese study successfully used B. licheniformis to 

reduce the rate of AAD in the elderly.414  

Although few studies have focused on the anti-Clostridium difficile activity of Bacillus strains, results 

are promising. Urdaci et al. showed that B. claussii strains are able to produce antimicrobial 

substances that inhibit C. difficile in vitro.415 According to a recently published patent, the growth and 

activity of Clostridium pathogens including C. difficile is successfully inhibited by a novel 

B. licheniformis strain.416 Several in vivo studies have been conducted to investigate the potential use 

of Bacillus strains as probiotics to prevent CDAD. Fitzpatrick et al. showed that administration of 

B. coagulans GBI-30 (BC30) prolonged survival and significantly improved stool consistency of 

C. difficile infected mice.417 Moreover, an additional study indicated that BC30 limited the recurrence 

after vancomycin withdrawal and significantly attenuated histological and biochemical markers of 

infectious colitis in mice.418 Colenut and Cutting evaluated the use of B. subtilis PXN21 spores as 

potential treatment against CDI using a murine model. Not only did they find an improvement in the 

symptoms of CDI, results of their in vitro work suggest a stimulation of the innate immunity with an 

upregulation of the TLR2 receptor and an induction of the pro-inflammatory cytokines IL-6 and 

TNF-α. Moreover, they provide indirect evidence that the germination of live spores to vegetative 

cells is essential in the suppression of CDI.419 

2.2.2 PROBIOTICS FOR THE CONTROL OF CLOSTRIDIUM PERFRINGENS 

In recent years, the use of probiotics as alternatives to antibiotic growth promoters has gained more 

and more attention242. Much research has been done concerning the use of probiotics to control NE 

in broilers. Several microbial feed additives are already commercially available.243  

YEASTS 

Although yeast cells are known to have good probiotic properties such as immunostimulatory and 

antimicrobial activities, research on the use of yeasts to control NE is limited. Yeast extracts have 

been successfully used to improve broiler performance and intestinal health.420 NuPro® and 

Actigen™, produced by Alltech Inc., and SafMannan®, produced by Phileo Lesaffre Animal Care, are 

three commercially available yeast based probiotics with reported beneficial effects on the 

detrimental effects of NE.221, 421, 422  
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LACTIC ACID BACTERIA 

Several reports describe the antibacterial activity of lactic acid bacteria against C. perfringens. For 

example, a L. reuteri and L. amylovorus strain isolated from the porcine gastrointestinal tract 

exhibited in vitro antagonistic effects against C. perfringens.423 A commercially available probiotic 

containing L. plantarum also inhibited the growth of C. perfringens in vitro.424 Gérard et al. 

administered a commercial Lactobacillus probiotic in the drinking water to young broiler chickens 

and observed a decrease in the amount of C. perfringens in the ceca. Moreover, the probiotic did not 

affect the composition of the commensal microbiota.425 A recent study tested the efficacy of 

FloraMax® B-11, a probiotic mixture of several lactic acid bacteria and inactivated S. cerevisiae, 

against NE in broilers. Probiotic administration had a beneficial effect on body weight and a 

remarkable reduction in mortality and intestinal lesion scores were observed when compared with 

the untreated control group. Moreover, this probiotic controlled and reduced NE associated 

mortality in a field outbreak.242, 243, 426  

BACILLUS BASED PROBIOTICS 

Bacillus species are widely used probiotics and known to be excellent producers of antimicrobial 

compounds.394 Bacteriocins produced by B. cereus 8A and B. subtilis with anti-C. perfringens activity 

have already been reported.296, 427 Several Bacillus species (B. licheniformis, B. pumilus, B. subtilis) 

isolated from the chicken gastrointestinal tract have demonstrated in vitro inhibitory activity against 

C. perfringens.297, 395 NE has been successfully controlled by the administration of Bacillus strains to 

broilers. B. subtilis PB6 has demonstrated in vitro anti-C. perfringens activity and was used as feed 

additive to control NE in broilers. Results indicated that supplementation of B. subtilis PB6 improved 

broiler gut health and significantly reduced NE associated intestinal damage.428 In addition, beneficial 

effects on broiler performance and the control of NE associated disease have also been reported for 

in-feed supplementation of B. subtilis QST 713 spores and B. licheniformis.429, 430  
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BACILLUS 

AMYLOLIQUEFACIENS 
1 THE ORGANISM 

Bacillus amyloliquefaciens is a Gram-positive, rod-shaped, spore-forming micro-organism commonly 

found in the soil. The species B. amyloliquefaciens belongs to the genus Bacillus. It is further 

classified in the family Bacillaceae, the order Bacillales and finally the phylum Firmicutes. The 

bacterium gains its motility due to the presence of peritrichous flagella.431 It is a member of the 

Bacillus subtilis group that contains 6 closely related species: B. subtilis, B. licheniformis, 

B. vallismortis, B. velezensis, B. mojavensis and B. amyloliquefaciens. Since their 16S rRNA sequences 

show more than 99% similarity, distinction at species level relies on the sequencing of other house 

hold genes such as gyrA or gyrB.432 B. amyloliquefaciens is used at industrial level as an important 

source of α-amylase, protease and BamHI restriction enzyme.  

 

2 A PROMISING PROBIOTIC 

The EFSA has placed B. amyloliquefaciens on the Qualified Presumption of Safety (QPS) list based on 

the absence of toxigenic activity and acquired antibiotic resistance genes.433 B. amyloliquefaciens 

possesses several interesting properties which make it a suitable probiotic. First of all, 

B. amyloliquefaciens is able to form spores which benefits its survival during passage in the 

gastrointestinal tract. Several researchers have demonstrated that the bacterium is tolerant to low 

pH and bile salts. In addition, it has DNA protective and antioxidant activities due to its ability to 

scavenge hydroxyl and DPPH free radicals. An immune stimulatory effect of probiotic 

B. amyloliquefaciens administration has also been reported.434-436  

A very valuable property of B. amyloliquefaciens is its ability to produce a wide array of ribosomally 

and non-ribosomally synthesized compounds with profound antibacterial and antifungal activity. 

Complete genome analysis of B. amyloliquefaciens FZB42 indicated that up to 8.5% of its genome is 

dedicated to the production of secondary metabolites with antimicrobial activity.437 For example, the 

bacteriocin mersacidin is able to inhibit Gram-positive pathogens such as Staphylococcus aureus and 

Enterococcus faecium but no activity against Gram-negative bacteria or fungi has been reported.438 

Amylocyclicin and plantazolicin are two bacteriocins with antibacterial activity against closely related 
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Bacillus species.439, 440 The two polyketides difficidin and bacilysin are two promising agents for the 

biocontrol of phytopathogens. Both molecules can successfully inhibit the growth of Erwinia 

amylovora, the causative against of fire blight disease in e.g. apple and pear trees, and Xanthomonas 

oryzae pv. oryzae, responsible for bacterial blight in rice plants.441, 442 In addition, bacilysin 

encompasses anticyanobacterial activity which can be exploited for the control of harmful algal 

blooms.443 The lipopeptides fengycin and bacillomycin D have been successfully used for the control 

of brown rot in stone fruits caused by Monilinia fructicola.444 Fengycin and iturin also possess 

antifungal activity against the phytopathogens Fusarium oxysporum, Cladosporium cucumerinum and 

Botrytis cinerea.445 Surfactin, another lipopeptide produced by B. amyloliquefaciens, has no 

significant impact on fungal growth but comprises growth inhibiting activity against important 

bacterial pathogens including Listeria monocytogenes, Escherichia coli and Salmonella sp.446-448 

Due to these valuable probiotic properties, B. amyloliquefaciens has been extensively studied to 

investigate its potential beneficial effect on the host. Oral administration of B. amyloliquefaciens was 

considered to be safe in mammals since no acute mortality or visible disease signs were observed in 

mice.449 In addition, B. amyloliquefaciens appears to have a beneficial effect on the pathogenesis and 

progression of certain intestinal disorders. For example, orally administered B. amyloliquefaciens 

significantly reduced bacterial translocation in weaned mice.450 Weaned piglets benefited from 

dietary supplementation with probiotic B. amyloliquefaciens since an improvement in growth 

performance and decrease in the incidence of diarrhea was observed.451 In healthy dogs, 

supplementation of a probiotic mixture containing B. amyloliquefaciens and Enterococcus faecium 

was associated with a reduction in the number of pathogenic Clostridia.452 The bacterium has also 

been proposed as a novel probiotic for a better management of inflammatory bowel disease since it 

successfully reduced intestinal inflammation in mice.453 In vitro antibacterial activity of 

B. amyloliquefaciens has been demonstrated against the important fish pathogens Edwardsiella 

tarda, Aeromonas hydrophila, Vibrio parahaemolyticus and V. harveyi. Subsequent in vivo tests were 

conducted to study the potency of probiotic B. amyloliquefaciens administration in preserving fish 

health after pathogen challenge. Interestingly, the probiotic significantly increased survival rates of 

catla challenged with E. tarda and eels challenged with A. hydrophila.449, 454 

EFSA recognizes the use of B. amyloliquefaciens in animal production either directly as a feed 

additive or indirectly as a production source of enzymes as feed additives.433 Several reports 

indicated that probiotic supplementation of B. amyloliquefaciens to broilers had a beneficial effect 

on growth performance, maintenance of the normal gut microbiota, nutrient digestibility, ammonia 

production and immune response.455-457 Ecobiol® is a commercially available probiotic containing 

B. amyloliquefaciens used as a feed-additive to stimulate fattening of broilers. The beneficial effect of 
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Ecobiol® on broilers was confirmed using large in vivo trials. Results indicated that the probiotic 

improves nutrient digestibility by the secretion of enzymes that break down the non-starch 

polysaccharides and proteins in the feed. In addition, B. amyloliquefaciens produces lactic acid during 

fermentation of carbohydrates, which is associated with a rise in the amount of intestinal lactobacilli. 

On the other hand, the amount of E. coli in the caeca is significantly reduced. A large meta-analysis 

concluded that the probiotic improves feed conversion ratios and reduces mortality. Besides in 

broilers, a positive effect of in-feed Ecobiol® supplementation has also been described in laying hens 

where it improves albumen and egg shell quality among others.458 As mentioned before, 

B. amyloliquefaciens is also an important production source of digestive enzymes. For example, the 

enzyme preparations Kemzyme® PLUS and Avizyme® 1505, both used as a feed additive in poultry for 

fattening, contain α-amylase produced by B. amyloliquefaciens. This enzyme is able to break down 

large polysaccharides such as starch thereby improving nutrient availability.433, 459  
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95 Scientific aims 

Clostridium difficile and Clostridium perfringens are two important human and animal pathogens able 

to cause severe intestinal inflammation. C. difficile is an opportunistic pathogen that causes disease 

when the intestinal microbiota is disturbed, mainly due to the oral intake of antibiotics. Current 

treatment strategies rely on the administration of broad spectrum antibiotics but have major 

disadvantages including treatment failures with high recurrence rates, risk for antibiotic resistance 

development and, most importantly, they do not aid in the recovery of the intestinal microbiota. 

C. perfringens is the causative agent of necrotic enteritis in broiler chickens. The use of antibiotics as 

growth promoters has long constrained this disease. However, public concern on the use of in-feed 

antibiotics and the alarming rise of antibiotic-resistant pathogens has led to a ban on the use of 

antibiotics as growth promoters in Europe. Consequently, a rise has been seen in the incidence of 

necrotic enteritis in broilers with a concomitant increase in the therapeutic use of antibiotics.  

Although the discovery of broad spectrum antibiotics has definitely been a major breakthrough for 

human and veterinary medicine, we have evolved into an era in which its imprudent use has led to 

the emergence of antibiotic resistant bacterial pathogens. There is great fear that the industry is not 

able to develop new effective antibiotics at a sufficient rate to counteract the development of 

antibiotic resistance. Nowadays, researchers have largely shifted their attention from the discovery 

of novel broad spectrum antibiotics to finding alternatives in an attempt to battle the development 

of antibiotic resistance, a valuable property that can be exploited in two ways. On one hand, the 

antimicrobial compounds in se can be used as antibiotic replacers and their potential therapeutic use 

is definitely worth investigating. On the other hand, there is the possibility that these bacteria could 

be used as probiotics. Probiotics have become more and more popular in recent years. Probiotic 

bacteria that produce antimicrobial compounds targeting specific pathogens are particularly 

interesting since they tackle the causative disease agent and restrict collateral damage to the 

intestinal microbiota. In addition, they can support the restoration of the normal gut microbiota.  

During laboratory practice, we isolated an environmental B. amyloliquefaciens strain that was able to 

inhibit the growth of C. difficile and C. perfringens in vitro. Several studies already indicated that 

B. amyloliquefaciens possesses many suitable probiotic properties. In addition, the European Food 

Safety Authority has put B. amyloliquefaciens on the Qualified Presumption of Safety list. Ongoing 

research concerning probiotics mainly focusses on probiotic strains that are already commercially 

available. We specifically selected this B. amyloliquefaciens strain based on its potential to inhibit the 

growth of C. difficile and C. perfringens. Therefore, the general aim of this thesis was to investigate 

whether B. amyloliquefaciens could be used as an alternative for conventional antibiotics in the 

control of Clostridium difficile and Clostridium perfringens associated intestinal diseases.  
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The first aim of this thesis was to identify the compound responsible for the antibacterial activity of 

B. amyloliquefaciens against C. difficile. Using acid precipitation, solid phase extraction and reversed-

phase HPLC, the compound was first purified. Identification was achieved using HPLC-ESI-Orbitrap 

mass spectrometry. In addition, we characterized the anti-C. difficile activity of B. amyloliquefaciens 

and had a closer look at pH, temperature and protease stability, the antibacterial spectrum, 

hemolytic activity and cytotoxicity against intestinal epithelial cells. 

Since B. amyloliquefaciens shows great promise as a probiotic micro-organism, the second aim of 

this thesis was to investigate if B. amyloliquefaciens administration could prevent C. difficile 

associated disease. We first analyzed the antibacterial activity of B. amyloliquefaciens against a 

collection of 24 different C. difficile ribotypes. Afterwards, a well described mouse model for 

C. difficile associated disease was used to investigate if prophylactic administration of 

B. amyloliquefaciens could prevent C. difficile associated disease in these animals. 

Several Bacillus species are used as an in-feed supplement for broilers to improve broiler 

performance and intestinal health. In-feed supplementation of B. amyloliquefaciens has been 

reported to improve the performance of broiler chickens. The third aim of this study was to analyze 

if B. amyloliquefaciens could protect broilers from developing necrotic enteritis. Since C. perfringens 

is the causative agent for broiler necrotic enteritis, we started with analyzing the in vitro activity of 

B. amyloliquefaciens against NetB negative and NetB positive C. perfringens strains. In a second part, 

an in vivo broiler model was used to study whether in-feed supplementation of vegetative 

B. amyloliquefaciens cells could prevent C. perfringens associated necrotic enteritis. 
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ABSTRACT 

In the past decade, Clostridium difficile has emerged as an important human pathogen with steady 

increases in incidence and severity worldwide. Current treatment strategies with broad spectrum 

antibiotics have some major drawbacks such as treatment failures with high recurrence rates and the 

destructive effect on the intestinal microbiota. In addition, antibiotic consumption is always 

associated with the fear of antibiotic resistance development. This has created the urgent need to 

find alternative treatment options.  

We isolated a Bacillus amyloliquefaciens strain that is able to inhibit the growth of C. difficile. In this 

study, we characterized the anti-C. difficile activity of cell free supernatant obtained from a 

B. amyloliquefaciens SG1 overnight culture. Determination of the antibacterial spectrum indicated 

only a narrow spectrum of activity. The antibacterial activity was stable over a wide pH and 

temperature range. No loss of activity was observed after treatment of the supernatant with 

catalase, amylase, pepsin, protease P, protease K, chymotrypsin and pronase with the exception of 

only a minor loss of activity due to trypsin treatment. Overall, the antibacterial activity was relatively 

resistant to proteolytic digestion. The antibacterial activity was impaired by exposure to pancreatin 

and lipase indicating the presence of a lipid moiety. Lysozyme treatment affected the antibacterial 

activity weakly. The supernatant showed no hemolytic activity and was not cytotoxic towards IPEC-J2 

cells. Next, the antimicrobial compound was purified using acid precipitation, solid phase extraction 

and reversed phase-HPLC. Mass spectral analysis of the antibacterial fraction revealed the presence 

of a major peak at 1036.65 Da. MSMS analysis indicated that this peak corresponded to the 

lipopeptide surfactin.  

Our results indicate that B. amyloliquefaciens SG1 produces at least one compound, the lipopeptide 

surfactin, with potent antibacterial activity towards C. difficile, making the strain or the lipopeptide a 

potential alternative treatment option for C. difficile associated disease. 
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INTRODUCTION 

The discovery of broad spectrum antibiotics has definitely been a major breakthrough for human and 

veterinary medicine. However, their inappropriate and extensive use has led to the emergence of 

multidrug resistant bacterial pathogens. This has become a global public health problem since the 

number of multidrug resistant infections is constantly rising threatening effective prevention and 

treatment. There is great concern that the industry is not able to develop new effective antibiotics at 

a sufficient rate to counteract the development of antibiotic resistance.1 

In the past decade, C. difficile has emerged as an important hospital associated pathogen with steady 

increases in incidence and severity worldwide.2, 3 It has evolved into the most important cause of 

health care associated diarrhea and is mainly related to prior exposure to antibiotics.4 Antibiotics 

administered to manage any kind of infection induce a disturbance in the indigenous intestinal 

microbiota giving C. difficile the chance to colonize the intestinal tract and produce its toxins 

responsible for the disease.5 Current treatment strategies rely on the administration of the broad 

spectrum antibiotics metronidazole and vancomyin but have major disadvantages. Both antibiotics 

are associated with a limited treatment success since high recurrence rates are being reported.6 In 

addition, C. difficile strains with reduced susceptibility for both antibiotics have already been 

isolated.7, 8 Vancomycin use is associated with the risk of colonization with vancomycin resistant 

enterococci, hence, cautious practice is recommended.9 Antibiotic use is always associated with the 

danger of spread of antibiotic resistance to other pathogens or strains of the resident gut 

microbiota.10 Since metronidazole and vancomycin have a broad spectrum of activity, they cause a 

considerable amount of collateral damage to other strains of the gut microbiota.11 Altogether, this 

has created an urgent need to develop new treatment strategies that efficiently target C. difficile but 

only have a minimal impact on the resident gut microbiota. 

Nowadays, researchers have largely shifted their attention from the discovery of novel broad 

spectrum antibiotics to finding alternative treatments in an attempt to limit the development of 

antibiotic resistance. Bacteria produce many secondary metabolites other than the classical broad 

spectrum antibiotics. These metabolites often possess potent antibacterial activity. Bacteriocins and 

lipopeptides are two classes of secondary metabolites with promising characteristics for use as 

antibiotic alternative. Several bacteriocins with antibacterial activity against C. difficile have already 

been reported. Nisin and lacticin 3147, both produced by Lactococcus lactis strains, exhibit excellent 

in vitro activity against C. difficile and are promising candidates for the treatment of CDAD.12, 13 

Thuricin CD is a bacteriocin produced by Bacillus thuringiensis with a narrow spectrum of activity 

against C. difficile. This antimicrobial peptide offers the possibility of a targeted therapy with a 
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minimal impact on the resident gut microbiota.14 NVB302 is a semi-synthetic derivative of 

deoxyactagardine B with elevated in vitro antibacterial activity against C. difficile. A recent phase I 

clinical trial indicated that its use in healthy subjects is safe and well-tolerated.15, 16 LFF571 is derived 

from the bacteriocin GE2270 A and results of a phase II clinical trial demonstrated better clinical cure 

and recurrence rates as vancomycin therapy.17-19 CB-183,315 is a novel lipopeptide with a more 

potent in vitro activity against C. difficile than metronidazole and vancomycin.20, 21 In addition, a 

phase II clinical trial concluded that its use is safe and well-tolerated and results showed higher 

clinical cure and recurrence rates than vancomycin.22 Taken together, the use of bacterial 

metabolites as alternative for antibiotic therapy shows great promise for the treatment of CDAD. 

During laboratory practice, a bacterial strain able to inhibit C. perfringens grew on agar plates as a 

contaminant. This strain was isolated and identified as B. amyloliquefaciens based on 16S and 

gyrase B gene sequencing and named B. amyloliquefaciens SG1. Additional testing revealed an even 

higher level of in vitro inhibitory capacity against C. difficile. Due to this high amount of antibacterial 

activity, the focus of the current study was to characterize the anti-C. difficile activity of 

B. amyloliquefaciens supernatant and to identify the components involved in its antibacterial activity. 

MATERIALS AND METHODS 

STRAINS AND CULTURE CONDITIONS 

B. amyloliquefaciens SG1 was grown in tryptone soya broth (TSB) (Oxoid, Basingstoke, UK) and 

incubated for 24 h at 30°C with agitation for the preparation of cell free supernatant (CFSN). For 

purification and identification of the antimicrobial compound, B. amyloliquefaciens SG1 was grown 

for 48 h at 30°C in Medium Optimized for Lipopeptide Production (MOLP) as described previously.23 

Clostridium difficile VPI 10463 was used as indicator strain to screen for residual antibacterial activity 

of CFSN by means of an agar well diffusion assay. The strain was inoculated in reinforced clostridial 

medium (RCM) (Oxoid) and incubated for 24 h at 37°C in an anaerobic (84% N2, 8% CO2 and 8% H2) 

workstation (Ruskinn Technology, Bridgend, UK). 

Other bacterial indicator strains used to determine the antibacterial spectrum of CFSN are listed in 

Table 1 with their appropriate medium. All Gram-negative strains, Clostridium perfringens strains, 

Staphylococcus sp. and Streptococcus sp. were grown in brain heart infusion broth (BHI) (Merck, 

Darmstadt, Germany). Lactobacillus sp. were grown in MRS broth (MRS) (Oxoid). All strains were 

incubated overnight at 37°C. 
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CHARACTERIZATION OF ANTIBACTERIAL ACTIVITY 

CELL FREE SUPERNATANT 

For preparation of CFSN, B. amyloliquefaciens SG1 was grown as described above. Bacterial cells 

were removed by centrifugation at 5000 x g for 15 min at 4°C. The supernatant was filter-sterilized 

and used for characterization of the antibacterial activity. The activity of CFSN was tested against 

C. difficile VPI 10463 using an agar well diffusion assay. A 24 h culture of C. difficile VPI 10463 was 

diluted 1/50 in autoclaved, cooled reinforced clostridial agar (Oxoid) and poured in sterile petri 

dishes to obtain a confluent layer. Using the back of sterilized tips, wells were made in the agar and 

filled with 20 – 40 µl of the CFSN. The plates were incubated overnight at 37°C in an anaerobic 

(84%N2, 8% CO2 and 8% H2) workstation (Ruskinn Technology, Bridgend, UK) and checked for the 

presence of growth inhibition zones around the wells. The size of the inhibition zones was measured. 

All experiments were performed in triplicate. Results are means of three independent replicates 

± standard error on the mean. 

INHIBITION SPECTRUM OF B. AMYLOLIQUEFACIENS SG1 

The antimicrobial activity of the CFSN was tested against a selection of Gram-negative and Gram-

positive bacteria as represented in Table 1. All strains were obtained from our own collection. 

Overnight cultures were diluted 1/10 in sterile phosphate buffered saline. One hundred microliter 

was swabbed on the appropriate agar plate. Wells were made in the agar and filled with 40 µl CFSN. 

After overnight incubation, plates were evaluated for the presence of growth inhibition zones around 

the wells. The sensitivity was determined by measuring the size of the growth inhibition zone. Results 

are expressed as follows, -: no growth inhibition; +: ≤ 5 mm; ++: 5 – 10 mm; +++: ≥ 10 mm. 

EFFECT OF PH AND HEAT TREATMENT 

The antimicrobial activity of CFSN was tested for sensitivity to pH and heat treatment. Heat 

sensitivity was analyzed by incubation of 500 µl aliquots of CFSN at 30 – 120°C with 10°C intervals for 

10, 30 or 60 min using a heat block. Samples were immediately transferred to ice after incubation. 

The influence of the pH was determined by adjusting the pH of 20 ml aliquots of CFSN from 2 to 12 

with 6 N HCl or 3 M NaOH. Samples were incubated at 4°C for 1 h and centrifuged at 5000 x g for 

15 min at 4°C. The supernatant was collected and neutralized to pH 7. Any precipitated material was 

dissolved in 20 ml sterile GIBCO® Hank’s Balanced Salt Solution (Life Technologies, Gent, Belgium). 

Both fractions were tested for residual antibacterial activity against C. difficile VPI 10463 as described 

above. The activity of an untreated sample was determined as a control and was considered 100%. 

Activity of all treated samples was expressed as the percentage of residual activity as compared to 

the control sample. 
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EFFECT OF PROTEOLYTIC ENZYMES  

The sensitivity of the antimicrobial metabolites in the CFSN to enzymatic digestion was determined 

by incubation of aliquots of CFSN with 1 mg/ml of pepsin, proteinase P, proteinase K, trypsin, 

chymotrypsin, pronase, catalase, amylase, lipase, lysozyme or pancreatin. All enzymes were dissolved 

in HBSS and filter-sterilized prior to use. All samples were incubated at 37°C for 1 h. An untreated 

sample was included as a control. To exclude any influence of the enzymes themselves on the growth 

of C. difficile, the tested enzymes were diluted in sterile HBSS to achieve identical concentration as 

compared to the treated supernatant and tested for antibacterial activity. Activity of all treated 

samples was compared with the activity of an untreated sample and expressed as % residual activity.  

HEMOLYTIC ACTIVITY 

The hemolytic activity of CFSN was analyzed using commercial blood agar plates. Three drops of 20 µl 

were spotted on a columbia agar plate supplemented with 5% sheep blood (Oxoid). The plate was 

left to dry and incubated overnight at 37°C in an aerobic atmosphere.  

KINETICS OF ANTIBACTERIAL ACTIVITY PRODUCTION 

To monitor the production of antimicrobial metabolites along the bacterial growth, a 

B. amyloliquefaciens SG1 overnight culture was diluted 1/2000 in TSB and incubated at 30°C with 

agitation. A 3 ml sample was collected at regular time intervals. To follow the bacterial growth, the 

OD was measured at 600 nm. The sample was centrifuged at 14 000 rpm for 10 min at 4°C. The 

supernatant was filter-sterilized and screened for antibacterial activity against C. difficile VPI 10463.  

CYTOTOXIC EFFECT OF CFSN ON INTESTINAL EPITHELIAL CELLS 

To assess the cytotoxic effect of CFSN on intestinal epithelial cells, a neutral red uptake assay was 

performed as described previously.24 Porcine intestinal epithelial cells (IPEC-J2) were grown in 

Dulbecco’s Modified Eagle Medium (DMEM), nutrient mixture F12, supplemented with 5% fetal calf 

serum, 1% insulin-transferrin-selenium (ITS), 1% penicillin-streptomycin and 1% kanamycin (Life 

Technologies, Gent, Belgium). IPEC-J2 cells were seeded in a collagen coated 96-well plate at a 

concentration of ± 5 x 104 cells/well and incubated for 24 h at 37°C in the presence of 5% CO2. Cell 

medium was removed and cells were washed with pre-warmed HBSS containing Ca2+ and Mg2+. One 

hundred microliters of CFSN was added to the cells and plates were incubated for 3 hours at 37°C. 

CFSN was removed and neutral red medium (DMEM, F12, ITS, 1 ml neutral red solution (Sigma, 

Diegem, Belgium)) was added. After 3 hours of incubation, cells were washed with HBSS containing 

Ca2+ and Mg2+ and treated with neutral red desorb solution (50% absolute ethanol, 49% distilled 

water, 1% glacial acetic acid) for 15 min at room temperature to extract neutral red from the cells. 
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Absorbance was measured at 550 nm. TSB was included as a negative control, 100% SDS was used as 

a positive control. CFSN was tested in triplicate and plates were measured three times.  

PURIFICATION AND IDENTIFICATION OF ANTIBACTERIAL COMPOUD 

PURIFICATION 

The supernatant of a B. amyloliquefaciens SG1 culture grown in MOLP was used for purification of 

the antimicrobial compound. The supernatant was first concentrated by acid precipitation. The pH of 

the supernatant was adapted to pH 2 using a 6 M HCl solution. After overnight incubation at 4°C, the 

white precipitate was collected by centrifugation at 5000 x g for 15 min. The precipitate was 

dissolved in HBSS. The pH of the solution was neutralized using 3 M NaOH and the solution was filter 

sterilized.  The sample was further subjected to solid phase extraction. The sample was applied on a 

Bond Elut C18 (Agilent Technologies, Diegem, Belgium) column. The column was washed with 40 ml 

distilled water followed by 40 ml of a 50% MeOH solution. The antimicrobial compound was eluted 

with 40 ml 100% MeOH. Fractions of 20 ml were collected every time. All collected fractions were 

tested for antibacterial activity against C. difficile VPI 10463 by means of an agar well diffusion assay. 

The fraction with the highest antibacterial activity was selected for further purification using RP-

HPLC. This fraction was divided in 2 ml aliquots which were vacuum dried for enrichment reasons 

and dissolved in 80 µl 0.1% TFA/50% ACN. The samples were centrifuged at 16000 x g for 8 min at 

4°C. The supernatant was subjected to RP-HPLC using a PTC-C18 column (PTC Spheri-5 220x2.1 mm 

Higgins Analytical) at a flow rate of 100 µl/min using gradient elution and detection at 220 and 

280 nm. Mobile phase A consisted of 0.1% TFA in water and mobile phase B was 0.1% TFA in 

acetonitrile. The elution conditions were 50 – 80% B in 54 min, 80 – 100% B in 10 min followed by 

100% B for 5 min. All collected fractions were analyzed for antibacterial activity against C. difficile VPI 

10463 using an agar well diffusion assay including both buffers A and B to exclude any effect of the 

buffers themselves. Uncultured MOLP medium was subjected to the same protocol and used as a 

blanc to be able to exclude background peaks. 

IDENTIFICATION  

The fractions with the highest antibacterial activity, corresponding to the same peak in the 

chromatogram, were pooled and vacuum dried for enrichment reasons. Afterwards, high-resolution 

mass spectra of this sample were generated by HPLC-ESI-Orbitrap mass spectrometry (1260 series 

HPLC system; Agilent Technologies, Waldbronn, Germany) coupled to an HR-ESI-Orbitrap mass 

spectrometer (Orbitrap XL, Thermo Fisher Scientific, Bremen, Germany). Chromatographic separation 

was carried out on a Grom-Sil 120 ODS-5 ST column (100 x 2 mm; 5 µm, Grace Davison, Deerfield, IL, 

USA) by using a mobile phase consisting of H2O (A) and ACN (B) each containing 0.1 % formic acid 
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with a gradient from 5 – 99 % B over 10 minutes followed by a 2 min hold at 100 % B using positive 

ionization mode. Fragmentation of molecules was carried out using collision-induced dissociation 

(CID). In this study CID measurements performed at 40 % normalized collision energy have been 

represented. To exclude any background, the same procedure was applied to the pooled fractions 

from the RP-HPLC of uncultured MOLP medium. 
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RESULTS  

CHARACTERIZATION OF THE ANTIBACTERIAL ACTIVITY  

CFSN of B. amyloliquefaciens SG1 was tested against a range of Gram-positive and Gram-negative 

bacteria as represented in Table 1. B. amyloliquefaciens SG1 displayed a limited spectrum of activity. 

No activity was detected against the Gram-negative bacteria Escherichia coli, Salmonella sp., 

Pasteurella sp. and Pseudomonas aeruginosa. Only the growth of Yersinia pseudotuberculosis was 

inhibited to a minor extent. Moreover, the growth of several Gram-positive bacteria belonging to 

Clostridium cluster I, IV, XIVa and XVI, 7 out of 8 tested Lactobacillus strains and all tested 

Staphylococcus sp. was not affected by the supernatant. Only Clostridium perfringens, Enterococcus 

cecorum and the two tested Streptococcus species were inhibited by the supernatant. 

Table 1. Antibacterial spectrum of CFSN from B. amyloliquefaciens SG1 against a selection of 

indicator micro-organisms. * - : no inhibition; +: ≤ 5 mm; ++: 5 – 10 mm; +++: ≥10 mm 

 

 

 Strains Medium Activity* 

Gram-negative Escherichia coli (n=5) BHI - 
 Pasteurella sp. (n=1) BHI - 
 Pseudomonas aeruginosa (n=2) BHI - 
 Salmonella Enteritidis (n=1) BHI - 
 Salmonella Typhimurium (n=1) BHI - 
 Yersinia pseudotuberculosis (n=2) BHI + 

Gram-positive Clostridium cluster I (n=2) M2GSC - 
 Clostridium cluster IV (n=3) M2GSC - 
 Clostridium cluster XIVa (n=1) M2GSC - 
 Clostridium cluster XVI (n=4) M2GSC - 
 Clostridium difficile VPI 10463 (n=1) RCA +++ 
 Clostridium perfringens (n=1) BHI ++ 
 Enterococcus cecorum (n=1) BHI + 
 Lactobacillus acidophilus (n=1) MRS - 
 Lactobacillus brevis (n=1) MRS - 
 Lactobacillus buchneri (n=1) MRS - 
 Lactobacillus paracasei subsp. paracasei (n=1) MRS - 
 Lactobacillus plantarum (n=1) MRS + 
 Lactobacillus sakei subsp. carnosus sp. (n=1) MRS - 
 Lactobacillus salivarius sp. (n=1) MRS - 
 DNAse negative Staphylococcus sp. (n=1) BHI - 
 Methicillin Resistant Staphylococcus aureus (n=1) BHI - 
 Staphylococcus intermedius (n=5) BHI - 
 Streptococcus bovis (n=1) BHI + 
 Streptococcus equi subsp. zooepidemicus (n=3) BHI ++ 
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Figure 1. Effect of pH and temperature on the relative anti-C. difficile activity of CFSN from a 

B. amyloliquefaciens SG1 culture. (A) Effect of pH on CFSN (   ) or dissolved precipitate (   ) (B) Effect 

of exposure to various temperatures for 10 min (  ), 30 min (  ) or 60 min (  ) The remaining 

antibacterial activity was compared with an untreated sample and expressed as % residual activity. Results are 

means of three independent replicates ± standard error on the mean. 

 

The effect of exposure to different pH values and temperatures on the antibacterial activity of CFSN 

is represented in Figure 1. The antibacterial activity was relatively resistant to changes in pH 

(Figure 1A). Antimicrobial metabolites secreted by B. amyloliquefaciens SG1 remained stable at pH 

values between 6 and 11 with only minor loss of activity at pH 5 and pH 12. At low pH however, the 

antibacterial activity was abolished but could be completely recovered after suspending the collected 

precipitate in the original volume. Antibacterial activity was unaffected by heat treatment of CFSN at 

30-70°C for 10 min and 30-50°C for 30 min and 60 min. Loss of activity was observed after incubation 

at 80°C for 10 min, 60°C for 30 min and 60 min. Heating of the CFSN for 60 min at 120°C resulted in a 

complete loss of antibacterial activity (Figure 1B). 

The effect of various enzymes on the antibacterial activity of CFSN against C. difficile is represented in  

Table 2. The antibacterial activity was unaffected by exposure catalase, amylase, pepsin, protease P, 

protease K, chymotrypsin and pronase. Only a minimal loss of activity was observed due to trypsin 

and lysozyme treatment. The antibacterial activity was diminished due to the addition of pancreatin 

and lipase indicating the presence of a lipid moiety.  

 

 

A B 
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Table 2. Effect of various enzymes on the anti-C. difficile activity of CFSN from a 

B. amyloliquefaciens SG1 culture. *Antimicrobial activity of untreated CFSN equalizes 100%. Results are 

means of three individuals replicates ± standard error on the mean. 

 

 

 

 

Figure 2. Growth and antibacterial metabolite production by B. amyloliquefaciens SG1 in TSB at 

30°C. Log cfu/ml (   ) and diameter of growth inhibition zone (   ). 

 

 

Test product Residual activity (%)* 

1% lysozyme 94.5 ± 3.2 
1% pancreatine 83.3 ± 0.5 

1% amylase 100 
1 mg/ml pepsin 100 

1 mg/ml protease P 100 
1 mg/ml protease K 100 

1 mg/ml trypsin 98.2 ± 1.,8 
1 mg/ml chymotrypsin 100 

1 mg/ml pronase 100 
1 mg/ml catalase 100 

1 mg/ml lipase 90.8 ± 2.,5 
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CFSN showed no hemolytic activity. The cytotoxicity of CFSN was determined using IPEC-J2 cells. No 

cell death was observed with 100% of supernatant as compared to the negative control consisting of 

cell medium. The secretion of antimicrobial metabolites in the supernatant by B. amyloliquefaciens 

SG1 coincides with the growth of the bacterium. The amount of antimicrobial activity rises during the 

late exponential growth phase of the bacterial culture and reaches its maximal production during the 

stationary growth phase. No loss of activity is noted during the stationary growth phase (Figure 2). 

PURIFICATION AND IDENTIFICATION OF ANTIBACTERIAL COMPOUND 

The antimicrobial compound was first concentrated using acid precipitation. All antibacterial activity 

was retained after dissolving the collected precipitate. The sample was subjected to solid phase 

extraction and all eluted samples were tested for antibacterial activity against C. difficile. The highest 

amount of activity was obtained after elution with 100% methanol. This fraction was concentrated 

and subsequently subjected to RP-HPLC for further purification. All eluted samples were tested for 

antibacterial activity against C. difficile. A high amount of antibacterial activity was obtained in the 

samples corresponding to a large peak with a retention time of 54 – 56 minutes. The fractions 

corresponding to this peak were pooled, vacuum dried and further analyzed with HPLC-ESI-Orbitrap 

mass spectrometry (MS). The obtained mass spectrum is represented in Figure 3 A. The peaks on the 

left part of the spectrum were also found in the blank sample and are, as such, not responsible for 

the antibacterial activity. The peak with the highest concentration has a molecular mass of 1036.65. 

MSMS analysis indicated a spectrum characteristic for the lipopeptide surfactin (Figure 3 B). This 

observation was confirmed by comparison of the mass spectra with those obtained from 

commercially available surfactin (Figure 4). The 1036.65 and 1058.63 peak correspond respectively to 

surfactin with a lipid chain containing 14 carbon atoms and its sodium adduct. 
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Figure 3. MS (A) and MSMS (B) analysis of the purified antibacterial compound produced by 

B. amyloliquefaciens SG1 active against C. difficile. MSMS analysis was conducted on the 1036.65 peak. 
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Figure 4. MS (A) and MSMS (B) analysis of commercially available surfactin. MSMS anlysis was 

conducted on the 1036.69 peak. 
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The purification and identification procedure was repeated to confirm the result. Surfactin was again 

identified in the sample although different homologues were present. The most abundant peaks 

present had a molecular mass of 1022.67 and 1044.65. These peaks correspond to surfactin with a 

lipid chain containing 13 carbon atoms and its sodium adduct. In addition, an unknown peak at 

503.31 was detected. Unfortunately, the identity of this compound could not be detected after 

MSMS analysis because its concentration was too low. 

To analyze if surfactin is indeed responsible for the antibacterial activity against C. difficile, 

commercially available surfactin (Sigma) was purchased. Surfactin was dissolved in methanol and 

tested for antibacterial activity against C. difficile using an agar well diffusion assay. Methanol was 

included as a control. Overnight incubation revealed that surfactin was able to inhibit the growth of 

C. difficile (Figure 5). 

 

 

 

Figure 5. Antibacterial activity of (A) control (methanol) and (B) commercially available surfactin 

against C. difficile. 
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DISCUSSION 

In the past decade, the incidence and severity of C. difficile-associated disease has increased 

worldwide.25 Current treatment strategies with the broad spectrum antibiotics metronidazole and 

vancomycin are regularly failing.6 In addition, the fear of antibiotic resistance development has 

created the urgent need to find alternatives to broad spectrum antibiotic therapy.26 Lipopeptides are 

secondary bacterial metabolites that often encompass significant antibacterial activity and show 

great promise as therapeutics.27 In this study, we demonstrated that the lipopeptide surfactin is 

responsible for the antibacterial activity of B. amyloliquefaciens SG1 against C. difficile. 

Surfactin is a cyclic lipopeptide made up of a peptide chain containing seven amino acids that 

undergoes cyclization, and a hydrophobic fatty acid chain. The antibacterial effect of surfactin against 

important human pathogens such as Escherichia coli, Salmonella Enteritidis and Listeria 

monocytogenes has been documented in several studies.28-30 However, we clearly demonstrated that 

B. amyloliquefaciens SG1 supernatant does not encompass antibacterial activity against the E. coli 

and Salmonella strains tested in our study. Interestingly, Sabaté and Audisio reported that the 

antibacterial capacity of surfactin is strain dependent. Surfactins purified from different B. subtilis 

strains showed a large variation in antibacterial efficacy against Listeria monocytogenes. Surfactin 

purified from B. subtilis subsp. subtilis C4 inhibited the pathogen with a concentration of 

0.125 mg/ml while the lowest inhibitory effect was observed for B. subtilis subsp. subtilis M1, which 

only inhibited the pathogen at 1 mg/ml of surfactin.28 Crude supernatant inhibited the growth of 

C. difficile VPI 10463 without the necessity for enrichment. The surfactin produced by our strain 

encompasses a high antibacterial effect against C. difficile but not against other bacteria. When used 

for the treatment of C. difficile associated disease, this limited spectrum of activity may spare the 

indigenous intestinal microbiota from collateral damage. 

Lipopeptides have already been suggested as promising alternatives for antibiotic therapy.27 

Nevertheless, lipopeptide production has long been seen as evidence for toxicity. This observation is 

however based on results of in vitro experiments and in vivo toxicity has not been confirmed. Results 

of our in vitro tests clearly indicate that B. amyloliquefaciens SG1 supernatant does not present 

cytotoxic or hemolytic activity. Since crude supernatant significantly inhibits C. difficile without the 

necessity of enrichment, the concentration of surfactin present is sufficiently low to avoid toxicity. 

Despite the fact that literature concerning the use of lipopeptides in vivo is not elaborate, their 

beneficial effects have been described in the few available reports. Good safety profiles were 

reported for the oral administration of a crude lipopeptide mixture from Bacillus mojavensis A12 to 

mice and the intraperitoneal injection of lipopeptide biosurfactant from B. subtilis SPB1 to mice. Both 



 

 

120 Characterization of CFSN 

were reported as promising for therapeutic application.31, 32 Intraperitoneal administration of 

surfactin C, produced by B. subtilis, significantly improved survival and reduced the number of E. coli 

in a mouse model of septic shock.33 In addition, many health benefits have been attributed due to 

lipopeptide producing Bacillus species. Several Bacillus species are recognized as probiotics for 

human and veterinary use. For example, Enterogermina® is a Bacillus clausii containing probiotic 

used for the prevention of infantile diarrhea.34 Bacillus fermented foods have a long history of safe 

use. The Japanese product Natto is made of soy beans fermented by B. subtilis var. natto. 

Consumption of Natto has been associated with health benefits. The presence of substanial amounts 

of the lipopeptide surfactin has been demonstrated indicating a low toxicity towards humans.35 

Moreover, in vivo tests with B. subtilis var. natto indicated no signs of toxicity or virulence.36 Oral 

administration of B. subtilis PB6 significantly improved intestinal pathology in a rat model of 

inflammatory bowel disease. This protection was attributed to the production of surfactins. In 

addition, a clinical study indicated that the strain was well tolerated in healthy volunteers.37 Finally, 

recent evidence suggests that lipopeptide producing Bacillus species can be part of the indigenous 

intestinal microbiota from humans.38 Taken together, these results indicate that surfactin has a low 

toxicity towards humans and shows great promise as possible alternative for conventional antibiotic 

therapy. 

In humans, C. difficile infection is localized in the colon. To achieve a stable delivery at the site of 

target, orally administered antimicrobials need to be able to survive the harsh conditions of the 

gastrointestinal tract such as the acidity of the stomach and proteolytic digestion. Researchers 

previously reported that changes in pH or addition of proteases did not affect the antibacterial 

activity of surfactin.28 We demonstrated that B. amyloliquefaciens SG1 supernatant retained its 

antibacterial activity against C. difficile over a quite large pH range. However, at very acidic pH values, 

all antibacterial activity disappeared but could be completely recovered by a subsequent increase in 

the pH. It is generally known that lipopeptides precipitate at low pH. Acid precipitation is commonly 

used to enrich lipopeptides as an initial step during the purification process.39 In the acidic 

environment of the stomach, surfactin will probably precipitate but during further passage in the 

intestinal tract, it could regain its activity since it encounters a gradual rise in pH. The antibacterial 

activity was not affected by several digestive enzymes including amylase, pepsin and chymotrypsin.  

Loss of activity was noted due to trypsin, pancreatine and lipase treatment suggesting proteolytic 

digestion during gastrointestinal transit. However, all of these problems could be easily overcome by 

use of the B. amyloliquefaciens SG1 strain itself to obtain in situ production of surfactin at the site of 

target. B. amyloliquefaciens is on the Qualified Presumption of Safety list of the European Food 

Safety Authority based on the absence of toxigenic activity and acquired antibiotic resistance 
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genes.40 Several studies indicate that B. amyloliquefaciens administration has a beneficial effect on 

the pathogenesis and progression of certain intestinal disorders. For example, orally administered 

B. amyloliquefaciens significantly reduced bacterial translocation in weaned mice.41 Moreover, it has 

been proposed as a novel probiotic for a better management of inflammatory bowel disease since it 

successfully reduced intestinal inflammation in mice. 

As most lipopeptides, surfactin exerts its antibacterial effect by targeting the bacterial cell membrane 

where it induces the formation of pores leading to membrane depolarization and eventually cell 

death.42 Since surfactin is not yet used as a therapeutic, little information is available concerning the 

possible resistance development by bacteria. Resistance to surfactin has been reported for the soil 

bacterium Streptomyces sp. Mg1 due to the secretion of a hydrolytic enzyme that breaks down 

surfactin.43 It is however postulated that development of resistance against lipopeptides is not 

straightforward since it involves the adaptation of a long evolved conserved structure. CB-183,315 is 

a novel cyclic lipopeptide analogue of daptomycin with potent activity against Gram-positive bacteria 

including C. difficile. Researchers reported the unlikelihood of resistance development based on its 

bactericidal mode of action, spontaneous resistance incidence studies and serial passages. 

Interestingly, enhanced activity has been reported towards C. difficile strains resistant to 

fluoroquinolones, clindamycin and metronidazole. CB-183,315 shows a limited activity against Gram-

negative bacteria suggesting little collateral damage to and a rapid restoration of the normal gut 

microbiota. Its effectiveness in preventing initial and recurrent CDAD has been demonstrated using 

the classical hamster model. In addition, results of clinical trials indicate its use is safe and well 

tolerated. A phase 3 clinical trial is currently performed.20, 44, 45  

Mass spectral analysis of the purified fraction showed that surfactin was responsible for the 

antibacterial activity against C. difficile. Confirmation of this results with a newly prepared sample 

however, also revealed the presence of a second peak with a molecular mass of 503. Due to its low 

concentration, we were unable to reveal its identity using MSMS analysis. Comparison of the mass 

spectra obtained from the first and second sample indicated a difference in the main surfactin 

homologues present. The first sample contained mainly C14-surfactin while the C13 surfactin 

homologue was most abundant in the second sample. It has been reported previously that the 

production of surfactant homologues can be influenced by the differences in the composition of the 

growth medium and incubation conditions.46-48 To obtain additional evidence that surfactin is 

responsible for the antibacterial activity against C. difficile, commercially available surfactin was 

purchased and tested. A clear growth inhibition zone was detected demonstrating its antibacterial 

effect towards C. difficile. However, it still remains possible that B. amyloliquefaciens SG1 also 

produces other compounds with antibacterial activity against C. difficile.  
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Overall, these results indicate that surfactin produced by B. amyloliquefaciens SG1 encompasses 

antibacterial activity against C. difficile and could be a promising alternative for broad spectrum 

antibiotics in the treatment of CDI. 
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ABSTRACT 

Probiotics might offer an attractive alternative for standard antibiotic therapy to treat Clostridium 

difficile infections. We specifically selected a Bacillus amyloliquefaciens strain for its high in vitro 

antibacterial activity against C. difficile and tested its efficacy to prevent CDI in a mouse model. 

B. amyloliquefaciens SG1 supernatant was tested against a large collection C. difficile strains using an 

agar well diffusion test. B. amyloliquefaciens SG1 was orally administered to C57BL/6 mice in which 

CDI was induced using C. difficile VPI 10463 and its effect was compared with control mice receiving 

no treatment and mice receiving Saccharomyces boulardii. Mice were followed up daily for signs of 

disease including weight loss. At necropsy, the colon was collected and subjected to 

histopathological analysis. C. difficile toxin A/B levels and colon weight/length and colon/body weight 

ratios were calculated. B. amyloliquefaciens SG1 supernatant was able to inhibit the growth of all 

C. difficile strains. Results of the in vivo trial indicated a significant weight loss for untreated and 

S. boulardii treated mice as compared to B. amyloliquefaciens SG1 treated mice. C. difficile toxin A 

and B levels were significantly higher for untreated and S. boulardii treated mice than 

B  amyloliquefaciens SG1 treated mice. A significantly lower degree of colon damage was detected 

for B. amyloliquefaciens SG1 treated mice as compared to untreated and S. boulardii treated mice, 

based on histopathological analysis, colon weight/length and colon/body weight ratios. In conclusion, 

administration of B. amyloliquefaciens SG1 was successful in preventing CDI in a mouse model. 
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INTRODUCTION 

The intestinal microbiota is important to preserve gut health since it forms an effective barrier 

against pathogens.1 Disturbance of this complex ecosystem due to antibiotic consumption makes the 

host susceptible to gastrointestinal infections. Up to 25% of patients receiving antibiotics develop 

antibiotic associated diarrhea (AAD).2 In humans, Clostridium difficile is responsible for 15 – 25% of all 

AAD cases and is the main cause of pseudomembranous colitis.3  

Alteration of the normal intestinal microbiota is the most important trigger for CDI. Antibiotics 

administered to control any kind of infection can alter the resident gut microbiota, allowing ingested 

and subsequently germinated C. difficile spores to colonize the gut. Standard treatment involves the 

discontinuation of the inducing antibiotic, if possible, and administration of metronidazole or 

vancomycin, if necessary.2 As stated by Johnson et al.4, it seems contradictory that standard 

treatment of CDI involves the administration of antibiotics when disease outcome results from the 

disruptive effect of antibiotics on the colonic microbiota.  

There is an urgent need to develop efficient methods for prevention and treatment of CDI that do 

not further disrupt the altered indigenous microbiota, help to restore the complex balance of the 

normal gut microbiota and limit the need for additional antibiotic therapy.5 Probiotics might offer an 

attractive alternative to standard antibiotic therapy. They can protect the host against invading 

pathogens by repopulation of the gut with non-pathogenic microbiota, activation of the hosts 

immune system and production of antimicrobial compounds that specifically act against pathogenic 

microorganisms. A major advantage of probiotics is their relatively low production cost and the 

unlikeliness of increasing the incidence of antibiotic resistance.1 Different probiotics have already 

been studied to prevent AAD and C. difficile associated diarrhea. The most conclusive results have 

been found for Lactobacillus rhamnosus GG and Saccharomyces boulardii, both associated with a 

significant reduction in AAD.6-11 Moreover, administration of S. boulardii combined with standard 

antibiotic therapy is efficient and safe in patients with recurrent CDI.12 

Only commercially available probiotics have already been used for the treatment or prevention of 

CDI. To the best of our knowledge, probiotic microorganisms have never before been selected for 

their specific antibacterial activity against C. difficile. In this study, we evaluated the in vitro 

antimicrobial activity of B. amyloliquefaciens SG1 culture supernatant against a collection of 

C. difficile strains and its efficacy to prevent CDI in a mouse model. 

  



 

 

133 Chapter 2 

MATERIALS & METHODS 

GROWTH CONDITIONS AND INOCULUM PREPARATIONS 

The antimicrobial activity of B. amyloliquefaciens SG1 was tested against a collection of 24 C. difficile 

ribotypes as listed in Table 1. B. amyloliquefaciens SG1 was grown in tryptone soya broth (TSB) 

(Oxoid, Basingstoke, UK) for 24h at 30°C. C. difficile strains were inoculated in reinforced clostridial 

medium (RCM, Oxoid) and incubated for 24h at 37°C in an anaerobic (84% N2, 8% CO2 and 8% H2) 

workstation (Ruskinn Technology, Bridgend, UK).  

 

Table 1. C. difficile ribotypes used in the in vitro work. VPI 10463 corresponds to the reference strain. 

BR001 BR017 BR053 BR087 

BR002 BR020 BR056 BR095 

BR003 BR023 BR070 BR106 

BR012 BR027 BR075 BR126 

BR014 BR029 BR078 BR131 

BR015 BR046 BR081 VPI 10463 

 

 

For the in vivo trial, C. difficile VPI 10463 was inoculated in broth containing proteose peptone (40 

g/l), Na2HPO4 (5 g/l), KH2PO4(1 g/l), MgSO4.7H2O (0.1 g/l), NaCl (2 g/l) and fructose (6 g/l) and 

incubated anaerobically for 36h at 37°C. B. amyloliquefaciens SG1 was inoculated in TSB and grown 

for 24h at 30°C. Saccharomyces boulardii was isolated from Enterol® (Biocodex, Gentilly Cedex, 

France), inoculated in sabouraud liquid medium (Oxoid) and incubated for 24h at 37°C. Cells were 

collected by centrifugation at 5000 x g for 15 min and suspended in GIBCO® Hank’s Balanced Salt 

Solution (HBSS) (Life Technologies, Bleiswijk, The Netherlands). C. difficile VPI 10463 was suspended 

in HBSS with 0.1% cysteine-HCl (Merck, Darmstadt, Germany). 

AGAR WELL DIFFUSION ASSAY 

Cell free supernatant was prepared by filter sterilizing the supernatant of B. amyloliquefaciens SG1 

grown in TSB. C. difficile cultures were diluted 1/50 in reinforced clostridial agar (Oxoid) and poured 

in sterile petri dishes. Wells were made in the agar and filled with 40 µl supernatant. Plates were 

incubated anaerobically overnight at 37°C and evaluated for growth inhibition zones. 
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IN VIVO TRIAL 

MICE 

Nine week old female C57BL/6 mice were purchased from Harlan Laboratories (Indianapolis, IN) and 

housed in groups of 4 or 5 animals per cage of 820 cm2. Cages, water, feed and bedding were 

autoclaved prior to contact with the animals. Feed and water were accessible ad libitum. Upon 

arrival, mice were acclimated for two weeks in the research facilities.  

 

CLOSTRIDIUM DIFFICILE INDUCED COLITIS 

CDI was induced based on the protocol described by Chen et al.13 An antibiotic cocktail [kanamycin 

(0.4 mg/ml), gentamicin (0.035 mg/ml), colistin (850 U/ml), metronidazole (0.215 mg/ml) and 

vancomycin (0.045 mg/ml)] was administered in the drinking water for 3 days (days -6 to -3) followed 

by an i.p. clindamycin injection (20 mg/kg) two days later (day -1). After 24 hours, animals were 

infected with C. difficile VPI 10463 (± 1 x 106 cfu) by oral gavage and monitored for signs of disease. 

Moribund and all surviving mice at day 5 post infection were euthanized. All experimental 

procedures involving animals were approved by the ethical committee of the Faculty of Veterinary 

Medicine of  Ghent University. 

 

EXPERIMENTAL TREATMENT 

Mice were randomly allocated to 1 of 3 different groups with 14 animals per group and treated with 

B. amyloliquefaciens (± 6 x 108 cfu), S. boulardii (± 3 x 108 cfu) or remained untreated. All treatments 

were administered by oral gavage. The first treatment dose was given 1 hour after clindamycin 

injection and repeated 3 times daily with a 4 hour interval during 6 days. HBSS was administered to 

the control group receiving no treatment. Figure 1 gives an overview of the study design used in this 

experiment. 
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Figure 1. Experimental set up. CDI was induced in C57BL/6 mice after disruption of the gut microbiota using 

an antibiotic cocktail  [kanamycin (0.4 mg/ml), gentamicin (0.035 mg/ml), colistin (850 U/ml), metronidazole 

(0.215 mg/ml) and vancomycin (0.045 mg/ml)] by the oral route and clindamycin (20 mg/kg) by injection. 

Experimental treatments consisted of orally administered B. amyloliquefaciens SG1 (± 6 x 10
8
 cfu) or 

S.  boulardii (± 3 x 10
8
 cfu). HBSS was administered to the untreated control group. All treatments were started 

1 day prior to C. difficile challenge and repeated 3x daily until 5 days post infection. 

NECROPSY 

Surviving animals were sacrificed by cervical dislocation 5 days post infection. The colon of each 

mouse was harvested and the content collected. Colon weight/length (mg/cm) and colon/body 

weight (mg/g) ratios were calculated for each mouse individually. 

HISTOPATHOLOGICAL ANALYSIS 

For each mouse, small segments of colon, at the transition of the proximal and distal part, were 

collected and fixed in a 4% phosphate buffered formaldehyde solution. Paraffin embedded samples 

were sliced in 5 µm sections and stained with hematoxylin-eosin for light microscopic examination. 

Histological damage of colon segments was evaluated based on a scoring system reported by Chen et 

al.13 The severity of the following parameters was taking into account: neutrophil margination and 

tissue infiltration, hemorrhagic congestion and edema of the mucosa and epithelial cell damage. For 

each parameter, a score of 0 to 3 was given corresponding to an increasing severity of damage (no, 

mild, moderate, severe). The sum of the individual parameter scores was calculated as the total 

histological score for each sample. 

QUANTIFICATION OF C. DIFFICILE TOXINS IN THE COLON CONTENT 

The presence of C. difficile toxins was determined using the commercial C. DIFF TOXA/B II ELISA kit 

(Techlab, Blacksburg, Virginia, USA) according to a modified protocol as described by the suppliers. 

Colonic content samples were stored at -20°C prior to analysis. Samples were thawed and diluted 1:9 

in assay diluent. A two-fold dilution series of the positive control supplied in the kit was made with 

assay diluent to generate a standard curve. As a negative control, only assay diluent was used. Fifty 

microliters of conjugate containing labeled antibodies against toxins A and B, and 100 µl of the 
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samples or controls were transferred to the assay wells and incubated at 37°C for 50 min. Toxin-

antibody complexes were retained by binding to immobilized antibodies on the assay wells. The wells 

were rinsed four times with the provided wash solution to remove any unbound material. To 

estimate the amount of toxin present in the samples, a color reaction was induced by adding 100 µl 

of the substrate solution. The plate was incubated for 10 minutes at room temperature. Fifty 

microliters of 0.6 N sulfuric acid was added to stop the color reaction and the optical density of each 

well was measured at 450 nm using a Multiskan RC/MS/EX (Artisan technology group, Champaign, 

Illinois, USA) ELISA reader. The total toxin titer was determined by applying a Hill function to the 

concentration-response data (GraphPad Prism 5, GraphPad Software, San Diego, CA, USA) and 

expressed as arbitrary units (A.U.). 

STATISTICAL ANALYSIS 

Results are expressed as mean values ± standard error on the mean and analyzed for statistical 

significance using a non-parametric one-way ANOVA with the Kruskall-Wallis test and Dunns’ post-

test with the GraphPad Prism 5.0 software. Survival rates between treatment groups were analyzed 

with the log rank (Mantel-Cox) test. In all analyses, p-values less than 0.05 were considered as 

statistically significant. 
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RESULTS 

B. AMYLOLIQUEFACIENS SG1 SUPERNATANT INHIBITS THE GROWTH OF C. DIFFICILE 

Antimicrobial activity of B. amyloliquefaciens SG1 culture supernatant was tested against different 

C. difficile ribotypes. After incubation, zones of growth inhibition were observed against all C. difficile 

ribotypes. Figure 2 represents the growth inhibition of C. difficile VPI 10463 by B. amyloliquefaciens 

SG1 supernatant. Little variation in size of the growth inhibition zones was observed against all 

C. difficile ribotypes.  

 

 

 

Figure 2. Growth inhibition of C. difficile VPI 10463 by cell free supernatant of a 

B. amyloliquefaciens SG1 overnight culture grown in TSB. TSB was included as a control to exclude any 

influence of the medium itself. 

 

 

B. AMYLOLIQUEFACIENS IMPROVES CLINICAL SIGNS AND SURVIVAL AFTER CDI 

To assess the potential prophylactic use of B. amyloliquefaciens SG1 against CDI, C57BL/6 mice were 

treated with B. amyloliquefaciens SG1 prior to CDI. Untreated and S. boulardii treated mice showed 

signs of severe diarrhea and dehydration 48h post infection. B. amyloliquefaciens SG1 treated mice 

had no or very little diarrhea. At necropsy, formed stool could be detected in the colon of 

B. amyloliquefaciens SG1 treated mice while no or watery stool was observed in the colon of control 

or S. boulardii treated mice. In the control and S. boulardii treated group, respectively 50% and 57% 

of mice became moribund while none of the B. amyloliquefaciens SG1 treated mice reached clinical 

end points requiring euthanasia. Figure 3 shows Kaplan-Meier survival plots for all groups. 
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Figure 3. Kaplan-Meier survival plot for mice treated with B. amyloliquefaciens SG1 or S. boulardii 

and untreated control mice. During the experiment, 50% of the untreated control mice and 57% of the 

S. boulardii treated mice died or became moribund and required euthanasia. All mice treated with 

B. amyloliquefaciens SG1 survived throughout the study period with statistical significant differences as 

compared to both other groups (* p < 0.5). Control; B. amyloliquefaciens;  S. boulardii. 

 

 

B. AMYLOLIQUEFACIENS TREATMENT PROTECTS MICE FROM SEVERE WEIGHT LOSS 

Weights were recorded daily and relative weight losses were calculated starting one day prior to 

infection (Figure 4). All mice showed a progressive weight loss 48h after CDI. B. amyloliquefaciens 

SG1 treated mice showed a smaller decrease in weight in comparison with control and S. boulardii 

treated mice, with significant differences from day 2 until the end of the experiment. A complete 

overview of all weight losses is represented in table 2. On day 5 post infection, B. amyloliquefaciens 

SG1 treated mice showed an average weight loss of 8.32% which was significant less than 19.41% for 

untreated and 17.14% for S. boulardii treated mice.  
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Figure 4. Mean relative weight graph of all infected mice (mean ± standard error on the mean). 

Treatment with B. amyloliquefaciens SG1 and S. boulardii started 1 day prior to infection (day -1) and lasted for 

6 consecutive days. Relative weight was based on the weight at day -1. An average weight loss of 19.41% and 

17.14% was detected for the untreated control and S. boulardii treated mice compared to only 8.32% for the 

B. amyloliquefaciens SG1 treated mice on day 5 post infection. Statistical significant differences between the 

B. amyloliquefaciens SG1 treated mice and untreated control mice are represented (*** p < 0.001).                 

Control; B. amyloliquefaciens;  S. boulardii. 

 

 



 

 

Table 2. Observed average relative weight losses for untreated control, B. amyloliquefaciens SG1 and S. boulardii treated mice from the day of infection 

until the end of the experiment. All mice showed progressive weight loss but B. amyloliquefaciens SG1 treatment protected mice from severe weight loss as compared 

to untreated control and S. boulardii treated mice with statistical significant differences from day 2 until day 5 post infection. Different superscripts indicate significant 

differences between the groups (p < 0.05). 

 

Treatment group Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 

Control 95.27 ± 0.76 96.28 ± 0.97 86.52 ± 1.10a 80.03 ± 0.96a 79.26 ± 1.19a 80.59 ± 1.55a 

B. amyloliquefaciens SG1 97.06 ± 0.61 96.82 ± 1.08 96.15 ± 1.51ab 89.85 ± 1.13ab 89.18 ± 0.99ab 91.69 ± 1.48ab 

S. boulardii 96.42 ± 0.71 95.68 ± 0.81 87.56 ± 0.96b 81.18 ± 0.67b 80.79 ± 1.17b 82.86 ± 1.34b 
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B. AMYLOLIQUEFACIENS SG1 TREATMENT REDUCES COLONIC C. DIFFICILE TOXIN  

To demonstrate that the observed pathology was caused by C. difficile, toxin A and B levels were 

determined in colonic content samples after necropsy using a C. difficile toxin A/B II ELISA kit. High 

mean toxin levels were detected in the colon contents of control and S. boulardii treated mice, resp. 

63.59 ± 10.97 A.U. and 77.63 ± 7.27 A.U., whereas mean toxin levels remained significantly lower in 

B. amyloliquefaciens SG1 treated mice with an average of 4.99 ± 1.74 A.U. (Figure 5). 

 

Figure 5. C. difficile toxin A/B levels were measured in colon samples of all mice using a C. difficile 

toxin A/B II ELISA kit and expressed as activity units (A.U.) (mean ± standard error on the mean). 

Toxin levels in colon samples from untreated control mice and S. boulardii treated mice reached 63.59 A.U. and 

77.63 A.U. respectively whereas toxin levels remained low or undetectable in the group treated with 

B. amyloliquefaciens SG1 with an average of 4.99 A.U. (** p < 0.01; *** p < 0.001). 

 

B. AMYLOLIQUEFACIENS  SG1 TREATMENT IMPROVES COLONIC HISTOPATHOLOGY 

Examination of colon samples from control mice clearly indicated the specific histopathology 

associated with CDI in mice including the presence of submucosal edema, neutrophil infiltration and 

epithelial cell damage (Figure 6).13 Figure 7 shows images of three mice per treatment group. An 

average score of 4.21 ± 1.89 was calculated for control mice compared to 2.14 ± 1.17 for 

B. amyloliquefaciens SG1 treated mice. For S. boulardii treated mice, the total score was 3.29 ± 1.38. 

Significances were only found between control and B. amyloliquefaciens SG1 treated mice. Intestinal 

inflammation was also assessed by calculating colon weight/length and colon/body weight ratios for 

each mouse individually and were respectively 42.77 ± 2.87 mg/cm and 14.71 ± 0.90 mg/g for the 
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control group, 30.05 ± 1.26 mg/cm and 10.98 ± 0.35 mg/g for the B. amyloliquefaciens SG1 group and 

40.21 mg/cm ± 1.79 and 15.38 ± 0.64 mg/g for the S. boulardii group (Figure 8). Both ratios were 

significantly lower for B. amyloliquefaciens SG1 treated mice as compared to control and S. boulardii 

treated mice. 

 

 

Figure 6. Histopathological scores of colon samples. Intestinal damage was graded based on the degree 

of epithelial cell damage, the amount of congestion and submucosal edema and the infiltration of neutrophils. 

The total score was calculated by summing the scores of all three individual parameters and is as follows: 

control, 4.21 ± 0.50; B. amyloliquefaciens SG1 group, 2.14 ± 0.31; S. boulardii group, 3.29 ± 0.37. A statistically 

significant difference was observed between the control group and the B. amyloliquefaciens SG1 group 

(** p < 0.01). epithelial cell damage;  congestion/edema;  neutrophil infiltration. 
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Figure 7. Light microscopic image of colon sections of three mice per treatment group. Red arrows 

indicate the presence of epithelial cell damage. Black arrows point out areas with edema of the submucosa. A –

C: untreated control mice; A – histopathological score = 4 (severe edema in the lamina propria and submucosa, 

presence of inflammatory cells); B – histopathological score = 5 (great influx of inflammatory cells, low amount 

of edema of the submucosa, minor epithelial cell damage); C – histopathological score = 6 (severe epithelial cell 

damage). D – F: B. amyloliquefaciens SG1 treated mice; D – histopathological score = 1 (small amount of 

inflammatory cells, no edema of the submucosa, no epithelial cell damage); E – histopathological score = 1 

(small amount of inflammatory cells in the lamina propria and submucosa, no edema of the submucosa, no 

epithelial cell damage); F – histopathological score = 2 (small amount of inflammatory cells, some edema of the 

submucosa, no remarkable epithelial cell damage). G – I: S. boulardii treated mice; G – histopathological score = 

3 (influx of inflammatory cells, edema of the mucosa, no remarkable damage of epithelial cells); H –

histopathological score = 3 (moderate damage to the epithelium, presence of inflammatory cells in the lamina 

propria); I – histopathological score = 4 (severe inflammation in the lamina propria and the submucosa, some 

epithelial cell damage) 
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Figure 8. (A) Colon weight/length (mg/cm) and (B) colon/body weight (mg/g) ratios. Both ratios were 

calculated as parameters of intestinal inflammation. The average colon weight/length ratios and colon/body 

weight ratios were respectively 42.77 ± 2.87 mg/cm and 14.71 ± 0.90 mg/g for the control group, 

30.05 ± 1.26 mg/cm and 10.98 ± 0.35 mg/g for the B. amyloliquefaciens SG1 group and 40.21 mg/cm ± 1.79 and 

15.38 ± 0.64 mg/g for the S. boulardii group (mean ± SEM). For both ratios, the B. amyloliquefaciens SG1 

treated mice showed statistically significant differences when compared to the untreated and S. boulardii 

treated mice. 
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DISCUSSION 

Nowadays, the search for alternative treatments against CDI is receiving more and more attention. 

Probiotics have already been successfully used to prevent AAD.6, 7, 14, 15 A recent open prospective 

study states that administration of a probiotic in addition to the existing standard preventive 

measures for CDI leads to a reduction in CDI rates.16 Moreover, different meta-analyses indicate that 

the use of probiotics reduces the risk of AAD and CDI.17-20 This study provides data of an in vivo model 

in which a possible probiotic strain is tested for its potential to control CDI. To our knowledge, this is 

the first report of a possible probiotic treatment in which the probiotic strain is specifically selected 

for its antibacterial activity against C. difficile. Screening of a collection of clinical C. difficile isolates 

revealed high susceptibility of all isolates against B. amyloliquefaciens SG1 supernatant. Although 

B. amyloliquefaciens SG1 is not generally recognized as safe, it is considered by the European Food 

Safety Authority to be suitable for the qualified presumption of safety approach to safety 

assessment. 21, 22 

S. boulardii is a probiotic yeast successfully used in clinical trials to decrease the incidence of AAD and 

to prevent recurrent CDI.7, 8, 12, 23 Results of animal studies indicate that S. boulardii improves survival 

rates of hamsters after clindamycin induced mortality and that continuous treatment with 

S. boulardii in the drinking water protected gnotobiotic and axenic mice from C. difficile induced 

mortality.24-26 Therefore, S. boulardii was included in our study as a reference treatment. In our 

experiments, treatment with S. boulardii did not confer any protection against CDI. As observed 

previously, the administered concentration of the probiotic organism is important for protection 

against CDI.17, 25 In our study, similar doses of approximately 108 cfu B. amyloliquefaciens SG1 and 

S. boulardii were administered to mice to compare the effect of both treatments. However, previous 

studies used higher doses of S. boulardii which might explain the lack of protection in our trial.24, 25, 27 

Another important difference is the in vivo model used. Previous studies focused on axenic and 

gnotobiotic mice or hamsters while our study is based on the recently published mouse model for 

CDI that has already been successfully used to study this disease.13, 24, 25 

CDI was successfully induced in the animals since all control mice suffered from severe diarrhea and 

dehydration after C. difficile challenge. However, as compared to the original publication, the 

concentration clindamycin needed to be doubled and a tenfold higher C. difficile inoculum had to be 

used to induce CDI. In spite of these changes, the average histopathological score for the control 

mice was only 4.2 as compared to 7.0 as reported by Chen et al.13 A number of reasons could explain 

this discrepancy including the mouse supplier, the used mouse strain and the animal care facilities.  
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B. amyloliquefaciens SG1 administration was started 24 hours prior to CDI to give the bacteria the 

chance to colonize the intestines and produce their antimicrobial substances. Results of our in vivo 

trial show that oral administration of 108 cfu B. amyloliquefaciens SG1 three times daily was 

successful in preventing CDI. C. difficile toxin A/B titers were determined in colonic content samples 

to confirm that C. difficile was the cause of the observed disease. High toxin levels were found in 

control and S. boulardii treated mice indicating that CDI was successfully established. Use of the 

ELISA kit only estimates the amount of C. difficile toxins but does not quantify the numbers of 

C. difficile present in the colon.28 Low levels of C. difficile toxins were found in the colon content of 

B. amyloliquefaciens SG1 treated mice. Unfortunately, the amount of colon content was insufficient 

to quantify the toxin titers as well as the actual number of C. difficile so it cannot be concluded if 

B. amyloliquefaciens SG1 only neutralizes the toxins or can indeed prevent the colonization of 

C. difficile. 

Hell et al. postulated that only a multistrain probiotic which resembles the indigenous microbiota 

could be effective for CDI.29 Results of our in vivo trial however clearly indicate that use of the single 

strain B. amyloliquefaciens SG1 is sufficient in the protection against CDI and eliminates the need to 

search for complex probiotic formulations. Since B. amyloliquefaciens SG1 was specifically selected 

for its high in vitro antibacterial activity against C. difficile, this might be the major explanation for the 

observed protection in vivo. Moreover, Bacillus species are known to produce different antimicrobial 

peptides including antibiotics, bacteriocins and lipopeptides. Genome analysis of 

B. amyloliquefaciens FZB42 estimates that as much as 8.5% of the genome is devoted to 

antimicrobial peptide production.30 Results of our in vitro tests demonstrate that 

B. amyloliquefaciens SG1 produces antimicrobial compounds that act against C. difficile. Further 

research is necessary to determine the nature of these antimicrobial compounds and the effect on 

the gut microbiota composition. 

Preventive treatment with a probiotic during antibiotic therapy implies that the probiotic strain is 

able to withstand the administered antibiotic and colonize the gut. Several bacterial strains have 

been successfully used in clinical trials during antibiotic therapy to protect against AAD and CDI 

indicating the possibility of bacteria to colonize the gut and resist antibiotics. Administration of a 

probiotic drink containing Lactobacillus casei SHIROTA during antibiotic therapy successfully reduced 

the incidences of AAD and CDI as compared to the control receiving a placebo.31, 32 Moreover, 

combinations of Lactobacillus and Bifidobacterium or Streptococcus were able to lower the incidence 

of CDI.33, 34 The potential of B. amyloliquefaciens SG1 to resist antibiotics and protect against AAD and 

CDI requires further research. 
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In conclusion, in the present study, we document a protective effect of B. amyloliquefaciens SG1 

against CDI in an animal model. Administration of B. amyloliquefaciens SG1 as a probiotic to people 

at risk for developing CDI might help to control morbidity and mortality due to this disease and 

reduce the associated healthcare costs. Further research is necessary to evaluate the safety and 

efficacy of the strain in healthy volunteers and patients, and to study the mechanisms responsible for 

the protection. 

 

ACKNOWLEDGEMENTS 

This work was supported by the Institute for Promotion of Innovation through Science and 

Technology in Flanders (IWT). We would like to thank Prof. M. Delmée from the Université 

Catholique de Louvain for supplying the C. difficile collection. 

 



 

 

148 Use of Bacillus to control C. difficile 

REFERENCES 

[1] Rolfe RD. The role of probiotic cultures in the control of gastrointestinal health. The Journal of 
nutrition. 2000; 130: 396S-402S. 

[2] Bartlett JG. Clinical practice. Antibiotic-associated diarrhea. The New England journal of medicine. 
2002; 346: 334-9. 

[3] Katz JA. Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile 
diarrhea. Journal of clinical gastroenterology. 2006; 40: 249-55. 

[4] Johnson S, Louie TJ, Gerding DN, et al. Vancomycin, Metronidazole, or Tolevamer for Clostridium 
difficile Infection: Results From Two Multinational, Randomized, Controlled Trials. Clinical infectious diseases : 
an official publication of the Infectious Diseases Society of America. 2014. 

[5] McFarland LV. Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Digestive 
diseases. 1998; 16: 292-307. 

[6] Kotowska M, Albrecht P, Szajewska H. Saccharomyces boulardii in the prevention of antibiotic-
associated diarrhoea in children: a randomized double-blind placebo-controlled trial. Alimentary pharmacology 
& therapeutics. 2005; 21: 583-90. 

[7] Can M, Besirbellioglu BA, Avci IY, Beker CM, Pahsa A. Prophylactic Saccharomyces boulardii in the 
prevention of antibiotic-associated diarrhea: a prospective study. Medical science monitor : international 
medical journal of experimental and clinical research. 2006; 12: PI19-22. 

[8] McFarland LV, Surawicz CM, Greenberg RN, et al. Prevention of beta-lactam-associated diarrhea by 
Saccharomyces boulardii compared with placebo. The American journal of gastroenterology. 1995; 90: 439-48. 

[9] Siitonen S, Vapaatalo H, Salminen S, et al. Effect of Lactobacillus GG yoghurt in prevention of antibiotic 
associated diarrhoea. Annals of medicine. 1990; 22: 57-9. 

[10] Armuzzi A, Cremonini F, Ojetti V, et al. Effect of Lactobacillus GG supplementation on antibiotic-
associated gastrointestinal side effects during Helicobacter pylori eradication therapy: a pilot study. Digestion. 
2001; 63: 1-7. 

[11] Basu S, Chatterjee M, Ganguly S, Chandra PK. Effect of Lactobacillus rhamnosus GG in persistent 
diarrhea in Indian children: a randomized controlled trial. Journal of clinical gastroenterology. 2007; 41: 756-60. 

[12] McFarland LV, Surawicz CM, Greenberg RN, et al. A randomized placebo-controlled trial of 
Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA : the 
journal of the American Medical Association. 1994; 271: 1913-8. 

[13] Chen X, Katchar K, Goldsmith JD, et al. A mouse model of Clostridium difficile-associated disease. 
Gastroenterology. 2008; 135: 1984-92. 

[14] Gao XW, Mubasher M, Fang CY, Reifer C, Miller LE. Dose-response efficacy of a proprietary probiotic 
formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhea 
and Clostridium difficile-associated diarrhea prophylaxis in adult patients. The American journal of 
gastroenterology. 2010; 105: 1636-41. 

[15] Ouwehand AC, DongLian C, Weijian X, et al. Probiotics reduce symptoms of antibiotic use in a hospital 
setting: a randomized dose response study. Vaccine. 2014; 32: 458-63. 

[16] Maziade PJ, Andriessen JA, Pereira P, Currie B, Goldstein EJ. Impact of adding prophylactic probiotics 
to a bundle of standard preventative measures for Clostridium difficile infections: enhanced and sustained 
decrease in the incidence and severity of infection at a community hospital. Current medical research and 
opinion. 2013; 29: 1341-7. 

[17] McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the 
treatment of Clostridium difficile disease. The American journal of gastroenterology. 2006; 101: 812-22. 

[18] Pattani R, Palda VA, Hwang SW, Shah PS. Probiotics for the prevention of antibiotic-associated 
diarrhea and Clostridium difficile infection among hospitalized patients: systematic review and meta-analysis. 
Open medicine : a peer-reviewed, independent, open-access journal. 2013; 7: e56-67. 



 

 

149 Use of Bacillus to control C. difficile 

[19] Ritchie ML, Romanuk TN. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PloS one. 
2012; 7: e34938. 

[20] Wu ZJ, Du X, Zheng J. Role of Lactobacillus in the prevention of Clostridium difficile-associated 
diarrhea: a meta-analysis of randomized controlled trials. Chinese medical journal. 2013; 126: 4154-61. 

[21] Opinion of the Scientific Committee on a request from EFSA on the introduction of a Qualified 
Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. The EFSA 
Journal. 2007: 1-16. 

[22] (BIOHAZ) EPoBH. Scientific Opinion on the maintenance of the list of QPS biological agents 
intentionally added to food and feed (2012 update). EFSA Journal. 2012; 10: 3020. 

[23] Surawicz CM, McFarland LV, Greenberg RN, et al. The search for a better treatment for recurrent 
Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clinical 
infectious diseases : an official publication of the Infectious Diseases Society of America. 2000; 31: 1012-7. 

[24] Castex F, Corthier G, Jouvert S, Elmer GW, Lucas F, Bastide M. Prevention of Clostridium difficile-
induced experimental pseudomembranous colitis by Saccharomyces boulardii: a scanning electron microscopic 
and microbiological study. Journal of general microbiology. 1990; 136: 1085-9. 

[25] Elmer GW, Corthier G. Modulation of Clostridium difficile induced mortality as a function of the dose 
and the viability of the Saccharomyces boulardii used as a preventative agent in gnotobiotic mice. Canadian 
journal of microbiology. 1991; 37: 315-7. 

[26] Toothaker RD, Elmer GW. Prevention of clindamycin-induced mortality in hamsters by Saccharomyces 
boulardii. Antimicrobial agents and chemotherapy. 1984; 26: 552-6. 

[27] Corthier G, Dubos F, Ducluzeau R. Prevention of Clostridium difficile induced mortality in gnotobiotic 
mice by Saccharomyces boulardii. Canadian journal of microbiology. 1986; 32: 894-6. 

[28] Fitzpatrick LR, Small JS, Greene WH, Karpa KD, Keller D. Bacillus Coagulans GBI-30 (BC30) improves 
indices of Clostridium difficile-Induced colitis in mice. Gut pathogens. 2011; 3: 16. 

[29] Hell M, Bernhofer C, Stalzer P, Kern JM, Claassen E. Probiotics in Clostridium difficile infection: 
reviewing the need for a multistrain probiotic. Beneficial microbes. 2013; 4: 39-51. 

[30] Chen XH, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the 
plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature biotechnology. 2007; 25: 1007-14. 

[31] Wong S, Jamous A, O'Driscoll J, et al. A Lactobacillus casei Shirota probiotic drink reduces antibiotic-
associated diarrhoea in patients with spinal cord injuries: a randomised controlled trial. The British journal of 
nutrition. 2014; 111: 672-8. 

[32] Kamhuber C H-KS, Rek A, Eckhardt G, Zauner A, Gabriel P, Prager E, Mach K, Stockenhuber F. 
Preventing antibiotic associated diarrhoea using a probiotic Lactobacillus casei preparation.  United European 
Gastroenterology Week. Vienna, Austria 2008. 

[33] Plummer S, Weaver MA, Harris JC, Dee P, Hunter J. Clostridium difficile pilot study: effects of probiotic 
supplementation on the incidence of C. difficile diarrhoea. International microbiology : the official journal of the 
Spanish Society for Microbiology. 2004; 7: 59-62. 

[34] Hickson M, D'Souza AL, Muthu N, et al. Use of probiotic Lactobacillus preparation to prevent diarrhoea 
associated with antibiotics: randomised double blind placebo controlled trial. Bmj. 2007; 335: 80. 

 



 

 

  



 

 

  



 

 

 



 

 

CHAPTER 3 

VEGETATIVE BACILLUS 

AMYLOLIQUEFACIENS SG1 STRAINS 

DO NOT CONFER PROTECTION 

AGAINST BROILER NECROTIC 

ENTERITIS DESPITE HIGH 

ANTIBACTERIAL ACTIVITY OF ITS 

SUPERNATANT AGAINST 

CLOSTRIDIUM PERFRINGENS IN VITRO 
 

 

Adapted from Geeraerts, S., Delezie, E., Ducatelle, R., Haesebrouck, F., Devreese, B. & Van 

Immerseel, F. (2016) British Poultry Science 57 (3) 324-329. 
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ABSTRACT 

The ban on the use of antibiotics as feed-additives has led to a flare in the incidence of Clostridium 

perfringens induced necrotic enteritis in broilers. In this study, the effect of Bacillus 

amyloliquefaciens SG1 on Clostridium perfringens was tested in vitro and in vivo. Using an agar well 

diffusion assay, the inhibitory activity of B. amyloliquefaciens SG1 supernatant was analyzed against a 

large collection of NetB positive and NetB negative C. perfringens strains. Although strong growth 

inhibiting activity was detected against all C. perfringens isolates, it was significantly higher against 

virulent NetB positive C. perfringens strains as compared to avirulent NetB negative isolates. 

Subsequently, the efficacy of in-feed administration of lyophilized vegetative cells of 

B. amyloliquefaciens SG1 to prevent necrotic enteritis was tested in vivo using an established 

experimental infection model in broilers. Ross 308 broilers received either B. amyloliquefaciens SG1 

supplemented feed or unsupplemented feed throughout the experiment. No significant differences 

could be detected between the untreated positive control group and the B. amyloliquefaciens SG1 

treated group in body weight, the number of chickens that developed necrotic lesions and in 

pathological lesion scores. Our results demonstrate that despite its substantial inhibitory activity 

in vitro, lyophilized vegetative B. amyloliquefaciens SG1 cells had no beneficial effect against necrotic 

enteritis in the in vivo model used here.   
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INTRODUCTION 

Necrotic enteritis (NE) is an important disease in broilers and is responsible for substantial economic 

losses, reduced animal welfare and increased mortality. In the past, addition of growth promoting 

antibiotics to the feed provided effective NE control.1, 2 However, concerns about increased antibiotic 

resistance development and spread has eventually led to a ban on the use of growth-promoting 

antibiotics in the European Union.3 This ban has caused NE to become a re-emerging problem in 

broilers.4-6 The use of probiotics as feed additives offers an attractive alternative for controlling the 

disease.7 

Probiotics are live microorganisms that confer a health benefit to the host when administered in 

appropriate amounts. They can aid in maintaining the complex ecosystem of the gut microbiota by 

competitive exclusion, stimulation of the host’s immune system, competition for adhesion sites and 

the production of antimicrobial compounds that act against invading pathogens.8 Several probiotics 

have already been tested as feed additives for intestinal pathogen inhibition. A Lactobacillus-based 

probiotic was shown to reduce the severity of NE in an experimental challenge model as well as in a 

field outbreak of NE.9 Bacillus species are widely used as probiotics in human and veterinary 

medicine.10 Both B. licheniformis and B. subtilis were able to reduce NE lesion score and     

mortality.11-13 These findings indicate that the use of Bacillus species as probiotics can be an 

attractive alternative for growth promoting antibiotics in the feed to protect against NE. 

B. amyloliquefaciens has interesting functional probiotic properties including high tolerance to low 

pH and bile salts and the production of extracellular antimicrobial compounds.14 Jerzsele et al. 

indicated that administration of a spore suspension of B. amyloliquefaciens was ineffective in 

preventing NE in broilers.15 However, previous research at our department demonstrated that 

vegetative cells of a B. amyloliquefaciens SG1 strain isolated from the environment were effective in 

preventing C. difficile associated disease in a mouse model.16 Therefore, in the current study, we first 

evaluated the in vitro antimicrobial potential of B. amyloliquefaciens SG1 culture supernatant against 

a collection of C. perfringens strains isolated from healthy chickens as well as isolates from chickens 

suffering from NE. Thereafter, we tested whether in-feed supplementation of lyophilized vegetative 

B. amyloliquefaciens SG1 cells was effective in preventing NE caused by C. perfringens in an 

experimental infection model in broilers. 
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MATERIALS AND METHODS 

AGAR WELL DIFFUSION ASSAY 

B. amyloliquefaciens SG1 was grown overnight in tryptone soya broth (TSB) (Oxoid, Basingstoke, UK) 

at 30°C with agitation. Bacterial cells were removed by centrifugation at 5000 x g for 15 min at 4°C 

and the supernatant was filter-sterilized. The antibacterial effect of the supernatant was tested 

against a collection of 73 C. perfringens strains. Fifty-nine strains were isolated from broiler chickens 

in Belgium: 25 avirulent NetB negative strains and 34 virulent NetB positive strains.17 An additional 

14 NetB positive strains isolated from broilers with necrotic enteritis in Denmark were also included 

in the test and were kindly provided by Dr. L. Bjerrum.18 All C. perfringens strains were grown 

overnight in brain heart infusion broth (BHI) (Bio-Rad, Temse, Belgium) at 37°C in an anaerobic (84% 

N2, 8% CO2 and 8% H2) workstation (Ruskinn Technology, Bridgend, UK). C. perfringens overnight 

cultures were diluted 1/10 in sterile GIBCO® Hank’s Balanced Salt Solution (HBSS) (Life Technologies, 

Bleiswijk, The Netherlands) and swabbed on BHI agar plates. Using the back of sterilized tips, wells 

were made in the agar and filled with 40 µl of the sterilized B. amyloliquefaciens SG1 supernatant. 

Plates were left to dry and incubated anaerobically overnight at 37°C. The size of the observed 

growth inhibition zones was measured. Experiments were repeated three times. 

IN VIVO NECROTIC ENTERITIS MODEL 

BACTERIAL STRAINS AND GROWTH CONDITIONS.  

B. amyloliquefaciens SG1 was grown in TSB for 24h at 30°C with agitation. Cells were collected by 

centrifugation at 5000 x g for 15 min at 4°C and lyophilized in 75% GIBCO® horse serum (Life 

Technologies, Bleiswijk, The Netherlands) supplemented with 7.5% sucrose (Acros Organics, Geel, 

Belgium) and 0.625% nutrient broth (Oxoid, Aalst, Belgium). The number of vegetative cells and 

spores in the lyophilized product was determined. A small amount of the lyophilized product was 

suspended in HBSS and divided in two parts. To estimate the amount of spores, one sample was 

placed in a water bath at 80°C for 15 min to kill all vegetative cells.19 The other sample was left 

untreated and used to determine the amount of spores and vegetative cells. A tenfold dilution series 

of both samples was plated on Columbia agar plates with 5% sheep blood and incubated at 30°C. 

(Oxoid, Aalst, Belgium) After overnight incubation, the number of CFU spores and vegetative cells per 

gram lyophilized product was determined by counting the number of colonies on the agar plates. 

C. perfringens strain 56 was used for experimental infection of chickens. The strain was originally 

isolated from the intestinal tract of a broiler with severe necrotic gut lesions and has already been 

used successfully to induce NE in broilers on different occasions.20-22 It is a NetB positive toxinotype A 

strain that produces moderate amounts of alpha toxin in vitro.17 For use in experimental infection 
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studies, this strain was grown in anaerobic BHI. Incubation was performed at 37°C in an anaerobic 

(84% N2, 8% CO2 and 8% H2) workstation. Broilers were inoculated 3 times daily with 1 ml of this 

culture. For the first inoculation, overnight cultures of the strains were used. The second and third 

inoculations were performed with bacteria grown for 4 hours. 

 

 

Figure 1. Experimental set up. Experimental treatment constisted of in-feed supplementation of 10
9
 cfu/kg 

lyophilized vegetative B. amyloliquefaciens SG1 cells. Birds received the treatment throughout the whole trial. 

Positive control groups received unsupplemented feed. Immunosuppression on day 4 and day 9 was induced 

by oral vaccination of all animals with Poulvac Bursa Plus. On days 14 and 16, animals were predisposed for 

coccidiosis by oral administration of a 10-fold dose of Hipracox and Paracox-8 respectively. On day 17 the feed 

was changed to feed containing fish meal as a protein source. On days 18, 19 and 20, broilers were challenged 

with 5 x 10
8
 cfu C. perfringens strain 56 to induce NE. All animals were euthanized on day 21. 

 

EXPERIMENTAL DESIGN.  

The in vivo model used was based on the method of Gholamiandehkordi et al. (2007) with some 

modifications. Figure 1 gives an overview of the experimental set up. One-day-old, unvaccinated Ross 

308 broiler chickens were obtained from a commercial hatchery and divided in 6 groups of 

27 animals. Each group was housed in a cage of 1.44 m2. All groups were randomly distributed 

throughout the stable. Water and feed were available ad libitum. The animals were fed a wheat/rye-

based (43%/7.5%) diet with soybean meal as protein source. The exact feed composition has been 

described elsewhere.20 From day 17 until the end of the experiment the diet was changed to feed 

with 30% fish meal as protein source. Lyophilized cells of B. amyloliquefaciens SG1 were mixed with 

the feed at a concentration of 109 cfu/kg feed. To achieve statistical relevance, the treatment was 

supplied to three groups of animals. These broilers received the supplemented feed during the entire 

experiment. Birds in the three untreated, positive control groups received feed without 

B. amyloliquefaciens SG1. A light/darkness schedule of 18 h/6 h was applied. To induce mild 

immunosuppression, broilers were vaccinated orally on day 4 and 9 with the commercial Poulvac 
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Bursa Plus vaccine, containing attenuated infectious bursal disease virus (Zoetis, Zaventem, Belgium). 

On days 14 and 16, all animals received a tenfold dose of Hipracox (Hipra, Melle, Belgium) and 

Paracox-8 (MSD Animal Health, Brussels, Belgium) respectively. Both vaccines contain viable, 

sporulated Eimeria oocysts of different lines of coccidia and are administered as predisposing factors 

for NE. Birds were inoculated orally 3 times daily with approximately 5.108 cfu C. perfringens strain 

56 on days 18, 19 and 20. On day 21, animals were euthanized with an overdose of sodium 

pentobarbital administered intravenously (Sigma-Aldrich, St. Louis, MO). Body weights were 

recorded and the intestinal tract of each bird was collected for macroscopic evaluation. All 

experimental procedures involving animals were approved by the ethical committee of the Faculty of 

Veterinary Medicine of Ghent University (EC 2015/08). 

MACROSCOPIC EVALUATION. 

NE was evaluated by scoring lesions in the small intestine (duodenum, jejunum, ileum) as described 

previously by Keyburn et al. Birds with a lesion score of 2 or more were considered as NE positive.23  

STATISTICAL ANALYSIS. 

Statistical analysis was performed using the GraphPad Prism 5.0 software. All results are expressed as 

mean values ± standard error on the mean (SEM). For the in vitro experiment, a Mann Whitney test 

was used to analyze significant differences in the size of the inhibition zone between NetB positive 

and NetB negative C. perfringens strains. In the in vivo experiment, 1 group was considered as 

1 experimental unit since birds in one cage are not independent from each other. The experiment 

was done in triplicate yielding three independent replicates per treatment. Body weights were 

analyzed using an independent samples t-test. A Mann Whitney test was used to determine 

significance in the lesion score and number of positive chickens between the untreated control 

groups and the B. amyloliquefaciens treated groups. Differences were considered as statistical 

significant if p < 0.05. 
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RESULTS 

AGAR WELL DIFFUSION ASSAY 

An agar well diffusion assay was used to analyze the growth inhibiting ability of B. amyloliquefaciens 

SG1 against C. perfringens. All C. perfringens isolates were inhibited by B. amyloliquefaciens SG1 

supernatant. As represented in Figure 2, virulent NetB positive isolates were inhibited to a much 

greater extent with inhibition zones of up to 30 mm. Seventy five percent of the NetB positive strains 

have an inhibition zone that is larger than the mean inhibition zone of all NetB negative strains. The 

average size of the inhibition zone was 14.69 ± 0.48 mm for NetB negative and 18.24 ± 0.77 mm for 

NetB positive C. perfringens strains. Statistical analysis indicated that the observed difference 

between both groups was significant (p < 0.001). 

 

 

Figure 2. Box plot showing the measured inhibition zones for NetB negative and NetB positive 

C. perfringens strains. The plus represents the mean value and the whiskers are the median, the min/max 

value and 1
st

/3
rd

 quartiles. Statistical significances are indicated (*** p < 0.001). 

 

IN VIVO NECROTIC ENTERITIS MODEL 

Heat treatment of a small sample of suspended B. amyloliquefaciens SG1 lyophilized powder 

revealed the presence of 2.14 x 105 spores per gram powder. A non-heated sample, consisting of 

spores and vegetative cells, contained 4.42 x 108 colony forming units per gram powder. This clearly 

shows that the lyophilized powder mainly consisted of vegetative cells and contained only 0.05% 

spores. 
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Two animals from the B. amyloliquefaciens SG1 treated groups and one animal from the non-treated, 

positive control groups died before challenge with C. perfringens and were excluded from the 

experiment. In the positive control groups, two broilers died on the first day and one broiler on the 

final day of challenge. Although at necropsy, extensive necrosis of the gut was visible in all three 

animals, they were not used for macroscopic evaluation of the lesions since no accurate scoring was 

possible due to rapid autolysis of the gut tissue.  

Results obtained from the in vivo experiment are summarized in the Table. Disease was successfully 

established in the animals since 78.3% of all broilers in the positive control groups developed lesions 

characteristic for NE. Necrotic damage was limited to the duodenum and jejunum except in 2 animals 

that also developed necrosis in the ileum. In the B. amyloliquefaciens SG1 treated groups, 80.0% of 

the broilers scored positive for NE. Necrotic lesions were exclusively limited to the duodenum and 

jejunum.  No significant decrease was detected in the number of NE positive chickens between the 

untreated control groups and Bacillus treated groups. When the average lesion scores and body 

weights of the Bacillus treated groups were compared with those of the untreated control groups, no 

significant differences were observed. 

 

Table. Percentage of chickens with necrotic enteritis, average lesion score and body weight for all 

non-treated, positive control groups and Bacillus amyloliquefaciens SG1 treated groups. The 

percentage of NE positive birds, average lesion score and body weight are expressed as mean values ± standard 

error on the mean (SEM). No statistical differences could be detected for any of the parameters between the 

groups. 

 

 Untreated groups B. amyloliquefaciens SG1 treated groups 

% chickens with NE 78.2 ± 6.222 79.9 ± 2.979 

Average lesion score 3.00 ± 0.243 3.34 ± 0.252 

Body weight (g) 750.7 ± 15.52 713.4 ± 16.69 
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DISCUSSION 

In this study, we examined whether supplementation of lyophilized vegetative cells of 

B. amyloliquefaciens SG1 in the feed could control NE in broilers. Several studies indicate the 

beneficial use of probiotics in the control of this disease in broilers.9, 11, 12, 24 One study is available 

where the effect of B. amyloliquefaciens SG1 on NE in broilers was investigated. Jerzsele et al. 

supplemented B .amyloliquefaciens spores at a concentration of 109 cfu/kg feed but failed to obtain a 

statistically significant protection against NE.15 In our experiment, we chose to administer vegetative 

cells of B. amyloliquefaciens SG1 since previous research at our department showed that oral 

administration of vegetative cells of this Bacillus strain was able to successfully confer protection 

against Clostridium difficile associated disease in a mouse model.16 

Most animals in the untreated control groups developed a mild, moderate or severe form of NE. Only 

few animals developed no obvious lesions of NE in these groups. This clearly shows a successful 

establishment of the disease in the animal model. It should be noted that the average lesion scores 

and the percentage of positive birds was higher than previously reported using the same model, 

indicating that the current infection resulted in a more severe form of necrotic enteritis.20-22 

Despite the clear in vitro inhibitory activity of the supernatant of B. amyloliquefaciens SG1 against all 

C. perfringens strains, administration of vegetative B. amyloliquefaciens SG1 cells did not reveal a 

protective effect against NE in the experimental broiler model. Statistical analysis of the data indeed 

revealed no significant differences in weight loss or average lesion score between animals in the 

untreated control groups and the B. amyloliquefaciens SG1 treated groups. This remarkable 

difference between our in vitro and in vivo results could have a number of reasons. 

One reason might be related to the different growth characteristics of B. amyloliquefaciens SG1 and 

C. perfringens. C. perfringens is a fast growing microorganism under anaerobic conditions while 

B. amyloliquefaciens SG1 grows best in an aerobic atmosphere. However, B. amyloliquefaciens SG1 is 

able to grow in anaerobic conditions but its growth rate is much slower. It is possible that 

B. amyloliquefaciens SG1 grows too slowly in the anaerobic gut environment to provide protection 

against NE. Taking into account this possibility, B. amyloliquefaciens SG1 was supplied in the feed 

throughout the whole experiment to support high colonization levels. In this way, 

B. amyloliquefaciens SG1 gets the opportunity to colonize the intestinal tract and be part of the 

intestinal microbiota before C. perfringens challenge started. For the same reason, 

B. amyloliquefaciens SG1 supernatant, and not live bacteria, was used for the in vitro experiments. 

Since the in vivo experiment uses the strain itself, results of the in vitro experiment cannot be fully 

extrapolated but do however give an important pointer. Moreover, it highlights the importance of 
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the need for animal experiments to draw definite conclusions. Due to the severity of the established 

infection, it might be possible that beneficial effects of B. amyloliquefaciens SG1 uptake were not 

sufficient to counterbalance the infection.  

To observe a beneficial effect on intestinal health, the probiotic needs to be able to survive 

gastrointestinal transit and colonize the intestinal tract. A first hurdle are the detrimental conditions 

the probiotic encounters during passage in the gastrointestinal tract such as the acidity of the 

stomach and the exposure to bile salts and pancreatic juices. The possibility exists that 

B. amyloliquefaciens SG1 cannot withstand these detrimental conditions and is not able to reach the 

intestinal tract. It is however possible to overcome this problem by providing additional protection 

during transit, e.g. by encapsulation.25-28 

A second issue depends on the capacity of the strain to colonize the gut and to adhere to the 

intestinal epithelium. Adherence and colonization can be influenced by the composition of the 

resident gut microbiota. The adhesion capacity of a probiotic strain is strain specific and depends on 

cell surface properties such as hydrophobicity and extracellular protein profiles.29 An important 

selection criterion for probiotics in poultry is that the microbial strain preferably needs to be isolated 

from the microbiota of the host species in order to facilitate intestinal colonization.25, 26, 28, 30 Since 

B. amyloliquefaciens SG1 was isolated from the environment, it is possibly not able to colonize the 

broiler gut.  

However, previous research demonstrated successful protection against C. difficile associated 

disease in a mouse model indicating that B. amyloliquefaciens SG1 can indeed reach and colonize the 

intestinal tract in mice.16 On the other hand, C. difficile infections in mice are localized in the colon 

while C. perfringens in broilers affects the small intestine. It is possible that B. amyloliquefaciens SG1 

is unable to attach or multiply in the intestine of broilers due to environmental differences as 

compared to the murine colon. In addition, in the mouse trial, B. amyloliquefaciens SG1 was 

administered as live cells to the animals while lyophilized cells were used for practical reasons in the 

broiler experiment. There is the possibility that the lyophilized cells have more difficulties to 

rehydrate and grow in the intestinal broiler tract. Researchers have already studied the effect of 

B. amyloliquefaciens SG1 as a directly-fed microbial on broilers. Beneficial effects have been reported 

on growth performance, caecal microbiota composition, antibody response, nutrient digestibility and 

intestinal health.31-33 As such, B. amyloliquefaciens is shown to be able to pass the upper digestive 

tract, reach the small intestine and exert its beneficial effect. Once in the intestinal tract, it is possible 

that B. amyloquefaciens SG1 is unable to produce its antimicrobial peptides that act against C. 
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perfringens or that they are neutralized or broken down by digestive enzymes or other micro-

organisms.  

Another important factor to take into consideration is the probiotic production process. The 

probiotic properties are influenced by the way the strain is produced. The drying process (e.g. freeze-

drying vs. spray-drying) plays an important role. Fuller reported that adhesion to the intestinal 

epithelium is influenced by the carbohydrate source used in the growth medium and changes during 

the growth cycle.34 Although we obtained a high count of viable B. amyloliquefaciens SG1 cells after 

lyophilization, the experimental conditions for growth used might not be the most optimal. Since the 

probiotic was supplemented in the feed, it is exposed to many factors that might influence its 

stability and viability such as temperature or the presence of enzymes in the feed. In addition, the 

administration route (in-feed supplementation, addition to drinking water, spraying…) can determine 

the probiotics intestinal colonization capacity and influence the trial outcome.25, 26, 28, 30 

Other important factors relate to the host species. Genetic variation between different poultry 

species and breeds, immunological status and age of the animals can all influence the results 

outcome. Results of the in vivo trial indicated higher average lesion scores and percentage NE 

positive birds than previously reported. Since a more severe form of NE was established, it is possible 

that beneficial effects are missed due to the severity of the infection. Alternative experimental NE 

models have been described that could lead to a form of NE that more closely resembles the 

observed situation in practice.35 In addition, environmental stress, duration of the probiotic 

treatment and management of the birds can influence the efficacy of the probiotic.25, 26, 28, 30 

As reported previously, B. amyloliquefaciens SG1 supernatant significantly inhibits the growth of 

different C. difficile ribotypes with little variation in the size of inhibition zone.16 Results of our 

current in vitro work, however, indicate that growth inhibition of C. perfringens by 

B. amyloliquefaciens SG1 is strain dependent with a large variation in the size of the inhibition zone. 

There is no obvious explanation as to why virulent NetB positive C. perfringens isolates are more 

sensitive to the supernatant of B. amyloliquefaciens SG1 as compared to avirulent NetB negative 

C. perfringens isolates. Further research is necessary to identify the antimicrobial compound 

responsible for the observed antibacterial activity and its mode of action. 

In conclusion, although we were not able to demonstrate the beneficial effect of 

B. amyloliquefaciens SG1 in controlling NE in broilers despite its high  in vitro antibacterial activity, it 

cannot be excluded that the B. amyloliquefaciens SG1 strain used in the current work still provides 

protection against broiler necrotic enteritis when e.g. the probiotic production process is optimized 

or another experimental disease model is used.  
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CLOSTRIDIUM PERFRINGENS AND CLOSTRIDIUM DIFFICILE: 
INTESTINAL PATHOGENS OF MEN AND ANIMALS 

The genus Clostridium encompasses many pathogenic species that are harmful for men and animals. 

Clostridium difficile and Clostridium perfringens are two well-known pathogens associated with 

severe intestinal disease and linked with the use of broad spectrum antibiotics. C. perfringens is the 

cause of necrotic enteritis in broiler chickens. This disease was long constrained due to the use of 

antibiotics as growth promoters. However, public concern on the use of in-feed antibiotics and the 

alarming rise of antibiotic resistance has led to a ban on the use of antibiotics as growth promoters in 

Europe.1 This has created the need to find alternatives to improve animal performance and prevent 

disease. C. difficile is an opportunistic pathogen that is able to cause severe intestinal inflammation 

when the normal gut microbiota is disturbed due to the consumption of antibiotics. Currently, 

infections are treated with the antibiotics metronidazole or vancomycin which seems contradictory 

since disease outcome results from the disruptive effect of these molecules on the gut microbiota.2 

In addition, antibiotic treatment is not always successful since high recurrence rates and limited 

treatment success for severe disease are being reported.3 Moreover, C. difficile strains with elevated 

MIC values have already been reported for both antibiotics.4-7 It is clear that there is a great need to 

look for efficient treatments that do not further disrupt the already altered indigenous microbiota, 

help to restore the complex balance of the normal gut microbiota and limit the use of additional 

antibiotic therapy.8  

Although the discovery of antibiotics has been a major breakthrough in the history of medicine, its 

imprudent use has led to the emergence of antibiotic resistant pathogens.9 Fear exists that the 

industry will not be able to develop new effective antibiotics at a sufficient rate to counteract the 

development of antibiotic resistance. There is a great need to find alternative treatment strategies to 

treat infectious diseases and to constrain the emergence of antibiotic resistance. 

  THE QUEST FOR ANTIBIOTIC ALTERNATIVES 

Probiotics as promising agents for disease prevention  

Probiotics are defined as live microorganisms that confer a health benefit to the host when 

consumed in appropriate amounts.9 A good probiotic is able to maintain or improve the indigenous 

intestinal microbiota and prevent pathogen colonization.10 As such, they are promising alternatives 

to prevent disease. For C. perfringens and C. difficile, probiotics have been proposed as a promising 

alternative for disease prevention and treatment. Probiotics have gained interest as potential 

prevention tools with the intent of modulating the intestinal microbiota and thereby protecting the 

chickens from C. perfringens induced NE.11 In poultry, administration of probiotics is often associated 
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with a beneficial effect on broiler performance, modulation of intestinal microbiota, inhibition of 

pathogens, intestinal histological changes and immunomodulation.12 Research on the use of 

probiotics for the prevention of C. difficile associated disease has gained much interest in the past 

years. A probiotic that can prevent CDI would help to lower the incidence of CDI, leading to reduced 

health care costs. Probiotics can help to maintain the gut microbiota and limit the risk of pathogen 

colonization by competitive exclusion. Different studies indicate the beneficial effects of probiotic 

administration on CDAD.13-15 Most studies however, focus on commercially available probiotics and 

are not selected based on specific antibacterial activity.  

Bacillus amyloliquefaciens SG1 – a promising probiotic 

During laboratory practice, we have selected a B. amyloliquefaciens strain with high in vitro 

antibacterial activity against C. perfringens and C. difficile. Since the EFSA granted 

B. amyloliquefaciens a QPS status, it shows great promise as a probiotic.16 In addition, 

B. amyloliquefaciens possesses several characteristics which would make it a promising probiotic, 

including its tolerance to low pH and bile salts, and its ability to produce an array of antimicrobial 

compounds.17, 18 Therefore, our research focused on the potential probiotic use of 

B. amyloliquefaciens SG1 for the prevention of C. perfringens and C. difficile associated diseases. 

To study C. perfringens induced necrotic enteritis, a well described and commonly used broiler model 

is available.19-21 Beneficial effects have been reported for in-feed supplementation of Bacillus-based 

probiotics on broiler performance and the control of NE.22-24 In addition, probiotic 

B. amyloliquefaciens administration in broilers has already been associated with beneficial effects on 

growth performance, caecal microbiota composition, antibody response, nutrient digestibility and 

intestinal health.25-27 Vegetative B. amyloliquefaciens SG1 cells were lyophilized and mixed with the 

feed for practical reasons. Determination of the number of colony forming units of the lyophilized 

product at regular time intervals revealed a high stability and viability of the B. amyloliquefaciens SG1 

cells during the whole trial. Unfortunately, no beneficial effects of in-feed administration of 

vegetative B. amyloliquefaciens SG1 cells on necrotic enteritis were found in the experimental broiler 

model used. Similar results were obtained for in-feed supplementation of B. amyloliquefaciens 

spores.28 

Although several clinical trials indicate the beneficial use of probiotics for the prevention of C. difficile 

associated disease, little information is available from animal studies to support this idea. To study 

C. difficile associated disease, the mouse model described by Chen et al. is the most widely used.29 

Results from our in vivo trial indicated that oral administration of live B  amyloliquefaciens cells 

successfully protected mice from C. difficile induced disease. 



 

 

175 General discussion 

It is not easy to compare the results of both trials because we are working with two different 

pathogens and two different animal models. A multitude of differences between both experimental 

set ups can explain the different trial outcomes including differences in intestinal environment and 

gut microbiota between mice and broilers, different site of infection and duration of probiotic 

treatment. In addition, the mouse trial used live vegetative B. amyloliquefaciens SG1 cells while 

lyophilized B. amyloliquefaciens SG1 cells were used for the broiler trial. Lyophilization or freeze-

drying is a process in which water is removed from bacterial cells enabling long-term storage. The 

bacteria first need to take up water to become active again and multiply which requires more time. 

However, in the broiler experiment, the probiotic was administered during the entire duration of the 

trial achieving a constant intake of the strain. On the other hand, B. amyloliquefaciens SG1 was 

directly administered to the mice so we know that each animal received the same high dose. In the 

broiler trial, B. amyloliquefaciens SG1 was administered in the feed. Therefore, it cannot be 

estimated how much each animal consumed of the probiotic strain. In addition, no data is available 

on the stability of lyophilized B. amyloliquefaciens SG1 cells in the feed. However, commercially 

available probiotics used to improve broiler performance or protect broilers from necrotic enteritis 

mainly consist of lyophilized microbial cells that need to be mixed with the feed. As a consequence, 

we have tested this B. amyloliquefaciens SG1 strain in a way that is most attractive for commercial 

purposes. 

B. amyloliquefaciens SG1 successfully protected mice from C. difficile induced disease but failed to 

protect broilers from C. perfringens induced necrotic enteritis. It would have been interesting to 

analyze if the probiotic could also protect broilers from C. difficile infection to determine if the 

observed effect is pathogen or host related. Unfortunately, C. difficile is not a pathogen for broilers. 

The only studies available analyze the prevalence of C. difficile in poultry or poultry meat to study if it 

is a source of infection for community acquired CDI.30, 31 Vice-versa, no mouse models are known to 

study C. perfringens induced intestinal inflammation. Mice are mainly used to study the effect of 

C. perfringens toxins on intestinal and systemic inflammation.32 As a consequence, we are unable to 

draw any conclusion on this subject.  

C. difficile and C. perfringens are able to cause intestinal disease in many different animal species. As 

such, it could be interesting to analyze if B. amyloliquefaciens SG1 can provide protection in other 

animals as well. For example, C. difficile is a well-known pathogen of piglets and horses. 

Unfortunately, the information concerning this subject is little. Only a few animal trials have been 

conducted that study the preventive effect of probiotic administration on CDAD in these animal 

species. In piglets, administration of a probiotic containing Lactobacillus spp. did not yield beneficial 

effects after C. difficile challenge. On the other hand, administration of a non-toxigenic C. difficile 
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strain lowered the prevalence of toxin-positive feces, mesocolonic edema and microscopic lesions as 

compared to positive control piglets.33 Schoster et al. administered a probiotic containing  

4 Lactobacillus strains and 1 Bifidobacterium strain to healthy neonatal foals and analyzed the 

incidence of diarrhea and fecal shedding of C. difficile as well as C. perfringens. Although initial tests 

indicated that these probiotic strains were able to inhibit the growth of C. difficile and C. perfringens 

in vitro, no beneficial effects were observed on the incidence of diarrhea or fecal shedding of the 

pathogens.34 The authors however, postulate that the lack of protection could also be explained by 

the choice of the probiotic strains or the treatment dose.35 C. perfringens causes enteritis in many 

different animal species but most research is focused on necrotic enteritis in broilers. The inhibitory 

effect of several potential probiotic bacterial species against C. perfringens has been described in 

vitro.  Different studies in mice and chickens indicate that probiotic administration has a beneficial 

effect on intestinal C. perfringens colonization and can possibly cause a reduction in the number of 

necrotic lesions whether or not after challenge with C. perfringens.36 However, C. perfringens is also 

able to cause enterotoxaemia in rabbits, cattle, sheep and horses which requires further research.37 

Candidate probiotics are commonly selected based on in vitro antagonism tests in which the 

pathogens are exposed to either the probiotic micro-organism itself or its extracellular compounds.38 

It is clear that well-performed animal studies are an absolute necessity to characterize the full in vivo 

probiotic potency.  

It is of great importance to distinguish between the prophylactic or therapeutic use of a probiotic. 

Current research mainly focusses on the use of probiotics as a preventive measure for CDAD. We 

would most benefit from a probiotic that can prevent C. difficile colonization and as such, eliminates 

the need for additional antibiotic therapy. The probiotic could be administered to patients that are at 

high risk for developing CDAD and receive antibiotics to treat a certain disease. This could help to 

lower the incidence of CDI and reduce health care costs. It would however require that the probiotic 

strain can withstand the antibiotic administered. It has been demonstrated previously that the 

combined therapy of an antibiotic and probiotic led to a 73% reduction in CDI.39 Results of the mouse 

trial in this study, indicated that B. amyloliquefaciens SG1 was able to colonize the gut and protect 

mice from developing CDI after a single intraperitoneal injection of clindamycin. However, the effect 

of prolonged treatment with different antibiotics on B. amyloliquefaciens SG1 survival requires 

further research. 

Studies on the therapeutic use of probiotics for the treatment of severe diarrhea have been shown to 

be unsuccessful. Pillai and Nelson demonstrated that there is no evidence that supports the use of 

probiotics for the treatment of CDAD.40 Studies on the use of probiotics in conjunction with 

conventional antibiotic treatment only provide weak evidence for its efficacy to treat CDAD. In 
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general, there is a lack of well-conducted clinical studies with sufficiently large sample sizes. The 

problem is that C. difficile is only responsible for approximately one third of all cases of antibiotic 

associated diarrhea, which makes it not easy to conduct clinical studies with large sample sizes.41, 42 

Moreover, for treatment purposes, the administered compound needs to be able to quickly control 

the infectious agent. CDI is generally associated with a sudden disease onset. After accurate 

diagnosis of CDI, the probiotic first needs to pass through the gastrointestinal tract and colonize the 

gut before it can exert its antibacterial effect. In view of efficient treatment of CDI, this requires too 

much time and potential therapeutic effects will be displayed too slow.40, 43 

B. amyloliquefaciens SG1 has proven its effectiveness in controlling C. difficile associated disease in 

mice. Although C. difficile is the best known cause of antibiotic associated diarrhea, it is not the only 

cause. Other pathogens such as C. perfringens, S. aureus and Salmonella spp. have also been linked 

to antibiotic associated diarrhea.44 We have demonstrated that B. amyloliquefaciens SG1 does not 

inhibit the growth of S. aureus or Salmonella spp. Therefore, its prophylactic use can possibly not be 

expanded to other infective causes of antibiotic associated diarrhea. For the prevention of antibiotic 

associated diarrhea in general, a multi-strain probiotic could be more interesting. Incorporation of 

several bacterial strains in one probiotic allows us to tackle several pathogens at once. Since 

C. difficile is one of the main causes of antibiotic associated diarrhea, B. amyloliquefaciens SG1 can be 

the compound responsible for the control of C. difficile. 

A treatment strategy for CDAD that recently gained a lot of interest is fecal microbiota 

transplantation (FMT). It involves the administration of a stool sample from a healthy donor to a 

patient with a disease caused by an altered gut microbiota.45 Studies indicate that FMT is superior to 

conventional antibiotic treatment for recurrent CDI and is well tolerated by the patients.46 It has 

been recommended as a first line treatment in patients suffering from recurrent CDI.47, 48 Although 

this treatment shows success and is easy to conduct, it has some disadvantages. Despite its 

effectiveness, the idea of receiving someone else’s stool is not very appealing and is mostly used as a 

last resort treatment for severe cases. In addition, the exact composition of the donor stool is not 

known, which might lead to the risk of spreading infectious diseases such as HIV, hepatitis A and B, 

Epstein-Barr virus and Campylobacter jejuni. Since most donors usually are relatives of the patient, it 

can possibly be hard to find donors for patients with a family history of infectious disease or 

unhealthy gut microbiota. Despite its easiness to implement, there is no standardized experimental 

protocol for FMT making it not yet common practice.49-52 The major advantage of probiotics as 

compared to FMT is the fact that the composition of the probiotic is known and can be controlled. In 

addition, probiotic consumption is more appealing than FMT. 



 

 

178 General discussion 

Probiotics are defined by the World Health Organization as live micro-organisms that confer a health 

benefit to the host when consumed in appropriate amounts. The benefits of probiotics have been 

recognized by health authorities and evidence for their beneficial effects arises from many peer 

reviewed scientific publications. Probiotics have a long history of safe use in food products or as food 

supplements but it has become obvious that probiotics also have a therapeutic potential. The 

progress in science creates the necessity of regulatory updates. Unfortunately, science progresses 

faster than regulatory offices, creating a regulatory challenge. Regulators need to make a distinction 

between probiotics used as food supplements that serve a healthy population and probiotics with a 

medical purpose that only relate to a population of patients. For both probiotics, a specific guidance 

is of uttermost importance.53, 54 There is a great need for an approach to define the health benefits of 

probiotics. Binnendijk and Rijkers looked at what the EFSA recognizes as a health claim. These 

included a.o. maintenance of the intestinal microbiota balance in order to decrease pathogenic 

micro-organisms, improvement of bowel function, maintenance of normal bowel function with 

reduced intestinal transit and increased bowel movements’ frequency and preservation of an 

individual’s microbiota receiving antibiotic therapy.55 Of all applications, 78% had a correct health 

claim but all of them were turned down by the EFSA because of a lack of scientific evidence.55 Only 

recently, the EFSA published an update on the scientific requirement of probiotic use related to gut 

health. It highlights the need for human intervention studies showing an effect on clinical outcomes 

related to gastrointestinal infections (e.g. improvement in the incidence, severity or duration of 

diarrheal episodes). In addition, they require that the cause of diarrhea should be established and 

accurate diagnosis is performed by a physician. Criteria used to exclude patients from the clinical trial 

need to be stated and results should encompass microbiological data.56 Although several clinical 

trials indicate the beneficial effect of probiotic administration, there is not yet a consensus on their 

use to prevent CDAD due to a multitude of flaws in study design such as small sample sizes, 

differences in inclusion and exclusion criteria and clinical end points In addition, differences in 

probiotic duration, length of follow-up, combined use with antibiotics, combined data of primary and 

secondary CDI,… makes it difficult to compare results of clinical trials and draw definite conclusions. 

It is not straightforward to obtain large sample sizes because only a subset of patients on antibiotics 

will develop diarrhea and only a certain percentage of these cases are caused by C. difficile. In 

addition, it cannot be predicted in advance if the untreated, positive control group will be sufficiently 

large to detect significant effects as compared to the probiotic treatment group. Some studies were 

stopped early due to the low percentage of CDAD in the positive control group which makes the trial 

outcome not easy to interpret.47, 57-60 For these reasons, most studies focus on the secondary 

prevention of CDAD because the rate to develop a relapse is high and even rises with subsequent 
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relapses. As such, there is a greater security to establish a sufficiently large control population. There 

is definitely a great need for large, well-designed clinical trials.61, 62  

For probiotic purposes, the strain needs to be suitable for large-scale production processes. Use of 

B. amyloliquefaciens SG1 as a probiotic requires a range of safety studies to address its possible 

toxicity such as acute toxicity and repeated oral dose toxicity.63 In vivo animal trials can be performed 

to determine if there is a dose dependent effect on CDI. We obtained a protective effect of the 

administration of vegetative B. amyloliquefaciens SG1 cells on CDAD in mice. It would be interesting 

to analyze if administration of B. amyloliquefaciens SG1 spores yields the same beneficial effect. 

Since spores are very stable, it would provide an advantage in terms of survival during 

gastrointestinal transit and stability of the final product. We have demonstrated that 

B. amyloliquefaciens SG1 encompasses a narrow spectrum of activity in vitro but the impact of 

B. amyloliquefaciens SG1 on the resident gut microbiota still needs to be analyzed. When used for 

the prevention of antibiotic associated diarrhea, a prerequisite is its ability to colonize the gut 

despite the concomitant use of antibiotics. We proved that B. amyloliquefaciens SG1 was able to 

prevent an initial episode of CDI. The possibility to prevent or cure recurrent CDI could be addressed. 

When results of all in vitro and in vivo tests yield good results, large clinical trials should be 

conducted to determine its safety in and efficacy in humans. 

Antimicrobial metabolites as novel therapeutics 

One reason that probiotics could provide protection against invading pathogens is by the production 

of antimicrobial metabolites. Bacillus species are widely used as probiotics and known for their ability 

to produce an array of secondary metabolites with antibacterial activity. B. amyloliquefaciens FZB42 

devotes up to 8.5% of its genome to antimicrobial metabolites.64 Most antibiotics encompass a broad 

spectrum of activity and cause a significant disturbance of the resident gut microbiota making the 

host susceptible for intestinal diseases. Additional unintended consequences include the selection of 

antibiotic resistance genes, promotion of horizontal gene transfer between bacteria, changes in 

metabolic activity and immune responses.65 All of these deleterious effects could be avoided by using 

narrow spectrum antimicrobials. A few narrow spectrum antibiotics are known that specifically 

target C. difficile. Fidaxomicin is the only FDA and EMA approved narrow spectrum antibiotic that can 

be used for the treatment of CDI but is associated with a high production cost.66, 67 Promising results 

were obtained from in vitro and in vivo experiments with cadazolid and SMT19969 but well 

performed clinical trials still need to be conducted to evaluate their safety and efficacy.68-71  

Bacteria also produce compounds other than antibiotics with antimicrobial activity: ribosomally 

synthesized bacteriocins and non-ribosomally synthesized lipopeptides. These molecules have 
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recently gained interest as promising therapeutics since many of them encompass a narrow 

spectrum of activity. Only two bacteriocins with a narrow spectrum of activity against C. difficile have 

yet been described: thuricin CD, produced by Bacillus thuringiensis, and the R-type bacteriocins, 

produced by some C. difficile strains.72-75 Due to their peptide nature, bacteriocins are sensitive to 

digestion when passing the gastrointestinal tract. Researchers encountered many problems 

concerning the bioavailability of thuricin in the gut since it undergoes proteolytic digestion. However, 

rectal delivery of thuricin caused a fast and significant reduction in the numbers of C. difficile 

indicating that rectal administration is a promising mode of delivery of thuricin CD to the colon to 

control CDI.76  The only lipopeptide with reported anti-C. difficile activity is surotomycin. Although 

results of clinical trials shows its great promise as a therapeutic, its antibacterial activity is not limited 

to C. difficile but also directed against other Gram-positive bacteria and certain Gram-negative 

bacteria.77-79 

We would greatly benefit from the use of narrow spectrum antimicrobials for different reasons. First 

of all, their high specific activity minimizes collateral damage to the indigenous gut microbiota which 

helps the host to restore its intestinal microbial ecosystem. In addition, they encourage a better 

antimicrobial stewardship. Since they act against specific pathogens, they can only be used to treat 

specific diseases. This automatically constrains overuse or incorrect prescription of antibiotics 

limiting the risk of resistance development. Finally, antimicrobials that are amenable to bio-

engineering might possibly yield more active or less toxic derivatives.  

As with all antimicrobials, the risk of resistance development should be taken into consideration. 

Resistance against bacteriocins has not yet been widely studied. Since bacteriocins are not yet used 

in a clinical setting, the only available information on resistance development arises from in vitro 

experiments. It gives us an idea on what resistance mechanisms could be possible but it is impossible 

to predict what will happen when they are used as therapeutics or at what rate resistance would 

arise. However, researchers believe that bacteriocin resistance is less likely to occur due to their 

rapid antibacterial action. In addition, nisin has already been used as a food preservative for a long 

time and no nisin resistance is yet detected. A major problem is that bacteriocin resistance is not yet 

defined. There is no consensus on what can be seen as low, medium or high level resistance. 

Differences in experimental set ups and terminology makes it difficult to compare the results 

obtained from different experiments.80-82 Information on lipopeptide resistance mainly arises from 

studies with daptomycin. In a recent review, it was postulated that daptomycin resistance is a rare 

event. Only a few clinical cases have been reported. Resistance development was associated with hot 

spots in the genome of target bacteria but the exact link between both is unclear. The greatest 

difficulty is that, although it is known that daptomycin targets the cell membrane, the exact 
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mechanism of action is not yet well understood.83 CB-183,315 or surotomycin is a structural analogue 

of daptomycin with antibacterial activity against C. difficile. Based on in vitro serial passage, 

spontaneous resistance and multistep resistance studies, it was hypothesized that development of 

resistance against CB-183,315 is rare. In addition, results of a phase 2 clinical trial indicated that the 

fecal concentration of CB-183,315 was higher than 1 mg/g which is significantly higher than the 

highest MIC value reported suggesting the unlikelihood of resistance development.84, 85 Results of the 

currently available studies are promising but more studies are definitely necessary. Surfactin directly 

targets the bacterial cell membrane and causes a rapid desintegration of the bacterial membrane.86 

Classical antibiotics function as inhibitors of nucleic acid, protein or cell wall synthesis.87 Resistance 

mechanisms are associated with mutations in the target protein, acquisition of resistance genes from 

other bacteria or expulsion of the antimicrobial from the cell. Since surfactin has a distinct mode of 

action, it is not susceptible to the known mechanisms of resistance development. Nevertheless, it 

cannot be excluded that novel mechanisms of resistance might be induced by repeated or long term 

use of the drug. Since surfactin is not yet used as a therapeutic, studies on possible resistance 

mechanisms are sparse. More knowledge on this issue is essential to counteract resistance 

development. A good antimicrobial stewardship is essential to control resistance development. The 

exposure of organisms to surfactin should be limited and confined to relevant therapeutic purposes. 

Surfactin should only be used to treat C. difficile infections if the pathogen is identified by diagnostic 

tests which automatically requires the need for fast and accurate diagnostic tools. Since lipopeptides 

are biodegradable, they are readily eliminated from the environment. All in all, this limits the 

exposure of bacteria to the antimicrobial and constrains the opportunity of bacteria to develop 

resistance.  

Surfactin – a promising therapeutic for the treatment of CDAD 

We have demonstrated that the inhibitory effect of the B. amyloliquefaciens SG1 strain, used in this 

work, on C. difficile, is caused by the production of the lipopeptide surfactin. Analysis of the purified 

samples showed that this surfactin had a very high activity against C. difficile. This is a first step to a 

possible antibiotic alternative for the treatment of C. difficile associated disease. Since 

B. amyloliquefaciens SG1 CFSN demonstrated a narrow spectrum of activity, we are hopeful that our 

surfactin encompasses a narrow spectrum of activity. However, we would need to determine the 

antimicrobial spectrum of the purified surfactin to draw any definite conclusions. As reported 

previously, the antibacterial activity of surfactin is dependent on the producer strain.88 Therefore, the 

possibility exists that other B. amyloliquefaciens SG1 strains have an even higher anti-C. difficile 

activity or encompass an even narrower antibacterial spectrum. In addition, surfactin is produced as 

a mixture of homologues with differences in the number of carbon atoms of the lipid chain and 
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surfactin variants exist that have amino acid substitutions in the cyclic peptide part. Each variation 

can have an impact on the antimicrobial activity. It has been reported that the bactericidal activity of 

lipopeptides increases with the length of the carbon chain. Further increases in carbon length 

increases antifungal activity in addition to antibacterial activity.89  Due to the high molecular 

similarities, it is not straightforward to separate the different homologues. We cannot predict in 

advance which homologues or variants have the highest antibacterial activity. Which homologues or 

variants are produced is not only strain dependent but can be influenced by the growth conditions of 

the bacteria. The most optimal growth conditions can be determined by comparison of the amount 

of antibacterial activity produced using different growth media or incubation conditions. As such, 

bacteria can be influenced towards lipopeptide synthesis.  

For treatment purposes, surfactin need to be able to reach the intestinal tract and resist the harsh 

conditions of the gastrointestinal tract including the acidity of the stomach and proteolytic digestion. 

Since surfactin precipitates at low pH, it will lose its activity when entering the acidic environment of 

the stomach. However, we observed that an increase in the pH is able to fully recover its 

antibacterial action. When passing in the intestinal tract, the gradual rise in pH could potentially 

restore surfactins activity. Another hurdle encountered are digestive proteases. Surfactin only 

contains 7 amino acids and has a cyclic structure which makes it more resistant to proteolytic 

digestion. It is however sensitive to the action of lipases that are secreted by e.g. the pancreas. All of 

these problems can be easily overcome by encapsulation of surfactin to achieve a targeted release in 

the colon. Rectal administration might be another alternative to avoid these problems. As mentioned 

before, rectal administration of thuricin CD caused a fast and significant reduction in the numbers of 

C. difficile indicating it is a useful route of administration.76 Rectal administration might, however, not 

be the most desirable way in patients suffering from severe diarrhea due to the risk of rapid 

elimination before the compound is released. As determined for B. amyloliquefaciens SG1 

supernatant, it would be interesting to analyze hemolytic and cytotoxic activity of the purified 

surfactin. When used for in vivo studies, we have to address several important properties including 

bioavailability, toxicity, pharmacodynamics and pharmacokinetics. In addition, the purified surfactin 

needs to remain stable over a long period of time. 

Currently, surfactin is only used for research purposes and very expensive to buy. In view of its use as 

a treatment, it needs to be obtained in pure form in adequate amounts. Its purification process is 

however associated with a high cost and yields are generally low which is a major restriction 

concerning its commercial use. Purification of a biosurfactant such as surfactin is associated with a 

3 to 10 times higher cost than a chemical surfactant. Researchers need to tackle several problems to 

reduce the purification cost. A first issue is the carbon source used to grow the bacteria. There is a 
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need for inexpensive substrates to culture the bacteria in large volumes. Mutant Bacillus subtilis 

strains have already been constructed that overproduce surfactin.90 As mentioned earlier, the 

amount of surfactin produced can be influenced by the composition of the growth medium.91 This 

might help to increase the production yield. In addition, extensive foaming during culture makes 

recovery and purification difficult but can be controlled e.g. by applying a right agitation rate and 

aeration.92  Combined with improvements in the downstream costs, the total cost to obtain high 

amounts of surfactin can be controlled.93 

B. amyloliquefaciens SG1 – a source of antimicrobial metabolites?  

B. amyloliquefaciens is known for its ability to produce a wide array of antimicrobial compounds.. 

During our research, we found that B. amyloliquefaciens SG1 produces at least 1 other compound 

than surfactin with antibacterial activity against C. difficile. In-gel detection of antibacterial activity 

from concentrated supernatant revealed the presence of a peptide smaller than 5 kDa with 

antibacterial activity against C. difficile. After SDS-PAGE, the compound could be visualized using 

silver-staining which confirms its peptide nature. Unfortunately, several attempts to purify this 

compound using a combination of different chromatographic techniques were unsuccessful 

(unpublished data). More research is necessary to identify this antibacterial compound. In addition, 

we are still unaware which compound is responsible for the antibacterial activity against 

C. perfringens.  
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193 Summary 

The intestinal tract of all living species harbors a diverse and complex microbial ecosystem which 

plays an important role in human and animal health. Disruption of this complex ecosystem has been 

linked with gastrointestinal diseases such as cancer, inflammatory bowel disease and colitis. The gut 

microbiota has not only an important metabolic, nutritional and immune function but also forms an 

effective barrier that protects the host from invading pathogenic microorganisms. Consumption of 

antibiotics leads to a disturbance of the gut microbiota and makes the host susceptible to 

gastrointestinal infections. In addition, inappropriate and extensive use of antibiotics has led to the 

emergence of multidrug resistant bacterial pathogens.  

 

Clostridium difficile is an antibiotic resistant pathogen of humans and animals able to colonize the gut 

after disruption of the intestinal microbiota due to antibiotic consumption. It is one of the main 

causes of antibiotic associated diarrhea and the main cause of pseudomembranous colitis. Current 

treatment strategies involve the administration of the broad spectrum antibiotics metronidazole or 

vancomycin. Unfortunately, these treatment strategies often fail and consequently high recurrence 

rates are being reported and strains with elevated MIC values have already been isolated. In 

addition, it seems contradictory that standard treatment involves the administration of antibiotics 

when disease outcomes results from the disruptive effect of antibiotics on the colonic microbiota. It 

is of great importance to look for alternative treatments that do not further disrupt the altered 

indigenous microbiota, help to restore the complex balance of the normal gut microbiota and restrict 

the need for additional antibiotic therapy. 

 

During laboratory practice, we isolated a Bacillus amyloliquefaciens strain with growth inhibiting 

properties towards C. difficile. In a first study, we analyzed the in vitro antibacterial properties of 

B. amyloliquefaciens supernatant against C. difficile. The antibacterial activity was relatively resistant 

to changes in pH and temperature. Loss of activity was only observed at low pH or prolonged 

exposure to elevated temperatures. The antibacterial activity was not affected by addition of 

catalase, urea, bile salts and proteases, with the exception of some minimal loss of activity due to 

trypsin treatment. On the other hand, lipase, tween-80, lysozyme and pancreatine impaired the 

antibacterial activity. Increase in antibacterial activity coincided with growth of B. amyloliquefaciens 

and reached its maximum during the stationary growth phase. The supernatant of the bacterial 

culture showed no hemolytic activity and was not cytotoxic for intestinal epithelial cells. In addition, 

the supernatant only had a narrow spectrum of activity. No activity was detected against the Gram 

negative bacteria Escherichia coli, Salmonella sp., Pasteurella sp. and Pseudomonas aeruginosa. Only 

the growth of Yersinia tuberculosis was inhibited to a minor extent. Moreover, the growth of several 

Gram positive bacteria belonging to Clostridium cluster I, IV, XIVa and XVI, isolated from the normal 
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gut microbiota, 7 out of 8 tested Lactobacillus strains and all tested Staphylococcus sp. was not 

affected by the supernatant. Only Clostridium perfringens, Enterococcus cecorum and two 

Streptococcus species were inhibited by the supernatant. In a second phase, the anti-C. difficile 

compound was purified and identified. Mass spectral analysis of the purified sample indicated the 

presence of a compound with a major peak at 1036.65 Da. MSMS analysis of this peak indicated a 

spectrum characteristic for the lipopeptide surfactin. These results were confirmed by mass spectral 

analysis of commercially available surfactin. In addition, we proved that commercially available 

surfactin possessed antibacterial activity against C. difficile. As such, B. amyloliquefaciens produces at 

least one compound, the lipopeptide surfactin, with growth inhibiting properties towards C. difficile. 

 

Nowadays, the use of probiotics to control C. difficile has gained more and more attention. Several 

studies indicate the beneficial effect of probiotics for the prevention of antibiotic associated diarrhea 

or recurrent C. difficile infection. Our B. amyloliquefaciens strain was specifically selected for its anti-

C. difficile activity.  Since Bacillus species are commonly used probiotics, we investigated the possible 

prophylactic use of the strain to protect mice against C. difficile associated disease. First, the in vitro 

antibacterial activity of B. amyloliquefaciens supernatant was tested against a collection of 

24 different C. difficile ribotypes. The supernatant was able to inhibit the growth of all C. difficile 

ribotypes in the same extent. Subsequently, a mouse trial was conducted to test if oral 

administration of B. amyloliquefaciens was able to prevent C. difficile associated disease. The effect 

of B. amyloliquefaciens treatment in mice was compared to S. boulardii treatment, commonly used 

as a probiotic, and an untreated control group. Results indicated that B. amyloliquefaciens treatment 

improved clinical signs and survival rates and protected mice from severe weight loss. The colon 

content of B. amyloliquefaciens treated mice showed a significantly lower amount of C. difficile toxin 

A and B levels. In addition, a significantly lower degree of colon damage was detected in 

B. amyloliquefaciens treated mice as compared to S. boulardii treated and untreated control mice, 

based on histopathological analysis of colon samples, colon weight/length and colon/body weight 

ratios. In conclusion, B. amyloliquefaciens successfully protected mice from C. difficile associated 

disease in mice. 

 

Antibiotics have long been used as in-feed additives in farm animals to improve nutrient availability 

and growth performance. However, public concern on the use of in-feed antibiotics and the alarming 

rise of antibiotic resistant pathogens have led to a ban on the use of antibiotics as growth promoters 

in Europe. Clostridium perfringens is an intestinal pathogen associated with necrotic enteritis in 

broilers. In-feed supplementation of antibiotics has long constrained this disease but the ban on in-

feed antibiotics caused a flare in the incidence of broiler necrotic enteritis. During our initial in vitro 
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work, we observed that B. amyloliquefaciens also possessed growth inhibiting properties towards 

C. perfringens. In a third study, we first analyzed the antibacterial activity of B. amyloliquefaciens 

supernatant against a collection of NetB-negative and NetB-positive C. pefringens isolates. 

Interestingly, virulent NetB-positive C. perfringens strains were significantly more inhibited than 

avirulent NetB-negative C. perfringens strains. In a second phase,  an experimental broiler model was 

used to test the efficacy of in-feed supplementation of lyophilized vegetative B. amyloliquefaciens 

cells in preventing necrotic enteritis. Unfortunately, no beneficial effect of B. amyloliquefaciens 

supplementation could be detected since no differences in lesion score, percentage of necrotic 

enteritis positive animals or body weights were noted between the treatment groups and untreated 

control groups.  

 

Although the discovery of broad spectrum antibiotics has definitely been a major breakthrough for 

medicine, we have evolved into an era in which its excessive use has led to the emergence of 

antibiotic resistant pathogens. Nowadays, the search for alternatives to broad spectrum antibiotics is 

gaining more and more attention. One possible alternative is the use antibacterial compounds with a 

narrow spectrum of activity. C. difficile and C. perfringens are two important intestinal pathogens of 

humans and animals that are linked with antibiotic consumption and would benefit from alternative 

treatments to control disease. We demonstrated that B. amyloliquefaciens showed significant in vitro 

antibacterial activity against both pathogens. In-feed supplementation of vegetative 

B. amyloliquefaciens cells could however not protect broilers from C. perfringens induced necrotic 

enteritis. On the other hand, prophylactic administration of B.  amyloliquefaciens to mice successfully 

conferred protection against C. difficile associated disease which might be in part caused by the 

production of the lipopeptide surfactin. Administration of a B. amyloliquefaciens based probiotic to 

people at risk for developing C. difficile associated disease could be an interesting alternative for 

standard antibiotic therapy. 
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De darm van alle levende organismen omvat een divers en complex microbieel ecosysteem dat een 

belangrijke rol speelt in de gezondheid van mens en dier. Een verstoring van dit complexe 

ecosysteem is geassocieerd met diverse gastrointestinale ziekten zoals kanker, inflammatoire 

darmziekten en colitis. De microbiota in de darm heeft niet alleen een belangrijke metabole, 

voedings- en immuunfunctie maar vormt ook een efficiënte barrière die de gastheer beschermt 

tegen de invasie van pathogene micro-organismen. Het gebruik van antibiotica verstoort de 

darmmicrobiota, vernietigt deze beschermende barrière en maakt de gastheer gevoelig voor 

gastrointestinale infecties. Daarnaast heeft het onverantwoorde en overvloedige gebruik van 

antibiotica geleid tot het ontstaan van multidrug resistente bacteriële pathogenen. 

Clostridium difficile is een antibioticumresistente pathogeen van mens en dier. Door het gebruik van 

antibiotica treedt een verstoring op van de normale darmmicrobiota en kan deze bacterie de darm 

koloniseren. Het is één van de belangrijkste oorzaken van antibioticumgeassocieerde diarree en de 

belangrijkste oorzaak van pseudomembraancolitis. Momenteel wordt een infectie met deze bacterie 

behandeld met de breedspectrumantibiotica metronidazole en vancomycine. Deze behandelingen 

blijken echter niet altijd even succesvol aangezien een hoge mate van terugkerende infecties wordt 

vastgesteld. Er werden ook reeds C. difficile stammen met verminderde gevoeligheid ten opzichte 

van beide antibiotica geïsoleerd. Daarnaast lijkt het ook heel tegenstrijdig dat de behandeling 

gebeurt met breedspectrumantibiotica aangezien deze net de oorzaak zijn van de verstoorde 

darmmicrobiota waardoor C. difficile de darm kan koloniseren. Het is van groot belang om onderzoek 

uit te voeren naar alternatieve behandelingsmogelijkheden die de reeds verstoorde darmmicrobiota 

niet verder beschadigt, die het complexe microbiaal ecosysteem in de darm helpt te herstellen en die 

de noodzaak aan bijkomende antibioticumtherpie beperkt. 

In het labo werd een bacterie geïsoleerd die in staat was om de groei van C. difficile te inhiberen. 

Deze bacterie werd geïdentificeerd als Bacillus amyloliquefaciens. In een eerste studie hebben we de 

in vitro antibacteriële activiteit van B. amyloliquefaciens cultuursupernatans tegen C. difficile 

geanalyseerd. Deze antibacteriële activiteit was relatief resistent aan wijzigingen in pH en 

temperatuur. Bij een lage pH en langdurige blootstelling aan verhoogde temperaturen werd een 

verlies van activiteit vastgesteld. De antibacteriële activiteit werd niet aangetast door behandeling 

met katalase, ureum, galzouten en proteasen. Enkel trypsinebehandeling leidde tot een minimaal 

verlies van activiteit. Er werd wel een verlies van activiteit vastgesteld na toevoeging van lipase, 

tween-80, lysozyme en pancreatine. Naarmate de groei van B. amyloliquefaciens vorderde, nam de 

mate van antibacteriële activiteit en werd een maximum bereikt in de stationaire groeifase. Het 

cultuursupernatans was niet cytotoxisch voor intestinale epitheelcellen en vertoonde geen 

hemolytische activiteit. Daarnaast bleek het supernatans een beperkt activiteitsspectrum te bezitten. 
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Er werd immers geen antibacteriële activiteit vastgesteld tegen de Gram-negatieve bacteriën 

Escherichia coli, Salmonella sp., Pasteurella sp. en Pseudomonas aeruginosa. Enkel de groei van 

Yersinia tuberculosis werd in beperkte mate geïnhibeerd. Het supernatant vertoonde ook geen 

antibacteriële activiteit tegen een reeks Gram-positieve bacteriën die behoren tot de Clostridium 

clusters I, IV, XIVa en XVI, 7 van de 8 geteste lactobacillen en alle geteste staphylococcen. 

Antibacteriële activiteit werd vastgesteld ten opzichte van Clostridium perfringens, Enterococcus 

cecorum en twee streptococcen. In een tweede fase van deze studie hebben we de component met 

antibacteriële activiteit tegen C. difficile opgezuiverd uit het supernatans en geïdentificeerd. Het 

resultaat van de massaspectrometrische analyse van de opgezuiverde fractie toonde de 

aanwezigheid van een grote piek bij 1036.65 Da. MSMS analyse van deze piek bewees dat het 

massaspectrum karakteristiek was voor het lipopeptide surfactine. Deze resultaten kwamen overeen 

met de massaspectra van commercieel beschikbaar surfactine. Bovendien bleek commercieel 

surfactine eveneens antibacteriële activiteit tegen C. difficile te bezitten. Uit deze studie kunnen we 

besluiten dat B. amyloliquefaciens minstens 1 antimicrobiële component, het lipopeptide surfactine, 

produceert dat actief is tegen C. difficile. 

Het gebruik van probiotica is de laatste jaren zeer populair geworden. Verschillende studies tonen 

aan dat probiotica een gunstig effect hebben op het voorkomen van antibioticumgeassocieerde 

diarree en terugkerende infecties. De B. amyloliquefaciens stam gebruikt in dit onderzoek werd 

specifiek geselecteerd voor zijn antibacteriële activiteit tegen C. difficile. Er zijn reeds verschillende 

Bacillus species die gebruikt worden als probioticum. In een tweede studie hebben we onderzocht of 

het mogelijk is om B. amyloliquefaciens te gebruiken als profylactische behandeling om C. difficile 

geassocieerde ziekte te voorkomen in een muismodel. Eerst werd de in vitro antibacteriële activiteit 

van B. amyloliquefaciens cultuursupernatans getest tegen 24 verschillende C. difficile ribotypes. Het 

supernatans bleek alle ribotypes in dezelfde mate te inhiberen. Vervolgens werd een muizenproef 

uitgevoerd om te bepalen of orale toediening van B. amyloliquefaciens C. difficile geassocieerde 

ziekte kon voorkomen. Daarnaast kreeg een groep muizen ook Saccharomyces boulardii toegediend. 

Deze gist is reeds een veel gebruikt probioticum en werd meegenomen als positieve controle. Het 

effect van beide behandelingen werd vergeleken met een niet-behandelde controlegroep. Na afloop 

van de proef bleek dat een behandeling met B. amyloliquefaciens de klinische symptomen en 

overlevingskans van de muizen verbeterde. B. amyloliquefaciens behandelde muizen hadden ook 

significant minder gewichtsverlies en lagere C. difficile toxine A en B gehaltes in de coloninhoud. Op 

basis van histopathologische analyse en de verhouding colongewicht/lengte en 

colon/lichaamsgewicht werd significant minder darmschade vastgesteld voor B. amyloliquefaciens 

behandelde muizen in vergelijking met S. boulardii en onbehandelde muizen. Uit al deze resultaten 
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kunnen we besluiten dat de orale toediening van B. amyloliquefaciens muizen beschermde tegen 

C. difficile geassocieerde ziekte. 

Antibiotica zijn lang gebruikt als voederadditief om de beschikbaarheid van nutriënten en de groei 

van dieren te bevorderen. De publieke bezorgdheid over het gebruik van antibiotica als 

voederadditief en de toename van het aantal antibioticumresistente pathogenen heeft in Europa 

geleid tot een verbod op het gebruik van antibiotica als groeipromoter. Clostridium perfringens is een 

darmpathogeen die necrotische enteritis veroorzaakt in vleeskippen. Het gebruik van antibiotica als 

voederadditief heeft deze ziekte lange tijd kunnen intomen. Dit verbod heeft echter geleid tot een 

toename in de incidentie van necrotische enteritis in vleeskippen. In vitro onderzoek toonde aan dat 

B. amyloliquefaciens ook de groei van C. perfringens kon inhiberen. In een derde studie hebben we 

de antibacteriële activiteit van B. amyloliquefaciens cultuursupernatans getest tegen een 

verzameling NetB-negatieve en NetB-positieve C. perfringens stammen. Hieruit bleek dat virulente 

NetB-positieve stammen significant meer geïnhibeerd werden dan avirulente NetB-negatieve 

stammen. Vervolgens werd een experimenteel diermodel gebruikt om na te gaan of het toevoegen 

van vegetatieve B. amyloliquefaciens cellen aan het voeder bescherming opleverde tegen 

C. perfringens geïnduceerde necrotische enteritis bij vleeskippen. Er kon echter geen voordelig effect 

worden vastgesteld van B. amyloliquefaciens supplementatie vermits er geen verschillen werden 

gedetecteerd in letselscore, percentage dieren positief voor necrotische enteritis en lichaamsgewicht 

tussen de behandelde en niet-behandelde groepen. 

Hoewel de ontdekking van antibiotica zeker en vast een grote doorbraak betekende voor de 

geneeskunde, heeft het overmatig gebruik ervan uiteindelijk geleid dat tot het ontstaan van 

antibioticumresistente pathogenen. Het onderzoek naar alternatieven voor breedspectrum 

antibioticumtherapie krijgt tegenwoordig meer en meer aandacht. Een mogelijk alternatief is het 

gebruik van antibacteriële componenten met een beperkt activiteitsspectrum. C. difficile en 

C. perfringens zijn twee belangrijke darmpathogenen van mens en dier die geassocieerd zijn met het 

gebruik van antibiotica. Alternatieve behandelingsmethoden zouden voor beide voordelig zijn om de 

ziekte te controleren. We hebben aangetoond dat B. amyloliquefaciens in vitro antibacterieel werkt 

tegen beide pathogenen. Nochtans leverde de toediening van B. amyloliquefaciens via het voeder 

geen voordeel op in de bescherming van vleeskuikens tegen necrotische enteritis veroorzaakt door 

C. perfringens. Anderzijds werkte de orale toediening van B. amyloliquefaciens wel beschermend  

voor C. difficile geassocieerde ziekte in muizen. Dit beschermend effect kan mogelijk worden 

verklaard door de productie van het lipopeptide surfactine. Er werd immers aangetoond dat de 

antibacteriële activiteit van B. amyloliquefaciens ten opzichte van C. difficile werd veroorzaakt door 

dit lipopeptide. Het toedienen van een probioticum dat B. amyloliquefaciens bevat aan mensen met 



 

 

204 Samenvatting 

een verhoogd risico op C. difficile geassocieerde ziekte kan een veelbelovend alternatief zijn voor 

standaard antibioticumtherapie. 
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korte tijd als bureau-collega’s wil ik ook jullie zeker niet vergeten! Liefste bureaugenoten, bedankt 

voor de mooie tijd! 
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Naast alle officiële bureaugenoten heb ik hier ook nog heel wat niet-officiële bureaugenoten aan de 

lijst toe te voegen. Evy, Celine, Wolf, Karen, Lonneke… ik weet al niet waar ik moet beginnen! Evy, 

bedankt om steeds opnieuw het protocol van de neutraal rood test door te sturen… voor het 

antwoord op al mijn (slimme en minder slimme) vragen, voor het samen doorworstelen van die 

zware laatste loodjes. Je bent er ook bijna, heel erg veel succes!! Celine, bedankt om hulplijn te 

spelen in het stappenplan “hoe breng ik mijn doctoraat tot een goed einde?” en om steeds zo snel op 

mijn resem vragen te antwoorden! Ik ben heel blij dat je zo goed terecht gekomen bent in de privé! 

Lonneke, ik ben heel erg blij dat ik met jou een jaartje GUHO heb mogen meemaken. Wie weet 

komen we elkaar nog tegen in een alumni-orkest ;-) Veel plezier met al je magic conferences en 

succes met je onderzoek! Karen, Vermeulen, ik weet niet of ik ooit nog een waardige zever-

vervangster ga vinden… ik mis je nu al een beetje! Bedankt om naar al mijn vertelsels te luisteren! 

Succes met je doctoraat en draag zorg voor het gele balletje! Het komt misschien nog van pas… Wolf, 

of moet ik zeggen Lolf… jij hebt ervoor gezorgd dat ik het titreren niet verleerde, “bedankt” ;-) 

Bedankt voor je gezelschap tijdens de restowandelingen. Veel succes bij je zoektocht naar een 

nieuwe job! Tot in De Gekroonde Hoofden!! Nog 1 ding… Karen, Wolf, ondertussen zitten jullie niet 

meer in dezelfde bureau en scheiden jullie wegen zich binnenkort ook, maar sta mij toe om nog 1 

keer luidkeels te zingen: “vreeeeeeeede, vreeeeeeeede…!” En last maar zeker not least, Ruth, zes 

jaar na de schoolbanken gedeeld te hebben in het IKSO kwam ik je hier weer tegen. Ondertussen ben 

je al even weg maar gelukkig zien we elkaar nog eens in Droomland. Bedankt voor de carpoolritjes! 

De E40-rit Aalst-Merelbeke werd zo heel wat aangenamer! Beste allen, merci dat ik in jullie bureau 

ook een stoeltje kreeg! Ik kon me geen betere adoptiebureau toewensen! 

Fien, je bent hier nog niet zolang maar dat ons brein op dezelfde golflengte zit, was wel heel snel 

duidelijk. Ik wens je ontzettend veel succes met je onderzoek. Ik kijk al uit naar de Disney-avond en 

als je ooit muzikale begeleiding nodig hebt, je weet me te vinden he ;-) We’ll keep in touch! Koralien, 

aleja, Van Driessche, we blijven toch voor eens en voor altijd Peppi en Kokki. Bedankt voor de plak! 

Ontzettend veel succes met je dierenartscarrière. Ik kan al niet wachten tot de officiële opening van 

je eigen praktijk! Venessa, bedankt om je weekends op te offeren voor mijn muizenproeven. Merci 

voor al je hulp groot en klein, voor al je advies en nuttige tips! 

Seeeeeerge, Arleeeeeette, bedankt om steeds weer opnieuw de autoclaaf in te zetten als ik weer 

maar eens iets vergeten was! Marleen, al die pakjes waren zonder jou nooit op hun bestemming 

geraakt. Jo, Gunter en Astra, bedankt voor alle last-minute bestellingen. Koen P., zonder jou was mijn 

computer al lang ten dode opgeschreven. Sofie en Nathalie, de rommel in het Salmonella labo is 

vanaf nu officieel niet meer van mij! Bedankt voor het geduld de laatste jaren ;-) Christian en 
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Delphine, heel erg bedankt voor het snijden en kleuren van mijn coupes. Zelf kan ik het absoluut niet 

beter! Michiel en Johan, dankzij jullie werd staalname in de autopsiezaal toch net iets aangenamer.  

Marc V., voor de laatste keer: Haai!  

Uiteraard loopt er op de patho en de bacterio nog heel wat volk rond die een grote dank u 

verdienen, Veronique, Leslie, Maaike, Han, Norbert, Leen, Marjan, Sarah, Joachim, Iris, Myrthe, 

Caroline, Eva, Lieze, Gwij, An, Gunther, Bonnie, Maxime, Elin, Roel, Chloë, Annemieke, An, Frank, 

Filip, Katleen, Connie, Julie, Magda, Chana, Pascale, Tom, Guangzhi (I will never forget how you 

sacrificed your free Sunday afternoon for the emergency sampling of my first in vivo trial…), David, 

Sergio, Michal, Vanessa, Bregje, Miet, Sandrine, Kim, Alexander, Bram, Sophie, Lieven, Melanie, 

Rosalie, Lien, Lien, Nele, Ellen, Hanne, Anja, Beatrice… Jullie gezelschap maakte dat de vele labo-uren 

zowaar voorbij vlogen. Bedankt voor alle aangename gesprekken en toffe momenten, voor de leuke 

middagpauzes en de hulp verleend waar nodig.  

Jonas, supermerci voor de mooi cover! Ik sta er nog steeds van versteld dat je aan al mijn cryptische 

omschrijvingen uitgeraakte. Thanks! 

Gent-vriendjes, thuis-vriendjes, familie-vriendjes, Recreas-vriendjes, fanfarazzi’s… jullie zijn met 

veel… zonder jullie had ik hier nooit gestaan. Jullie hebben mij altijd gesteund en stonden steeds 

klaar met een luisterend oor. Gelukkig zorgden jullie voor de nodige (al dan niet muzikale) afleiding , 

lachmomentjes en emergence-apero’s als het weer eens wat minder ging... Jullie hebben heel wat 

minuten (ok… uren…) gezaag mogen aanhoren maar wisten mij steeds te motiveren en gaven mij het 

nodige vertrouwen om dit succesvol af te ronden. Ik weet nu al dat ik van menigeen onder jullie een 

“zie je wel!” ga krijgen. Wel ja, maar mag ik tóch even reageren: “ai toe…”. Ik mag mezelf gelukkig 

prijzen want jullie hier persoonlijk opnoemen, dan kom ik met de volgende x pagina’s nog niet toe… 

Trouwens… jullie verdienen veel meer dan dat… Sta mij toe van jullie allen hoogst persoonlijk te 

bedanken. Love you all! 

Om af te sluiten wil ik heel graag mijn familie bedanken. Katrien, moe, va, ’t is af! Na zoveel jaren is 

het eindelijk gedaan met student-zijn. Bedankt voor alle steun die vele jaren lang. Bedankt om mij de 

kans te geven dit te kunnen doen en om steeds in mij te geloven. Jullie “goed-voor-een-taartje”-bon 

moet misschien een “goed-voor-veel-taartjes”-bon worden! Binnenkort… beloofd… en dan drinken 

we er ene op! 

En dan nu, tijd voor een nieuw avontuur… 

- Over and Out - 
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